WO2023139870A1 - インピーダンス測定装置および方法 - Google Patents

インピーダンス測定装置および方法 Download PDF

Info

Publication number
WO2023139870A1
WO2023139870A1 PCT/JP2022/039989 JP2022039989W WO2023139870A1 WO 2023139870 A1 WO2023139870 A1 WO 2023139870A1 JP 2022039989 W JP2022039989 W JP 2022039989W WO 2023139870 A1 WO2023139870 A1 WO 2023139870A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
measurement
reference signal
phase
filtered
Prior art date
Application number
PCT/JP2022/039989
Other languages
English (en)
French (fr)
Inventor
一暁 羽田
智大 横山
Original Assignee
日置電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日置電機株式会社 filed Critical 日置電機株式会社
Publication of WO2023139870A1 publication Critical patent/WO2023139870A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current

Definitions

  • the present invention relates to an impedance measuring device and method, and to a four-terminal impedance measuring device and method using synchronous detection.
  • a four-terminal impedance measuring device as a device for measuring the internal impedance of an object to be measured.
  • a four-terminal impedance measuring device supplies an AC measurement signal from a current source to an object to be measured, detects a signal generated in the object to be measured by the measurement signal, and obtains the internal impedance of the object to be measured from the current flowing through the object to be measured and the voltage between both terminals of the object to be measured.
  • synchronous detection as described in Patent Document 1 may be used in order to accurately extract the measurement frequency component included in the detection signal.
  • a detection signal generated in a measurement object by a measurement signal is detected with two modulated signals having the same frequency as the measurement signal but different phases by 90 degrees.
  • the detection signal detected by the in-phase modulation signal includes a DC component proportional to the resistance component of the object to be measured.
  • a detection signal obtained by detecting the detection signal with a phase orthogonal to the measurement signal contains a DC component proportional to the reactance component of the object to be measured.
  • LFP low-pass filter
  • the detection signal contains a frequency component that is the difference between the frequency of the detection signal and the frequency of the measurement signal, the closer the frequency of the noise contained in the detection signal to the measurement frequency is, the lower the frequency will be modulated, making it difficult to remove by the LPF.
  • the LPF Low-power filter
  • a method of compensating for the effects of interference using signal processing, etc. is also conceivable.
  • the amount of influence of interference fluctuates depending on the loop shape of the measurement cable, the state of magnetic coupling due to the positional relationship with the surrounding metal, the state of the measurement signal of the interference partner, etc. Since it is not easy to maintain a constant amount of influence at all times, it is extremely difficult to perform highly accurate compensation.
  • the present invention has been made in view of the above-mentioned problems, and aims to suppress the influence of noise near the measurement frequency and enable highly accurate impedance measurement.
  • a signal generator that generates a first reference signal and a second reference signal obtained by inverting the phase of the first reference signal every predetermined inversion period; a measurement signal supply unit that generates a measurement signal based on the second reference signal and supplies it to a measurement object; a measurement unit that synchronously detects a signal generated in the measurement object by the measurement signal with a modulated signal generated based on the first reference signal and low-pass-filters it to generate a filtered signal; and the amplitude of the filtered signal when the first reference signal and the second reference signal are out of phase with each other.
  • the signal component (original measurement signal component) generated in the measurement target by the measurement signal is inverted at each inversion period, and the noise component is not inverted.
  • the original measurement signal component does not invert every inversion period, but only the noise component. Therefore, the noise signal can be canceled by averaging before and after the inversion at the inversion period. Then, by determining the impedance of the object to be measured based on the magnitude of the filtered signal with the noise signal canceled out, it is possible to perform highly accurate impedance measurement while suppressing the influence of noise in the vicinity of the measurement frequency.
  • additive averaging includes both meaning of adding and averaging the magnitudes of signals (magnitude averaging) and averaging by adding the magnitude averages over a predetermined period (magnitude and temporal averaging).
  • Synchronous detection means detecting a detection signal generated in a measurement target by a measurement signal using two modulated signals having the same frequency as the measurement signal but different phases by 90 degrees.
  • a signal generation unit that generates a first reference signal and a second reference signal obtained by inverting the phase of the first reference signal every predetermined inversion period; a current supply unit that generates a measurement signal based on the second reference signal and supplies it to an object to be measured;
  • an impedance measuring device comprising an impedance measuring device that includes an arithmetic unit that obtains the impedance of the object to be measured based on the arithmetic mean of the magnitude of the filtered signal when the two reference signals are in phase and the magnitude of the filtered signal when the first reference signal and the second reference signal are out of phase.
  • the noise signal can be canceled by averaging the signals before and after the phase inversion. Then, by determining the impedance of the object to be measured based on the magnitude of the filtered signal with the noise signal canceled out, it is possible to perform highly accurate impedance measurement while suppressing the influence of noise in the vicinity of the measurement frequency.
  • the inversion period is an integral multiple of the period of the measurement signal supplied to the measurement object, and that the calculation unit obtains the impedance of the measurement object based on the averaging over the measurement period that is an integral multiple of the inversion period.
  • the impedance measuring device According to the impedance measuring device according to the present invention, it is possible to suppress the influence of noise in the vicinity of the measurement frequency and perform highly accurate impedance measurement.
  • FIG. 1 is a schematic configuration diagram of a state in which an impedance measuring device 1 according to an embodiment of the present invention is connected to an object to be measured;
  • FIG. 4 is an operation flowchart of the impedance measuring device 1 according to the embodiment of the present invention;
  • 3 is an explanatory diagram of a measurement signal supplied to a measurement object, external noise, and a reference signal with respect to the impedance measurement device 1;
  • FIG. 1 is a schematic configuration diagram of a state in which an impedance measuring device 1' according to an embodiment of the present invention is connected to an object to be measured;
  • FIG. 4 is an operation flowchart of the impedance measuring device 1' according to the embodiment of the present invention;
  • FIG. 2 is an explanatory diagram of a measurement signal supplied to a measurement target, external noise, and a reference signal with respect to the impedance measurement device 1';
  • 1 is a schematic configuration diagram of multiple impedance measurements;
  • FIG. It is the measurement result of several impedance measurements.
  • FIG. 1 is a schematic configuration diagram of a state in which an impedance measuring device 1, which is an example of an embodiment of the present invention, is connected to an object 60 to be measured.
  • impedance measuring devices include, for example, a battery tester for measuring storage batteries, an LCR meter for measuring passive components such as coils, capacitors, and resistors, and a C meter for capacitors only.
  • the impedance measuring device 1 includes a measurement signal supply section 10, a measurement section 20, a signal generation section 30, and a calculation section 40.
  • the impedance measuring apparatus 1 supplies a measurement signal Im for measurement from a measurement signal supply unit 10 to a measurement object 60 via contact terminals 51 and 53 that contact both terminals of the measurement object 60, respectively.
  • a measurement unit 20 detects a signal Vm generated between contact terminals 52 and 54 that contact both terminals of the measurement object 60, respectively. , the internal impedance Z and the phase angle ⁇ of the object 60 to be measured.
  • a reference signal Vr2 that serves as a reference for the measurement signal Im and a reference signal Vr1 that serves as a reference for the modulation signals Vmod1 and Vmod2 for detecting the detection signal Vm are generated by the signal generator 30 .
  • the measurement signal supply section 10 is connected to the signal generation section 30 and the contact terminals 51 and 53 and includes a signal source that generates a measurement signal Im that is in phase with the reference signal Vr2 input from the signal generation section 30 .
  • the generated measurement signal Im is supplied via the contact terminals 51 , 53 to the measuring object 60 connected to the contact terminals 51 , 53 .
  • the measuring unit 20 is connected to the signal generating unit 30, the computing unit 40, and the contact terminals 52, 54, and includes a detection circuit 21, a 90-degree phase shifter 26, two low-pass filters (LPF) 24, 25, and two multipliers 22, 23.
  • LPF low-pass filters
  • the detection circuit 21 has inputs connected to the contact terminals 52 and 54 and outputs connected to the multipliers 22 and 23 .
  • the detection circuit 21 detects a signal generated between the contact terminals 52 and 54 contacting both terminals of the measurement object 60 by the measurement signal Im, and outputs a detection signal Vm.
  • the 90-degree phase shifter 26 has an input connected to the signal generator 30 and an output connected to the multiplier 23 .
  • the 90-degree phase shifter 26 shifts the phase of the reference signal Vr1 received from the signal generator 30 by 90 degrees to generate the modulated signal Vmod2.
  • the multiplier 22 has an input connected to the detection circuit 21 and the signal generator 30 and an output connected to the LPF 24 .
  • the multiplier 22 detects the detection signal Vm received from the detection circuit 21 with the modulated signal Vmod1 having the same phase as the reference signal Vr1 received from the signal generator 30, and outputs a detection signal Vd1.
  • the multiplier 23 has an input connected to the detection circuit 21 and the 90-degree phase shifter 26 and an output connected to the LPF 25 .
  • Multiplier 23 detects detection signal Vm received from detection circuit 21 with modulated signal Vmod2 received from 90-degree phase shifter 26 and having a phase orthogonal to reference signal Vr1, and outputs detection signal Vd2.
  • the inputs of the LPFs 24 and 25 are connected to the corresponding multipliers 22 and 23 , and the outputs are connected to the computing section 40 .
  • the LPF 24 low-pass-filters the detection signal Vd1 output from the multiplier 22 to generate a filtered signal Vi in which a DC component is extracted.
  • the LPF 25 low-pass filters the detection signal Vd2 output from the multiplier 23 to generate a filtered signal Vq in which a DC component is extracted.
  • the signal generation section 30 has an input connected to the calculation section 40 and an output connected to the measurement signal supply section 10 and the measurement section 20 , and includes a reference signal generator 33 , a phase inverter 31 and a switch 32 .
  • the input of the reference signal generator 33 is connected to the computing section 40 , and the output is connected to the phase inverter 31 , the switch 32 , the multiplier 22 and the 90-degree phase shifter 26 of the measuring section 20 .
  • the reference signal generator 33 generates a reference signal Vr1 having a period and a phase angle indicated by the control signal from the calculation unit 40.
  • the phase inverter 31 has an input connected to the reference signal generator 33 and an output connected to the switch 32 .
  • the phase inverter 31 generates a reference signal by shifting (inverting) the phase of the reference signal Vr1 received from the reference signal generator 33 by 180 degrees.
  • the switch 32 has one input end connected to the reference signal generator 33 , the other end connected to the phase inverter 31 , the control terminal connected to the calculation unit 40 , and the output connected to the measurement signal supply unit 10 .
  • the switch 32 selects a signal (positive phase) in phase with the reference signal Vr1 and a signal in opposite phase to the reference signal Vr1 generated by the phase inverter 31 based on the control signal Vs generated by the calculation unit 40, and outputs them as the reference signal Vr2.
  • the calculation unit 40 records the magnitudes of the filtered signals Vi and Vq input from the measurement unit 20 in memory. Further, the internal impedance Z and the phase angle ⁇ of the measurement object 60 are obtained based on the arithmetic mean of the magnitudes of the filtered signals Vi and Vq (positive-phase filtered signals) when the reference signals Vr1 and Vr2 are in positive phase and the sign-inverted magnitudes of the filtered signals Vi and Vq (negative-phase filtered signals) when they are in opposite phase.
  • the computing unit 40 also generates a signal for controlling the period and phase angle of the reference signal Vr1 generated by the reference signal generator 33 and a control signal Vs for switching the switch 32 every predetermined inversion period T.
  • the inversion period T is set to be an integral multiple of the period of the reference signal Vr1 (that is, the period of the measurement signal). This makes it possible to acquire the magnitudes of the positive-phase filtered signal and the negative-phase filtered signal corresponding to each phase of the reference signal Vr1. Also, the measurement period is set to be an integral multiple of the inversion period T. FIG. Furthermore, if the measurement period is set to an even multiple of the inversion period T, the measurement period for obtaining the magnitude of the positive-phase filtered signal and the measurement period for obtaining the magnitude of the negative-phase filtered signal can be made equal.
  • the multipliers 22, 23, LPFs 24, 25 and 90-degree phase shifter 26 of the measuring section 20, and the computing section 40 are configured by a computer having a processor and memory. That is, when executed by the processor, a program containing instructions for realizing each element of the measurement unit 20 and each function of the calculation unit 40 described above is stored in the memory, and by executing each program on the processor, the functions of each element of the measurement unit 20 and the calculation unit 40 are realized.
  • a part or all of each element of the measurement unit 20 and the calculation unit 40 described above may be implemented by hardware such as an electronic circuit or device.
  • the above description of the connection relationship between the elements of the impedance measuring apparatus 1 means electrical/mechanical connections for the hardware configuration, and the flow of processing for the software configuration.
  • a voltage corresponding to the impedance Z of the measurement object 60 and the phase angle ⁇ is generated between both terminals of the measurement object 60 by the measurement signal Im.
  • the detection signals Vd1 and Vd2 are low-pass filtered by the LPFs 24 and 25 to generate filtered signals Vi and Vq in which DC components are extracted as shown in equation (3) (step 105).
  • the calculation unit 40 stores the magnitudes of the generated filtered signals Vi and Vq in the memory together with the detection time (step 106).
  • the impedance Z (R and X) and the phase angle ⁇ of the measurement object 60 can be obtained from the instantaneous values of the voltages of the filtered signals Vi and Vq. Even if the value of the measurement signal Im is not known, the impedance Z (R and X) and the phase angle ⁇ can be obtained based on the voltage and current values by measuring the amplitude and phase of the measurement signal by a synchronous detection method.
  • the detection signal Vm contains the external noise Vnsin(2 ⁇ fnt+ ⁇ ) of the frequency fn
  • the detection signal of the external noise Vn contains the component signal shown in equation (4).
  • the detected signal includes a frequency component that is the difference between the frequency fn of the external noise and the frequency f of the modulated signal Vmod1. If the frequency fn of the external noise Vn is close to the modulation signal Vmod1, as in the case of mutual interference between measuring devices that may occur when impedance measurements are performed in parallel using a plurality of impedance measuring devices, it becomes difficult for the LPFs 24 and 25 to sufficiently remove the external noise Vn, and the filtered signal includes the low-frequency component of the first term on the right side of equation (4).
  • the operations from step 102 to step 106 described above are repeatedly performed over the inversion period T at each predetermined sampling period (step 107). It is desirable to set the inversion period T to an integral multiple of the periods of the reference signals Vr1 and Vr2. Thereby, temporal changes in the voltages of the filtered signals Vi and Vq corresponding to each phase of the reference signal Vr1 can be recorded in the memory.
  • the inversion period T is set to twice the period of the reference signals Vr1 and Vr2.
  • the inversion cycle T can be appropriately set to 10 cycles or 100 cycles of the reference signals Vr1 and Vr2.
  • the calculation unit 40 transmits a control signal Vs for switching the switch 32 .
  • the switch 32 then selectively outputs the reverse phase input.
  • the measurement period is set to an integral multiple of the inversion period T.
  • the measurement period is set to twice the inversion period T, that is, to correspond to four periods of the reference signals Vr1 and Vr2.
  • FIG. 3 shows temporal changes in the measurement signal Im supplied to the measurement object 60, the external noise Vn, and the modulation signal Vmod1.
  • Time 0 to T corresponds to the first processing
  • time T to 2T corresponds to the second processing.
  • the modulated signal Vmod1 is a signal based on the reference signal Vr1
  • the measurement signal Im is a signal based on the reference signal Vr2
  • the first and second processes have opposite phases. Therefore, the components contained in the filtered signals Vi and Vq and proportional to the impedance Z of the measurement object 60 have opposite phases between the first and second processings.
  • the component caused by the external noise Vn contained in the detection signal is not affected by the phase of the measurement signal Im, and therefore has the same phase between the first and second processing.
  • the measurement period ends because the measurement time twice the inversion period T has elapsed (step 109).
  • the temporal change in the voltage of the filtered signals Vi and Vq for two cycles of the reference signal when the two reference signals Vr1 and Vr2 are in phase and the temporal change in the voltage of the filtered signals Vi and Vq for two cycles of the reference signal when the two reference signals Vr1 and Vr2 are in opposite phase are recorded in the memory.
  • the processor of the computing unit 40 reads out the voltages of the filtered signals Vi and Vq from the memory, inverts the sign of the voltages of the filtered signals Vi and Vq when the two reference signals Vr1 and Vr2 are in opposite phase, and averages them (step 110).
  • the processor of the computing unit 40 reads out the voltages of the filtered signals Vi and Vq from the memory, inverts the sign of the voltages of the filtered signals Vi and Vq when the two reference signals Vr1 and Vr2 are in opposite phase, and averages them (step 110).
  • the components corresponding to the first terms on the right side of the equations (4) and (4′) can be canceled to obtain the magnitudes of the filtered signals Vi and Vq with the influence of the external noise Vn suppressed.
  • the average of the magnitudes of the filtered signals Vi and Vq over the entire measurement period stored in the memory is calculated.
  • one or more sets of the in-phase filtered signal and the anti-phase filtered signal may be obtained during the measurement period when the reference signal Vr1 is in the same phase, and the average of the filtered signals Vi and Vq may be calculated.
  • the magnitudes of the filtered signals Vi and Vq when the phase of the reference signal Vr1 is ⁇ /4 in the first processing of steps 102 to 108 and the magnitudes of the filtered signals Vi and Vq when the phase of the reference signal Vr1 is ⁇ /4 in the second processing of steps 102 to 108 are acquired from the memory, and the magnitude of the filtered signal Vi in the first processing and the magnitude of the sign-inverted magnitude of the filtered signal Vi in the second processing are obtained. are added and averaged to find the magnitude of the filtered signal Vi in which the influence of the external noise Vn is suppressed. Further, the magnitude of the filtered signal Vq of the first processing and the magnitude of the sign-inverted filtered signal Vq of the second processing are added and averaged to determine the magnitude of the filtered signal Vq with the influence of the external noise Vn suppressed.
  • a first set consisting of the magnitudes of the filtered signals Vi and Vq when the phase of the reference signal Vr1 is ⁇ /4 in the first processing and the magnitudes of the filtered signals Vi and Vq when the phase of the reference signal Vr1 is ⁇ /4 in the second processing, and the magnitudes of the filtered signals Vi and Vq when the phase of the reference signal Vr1 is ⁇ /2 in the first processing and the magnitudes of the filtered signals Vi and Vq when the phase of the reference signal Vr1 is ⁇ /2 in the second processing are set.
  • a total of eight filtered signal magnitudes are read from memory, comprising a second set of wave signals Vi, Vq and a second set of magnitudes.
  • the magnitudes of the four filtered signals Vi included in the magnitudes of the obtained filtered signals are sign-inverted only for the filtered signals Vi and Vq of the second processing, and an arithmetic mean (magnitude and temporal average) is taken to obtain the magnitude of the filtered signal Vi in which the influence of the external noise Vn is suppressed.
  • the magnitude of the four filtered signals Vq is obtained by inverting the sign of only the filtered signals Vi and Vq of the second processing and averaging (magnitude and temporal averages) to obtain the magnitude of the filtered signal Vq in which the influence of the external noise Vn is suppressed.
  • the processor of the calculation unit 40 calculates the impedance Z (R and X) and the phase angle ⁇ of the measurement object 60 from the arithmetic average obtained in step 110, that is, the magnitude of the filtered signals Vi and Vq with the external noise Vn canceled (step 111).
  • FIG. 4 and 5 show a schematic configuration diagram and an operation flow chart of a state in which an impedance measuring device 1', which is another embodiment of the present invention, is connected to a measurement object 60.
  • FIG. The impedance measuring device 1 ′ differs from the impedance measuring device 1 in the positions of the phase inverter 31 and the switch 32 of the signal generating section 30 ′ and the operation of step 110 in FIG. Therefore, the same reference numerals are given to the configurations and operations showing the same functions and operations as those of the impedance measuring device 1, and the description thereof is omitted.
  • the signal generation section 30 ′ has an input connected to the calculation section 40 ′ and an output connected to the measurement signal supply section 10 and the measurement section 20 , and includes a reference signal generator 33 , a phase inverter 31 , and a switch 32 .
  • the input of the reference signal generator 33 is connected to the computing section 40 ′, and the output is connected to the phase inverter 31 and the switch 32 .
  • the reference signal generator 33 generates a reference signal Vr1 having a period and a phase angle indicated by a control signal from the computing section 40'.
  • the phase inverter 31 has an input connected to the reference signal generator 33 and an output connected to the switch 32 .
  • the phase inverter 31 generates a reference signal by shifting (inverting) the phase of the reference signal Vr1 received from the reference signal generator 33 by 180 degrees.
  • the switch 32 has one input end connected to the reference signal generator 33, the other end connected to the phase inverter 31, the control terminal connected to the calculation unit 40', and the output connected to the measurement signal supply unit 10 and the multiplier 22 and the 90-degree phase shifter 26 of the measurement unit 20.
  • the switch 32 selects a signal (positive phase) that is in phase with the reference signal Vr1 and a signal that is opposite in phase to the reference signal Vr1 generated by the phase inverter 31 based on the control signal Vs generated by the calculation unit 40', and outputs them as the reference signal Vr2.
  • the calculation unit 40' obtains the magnitudes of the filtered signals Vi and Vq input from the measurement unit 20 and records them in the memory. Further, the internal impedance Z and the phase angle ⁇ of the measurement object 60 are obtained based on the average of the magnitudes of the filtered signals Vi and Vq (positive-phase filtered signals) when the reference signals Vr1 and Vr2 are in positive phase and the magnitudes of the filtered signals Vi and Vq (negative-phase filtered signals) when they are in opposite phase.
  • the computing unit 40' also generates a signal for controlling the period and phase angle of the reference signal Vr1 generated by the reference signal generator 33, and a control signal Vs for switching the switch 32 every predetermined inversion period T.
  • the multipliers 22, 23, the LPFs 24, 25 and the 90-degree phase shifter 26 of the measuring section 20, and the computing section 40 are configured by a computer having a processor and memory. That is, when executed by the processor, a program containing instructions for realizing each element of the measurement unit 20 and each function of the calculation unit 40' described above is stored in the memory, and the processor executes each program to realize the function of each element of the measurement unit 20 and the calculation unit 40'.
  • each element of the measurement unit 20 and part or all of the operation unit 40' described above may be realized by hardware such as an electronic circuit or device.
  • the above description of the connection relationship between the elements of the impedance measuring device 1' means electrical and mechanical connections for the hardware configuration, and the flow of processing for the software configuration.
  • a voltage corresponding to the impedance Z of the measurement object 60 and the phase angle ⁇ is generated between both terminals of the measurement object 60 by the measurement signal Im.
  • the detection signals Vd1 and Vd2 are low-pass filtered by the LPFs 24 and 25 to generate filtered signals Vi and Vq from which DC components are extracted (step 105).
  • the calculation unit 40' stores the magnitudes of the generated filtered signals Vi and Vq in memory together with the detection time (step 106).
  • step 102 to step 106 are repeatedly performed over the inversion period T at each predetermined sampling period (step 107). Also in the impedance measuring device 1' of this embodiment, the inversion period T is set to twice the period of the reference signals Vr1 and Vr2.
  • the calculation unit 40 ′ transmits a control signal Vs for switching the switch 32 .
  • the switch 32 then selectively outputs the reverse phase input.
  • the measurement period is set to twice the inversion period T, that is, to correspond to four periods of the reference signals Vr1 and Vr2.
  • FIG. 6 shows temporal changes in the measurement signal Im supplied to the measurement object, the external noise Vn, and the modulation signal Vmod1.
  • Time 0 to T corresponds to the first processing
  • time T to 2T corresponds to the second processing.
  • both the measurement signal Im and the modulation signal Vmod1 are signals based on the reference signal Vr2
  • the phases are opposite between the first processing and the second processing, but the same phase is maintained in the relationship between the measurement signal Im and the modulation signal Vmod1. Therefore, the components contained in the filtered signals Vi and Vq and proportional to the impedance Z of the measurement object 60 are in phase between the first and second processes.
  • the component caused by the external noise Vn contained in the detected signal has an opposite phase because the modulated signal Vmod1 has an opposite phase between the first and second processing.
  • the measurement period ends because the measurement time twice the inversion period T has elapsed (step 109).
  • the two reference signals VR1, VR2 are the same (measurement signal IM and modulation signal VMod1 are both positive phase)
  • the time change of the voltage of the VQ, the two reference signal VR1, and the VR2 are inverted (measured signal IM and VR2 (measurement signal IM).
  • the modulation signal VMOD1 is a time change in the voltage of the two cycles of the two cycles of the reference signal of the two -phase).
  • the processor of the calculation unit 40' reads out the voltages of the filtered signals Vi and Vq from the memory and averages the filtered signals Vi and Vq (step 110').
  • the component caused by the external noise Vn contained in the filtered signal is in opposite phase when the two reference signals Vr1 and Vr2 are in phase and when the two reference signals Vr1 and Vr2 are in opposite phase.
  • the processor of the calculation unit 40' calculates the impedance Z (R and X) and the phase angle ⁇ of the measurement object 60 from the average obtained in step 110', that is, the magnitude of the filtered signals Vi and Vq with the external noise Vn canceled (step 111).
  • FIG. 7 shows a configuration in which two impedance measurement devices described in the above embodiment are used to simultaneously perform impedance measurement
  • FIG. 8 shows simulation results of filtered signals.
  • the impedance measuring device 2 measures the impedance Z and the phase angle ⁇ of the measurement target 61 at a measurement frequency f of 1 kHz.
  • the impedance measuring device 3 measures the impedance Z and the phase angle ⁇ of the measurement target 62 at a measurement frequency f of 999 Hz. Since the two impedance measuring devices 2 and 3 are arranged close to each other, they interfere with each other. That is, external noise caused by the 999 Hz measurement signal Im of the impedance measurement device 3 is input to the detection circuit 21 of the impedance measurement device 2 . Further, external noise caused by the 1 kHz measurement signal Im of the impedance measurement device 2 is input to the detection circuit 21 of the impedance measurement device 3 .
  • Fig. 8 shows the measurement results of the impedance measuring device 2 (measurement frequency 1 kHz, external noise 999 Hz)
  • Fig. 8(a) is the filtered signal before the averaging process in step 110
  • Fig. 8(b) is the filtered signal after the averaging process.
  • the AC component is suppressed in the filtered signal after the averaging process.
  • the influence of the external noise Vn can be suppressed by averaging the filtered signals Vi and Vq when the two reference signals Vr1 and Vr2 are in phase and the filtered signals Vi and Vq when they are out of phase.
  • the signal generating section 30 generates the reference signal based on the frequency and phase angle of the reference signal defined by the computing section 40 and 40'.
  • the measurement signal Im of the impedance measuring devices 1, 1' is in phase with the reference signal Vr2
  • the modulation signal Vmod1 is in phase with the reference signal Vr1 or Vr2, but there may be an equal amount of phase offset with respect to each reference signal.
  • the measurement signal Im and the modulation signal Vmod1 must maintain the in-phase or anti-phase relationship.
  • 1, 1', 2, 3 impedance measuring device 10 measurement signal supply unit 20 measurement unit 21 detection circuits 22, 23 multipliers 24, 25 low-pass filter (LPF) 26 90-degree phase shifters 30, 30' signal generator 31 phase inverter 32 switch 33 reference signal generators 40, 40' arithmetic units 51, 52, 53, 54 contact terminals 60, 61, 62 measurement object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

測定周波数近傍のノイズの影響を抑制し、高精度な測定が可能なインピーダンス測定装置を提供する。 上記課題は、第1の参照信号、および、第1の参照信号の位相を所定の反転周期ごとに反転させた第2の参照信号を発生する信号発生部(30)と、第2の参照信号に基づいて測定信号を生成し、測定対象に供給する測定信号供給部(10)と、測定信号によって測定対象に生ずる信号を、第1の参照信号に基づいて生成された変調信号で同期検波し、さらに低域通過濾波した濾波信号を生成する測定部(20)と、第1の参照信号と第2の参照信号とが同相のときの濾波信号の大きさと、第1の参照信号と第2の参照信号とが逆相のときの濾波信号を符号反転した大きさとの加算平均に基づいて、測定対象のインピーダンスを求める演算部(40)とを備えるインピーダンス測定装置(1)等により解決することができる。

Description

インピーダンス測定装置および方法
 本発明は、インピーダンス測定装置および方法に関し、同期検波を利用した4端子インピーダンス測定装置および方法に関する。
 被測定物の内部インピーダンスを測定する装置として、4端子インピーダンス測定装置がある。4端子インピーダンス測定装置は、測定対象に電流源から交流の測定信号を供給し、測定信号によって測定対象に生ずる信号を検出し、測定対象に流れる電流と測定対象の両端子間電圧とから、測定対象の内部インピーダンスを求める。
 このとき、検出信号に含まれる測定周波数成分を精度よく抽出するために、特許文献1に記載されているような同期検波が利用されることがある。同期検波を利用した4端子インピーダンス測定は、まず、測定信号によって測定対象に生じる検出信号を、測定信号と同一の周波数で位相が90度異なる2つの変調信号で検波する。すると、検出信号に含まれる測定周波数成分は直流に変換されるため、同相の変調信号で検波した検波信号には、測定対象の抵抗成分に比例する直流成分が含まれる。また、検出信号を測定信号と直交する位相で検波した検波信号には、測定対象のリアクタンス成分に比例する直流成分が含まれる。それぞれの検波信号をローパスフィルタ(LFP)で濾波して直流成分を抽出してその大きさを測定し、数値処理を行うことにより、測定対象の内部インピーダンスを求めることができる。
特許第5940389号公報
 検波信号には、検出信号の周波数と測定信号の周波数との差の周波数成分が含まれるため、検出信号に含まれるノイズの周波数が測定周波数と近いほど低周波に変調されてしまい、LPFによる除去が困難になるという課題がある。例えば、複数のインピーダンス測定装置を用いて並行してインピーダンス測定を行う場合には、測定装置間で相互干渉が生じるが、自身の測定周波数と他の測定器の測定周波数に起因する外部ノイズ周波数との差に下限がない場合、LPFにより干渉の影響を除去することは実質的に不可能である。
 この干渉の影響を低減するために、複数の測定装置の測定信号を同期させることが考えられる。しかしながら、同期を行うためには測定装置間で正確な通信を行う必要があり、測定装置のハードウェア・ソフトウェアが煩雑になり、さらに測定装置が組み込まれる検査システムにとっても配線が増えるという問題がある。
 また、信号処理などで干渉の影響を補償する方法も考えられる。しかしながら、干渉の影響量は、測定ケーブルの作るループ形状や周囲の金属との位置関係による磁気結合の状態、干渉相手の測定信号の状態などで変動してしまい、常に一定の影響量を保つことは容易でないため、高精度な補償を行うことは非常に困難である。
 本発明は、上述した課題に鑑みてなされたものであり、測定周波数近傍のノイズの影響を抑制し、高精度なインピーダンス測定を可能にすることを目的とする。
 上記課題は、第1の参照信号、および、第1の参照信号の位相を所定の反転周期ごとに反転させた第2の参照信号を発生する信号発生部と、第2の参照信号に基づいて測定信号を生成し、測定対象に供給する測定信号供給部と、測定信号によって測定対象に生ずる信号を、第1の参照信号に基づいて生成された変調信号で同期検波し、さらに低域通過濾波した濾波信号を生成する測定部と、第1の参照信号と第2の参照信号とが同相のときの濾波信号の大きさと、第1の参照信号と第2の参照信号とが逆相のときの濾波信号を符号反転した大きさとの加算平均に基づいて、測定対象のインピーダンスを求める演算部とを備える、インピーダンス測定装置によって、解決することができる。
 すなわち、反転周期で反転する測定信号を、反転のない変調信号で同期検波した場合には、測定信号によって測定対象に生ずる信号成分(本来の測定信号成分)が反転周期ごとに反転し、ノイズ成分は反転しない。この濾波信号の符号を反転させると、本来の測定信号成分は反転周期ごとに反転せず、ノイズ成分のみが反転する。よって、反転周期で反転する前後で加算平均をとることによって、ノイズ信号を相殺することができる。そして、ノイズ信号が相殺された濾波信号の大きさに基づいて、測定対象のインピーダンスを求めることにより、測定周波数近傍のノイズの影響を抑制した高精度なインピーダンス測定が可能となる。なお、本願における「加算平均」とは、信号の大きさを加算して平均をとること(大きさの平均)と、所定期間にわたる大きさの平均を加算して平均をとること(大きさ及び時間的平均)のいずれの意味も含む。また、「同期検波」とは、測定信号によって測定対象に生じる検出信号を、測定信号と同一周波数で位相が90度異なる2つの変調信号で検波することを意味する。
 また、上記課題は、第1の参照信号、および、第1の参照信号の位相を所定の反転周期ごとに反転させた第2の参照信号を発生する信号発生部と、第2の参照信号に基づいて測定信号を生成し、測定対象に供給する電流供給部と、測定信号によって測定対象に生ずる信号を、第2の参照信号に基づいて生成された変調信号で同期検波し、さらに低域通過濾波した濾波信号を生成する測定部と、第1の参照信号と第2の参照信号とが同相のときの濾波信号の大きさと、第1の参照信号と第2の参照信号とが逆相のときの濾波信号の大きさとの加算平均に基づいて、測定対象のインピーダンスを求める演算部とを備える、インピーダンス測定装置によっても、解決することができる。
 すなわち、反転周期で反転する測定信号を、反転周期ごとに反転する変調信号で同期検波した場合には、本来の測定信号成分は反転せず、ノイズ成分のみが反転周期ごとに反転する。よって、位相の反転前後で加算平均をとることによって、ノイズ信号を相殺することができる。そして、ノイズ信号が相殺された濾波信号の大きさに基づいて、測定対象のインピーダンスを求めることにより、測定周波数近傍のノイズの影響を抑制した高精度なインピーダンス測定が可能となる。
 ここで、反転周期は、測定対象に供給する測定信号の周期の整数倍であり、かつ、演算部は、反転周期の整数倍の測定期間にわたる加算平均に基づいて、測定対象のインピーダンスを求めることが望ましい。測定信号の周期単位の時間的な平均をとることにより、測定周波数に近い周波数を有するノイズ信号をさらに抑制することが可能となる。
 さらに、上記課題は、上述した信号発生部、電流供給部、測定部および演算部の各機能を実施する方法によっても解決することができる。
 本発明に係るインピーダンス測定装置によれば、測定周波数近傍のノイズの影響を抑制し、高精度なインピーダンス測定が可能となる。
本発明の実施形態に係るインピーダンス測定装置1を測定対象に接続した状態の概略構成図である。 本発明の実施形態に係るインピーダンス測定装置1の動作フローチャートである。 インピーダンス測定装置1に関して、測定対象に供給する測定信号、外部ノイズ、および参照信号の説明図である。 本発明の実施形態に係るインピーダンス測定装置1’を測定対象に接続した状態の概略構成図である。 本発明の実施形態に係るインピーダンス測定装置1’の動作フローチャートである。 インピーダンス測定装置1’に関して、測定対象に供給する測定信号、外部ノイズ、および参照信号の説明図である。 複数のインピーダンス測定の概略構成図である。 複数のインピーダンス測定の測定結果である。
 以下、本発明の実施形態の具体例について図を参照して説明する。図1は、本発明の実施形態の一例であるインピーダンス測定装置1を、測定対象60に接続した状態の概略構成図である。このようなインピーダンス測定装置には、例えば、蓄電池を測定対象とするバッテリテスタ、コイル・コンデンサ・抵抗などの受動部品を測定対象とするLCRメータ、コンデンサ専用のCメータなどがある。
 インピーダンス測定装置1は、測定信号供給部10と、測定部20と、信号発生部30と、演算部40とを備える。インピーダンス測定装置1は、測定信号供給部10から測定用の測定信号Imを、測定対象60の両端子のそれぞれに接触する接触端子51、53を介して、測定対象60に供給し、測定部20で、測定信号Imによって測定対象60の両端子のそれぞれに接触する接触端子52、54間に生ずる信号Vmを検出し、演算部40で、測定対象60に供給された測定信号Imの大きさと検出信号Vmの大きさとに基づいて、測定対象60の内部インピーダンスZおよび位相角θを求める装置である。測定信号Imの基準となる参照信号Vr2と、検出信号Vmを検波するための変調信号Vmod1、Vmod2の基準となる参照信号Vr1とは、信号発生部30で発生される。
 測定信号供給部10は、信号発生部30および接触端子51、53に接続され、信号発生部30から入力された参照信号Vr2と同相の測定信号Imを生成する信号源を備える。生成された測定信号Imは、接触端子51、53を介して、接触端子51、53に接続された測定対象60に供給される。
 測定部20は、信号発生部30、演算部40および接触端子52、54に接続され、検出回路21と、90度移相器26と、2つのローパスフィルタ(LPF)24、25と、2つの乗算器22、23とを備える。
 検出回路21は、入力が接触端子52、54に、出力が乗算器22、23に接続されている。検出回路21は、測定信号Imによって測定対象60の両端子のそれぞれに接触する接触端子52、54間に生ずる信号を検出して、検出信号Vmを出力する。
 90度移相器26は、入力が信号発生部30に、出力が乗算器23に接続されている。90度移相器26は、信号発生部30から受信した参照信号Vr1の位相を90度移相して、変調信号Vmod2を生成する。
 乗算器22は、入力が検出回路21および信号発生部30に、出力がLPF24に接続されている。乗算器22は、信号発生部30から受信した参照信号Vr1と同相の変調信号Vmod1で、検出回路21から受信した検出信号Vmを検波し、検波信号Vd1を出力する。乗算器23は、入力が検出回路21および90度移相器26に、出力がLPF25に接続されている。乗算器23は、90度移相器26から受信した、参照信号Vr1と位相が直交する変調信号Vmod2で、検出回路21から受信した検出信号Vmを検波し、検波信号Vd2を出力する。
 LPF24、25は、入力がそれぞれ対応する乗算器22、23に接続され、出力が演算部40に接続されている。LPF24は、乗算器22から出力された検波信号Vd1を低域通過濾波して直流成分を抽出した濾波信号Viを生成する。LPF25は、乗算器23から出力された検波信号Vd2を低域通過濾波して直流成分を抽出した濾波信号Vqを生成する。
 信号発生部30は、入力が演算部40に、出力が測定信号供給部10および測定部20に接続され、参照信号発生器33と、位相反転器31と、スイッチ32とを備える。
 参照信号発生器33は、入力が演算部40に、出力が位相反転器31と、スイッチ32と、測定部20の乗算器22および90度移相器26とに接続されている。参照信号発生器33は、演算部40からの制御信号によって指示された周期および位相角の参照信号Vr1を発生する。
 位相反転器31は、入力が参照信号発生器33に、出力がスイッチ32に接続されている。位相反転器31は、参照信号発生器33から受信した参照信号Vr1の位相を180度移相(反転)した参照信号を生成する。
 スイッチ32は、入力の一端が参照信号発生器33に、他端が位相反転器31に、制御端子が演算部40に、出力が測定信号供給部10に接続されている。スイッチ32は、演算部40で生成された制御信号Vsに基づいて、参照信号Vr1と同相の信号(正相)と、位相反転器31が生成した参照信号Vr1と逆相の信号とを選択して、参照信号Vr2として出力する。
 演算部40は、測定部20から入力された濾波信号Vi、Vqの大きさをメモリに記録する。また、参照信号Vr1、Vr2が正相のときの濾波信号Vi、Vq(正相濾波信号)の大きさと、逆相のときの濾波信号Vi、Vq(逆相濾波信号)を符号反転した大きさとの加算平均とに基づいて、測定対象60の内部インピーダンスZおよび位相角θを求める。また、演算部40は、参照信号発生器33が発生する参照信号Vr1の周期および位相角を制御する信号や、スイッチ32を所定の反転周期Tごとに切り替える制御信号Vsを生成する。
 反転周期Tは、参照信号Vr1の周期(すなわち測定信号の周期)の整数倍となるように設定する。これにより、参照信号Vr1の各位相に対応する、正相濾波信号と逆相濾波信号の大きさを取得することが可能となる。また、測定期間は、反転周期Tの整数倍となるように設定する。さらに、測定期間を反転周期Tの偶数倍に設定すると、正相濾波信号の大きさを取得する測定期間と、逆相濾波信号の大きさを取得する測定期間とを等しくすることができる。
 なお、本実施例のインピーダンス測定装置1では、測定部20の乗算器22、23、LPF24、25および90度移相器26、ならびに演算部40は、プロセッサとメモリとを備えるコンピュータで構成されている。すなわち、プロセッサで実行すると上述した測定部20の各要素および演算部40の各機能を実現する命令が記載されたプログラムがメモリに格納され、各プログラムをプロセッサで実行することにより、上述した測定部20の各要素および演算部40の機能を実現している。ただし、上述した測定部20の各要素および演算部40の一部または全てを電子回路や装置などのハードウェアで実現してもよい。上述したインピーダンス測定装置1の各要素間の接続関係の説明は、ハードウェア構成に対しては電気的・機械的な接続を、ソフトウェア構成に対しては処理の流れを意味する。
 次に、本実施例のインピーダンス測定装置1の動作、すなわち本発明のインピーダンス測定方法の実施態様の一例について、図2のフローチャートを参照しながら説明する。
 はじめに、信号発生部30が同相の参照信号Vr1、Vr2を発生する(ステップ101)。より具体的には、演算部40からの制御信号に基づいて、参照信号発生器33が、周波数fの参照信号Vr1=sin2πft(tは時間)を発生し、スイッチ32は正相入力を選択的に出力する。この結果、スイッチ32からは参照信号Vr1と同相の参照信号Vr2=sin2πftが出力される。
 次に、測定信号供給部10が、信号発生部30から受信した参照信号Vr2と同相の測定信号Im=Isin2πftを生成して、測定対象60に供給する(ステップ102)。測定信号Imにより測定対象60の両端子間には、測定対象60のインピーダンスZと位相角θに応じた電圧が生じる。検出回路21により、測定対象60の両端子のそれぞれに接触する接触端子52、54間に生ずる検出信号Vm=ZIsin(2πft+θ)を検出する(ステップ103)。
 次に、乗算器22により、検出信号Vmを、参照信号Vr1と同相の変調信号Vmod1=sin2πftで変調すると、(1)式で示すように、測定対象60のインピーダンスZの抵抗成分R=Zcosθに対応する直流成分と、周波数2fの交流成分とが重畳された検波信号Vd1が得られる(ステップ104)。
Figure JPOXMLDOC01-appb-M000001
 また、乗算器23により、検出信号Vmを、90度移相器26で生成された、参照信号Vr1と位相が90度異なる変調信号Vmod2=cos2πftで変調すると、(2)式で示すように、測定対象60のインピーダンスZのリアクタンス成分X=Zsinθに対応する直流成分と、周波数2fの交流成分とが重畳された検波信号Vd2が得られる(ステップ104)。
Figure JPOXMLDOC01-appb-M000002
 次に、LPF24、25により、検波信号Vd1、Vd2を低域通過濾波して、(3)式に示されるような、直流成分を抽出した濾波信号Vi、Vqを生成する(ステップ105)。次に、演算部40が、生成された濾波信号Vi、Vqの大きさを、検出時刻とともにメモリに格納する(ステップ106)。
Figure JPOXMLDOC01-appb-M000003
 インピーダンス測定装置1の外部からのノイズが無い場合には、濾波信号Vi、Vqの電圧の瞬時値から測定対象60のインピーダンスZ(RおよびX)および位相角θを求めることができる。なお、測定信号Imの値が既知でなくとも、同期検波による方法で測定信号の振幅・位相を測定すれば、電圧・電流それぞれの値に基づいて、インピーダンスZ(RおよびX)および位相角θを求めることができる。
 ここで、検出信号Vmに周波数fnの外部ノイズVnsin(2πfnt+φ)が含まれると、外部ノイズVnの検波信号には(4)式に示す成分信号が含まれる。
Figure JPOXMLDOC01-appb-M000004
 (4)式の右辺第1項から明らかなとおり、検波信号には、外部ノイズの周波数fnと変調信号Vmod1の周波数fとの差の周波数成分が含まれる。複数のインピーダンス測定装置を用いて並行してインピーダンス測定を行う場合に生じ得る測定装置間の相互干渉のように、外部ノイズVnの周波数fnが変調信号Vmod1に近いと、LPF24、25によって外部ノイズVnを十分に除去することが困難になり、濾波信号に(4)式の右辺第1項の低域成分が含まれる。このような濾波信号Vi、Vqの測定値から測定対象60のインピーダンスZ(RおよびX)および位相角θを求めると、測定誤差が大きくなってしまう。このため、インピーダンス測定装置1では、(4)式の右辺第1項の低域成分と位相が逆の低域成分を生成して加算平均をとることにより、右辺第1項の低域成分を相殺して、外部ノイズVnによる影響を抑制する。
 具体的には、まず、前述したステップ102からステップ106までの動作を、所定のサンプリング周期ごとに、反転周期Tにわたって繰り返し実施する(ステップ107)。反転周期Tは、参照信号Vr1、Vr2の周期の整数倍に設定することが望ましい。これにより、参照信号Vr1の各位相に対応する、濾波信号Vi、Vqの電圧の時間的変化をメモリに記録することができる。本実施例のインピーダンス測定装置1では、反転周期Tを参照信号Vr1、Vr2の周期の2倍に設定している。反転周期Tは、参照信号Vr1、Vr2の10周期、100周期など適宜設定可能である。
 所定の反転周期Tが経過すると、演算部40は、スイッチ32を切り替える制御信号Vsを送信する。すると、スイッチ32は逆相入力を選択的に出力する。この結果、スイッチ32からは、参照信号Vr1とは逆相の参照信号Vr2=-sin2πftが出力される(ステップ108)。
 その後、所定の測定期間が終了したか否かが判定される(ステップ109)。測定期間は、反転周期Tの整数倍に設定することが望ましい。特に、参照信号Vr1、Vr2が同相のときの濾波信号Vi、Vqの大きさと、参照信号Vr1、Vr2が逆相のときの濾波信号Vi、Vqを符号反転した大きさとの時間的な加算平均をとるためには、測定期間が等しい同相および逆相の濾波信号Vi、Vqの大きさの記録があることが望ましいことから、測定期間は、反転周期Tの偶数倍に設定することが望ましい。本実施例のインピーダンス測定装置1では、測定期間を反転周期Tの2倍、したがって参照信号Vr1、Vr2の4周期分に相当する期間に設定している。
 ステップ102~108の1回目の処理を終えた時点では、反転周期1周期分の測定しか行っていないことから、ステップ102に戻って、ステップ102~108の動作を繰り返す。ただし、2回目の処理では、2つの参照信号Vr1、Vr2が逆相となっている。
 図3に測定対象60に供給する測定信号Imと、外部ノイズVnと、変調信号Vmod1の時間的な変化を示す。時間0~Tが1回目の処理に、時間T~2Tが2回目の処理に対応する。変調信号Vmod1は、参照信号Vr1に基づく信号であることから、1回目の処理と2回目の処理とで位相変化はないが、測定信号Imは、参照信号Vr2に基づく信号であることから、1回目の処理と2回目の処理とで逆相となっている。したがって濾波信号Vi、Vqに含まれる、測定対象60のインピーダンスZに比例する成分は、1回目の処理と2回目の処理とで逆相となる。これに対して、検波信号に含まれる外部ノイズVnに起因する成分は、測定信号Imの位相の影響を受けないため、1回目の処理と2回目の処理とで同相となる。
Figure JPOXMLDOC01-appb-M000005
 ステップ102~108の2回目の処理が終わると、反転周期Tの2倍の測定時間が経過したことから、測定期間が終了する(ステップ109)。この結果、メモリ内には、2つの参照信号Vr1、Vr2が同相のときの参照信号2周期分の濾波信号Vi、Vqの電圧の時間的変化と、2つの参照信号Vr1、Vr2が逆相のときの参照信号2周期分の濾波信号Vi、Vqの電圧の時間的変化とが記録される。
 次に、演算部40のプロセッサは、メモリ内から濾波信号Vi、Vqの電圧を読み出して、2つの参照信号Vr1、Vr2が逆相のときの濾波信号Vi、Vqの電圧を符号反転させて、加算平均をとる(ステップ110)。2つの参照信号Vr1、Vr2が同相のときの濾波信号Vi、Vqの大きさと、2つの参照信号Vr1、Vr2が逆相のときの濾波信号Vi、Vqを符号反転した大きさとの加算平均をとることにより、(4)式および(4’)式の右辺第1項に相当する成分を相殺して、外部ノイズVnによる影響を抑制した濾波信号Vi、Vqの大きさを取得することができる。
 なお、本実施例のインピーダンス測定装置1では、メモリ内に格納された全測定期間にわたる濾波信号Vi、Vqの大きさの加算平均を算出しているが、測定期間のうち、参照信号Vr1が同一の位相にあるときの同相濾波信号と逆相濾波信号のセットを1つまたは複数取得して、各濾波信号Vi、Vqの加算平均を算出してもよい。例えば、ステップ102~108の1回目の処理における参照信号Vr1の位相がπ/4のときの濾波信号Vi、Vqの大きさ、およびステップ102~108の2回目の処理における参照信号Vr1の位相がπ/4のときの濾波信号Vi、Vqの大きさで構成される、合計4つの濾波信号の大きさをメモリから取得し、1回目の処理の濾波信号Viの大きさと2回目の処理の濾波信号Viを符号反転した大きさとを加算平均して、外部ノイズVnによる影響を抑制した濾波信号Viの大きさを求める。また、1回目の処理の濾波信号Vqの大きさと2回目の処理の濾波信号Vqを符号反転した大きさとを加算平均して、外部ノイズVnによる影響を抑制した濾波信号Vqの大きさを求める。
 別例として、1回目の処理における参照信号Vr1の位相がπ/4のときの濾波信号Vi、Vqの大きさ、および2回目の処理における参照信号Vr1の位相がπ/4のときの濾波信号Vi、Vqの大きさからなる第1のセットと、1回目の処理における参照信号Vr1の位相がπ/2のときの濾波信号Vi、Vqの大きさ、および2回目の処理における参照信号Vr1の位相がπ/2のときの濾波信号Vi、Vqの大きさからなる第2のセットとで構成される、合計8つの濾波信号の大きさをメモリから読み出す。取得した濾波信号の大きさに含まれる4つの濾波信号Viの大きさを、2回目の処理の濾波信号Vi、Vqのみ符号反転して加算平均(大きさ及び時間的平均)をとって外部ノイズVnによる影響を抑制した濾波信号Viの大きさを求める。また、4つの濾波信号Vqの大きさを、2回目の処理の濾波信号Vi、Vqのみ符号反転して加算平均(大きさ及び時間的平均)をとって外部ノイズVnによる影響を抑制した濾波信号Vqの大きさを求める。
 最後に、演算部40のプロセッサは、ステップ110で求められた加算平均、すなわち外部ノイズVnが相殺された濾波信号Vi、Vqの大きさから、測定対象60のインピーダンスZ(RおよびX)および位相角θを算出する(ステップ111)。
 図4および図5に、本発明の別の実施形態であるインピーダンス測定装置1’を、測定対象60に接続した状態の概略構成図と動作フローチャートを示す。インピーダンス測定装置1’は、信号発生部30’の位相反転器31とスイッチ32の位置と、演算部40’による図2のステップ110の動作が、インピーダンス測定装置1と異なるが、他の構成はインピーダンス測定装置1と同様である。このため、インピーダンス測定装置1と同一の機能や動作を示す構成や動作については、同一の参照符号を付して、説明を省く。
 信号発生部30’は、入力が演算部40’に、出力が測定信号供給部10および測定部20に接続され、参照信号発生器33と、位相反転器31と、スイッチ32とを備える。
 参照信号発生器33は、入力が演算部40’に、出力が位相反転器31と、スイッチ32とに接続されている。参照信号発生器33は、演算部40’からの制御信号によって指示された周期および位相角の参照信号Vr1を発生する。
 位相反転器31は、入力が参照信号発生器33に、出力がスイッチ32に接続されている。位相反転器31は、参照信号発生器33から受信した参照信号Vr1の位相を180度移相(反転)した参照信号を生成する。
 スイッチ32は、入力の一端が参照信号発生器33に、他端が位相反転器31に、制御端子が演算部40’に、出力が測定信号供給部10と測定部20の乗算器22および90度移相器26に接続されている。スイッチ32は、演算部40’で生成された制御信号Vsに基づいて、参照信号Vr1と同相の信号(正相)と、位相反転器31が生成した参照信号Vr1と逆相の信号とを選択して、参照信号Vr2として出力する。
 演算部40’は、測定部20から入力された濾波信号Vi、Vqの大きさを求めてメモリに記録する。また、参照信号Vr1、Vr2が正相のときの濾波信号Vi、Vq(正相濾波信号)の大きさと、逆相のときの濾波信号Vi、Vq(逆相濾波信号)の大きさとの加算平均とに基づいて、測定対象60の内部インピーダンスZおよび位相角θを求める。また、演算部40’は、参照信号発生器33が発生する参照信号Vr1の周期および位相角を制御する信号や、スイッチ32を所定の反転周期Tごとに切り替える制御信号Vsを生成する。
 なお、本実施例のインピーダンス測定装置1’では、測定部20の乗算器22、23、LPF24、25および90度移相器26、ならびに演算部40は、プロセッサとメモリを備えるコンピュータで構成されている。すなわち、プロセッサで実行すると上述した測定部20の各要素および演算部40’の各機能を実現する命令が記載されたプログラムがメモリに格納され、各プログラムをプロセッサで実行することにより、上述した測定部20の各要素および演算部40’の機能を実現している。ただし、上述した測定部20の各要素および演算部40’の一部及び全てを電子回路や装置などのハードウェアで実現してもよい。上述したインピーダンス測定装置1’の各要素間の接続関係の説明は、ハードウェア構成に対しては電気的・機械的な接続を、ソフトウェア構成に対しては処理の流れを意味する。
 次に、本実施例のインピーダンス測定装置1’の動作について、図5のフローチャートを参照しながら説明する。
 はじめに、信号発生部30’が同相の参照信号Vr1、Vr2を発生する(ステップ101)。より具体的には、演算部40’からの制御信号に基づいて、参照信号発生器33が、周波数fの参照信号Vr1=sin2πft(tは時間)を発生し、スイッチ32は正相入力を選択的に出力する。この結果、スイッチ32からは参照信号Vr1と同相の参照信号Vr2=sin2πftが出力される。
 次に、測定信号供給部10が、信号発生部30’から受信した参照信号Vr2と同相の測定信号Im=Isin2πftを生成して、測定対象60に供給する(ステップ102)。測定信号Imにより測定対象60の両端子間には、測定対象60のインピーダンスZと位相角θに応じた電圧が生じる。検出回路21により、測定対象60の両端子のそれぞれに接触する接触端子52、54間に生ずる検出信号Vm=ZIsin(2πft+θ)を検出する(ステップ103)。
 次に、乗算器22により、検出信号Vmを、参照信号Vr2と同相の変調信号Vmod1=sin2πftで変調すると、測定対象60のインピーダンスZの抵抗成分R=Zcosθに対応する直流成分と、周波数2fの交流成分とが重畳された検波信号Vd1が得られる(ステップ104)。
 また、乗算器23により、検出信号Vmを、90度移相器26で生成された、参照信号Vr2と位相が90度異なる変調信号Vmod2=cos2πftで変調すると、測定対象60のインピーダンスZのリアクタンス成分X=Zsinθに対応する直流成分と、周波数2fの交流成分とが重畳された検波信号Vd2が得られる(ステップ104)。
 次に、LPF24、25により、検波信号Vd1、Vd2を低域通過濾波して、直流成分を抽出した濾波信号Vi、Vqを生成する(ステップ105)。次に、演算部40’が、生成された濾波信号Vi、Vqの大きさを、検出時刻とともにメモリに格納する(ステップ106)。
 前述したステップ102からステップ106までの動作を、所定のサンプリング周期ごとに、反転周期Tにわたって繰り返し実施する(ステップ107)。本実施例のインピーダンス測定装置1’でも、反転周期Tを参照信号Vr1、Vr2の周期の2倍に設定している。
 所定の反転周期Tが経過すると、演算部40’は、スイッチ32を切り替える制御信号Vsを送信する。すると、スイッチ32は逆相入力を選択的に出力する。この結果、スイッチ32からは、参照信号Vr1とは逆相の参照信号Vr2=-sin2πftが出力される(ステップ108)。
 その後、所定の測定期間が終了したか否かが判定される(ステップ109)。本実施例のインピーダンス測定装置1’でも、測定期間を反転周期Tの2倍、したがって参照信号Vr1、Vr2の4周期分に相当する期間に設定している。
 ステップ102~108の1回目の処理を終えた時点では、反転周期1周期分の測定しか行っていないことから、ステップ102に戻って、ステップ102~108の動作を繰り返す。ただし、2回目の処理では、2つの参照信号Vr1、Vr2が逆相となっている。
 図6に測定対象に供給する測定信号Imと、外部ノイズVnと、変調信号Vmod1の時間的な変化を示す。時間0~Tが1回目の処理に、時間T~2Tが2回目の処理に対応する。測定信号Im、変調信号Vmod1ともに、参照信号Vr2に基づく信号であることから、1回目の処理と2回目の処理とで逆相となっているが、測定信号Imと変調信号Vmod1との関係においては同相のまま維持される。よって、濾波信号Vi、Vqに含まれる、測定対象60のインピーダンスZに比例する成分は、1回目の処理と2回目の処理とで同相となる。これに対して、検波信号に含まれる外部ノイズVnに起因する成分は、変調信号Vmod1が1回目の処理と2回目の処理とで逆相となるため、逆相となる。
 ステップ102~108の2回目の処理が終わると、反転周期Tの2倍の測定時間が経過したことから、測定期間が終了する(ステップ109)。この結果、メモリ内には、2つの参照信号Vr1、Vr2が同相のとき(測定信号Imと変調信号Vmod1はともに正相)の参照信号2周期分の濾波信号Vi、Vqの電圧の時間的変化と、2つの参照信号Vr1、Vr2が逆相のとき(測定信号Imと変調信号Vmod1はともに逆相)の参照信号2周期分の濾波信号Vi、Vqの電圧の時間的変化とが記録される。
 次に、演算部40’のプロセッサは、メモリ内から濾波信号Vi、Vqの電圧を読み出して、濾波信号Vi、Vqの加算平均をとる(ステップ110’)。濾波信号に含まれる外部ノイズVnに起因する成分は、2つの参照信号Vr1、Vr2が同相のときと、2つの参照信号Vr1、Vr2が逆相のときとで逆相となるため、両者の加算平均をとることにより相殺されて、外部ノイズVnによる影響を抑制した濾波信号Vi、Vqの大きさを取得することができる。
 最後に、演算部40’のプロセッサは、ステップ110’で求められた加算平均、すなわち外部ノイズVnが相殺された濾波信号Vi、Vqの大きさから、測定対象60のインピーダンスZ(RおよびX)および位相角θを算出する(ステップ111)。
 図7に、上記実施態様で説明したインピーダンス測定装置を2台用いて、インピーダンス測定を同時並行的に実施するときの構成を、図8に濾波信号のシミュレーション結果を示す。インピーダンス測定装置2は、測定対象61のインピーダンスZおよび位相角θを、1kHzの測定周波数fで測定する。インピーダンス測定装置3は、測定対象62のインピーダンスZおよび位相角θを、999Hzの測定周波数fで測定する。2台のインピーダンス測定装置2、3は近接して配置されているため、それぞれの装置が相互干渉する。すなわち、インピーダンス測定装置2の検出回路21には、インピーダンス測定装置3の999Hzの測定信号Imに起因する外部ノイズが入力される。また、インピーダンス測定装置3の検出回路21には、インピーダンス測定装置2の1kHzの測定信号Imに起因する外部ノイズが入力される。
 図8は、インピーダンス測定装置2(測定周波数1kHz、外部ノイズ999Hz)の測定結果であり、図8(a)はステップ110による加算平均処理を施す前の濾波信号、図8(b)は加算平均処理後の濾波信号である。加算平均処理を施す前の濾波信号は、参照信号と外部ノイズとの周波数差1Hz=1000Hz-999Hzに相当する交流成分が、直流成分に重畳されている。これに対して、加算平均処理後の濾波信号は、交流成分が抑制されていることがわかる。このことから、2つの参照信号Vr1、Vr2が同相のときの濾波信号Vi、Vqと、逆相のときの濾波信号Vi、Vqとの加算平均をとることにより、外部ノイズVnによる影響を抑制できることがわかる。外部ノイズが抑制された濾波信号の大きさに基づいて、測定対象61のインピーダンスZおよび位相角θを求めることにより、測定周波数近傍のノイズの影響を抑制した高精度なインピーダンス測定が可能となる。
 以上、本願発明者らによってなされた発明を実施の形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。例えば、上述した実施態様で説明したインピーダンス測定装置1、1’では、演算部40、40’で規定した参照信号の周波数と位相角に基づいて、信号発生部30が参照信号を発生しているが、正相と逆相が切り替わる参照信号波形のデジタルデータを演算部40内部で生成し、信号発生部30で参照信号を発生するように構成してもよい。また、インピーダンス測定装置1、1’の測定信号Imは参照信号Vr2と同相であり、変調信号Vmod1は参照信号Vr1またはVr2と同相であるが、それぞれの参照信号を基準に同量の位相オフセットがあってもよい。ただし、位相オフセットがある場合でも、測定信号Imと変調信号Vmod1とが同相または逆相の関係を維持しなければならない。
1、1’、2、3 インピーダンス測定装置
10 測定信号供給部
20 測定部
21 検出回路
22、23 乗算器
24、25 ローパスフィルタ(LPF)
26 90度移相器
30、30’ 信号発生部
31 位相反転器
32 スイッチ
33 参照信号発生器
40、40’ 演算部
51、52、53、54 接触端子
60、61、62 測定対象

Claims (5)

  1.  第1の参照信号、および、前記第1の参照信号の位相を所定の反転周期ごとに反転させた第2の参照信号を発生する信号発生部と、
     前記第2の参照信号に基づいて測定信号を生成し、測定対象に供給する測定信号供給部と、
     前記測定信号よって前記測定対象に生ずる信号を、前記第1の参照信号に基づいて生成された変調信号で同期検波し、さらに低域通過濾波した濾波信号を生成する測定部と、
     前記第1の参照信号と前記第2の参照信号とが同相のときの前記濾波信号の大きさと、前記第1の参照信号と前記第2の参照信号とが逆相のときの前記濾波信号を符号反転した大きさとの加算平均に基づいて、前記測定対象のインピーダンスを求める演算部と、
    を備える、インピーダンス測定装置。
  2.  第1の参照信号、および、前記第1の参照信号の位相を所定の反転周期ごとに反転させた第2の参照信号を発生する信号発生部と、
     前記第2の参照信号に基づいて測定信号を生成し、測定対象に供給する測定信号供給部と、
     前記測定信号よって前記測定対象に生ずる信号を、前記第2の参照信号に基づいて生成された変調信号で同期検波し、さらに低域通過濾波した濾波信号を生成する測定部と、
     前記第1の参照信号と前記第2の参照信号とが同相のときの前記濾波信号の大きさと、前記第1の参照信号と前記第2の参照信号とが逆相のときの前記濾波信号の大きさとの加算平均に基づいて、前記測定対象のインピーダンスを求める演算部と、
    を備える、インピーダンス測定装置。
  3.  前記反転周期は、前記測定信号の周期の整数倍であり、
     前記演算部は、前記反転周期の整数倍の測定期間にわたる加算平均に基づいて、前記測定対象のインピーダンスを求める、
    請求項1または2記載のインピーダンス測定装置。
  4.  第1の参照信号、および、前記第1の参照信号の位相を所定の反転周期ごとに反転させた第2の参照信号を発生するステップと、
     前記第2の参照信号に基づいて測定信号を生成して、測定対象に供給するステップと、
     前記測定信号によって前記測定対象に生ずる信号を、前記第1の参照信号に基づいて生成された変調信号で同期検波し、さらに低域通過濾波した濾波信号を生成するステップと、
     前記第1の参照信号と前記第2の参照信号とが同相のときの前記濾波信号の大きさと、前記第1の参照信号と前記第2の参照信号とが逆相のときの前記濾波信号を符号反転した大きさとの加算平均に基づいて、前記測定対象のインピーダンスを求めるステップと、
    を含む、方法。
  5.  第1の参照信号、および、前記第1の参照信号の位相を所定の反転周期ごとに反転させた第2の参照信号を発生するステップと、
     前記第2の参照信号に基づいて測定信号を生成して、測定対象に供給するステップと、
     前記測定信号によって前記測定対象に生ずる信号を、前記第2の参照信号に基づいて生成された変調信号で同期検波し、さらに低域通過濾波した濾波信号を生成するステップと、
     前記第1の参照信号と前記第2の参照信号とが同相のときの前記濾波信号の大きさと、前記第1の参照信号と前記第2の参照信号とが逆相のときの前記濾波信号の大きさとの加算平均に基づいて、前記測定対象のインピーダンスを求めるステップと、
    を含む、方法。
PCT/JP2022/039989 2022-01-21 2022-10-26 インピーダンス測定装置および方法 WO2023139870A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-008111 2022-01-21
JP2022008111A JP2023107029A (ja) 2022-01-21 2022-01-21 インピーダンス測定装置および方法

Publications (1)

Publication Number Publication Date
WO2023139870A1 true WO2023139870A1 (ja) 2023-07-27

Family

ID=87348022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039989 WO2023139870A1 (ja) 2022-01-21 2022-10-26 インピーダンス測定装置および方法

Country Status (2)

Country Link
JP (1) JP2023107029A (ja)
WO (1) WO2023139870A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074793A (ja) * 1999-09-02 2001-03-23 Agilent Technologies Japan Ltd 適応形ハーフ・ブリッジ
JP3930586B2 (ja) * 1996-07-26 2007-06-13 アジレント・テクノロジーズ・インク インピーダンス測定装置の帰還ループ安定化方法
JP2011038969A (ja) * 2009-08-17 2011-02-24 Hioki Ee Corp インピーダンス測定装置
JP2015014469A (ja) * 2013-07-03 2015-01-22 日置電機株式会社 抵抗測定装置および抵抗測定方法
WO2020079888A1 (ja) * 2018-10-16 2020-04-23 日置電機株式会社 インピーダンス測定装置およびインピーダンス測定装置における負帰還回路の調整方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3930586B2 (ja) * 1996-07-26 2007-06-13 アジレント・テクノロジーズ・インク インピーダンス測定装置の帰還ループ安定化方法
JP2001074793A (ja) * 1999-09-02 2001-03-23 Agilent Technologies Japan Ltd 適応形ハーフ・ブリッジ
JP2011038969A (ja) * 2009-08-17 2011-02-24 Hioki Ee Corp インピーダンス測定装置
JP2015014469A (ja) * 2013-07-03 2015-01-22 日置電機株式会社 抵抗測定装置および抵抗測定方法
WO2020079888A1 (ja) * 2018-10-16 2020-04-23 日置電機株式会社 インピーダンス測定装置およびインピーダンス測定装置における負帰還回路の調整方法

Also Published As

Publication number Publication date
JP2023107029A (ja) 2023-08-02

Similar Documents

Publication Publication Date Title
JP2007033286A (ja) インピーダンス測定方法およびインピーダンス測定器
CN108376805B (zh) 电池温度检测
JP4727514B2 (ja) 電力量計
CN106526321B (zh) 阻抗测定装置及阻抗测定方法
JP2020180949A (ja) 電池監視装置
KR20120059956A (ko) 레졸버의 위치 오차를 적응적으로 보상하기 위한 장치
WO2023139870A1 (ja) インピーダンス測定装置および方法
JP2014006144A (ja) 交流抵抗測定装置および交流抵抗測定方法
WO2023139871A1 (ja) インピーダンス測定システムおよび方法
JPH08101045A (ja) 位置検出装置
JP4648243B2 (ja) 交流信号測定器、およびそのオフセット調整方法
JP3545886B2 (ja) 絶縁抵抗測定装置
JP4662516B2 (ja) 位置検出装置
JPH0275966A (ja) 電子式電力量計
JPH0396870A (ja) 測定装置
JP2002228488A (ja) エンコーダ出力信号の自動調整装置および自動調整方法
CN115615467B (zh) 霍尔信号解调方法和装置
JPH11344514A (ja) 三相電力計
RU2040002C1 (ru) Способ определения разности фаз двух сигналов
JP2000055952A (ja) 回路素子の測定装置
WO2023085057A1 (ja) 測定装置および測定方法
JP2004301550A (ja) 電力関連量および位相角演算装置
JP5355477B2 (ja) レゾルバ模擬回路
JP2009002758A (ja) インピーダンス測定装置
KR20030082280A (ko) 디지털 신호처리장치에서의 에러 보정 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922022

Country of ref document: EP

Kind code of ref document: A1