WO2023142395A1 - 一种硬碳复合材料及其制备方法、锂离子电池 - Google Patents

一种硬碳复合材料及其制备方法、锂离子电池 Download PDF

Info

Publication number
WO2023142395A1
WO2023142395A1 PCT/CN2022/106510 CN2022106510W WO2023142395A1 WO 2023142395 A1 WO2023142395 A1 WO 2023142395A1 CN 2022106510 W CN2022106510 W CN 2022106510W WO 2023142395 A1 WO2023142395 A1 WO 2023142395A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard carbon
composite material
carbon composite
phosphorus
solid
Prior art date
Application number
PCT/CN2022/106510
Other languages
English (en)
French (fr)
Inventor
赵晓锋
刘静
杨红新
Original Assignee
蜂巢能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蜂巢能源科技股份有限公司 filed Critical 蜂巢能源科技股份有限公司
Publication of WO2023142395A1 publication Critical patent/WO2023142395A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of lithium-ion battery anode materials, in particular, to a hard carbon composite material, a preparation method thereof, and a lithium-ion battery.
  • the negative electrode materials used in lithium-ion batteries are required to have a large rate of lithium ion intercalation and extraction rates at room temperature and low temperature conditions, in order to improve the material rate charge and discharge capability.
  • the current graphite materials are mainly layered structures, and the interlayer spacing is small, which is not conducive to the rapid intercalation of lithium ions.
  • Hard carbon materials are used in ultra-low temperature and high-rate lithium-ion batteries due to their advantages such as large interlayer spacing, small stress changes during charge and discharge, high isotropy, and high voltage platform.
  • the hard carbon materials in the prior art are mainly granular or block structures, which have low specific capacity, low initial efficiency, deviation in rate performance, and poor cycle performance, which is not conducive to the development and application of high energy density fast charging battery systems. .
  • the purpose of the present disclosure is to provide a hard carbon composite material, a preparation method thereof, and a lithium ion battery, so as to improve the tap density, rate performance and cycle performance of the hard carbon composite material.
  • the present disclosure provides a hard carbon composite material, which has a core-shell structure (the core-shell structure is an ordered assembly structure formed by covering another material with one material through chemical bonds or other forces. ), the core of the core-shell structure includes a hard carbon material doped with phosphorus, and the shell of the core-shell structure includes lithium salt and amorphous carbon;
  • Carbon nanotubes are also grown on the surface of the phosphorus-doped hard carbon material
  • the shape of the hard carbon composite material is a sphere.
  • the shape of the hard carbon composite material is a sphere, and the sphere also includes a spheroid (approximately a sphere).
  • the multi-dimensional orientation during delithiation can significantly improve the rate performance of hard carbon composites.
  • the core of the hard carbon composite material is mainly a hard carbon material doped with phosphorus.
  • Hard carbon refers to carbon that is difficult to be graphitized, and this type of carbon is also difficult to graphitize at a high temperature above 2500°C.
  • Hard carbon materials have the advantages of large interlayer spacing, small stress changes during charge and discharge, high isotropy, and high voltage plateau.
  • phosphorus can promote the hard carbon material to produce a pore structure, and phosphorus itself has a higher specific capacity, thereby improving the specific capacity of the hard carbon material. Therefore, the core of the core-shell structure described in the present disclosure is a porous structure.
  • carbon nanotubes are also grown on the surface of the phosphorus-doped hard carbon material of the present application. Carbon nanotubes can reduce the electronic impedance of hard carbon composites, increase electronic conductivity and tap density of materials, and make the structure of hard carbon composites more stable, thereby improving the rate and cycle performance of materials.
  • the coating of lithium salt on the surface of the core can improve the tap density, first-time efficiency and rate performance of the hard carbon composite.
  • the hard carbon composite material provided by the application has the advantages of large tap density, large specific surface area, high specific capacity, high initial efficiency, good rate performance and good cycle performance, and solves the problems existing in the prior art.
  • the particle size of the hard carbon composite material is 5-20 ⁇ m, including but not limited to the point value of any one of 6 ⁇ m, 8 ⁇ m, 10 ⁇ m, 12 ⁇ m, 15 ⁇ m, 17 ⁇ m, 19 ⁇ m or any two range of values between.
  • the mass ratio of the shell to the core of the core-shell structure is 1-10 (2, 3, 4, 5, 6, 7, 8 or 9 can also be selected): 90-99 (it can also be Select 91, 92, 93, 94, 95, 96, 97 or 98).
  • the mass of the phosphorus-containing compound in the inner core accounts for 1% to 10% of the mass of the inner core; including but not limited to 2%, 3%, 4%, 5%, 6%, 7% , 8%, 9% point value or any range value in between.
  • the mass ratio of lithium salt in the shell to amorphous carbon is 50-80 (52, 55, 60, 65, 70 or 75 can also be selected): 20-50 (23 , 25, 28, 30, 35, 40 or 45).
  • particle sizes and mass ratios within the above range is beneficial to further improving the specific capacity, initial efficiency, rate performance and cycle performance of the hard carbon composite material.
  • the shell further contains fluorine element.
  • the fluorine element is obtained by fluorinating the shell, and a C-F structure will be formed on the surface of the shell after fluorinating.
  • the degree of surface defects of the hard carbon composite can be reduced, and the first-time efficiency of the hard carbon composite and its compatibility with the electrolyte can also be improved.
  • the present disclosure also provides a method for preparing the above-mentioned hard carbon composite material, comprising the following steps:
  • phenolic compounds and aldehyde compounds are used as synthetic raw materials for making hard carbon precursor material-phenolic resin, and phenolic compounds and aldehyde compounds will undergo phenolic reactions under the action of basic catalysts.
  • the phosphorus-doped phenolic resin material is mainly composed of phenolic resin, and is also doped with some phosphorus elements.
  • the phosphorus source is used as a doping raw material for preparing the phosphorus-doped phenolic resin material.
  • the phosphorus source can promote the formation of holes in the material, and make pores on the phenolic resin, thereby preparing a porous structure of phosphorus-doped phenolic resin material; on the other hand, phosphorus itself has a high specific capacity, and the doped
  • the heterophosphorus can increase the lithium storage active point of the phenolic resin material, thereby increasing the specific capacity of the phenolic resin.
  • a spherical phenolic resin material can be prepared through a hydrothermal method, and the hard carbon composite material obtained after final carbonization is also spherical.
  • step (b) immersing the phosphorus-doped phenolic resin material obtained in step (a) in an organic solvent containing a catalyst, and then performing solid-liquid separation to obtain a solid material, and then introducing a carbon source gas into it for vapor deposition, Growing carbon nanotubes on the surface of the phosphorus-doped phenolic resin material to obtain an inner core.
  • the phosphorus-doped phenolic resin material is immersed in an organic solvent containing a catalyst to provide a matrix for the subsequent growth of carbon nanotubes.
  • the catalyst will adhere to the surface of the phosphorus-doped phenolic resin material, and then pass through the carbon source for vapor phase deposition, and the carbon nanotubes will eventually grow to the phosphorus-doped phenolic resin material by attaching to the surface of the catalyst. Surface of phenolic resin material.
  • the carbon nanotubes and the phosphorus-doped phenolic resin material (phosphorus-doped hard carbon material) will be connected to each other through chemical bonds, thereby improving the electronic conductivity and the tap density of the material.
  • the main component of the inner core is a phosphorus-doped hard carbon material, and carbon nanotubes are grown on the surface of the phosphorus-doped hard carbon material, but the inner core also includes a part of phosphorus-doped phenolic resin material. Because in the process of vapor deposition, some phenolic resins will be carbonized to form hard carbon, but some phenolic resins will not be carbonized.
  • step (c) mixing the inner core obtained in step (b) with an organic solvent containing a lithium salt and then separating the solid from the liquid, and then carbonizing the solid material after the solid-liquid separation under an inert atmosphere to obtain the hard carbon composite material.
  • step (c) the phenolic resin that has not been carbonized will be completely carbonized to generate hard carbon.
  • Coating the lithium salt on the core surface of the material can reduce the specific surface area of the hard carbon composite material and improve the initial efficiency of the hard carbon composite material; on the other hand, the high conductivity of the lithium salt can improve the rate performance of the hard carbon composite material .
  • the mass ratio of the phenolic compound, the aldehyde compound, the phosphorus source, the basic catalyst and the solvent is 50-100 (you can also choose 55, 60, 65, 70, 75, 80, 85, 90 or 95): 90 to 110 (93, 95, 98, 100, 102, 105 or 107 can also be selected): 1 to 5 (2, 3 or 4 can also be selected): 50 to 500 (you can also choose 55, 60, 70, 90, 100, 150, 200, 250, 300, 350, 400, 430, 450 or 480): 900 ⁇ 1100 (you can also choose 920, 950, 970, 1000, 1030, 1050 or 1080).
  • Adopting the above mass ratio is beneficial to further increase the specific surface area and specific capacity of the hard carbon composite material.
  • the phenolic compound in step (a), includes at least one of phenol, cresol, cardanol, resorcinol and m-aminophenol.
  • phenol whose chemical formula is C 6 H 5 OH, also known as carbolic acid, is a colorless needle-like crystal with a special smell.
  • Cresol the molecular formula is C 7 H 8 O, almost colorless, lavender or light brown clear liquid; it has an odor similar to phenol, with a slight burnt odor.
  • Cardanol is extracted from natural cashew nut shell oil by advanced technology, and can replace or partially replace phenol to make epoxy curing agent, liquid phenolic resin material, liquid or powder thermosetting phenolic resin material.
  • Resorcinol also known as 1,3-benzenediol, is an organic compound with a chemical formula of C 6 H 6 O 2 .
  • Meta-aminophenol chemical formula is C 6 H 7 NO, also known as 3-aminophenol, 3-aminophenol, m-aminophenol, m-hydroxyaniline, 3-hydroxyaniline, slightly soluble in water, soluble in ethanol and ether.
  • the aldehyde compound in step (a), includes at least one of formaldehyde, acetaldehyde, butyraldehyde, valeraldehyde, hexanal and furfural.
  • Formaldehyde is an organic chemical substance whose chemical formula is HCHO, also known as formaldehyde, colorless, and has an irritating gas.
  • Acetaldehyde the molecular formula is C 2 H 4 O
  • a colorless liquid also known as acetaldehyde
  • a colorless and easy flowing liquid with a pungent smell and can be miscible with water, ethanol and other substances.
  • Butyraldehyde is a colorless and transparent flammable liquid with a chemical formula of C 4 H 8 O. It has an asphyxiating aldehyde smell and is slightly soluble in water. It can be mixed with ethanol, ether, ethyl acetate, acetone, toluene and many other organic solvents and Miscible with oils.
  • Valeraldehyde also known as n-valeraldehyde, has a chemical formula of C 5 H 10 O. It is a colorless liquid at normal temperature and pressure. It is flammable and irritating. It can be used as a fragrance and rubber accelerator.
  • Hexanal also known as six-carbon aldehyde or n-hexanal, has a molecular formula of C 6 H 12 O, a colorless liquid, very slightly soluble in water, and soluble in organic solvents such as ethanol.
  • Furfural is an organic substance with a chemical formula of C 5 H 4 O 2 , also known as furfuraldehyde, a colorless transparent oily liquid with a special odor similar to benzaldehyde.
  • the phosphorus source includes at least one of phosphoric acid, ammonium phosphate, diammonium hydrogen phosphate and ammonium dihydrogen phosphate.
  • Phosphoric acid also known as orthophosphoric acid, is a medium-strong acid with a chemical formula of H 3 PO 4 . It is not volatile, not easy to decompose, and has almost no oxidizing properties.
  • Ammonium phosphate molecular formula (NH 4 ) 3 PO 4 , is the ammonium salt of phosphoric acid, and exists as anhydrous and hydrate. Colorless crystal or off-white powder, sometimes granular, soluble in water.
  • Diammonium hydrogen phosphate molecular formula (NH 4 ) 2 HPO 4 , also known as diammonium phosphate, colorless transparent monoclinic crystal or white powder.
  • Ammonium dihydrogen phosphate also known as monoammonium phosphate, is a white crystal with a chemical formula of NH 4 H 2 PO 4 .
  • the basic catalyst includes at least one of ammonia water, sodium carbonate and sodium bicarbonate.
  • the solvent in step (a), includes ethanol and/or water.
  • the solvent includes ethanol and water, and the volume ratio of the ethanol to the water is 3-5 (3.5, 4 or 4.5 can also be selected):1.
  • the temperature of the mixed material is 50-200°C; including but not limited to 60°C, 70°C, 90°C, 100°C, The point value of any one of 120°C, 150°C, and 180°C or the range value between any two.
  • the pressure of the environmental system during the hydrothermal reaction is 1-5Mpa; including but not limited to the point value of any one of 2Mpa, 3Mpa, 4Mpa or any two range of values between.
  • the time of the hydrothermal reaction is 1 to 6 hours; including but not limited to the point value of any one of 2 hours, 3 hours, 4 hours, 5 hours or any value between the two range of values.
  • step (a), after the solid-liquid separation further includes the step of drying the solid material after the solid-liquid separation; in one embodiment, the drying includes freezing dry.
  • Freeze drying also known as sublimation drying, refers to the drying method that freezes the water-containing material below the freezing point, turns the water into ice, and then turns the ice into steam under a high vacuum to remove it.
  • the method of freeze-drying is conducive to promoting the formation of holes in the obtained phosphorus-doped phenolic resin material, which has the advantages of stable structure and large specific surface area, thereby improving the liquid absorption capacity (i.e. absorption capacity) of the final hard carbon composite material.
  • the liquid retention capacity means that the dry battery mixture can maintain the characteristics of the electrolyte, which is closely related to the hydrochloric acid absorption, acetone absorption, and DBP absorption of the carbon black test alone), and improves its cycle performance.
  • the catalyst in step (b), includes at least one of a nickel-containing compound, an iron-containing compound, and a cobalt-containing compound.
  • the nickel-containing compound includes nickel chloride and/or nickel nitrate.
  • the iron-containing compound includes ferric chloride and/or ferric nitrate.
  • the cobalt-containing compound includes cobalt chloride and/or cobalt nitrate.
  • the mass ratio of the catalyst to the phosphorus-doped phenolic resin material is 1-10 (2, 3, 4, 5, 6, 7, 8 or 9 can also be selected):100.
  • the mass fraction of the catalyst is 1% to 10%; including but not limited to 2%, 3%, 4%, 5%, 6%, 7%, 8% %, 9% point value or any range value between the two.
  • the immersion time is 1-48h; including but not limited to any one of 2h, 4h, 5h, 7h, 10h, 15h, 20h, 25h, 30h, 35h, 40h, 45h A point value or any range value in between.
  • the carbon source gas includes at least one of methane, acetylene and ethylene.
  • the vapor deposition temperature is 700°C to 1000°C; including but not limited to any point value of 720°C, 750°C, 800°C, 850°C, 900°C, 950°C or any The range value in between.
  • the vapor deposition time is 1 to 6 hours; including but not limited to a point value of any one of 2 hours, 3 hours, 4 hours, and 5 hours or a range value between any two.
  • the carbon nanotubes grown on the surface of the phosphorus-doped phenolic resin material can reduce the electronic resistance of the hard carbon composite material.
  • Adoption of the types, dosages and preparation parameters of the above-mentioned raw materials is conducive to improving the electronic conductivity and the tap density of the material.
  • step (b), after the solid-liquid separation further includes the step of drying the solid material after the solid-liquid separation; more in one embodiment, the drying includes Dry under vacuum and/or under normal pressure.
  • Vacuum drying also known as analytic drying, is a drying method that puts materials under negative pressure conditions and heats them up to the boiling point under negative pressure or cools down to make the materials solidify and then dry the materials through the melting point.
  • Atmospheric pressure drying refers to drying under an atmospheric pressure condition. This method has simple equipment, and a box-type dryer (oven or drying room) is commonly used.
  • the mass ratio of the lithium salt to the inner core is 1 to 10 (2, 3, 4, 5, 6, 7, 8 or 9 can also be selected): 100 .
  • the mass fraction of lithium salt is 1% to 10%; including but not limited to 2%, 3%, 4%, 5%, 6%, 7% , 8%, 9% point value or any range value in between.
  • the lithium salt includes at least one of lithium zirconate, lithium metaaluminate, lithium titanate and lithium niobate.
  • the use of the above-mentioned lithium salt can improve the ionic conductivity of the hard carbon composite material, and improve the first-time efficiency of the hard carbon composite material.
  • the carbonization temperature is 700°C to 1000°C, including but not limited to the point value of any one of 750°C, 800°C, 850°C, 900°C, 950°C or any value between them range of values.
  • the carbonization time is 1 to 6 hours; including but not limited to a point value of any one of 2 hours, 3 hours, 4 hours, and 5 hours or a range value between any two.
  • step (c), after the solid-liquid separation further includes the step of drying the solid material after the solid-liquid separation; more in one embodiment, the drying includes Spray dry.
  • Spray drying is a method of systematic technology applied to material drying. After the thinner is atomized in the drying room, the water vaporizes quickly in contact with the hot air, and the dry product is obtained. This method can directly dry the solution and emulsion into powder or granular products, which can save the evaporation, crushing and other processes.
  • step (c) during the carbonization process, fluorine gas is also mixed in the inert atmosphere, so as to perform fluorination treatment while carbonization.
  • the present disclosure can reduce the degree of surface defects of the hard carbon composite material by fluorinating the shell of the hard carbon composite material, thereby improving the first-time efficiency of the hard carbon composite material and its compatibility with the electrolyte.
  • the volume ratio of the fluorine gas and the inert gas used in the inert atmosphere is 1:3-5 (3.5, 4 or 4.5 can also be selected).
  • the organic solvent includes N-methylpyrrolidone, carbon tetrachloride, cyclohexane, xylene, N,N-dimethyl At least one of methyl formamide and tetrahydrofuran.
  • N-methylpyrrolidone with the chemical formula C 5 H 9 NO , is a colorless to light yellow transparent liquid with a slight ammonia smell, miscible with water in any proportion, soluble in ether, acetone and esters, halogenated hydrocarbons, Various organic solvents such as aromatic hydrocarbons, almost completely mixed with all solvents.
  • Carbon tetrachloride is a colorless transparent liquid, volatile, poisonous, with chloroform smell and sweet taste. Carbon tetrachloride is insoluble in water, but miscible with ethanol, ether, chloroform and petroleum ether.
  • Cyclohexane whose chemical formula is C 6 H 12 , is a colorless liquid with a pungent odor. Insoluble in water, soluble in most organic solvents. Very flammable.
  • Xylene the molecular formula is C 8 H 10 , is a colorless transparent liquid with a pungent smell and is flammable. It can be freely mixed with ethanol, chloroform or ether, and is insoluble in water.
  • N, N-dimethylformamide, molecular formula C 3 H 7 NO is a colorless transparent liquid. It can be freely mixed with water and most organic solvents except halogenated hydrocarbons, and has good solubility for various organic and inorganic compounds.
  • Tetrahydrofuran the molecular formula is C 4 H 8 O. It belongs to ethers and is the complete hydrogenation product of aromatic compound furan. It is a colorless, water-miscible organic liquid with low viscosity at normal temperature and pressure.
  • step (a) the hydrothermal reaction is carried out in a high-pressure reactor.
  • step (b) the vapor deposition is performed in a tube furnace.
  • step (b) before introducing the carbon source gas, a step of injecting an inert gas is also included.
  • the purpose of introducing inert gas is to discharge the air in the reaction vessel.
  • the inert gas includes argon and/or helium.
  • the gas used in the inert atmosphere includes argon and/or helium.
  • the present disclosure also provides a lithium ion battery, comprising the above-mentioned hard carbon composite material, or the hard carbon composite material prepared by the above-mentioned method for preparing the hard carbon composite material.
  • the lithium ion battery has the advantages of high specific capacity, high initial efficiency, good rate performance, and good cycle performance.
  • the hard carbon composite material provided by the present disclosure has the advantages of high tap density, large specific surface area, high specific capacity, high initial efficiency, good rate performance and good cycle performance.
  • the hard carbon composite material provided by the present disclosure can reduce the degree of surface defects of the hard carbon composite material by performing fluorination treatment, and improve the first-time efficiency of the hard carbon composite material and its compatibility with the electrolyte. .
  • Fig. 1 is the SEM picture of the hard carbon composite material provided by Example 1 of the present disclosure
  • FIG. 2 is an SEM image of the hard carbon composite material provided in Comparative Example 1 of the present disclosure.
  • the hard carbon precursor material was transferred to a tube furnace, the air in the tube was first vented with argon gas, and then the methane carbon source gas was introduced, and the temperature was raised to 800 °C and kept for 3 hours for vapor deposition. Phosphorus-doped phenolic Carbon nanotubes are grown on the surface of the resin material to obtain a core material.
  • step (3) Add 5g of lithium zirconate to N-methylpyrrolidone, configure to obtain a mixed solution with a mass fraction of lithium zirconate of 5%, then add 100g of the core material obtained in step (2) to it, filter and spray dry , and then under the condition of a mixture of fluorine and argon (the volume ratio of fluorine and argon is 1:4), carbonization is carried out at a temperature of 800° C. for 3 hours to obtain a hard carbon composite material.
  • a mixture of fluorine and argon the volume ratio of fluorine and argon is 1:4
  • Example 1 The hard carbon composite material prepared in Example 1 was tested by SEM, and the results are shown in FIG. 1 . It can be seen from FIG. 1 that the hard carbon composite material prepared in Example 1 is spherical, and the particle size is between 5 and 20 ⁇ m.
  • the hard carbon precursor material was transferred to a tube furnace, and the air in the tube was first vented with argon gas, and then the acetylene carbon source gas was introduced, and the temperature was raised to 700 ° C and kept for 6 hours for vapor deposition.
  • Phosphorus-doped phenolic Carbon nanotubes are grown on the surface of the resin material to obtain a core material.
  • lithium niobate is added in carbon tetrachloride, configuration obtains lithium niobate massfraction and is the mixed solution of 1%, then adds the core material that 100g step (2) obtains wherein, carry out spray drying after filtering, Then, under the condition of the mixed gas of fluorine gas and argon gas (the volume ratio of fluorine gas and argon gas is 1:4), carbonization is carried out at a temperature of 700° C. for 6 hours to obtain a hard carbon composite material.
  • the mixed gas of fluorine gas and argon gas the volume ratio of fluorine gas and argon gas is 1:4
  • the hard carbon precursor material was transferred to a tube furnace, and the air in the tube was first vented with argon gas, and then ethylene carbon source gas was introduced, and the temperature was raised to 1000 ° C and kept for 1 h for vapor deposition.
  • Phosphorus-doped phenolic Carbon nanotubes are grown on the surface of the resin material to obtain a core material.
  • step (3) Add 10g of lithium metaaluminate to cyclohexane, configure a mixed solution with a mass fraction of lithium metaaluminate of 10%, then add 100g of the core material obtained in step (2) to it, filter and spray dry, Then, under the condition of a mixture of fluorine gas and argon gas (the volume ratio of fluorine gas and argon gas is 1:4), carbonization is carried out at a temperature of 1000° C. for 1 h to obtain a hard carbon composite material.
  • a mixture of fluorine gas and argon gas the volume ratio of fluorine gas and argon gas is 1:4
  • the preparation method of the hard carbon composite material provided by this embodiment is basically the same as that of Example 1, the only difference is that in step (3), the mixed gas of fluorine and argon is replaced by argon (that is, no fluorination treatment ).
  • the preparation method of the hard carbon composite material provided by this embodiment is basically the same as that of Example 1, the only difference is that in step (1), low-temperature freeze-drying is replaced by vacuum drying; and, in step (3), spray-drying Replace with vacuum drying.
  • the preparation method of the composite material provided by this comparative example comprises the steps:
  • the composite material prepared in Comparative Example 1 was tested by SEM, and the results are shown in FIG. 2 . It can be seen from FIG. 2 that the composite material prepared in Comparative Example 1 is in the shape of irregular particles, and the particle size is uneven, and the particle size is about 8-15 ⁇ m.
  • the preparation method of the composite material provided in this comparative example is basically the same as that of Example 1, the only difference is that in step (1), 3 g of phosphoric acid is replaced by 3 g of water.
  • the preparation method of the composite material provided in this comparative example is basically the same as that of Example 1, except that in step (2), the methane carbon source gas is replaced by argon.
  • the preparation method of the composite material provided in this comparative example is basically the same as that of Example 1, except that in step (3), 5 g of lithium zirconate is replaced by 5 g of N-methylpyrrolidone.
  • the hard carbon composite material made by each of the above examples and the composite material made by each comparative example are carried out interlayer spacing (D002), D50 particle size, The performance test of specific surface area and tap density, the results are shown in Table 1 below.
  • the core material prepared by the hydrothermal method in the present disclosure has a porous structure; and carbon nanotubes are grown on the surface, which has the characteristics of strong electronic conductivity and stable structure, thereby improving the rate and cycle performance of the material.
  • the lithium salt coated in the shell reduces the irreversible loss of the material during the first charging and discharging process of the hard carbon composite material, and improves the first efficiency of the hard carbon composite material.
  • the present disclosure provides a hard carbon composite material, a preparation method thereof, and a lithium ion battery.
  • the hard carbon composite material provided by the present disclosure has the advantages of high tap density, large specific surface area, high specific capacity, high initial efficiency, good rate performance and good cycle performance.
  • fluorination treatment By performing fluorination treatment, the degree of surface defects of the hard carbon composite material can be reduced, and the first-time efficiency of the hard carbon composite material and its compatibility with the electrolyte can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本公开涉及锂离子电池负极材料技术领域,具体而言,涉及一种硬碳复合材料及其制备方法、锂离子电池。所述的硬碳复合材料具有核壳结构,所述核壳结构的内核包括掺杂磷的硬碳材料,所述核壳结构的外壳包括锂盐和无定形碳;所述掺杂磷的硬碳材料的表面还生长有碳纳米管;所述硬碳复合材料的形状为球体。所述的硬碳复合材料具有振实密度大,比表面积大,比容量高,首次效率高,倍率性能好和循环性能好等优点。

Description

一种硬碳复合材料及其制备方法、锂离子电池
相关申请的交叉引用
本申请要求于2022年01月26日提交中国专利局的申请号为202210094680.2、名称为“一种硬碳复合材料及其制备方法、锂离子电池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及锂离子电池负极材料技术领域,具体而言,涉及一种硬碳复合材料及其制备方法、锂离子电池。
背景技术
随着纯电动汽车及其启停电源对锂离子电池脉冲充放电和低温要求的提高,要求锂离子电池所用的负极材料在常温和低温条件下具有大倍率的锂离子嵌脱速率,以提升材料的倍率充放电能力。
目前的石墨材料主要为层状结构,其层间距小,不利于锂离子的快速嵌出。而硬碳材料因具有层间距大、充放电过程中应力变化小、各向同性高以及电压平台高等优点而应用于超低温和大倍率锂离子电池。
但是,现有技术中的硬碳材料主要为颗粒状或块状结构,其比容量偏低,首次效率低,倍率性能偏差,循环性能差,不利于高能量密度快充电池体系的开发和应用。
发明内容
有鉴于此,本公开的目的在于提供一种硬碳复合材料及其制备方法、锂离子电池,以提升硬碳复合材料的振实密度、倍率性能和循环性能。
本公开提供了一种硬碳复合材料,所述硬碳复合材料具有核壳结构(核壳结构是由一种材料通过化学键或其他作用力将另一种材料包覆起来形成的有序组装结构),所述核壳结构的内核包括掺杂磷的硬碳材料,所述核壳结构的外壳包括锂盐和无定形碳;
所述掺杂磷的硬碳材料的表面还生长有碳纳米管;
所述硬碳复合材料的形状为球体。
其中,所述硬碳复合材料的形状为球体,该球体也包括类球体(近似球体)。球状结构的硬碳复合材料,其脱锂时的多维方向可以明显提升硬碳复合材料的倍率性能。
所述硬碳复合材料的内核主要为掺杂磷的硬碳材料,硬碳是指难以被石墨化的碳,这 类碳在2500℃以上的高温也难以石墨化。硬碳材料具有层间距大、充放电过程中应力变化小、各向同性高以及电压平台高等优点。而本申请在掺杂磷后,磷能够促使硬碳材料产生孔洞结构,同时磷自身具有较高的比容量,从而能够提升硬碳材料的比容量。因此,本公开所述核壳结构的内核为多孔结构。
进一步地,本申请掺杂磷的硬碳材料的表面还生长有碳纳米管。碳纳米管可以降低硬碳复合材料的电子阻抗,提升电子导电率和材料的振实密度,使硬碳复合材料的结构更稳定,从而改善材料的倍率和循环性能。
并且,在内核的表面包覆锂盐,能够提升硬碳复合材料的振实密度、首次效率和倍率性能。
由此可见,本申请所提供的硬碳复合材料,其具有振实密度大,比表面积大,比容量高,首次效率高,倍率性能好和循环性能好等优点,解决了现有技术中存在的比容量偏低、首次效率低、倍率性能以及循环性能差的问题。
在一种实施方式中,所述硬碳复合材料的粒径为5~20μm,包括但不限于6μm、8μm、10μm、12μm、15μm、17μm、19μm中的任意一者的点值或任意两者之间的范围值。
在一种实施方式中,所述核壳结构的外壳和内核的质量比为1~10(还可以选择2、3、4、5、6、7、8或9):90~99(还可以选择91、92、93、94、95、96、97或98)。
在一种实施方式中,所述内核中的含磷化合物的质量占所述内核质量的1%~10%;包括但不限于2%、3%、4%、5%、6%、7%、8%、9%中的任意一者的点值或任意两者之间的范围值。
在一种实施方式中,所述外壳中的锂盐和无定形碳的质量比为50~80(还可以选择52、55、60、65、70或75):20~50(还可以选择23、25、28、30、35、40或45)。
采用上述范围内的粒径以及各质量比,有利于进一步提高硬碳复合材料的比容量、首次效率、倍率性能和循环性能。
在一种实施方式中,所述外壳中还含有氟元素。
氟元素是通过将外壳进行氟化处理得到,在经过氟化处理后在外壳表面会形成C-F结构。
通过对外壳进行氟化处理,能够降低硬碳复合材料的表面缺陷程度,且还能提升硬碳复合材料的首次效率及其与电解液的相容性。
本公开还提供了如上所述的硬碳复合材料的制备方法,包括如下步骤:
(a)、将酚类化合物、醛类化合物、磷源、碱性催化剂和溶剂混合,进行水热反应,待反应完成后进行固液分离,得到掺杂磷的酚醛树脂材料。
其中,酚类化合物和醛类化合物是作为制得硬碳前驱体材料-酚醛树脂的合成原料,酚 类化合物和醛类化合物在碱性催化剂的作用下会发生酚醛反应。所述掺杂磷的酚醛树脂材料主要由酚醛树脂组成,还掺杂有部分磷元素。
磷源作为制得掺杂磷的酚醛树脂材料的掺杂原料。通过磷掺杂,一方面,磷源能够促使材料形成孔洞,对酚醛树脂进行造孔,从而制备出多孔结构的掺杂磷的酚醛树脂材料;另一方面,磷自身具有高的比容量,掺杂磷可以提升酚醛树脂材料的储锂活性点,从而提升酚醛树脂的比容量。
本公开通过水热法能够制得球状的酚醛树脂材料,且最终碳化后所得的硬碳复合材料也为球形。
(b)、将步骤(a)得到的所述掺杂磷的酚醛树脂材料浸入含有催化剂的有机溶剂中,然后进行固液分离,得到固体物料,再向其中通入碳源气体进行气相沉积,在所述掺杂磷的酚醛树脂材料的表面生长碳纳米管,得到内核。
其中,将掺杂磷的酚醛树脂材料浸入含有催化剂的有机溶剂中,是为之后的碳纳米管的生长提供基体。具体地,在浸入(浸泡)之后,催化剂会附着在掺杂磷的酚醛树脂材料表面,然后通入碳源进行气相沉积后,碳纳米管会通过附着在催化剂表面而最终生长至掺杂磷的酚醛树脂材料的表面。
即,在催化剂的作用下,碳纳米管与掺杂磷的酚醛树脂材料(掺杂磷的硬碳材料)会通过化学键相互连接,提升电子导电率和材料的振实密度。
内核的主要成分为掺杂磷的硬碳材料,且掺杂磷的硬碳材料的表面还生长有碳纳米管,但是内核中还包括部分掺杂磷的酚醛树脂材料。因为在气相沉积的过程中,部分酚醛树脂会发生碳化生成硬碳,但也会有部分酚醛树脂未发生碳化。
(c)、将步骤(b)得到的所述内核与含有锂盐的有机溶剂混合后固液分离,然后将所述固液分离后的固体物料在惰性气氛下进行碳化,得到所述硬碳复合材料。
其中,在步骤(c)中,未发生碳化的酚醛树脂会全部碳化完成,生成硬碳。
在材料的内核表面包覆锂盐,一方面能够降低硬碳复合材料的比表面积,提升硬碳复合材料的首次效率;另一方面,锂盐导电率高,可以提升硬碳复合材料的倍率性能。
在一种实施方式中,步骤(a)中,所述酚类化合物、醛类化合物、磷源、碱性催化剂和溶剂的质量比为50~100(还可以选择55、60、65、70、75、80、85、90或95):90~110(还可以选择93、95、98、100、102、105或107):1~5(还可以选择2、3或4):50~500(还可以选择55、60、70、90、100、150、200、250、300、350、400、430、450或480):900~1100(还可以选择920、950、970、1000、1030、1050或1080)。
采用上述质量比有利于进一步提高硬碳复合材料的比表面积和比容量。
在一种实施方式中,步骤(a)中,所述酚类化合物包括苯酚、甲酚、腰果酚、间苯二 酚和间氨基酚中的至少一种。
其中,苯酚,化学式为C 6H 5OH,又称为石炭酸,是具有特殊气味的无色针状晶体。
甲酚,分子式为C 7H 8O,几乎无色、淡紫红色或淡棕黄色的澄清液体;有类似苯酚的臭气,并微带焦臭。
腰果酚是一种从天然腰果壳油中经先进技术提炼而成,可以代替或者部分代替苯酚用于制造环氧固化剂、液体酚醛树脂材料、液体或者粉末状的热固性酚醛树脂材料。
间苯二酚,又名1,3-苯二酚,是一种有机化合物,化学式为C 6H 6O 2
间氨基酚,化学式为C 6H 7NO,又称为3-氨基苯酚、3-氨基酚、间氨基苯酚、间羟基苯胺、3-羟基苯胺,微溶于水,溶于乙醇、乙醚。
在一种实施方式中,步骤(a)中,所述醛类化合物包括甲醛、乙醛、丁醛、戊醛、己醛和糠醛中的至少一种。
甲醛是一种有机化学物质,化学式是HCHO,又称蚁醛,无色,有刺激性气体。
乙醛,分子式为C 2H 4O,无色液体,又名醋醛,无色易流动液体,有刺激性气味,可与水、乙醇等物质互溶。
丁醛是一种无色透明可燃液体,化学式为C 4H 8O,有窒息性醛味,微溶于水,能与乙醇、乙醚、乙酸乙酯、丙酮、甲苯及多种其他有机溶剂和油类混溶。
戊醛,也称正戊醛,其化学式为C 5H 10O,常温常压下为无色液体,易燃,具刺激性,可用作香料、橡胶促进剂。
己醛,也称六碳醛、正己醛,分子式为C 6H 12O,无色液体,极微量溶于水,溶于乙醇等有机溶剂。
糠醛是一种有机物,化学式为C 5H 4O 2,又称为呋喃甲醛,无色透明油状液体,有类似苯甲醛的特殊气味。
在一种实施方式中,步骤(a)中,所述磷源包括磷酸、磷酸铵、磷酸氢二铵和磷酸二氢铵中的至少一种。
磷酸,又称为正磷酸,是中强酸,化学式为H 3PO 4,不易挥发,不易分解,几乎没有氧化性。
磷酸铵,分子式(NH 4) 3PO 4,是磷酸的铵盐,存在无水物和水合物。无色晶体或灰白色粉末,有时为颗粒,易溶于水。
磷酸氢二铵,分子式(NH 4) 2HPO 4,又称磷酸二铵,无色透明单斜晶体或白色粉末。
磷酸二氢铵,又称为磷酸一铵,是一种白色的晶体,化学式为NH 4H 2PO 4
在一种实施方式中,步骤(a)中,所述碱性催化剂包括氨水、碳酸钠和碳酸氢钠中的至少一种。
在一种实施方式中,步骤(a)中,所述溶剂包括乙醇和/或水。
在一种实施方式中,所述溶剂包括乙醇和水,且所述乙醇和所述水的体积比为3~5(还可以选择3.5、4或4.5):1。
采用上述原料种类有利于提高硬碳复合材料的比表面积和比容量。
在一种实施方式中,步骤(a)中,在所述进行水热反应的过程中,混合物料的温度为50~200℃;包括但不限于60℃、70℃、90℃、100℃、120℃、150℃、180℃中的任意一者的点值或任意两者之间的范围值。
在一种实施方式中,步骤(a)中,所述水热反应过程中环境体系的压强为1~5Mpa;包括但不限于2Mpa、3Mpa、4Mpa中的任意一者的点值或任意两者之间的范围值。
在一种实施方式中,步骤(a)中,所述水热反应的时间为1~6h;包括但不限于2h、3h、4h、5h中的任意一者的点值或任意两者之间的范围值。
采用上述实验参数有利于进一步提高硬碳复合材料的比表面积和比容量。
在一种实施方式中,步骤(a)中,在所述固液分离之后,还包括将所述固液分离后的固体物料进行干燥的步骤;在一种实施方式中,所述干燥包括冷冻干燥。
冷冻干燥又称升华干燥,是指将含水物料冷冻到冰点以下,使水转变为冰,然后在较高真空下将冰转变为蒸气而除去的干燥方法。
采用冷冻干燥的方法有利于促进制得的掺杂磷的酚醛树脂材料形成孔洞,使其具有结构稳定,比表面积大等优点,从而提升最终制得的硬碳复合材料的吸液能力(即吸收液保持能力,是表示干电池混合剂能保持电解液的特性,与单独用炭黑试验的盐酸吸收量,丙酮吸收量,DBP吸收量有密切的关系),并改善其循环性能。
在一种实施方式中,步骤(b)中,所述催化剂包括含镍化合物、含铁化合物和含钴化合物中的至少一种。
在一种实施方式中,所述含镍化合物包括氯化镍和/或硝酸镍。
在一种实施方式中,所述含铁化合物包括氯化铁和/或硝酸铁。
在一种实施方式中,所述含钴化合物包括氯化钴和/或硝酸钴。
在一种实施方式中,所述催化剂与所述掺杂磷的酚醛树脂材料的质量比为1~10(还可以选择2、3、4、5、6、7、8或9):100。
在一种实施方式中,所述含有催化剂的有机溶剂中,催化剂的质量分数为1%~10%;包括但不限于2%、3%、4%、5%、6%、7%、8%、9%中的任意一者的点值或任意两者之间的范围值。
在一种实施方式中,所述浸入的时间为1~48h;包括但不限于2h、4h、5h、7h、10h、15h、20h、25h、30h、35h、40h、45h中的任意一者的点值或任意两者之间的范围值。
在一种实施方式中,所述碳源气体包括甲烷、乙炔和乙烯中的至少一种。
在一种实施方式中,所述气相沉积的温度为700~1000℃;包括但不限于720℃、750℃、800℃、850℃、900℃、950℃中的任意一者的点值或任意两者之间的范围值。
在一种实施方式中,所述气相沉积的时间为1~6h;包括但不限于2h、3h、4h、5h中的任意一者的点值或任意两者之间的范围值。
在所述掺杂磷的酚醛树脂材料的表面生长的碳纳米管能够降低硬碳复合材料的电子阻抗。
采用上述原料种类、用量以及制备参数,有利于提升电子导电率和材料的振实密度。
在一种实施方式中,步骤(b)中,在所述固液分离之后,还包括将所述固液分离后的固体物料进行干燥的步骤;更在一种实施方式中,所述干燥包括真空干燥和/或常压干燥。
真空干燥,又名解析干燥,是一种将物料置于负压条件下,并适当通过加热达到负压状态下的沸点或者通过降温使得物料凝固后通过溶点来干燥物料的干燥方式。
常压干燥,是指在一个大气压条件下的干燥,本法设备简单,常用箱式干燥器(烘箱或烘房)。
采用上述干燥方法更加简单、易行。
在一种实施方式中,步骤(c)中,所述锂盐和所述内核的质量比为1~10(还可以选择2、3、4、5、6、7、8或9):100。
在一种实施方式中,所述含有锂盐的有机溶剂中,锂盐的质量分数为1%~10%;包括但不限于2%、3%、4%、5%、6%、7%、8%、9%中的任意一者的点值或任意两者之间的范围值。
在一种实施方式中,所述锂盐包括锆酸锂、偏铝酸锂、钛酸锂和铌酸锂中的至少一种。
采用上述锂盐能够提升硬碳复合材料的离子电导率,并提升硬碳复合材料的首次效率。
在一种实施方式中,所述碳化的温度为700~1000℃,包括但不限于750℃、800℃、850℃、900℃、950℃中的任意一者的点值或任意两者之间的范围值。
在一种实施方式中,所述碳化的时间为1~6h;包括但不限于2h、3h、4h、5h中的任意一者的点值或任意两者之间的范围值。
采用上述参数有利于提高硬碳复合材料的倍率性能和首次效率。
在一种实施方式中,步骤(c)中,在所述固液分离之后,还包括将所述固液分离后的固体物料进行干燥的步骤;更在一种实施方式中,所述干燥包括喷雾干燥。
喷雾干燥是系统化技术应用于物料干燥的一种方法。于干燥室中将稀料经雾化后,在与热空气的接触中,水分迅速汽化,即得到干燥产品。该法能直接使溶液、乳浊液干燥成粉状或颗粒状制品,可省去蒸发、粉碎等工序。
采用喷雾干燥的方法,可直接获得固体材料,工序简单,且有利于后续氟化处理。
在一种实施方式中,步骤(c)中,在所述进行碳化的过程中,所述惰性气氛中还混合有氟气,以在碳化的同时进行氟化处理。
本公开通过对硬碳复合材料的外壳进行氟化处理,能够降低硬碳复合材料的表面缺陷程度,进而提升硬碳复合材料的首次效率及其与电解液的相容性。
在一种实施方式中,所述氟气和所述惰性气氛所用的惰性气体的体积比为1:3~5(还可以选择3.5、4或4.5)。
在一种实施方式中,在步骤(b)和/或步骤(c)中,所述有机溶剂包括N-甲基吡咯烷酮、四氯化碳、环己烷、二甲苯、N,N-二甲基甲酰胺和四氢呋喃中的至少一种。
其中,N-甲基吡咯烷酮,化学式为C 5H 9NO,为无色至淡黄色透明液体,稍有氨气味,与水以任何比例混溶,溶于乙醚,丙酮及酯、卤代烃、芳烃等各种有机溶剂,几乎与所有溶剂完全混合。
四氯化碳,化学式CCl 4,是一种无色透明液体,易挥发,有毒,有氯仿的气味,味甜。四氯化碳不溶于水,可与乙醇、乙醚、氯仿及石油醚等混溶。
环己烷,化学式是C 6H 12,为无色有刺激性气味的液体。不溶于水,溶于多数有机溶剂。极易燃烧。
二甲苯,分子式为C 8H 10,为无色透明液体,具有刺激性气味,易燃,与乙醇、氯仿或乙醚能任意混合,在水中不溶。
N,N-二甲基甲酰胺,分子式为C 3H 7NO,为无色透明液体。除卤代烃以外能与水及多数有机溶剂任意混合,对多种有机化合物和无机化合物均有良好的溶解能力。
四氢呋喃,分子式为C 4H 8O。属于醚类,是芳香族化合物呋喃的完全氢化产物,是一种无色、可与水混溶、在常温常压下有较小粘稠度的有机液体。
在本公开一些具体的实施例中,步骤(a)中,所述水热反应在高压反应釜中进行。
在本公开一些具体的实施例中,步骤(b)中,所述气相沉积在管式炉中进行。
在本公开一些具体的实施例中,在步骤(b)中,在通入所述碳源气体之前,还包括通入惰性气体的步骤。通入惰性气体的目的是排出反应容器内的空气。在一种实施方式中,所述惰性气体包括氩气和/或氦气。
在本公开一些具体的实施例中,在步骤(c)中,所述惰性气氛所用的气体包括氩气和/或氦气。
本公开还提供了一种锂离子电池,包括如上所述的硬碳复合材料,或者,如上所述的硬碳复合材料的制备方法所制得的硬碳复合材料。
该锂离子电池具有比容量高,首次效率高,倍率性能好,以及,循环性能好等优点。
与现有技术相比,本公开的有益效果为:
(1)本公开所提供的硬碳复合材料,具有振实密度大,比表面积大,比容量高,首次效率高,倍率性能好和循环性能好等优点。
(2)本公开所提供的硬碳复合材料,通过进行氟化处理,能够降低硬碳复合材料的表面缺陷程度,提升硬碳复合材料的首次效率及其与电解液的相容性。。
为使本公开的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本公开实施例1提供的硬碳复合材料的SEM图;
图2为本公开对比例1提供的硬碳复合材料的SEM图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本公开实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本公开的实施例的详细描述并非旨在限制要求保护的本公开的范围,而是仅仅表示本公开的选定实施例。基于本公开的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
实施例1
本实施例所提供的硬碳复合材料的制备方法包括如下步骤:
(1)称取80g苯酚、100g甲醛、3g磷酸,500g氨水(质量分数为25%)和1000g溶剂(体积比为4:1的乙醇和去离子水),混合均匀后,转移到高压反应釜中,在温度为100℃,压强为3Mpa进行反应3h,待反应完成后依次进行过滤和低温冷冻干燥(-30℃,10pa),得到掺杂磷的酚醛树脂材料。
(2)称取5g氯化铁加入到N-甲基吡咯烷酮中,配置得到氯化铁质量分数为5%的混合液,然后称取100g步骤(1)制得的掺杂磷的酚醛树脂材料,将其浸泡在上述混合液中; 浸泡24h后过滤,然后在80℃真空干燥24h,得到硬碳前驱体材料;
之后,将硬碳前驱体材料转移到管式炉中,先通氩气排出管内空气,然后再通入甲烷碳源气体,并升温到800℃并保温3h,进行气相沉积,掺杂磷的酚醛树脂材料的表面生长碳纳米管,得到内核材料。
(3)将5g锆酸锂添加到N-甲基吡咯烷酮中,配置得到锆酸锂质量分数为5%的混合溶液,然后向其中加入100g步骤(2)得到的内核材料,过滤后进行喷雾干燥,之后在氟气和氩气的混合气(氟气和氩气的体积比为1:4)条件下,在温度为800℃进行碳化3h,得到硬碳复合材料。
对实施例1制得的硬碳复合材料进行SEM测试,其结果如图1所示。从图1能够看出,实施例1制得的硬碳复合材料呈现球状,且粒径在5~20μm之间。
实施例2
本实施例所提供的硬碳复合材料的制备方法包括如下步骤:
(1)称取50g甲酚、100g乙醛、1g磷酸铵,50g氨水(质量分数为25%)和1000g溶剂(体积比为4:1的乙醇和去离子水),混合均匀后,转移到高压反应釜中,在温度为50℃,压强为5Mpa进行反应1h,待反应完成后依次进行过滤和低温冷冻干燥(-30℃,10pa),得到掺杂磷的酚醛树脂材料。
(2)称取1g氯化镍加入到四氯化碳中,配置得到氯化镍质量分数为1%的混合液,然后称取100g步骤(1)制得的掺杂磷的酚醛树脂材料,将其浸泡在上述混合液中;浸泡1h后过滤,然后在80℃真空干燥24h,得到硬碳前驱体材料;
之后,将硬碳前驱体材料转移到管式炉中,先通氩气排出管内空气,然后再通入乙炔碳源气体,并升温到700℃并保温6h,进行气相沉积,掺杂磷的酚醛树脂材料的表面生长碳纳米管,得到内核材料。
(3)将1g铌酸锂添加到四氯化碳中,配置得到铌酸锂质量分数为1%的混合溶液,然后向其中加入100g步骤(2)得到的内核材料,过滤后进行喷雾干燥,之后在氟气和氩气的混合气(氟气和氩气的体积比为1:4)条件下,在温度为700℃进行碳化6h,得到硬碳复合材料。
实施例3
本实施例所提供的硬碳复合材料的制备方法包括如下步骤:
(1)称取100g间苯二酚、100g糠醛、5g磷酸氢二铵,500g碳酸氢钠(质量分数为25%)和1000g溶剂(体积比为4:1的乙醇和去离子水),混合均匀后,转移到高压反应釜中,在温度为200℃,压强为1Mpa进行反应6h,待反应完成后依次进行过滤和低温冷冻干燥(-30℃,10pa),得到掺杂磷的酚醛树脂材料。
(2)称取10g硝酸钴加入到环己烷中,配置得到硝酸钴质量分数为10%的混合液,然后称取100g步骤(1)制得的掺杂磷的酚醛树脂材料,将其浸泡在上述混合液中;浸泡48h后过滤,然后在80℃真空干燥24h,得到硬碳前驱体材料;
之后,将硬碳前驱体材料转移到管式炉中,先通氩气排出管内空气,然后再通入乙烯碳源气体,并升温到1000℃并保温1h,进行气相沉积,掺杂磷的酚醛树脂材料的表面生长碳纳米管,得到内核材料。
(3)将10g偏铝酸锂添加到环己烷中,配置偏铝酸锂质量分数为10%的混合溶液,然后向其中加入100g步骤(2)得到的内核材料,过滤后进行喷雾干燥,之后在氟气和氩气的混合气(氟气和氩气的体积比为1:4)条件下,在温度为1000℃进行碳化1h,得到硬碳复合材料。
实施例4
本实施例所提供的硬碳复合材料的制备方法与实施例1基本相同,区别仅在于,步骤(3)中,将氟气和氩气的混合气替换为氩气(即不进行氟化处理)。
实施例5
本实施例所提供的硬碳复合材料的制备方法与实施例1基本相同,区别仅在于:步骤(1)中,将低温冷冻干燥替换为真空干燥;并且,步骤(3)中,将喷雾干燥替换为真空干燥。
对比例1
本对比例所提供的复合材料的制备方法包括如下步骤:
将100g酚醛树脂、100g质量分数为1%的碳纳米管溶液添加到1000g的环己烷中,超声分散均匀后,转移到高压反应釜中,并在温度为100℃,压力为2Mpa,反应3h;之后自然降温到室温,过滤,并在温度为50℃真空干燥48h;之后粉碎,并转移到管式炉中,并在氩气气氛下,以升温速率为5℃/min升温到800℃,并保温3h,之后在氩气气氛下降温到室温,得到复合材料。
对该对比例1制得的复合材料进行SEM测试,其结果如图2所示。从图2能够看出,对比例1制得的复合材料呈现不规则颗粒状,且粒度不均,粒径约为8~15μm。
对比例2
本对比例所提供的复合材料的制备方法与实施例1基本相同,区别仅在于,步骤(1)中,将3g磷酸替换为3g水。
对比例3
本对比例所提供的复合材料的制备方法与实施例1基本相同,区别仅在于,步骤(2)中,将甲烷碳源气体替换为氩气。
对比例4
本对比例所提供的复合材料的制备方法与实施例1基本相同,区别仅在于,步骤(3)中,将5g锆酸锂替换为5gN-甲基吡咯烷酮。
实验例1
按照国家标准GBT-245332009《锂离子电池石墨类负极材料》,对以上各实施例所制得的硬碳复合材料和各对比例所制得的复合材料进行层间距(D002)、D50粒径、比表面积和振实密度的性能测试,其结果如下表1所示。
表1各组材料的性能测试结果
组别 D50粒径(μm) D002(nm) 振实密度(g/cm 3) 比表面积(m 2/g)
实施例1 5.6 0.388 1.08 5.6
实施例2 6.1 0.387 1.06 5.5
实施例3 6.7 0.385 1.05 5.1
实施例4 6.0 0.387 1.07 5.3
实施例5 6.2 0.378 1.09 4.1
对比例1 8.9 0.368 0.83 3.9
对比例2 8.8 0.378 0.91 3.3
对比例3 8.4 0.363 0.88 3.6
对比例4 8.1 0.361 0.91 3.5
从表1可以看出,本公开各实施例所制得的硬碳复合材料在振实密度和比表面积方面均优于各对比例所制得的复合材料。
实验例2
分别将以上各实施例所制得的硬碳复合材料和各对比例所制得的复合材料作为负极(配方(质量比)为:硬碳复合材料(复合材料):CMC(羧甲基纤维素钠):SBR(丁苯橡胶):SP(超导电炭黑):H2O=95:2.5:1.5:1:150),锂片作为正极,电解液采用LiPF6/EC+DEC,电解液溶剂体积比EC∶DEC=1∶1,隔膜采用聚乙烯PE、聚丙烯PP和聚乙丙烯PEP的复合膜,扣式电池装配在充氩气的手套箱中进行,电化学性能在武汉蓝电CT2001A型电池测试仪上进行,充放电电压范围控制在0.00~2.0V,充放电速率0.1C,最后组装成扣式电池A1、A2、A3和B。同时测试其扣式电池的倍率(5C,0.1C)和循环性能(0.2C/0.2C)。结果如下表2所示。
表2各组扣式电池的性能测试结果
Figure PCTCN2022106510-appb-000001
Figure PCTCN2022106510-appb-000002
可见,本公开采用水热法所制备出的内核材料为多孔结构;并在其表面生长碳纳米管,具有电子导电率强、结构稳定的特性,从而改善了材料的倍率和循环性能。同时外壳包覆的锂盐,降低了硬碳复合材料首次充放电过程中材料的不可逆损失,提升了硬碳复合材料的首次效率。
工业实用性
综上所述,本公开提供了一种硬碳复合材料及其制备方法、锂离子电池。本公开所提供的硬碳复合材料,具有振实密度大,比表面积大,比容量高,首次效率高,倍率性能好和循环性能好等优点。通过进行氟化处理,能够降低硬碳复合材料的表面缺陷程度,提升硬碳复合材料的首次效率及其与电解液的相容性。

Claims (12)

  1. 一种硬碳复合材料,其特征在于,所述硬碳复合材料具有核壳结构,所述核壳结构的内核包括掺杂磷的硬碳材料,所述核壳结构的外壳包括锂盐和无定形碳;
    所述掺杂磷的硬碳材料的表面还生长有碳纳米管;
    所述硬碳复合材料的形状为球体。
  2. 根据权利要求1所述的硬碳复合材料,其特征在于,所述硬碳复合材料的粒径为5~20μm。
  3. 根据权利要求1所述的硬碳复合材料,其特征在于,所述核壳结构的外壳和内核的质量比为1~10:90~99。
  4. 根据权利要求1所述的硬碳复合材料,其特征在于,所述内核中的含磷化合物的质量占所述内核质量的1%~10%。
  5. 根据权利要求1所述的硬碳复合材料,其特征在于,所述外壳中的锂盐和无定形碳的质量比为50~80:20~50。
  6. 根据权利要求1所述的硬碳复合材料,其特征在于,所述外壳中还含有氟元素。
  7. 如权利要求1~6任一项所述的硬碳复合材料的制备方法,其特征在于,包括如下步骤:
    (a)、将酚类化合物、醛类化合物、磷源、碱性催化剂和溶剂混合,进行水热反应,待反应完成后进行固液分离,得到掺杂磷的酚醛树脂材料;
    (b)、将步骤(a)得到的所述掺杂磷的酚醛树脂材料浸入含有催化剂的有机溶剂中,然后进行固液分离,得到固体物料,再向其中通入碳源气体进行气相沉积,在所述掺杂磷的酚醛树脂材料的表面生长碳纳米管,得到内核;
    (c)、将步骤(b)得到的所述内核与含有锂盐的有机溶剂混合后固液分离,然后将所述固液分离后的固体物料在惰性气氛下进行碳化,得到所述硬碳复合材料。
  8. 根据权利要求7所述的制备方法,其特征在于,包含以下特征(1)~(12)中的至少一种:
    (1)步骤(a)中,所述酚类化合物、醛类化合物、磷源、碱性催化剂和溶剂的质量比为50~100:90~110:1~5:50~500:900~1100;
    (2)所述酚类化合物包括苯酚、甲酚、腰果酚、间苯二酚和间氨基酚中的至少一种;
    (3)所述醛类化合物包括甲醛、乙醛、丁醛、戊醛、己醛和糠醛中的至少一种;
    (4)所述磷源包括磷酸、磷酸铵、磷酸氢二铵和磷酸二氢铵中的至少一种;
    (5)所述碱性催化剂包括氨水、碳酸钠和碳酸氢钠中的至少一种;
    (6)所述溶剂包括乙醇和/或水;
    (7)所述溶剂包括乙醇和水,且所述乙醇和所述水的体积比为3~5:1;
    (8)在所述进行水热反应的过程中,混合物料的温度为50~200℃;
    (9)所述水热反应过程中环境体系的压强为1~5Mpa;
    (10)所述水热反应的时间为1~6h;
    (11)步骤(a)中,在所述固液分离之后,还包括将所述固液分离后的固体物料进行干燥的步骤;
    (12)所述干燥包括冷冻干燥。
  9. 根据权利要求7所述的制备方法,其特征在于,包含以下特征(1)~(13)中的至少一种:
    (1)步骤(b)中,所述催化剂包括含镍化合物、含铁化合物和含钴化合物中的至少一种;
    (2)所述含镍化合物包括氯化镍和/或硝酸镍;
    (3)所述含铁化合物包括氯化铁和/或硝酸铁;
    (4)所述含钴化合物包括氯化钴和/或硝酸钴;
    (5)所述催化剂与所述掺杂磷的酚醛树脂材料的质量比为1~10:100;
    (7)所述含有催化剂的有机溶剂中,催化剂的质量分数为1%~10%;
    (8)所述浸入的时间为1~48h;
    (9)所述碳源气体包括甲烷、乙炔和乙烯中的至少一种;
    (10)所述气相沉积的温度为700~1000℃;
    (11)所述气相沉积的时间为1~6h;
    (12)步骤(b)中,在所述固液分离之后,还包括将所述固液分离后的固体物料进行干燥的步骤;
    (13)所述干燥包括真空干燥和/或常压干燥。
  10. 根据权利要求7所述的制备方法,其特征在于,包含以下特征(1)~(6)中的至少一种:
    (1)步骤(c)中,所述锂盐和所述内核的质量比为1~10:100;
    (2)所述含有锂盐的有机溶剂中,锂盐的质量分数为1%~10%;
    (3)所述锂盐包括锆酸锂、偏铝酸锂、钛酸锂和铌酸锂中的至少一种;
    (4)所述碳化的温度为700~1000℃,所述碳化的时间为1~6h;
    (5)步骤(c)中,在所述固液分离之后,还包括将所述固液分离后的固体物料进行干燥的步骤;
    (6)所述干燥包括喷雾干燥。
  11. 根据权利要求7所述的制备方法,其特征在于,包含以下特征(1)~(3)中的至少一种:
    (1)步骤(c)中,在所述进行碳化的过程中,所述惰性气氛中还混合有氟气,以在碳化的同时进行氟化处理;
    (2)所述氟气和所述惰性气氛所用的惰性气体的体积比为1:3~5;
    (3)在步骤(b)和/或步骤(c)中,所述有机溶剂包括N-甲基吡咯烷酮、四氯化碳、环己烷、二甲苯、N,N-二甲基甲酰胺和四氢呋喃中的至少一种。
  12. 一种锂离子电池,包括如权利要求1~6任一项所述的硬碳复合材料,或者,如权利要求7~11任一项所述的硬碳复合材料的制备方法所制得的硬碳复合材料。
PCT/CN2022/106510 2022-01-26 2022-07-19 一种硬碳复合材料及其制备方法、锂离子电池 WO2023142395A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210094680.2A CN114436240B (zh) 2022-01-26 2022-01-26 一种硬碳复合材料及其制备方法、锂离子电池
CN202210094680.2 2022-01-26

Publications (1)

Publication Number Publication Date
WO2023142395A1 true WO2023142395A1 (zh) 2023-08-03

Family

ID=81370524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106510 WO2023142395A1 (zh) 2022-01-26 2022-07-19 一种硬碳复合材料及其制备方法、锂离子电池

Country Status (2)

Country Link
CN (1) CN114436240B (zh)
WO (1) WO2023142395A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117069093A (zh) * 2023-09-15 2023-11-17 福建省鑫森炭业股份有限公司 一种硬碳负极材料的制备方法
CN117735527A (zh) * 2024-02-21 2024-03-22 山东埃尔派粉体科技股份有限公司 一种生物质硬碳负极材料及其制备方法和基于其的钠离子电池
CN118387857A (zh) * 2024-05-16 2024-07-26 三一红象电池有限公司 一种硬碳材料及其制备方法与应用
CN118472229A (zh) * 2024-07-12 2024-08-09 南昌大学 一种钠离子电池用碳基负极材料及其制备方法与应用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114436240B (zh) * 2022-01-26 2023-07-21 蜂巢能源科技股份有限公司 一种硬碳复合材料及其制备方法、锂离子电池
WO2024049006A1 (ko) * 2022-08-31 2024-03-07 주식회사 엘지에너지솔루션 리튬황 전지용 양극재 이를 포함하는 리튬황 전지
CN115893369A (zh) * 2022-11-24 2023-04-04 赣州立探新能源科技有限公司 硬炭负极材料及其制备方法、混合负极材料、二次电池
CN116207243B (zh) * 2023-02-22 2024-07-16 石大胜华新材料集团股份有限公司 一种纤维状硅碳复合材料及其制备方法
CN116692831B (zh) * 2023-08-02 2023-09-26 成都锂能科技有限公司 一种磷掺杂酚醛树脂基硬碳材料、制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474667A (zh) * 2013-08-16 2013-12-25 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用硅碳复合负极材料及其制备方法
CN104600258A (zh) * 2014-12-26 2015-05-06 宁夏共享新能源材料有限公司 锂离子电池用复合负极材料及其制备方法
CN107959006A (zh) * 2017-10-31 2018-04-24 华南理工大学 一种木质素基硬碳/碳纳米管复合材料及其制备方法和在锂离子电池负极材料中的应用
US20210050597A1 (en) * 2019-08-12 2021-02-18 Nanotek Instruments, Inc. Electrochemically Stable Anode Active Material for Lithium-ion Batteries and Production Method
CN112952059A (zh) * 2021-02-09 2021-06-11 昆山宝创新能源科技有限公司 一种硅基负极材料及其制备方法和用途
CN113889605A (zh) * 2021-09-11 2022-01-04 四川星耀新能源科技有限公司 一种硬碳-掺杂剂包覆无烟煤复合负极材料及其制备方法、锂离子电池
CN114436240A (zh) * 2022-01-26 2022-05-06 蜂巢能源科技股份有限公司 一种硬碳复合材料及其制备方法、锂离子电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW508861B (en) * 2000-08-08 2002-11-01 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and positive electrode for the same
CN102820455A (zh) * 2012-08-02 2012-12-12 天津市贝特瑞新能源科技有限公司 一种锂离子电池硬碳负极材料及其制备方法和其应用
CN113328068B (zh) * 2020-02-29 2022-04-08 溧阳天目先导电池材料科技有限公司 核壳结构的碳纳米管硬碳复合负极材料及制备方法和应用
CN113889593B (zh) * 2020-07-02 2023-04-07 洛阳月星新能源科技有限公司 一种硬碳包覆软碳复合材料的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474667A (zh) * 2013-08-16 2013-12-25 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用硅碳复合负极材料及其制备方法
CN104600258A (zh) * 2014-12-26 2015-05-06 宁夏共享新能源材料有限公司 锂离子电池用复合负极材料及其制备方法
CN107959006A (zh) * 2017-10-31 2018-04-24 华南理工大学 一种木质素基硬碳/碳纳米管复合材料及其制备方法和在锂离子电池负极材料中的应用
US20210050597A1 (en) * 2019-08-12 2021-02-18 Nanotek Instruments, Inc. Electrochemically Stable Anode Active Material for Lithium-ion Batteries and Production Method
CN112952059A (zh) * 2021-02-09 2021-06-11 昆山宝创新能源科技有限公司 一种硅基负极材料及其制备方法和用途
CN113889605A (zh) * 2021-09-11 2022-01-04 四川星耀新能源科技有限公司 一种硬碳-掺杂剂包覆无烟煤复合负极材料及其制备方法、锂离子电池
CN114436240A (zh) * 2022-01-26 2022-05-06 蜂巢能源科技股份有限公司 一种硬碳复合材料及其制备方法、锂离子电池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117069093A (zh) * 2023-09-15 2023-11-17 福建省鑫森炭业股份有限公司 一种硬碳负极材料的制备方法
CN117069093B (zh) * 2023-09-15 2024-06-07 福建省鑫森炭业股份有限公司 一种硬碳负极材料的制备方法
CN117735527A (zh) * 2024-02-21 2024-03-22 山东埃尔派粉体科技股份有限公司 一种生物质硬碳负极材料及其制备方法和基于其的钠离子电池
CN117735527B (zh) * 2024-02-21 2024-05-14 山东埃尔派粉体科技股份有限公司 一种生物质硬碳负极材料及其制备方法和基于其的钠离子电池
CN118387857A (zh) * 2024-05-16 2024-07-26 三一红象电池有限公司 一种硬碳材料及其制备方法与应用
CN118472229A (zh) * 2024-07-12 2024-08-09 南昌大学 一种钠离子电池用碳基负极材料及其制备方法与应用
CN118472229B (zh) * 2024-07-12 2024-10-11 南昌大学 一种钠离子电池用碳基负极材料及其制备方法与应用

Also Published As

Publication number Publication date
CN114436240B (zh) 2023-07-21
CN114436240A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
WO2023142395A1 (zh) 一种硬碳复合材料及其制备方法、锂离子电池
JP6445585B2 (ja) 多孔質カーボンナノチューブミクロスフェア及びその製造方法と使用、金属リチウム‐骨格炭素複合材料及びその製造方法、負極、及び電池
CN105374991B (zh) 金属锂-骨架碳复合材料及其制备方法、负极和二次电池
WO2017121069A1 (zh) 一种锂离子动力电池用硬碳负极材料的制备及其改性方法
WO2023092894A1 (zh) 一种硬碳复合材料及其制备方法和应用
CN114420939B (zh) 一种高倍率球状硬碳复合材料及其制备方法和应用
CN109360946B (zh) 多次混合包覆高压实密度硅碳负极材料及其制备方法
CN114122352B (zh) 一种多孔碳掺杂诱导硅沉积的硅碳负极材料及其制备方法
TWI659927B (zh) 鈉離子二次電池負極用碳質材料及使用該碳質材料之鈉離子二次電池
CN113889593B (zh) 一种硬碳包覆软碳复合材料的制备方法
CN108217733B (zh) 一种碳-二氧化锰复合材料的制备方法
WO2019019410A1 (zh) 改性无锂负极、其制备方法和含有其的锂离子电池
CN108682830B (zh) 一种锂离子电池硅碳复合负极材料及其制备方法
WO2020164353A1 (zh) 一种金属原子掺杂多孔碳纳米复合材料及其制备方法和应用
CN112794324B (zh) 一种高介孔率木质素多级孔碳材料及其制备方法与应用
WO2016110108A1 (zh) 一种纳米级锂离子复合正极的等离子喷射制备方法
WO2024187562A1 (zh) 类球形硅碳负极材料及其制备方法、应用
CN108232153B (zh) 一种锂离子电池用含镍层状正极材料/碳复合材料及其制备方法
CN108123110A (zh) 一种含氮大孔容多孔碳材料的制备方法及应用
CN112366298B (zh) 碳组装硫化锌硫化钴空心纳米多面体框架材料及其制备和应用
CN114899384B (zh) 一种三维多孔硅氧负极复合材料及其制备方法
CN113471405A (zh) 预锂化负极、其制备方法和含预锂化负极的锂离子电池和超级电容器
CN109336077A (zh) 一种磷酸铁锂正极材料及其制备方法
TW202230855A (zh) 鋰金屬陽極及其製備方法
CN115414874B (zh) 一种多重多原子共掺杂碳气凝胶及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923203

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202337085526

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE