WO2023140045A1 - ガスタービンの制御装置、ガスタービン及びガスタービンの制御方法 - Google Patents

ガスタービンの制御装置、ガスタービン及びガスタービンの制御方法 Download PDF

Info

Publication number
WO2023140045A1
WO2023140045A1 PCT/JP2022/047512 JP2022047512W WO2023140045A1 WO 2023140045 A1 WO2023140045 A1 WO 2023140045A1 JP 2022047512 W JP2022047512 W JP 2022047512W WO 2023140045 A1 WO2023140045 A1 WO 2023140045A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
flow rate
gas turbine
purge
purge gas
Prior art date
Application number
PCT/JP2022/047512
Other languages
English (en)
French (fr)
Inventor
剛 安形
浩美 小泉
充博 苅宿
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023140045A1 publication Critical patent/WO2023140045A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow

Definitions

  • the present disclosure relates to a control device for a gas turbine, a gas turbine, and a control method for the gas turbine.
  • inert gas such as nitrogen is purged into the fuel pipes to drive out the gaseous fuel in the fuel pipes (see Patent Document 1, for example).
  • At least one embodiment of the present disclosure aims to provide a gas turbine control device, a gas turbine, and a gas turbine control method that can improve the safety of a gas turbine.
  • a control device for a gas turbine according to at least one embodiment of the present disclosure, A control device for a gas turbine, A purge gas flow control unit for controlling the flow rate of purge gas for discharging fuel gas remaining inside the gas turbine to the outside of the gas turbine, The purge gas flow rate control section controls the flow rate of the purge gas based on a parameter related to the amount of intake air from the gas turbine inlet.
  • a gas turbine according to at least one embodiment of the present disclosure, a control device for a gas turbine configured as described in (1) above; a flow rate adjusting device for adjusting the flow rate of the purge gas; a turbine rotated by combustion gas generated by burning the fuel gas; Prepare.
  • a gas turbine control method includes: A gas turbine control method comprising: The flow rate of purge gas for discharging the fuel gas remaining inside the gas turbine to the outside of the gas turbine is controlled based on parameters related to the amount of intake air from the inlet of the gas turbine.
  • the safety of gas turbines can be improved.
  • FIG. 4 is a functional block diagram of a controller according to some embodiments;
  • FIG. 4 is a graph for explaining an embodiment of a purge gas supply method;
  • FIG. 5 is a graph for explaining another embodiment of the purge gas supply method;
  • FIG. 4 is a functional block diagram of a controller according to some embodiments;
  • FIG. 4 is a graph for explaining an embodiment of a purge gas supply method;
  • FIG. 5 is a graph for explaining another embodiment of the purge gas supply method;
  • FIG. 4 is a functional block diagram of a controller according to some embodiments;
  • FIG. 4 is a graph for explaining an embodiment of a purge gas supply method;
  • FIG. 5 is a graph for explaining another embodiment of the purge gas supply method;
  • FIG. 4 is a graph for explaining an embodiment of a purge gas supply method;
  • FIG. 5 is a graph for explaining another embodiment of the purge gas supply method;
  • expressions such as “same,””equal,” and “homogeneous” that indicate that things are in the same state not only indicate the state of being strictly equal, but also the state in which there is a tolerance or a difference to the extent that the same function can be obtained.
  • the expression representing a shape such as a square shape or a cylindrical shape not only represents a shape such as a square shape or a cylindrical shape in a geometrically strict sense, but also represents a shape including an uneven part, a chamfered part, etc. to the extent that the same effect can be obtained.
  • the expressions “comprising”, “comprising”, “having”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.
  • FIG. 1 is a diagram schematically showing the configuration of a gas turbine 2 according to one embodiment.
  • the power generator 1 includes a gas turbine 2 and a generator 7 .
  • FIG. 1 mainly shows the configuration related to the adjustment of the flow rate of the purge gas, which will be described later, and omits other configurations.
  • the gas turbine 2 is a gas turbine for power generation.
  • the gas turbine 2 includes a compressor 3 for generating compressed air, a combustor 4 for generating combustion gas using the compressed air and fuel, a turbine 5 configured to be rotationally driven by the combustion gas, a fuel system 20 for supplying fuel to the combustor 4, and a purge gas system 30 for supplying purge gas to a fuel pipe 26 (described later) of the fuel system 20.
  • the compressor 3 is connected to the turbine 5 via the rotating shaft 8A.
  • Compressor 3 is rotationally driven by the rotational energy of turbine 5 to generate compressed air.
  • An inlet guide vane 6 is provided on the inlet side of the compressor 3 .
  • the amount of inflow of air is adjusted by changing the opening degree of the inlet guide vane 6 with the actuator 6a.
  • the opening of the inlet guide vanes 6 is controlled based on the inlet guide vane opening control command IGVCSO.
  • Compressed air generated by the compressor 3 is supplied to the combustor 4 .
  • the combustor 4 is supplied with compressed air generated by the compressor 3 and fuel, and combusts the fuel to generate combustion gas, which is a working fluid for the turbine 5 .
  • the flow rate of fuel supplied to the combustor 4 is adjusted by a fuel flow control valve 23 whose opening is adjusted according to a fuel flow rate command. Combustion gases are sent from the combustor 4 to the downstream turbine 5 .
  • the fuel flow control valve 23 is controlled by a control device 100 according to some embodiments, as described below.
  • the turbine 5 is driven by the combustion gas produced by the combustor 4.
  • Turbine 5 is connected to generator 7 by rotating shaft 8B.
  • the generator 7 is configured to generate power using the rotational energy of the turbine 5 .
  • the fuel system 20 is configured to supply gaseous fuel (fuel gas) as fuel.
  • the fuel system 20 includes a shutoff valve 21 for shutting off the supply of fuel gas supplied to the combustor 4, a pressure control valve 22 arranged downstream of the shutoff valve 21 for regulating the pressure of the fuel gas supplied to the combustor 4, and a plurality of fuel flow control valves 23 arranged downstream of the pressure control valve 22 for regulating the flow rate of the fuel gas supplied to the combustor 4.
  • an example in which five fuel supply systems 25 for supplying fuel gas to the combustor 4 are provided is shown, but the fuel supply system 25 may take another aspect. 1 representatively shows only one combustor 4, the gas turbine 2 may be provided with a plurality of combustors 4, and each combustor 4 may be provided with each fuel supply system 25.
  • a fuel flow control valve 23 is provided in each fuel pipe 26 branched to each fuel supply system 25 downstream of the pressure control valve 22 .
  • the shutoff valve 21 has an actuator (not shown) for opening and closing the shutoff valve 21 .
  • the pressure control valve 22 has an actuator (not shown) for changing the set pressure of the pressure control valve 22 .
  • Each fuel flow control valve 23 has an actuator (not shown) for adjusting the flow rate of fuel gas flowing through each fuel flow control valve 23 .
  • the isolation valve 21, the pressure control valve 22, and each of the fuel flow control valves 23 are controlled by a controller 100 according to some embodiments.
  • the purge gas system 30 includes a first purge gas supply system 31 for supplying purge gas to the fuel pipe 26 between the cutoff valve 21 and the pressure control valve 22, and five second purge gas supply systems 32 for supplying purge gas to the fuel pipe 26 on the downstream side of the fuel flow control valve 23 in each fuel supply system 25.
  • the first purge gas supply system 31 is provided with a flow control valve 33 for adjusting the flow rate of the purge gas supplied to the fuel pipe 26, and each of the second purge gas supply systems 32 is provided with a flow control valve 34 for adjusting the flow rate of the purge gas supplied to the fuel pipe 26.
  • Each flow control valve 33,34 has an actuator (not shown) for adjusting the flow rate of the purge gas flowing through each flow control valve 33,34.
  • Each of the flow rate control valves 33, 34 is a flow rate control device that adjusts the purge flow rate Qp.
  • each flow control valve 33, 34 is controlled by a controller 100 according to some embodiments.
  • the purge gas is inert gas such as nitrogen.
  • the purge gas supplied from the purge gas system 30 is nitrogen.
  • a control device 100 includes a processor 101 that executes various types of arithmetic processing, and a memory 103 that non-temporarily or temporarily stores various data processed by the processor 101 .
  • the processor 101 is implemented by a CPU, GPU, MPU, DSP, other various arithmetic devices, or a combination thereof.
  • Memory 103 is implemented by ROM, RAM, flash memory, or a combination thereof.
  • FIG. 2 is a functional block diagram of control device 100 according to some embodiments. In FIG. 2, only functional blocks related to adjustment of the flow rate of purge gas, which will be described later, are shown, and other functional blocks are omitted.
  • a control device 100 includes a purge gas flow control section 110 .
  • the purge gas flow rate control section 110 includes a purge gas flow rate calculation section 111 and a valve control signal output section 112 .
  • the purge gas flow control unit 110 , the purge gas flow calculation unit 111 , and the valve control signal output unit 112 are functional blocks implemented by the processor 101 executing programs stored in the memory 103 .
  • the purge gas flow rate calculator 111 calculates the flow rate (purge flow rate Qp) of the purge gas supplied from the purge gas system 30 to the fuel pipe 26 as will be described later.
  • the valve control signal output unit 112 outputs a control signal to an actuator (not shown) of each flow control valve 34 so that the purge gas is purged at the purge flow rate Qp calculated by the purge gas flow rate calculation unit 111 . Details of the specific processing in the control device 100 will be described later.
  • the purge gas is supplied from the purge gas system 30 to the fuel pipe 26 as follows.
  • FIG. 3 is a graph for explaining an embodiment of a purge gas supply method.
  • FIG. 4 is a graph for explaining another embodiment of the purge gas supply method.
  • the graphs of FIGS. 3 and 4 show changes in the intake air amount Qa from the turbine inlet, the fuel supply amount Qf, and the hydrogen concentration Ch in the space downstream of the combustor 4 .
  • the fuel gas contains a relatively large amount of hydrogen.
  • the intake air amount Qa from the turbine inlet is simply referred to as the intake air amount Qa
  • the hydrogen concentration Ch in the space downstream of the combustor 4 is simply referred to as the hydrogen concentration Ch.
  • the intake air amount Qa from the turbine inlet is represented by a thick dashed line
  • the fuel supply amount Qf is represented by a thin solid line
  • the hydrogen concentration Ch is represented by a thin dashed line.
  • the hydrogen concentration at which the lower explosion limit LEL is reached is indicated by a dashed line parallel to the horizontal axis of the graphs.
  • the zero point position of the vertical axis is set away from the horizontal axis in order to avoid overlapping each graph line with the horizontal axis.
  • the times t1, t2, and t3, which will be described later, are the times when an event occurs, and the length of time between the times t1, t2, and t3 is not necessarily the same between the graph in FIG. 3 and the graph in FIG. That is, even if time t1 is the same time in the graphs of FIGS. 3 and 4, time t2 does not necessarily have to be the same time as the graphs of FIGS. Time t3 is not necessarily the same time as the graphs of FIGS. 3 and 4 .
  • the gas turbine rotation speed starts to gradually decrease from time t1 because it rotates due to inertia.
  • the fuel supply amount Qf becomes zero from time t1 when a trip occurs to time t2 when purging of the fuel pipe 26 by the purge gas is started. Therefore, the hydrogen concentration Ch gradually decreases from time t1 to time t2.
  • the purge of the fuel pipe 26 with the purge gas is started at time t2
  • the fuel gas remaining in the fuel pipe 26 is pushed out by the purge gas and blown out from the fuel nozzle (not shown) of the combustor 4, so that the hydrogen concentration Ch increases again.
  • the flow rate of the fuel gas blown out from the fuel nozzle (not shown) of the combustor 4 is equal to the flow rate (purge flow rate Qp) of the purge gas supplied from the purge gas system 30 to the fuel pipe 26 . Therefore, if the purge flow rate Qp is too large, the fuel gas remaining in the fuel pipe 26 is pushed out at once by the purge gas, and the hydrogen concentration Ch may exceed the lower explosion limit LEL.
  • an upper limit is set for the purge flow rate Qp so that the hydrogen concentration Ch does not exceed the reference concentration Cs (for example, the lower explosion limit LEL).
  • the purge is performed at a constant flow rate during the purge period so that the purge flow rate Qp becomes the upper threshold value Thu.
  • the upper threshold value Thu of the purge flow rate Qp is a value such that the hydrogen concentration Ch does not exceed the reference concentration Cs even at the timing when the intake air amount Qa is the smallest during the purge period.
  • the timing at which the intake air amount Qa becomes the smallest during the purge period is the time t3 when the purge ends.
  • the length of the purge period (t3-t2) that is, the time tp required for purging, is approximately equal to the value (V/Qpa) obtained by dividing the volume V of the purged fuel pipe 26 by the average purge flow rate Qpa during the purge period (tp ⁇ V/Qpa). Therefore, in the purge gas supply method according to the embodiment shown in FIG. 3, when purging ends at time t3, the upper limit threshold Thu of the purge flow rate Qp can be obtained from the intake air amount Qa at time t3, which is obtained from the turbine rotation speed at time t3.
  • the time tp required for purging can be obtained from the obtained upper limit threshold value Thu, and the timing at which purging should be started (that is, time t2) can be known. It should be noted that the calculation accuracy of the intake air amount Qa at time t3 can be improved by considering the opening degree of the inlet guide vane 6 when calculating the intake air amount Qa at time t3.
  • the purge gas flow rate calculation unit 111 of the purge gas flow rate control unit 110 obtains the purge flow rate Qp based on parameters related to the intake air amount Qa.
  • the parameters related to the intake air amount Qa include parameters related to the gas turbine speed.
  • the parameter related to the gas turbine rotation speed may be, for example, a detected value of the rotation speed sensor 9 (see FIG. 1) that detects the gas turbine rotation speed, or may be a control value of the gas turbine rotation speed. Further, the parameter related to the gas turbine rotation speed may be data on transition of the gas turbine rotation speed after the trip, which is measured in advance or calculated in advance.
  • the purge gas flow rate calculation unit 111 of the purge gas flow rate control unit 110 receives, for example, a trip signal indicating that the gas turbine 2 has tripped, as described above, the intake air amount Qa at the time t3 when the purge ends is obtained from data on the transition of the gas turbine rotation speed after the trip, for example. Then, the purge gas flow rate calculator 111 calculates the upper limit threshold value Thu of the purge flow rate Qp from the intake air amount Qa at time t3. The purge gas flow rate calculation unit 111 calculates the time tp required for purging from the obtained upper limit threshold value Thu, and calculates the time t2 for starting purging.
  • the purge gas flow rate calculator 111 calculates the opening degree of each of the flow control valves 34 corresponding to the upper limit threshold Thu of the purge flow rate Qp. Then, the purge gas flow rate calculation unit 111 outputs the valve opening information described above to the valve control signal output unit 112 at time t2.
  • the valve control signal output unit 112 generates and outputs a control signal for driving the actuator (not shown) of the flow control valve 34 based on the valve opening degree information received from the purge gas flow rate calculation unit 111 .
  • an actuator (not shown) adjusts the opening degree of each flow control valve 34 by receiving the control signal. Thereby, the purge gas is supplied to each fuel pipe at the desired purge flow rate Qp.
  • the purge gas is supplied at a flow rate that takes into consideration the intake air amount Qa from the gas turbine inlet. Therefore, it is possible to suppress the occurrence of a region where the fuel gas concentration is relatively high downstream of the combustor 4. Since unintended ignition etc. can be suppressed by this, the safety of the gas turbine 2 can be improved.
  • the parameters related to the intake air amount Qa include parameters related to the gas turbine rotational speed, the intake air amount Qa can be calculated relatively easily.
  • the parameters related to the intake air amount Qa preferably include parameters related to the opening of the inlet guide vanes.
  • the parameter related to the inlet guide vane opening degree may be, for example, the opening degree of the inlet guide vane 6, that is, information on the drive position of the actuator 6a, or the inlet guide vane opening degree control command IGVCSO.
  • the purge gas flow rate control unit 110 may control the purge flow rate Qp so as not to exceed the upper limit threshold Thu of the purge flow rate Qp corresponding to the parameter related to the intake air amount Qa.
  • the purge flow rate Qp is controlled so as not to exceed the upper limit threshold value Thu, and it is possible to suppress the occurrence of a region where the fuel gas concentration is relatively high on the downstream side of the combustor 4 .
  • the upper limit threshold Thu can be set so that the hydrogen concentration Ch is less than the fuel gas explosion lower limit LEL even at the smallest intake air amount Qa among the intake air amounts Qa during the purge period. This improves the reliability of suppressing the occurrence of a region where the concentration of the fuel gas is relatively high on the downstream side of the combustor 4 .
  • the purge flow rate Qp may be set such that the purge flow rate Qp is constant during the purge period. That is, in the purge gas supply method according to the embodiment shown in FIG. 3, the purge gas flow rate control section 110 may control the purge flow rate Qp so that the purge flow rate Qp is constant during the purge period. This makes it possible to simplify the control contents of the control device 100 that controls each flow control valve 34 as will be described later, and reduce the load on the processor 101 and the like in the control device 100 .
  • the purge gas flow rate control unit 110 may start controlling the purge flow rate Qp based on the parameters related to the above-described intake air amount Qa when the gas turbine 2 trips.
  • the purge flow rate Qp may vary during the purge period within a range not exceeding the upper limit threshold value Thu of the flow rate of the purge gas.
  • the purge flow rate Qp is changed according to the change in the intake air amount Qa that changes with the lapse of time. That is, in the purge gas supply method according to another embodiment shown in FIG. 4, the purge flow rate Qp is increased or decreased according to the increase or decrease in the intake air amount Qa within a range in which the hydrogen concentration Ch does not exceed the reference concentration Cs during the purge period.
  • the purge gas flow rate calculator 111 of the purge gas flow rate controller 110 calculates the purge flow rate Qp based on a function fx that increases or decreases the purge flow rate Qp in accordance with the increase or decrease in the intake air amount Qa.
  • the function fx is a function that can calculate the purge flow rate Qp that matches the intake air amount Qa and that can calculate the purge flow rate so that the purge flow rate Qp decreases as the intake air amount Qa decreases.
  • this function fx is a function that associates a parameter related to the intake air amount Qa with the flow rate of the purge gas.
  • the parameters related to the intake air amount are the same as in the purge gas supply method according to the embodiment shown in FIG.
  • the purge gas flow rate calculation unit 111 upon receiving a trip signal indicating that the gas turbine 2 has tripped, calculates the purge flow rate Qp based on the function fx as described above.
  • the purge gas flow rate calculator 111 calculates the time tp required for purging from the calculated purge flow rate Qp, and calculates the time t2 at which purging is started.
  • the purge gas flow rate calculator 111 calculates the opening degree of each of the flow control valves 34 corresponding to the calculated purge flow rate Qp. Then, the purge gas flow rate calculation unit 111 starts outputting the valve opening degree information to the valve control signal output unit 112 at time t2.
  • the purge gas flow rate calculation unit 111 repeatedly calculates the purge flow rate Qp based on the function fx, calculates the opening degree of each of the flow control valves 34 corresponding to the calculated purge flow rate Qp, and outputs information on the calculated valve opening degrees to the valve control signal output unit 112 until time t3.
  • the valve control signal output unit 112 generates and outputs a control signal for driving the actuator (not shown) of the flow control valve 34 based on the valve opening degree information received from the purge gas flow rate calculation unit 111 .
  • an actuator (not shown) adjusts the opening degree of each flow control valve 34 by receiving the control signal. Thereby, the purge gas is supplied to each fuel pipe at the desired purge flow rate Qp.
  • the purge flow rate Qp can be set according to the intake air amount Qa. Therefore, compared to the case where the purge flow rate Qp is set regardless of the intake air amount Qa, it is possible to complete the purge relatively quickly while suppressing unintended ignition.
  • the purge gas flow rate calculation unit 111 of the purge gas flow rate control unit 110 obtains the purge flow rate Qp based on parameters related to the intake air amount Qa.
  • the parameters related to the intake air amount Qa include parameters related to the gas turbine speed.
  • the parameter related to the gas turbine rotation speed may be, for example, a detected value of the rotation speed sensor 9 (see FIG. 1) that detects the gas turbine rotation speed, or may be a control value of the gas turbine rotation speed. Further, the parameter related to the gas turbine rotation speed may be data on transition of the gas turbine rotation speed after the trip, which is measured in advance or calculated in advance.
  • the purge gas is supplied at a flow rate that takes into consideration the amount of intake air Qa from the gas turbine inlet, so it is possible to suppress the occurrence of a region where the concentration of the fuel gas is relatively high on the downstream side of the combustor 4 . Since unintended ignition etc. can be suppressed by this, the safety of the gas turbine 2 can be improved.
  • the parameters related to the intake air amount Qa include parameters related to the gas turbine rotational speed, the intake air amount Qa can be calculated relatively easily.
  • the parameters related to the intake air amount Qa preferably include parameters related to the opening of the inlet guide vanes.
  • the parameter related to the inlet guide vane opening degree may be, for example, the opening degree of the inlet guide vane 6, that is, information on the drive position of the actuator 6a, or the inlet guide vane opening degree control command IGVCSO.
  • the purge flow rate Qp may be calculated so that the concentration of the fuel gas inside the gas turbine is less than the lower explosion limit LEL of the fuel gas during the purge period. This can further improve the safety of the gas turbine.
  • the purge gas flow rate control unit 110 may start controlling the purge flow rate Qp based on the parameters related to the above-described intake air amount Qa when the gas turbine 2 trips.
  • the present disclosure is not limited to the above-described embodiments, and includes modifications of the above-described embodiments and modes in which these modes are combined as appropriate.
  • the trip of the gas turbine 2 operating at the rated rotation speed has been mainly described.
  • the purge flow rate Qp may be controlled in the above-described manner when the gas turbine 2 trips during the turndown operation of the gas turbine 2 or when the gas turbine 2 trips during start-up.
  • the control device 100 for the gas turbine 2 is the control device 100 for the gas turbine 2 and includes a purge gas flow rate control section 110 that controls the flow rate (purge flow rate Qp) of the purge gas for discharging the fuel gas remaining inside the gas turbine to the outside of the gas turbine.
  • the purge gas flow rate control section 110 controls the flow rate of the purge gas based on parameters related to the intake air amount Qa from the gas turbine inlet.
  • the purge gas is supplied at a flow rate that takes into consideration the intake air amount Qa from the gas turbine inlet, so it is possible to suppress the occurrence of a region where the concentration of the fuel gas is relatively high on the downstream side of the combustor 4. Since unintended ignition etc. can be suppressed by this, the safety of the gas turbine 2 can be improved.
  • the purge gas flow rate control unit 110 may control the flow rate of the purge gas based on a function fx that associates a parameter related to the intake air amount Qa with the flow rate of the purge gas (purge flow rate Qp).
  • the purge gas flow rate (purge flow rate Qp) can be set according to the intake air amount Qa, so compared to the case where the purge gas flow rate is set regardless of the intake air amount Qa, the purge can be completed relatively quickly while suppressing unintended ignition.
  • the purge gas flow rate control unit 110 may control the flow rate of the purge gas (purge flow rate Qp) so that the concentration of the fuel gas inside the gas turbine is less than the lower explosion limit LEL of the fuel gas during the flow period of the purge gas.
  • the safety of the gas turbine 2 can be further improved.
  • the purge gas flow rate control unit 110 may control the flow rate (purge flow rate Qp) of the purge gas so that it does not exceed the upper limit threshold value Thu of the flow rate (purge flow rate Qp) of the purge gas corresponding to the parameter related to the intake air amount Qa.
  • the purge gas flow rate (purge flow rate Qp) is controlled so that the intake air amount Qa from the gas turbine inlet does not exceed the upper limit threshold Thu taken into consideration, and it is possible to suppress the occurrence of a region where the fuel gas concentration is relatively high downstream of the combustor 4.
  • the upper limit threshold Thu may be set so that the concentration of the fuel gas inside the gas turbine is less than the lower explosion limit LEL of the fuel gas even at the smallest intake air amount Qa among the intake air amounts Qa during the purge gas circulation period.
  • the purge gas flow rate control section 110 may control the flow rate (purge flow rate Qp) of the purge gas so that the flow rate (purge flow rate Qp) of the purge gas is constant during the purge gas circulation period.
  • the contents of control in the purge gas flow rate control section 110 can be simplified. As a result, the load on the processor 101 and the like in the purge gas flow control unit 110 can be suppressed.
  • the purge gas flow rate control unit 110 may start controlling the purge gas flow rate (purge flow rate Qp) based on a parameter related to the intake air amount Qa from the gas turbine inlet upon detecting that the gas turbine 2 has tripped.
  • the parameter related to the intake air amount Qa may include a parameter related to the gas turbine speed.
  • the intake air amount Qa can be calculated relatively easily.
  • the parameter related to the intake air amount Qa may include a parameter related to the opening of the inlet guide vanes.
  • the gas turbine 2 includes a control device 100 for the gas turbine 2 configured in any one of (1) to (9) above, a flow control device (each flow control valve 34) for adjusting the flow rate of the purge gas (purge flow rate Qp), and the turbine 5 rotated by the combustion gas generated by burning the fuel gas.
  • a control device 100 for the gas turbine 2 configured in any one of (1) to (9) above, a flow control device (each flow control valve 34) for adjusting the flow rate of the purge gas (purge flow rate Qp), and the turbine 5 rotated by the combustion gas generated by burning the fuel gas.
  • control device 100 for the gas turbine 2 having any one of the above configurations (1) to (9) is provided, it is possible to suppress the occurrence of a region where the fuel gas concentration is relatively high on the downstream side of the combustor 4. Since unintended ignition etc. can be suppressed by this, the safety of the gas turbine 2 can be improved.
  • a control method for the gas turbine 2 is a control method for the gas turbine 2, in which the flow rate (purge flow rate Qp) of the purge gas for discharging the fuel gas remaining inside the gas turbine to the outside of the gas turbine is controlled based on a parameter related to the intake air amount Qa from the gas turbine inlet.
  • the purge gas is supplied at a flow rate that takes into consideration the intake air amount Qa from the gas turbine inlet, so it is possible to suppress the occurrence of a region where the concentration of the fuel gas is relatively high on the downstream side of the combustor. Since unintended ignition etc. can be suppressed by this, the safety of the gas turbine 2 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Turbines (AREA)

Abstract

本開示の少なくとも一実施形態に係るガスタービンの制御装置は、ガスタービンの制御装置であって、ガスタービン内部に残留した燃料ガスをガスタービン外部に排出するためのパージガスの流量を制御するパージガス流量制御部を備える。パージガス流量制御部は、ガスタービン入口からの吸気量に関連するパラメータに基づいてパージガスの流量を制御する。

Description

ガスタービンの制御装置、ガスタービン及びガスタービンの制御方法
 本開示は、ガスタービンの制御装置、ガスタービン及びガスタービンの制御方法に関する。
 本願は、2022年1月24日に日本国特許庁に出願された特願2022-008808号に基づき優先権を主張し、その内容をここに援用する。
 燃料として気体燃料を用いるガスタービンでは、例えばガスタービンを停止させる際、燃料配管内の残留する燃料が燃料配管内で燃焼しないようにするため、窒素などの不活性ガスを燃料配管にパージすることで燃料配管内の気体燃料を不活性ガスで追い出すことは行われている(例えば特許文献1参照)。
特開2008-082262号公報
 しかし、例えばガスタービンのトリップ時等のように吸気量が減少しつつある状況下で不活性ガスによるパージを不計画に行うと、燃焼器の下流側において燃料ガスの濃度が比較的高くなる領域が生じて意図しない着火等を招くおそれがある。このことは、例えば水素等のようは燃焼性が比較的高い燃料を用いる場合に顕著である。
 本開示の少なくとも一実施形態は、上述の事情に鑑みて、ガスタービンの安全性を向上できるガスタービンの制御装置、ガスタービン及びガスタービンの制御方法を提供することを目的とする。
(1)本開示の少なくとも一実施形態に係るガスタービンの制御装置は、
 ガスタービンの制御装置であって、
 ガスタービン内部に残留した燃料ガスをガスタービン外部に排出するためのパージガスの流量を制御するパージガス流量制御部を備え、
 前記パージガス流量制御部は、ガスタービン入口からの吸気量に関連するパラメータに基づいて前記パージガスの流量を制御する。
(2)本開示の少なくとも一実施形態に係るガスタービンは、
 上記(1)の構成のガスタービンの制御装置と、
 前記パージガスの流量を調節する流量調節装置と、
 前記燃料ガスを燃焼させることで発生する燃焼ガスにより回転するタービンと、
を備える。
(3)本開示の少なくとも一実施形態に係るガスタービンの制御方法は、
 ガスタービンの制御方法であって、
 ガスタービン内部に残留した燃料ガスをガスタービン外部に排出するためのパージガスの流量を、ガスタービン入口からの吸気量に関連するパラメータに基づいて制御する。
 本開示の少なくとも一実施形態によれば、ガスタービンの安全性を向上できる。
一実施形態に係るガスタービンの構成を概略的に示す図である。 幾つかの実施形態に係る制御装置の機能ブロック図である。 パージガスの供給方法の一実施形態について説明するためのグラフである。 パージガスの供給方法の他の実施形態について説明するためのグラフである。
 以下、添付図面を参照して本開示の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本開示の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
(ガスタービン2の全体構成)
 以下、幾つかの実施形態に係る制御装置100を備えたガスタービン2の一例について説明する。図1は、一実施形態に係るガスタービン2の構成を概略的に示す図である。図1に示すように、発電装置1は、ガスタービン2と、発電機7とを備える。
 なお、図1では、後述するパージガスの流量の調整に関する構成を主に記載し、他の構成の記載を省略している。
 ガスタービン2は、発電用ガスタービンである。ガスタービン2は、圧縮空気を生成するためのコンプレッサ3と、圧縮空気及び燃料を用いて燃焼ガスを発生させるための燃焼器4と、燃焼ガスによって回転駆動されるように構成されたタービン5と、燃焼器4に燃料を供給するための燃料系統20と、燃料系統20の後述する燃料配管26にパージガスを供給するためにパージガス系統30を備える。
 コンプレッサ3は、回転軸8Aを介してタービン5に接続されている。コンプレッサ3は、タービン5の回転エネルギーによって回転駆動されて、圧縮空気を生成する。コンプレッサ3の入口側には、インレットガイドベーン6が設けられる。空気の流入量は、インレットガイドベーン6の開度をアクチュエータ6aによって変化させることで調整される。インレットガイドベーン6の開度は、インレットガイドベーン開度制御指令IGVCSOに基づいて制御される。コンプレッサ3で生成された圧縮空気は、燃焼器4に供給される。
 燃焼器4には、コンプレッサ3で生成された圧縮空気と、燃料とが供給され、燃料を燃焼させることによって、タービン5の作動流体である燃焼ガスを発生させる。燃焼器4に供給される燃料の流量は、燃料流量指令に応じて開度が調整される燃料流量調節弁23によって調整される。燃焼ガスは燃焼器4から後段のタービン5に送られる。
 燃料流量調節弁23は、後述するように幾つかの実施形態に係る制御装置100によって制御される。
 タービン5は、燃焼器4で生成された燃焼ガスによって駆動される。タービン5は、回転軸8Bによって発電機7と接続されている。発電機7は、タービン5の回転エネルギーによって発電するように構成されている。
(燃料系統20)
 一実施形態に係るガスタービン2では、燃料系統20は、燃料として気体燃料(燃料ガス)を供給するように構成されている。一実施形態に係る燃料系統20は、燃焼器4に供給する燃料ガスの供給を遮断するための遮断弁21と、遮断弁21の下流に配置されていて燃焼器4に供給する燃料ガスの圧力を調節するための圧力調節弁22と、圧力調節弁22の下流に配置されていて燃焼器4に供給する燃料ガスの流量を調節するための複数の燃料流量調節弁23とを備えている。
 なお、一実施形態に係る燃料系統20では、燃焼器4に燃料ガスを供給するための燃料供給系統25を例えば5つ備えている場合の例を示しているが、燃料供給系統25は他の態様をとってもよい。また図1では1つの燃焼器4のみを代表的に図示しているが、ガスタービン2は複数の燃焼器4を備え、各燃焼器4に各燃料供給系統25がそれぞれ設けられるように構成されてもよい。
 一実施形態に係るガスタービン2では、圧力調節弁22の下流で各燃料供給系統25に分岐された燃料配管26のそれぞれに燃料流量調節弁23が設けられている。
 遮断弁21は、遮断弁21を開閉するための不図示のアクチュエータを有する。
 圧力調節弁22は、圧力調節弁22の設定圧力を変更するための不図示のアクチュエータを有する。
 各燃料流量調節弁23は、各燃料流量調節弁23を流れる燃料ガスの流量を調節するために不図示のアクチュエータを有する。
 一実施形態に係る燃料系統20では、遮断弁21、圧力調節弁22、各燃料流量調節弁23は、幾つかの実施形態に係る制御装置100によって制御される。
(パージガス系統30)
 一実施形態に係るガスタービン2では、パージガス系統30は、遮断弁21と圧力調節弁22との間の燃料配管26にパージガスを供給するための第1パージガス供給系統31と、各燃料供給系統25における燃料流量調節弁23の下流側の燃料配管26にパージガスを供給するための5つの第2パージガス供給系統32とを備えている。
 一実施形態に係るパージガス系統30では、第1パージガス供給系統31には、燃料配管26に供給するパージガスの流量を調節するための流量調節弁33が設けられており、第2パージガス供給系統32のそれぞれには、燃料配管26に供給するパージガスの流量を調節するための流量調節弁34が設けられている。
 各流量調節弁33,34は、各流量調節弁33,34を流れるパージガスの流量を調節するために不図示のアクチュエータを有する。
 各流量調節弁33,34は、パージ流量Qpを調節する流量調節装置である。
 一実施形態に係るパージガス系統30では、各流量調節弁33,34は、幾つかの実施形態に係る制御装置100によって制御される。
 一実施形態に係るパージガス系統30では、パージガスは、例えば窒素等の不活性ガスである。以下の説明では、パージガス系統30から供給されるパージガスは、窒素であるものとして説明する。
(制御装置100)
 幾つかの実施形態に係る制御装置100は、各種演算処理を実行するプロセッサ101と、プロセッサ101によって処理される各種データを非一時的または一時的に記憶するメモリ103とを備える。プロセッサ101は、CPU、GPU、MPU、DSP、これら以外の各種演算装置、又はこれらの組み合わせなどによって実現される。メモリ103は、ROM、RAM、フラッシュメモリ、またはこれらの組み合わせなどによって実現される。
 図2は、幾つかの実施形態に係る制御装置100の機能ブロック図である。なお、図2では、後述するパージガスの流量の調整に関する機能ブロックだけを記載し、他の機能ブロックの記載を省略している。
 幾つかの実施形態に係る制御装置100は、パージガス流量制御部110を備えている。パージガス流量制御部110は、パージガス流量算出部111と、弁制御信号出力部112とを含んでいる。パージガス流量制御部110、パージガス流量算出部111、及び弁制御信号出力部112は、プロセッサ101がメモリ103に格納されているプログラムを実行することで実現される機能ブロックである。
 パージガス流量算出部111は、パージガス系統30から燃料配管26に供給されるパージガスの流量(パージ流量Qp)を後述するように算出する。
 弁制御信号出力部112は、パージガス流量算出部111で算出されたパージ流量Qpでパージされるように各流量調節弁34の不図示のアクチュエータに制御信号を出力する。
 制御装置100における具体的な処理の内容については、後で詳述する。
(パージガスによるパージについて)
 例えばガスタービン2のトリップ時等のように吸気量が減少しつつある状況下でパージガスによるパージを不計画に行うと、燃焼器4の下流側において燃料ガスの濃度が比較的高くなる領域が生じて意図しない着火等を招くおそれがある。このことは、例えば水素等のようは燃焼性が比較的高い燃料を用いる場合に顕著である。
 そこで、一実施形態に係るガスタービン2では、以下のようにしてパージガス系統30から燃料配管26にパージガスを供給するようにしている。
 図3は、パージガスの供給方法の一実施形態について説明するためのグラフである。
 図4は、パージガスの供給方法の他の実施形態について説明するためのグラフである。
 図3及び図4のグラフでは、タービン入口からの吸気量Qa、燃料供給量Qf、及び燃焼器4の下流側の空間内における水素濃度Chの推移を表している。なお、以下の説明では、燃料ガスには水素が比較的多く含まれているものとする。
 また、下の説明では、タービン入口からの吸気量Qaのことを単に吸気量Qaとも称し、燃焼器4の下流側の空間内における水素濃度Chのことを単に水素濃度Chとも称する。
 図3及び図4のグラフでは、タービン入口からの吸気量Qaを太い破線で表し、燃料供給量Qfを細い実線で表し、水素濃度Chを細い破線で表している。また、図3及び図4のグラフでは、爆発下限界LELとなる水素濃度をグラフの横軸と平行である破線で表している。
 また、図3及び図4のグラフでは、各グラフ線と横軸とが重複するのを避けるため、縦軸のゼロ点位置を横軸から離れた位置に設定している。
 後述する各時刻t1,t2,t3は、後述するイベントの発生時刻であり、各時刻t1,t2,t3間の時間の長さは、図3のグラフと図4のグラフとでは、必ずしも同じではない。すなわち、図3のグラフと図4のグラフとで時刻t1が同時刻であったとても、時刻t2は、図3のグラフと図4のグラフと必ずしも同時刻でなくてもよい。時刻t3は、図3のグラフと図4のグラフと必ずしも同時刻ではない。
 図3及び図4のグラフでは、パージガス系統30から燃料配管26にパージガスを供給する場合の一例として、定格回転数で運転されているガスタービン2でトリップが発生した場合を例に挙げて説明する。
 図3及び図4に示す幾つかの実施形態に係るパージガスの供給方法では、時刻t1でトリップが発生した場合、ガスタービン回転数は、時刻t1から慣性によって回転することになるため徐々に低下し始める。
 図3及び図4に示す幾つかの実施形態に係るパージガスの供給方法では、時刻t1で燃料ガスの供給が停止するため、トリップが発生した時刻t1からパージガスによる燃料配管26へのパージが開始される時刻t2まで燃料供給量Qfはゼロとなる。そのため、水素濃度Chは、時刻t1から時刻t2にかけて漸減する。
 時刻t2でパージガスによる燃料配管26へのパージが開始されると、燃料配管26に残留していた燃料ガスがパージガスで押し出されて、燃焼器4の不図示の燃料ノズルから吹き出されるため、水素濃度Chは再び上昇する。このとき燃焼器4の不図示の燃料ノズルから吹き出される燃料ガスの流量は、パージガス系統30から燃料配管26に供給されるパージガスの流量(パージ流量Qp)と等しい。
 そのため、パージ流量Qpが多過ぎると、燃料配管26に残留していた燃料ガスがパージガスで一気に押し出されて、水素濃度Chが爆発下限界LELを超えるおそれがある。
(図3に示す一実施形態のパージガスの供給方法の場合)
 そこで、図3に示す一実施形態に係るパージガスの供給方法では、パージ流量Qpに上限を設け、水素濃度Chが基準濃度Cs(例えば爆発下限界LEL)を超えないようにしている。
 例えば図3に示す一実施形態に係るパージガスの供給方法では、パージ流量Qpが上限閾値Thuとなるように、パージ期間中は一定の流量でパージする。
 ここで、パージ流量Qpの上限閾値Thuは、パージ期間中で吸気量Qaが最も少なくなるタイミングであっても水素濃度Chが基準濃度Csを超えないような値である。例えば図3に示す例では、パージ期間中で吸気量Qaが最も少なくなるタイミングは、パージが終了する時刻t3である。
 図3に示す一実施形態に係るパージガスの供給方法では、パージ期間の長さ(t3―t2)、すなわちパージに要する時間tpは、パージされる燃料配管26内の容積Vをパージ期間中の平均パージ流量Qpaで除した値(V/Qpa)にほぼ等しい(tp≒V/Qpa)。
 したがって、図3に示す一実施形態に係るパージガスの供給方法では、時刻t3でパージを終了させる場合、時刻t3におけるタービン回転数によって求まる時刻t3における吸気量Qaから、パージ流量Qpの上限閾値Thuを求めることができる。
 そして、求めた上限閾値Thuからパージに要する時間tpを求めることができ、どのタイミングでパージを開始すればよいか(すなわち時刻t2)が分かる。
 なお、時刻t3における吸気量Qaの算出の際に、インレットガイドベーン6の開度を考慮することで時刻t3における吸気量Qaの算出精度を向上できる。
 すなわち、図3に示す一実施形態に係るパージガスの供給方法では、パージガス流量制御部110のパージガス流量算出部111は、吸気量Qaに関連するパラメータに基づいてパージ流量Qpを求めている。ここで、吸気量Qaに関連するパラメータには、ガスタービン回転数に関するパラメータが含まれている。ガスタービン回転数に関するパラメータは、例えばガスタービン回転数を検出する回転速度センサ9(図1参照)の検出値であってもよく、ガスタービン回転数の制御値であってもよい。また、ガスタービン回転数に関するパラメータは、予め測定するか、予め計算によって求めておいた、トリップ後のガスタービン回転数の推移のデータであってもよい。
 図3に示す一実施形態に係るパージガスの供給方法では、パージガス流量制御部110にパージガス流量算出部111は、例えばガスタービン2がトリップしたことを示すトリップ信号を受信すると、上述したように、パージが終了する時刻t3における吸気量Qaを例えばトリップ後のガスタービン回転数の推移のデータから求める。
 そして、パージガス流量算出部111は、時刻t3における吸気量Qaから、パージ流量Qpの上限閾値Thuを算出する。
 パージガス流量算出部111は、求めた上限閾値Thuからパージに要する時間tpを算出して、パージを開始する時刻t2を算出する。
 パージガス流量算出部111は、パージ流量Qpの上限閾値Thuに対応する流量調節弁34のそれぞれの弁開度を算出する。そして、パージガス流量算出部111は、時刻t2になったタイミングで上述した弁開度の情報を弁制御信号出力部112に出力する。
 弁制御信号出力部112は、パージガス流量算出部111から受信した弁開度の情報に基づいて流量調節弁34の不図示のアクチュエータを駆動するための制御信号を生成して出力する。
 各流量調節弁34では、当該制御信号を受信することで不図示のアクチュエータが各流量調節弁34の開度を調節する。これにより、所望のパージ流量Qpでパージガスが各燃料配管に供給される。
 図3に示す一実施形態に係るパージガスの供給方法では、ガスタービン入口からの吸気量Qaが考慮された流量でパージガスが供給されるので、燃焼器4の下流側において燃料ガスの濃度が比較的高くなる領域が生じることを抑制できる。これにより意図しない着火等が抑制できるので、ガスタービン2の安全性を向上できる。
 また、吸気量Qaに関連するパラメータには、ガスタービン回転数に関するパラメータが含まれるので、吸気量Qaを比較的容易に算出できる。
 また、吸気量Qaに関連するパラメータには、インレットガイドベーン開度に関するパラメータが含まれているとよい。インレットガイドベーン開度に関するパラメータは、例えば、インレットガイドベーン6の開度、すなわちアクチュエータ6aの駆動位置の情報であってもよく、インレットガイドベーン開度制御指令IGVCSOであってもよい。
 これにより、吸気量Qaの算出精度を向上できる。
 このように、図3に示す一実施形態に係るパージガスの供給方法では、パージガス流量制御部110は、吸気量Qaに関連するパラメータに対応したパージ流量Qpの上限閾値Thuを超えないようにパージ流量Qpを制御してもよい。
 これにより、上限閾値Thuを超えないようにパージ流量Qpが制御され、燃焼器4の下流側において燃料ガスの濃度が比較的高くなる領域が生じることを抑制できる。
 また、図3に示す一実施形態に係るパージガスの供給方法では、上限閾値Thuは、パージ期間中の吸気量Qaの内、最も少ない吸気量Qaであっても水素濃度Chが燃料ガスの爆発下限界LEL未満となるように設定できる。
 これにより、燃焼器4の下流側において燃料ガスの濃度が比較的高くなる領域が生じることを抑制する確実性が向上する。
 図3に示す一実施形態に係るパージガスの供給方法では、パージ期間中のパージ流量Qpが一定となるようにパージ流量Qpを設定してもよい。
 すなわち、図3に示す一実施形態に係るパージガスの供給方法では、パージガス流量制御部110は、パージ期間中のパージ流量Qpが一定となるようにパージ流量Qpを制御してもよい。
 これにより、各流量調節弁34を後述するように制御する制御装置100における制御内容を簡素化でき、制御装置100におけるプロセッサ101等の負荷を抑制できる。
 図3に示す一実施形態に係るパージガスの供給方法では、ガスタービン2のトリップ時に上述した吸気量Qaに関連するパラメータに基づくパージ流量Qpの制御を行うようにするとよい。
 すなわち、図3に示す一実施形態に係るパージガスの供給方法では、パージガス流量制御部110は、ガスタービン2のトリップ時に上述した吸気量Qaに関連するパラメータに基づくパージ流量Qpの制御を開始してもよい。
 これにより、ガスタービン2のトリップ時に、燃焼器4の下流側において燃料ガスの濃度が比較的高くなる領域が生じることを抑制できる。よって、ガスタービン2のトリップ時の意図しない着火等が抑制できるので、ガスタービン2のトリップ時の安全性を向上できる。
 なお、図3に示す一実施形態に係るパージガスの供給方法では、パージ流量Qpは、パージガスの流量の上限閾値Thuを超えない範囲内でパージ期間中に変動してもよい。
 パージ期間の終了後、すなわち時刻t3以降、燃焼器4の不図示の燃料ノズルから燃料ガスが吹き出されなくなるので、水素濃度Chは漸減する。
(図4に示す他の実施形態のパージガスの供給方法の場合)
 図4に示す他の実施形態に係るパージガスの供給方法では、時間の経過とともに変化すする吸気量Qaの変化に応じて、パージ流量Qpを変更するようにしている。すなわち、図4に示す他の実施形態に係るパージガスの供給方法では、パージ期間中に水素濃度Chが基準濃度Csを超えない範囲内で、吸気量Qaの増減に合わせてパージ流量Qpを増減させる。
 具体的には、パージガス流量制御部110のパージガス流量算出部111は、吸気量Qaの増減に合わせてパージ流量Qpが増減する関数fxに基づいてパージ流量Qpを算出する。つまり、関数fxは、吸気量Qaに合わせたパージ流量Qpを算出可能であり、かつ、吸気量Qaが減少するにつれてパージ流量Qpが減少するようにパージ流量を算出可能な関数である。
 図4に示す他の実施形態に係るパージガスの供給方法では、この関数fxは、吸気量Qaに関連するパラメータとパージガスの流量とを関連付ける関数である。
 なお、図4に示す他の実施形態に係るパージガスの供給方法において、吸気量に関連するパラメータは、図3に示す一実施形態に係るパージガスの供給方法におけるものと同じである。
 関数fxは、吸気量Qaに関連するパラメータをPaとすると、例えば次式(1)のように表される。
   fx=f(Pa)   ・・・(1)
 図4に示す他の実施形態に係るパージガスの供給方法では、パージガス流量算出部111は、例えばガスタービン2がトリップしたことを示すトリップ信号を受信すると、上述したように、関数fxに基づいてパージ流量Qpを算出する。
 パージガス流量算出部111は、算出したパージ流量Qpからパージに要する時間tpを算出して、パージを開始する時刻t2を算出する。
 パージガス流量算出部111は、算出したパージ流量Qpに対応する流量調節弁34のそれぞれの弁開度を算出する。そして、パージガス流量算出部111は、時刻t2になったタイミングで上述した弁開度の情報の弁制御信号出力部112への出力を開始する。パージガス流量算出部111は、時刻t3になるまで、関数fxに基づくパージ流量Qpの算出と、算出したパージ流量Qpに対応する流量調節弁34のそれぞれの弁開度の算出、及び、算出した弁開度の情報の弁制御信号出力部112への出力を繰り返し実行する。
 弁制御信号出力部112は、パージガス流量算出部111から受信した弁開度の情報に基づいて流量調節弁34の不図示のアクチュエータを駆動するための制御信号を生成して出力する。
 各流量調節弁34では、当該制御信号を受信することで不図示のアクチュエータが各流量調節弁34の開度を調節する。これにより、所望のパージ流量Qpでパージガスが各燃料配管に供給される。
 図4に示す他の実施形態に係るパージガスの供給方法では、パージ流量Qpを吸気量Qaに応じて設定できるので、吸気量にQa関係なくパージ流量Qpを設定する場合と比べて、意図しない着火等を抑制しつつ比較的迅速にパージを完了できる。
 すなわち、図4に示す他の実施形態に係るパージガスの供給方法では、パージガス流量制御部110のパージガス流量算出部111は、吸気量Qaに関連するパラメータに基づいてパージ流量Qpを求めている。ここで、吸気量Qaに関連するパラメータには、ガスタービン回転数に関するパラメータが含まれている。ガスタービン回転数に関するパラメータは、例えばガスタービン回転数を検出する回転速度センサ9(図1参照)の検出値であってもよく、ガスタービン回転数の制御値であってもよい。また、ガスタービン回転数に関するパラメータは、予め測定するか、予め計算によって求めておいた、トリップ後のガスタービン回転数の推移のデータであってもよい。
 これにより、ガスタービン入口からの吸気量Qaが考慮された流量でパージガスが供給されるので、燃焼器4の下流側において燃料ガスの濃度が比較的高くなる領域が生じることを抑制できる。これにより意図しない着火等が抑制できるので、ガスタービン2の安全性を向上できる。
 また、吸気量Qaに関連するパラメータには、ガスタービン回転数に関するパラメータが含まれるので、吸気量Qaを比較的容易に算出できる。
 また、吸気量Qaに関連するパラメータには、インレットガイドベーン開度に関するパラメータが含まれているとよい。インレットガイドベーン開度に関するパラメータは、例えば、インレットガイドベーン6の開度、すなわちアクチュエータ6aの駆動位置の情報であってもよく、インレットガイドベーン開度制御指令IGVCSOであってもよい。
 これにより、吸気量Qaの算出精度を向上できる。
 図4に示す他の実施形態に係るパージガスの供給方法では、パージ期間中にガスタービン内部における燃料ガスの濃度が燃料ガスの爆発下限界LEL未満となるようにパージ流量Qpを算出するとよい。
 これにより、ガスタービンの安全性を一層向上できる。
 図4に示す他の実施形態に係るパージガスの供給方法では、ガスタービン2のトリップ時に上述した吸気量Qaに関連するパラメータに基づくパージ流量Qpの制御を行うようにするとよい。
 すなわち、図4に示す他の実施形態に係るパージガスの供給方法では、パージガス流量制御部110は、ガスタービン2のトリップ時に上述した吸気量Qaに関連するパラメータに基づくパージ流量Qpの制御を開始してもよい。
 これにより、ガスタービン2のトリップ時に、燃焼器4の下流側において燃料ガスの濃度が比較的高くなる領域が生じることを抑制できる。よって、ガスタービン2のトリップ時の意図しない着火等が抑制できるので、ガスタービン2のトリップ時の安全性を向上できる。
 パージ期間の終了後、すなわち時刻t3以降、燃焼器4の不図示の燃料ノズルから燃料ガスが吹き出されなくなるので、水素濃度Chは漸減する。
 本開示は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 例えば、上述の説明では、主に定格回転数で運転されているガスタービン2のトリップ時について説明したが、ガスタービン2のターンダウン運転時にトリップした場合や、ガスタービン2の起動時にトリップした場合にも上述したようにしてパージ流量Qpを制御するようにしてもよい。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
(1)本開示の少なくとも一実施形態に係るガスタービン2の制御装置100は、ガスタービン2の制御装置100であって、ガスタービン内部に残留した燃料ガスをガスタービン外部に排出するためのパージガスの流量(パージ流量Qp)を制御するパージガス流量制御部110を備える。パージガス流量制御部110は、ガスタービン入口からの吸気量Qaに関連するパラメータに基づいてパージガスの流量を制御する。
 上記(1)の構成によれば、ガスタービン入口からの吸気量Qaが考慮された流量でパージガスが供給されるので、燃焼器4の下流側において燃料ガスの濃度が比較的高くなる領域が生じることを抑制できる。これにより意図しない着火等が抑制できるので、ガスタービン2の安全性を向上できる。
(2)幾つかの実施形態では、上記(1)の構成において、パージガス流量制御部110は、吸気量Qaに関連するパラメータとパージガスの流量(パージ流量Qp)とを関連付ける関数fxに基づいて、パージガスの流量を制御するとよい。
 上記(2)の構成によれば、パージガスの流量(パージ流量Qp)を吸気量Qaに応じて設定できるので、吸気量Qaに関係なくパージガスの流量を設定する場合と比べて、意図しない着火等を抑制しつつ比較的迅速にパージを完了できる。
(3)幾つかの実施形態では、上記(2)の構成において、パージガス流量制御部110は、パージガスの流通期間中にガスタービン内部における燃料ガスの濃度が燃料ガスの爆発下限界LEL未満となるようにパージガスの流量(パージ流量Qp)を制御するとよい。
 上記(3)の構成によれば、ガスタービン2の安全性を一層向上できる。
(4)幾つかの実施形態では、上記(1)の構成において、パージガス流量制御部110は、吸気量Qaに関連するパラメータに対応したパージガスの流量(パージ流量Qp)の上限閾値Thuを超えないようにパージガスの流量(パージ流量Qp)を制御してもよい。
 上記(4)の構成によれば、ガスタービン入口からの吸気量Qaが考慮された上限閾値Thuを超えないようにパージガスの流量(パージ流量Qp)が制御され、燃焼器4の下流側において燃料ガスの濃度が比較的高くなる領域が生じることを抑制できる。
(5)幾つかの実施形態では、上記(4)の構成において、上限閾値Thuは、パージガスの流通期間中の吸気量Qaの内、最も少ない吸気量Qaであってもガスタービン内部における燃料ガスの濃度が燃料ガスの爆発下限界LEL未満となるように設定されているとよい。
 上記(5)の構成によれば、燃焼器4の下流側において燃料ガスの濃度が比較的高くなる領域が生じることを抑制する確実性が向上する。
(6)幾つかの実施形態では、上記(5)の構成において、パージガス流量制御部110は、パージガスの流通期間中のパージガスの流量(パージ流量Qp)が一定となるようにパージガスの流量(パージ流量Qp)を制御してもよい。
 上記(6)の構成によれば、パージガス流量制御部110における制御内容を簡素化できる。これにより、パージガス流量制御部110におけるプロセッサ101等の負荷を抑制できる。
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの構成において、パージガス流量制御部110は、ガスタービン2がトリップしたことを検出するとガスタービン入口からの吸気量Qaに関連するパラメータに基づくパージガスの流量(パージ流量Qp)の制御を開始してもよい。
 上記(7)の構成によれば、ガスタービン2のトリップ時に、燃焼器4の下流側において燃料ガスの濃度が比較的高くなる領域が生じることを抑制できる。これによりガスタービン2のトリップ時の意図しない着火等が抑制できるので、ガスタービン2のトリップ時の安全性を向上できる。
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの構成において、吸気量Qaに関連するパラメータには、ガスタービン回転数に関するパラメータが含まれるとよい。
 上記(8)の構成によれば、吸気量Qaを比較的容易に算出できる。
(9)幾つかの実施形態では、上記(8)の構成において、吸気量Qaに関連するパラメータには、インレットガイドベーン開度に関するパラメータが含まれるとよい。
 上記(9)の構成によれば、吸気量Qaの算出精度を向上できる。
(10)本開示の少なくとも一実施形態に係るガスタービン2は、上記(1)乃至(9)の何れかの構成のガスタービン2の制御装置100と、パージガスの流量(パージ流量Qp)を調節する流量調節装置(各流量調節弁34)と、燃料ガスを燃焼させることで発生する燃焼ガスにより回転するタービン5と、を備える。
 上記(10)の構成によれば、上記(1)乃至(9)の何れかの構成のガスタービン2の制御装置100を備えるので、燃焼器4の下流側において燃料ガスの濃度が比較的高くなる領域が生じることを抑制できる。これにより意図しない着火等が抑制できるので、ガスタービン2の安全性を向上できる。
(11)本開示の少なくとも一実施形態に係るガスタービン2の制御方法は、ガスタービン2の制御方法であって、ガスタービン内部に残留した燃料ガスをガスタービン外部に排出するためのパージガスの流量(パージ流量Qp)を、ガスタービン入口からの吸気量Qaに関連するパラメータに基づいて制御する。
 上記(11)の方法によれば、ガスタービン入口からの吸気量Qaが考慮された流量でパージガスが供給されるので、燃焼器の下流側において燃料ガスの濃度が比較的高くなる領域が生じることを抑制できる。これにより意図しない着火等が抑制できるので、ガスタービン2の安全性を向上できる。
2 ガスタービン
3 コンプレッサ
5 タービン
6 インレットガイドベーン
20 燃料系統
26 燃料配管
30 パージガス系統
33,34 流量調節弁
100 制御装置
101 プロセッサ
103 メモリ
110 パージガス流量制御部
111 パージガス流量算出部
112 弁制御信号出力部

Claims (11)

  1.  ガスタービンの制御装置であって、
     ガスタービン内部に残留した燃料ガスをガスタービン外部に排出するためのパージガスの流量を制御するパージガス流量制御部を備え、
     前記パージガス流量制御部は、ガスタービン入口からの吸気量に関連するパラメータに基づいて前記パージガスの流量を制御する、
    ガスタービンの制御装置。
  2.  前記パージガス流量制御部は、前記吸気量に関連するパラメータと前記パージガスの流量とを関連付ける関数に基づいて、前記パージガスの流量を制御する、
    請求項1に記載のガスタービンの制御装置。
  3.  前記パージガス流量制御部は、前記パージガスの流通期間中に前記ガスタービン内部における前記燃料ガスの濃度が前記燃料ガスの爆発下限界未満となるように前記パージガスの流量を制御する、
    請求項2に記載のガスタービンの制御装置。
  4.  前記パージガス流量制御部は、前記吸気量に関連するパラメータに対応した前記パージガスの流量の上限閾値を超えないように前記パージガスの流量を制御する、
    請求項1に記載のガスタービンの制御装置。
  5.  前記上限閾値は、前記パージガスの流通期間中の前記吸気量の内、最も少ない吸気量であっても前記ガスタービン内部における前記燃料ガスの濃度が前記燃料ガスの爆発下限界未満となるように設定されている
    請求項4に記載のガスタービンの制御装置。
  6.  前記パージガス流量制御部は、前記パージガスの流通期間中の前記パージガスの流量が一定となるように前記パージガスの流量を制御する、
    請求項5に記載のガスタービンの制御装置。
  7.  前記パージガス流量制御部は、前記ガスタービンがトリップしたことを検出すると前記ガスタービン入口からの吸気量に関連するパラメータに基づく前記パージガスの流量の制御を開始する、
    請求項1又は2に記載のガスタービンの制御装置。
  8.  前記吸気量に関連するパラメータには、ガスタービン回転数に関するパラメータが含まれる
    請求項1又は2に記載のガスタービンの制御装置。
  9.  前記吸気量に関連するパラメータには、インレットガイドベーン開度に関するパラメータが含まれる
    請求項8に記載のガスタービンの制御装置。
  10.  請求項1又は2に記載のガスタービンの制御装置と、
     前記パージガスの流量を調節する流量調節装置と、
     前記燃料ガスを燃焼させることで発生する燃焼ガスにより回転するタービンと、
    を備えるガスタービン。
  11.  ガスタービンの制御方法であって、
     ガスタービン内部に残留した燃料ガスをガスタービン外部に排出するためのパージガスの流量を、ガスタービン入口からの吸気量に関連するパラメータに基づいて制御する、
    ガスタービンの制御方法。
PCT/JP2022/047512 2022-01-24 2022-12-23 ガスタービンの制御装置、ガスタービン及びガスタービンの制御方法 WO2023140045A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-008808 2022-01-24
JP2022008808 2022-01-24

Publications (1)

Publication Number Publication Date
WO2023140045A1 true WO2023140045A1 (ja) 2023-07-27

Family

ID=87348217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047512 WO2023140045A1 (ja) 2022-01-24 2022-12-23 ガスタービンの制御装置、ガスタービン及びガスタービンの制御方法

Country Status (1)

Country Link
WO (1) WO2023140045A1 (ja)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529076A (en) * 1978-08-24 1980-03-01 Toshiba Corp Controller for gas turbine
JPS5551925A (en) * 1978-10-12 1980-04-16 Toshiba Corp Gas turbine controller
JPS5915639A (ja) * 1982-07-19 1984-01-26 Yanmar Diesel Engine Co Ltd 非常用発電機駆動用ガスタービン機関の制御装置
JP2008082262A (ja) * 2006-09-28 2008-04-10 Mitsubishi Heavy Ind Ltd ガスタービンの起動停止方法及び起動停止制御装置
JP2010065579A (ja) * 2008-09-10 2010-03-25 Hitachi Ltd ガスタービンの燃料供給方法
JP2011231762A (ja) * 2010-04-29 2011-11-17 General Electric Co <Ge> ガスタービンのNOx排出制御のための希釈剤注入の代替方法
JP2012017957A (ja) * 2010-07-09 2012-01-26 Kawasaki Heavy Ind Ltd 燃料ノズルパージ方法及び燃料ノズルパージ装置
JP2013253602A (ja) * 2012-06-06 2013-12-19 General Electric Co <Ge> 再起動のために発電機を準備するように発電機をシャットダウンするための方法
JP2014105575A (ja) * 2012-11-22 2014-06-09 Mitsubishi Heavy Ind Ltd ガスタービンの燃焼器への流体供給制御システムおよびガスタービンの燃焼器への流体供給制御方法
JP2016048044A (ja) * 2014-08-27 2016-04-07 川崎重工業株式会社 ガスタービンエンジンシステム
US20180058337A1 (en) * 2016-08-25 2018-03-01 General Electric Company Systems and methods to improve shut-down purge flow in a gas turbine system
JP2019183784A (ja) * 2018-04-13 2019-10-24 三菱日立パワーシステムズ株式会社 停止制御方法および制御装置
JP2019210879A (ja) * 2018-06-06 2019-12-12 株式会社日立製作所 コンバインドサイクル発電プラント
JP2020143672A (ja) * 2014-03-18 2020-09-10 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. ガスタービンを始動させるための方法
CN112879160A (zh) * 2021-03-23 2021-06-01 烟台杰瑞石油装备技术有限公司 用于涡轮压裂车组的吹扫系统、吹扫方法和涡轮压裂车组

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5529076A (en) * 1978-08-24 1980-03-01 Toshiba Corp Controller for gas turbine
JPS5551925A (en) * 1978-10-12 1980-04-16 Toshiba Corp Gas turbine controller
JPS5915639A (ja) * 1982-07-19 1984-01-26 Yanmar Diesel Engine Co Ltd 非常用発電機駆動用ガスタービン機関の制御装置
JP2008082262A (ja) * 2006-09-28 2008-04-10 Mitsubishi Heavy Ind Ltd ガスタービンの起動停止方法及び起動停止制御装置
JP2010065579A (ja) * 2008-09-10 2010-03-25 Hitachi Ltd ガスタービンの燃料供給方法
JP2011231762A (ja) * 2010-04-29 2011-11-17 General Electric Co <Ge> ガスタービンのNOx排出制御のための希釈剤注入の代替方法
JP2012017957A (ja) * 2010-07-09 2012-01-26 Kawasaki Heavy Ind Ltd 燃料ノズルパージ方法及び燃料ノズルパージ装置
JP2013253602A (ja) * 2012-06-06 2013-12-19 General Electric Co <Ge> 再起動のために発電機を準備するように発電機をシャットダウンするための方法
JP2014105575A (ja) * 2012-11-22 2014-06-09 Mitsubishi Heavy Ind Ltd ガスタービンの燃焼器への流体供給制御システムおよびガスタービンの燃焼器への流体供給制御方法
JP2020143672A (ja) * 2014-03-18 2020-09-10 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. ガスタービンを始動させるための方法
JP2016048044A (ja) * 2014-08-27 2016-04-07 川崎重工業株式会社 ガスタービンエンジンシステム
US20180058337A1 (en) * 2016-08-25 2018-03-01 General Electric Company Systems and methods to improve shut-down purge flow in a gas turbine system
JP2019183784A (ja) * 2018-04-13 2019-10-24 三菱日立パワーシステムズ株式会社 停止制御方法および制御装置
JP2019210879A (ja) * 2018-06-06 2019-12-12 株式会社日立製作所 コンバインドサイクル発電プラント
CN112879160A (zh) * 2021-03-23 2021-06-01 烟台杰瑞石油装备技术有限公司 用于涡轮压裂车组的吹扫系统、吹扫方法和涡轮压裂车组

Similar Documents

Publication Publication Date Title
US11781492B2 (en) Two-shaft gas turbine control system and method
EP2261487B1 (en) Gas turbine controller
RU2540210C2 (ru) Способ управления режимом работы газовой турбины на основе температуры выхлопного газа и газовая турбина
RU2539930C2 (ru) Способ управления режимом работы газовой турбины на основе температуры выхлопного газа и газовая турбина
JP5789266B2 (ja) 排気温度対タービン圧力比に基づくタービン制御方法および装置
JP5845188B2 (ja) 制御方法およびタービンのための排気温度に基づく閾値
BRPI0617102A2 (pt) sistema de controle da turbina a gás para suprimir um aumento em uma velocidade de revolução de um turbina a gás e método para controlar uma turbina a gás de modo a suprir um aumento em velocidade de revolução
JP2008051099A (ja) ガスタービン及びガスタービンを運転するためのびシステム
JP5550592B2 (ja) ガスタービンの制御装置
JP2010144732A (ja) 発電用地上単純サイクルpdcハイブリッドエンジンのための制御システム
KR20130020936A (ko) 가스 압축기의 운전 방법 및 가스 압축기를 구비하는 가스 터빈
JP2010285955A (ja) ガスタービンの制御装置及び発電システム
JP5501870B2 (ja) ガスタービン
WO2023140045A1 (ja) ガスタービンの制御装置、ガスタービン及びガスタービンの制御方法
JP5723455B2 (ja) 希薄燃料吸入ガスタービン
JP2006029162A (ja) ガスタービンの制御装置および制御方法
JP2013160154A (ja) ガスタービン制御装置及び方法並びにプログラム、それを用いた発電プラント
JP2013083226A (ja) 排熱ボイラシステムの制御方法および制御装置
KR20240105445A (ko) 가스 터빈의 제어 장치, 가스 터빈 및 가스 터빈의 제어 방법
JP2007332817A (ja) 蒸気噴射ガスタービン及びその制御方法
US20130104561A1 (en) Active fuel control on gas turbine shutdown sequence
JP5031779B2 (ja) ガスタービン・エンジンの制御装置
JP2011038478A (ja) ガスタービンエンジンの制御装置とその制御方法
US10309320B2 (en) Method for regulating a gas turbine
JP3894816B2 (ja) ガスタービン装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922195

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023575157

Country of ref document: JP

Kind code of ref document: A