WO2023138518A1 - 一种爆胎安全轮胎 - Google Patents

一种爆胎安全轮胎 Download PDF

Info

Publication number
WO2023138518A1
WO2023138518A1 PCT/CN2023/072260 CN2023072260W WO2023138518A1 WO 2023138518 A1 WO2023138518 A1 WO 2023138518A1 CN 2023072260 W CN2023072260 W CN 2023072260W WO 2023138518 A1 WO2023138518 A1 WO 2023138518A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
lubricating coating
vehicle
contact
lubricating
Prior art date
Application number
PCT/CN2023/072260
Other languages
English (en)
French (fr)
Inventor
卫向坡
Original Assignee
卫向坡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 卫向坡 filed Critical 卫向坡
Publication of WO2023138518A1 publication Critical patent/WO2023138518A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
    • B60C17/10Internal lubrication
    • B60C17/103Internal lubrication by means of surface coating, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C17/00Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor

Definitions

  • the invention relates to a puncture safety tire and belongs to the technical field of tires.
  • 0 tire pressure resistance When a tire with zero tire pressure rolls in a straight line on an ideal road surface (usually flat dry and hard road surface), the resistance on the left and right wheel rims and tread in the direction of travel is opposite to the rolling direction, which is called the resistance when the tire with zero tire pressure rolls, referred to as zero air pressure resistance (0 tire pressure resistance).
  • 0 Tire pressure resistance is composed of three parts: tire deformation, road surface deformation, and friction between the tire and the road surface; when the wheel rolls on a hard road surface, most of the rolling resistance is lost in the energy consumption of the tire.
  • the zero tire pressure resistance is mainly caused by the deformation of the tire rubber.
  • the deformation of the tire rubber is positively correlated with the maximum friction force at the contact position of the tire inner surfaces after vulcanization molding, and the zero tire pressure resistance is positively correlated with the maximum friction force at the contact position of the tire inner surfaces after vulcanization molding. 0
  • the greater the air pressure resistance the more serious the vehicle yaw (deviation from the original lane).
  • the maximum friction force at the contact position of the inner surface of the tire is not only related to the degree of convexity and concaveness of the inner surface of the tire, but also related to the load.
  • the maximum friction force at the position where the inner surfaces of the pneumatic tires are in contact with each other is as small as possible, and the comprehensive friction coefficient at the position where the inner surfaces of the tires with 0 air pressure are in contact with each other is as small as possible.
  • the present invention tests the tires produced by Michelin, Bridgestone, Continental, Pirelli, Goodyear, Sumitomo, Hankook, Linglong, Zhongce, etc., and finds that these tires have high tire pressure resistance, severe vehicle body shaking after a tire blowout, severe vehicle yaw, and high risk after a tire blowout.
  • the tubeless tire without sidewall support of the present invention refers to a tire in which the tire is flattened and the sidewall of the tire is bent after the tire is blown out, and the two surfaces inside the tire are in contact with each other, one of which is the inner surface of the bead and the inner surface of the sidewall adjacent to the bead, and the other surface is the inner surface of the tire shoulder and the inner surface of the sidewall adjacent to the shoulder, as shown in Figure 4.
  • the tire pressure will be 0, and the tubeless tire without sidewall support will be flattened, the radius of the wheel will decrease, and the tire sidewall rubber will be bent and bonded together.
  • the inner surfaces of the two tires will contact each other, and the vehicle body will tilt. Since the rim and rim have a small circular contact area, and the tire is made of elastic rubber, the pressure on different positions in the contact area is different. The driving force of the wheel is transmitted to the tread through the sidewall rubber of the tire.
  • the inner layer rubber is generally butyl rubber, bromobutyl rubber or halogenated butyl rubber.
  • a tubeless tire without sidewall support has a large tread diameter before being flattened, and the wheel radius is smaller after the tire is flattened at 0 tire pressure. After the tire is flattened at 0 tire pressure, the inner surfaces of the vulcanized and molded tires are in contact with each other.
  • the rotation angular velocity is inconsistent with the tread rotation angular velocity.
  • the tread slides relative to the rim in the circumferential direction, and sliding friction occurs at the contact position of the inner surfaces of the two tires after vulcanization; b.
  • the rotational angular velocity of the rim is consistent with the rotational angular velocity of the tread.
  • the circumference of the ground rotates one circle also becomes smaller, and there is a circumference difference between them.
  • the rolling circumference of the wheel with 0 tire pressure is 1.5m
  • the angle of the wheel corresponding to the contact position of the main stress area is 30 degrees
  • the vehicle speed is 120km/h, that is, 33.33m/s
  • the wheel with 0 tire pressure rolls 22.22 times per second then the time required for rolling through the main stress area is: 0.00375s, so the speed is very fast;
  • the angle of the wheel corresponding to the raised bump 43 is 5 degrees, then the time required for rolling through the raised bump 43 is: 0.0 00625s, the time is very short, the higher the speed per hour, the shorter the pressure-bearing time of the bulge 43.
  • the 0-tire pressure tire with smaller diameter is replaced with a smaller tire with the same diameter for testing. It is found that the smaller diameter of the wheel has less impact on vehicle yaw (refers to vehicle deviation, vehicle deviation from the established driving route), and the deformation of tire rubber during rolling has a greater impact on yaw.
  • vehicle yaw refers to vehicle deviation, vehicle deviation from the established driving route
  • a lubricating coating is provided on the inner surface of the tire to reduce friction.
  • the resistance at 0 tire pressure decreases, and the up and down jump of the tire at 0 tire pressure disappears or decreases a lot, which means that the degree of roundness of the flat tire rolling is reduced.
  • the unevenness (smoothness) of the inner surface of the tire after vulcanization molding has a great influence on the friction force.
  • the molding process of the inner surface of the tire after vulcanization molding determines the unevenness of the inner surface of the tire after vulcanization molding.
  • the tire molding process includes vulcanization without vulcanization bladder and vulcanization with vulcanization bladder:
  • the tires vulcanized without vulcanization bladders are in contact with the inner surface of the tire before rubber vulcanization is metal mechanism, air or liquid. After vulcanization molding, the inner surface of the tire after vulcanization molding is very smooth, and the inner surface of the tire after vulcanization molding has almost no unevenness.
  • the tire vulcanized with a vulcanizing bladder is in contact with the inner surface of the tire before the vulcanization of the tire rubber.
  • the vulcanizing bladder will be equipped with an exhaust line (the exhaust line refers to the raised line with a certain width on the inner surface of the vulcanized tire, and the height is generally above 0.5mm, or the exhaust line refers to the concave line with a certain width on the vulcanization bladder.
  • Patterns and exhaust lines will be formed on the inner surface of the vulcanized tire (some vulcanized tires have only embossed patterns and no exhaust lines on the inner surface), resulting in uneven and rough inner surface of the vulcanized tire. At present, this kind of tire is the mainstream in the market.
  • the lubricating effect will be affected by the exhaust lines and embossing patterns on the inner surface of the vulcanized tire.
  • the temperature exceeds 30°C
  • the unevenness of the inner surface of the tire is also different.
  • the distance between the exhaust lines on the inner surface of the Michelin brand tire is large, and the embossing pattern between the exhaust lines is relatively small.
  • the vehicle out of control after a tire blowout generally occurs within 5 seconds after the tire blows out. During this time, the vehicle still needs to travel for a certain distance (abbreviated as the tire blowout characteristic). If the speed is 120km/h, the vehicle travels 100m-166.67m in 3s-5s after the tire blowout. To reduce the risk of tire blowout, the lubricating coating is required to be within 3s-5s after the tire blowout. and adhesion, tubeless and unsupported puncture safety tires can be approximated by claim 5.
  • a wear-resistant fabric layer, or wear-resistant paper layer, or wear-resistant leather layer is installed on the rubber layer of the inner surface of the tire without sidewall support after vulcanization to improve the lubrication effect.
  • the wear-resistant fabric layer, or wear-resistant paper layer, or wear-resistant leather layer is difficult to be well combined with the inner surface of the vulcanized tire: if the tire Bonding after vulcanization and molding, the wear-resistant fabric layer, or wear-resistant paper layer, or wear-resistant leather layer is difficult to fit the irregular vulcanized inner surface of the tire intact or the bond is not firm (the tire is easy to be crushed and peeled off by the load when the tire is running at zero tire pressure); It is easy to delaminate, resulting in a significant drop in lubrication effect;
  • the lubricating coating is required to have good adhesion and lubricity.
  • the lubricating coating with a dry surface is provided on the inner surface of a tubeless tire without sidewall support after vulcanization, the inventors found that if the lubricating coating with a dry surface has better lubricity, the adhesion will decrease, and it can only maintain lubrication during short-distance driving. It is difficult to control the vehicle within 3-5 seconds after a tire burst. , The cruising distance of tires with 0 air pressure is short.
  • the present invention finds that when dealing with tires vulcanized without vulcanizing bladders, this lubricating method can relatively easily deal with tire blowouts at a speed of about 100 km/h; but for tires vulcanized with vulcanizing bladders, when dealing with tire blowouts at a speed higher than 100 km/h, the effect is significantly different from that of tires vulcanized without vulcanizing bladders, and the vehicle is more difficult to control after a punctured tire, which is prone to traffic accidents.
  • the present invention has carried out detailed analysis and test: when the tire pressure is the same as the ambient tire pressure (abbreviated as 0 tire pressure), the tire is flattened under the effect of load, the tire sidewall bends, and the surface dry lubricating coating on the inner surface of the tire after vulcanization and molding contacts each other; The lubricating coating with a dry surface cannot fill these cracks well, and the generation of cracks will lead to a decrease in the coefficient of friction; b.
  • the contact position of the dry lubricating coating on the inner surface of the tire after vulcanization and molding will produce wear marks and wear marks under the action of friction, and cracks will occur on the surface of the solid lubricating coating.
  • the inner surface is smooth, the friction force is small, the crack width and number of cracks are small, so it can maintain better lubrication;
  • the inner surface of the vulcanized tires is uneven, the friction force is large, the crack width and number of cracks are large, so the lubrication effect is obviously reduced.
  • the invention provides a puncture safety tire, which can overcome the above disadvantages and reduce the risk of puncture; the invention can reduce the risk of puncture of vehicles at high speeds of 120 km/h and above, and provide safety guarantee for vehicles with high-speed punctures; it is suitable for vehicles with relatively large masses and electric vehicles (mass ⁇ 1.35 tons).
  • the present invention is applicable to at least one of two-wheel vehicles, three-wheel vehicles, four-wheel vehicles and vehicles with more than four wheels, and is also suitable for aircraft wheels.
  • the present invention solves the technical problem by adopting the following technical scheme: a puncture safety tire.
  • the tire is a tubeless tire without sidewall support. When the tire is blown out, the tire is flattened, the sidewall of the tire is bent, and the two surfaces inside the tire are in contact with each other.
  • the first lubricating coating is in contact with the inner surface of the vulcanized tire, and the first lubricating coating is a solid lubricating coating; the second lubricating coating is covered on the first lubricating coating, and the second lubricating coating is one of a semi-solid lubricating grease coating, a semi-fluid lubricating grease coating, and a liquid lubricant coating.
  • the solid lubricating coating consists of at least one solid lubricating coating; or the solid lubricating coating consists of at least one adhesive coating and at least one solid lubricating coating, and the adhesive coating is in contact with the inner surface of the tire.
  • said tire is a tubeless tire without sidewall support
  • the temperature is ⁇ 20°C
  • the relative humidity of the tire inside is ⁇ 10% RH
  • the test road standard is not lower than the highway standard specified in the "Highway Engineering Quality Inspection and Evaluation Standard" JTGF80/1
  • the dry road surface is ⁇ 1%
  • the vehicle is placed statically on a horizontal road.
  • the maximum load of the tire is ⁇ load capacity ⁇ 65%. Faces touching each other:
  • the first and second lubricating coatings are arranged on the two surfaces of the vulcanized tires that are in contact with each other.
  • the second lubricating coatings on the inner surfaces of the two tires are in contact with each other.
  • the friction coefficient of the contact position where the force is the largest is ⁇ 2;
  • the vehicle runs straight to the 500m position under the condition of tire pressure of 0 and stops, the tire does not fall off the ring during the whole process, 30km/h ⁇ vehicle maximum speed ⁇ 40km/h, vehicle speed is greater than or equal to 30km/h and travel distance ⁇ 200m; Only the first layer of solid lubricating coating is provided on the two surfaces of the vulcanized tire that are in contact with each other. The first lubricating coating on the inner surfaces of the two tires are in contact with each other.
  • ⁇ 2 ⁇ 1 ⁇ , ⁇ 20 ⁇ 10, ⁇ 20 ⁇ , ⁇ , ⁇ 1, ⁇ 2, ⁇ 10, ⁇ 20 are coefficients of rolling friction or coefficients of sliding friction.
  • the tire is a tubeless tire without sidewall support, and the load capacity of the tire is ⁇ 400kg.
  • the two small pieces of rubber with a uniform thickness are firmly bonded to two hard plates with flat and smooth surfaces; the temperature is between 35°C and 36°C, and the relative humidity is less than 10% RH, and the divided pieces are placed for 3 hours
  • the bonding surface is parallel to the horizontal plane, and apply a load of 15kg per square centimeter evenly perpendicular to the contact area, and the direction of the applied force is parallel to the contact surface:
  • the maximum static friction force of the two contact positions is f;
  • test road standard J. Temperature ⁇ 20°C, relative air humidity inside the tire ⁇ 10% RH, the test road standard is not lower than the expressway standard specified in the "Highway Engineering Quality Inspection and Evaluation Standard" JTGF80/1, dry road surface, maximum longitudinal slope ⁇ 1%, and the vehicle is placed statically on a level road.
  • the tire sidewall rubber is divided into small rubber pieces of the same size and shape for testing; the inner surface of the tire sidewall after vulcanization is provided with the first lubricating coating and the second lubricating coating, and the maximum static friction of the two mutual contact positions is f22;
  • the total mass of the first lubricating coating and the second lubricating coating is not greater than 80g; for tires with a tire section height not greater than 200mm, the total mass of the first lubricating coating and the second lubricating coating is not greater than 160g.
  • ⁇ 2 ⁇ 0.8 ⁇ 1, and/or ⁇ 2 ⁇ 1/3 ⁇ are optionally ⁇ 2 ⁇ 0.8 ⁇ 1, and/or ⁇ 2 ⁇ 1/3 ⁇ .
  • f2 ⁇ 0.8f1, and/or f2 ⁇ 1/3f are integers that are integers.
  • the thickness of the first lubricating coating is less than 0.5 mm, and/or the thickness of the second lubricating coating is less than 0.1 mm.
  • the tire is vulcanized with a vulcanization bladder, and the inner surface of the tire has embossed patterns for exhaust, or exhaust lines and embossed patterns for vulcanized exhaust.
  • the coating construction method for a tire with a flat tire is characterized in that it includes the following steps: first, cleaning the inner surface of the tire after vulcanization; secondly, after the inner surface of the tire after vulcanization is cleaned and dried, spray or brush the first lubricating coating at least on the bead parts on both sides of the inner surface of the vulcanized tire; after the first lubricating coating is dried and solidified, finally spray or brush the second lubricating coating on the first lubricating coating.
  • the first lubricating coating is a liquid lubricant or a spray before becoming a solid lubricating coating; the materials of the first lubricating coating and the second lubricating coating contain at least one of graphite, molybdenum disulfide, silicon, and fluorine.
  • the ASTM penetration of the semi-solid grease and semi-fluid grease at 25°C is >22 mm, and/or the similar viscosity of the semi-solid grease and semi-fluid grease at 20°C is less than 500 pa.s.
  • the second lubricating coating is: a. grease made of polyether synthetic oil as base oil, special lithium soap as thickener, and various additives such as anti-oxidation, anti-corrosion, and anti-aging; b. silicone grease (grease with silicone oil as base oil); c. grease containing fluorine; one of the three types of grease.
  • the main purpose of the adhesive coating is to enhance the bonding force with the inner surface of the tire, provide a good bonding transition between the solid lubricating coating and the inner surface of the tire, and ensure good adhesion performance, which is obviously different from the wear-resistant layer described in the previous patent 2019202528693.
  • the first lubricating coating is at least one of the following solid lubricating materials, and the solid lubricating materials include: graphite, graphite fluoride, vaseline, glass microspheres, molybdenum disulfide, boron nitride, silicon nitride, polytetrafluoroethylene, nylon, polyoxymethylene, polyimide, polyparaben; and soft metal gold, silver, tin, lead, magnesium, indium.
  • the tire is suitable for vehicles with an unloaded weight of ⁇ 1 ton, and the applicable tire burst speed is ⁇ 80km/h, and the tire is suitable for tires with a tire section height of ⁇ 90mm;
  • the liquid lubricant of the first lubricating coating is a water-based lubricant, and the second lubricating coating has a waterproof effect, which can prevent the water vapor inside the tire and the lubricating fluid of disassembling and assembling the tire brush from affecting the first lubricating coating.
  • Embossed patterns are also called concealed patterns, which play the role of exhausting and covering up poor appearance;
  • the exhausting lines used for vulcanization exhausting are also called exhausting lines, and the exhausting refers to the removal of air between the vulcanization bladder and the inner surface of the unvulcanized tire during tire vulcanization.
  • the tire does not fall off the circle in the whole process, which means that the tire will not fall off from the bead seat of the rim and enter the wheel groove 33;
  • the dry road surface means that there is no visible water on the road surface, and the vehicle is not easy to slip on it.
  • the first lubricating coating and the second lubricating coating are provided on at least the bead (the apex is included inside the bead position) on both sides of the vulcanized tire inner surface after vulcanization molding among the three parts of the bead, the sidewall and the shoulder on both sides of the inner surface of the vulcanized tire. Because after the tire is flattened under load at 0 air pressure, the inner surface of the inner bead of the tire under the rim of the wheel hub will always be under pressure. In order to save costs, the first lubricating coating and the second lubricating coating can be provided only on the inner surface of the bead.
  • first lubricating coating or the first and second lubricating coatings can also be provided on the inner surface of the tire tread after vulcanization molding. This situation is especially suitable for tires with a relatively large section height, such as tires with a section height > 140 mm. small.
  • the water-based lubricating coating used in the first lubricating coating of the present invention is more environmentally friendly, and water will not corrode the inner surface of the vulcanized tire.
  • the purpose of cleaning the inner surface of the tire after vulcanization molding is to remove the dust that affects the adhesion of the first lubricating coating after vulcanization molding: the dust on the inner surface of the tire, the vulcanization bladder release agent remaining during tire vulcanization (to prevent the inner surface of the tire from sticking to the vulcanization bladder), the spray material on the inner surface of the tire embryo (before the tire rubber is not vulcanized and molded), and the masking liquid sprayed after tire vulcanization and molding to cover up the poor appearance.
  • the minimum radius of the ring formed by the first lubricating coating and the second lubricating coating is more than 10mm larger than the minimum inner diameter of the tire.
  • the purpose is: 1. Prevent the lubricating coating from being applied or sprayed to the place where the bead and the hub fit to reduce the bead-off resistance; 2. Prevent the lubricating coating from touching the tire changing machine during the tire changing process.
  • the coefficient of friction of rubber is very complicated. In addition to the influence of surface convexo concave, it is also affected by temperature and contact area. The larger the contact area, the greater the friction coefficient, and the contact area is related to the force; the sliding friction coefficient is also related to speed and temperature.
  • the present invention compares 1, 2, and 3 in the technical background:
  • the present invention has simple construction and does not affect the production process before tire vulcanization.
  • the first lubricating coating and the second lubricating coating are applied on the vulcanized tire.
  • the construction process is simple, the tire yield is high, and the cost is low.
  • the first lubricating coating of the present invention is a water-based liquid or spray before curing. It is very simple and convenient to spray or brush.
  • the coating thickness and weight can be well controlled and light in weight;
  • the second lubricating coating selected in the present invention is a kind of semi-solid grease coating, semi-fluid grease coating, and oil-based liquid lubricant coating; , viscosity is small; under certain conditions, the semi-solid grease coating or semi-fluid grease coating selected by the present invention has an ASTM cone penetration greater than 29.5mm at 25°C, the material hardness is small, and the material is soft. At 20°C, the similar viscosity is less than 300pa.
  • the area of rubber in the stress-bearing area of the tire inner surface after vulcanization will increase after being stressed, and cracks will appear in the first lubricating coating.
  • the second lubricating coating has a certain adsorption capacity; even under the extrusion of the load, a part of the second lubricating coating will remain on the surface of the first lubricating coating, reducing the friction coefficient of the mutual contact positions. Under the joint action of a and b, the friction coefficient of the mutual contact position will be significantly reduced compared with the friction coefficient of 3 in the contrast background, and the best case can be reduced by more than 35%-40%.
  • the reduction of the friction coefficient can reduce or avoid the degree of out-of-roundness of tires with 0 tire pressure during high-speed rolling.
  • the tires with 0 tire pressure will also roll more smoothly.
  • vulcanized tires without vulcanization bladders it will be very helpful to the tire blowout of racing cars and aircraft, and can deal with the blowout of racing cars between 160km/h and 300km/h.
  • the semi-solid grease coating in the second lubricating coating, or the semi-fluid grease coating, or the oil-based liquid lubricant coating when the 0-pressure tire is running, the heat generated by friction is less, which is beneficial to the tire rubber.
  • the present invention is especially applicable to the tire blowout scene of a racing track with a maximum speed of more than 160 km/h, and the tire blowout scene of a car, SUV, or MPV vehicle with a maximum speed of more than 100 km/h on a high-speed road.
  • the present invention provides a parameterized force model of zero air pressure tires for assisted driving of the vehicle and fully unmanned driving of the vehicle, which is convenient for assisted driving of the vehicle and fully unmanned driving of the vehicle.
  • the purpose of the present invention is: 1. Compared with the patent 2019202528693, the construction is simpler and more convenient, the yield is higher, and the cost is low; 2. Compared with the patent 2019202528693, the friction coefficient of the contact position of the 0 tire pressure tire is smaller after being flattened, and can provide a smaller friction coefficient for the inner surface of the vulcanized tire vulcanized by the vulcanization bladder, avoiding or reducing the rolling loss of the flat tire.
  • the vehicle is easier to control, and the driving distance at 0 pressure is longer; it can reduce the risk of tire blowout when the vehicle is at a speed of 80 hours or more, or 120 hours or more, or 132 hours or more, avoiding or reducing the degree of rolling out of roundness of the tire at 0 pressure, and the tire rolling at 0 pressure is smoother.
  • 3. Provide a simplified tire force model for unmanned driving after a tire blowout, which is convenient for the control of unmanned driving and assisted driving after a tire blowout. If vulcanized tires without vulcanization bladders are used, it will be very helpful for racing car and aircraft tire blowouts, and can deal with car blowouts between 160km/h-300km/h. 4.
  • the first lubricating coating is a solid lubricating coating, which can ensure reliable bonding (adhesion) with the inner surface of the tire after vulcanization and molding.
  • the second lubricating coating is one of semi-solid grease coating, semi-fluid grease coating, and oil-based liquid lubricant coating, which can enhance the lubricating effect of the lubricating coating; through the cooperation of the first lubricating coating and the second lubricating coating, both adhesion and lubricity can be taken into account; 6.
  • the tubeless tire without sidewall support can travel a longer distance under the condition of 0 tire pressure, and the effect of preventing the tire from falling off the bead seat is better.
  • the invention can eliminate the driver's panic caused by the wheel axle jumping up and down, the vehicle body trembling, and the steering wheel shaking after the tire blows out, so that the driver can calmly deal with the handling of the vehicle after the tire blows out, thereby reducing or avoiding the occurrence of traffic accidents. 7.
  • this patent can deal with the safety control of tire blowouts of vehicles with a larger mass, and is suitable for vehicles with a maximum load mass of ⁇ 1.35 tons and a vehicle speed of not less than 100km/h.
  • the total weight of the two lubricating coatings is light, does not affect the handling and comfort, and is more energy-saving and environmentally friendly.
  • the invention can reduce the risk of tire blowout at a high speed of 120 km/h or above, and provide guarantee for the safety of the vehicle after a high speed tire blowout; at the same time, it is suitable for vehicles with large mass and electric vehicles (mass ⁇ 1.35 tons).
  • Fig. 1 is a tire cross-sectional schematic diagram
  • Fig. 2 is another schematic sectional view of the tire section
  • Fig. 3 is a schematic diagram of the wheel hub
  • Fig. 4 is a schematic cross-sectional view of the internal contact between the wheel hub and the flattened tire
  • Fig. 5 is a schematic diagram of setting the first lubricating coating on the inner surface of the tire
  • Fig. 6 is a schematic diagram of setting the first lubricating coating and the second lubricating coating on the inner surface of the tire of the present invention
  • Fig. 7 is a schematic diagram of the exhaust line and the embossed pattern on the inner surface of the tire
  • Fig. 8 is the schematic diagram of tire normal air pressure
  • Fig. 9 is a schematic diagram of a tire being flattened at 0 air pressure
  • Fig. 10 is a schematic diagram of the rolling trajectory of a tubeless tire with no sidewall support without a lubricating coating at 0 pressure state;
  • Fig. 11 is a schematic diagram of the rolling track of a tubeless tire with no sidewall support after the lubricating coating is set at 0 air pressure state;
  • Figure 12 is a schematic diagram of a vehicle performing a 45° raised tire impact test
  • the tires in the accompanying drawings are tires after vulcanization molding.
  • 30-wheel hub 31-inner rim; 32-car body inner bead seat; 33-wheel hub groove; 34-car body outer bead seat; 35-outer rim; 36-rim inner surface; 37-outer rim height from horizontal ground;
  • Test environment air temperature ⁇ 20°C, relative humidity inside the tire ⁇ 10% RH, the test road standard is not lower than the expressway standard stipulated in the "Highway Engineering Quality Inspection and Evaluation Standard" JTGF80/1, dry road surface, maximum longitudinal slope ⁇ 1%, and the vehicle is placed statically on a level road surface.
  • the maximum load of the tire is ⁇ load capacity ⁇ 65%.
  • the test vehicle is a 2013 Ford 408 four-wheel drive
  • the test tire is Michelin 205/60R16
  • the tire is a tubeless tire without sidewall support (bladder vulcanized tire)
  • the tire load index is 92
  • the load capacity is 630kg.
  • the vehicle is placed statically on a level road. 510, the contact position 520 inside the tire on the inner side of the vehicle; the bead 102 on both sides of the tire did not fall off from the hub 30, the inner bead seat 32 and the outer bead seat 34 during the test;
  • the inner surface 500 of the tire 40 is the inner surface of the tire after vulcanization molding, and the inner surface of the tire is formed by a vulcanization bladder.
  • the tire inner surface 500 of the tire 40 is the inner surface of the tire after vulcanization molding, without any lubricating coating
  • the bead inner surface 110 without the lubricating coating, the sidewall inner surface 210 without the lubricating coating, the shoulder inner surface 310 without the lubricating coating, the tread inner surface 410 without the lubricating coating, the internal contact position 510 of the tires on the outer side of the vehicle and the internal mutual contact position 520 of the tires on the inner side of the vehicle are the inner surfaces of the tires after vulcanization and molding.
  • the bead, sidewall and tire shoulder on both sides of the tire 40 inner surface are cleaned first, then brushed with water-based lubricant, and the first lubricating coating (three positions) of uniform thickness is obtained after being dried and cured, as shown in Figure 5, the first lubricating coating 120 on the inner surface of the tire bead, the first lubricating coating 220 on the inner surface of the tire sidewall, and the first lubricating coating 320 on the inner surface of the tire shoulder; the main lubricating component of the first lubricating coating is graphite, and the thickness of the lubricating coating is between 0.1-0.2mm.
  • graphite has heat dissipation and energy consumption, which is convenient for tires to dissipate heat; the inner contact position 510 of the tires on the outer side of the vehicle and the inner contact position 520 of the tires on the inner side of the vehicle are where the first lubricating coatings are in contact with each other.
  • Option 3 Clean the bead, sidewall and tire shoulder on both sides of the inner surface of the tire 40 first, then brush the water-based lubricant, obtain a first lubricating coating of uniform thickness after being dried and solidified, and then brush the second lubricating coating (three parts), as shown in Figure 6, the second lubricating coating of uniform thickness is added on the basis of Figure 5, the first lubricating coating and the second lubricating coating 130 on the inner surface of the tire bead, the first lubricating coating and the second lubricating coating 230 on the inner surface of the tire sidewall, the first lubricating coating and the second lubricating coating 33 on the inner surface of the tire shoulder 0.
  • the main lubricating component of the first lubricating coating is graphite.
  • the thickness of the first lubricating coating is between 0.1-0.2 mm.
  • Graphite has good lubricating performance and high load-carrying capacity. At the same time, graphite has heat dissipation and energy consumption, which is convenient for tire heat dissipation;
  • the second lubricating coating is No. 1 silicone grease, which has low viscosity, good fluidity and convenient construction; the second lubricating coating absorbs and invades into the first lubricating coating. , Energy saving and environmental protection.
  • the mutual contact position 510 between the tires on the outer side of the vehicle and the mutual contact 520 between the tires on the inner side of the vehicle are where the second lubricating coatings are in contact with each other.
  • Test process the test environment was used for the test.
  • the tire pressure of the right front wheel tire 40 was 0, and the tire 40 was flattened, as shown in Figure 4 and Figure 9; in Scheme 1, when the vehicle accelerated to 60 km/h or more in a straight line, the accelerator pedal was increased, and the speed increased slowly. When the speed was less than 80 km/h, the vehicle was difficult to accelerate again. ); the vehicle stopped dismantling the tires, and a large number of inner liner fragments were found inside the tires; in scheme 2, when the vehicle accelerated to 90km/h in a straight line, the vehicle increased the accelerator pedal, and the speed increased slowly, and the vehicle speed was less than 110km/h.
  • the rolling track 42 of the tire in the 0 air pressure state after the lubricating coating is installed the rolling track is circular or approximately circular.
  • Test process the test environment was used for the test.
  • the tire pressure of the right front tire 40 was 0, and the tire 40 was flattened, as shown in Figure 4 and Figure 9; the vehicle was accelerated to 40km/h to drive at a constant speed, and the vehicle was driven less than 2km in scheme 1.
  • the vehicle shook severely, and the steering wheel also shook, and the noise was loud; ;Scheme 3
  • the vehicle can run smoothly for more than 7km, the vehicle does not feel obvious shaking, and the noise is relatively small.
  • Scheme 3 has a better 0-pressure emergency endurance capability.
  • Test process Test using the above test environment, the initial temperature of the tire is 60°C ⁇ 1°C, and the vehicle is running at a constant speed of 120km/h ⁇ 1km/h.
  • the tire is shown in Figure 8.
  • the right front wheel of the vehicle suddenly deflates to the ambient pressure, and the deflation time is ⁇ 0.5s.
  • the angle of the steering wheel remains unchanged within 0.75s after the tire blows out.
  • the average reaction time of both hands is 0.75s, and the average time of the foot from the accelerator to the brake pedal is 3.5s), as shown in Figure 4 and Figure 9;
  • Scenario 1 after a tire blowout the vehicle is not controlled by the steering wheel and the vehicle body yaws sharply to the front right and deviates from the lane, and then the tire wheel axis jumps up and down, the vehicle shakes sharply, and the steering wheel shakes sharply; There is deception in yaw, which means that the degree of yaw is also reflected in the form of pulses. If the driver corrects according to the most serious yaw degree, it will overcorrect, causing the vehicle to rush to the other side of the flat tire and cause traffic accidents. According to relevant statistics, such accidents account for more than 80%.
  • Embodiment 3 The difference between this embodiment and Embodiment 3 is that the steering wheel is locked when the tire is blown out, so that the steering angle of the steering wheel remains unchanged within 5 seconds after the tire blowout (the slight change in the angle of the steering wheel due to the fit clearance can be ignored), the right rear wheel of the tire with the blown tire is the driven wheel, and a wheel torque sensor is installed on the blown tire wheel to test the rolling torque of the blown tire wheel within 5 seconds after the blown tire.
  • the torque of scheme 1 is T1, because the wheel of the scheme will have a large jump after the tire blowout, so the torque changes greatly;
  • the torque of scheme 2 is T2, because the wheel of the scheme will have a small jump after the tire blowout, so the torque change is small;
  • the torque of scheme 3 is T3, because the wheel of the scheme will hardly jump after the tire blowout, so the torque change is the smallest;
  • the above-mentioned test environment is used for the test.
  • the test vehicle is a 2013 Peugeot 408 four-wheel drive.
  • the test tire is Michelin 205/60R16.
  • the tire is a tubeless tire without sidewall support.
  • the tire load index is 92 and the load capacity is 630kg.
  • the vehicle is driven at a constant speed of 120km/h for 1 hour, all tires reach zero tire pressure within 1 second.
  • the load capacity corresponding to the tire load index is ⁇ 85%, the tires are flattened and the two surfaces inside the tires are in contact with each other.
  • the sliding distance is L;
  • the tubeless tire without sidewall support of this embodiment is different from the tire described in Embodiments 1-7.
  • the tire described in Embodiments 1-6 When the tire described in Embodiments 1-6 is at 0 air pressure, the tire will be flattened under the action of the load.
  • the tire sidewall rubber cannot support the vehicle load, and the two inner surfaces of the tire are in contact with each other.
  • What this embodiment describes is a special tubeless tire without sidewall support: it is a run-flat tire with low bending strength of tire side rubber. Compared with the run-flat tire with high bending strength of side rubber, this tire has better riding comfort; when the vehicle is stationary on a horizontal road surface, when the tire is at 0 pressure, the tire side rubber can support the vehicle load to keep the inner surface of the tire from contacting each other, and the 0 pressure state can travel for a long distance; The two surfaces inside the tire will come into contact with each other, and this tire is called a flexible run-flat tire.
  • the zero pressure resistance of the tire will increase significantly, which will cause the vehicle to yaw out of control and cause traffic accidents.
  • Flexible run-flat tires vulcanized with capsules are used, the vehicle is 132km/h ⁇ 2km/h, and the test environment is used for testing.
  • the vehicle is a front-drive 4-wheel SUV vehicle with a load of 1.65 tons. The right front wheel of the vehicle suddenly bursts and deflates to the ambient pressure.
  • the main lubricating material of the first lubricating coating is molybdenum disulfide.
  • the thickness of the first lubricating coating is within 0.2mm.
  • the friction force at the contact position of the tire inner surfaces is f1, f1, f1 ⁇ 0.5f.
  • the main lubrication material of the first lubrication coating is sulfide, the thickness of the first lubricating coating is within 0.2mm; the second lubricating coating is fluoride lubricating fat, the thickness of the second lubricant is less than 0.1mm.
  • the friction of the inner surface of the tire is the smallest, F2 ⁇ 0.65F1, the 0 air pressure resistance of the tire after the tire is smaller, the vehicle is slightly navigable to the right after the tire, and the vehicle is well controlled.
  • the vehicle 700 is traveling in the direction of the v arrow, the wheel 710 is subjected to a 45° roadblock (100mm high) 800 impact test, the test pneumatic tire model: 215/50R17, the tire pressure is 2.3bar, the vehicle: Volkswagen 408, and the vehicle is fully loaded.
  • a 45° roadblock (100mm high) 800 impact test the test pneumatic tire model: 215/50R17, the tire pressure is 2.3bar, the vehicle: Volkswagen 408, and the vehicle is fully loaded.
  • the tire bead, sidewall and tire shoulder on both sides of the inner surface of tire 40 are first cleaned, then brushed with water-based lubricant, and then the first lubricating coating of uniform thickness is obtained after being dried and solidified, and then the second lubricating coating (three positions) is brushed, as shown in Fig. 6 , the second lubricating coating of uniform thickness is added on the basis of Fig. Lubricating coating 330; the main lubricating component of the first lubricating coating is graphite, and the thickness of the first lubricating coating is between 0.1-0.2 mm. Graphite has good lubricating performance and high load-carrying capacity. g, light weight, energy saving and environmental protection.
  • the inner mutual contact position 510 of the tires on the outer side of the vehicle and the inner mutual contact position 520 of the tires on the inner side of the vehicle are where the second lubricating coatings are in contact with each other; the number of tires is three.
  • the vehicle hits the 100mm high bump 50 at a speed of 35 hours, a total of 4 hits, the tire sidewall has no damage and no air leakage; the vehicle continues to hit the 100mm high bump 50 at a speed of 40 hours, the first impact, the tire apex cracks and leaks, and the crack opens towards the wheel rim, and the test is terminated.
  • the vehicle impacted the 100mm-high bump 50 at a speed of 35 hours for a total of 4 times, and the tire sidewall was not damaged or leaked.
  • the vehicle continued to hit the 100mm-high bump 50 at a speed of 40 hours.
  • the first impact caused the tire sidewall to bulge and crack and leak air, so the test was terminated.
  • the vehicle hits the 100mm high bump 50 at a speed of 35 hours, and hits 4 times in total, and the tire sidewall has no damage and air leakage; the vehicle continues to hit the 100mm high bump 50 at a speed of 40 hours, the first time, the tire blows out, and the test is terminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

一种爆胎安全轮胎,在硫化成型后的无内胎无侧壁支撑轮胎内表面两侧的胎圈(100)、胎侧(200)、胎肩(300)三个部位设置有第一润滑涂层和第二润滑涂层。通过在硫化成型后轮胎内表面设置第一润滑涂层,使生产和制作样品便捷,不影响热硫化成型前的轮胎生产工艺,可以很好的解决与硫化成型后的轮胎内表面附着力差的问题,施工便捷成品率高、成本低。在第一润滑涂层上设置第二润滑涂层,可以大幅降低润滑涂层的摩擦系数,为车辆提供更好的爆胎安全保障,并且两层润滑涂层的重量轻,不影响操控性、舒适性,更节能环保。

Description

一种爆胎安全轮胎 技术领域
本发明涉及一种爆胎安全轮胎,属于轮胎技术领域。
背景技术
[根据细则26改正 09.02.2023]
目前中国高速公路允许行驶速度上浮10%不扣除驾驶员的积分,原本限速120km/h的高速公路最高时速可以达到132km/h;中国最新的高速公路交通规则允许行驶速度上浮20%不扣除驾驶员的积分,原本限速120km/h的高速公路最高时速可以达到144km/h,最新的高速公路交通规则在2022年4月后正式实施;高速道路车辆行驶速度越高,车辆一旦爆胎,发生交通事故就越危险,危害也越大。
当0胎压轮胎在理想路面(通常指平坦的干、硬路面)上直线滚动时,行驶方向的左右轮缘和胎面所受到的与滚动方向相反的阻力称为0胎压轮胎滚动时所受到的阻力,简称0气压阻力(0胎压阻力)。0胎压阻力由轮胎变形、路面变形、轮胎与路面的摩擦三部分组成;车轮在硬路面上滚动时,绝大部分滚动阻力损失在轮胎的能量消耗中。
根据本发明人研究,气温20℃以上,在时速≥75km/h时,0胎压阻力主要是因为轮胎橡胶的形变引起的,轮胎橡胶形变大小与硫化成型后的轮胎内表面互相接触位置的最大摩擦力正相关,0胎压阻力与硫化成型后的轮胎内表面互相接触位置的最大摩擦力正相关。0气压阻力越大车辆偏航(偏离原本的车道情况)越严重。
0气压轮胎行驶过程中,轮胎内表面互相接触位置的最大摩擦力不仅与轮胎内表面凸凹程度有关,还与承载的载荷有关,载荷越大最大摩擦力越大,0胎压阻力越大,偏航越严重;同时,车速越高,对偏航就越敏感;即使是相同的偏航程度,车速越高、车辆就越不好控制容易发生交通事故;为了保证爆胎后车辆的安全控制,要求车辆高速爆胎后偏航尽量小、爆胎轮胎的0胎压阻力尽量小,这就要求0气压轮胎内表面互相接触位置的最大摩擦力尽量小、0气压轮胎内表面互相接触位置的综合摩擦系数尽量小。
本发明通过对现有轮胎:米其林、普利司通、马牌、倍耐力、固特异、住友、韩泰、玲珑、中策生产的轮胎等进行测试,发现这些轮胎0胎压阻力大,爆胎后车体抖动剧烈、车辆偏航严重、爆胎后风险大。
本发明所述的无内胎无侧壁支撑的轮胎是指在爆胎后,轮胎被压扁,轮胎胎侧发生弯曲,轮胎内部的两个面会产生互相接触的轮胎,其中一个面为胎圈内表面和临近胎圈的胎侧内表面,另一个面为胎肩内表面和临近胎肩的胎侧内表面,如图4。
车辆直线行驶的轮胎一旦爆胎,轮胎0胎压,无内胎无侧壁支撑的轮胎被压扁,车轮半径减小,轮胎胎侧橡胶会被弯折贴合在一起,硫化成型后的两轮胎内表面互相接触,车体倾斜;由于轮辋轮缘是圆形接触面积很小,轮胎的材质又是具有弹性的橡胶,因此在接触区域不同的位置所受到的压力也不一样,轮缘距离路面最近的正下方,橡胶单位面积受力最大。车轮驱动力是通过轮胎胎侧橡胶传递给胎面的,在驱动力、胎面与路面摩擦力的作用下,硫化成型后的两轮胎内表面互相接触位置会产生摩擦;普通的硫化成型后的轮胎内层橡胶为气密层橡胶,硫化成型后的轮胎内表面互相接触位置的摩擦力很大,气密层橡胶一般为丁基橡胶、溴化丁基橡胶或卤化丁基橡胶。
无内胎无侧壁支撑的轮胎被压扁前胎面直径大,轮胎0胎压被压扁后车轮半径较小,轮胎0胎压被压扁后硫化成型后的轮胎内表面互相接触,在驱动力、胎侧约束力、硫化成型后的轮胎内表面橡胶接触位置的摩擦力、胎面与路面摩擦力4个力的共同作用下,爆胎后在受力最大位置的胎面相对轮辋做以下运动:a、轮胎内表面互相接触初始压力小,摩擦力小,轮辋旋转角速度与胎面旋转角速度不一致,在圆周方向胎面相对轮辋相对滑动,在硫化成型后的两轮胎内表面互相接触位置产生滑动摩擦;b、轮辋旋转角速度与胎面旋转角速度一致,胎面轮辋同步旋转,在接触区域不同的位置所受到的压力也不一样,在硫化成型后的轮胎内表面两侧的互相接触位置将同时产生滑动摩擦和滚动摩擦;c、轮胎被压扁前胎面直径大,轮胎0胎压被压扁后车轮半径变小,接触地面旋转一周的周长也变小,这之间存在着周长差,在硫化成型后的轮胎内表面两侧的互相接触位置摩擦力较大和车速较快时(车速≥70km/h)时,在上述4个力的作用下,胎面位置会产生凸起鼓包43,在圆周上会形成多个凸起鼓包43,0胎压车轮轴心会上跳(称为:0胎压车轮失圆),车辆爆胎产生最为显著的动力学特性变化为爆胎车轮0气压阻力急剧增加。
如果0胎压车轮滚动周长为1.5m,主要受力区域接触位置对应车轮的角度为30度,车速120km/h,即33.33m/s,每秒钟0胎压车轮滚动22.22周,那么滚动通过主要受力区域所需的时间是:0.00375s,因此速度非常快;如果产生凸起鼓包43对应的车轮的角度为5度,那么滚动通过凸起鼓包43所需的时间是:0.000625s,时间非常短,时速越高,凸起鼓包43承压时间越短。
在无内胎无侧壁支撑的轮胎0胎压继续行驶时,硫化成型后的轮胎内表面橡胶层互相接触区域的受力分布、动平衡的要求、硫化成型后的轮胎内表面因生产工艺导致的凸凹情况、轮辋和轮胎胎面发生相对运动、硫化成型后的两轮胎内表面互相接触位置的相互摩擦都非常复杂,不同于普通橡胶产品的受力、橡胶表面凸凹情况、相对运动速度的摩擦和磨损;因此在对硫化成型后的两轮胎内表面互相接触位置产生摩擦区域采取润滑方案时也会区别于普通橡胶摩擦区域的润滑方案。
橡胶在摩擦过程中会发生磨损,橡胶磨损表面的磨痕垂直于摩擦方向,磨痕在橡胶表面形成山脊状凸起,形成磨损斑纹;在橡胶摩擦面设置润滑涂层,可以大幅减少摩擦系数、和磨损。根据本发明的研究和测试,将直径变小后的0胎压轮胎换成相同直径的小轮胎进行测试,研究发现,车轮直径变小对车辆偏航(是指车辆跑偏,车辆偏离既定行驶路线)的影响较小,轮胎橡胶在滚动过程中的形变对偏航影响较大。
在轮胎内表面设置润滑涂层,来降低摩擦力,在夏季高温情况下,通过试验观察内表面设置润滑涂层的无内胎无侧壁支撑的轮胎0胎压以100km/h时速滚动时可以发现,0胎压阻力减小了,0胎压车轮的上下跳动情况消失或者减少了很多,意味着减少了爆胎轮胎滚动失圆程度;随着车辆时速的提高,0胎压车轮轴心上下跳动情况也会加剧,测试发现硫化成型后的轮胎内表面接触位置摩擦系数越小,0胎压阻力越小,轴心上下跳动情况越小或消失,轮胎几乎不失圆滚动越顺畅,爆胎后车辆偏航越小,让车辆更容易控制。
硫化成型后的轮胎内表面的凸凹情况(光滑程度)对摩擦力影响比较大,硫化成型后的轮胎内表面的成型工艺决定了硫化成型后的轮胎内表面的凸凹情况,轮胎成型工艺包括无硫化胶囊硫化和有硫化胶囊硫化:
无硫化胶囊硫化的轮胎与橡胶硫化前轮胎内表面接触的是金属机构、空气或者液体,硫化成型后硫化成型后的轮胎内表面很光滑,硫化成型后的轮胎内表面几乎没有凸凹情况,但这种轮胎成型工艺技术难度大,目前仅有很少轮胎厂家掌握这样的技术,轮胎价格昂贵,目前市场上销售的数量和型号都很少,几乎全是赛车轮胎,其它车型的轮胎几乎没有。
用硫化胶囊硫化的轮胎在轮胎橡胶硫化前与轮胎内表面接触的是橡胶胶囊,为了生产工艺需要,硫化胶囊上都会设置排气线(排气线是指硫化成型后的轮胎内表面凸起的有一定宽度的线,高度一般在0.5mm以上,或者排气线是指硫化胶囊上凹下去的有一定宽度的线,深度一般在0.5mm以上,排气线的宽度一般为1mm)和一些用于排气的压花花纹(也叫掩饰花纹),轮胎成型后,硫化胶囊的压花花纹和排气线会在硫化成型后的轮胎内表面上成型(有的硫化成型的轮胎内表面只有压花花纹没有排气线),造成硫化成型后的轮胎内表面凸凹不平,很粗糙,目前这种轮胎是市场的主流。设置专利2019202528693中的描述的表面干燥的润滑涂层后,润滑效果会被硫化成型后的轮胎内表面的排气线和压花花纹影响而下降。在夏季高温(气温超过30℃)情况下,观察无内胎无侧壁支撑的轮胎0胎压以100km/h时速滚动过程中可以发现轮胎轴心会产生一定跳动,随着车速的提高,跳动也越明显,在特定温度和速度下,跳动达到最大值;影响硫化成型后的轮胎内表面凸凹情况的因素有:排气线密度、排气线高度、排气线之间压花花纹的高度和密度;根据实际观察和测量,发现不同的轮胎品牌,硫化成型后的轮胎内表面的凸凹情况也不相同,米其林品牌轮胎表内表的排气线间距大,排气线间的压花花纹凸凹情况比较小。
车辆爆胎后车辆失控一般发生在爆胎后的5s内,在这段时间车辆还要行驶一段距离(简称爆胎特性);如果按照时速是120km/h计算,爆胎后的3s-5s车辆行驶了100m-166.67m,通过在轮胎内部表面上设置润滑涂层来降低爆胎风险,就要求润滑涂层在轮胎爆胎后的3s-5s内,0气压轮胎滚动过程中润滑涂层在挤压的情况下还能保持良好的润滑性和粘附力,无内胎无侧壁支撑的爆胎安全轮胎可以用权利要求5进行近似测量。
1、在专利2019202528693产品化的过程中,硫化成型后的无内胎无侧壁支撑的轮胎内表面橡胶层上的设置耐磨织物层、或耐磨纸层、或耐磨皮革层后再设置液体润滑剂、半固态润滑剂涂层、表面干燥的润滑层中的一种的方式来提高润滑效果,该方式在实施过程中发现:耐磨织物层、或耐磨纸层、或耐磨皮革层很难与硫化成型后的轮胎内表面良好的结合在一起:如果在轮胎硫化成型后进行粘接,耐磨织物层、或耐磨纸层、或耐磨皮革层很难与不规则硫化成型后的轮胎内表面完好贴合或粘结不牢固(轮胎在0胎压行驶过程中,容易受到载荷挤压脱落);如果在轮胎硫化前实施,贴合工艺很复杂很难操作,同时存在贴合脱落问题、硫化时褶皱变形问题、硫化成型后结合力不强等问题,造成轮胎成品率大幅下降,因而成本高工艺复杂;同时在爆胎后的5s内,在载荷的碾压下容易脱层,导致润滑效果大幅下降;
2、在专利2019202528693产品化的过程中,如果在硫化成型后的无内胎无侧壁支撑的轮胎内表面上设置半固态润滑涂层,当轮胎胎压与环境胎压相同(简称轮胎0气压或0胎压)后,轮胎在载荷的作用下被压扁,轮胎胎侧发生弯曲,硫化成型后的轮胎内表面上的半固态润滑涂层互相接触,在载荷的作用下轮胎在0胎压行驶过程中,半固态润滑涂层会受到很大的挤压力,为了防止半固态润滑涂层被挤压后全部或者大部分从硫化成型后的轮胎内表面脱离,失去或大幅降低润滑能力;就需要选用20℃时相似粘度大于500的润滑脂,如果车重≥1.35吨,(目前电动汽车由于电池缘故,车辆质量较大,一般大于1.35吨)轮胎承载较大时就需要选用20℃时相似粘度大于1000pa.s半固态润滑脂;这种高粘度润滑脂有很大的缺陷:a、施工难度很大,不容易涂刷均匀,工作效率低;b、相比低粘度的润滑脂在高速状态的摩擦力将较大,不利于消除轮胎滚动失圆程度,爆胎后车辆较难控制,0胎压后轮胎行驶的距离短;c、粘度大所用的材料会更多、更重,润滑涂层更厚,不利于轮胎从胎侧散热,同时重量大在车轮高速旋转中产生较大的离心力,更容易产生流动影响润滑效果和车轮动平衡;d、当轮胎0胎压行驶一段距离后,轮胎橡胶在滚动过程中会产生大量的热,碾压和高温会让高粘度的润滑脂粘结到轮辋内表面,轮辋很难清洗影响轮胎拆装,甚至导致轮毂报废。
3、根据车辆的爆胎特性,就要求润滑涂层具有良好的粘附力和润滑性。在前专利2019202528693产品化的过程中,如果在硫化成型后的无内胎无侧壁支撑的轮胎内表面上设置表面干燥的润滑涂层,本发明人发现,表面干燥的润滑涂层如果润滑性较好附着力就会下降,只能在短距离行驶过程中保持润滑,在车辆爆胎后3-5秒内较难控制,同时轮胎0气压续航距离短;如果附着力较好就会影响到润滑性,润滑系数较大,不利于车辆在爆胎后车辆的控制,轮胎0气压续航距离短。在兼顾润滑效果和附着力的情况下,本发明发现这种润滑方式在应对无硫化胶囊硫化轮胎时,能够比较容易应对时速100km/h左右的爆胎情况;但对于采用硫化胶囊硫化的轮胎,在应对高于100km/h爆胎时,效果与无硫化胶囊硫化轮胎有明显差别,车辆在爆胎后的控制难度加大,容易发生交通事故。这种润滑方式在应对无硫化胶囊硫化轮胎时,如果时速太高,比如时速在120km/h或132km/h以上时,或者车辆质量≥1.35吨以上车辆时、0胎压车轮轴心同样会出现明显的跳动,车轮失圆,车轮滚阻系数大,车辆偏航程度加剧,增加了爆胎后车辆的操控性。对于这种情况本发明进行了详细分析和试验:当轮胎胎压与环境胎压相同(简称0胎压)后,轮胎在载荷的作用下被压扁,轮胎胎侧发生弯曲,硫化成型后的轮胎内表面上的表面干燥的润滑涂层互相接触;本发明发现这种涂层同时存在以下问题:a、硫化成型后的轮胎内表面橡胶的硬度较小,在载荷的作用下,硫化成型后的轮胎内表面受力区域的橡胶在受力后面积会增大,固态润滑涂层表面会产生细小的裂缝,表面干燥的润滑涂层不能很好的填充这些裂缝,裂缝的产生会导致摩擦系数的下降;b、在硫化成型后的轮胎内表面表面干燥的润滑涂层接触位置在摩擦力的作用下会产生磨痕和磨损斑纹,固态润滑涂层表面会产生的裂缝,表面干燥的润滑涂层不能很好的填充这些裂缝,裂缝的产生会导致摩擦系数的下降;产生的裂缝的宽度大、数量多摩擦系数就大。对于采用无胶囊硫化成型后的轮胎内表面光滑,产生的摩擦力较小,裂缝宽度和裂缝数量就小,因此还能保持比较好的润滑;对于有硫化胶囊硫化的硫化成型后的轮胎内表面凸凹不平严重,产生的摩擦力就大,裂缝宽度和裂缝数量就大,因此润滑效果明显下降。c、表面干燥的润滑涂层在轮胎0气压挤压摩擦的情况下,摩擦生热大,对轮胎橡胶产生不利影响;
本发明提供一种爆胎安全轮胎,可以克服上述缺点,降低爆胎风险;本发明可以降低车辆在120km/h及以上高速爆胎风险,为车辆高速爆胎提供安全保障;适合质量较大的车辆以及电动汽车(质量≥1.35吨)。
本发明至少适用于二轮车辆、三轮车辆、四轮车辆、4轮以上车辆中的一种,也适用于飞机车轮。
发明内容
本发明解决技术问题采用如下技术方案:一种爆胎安全轮胎,轮胎为无内胎无侧壁支撑的轮胎,当轮胎爆胎后,轮胎被压扁,轮胎胎侧发生弯曲,轮胎内部的两个面互相接触,其特征在于,在硫化成型后的无内胎无侧壁支撑轮胎内表面两侧的胎圈、胎侧、胎肩三个部位中的至少一个部位上,设置有第一润滑涂层和第二润滑涂层。
可选地,第一润滑涂层与硫化成型后的轮胎内表面接触,第一润滑涂层为固态润滑涂层;第二润滑涂层覆盖在第一润滑涂层上,第二润滑涂层为半固态润滑脂涂层、半流体润滑脂涂层、液体润滑剂涂层中的一种。
可选地,固态润滑涂层至少有一层固态润滑涂层组成;或者固态润滑涂层有至少一层粘合涂层和至少一层固态润滑涂层组成,粘合涂层与轮胎内表面接触。
根据权利要求2所述的爆胎安全轮胎,所述轮胎为无内胎无侧壁支撑的轮胎,气温≥20℃,轮胎内部空气相对湿度<10%RH,测试道路标准不低于《公路工程质量检验评定标准》JTGF80/1里面规定的高速公路标准,干燥路面,最大纵坡坡度≤1%,车辆静止放置在水平路面上轮胎最大载重≥负荷能力×65%,当轮胎0气压后,轮胎被压扁,轮胎胎侧发生弯曲,轮胎内部的两个面互相接触:
A、车辆静止状态,在硫化成型后的轮胎内表面未设置第一润滑涂层和第二润滑涂层之前,两个硫化成型后的轮胎内表面互相接触,单位面积受力最大接触位置的摩擦系数为μ;
B、车辆静止状态,在硫化成型后的轮胎内部互相接触的两个面上仅设置第一层固态润滑涂层,两轮胎内表面上的第一润滑涂层互相接触,受力最大的接触位置的摩擦系数为μ1;
C、车辆静止状态,在硫化成型后的轮胎内部互相接触的两个面上设置第一和第二润滑涂层,两轮胎内表面上的第二润滑涂层互相接触,受力最大的接触位置的摩擦系数为μ2;
D、车辆在轮胎0气压状况下直线行驶到500m位置停止,轮胎全程不脱圈,30km/h≤车辆最高时速≤40km/h,车辆时速大于等于30km/h行驶距离≥200m;在硫化成型后的轮胎内部互相接触的两个面上仅设置第一层固态润滑涂层,两轮胎内表面上的第一润滑涂层互相接触,受力最大的接触位置的摩擦系数为μ10;
E、车辆在轮胎0气压状况下直线行驶到500m位置停止,轮胎全程不脱圈,30km/h≤车辆最高时速≤40km/h,车辆时速大于等于30km/h行驶距离≥200m;在硫化成型后的轮胎内部互相接触的两个面上设置第一和第二润滑涂层,两轮胎内表面上的第二润滑涂层互相接触,受力最大的接触位置的摩擦系数为μ20;
其特征在于,所述μ2<μ1<μ,μ20<μ10,μ20<μ,μ、μ1、μ2、μ10、μ20为滚动摩擦系数或滑动摩擦系数。
可选地,所述轮胎为无内胎无侧壁支撑的轮胎,轮胎负荷能力≥400kg,将轮胎胎侧橡胶分割成大小形状相同的橡胶小块,通过打磨橡胶小块的胎侧外表面使其平整,做成厚度均匀的橡胶小块,厚度≥3mm,将2块厚度均匀的橡胶小块分别牢固粘结在2个表面平整光滑的硬质板上;气温在35℃到36℃之间,相对湿度小于10%RH,将分割好的小块放置3个小时以上,让2块加工好的轮胎小块的硫化成型后的轮胎内表面互相接触贴合,贴合面平行于水平面,在垂直于接触区域均匀施加每平方厘米15kg的载荷,施加力的方向平行于接触表面:
F、未使用过的硫化成型后的轮胎内表面未设置第一润滑涂层和第二润滑涂层之前,两个互相接触位置的最大静摩擦力为f;
G、未使用过的硫化成型后的轮胎胎侧内表面仅设置第一润滑涂层,两个第一润滑涂层互相接触位置的最大静摩擦力为f1;
H、未使用过的硫化成型后的轮胎胎侧内表面设置第一润滑涂层和第二润滑涂层,两个互相接触位置的最大静摩擦力为f2;
I、气温≥20℃,轮胎内部空气相对湿度<10%RH,测试道路标准不低于《公路工程质量检验评定标准》JTGF80/1里面规定的高速公路标准,干燥路面,最大纵坡坡度≤1%,车辆静止放置在水平路面上轮胎最大载重≥负荷能力×65%,当轮胎0气压后,轮胎被压扁,轮胎胎侧发生弯曲,轮胎内部的两个面互相接触;车辆在轮胎0气压状况下直线行驶到500m位置停止,轮胎全程不脱圈,30km/h≤车辆最高时速≤40km/h,车辆时速大于等于30km/h行驶距离≥200m;按照上述条件将轮胎胎侧橡胶分割成大小形状相同的橡胶小块进行测试;硫化成型后的轮胎胎侧内表面仅设置第一润滑涂层,两个第一润滑涂层互相接触位置的最大静摩擦力为f11;
J、气温≥20℃,轮胎内部空气相对湿度<10%RH,测试道路标准不低于《公路工程质量检验评定标准》JTGF80/1里面规定的高速公路标准,干燥路面,最大纵坡坡度≤1%,车辆静止放置在水平路面上轮胎最大载重≥负荷能力×65%,当轮胎0气压后,轮胎被压扁,轮胎胎侧发生弯曲,轮胎内部的两个面互相接触;车辆在轮胎0气压状况下直线行驶到500m位置停止,轮胎全程不脱圈,30km/h≤车辆最高时速≤40km/h,车辆时速大于等于30km/h行驶距离≥200m;按照上述条件将轮胎胎侧橡胶分割成大小形状相同的橡胶小块进行测试;硫化成型后的轮胎胎侧内表面设置第一润滑涂层和第二润滑涂层,两个互相接触位置的最大静摩擦力为f22;
所述f2<f1<f,f22<f11,f22<f;
可选地,轮胎断面高度不大于150mm的轮胎,第一润滑涂层与第二润滑涂层的总质量不大于80g;轮胎断面高度不大于200mm的轮胎,第一润滑涂层与第二润滑涂层的总质量不大于160g。
可选地,μ20≤1.1μ2,和/或μ10≤1.1μ1;
可选地,μ2≤0.8μ1,和/或μ2≤1/3μ。
可选地,f2≤1.1f22,和/或f1≤1.1f11。
可选地,f2≤0.8f1,和/或f2≤1/3f。
可选地,第一润滑涂层的厚度小于0.5mm,和/或第二润滑涂层厚度小于0.1mm。
可选地,所述轮胎是采用硫化胶囊硫化成型的轮胎,硫化成型在轮胎内表面有用于排气的压花花纹,或用于硫化排气的排气线条和压花花纹。
可选的,爆胎安全轮胎的涂层施工方法,其特征在于包括以下步骤:首先,对硫化成型后的轮胎内表面进行清洗;其次,待硫化成型后的轮胎内表面清洗干净并干燥后,至少在硫化成型后的轮胎内表面两侧的胎圈部位上喷涂或刷涂第一润滑涂层;待第一润滑涂层干燥固化后,最后在第一润滑涂层上喷涂或刷涂第二润滑涂层。
可选地,μ1≤1/2μ,和/或μ2≤0.7μ1;
可选地,f1≤0.5f。
可选地,第一润滑涂层在成为固态润滑涂层前为液体润滑剂或喷剂;第一润滑涂层和第二润滑涂层的材料中至少含石墨、二硫化钼、硅、氟成份中的一种。
可选地,所述半固态润滑脂和半流体润滑脂在25℃时ASTM锥入度>22mm,和/或半固态润滑脂和半流体润滑脂在20℃时相似粘度<500pa.s。
可选地,第二润滑涂层为:a、由聚醚类合成油为基础油,特殊锂皂为稠化剂并加有抗氧化、防锈蚀、抗老化等多种添加剂精制而成的润滑脂;b、有机硅润滑脂(以硅油为基础油的润滑脂);c、含有氟成分的润滑脂;三类润滑脂中的一种。
粘合涂层的主要目的是为了增强与轮胎内表面的结合力,为固态润滑涂层与轮胎内表面提供良好的粘合过度,保证良好的粘合性能,与前专利2019202528693描述的耐磨层耐磨特性明显不同。
第一润滑涂层为下面固体润滑材料中的至少一种,固体润滑材料包括:石墨、氟化石墨,凡士林、玻璃微珠、二硫化钼、氮化硼、氮化硅、聚四氟乙烯、尼龙、聚甲醛、聚酰亚胺、聚对羟基苯甲酸酯;以及软金属金、银、锡、铅、镁、铟。
所述轮胎适用的车辆空载重量≥1吨,所述轮胎适用的爆胎速度≥80km/h,所述轮胎适用于轮胎断面高度≥90mm的轮胎;第一润滑涂层的液体润滑剂为水基润滑剂,第二润滑涂层具有防水作用,可以防止轮胎内部的水蒸气和拆装轮胎刷的润滑液对第一润滑涂层的影响。
压花花纹也叫掩饰花纹,起到排气和掩饰外观不良的作用;用于硫化排气的排气线条也叫排气线,所述排气是指轮胎硫化时排除硫化胶囊与未硫化轮胎内表面之间的空气。
轮胎全程不脱圈是指轮胎不会从轮辋的胎圈座上脱落划入轮毂轮槽33;干燥路面是指路面没有肉眼可见的水,车辆在上面不容易打滑。
在硫化成型后的轮胎内表面两侧的胎圈、胎侧、胎肩三个部位中至少在硫化成型后的轮胎内表面两侧的胎圈(胎圈位置内部包含有三角胶)部位上,设置有第一润滑涂层和第二润滑涂层。因为轮胎0气压在载荷作用下被压扁后,轮毂轮缘下方轮胎内部胎圈内表面总会受到压力,为了节约成本,可以仅在内表面胎圈部位上设置第一润滑涂层和第二润滑涂层。当然,在硫化成型后的轮胎内部胎面内表面上也可以设置第一润滑涂层,或者设置第一和第二润滑涂层,这种情况特别适合于轮胎断面高度比较大的轮胎,如断面高度>140mm的轮胎,这种轮胎在受到侧向力时,胎面左右移动量较大,轮内表面胎胎面部位会压到硫化成型后的轮胎内表面胎圈部位上,在轮内表面胎胎面部位上设置润滑涂层后,硫化成型后的轮胎内表面互相接触部位的摩擦系数会更小。
本发明第一润滑涂层采用水基润滑涂层更环保,水不会腐蚀硫化成型后的轮胎内表面。对硫化成型后的轮胎内表面进行清洗,是为了清洗掉影响第一润滑涂层粘附在硫化成型后的:轮胎内表面的灰尘、轮胎硫化时残留的硫化胶囊隔离剂(防止轮胎内表面沾黏在硫化胶囊上)、胎胚(轮胎橡胶未硫化成型前)内表面的喷涂材料、轮胎硫化成型后为了掩盖外观不良而喷涂的掩饰液。
第一润滑涂层和第二润滑涂层形成的圆环最小半径比轮胎最小内径大10mm以上,目的是:1、防止润滑涂层涂抹或喷涂到胎圈与轮毂配合的地方而降低脱圈阻力;2、在扒胎过程中防止润滑涂层触碰到扒胎机。
橡胶的摩擦系数很复杂,除了表面凸凹情况影响外,还会受到温度和接触面积的影响,接触面积越大,摩擦系数就越大,接触面积又与受力大小有关;滑动摩擦系数还与速度、温度有关。
以技术背景的0.00375s通过硫化成型后的轮胎内表面摩擦表面时,在一定温度范围,硫化成型后的轮胎内表面的摩擦会出现粘附流动,从而加大了摩擦力(参考2008世界橡胶工业橡胶的摩擦,君轩)。
本发明对技术背景里面的1、2、3进行对比:
对比背景里面的1,本发明施工简单,不影响轮胎硫化前的生产工艺,在硫化成型后的轮胎上施工第一润滑涂层和第二润滑涂层,施工工艺简便,轮胎成品率高、成本低。
对比技术背景里面的2,本发明的第一润滑涂层在固化前是水基液体或喷剂,喷涂或刷涂非常简单方便,涂层厚度和重量都能很好的控制,重量轻;本发明选用的第二润滑涂层为半固态润滑脂涂层、半流体润滑脂涂层、油基液体润滑剂涂层中的一种;a、半固态润滑脂涂层或半流体润滑脂涂层在25℃时ASTM锥入度大于22mm,材料比较软,在20℃时相似粘度小于500pa.s,粘度小;一定条件下,本发明选用的半固态润滑脂涂层或半流体润滑脂涂层在25℃时ASTM锥入度大于29.5mm,材料硬度小、材质软,在20℃时相似粘度小于300pa.s,粘度小,流动性好;或者,选用油基液体润滑剂涂层在40℃时的运动粘度在700cst左右,粘度小流动性非常好;上述中的粘度都比较小,流动性都比较好,施工非常方便快捷,涂层薄重量轻,粘度小,高速润滑性好,有利于消除0胎压轮胎高速行驶中的失圆情况;b、由于粘度小,当轮胎0胎压行驶一段距离后,轮胎橡胶在滚动过程中如果半固态润滑脂涂层、或半流体润滑脂涂层、或油基液体润滑剂涂层接触到轮辋内表面,轮辋非常好清洗,用布一擦就掉,非常便捷。两层涂层的厚度很小,质量轻,散热好。因此,可以克服上述2中a、b、c、d的缺点。
对比背景里面的3,在载荷的作用下,硫化成型后的轮胎内表面受力区域的橡胶在受力后面积会增大,第一润滑涂层会出现裂缝,a、由于第二润滑涂层材料硬度小、材料软,粘度小、流动性好,第二润滑涂层中的半固态润滑脂涂层,或半流体润滑脂涂层,或油基液体润滑剂涂层在载荷的挤压下会进入裂缝,增加裂缝处的润滑效果,降低互相接触位置的摩擦系数;b、第一润滑涂层是干燥的固态润滑涂层,对第二润滑涂层有一定的吸附能力;即使在载荷的挤压下第二润滑涂层也会有一部分保留在第一润滑涂层表面,降低互相接触位置的摩擦系数。在a和b的共同作用下,互相接触位置的摩擦系数相比对比背景里面的3的摩擦系数会出现明显的降低,最好情况可以降低35%-40%以上。摩擦系数的降低能够减少或避免0胎压轮胎高速滚动过程中的失圆程度,0胎压轮胎滚动也更顺畅,爆胎后车辆偏航将减小,让车辆更容易控制,0胎压轮胎行驶的距离将增加;特别适用于有硫化胶囊硫化的轮胎,可以降低车辆在120时速以上或132时速以上爆胎风险,避免或减少爆胎轮胎滚动失圆程度,0胎压轮胎滚动更顺畅,爆胎后车辆偏航将减小,让车辆更容易控制。如果采用无硫化胶囊硫化轮胎,对赛车和飞机轮胎爆胎会非常有帮助,可以应对赛车160km/h-300km/h之间的爆胎。c、第二润滑涂层中的半固态润滑脂涂层,或半流体润滑脂涂层,或油基液体润滑剂涂层,0气压轮胎在行驶的过程中,摩擦产生的热量少,对轮胎橡胶有利。
本发明特别适用于最高时速超过160km/h的赛车赛场爆胎场景,以及最高时速超过100km/h的轿车、SUV、MPV的车辆在高速道路爆胎场景,在部分或全部皮卡或小型客车爆胎情景也能使用,对于载重车辆和中大型客车爆胎也有一定作用;本发明适用于最大载重在1.0吨以上的车辆,或空载在1.0吨以上的车辆。在爆胎后,本发明为车辆辅助驾驶和汽车全无人驾驶提供了0气压轮胎参数化的受力模型,便于车辆辅助驾驶和汽车全无人驾驶操控。
本发明的目的是:1、相对专利2019202528693,施工更简单方便,成品率更高、成本低;2、相比专利2019202528693,0胎压轮胎被压扁后互相接触位置的摩擦系数更小,能够为有硫化胶囊硫化的硫化成型后的轮胎内表面提供更小的摩擦系数,避免或减少爆胎轮胎滚动失圆程度,0胎压轮胎滚动更顺畅,爆胎后车辆偏航将减小,让车辆更容易控制,0气压行驶距离更长;可以减少车辆在80时速以上、或120时速以上、或132时速以上时的爆胎风险,避免或减少0气压轮胎滚动失圆程度,0胎压轮胎滚动更顺畅,爆胎后车辆偏航将减小,让车辆更容易控制。3、为无人驾驶爆胎后提供简化的轮胎受力模型,便于爆胎后无人驾驶和辅助驾驶的操控。如果采用无硫化胶囊硫化轮胎,对赛车和飞机轮胎爆胎会非常有帮助,对赛车和飞机轮胎爆胎会非常有帮助,可以应对赛车160km/h-300km/h之间的爆胎。4、第一润滑涂层为固态润滑涂层,可以保证与硫化成型后轮胎内表面产生牢靠的结合力(附着力),第二润滑涂层为半固态润滑脂涂层、半流体润滑脂涂层、油基液体润滑剂涂层中的一种,可以增强润滑涂层的润滑效果;通过第一润滑涂层与第二润滑涂层的配合,就可以同时兼顾附着力和润滑性;5、无内胎无侧壁支撑的轮胎0气压行驶一段距离后,轮辋内表面很好清理。6、相比专利2019202528693,无内胎无侧壁支撑的轮胎在0胎压情况下可以行驶更长距离,在防止轮胎从胎圈座上脱圈的效果更好。本发明可以消除爆胎后,因车轮轴心上下跳动、车身颤抖,方向盘发生抖动而造成的驾驶员恐慌心理,让驾驶员冷静应对车辆爆胎后的操控,从而降低或避免交通事故的发生。7、相比专利2019202528693,本专利可以应对质量较大车辆的爆胎安全控制问题,适合最大载重质量≥1.35吨,车速不小于100km/h的车辆。8、两层润滑涂层的总重量轻,不影响操控性、舒适性,更节能环保。
本发明可以降低车辆在120km/h及以上高速爆胎风险,为高速爆胎后的车辆的安全提供保障;同时适合质量较大的车辆以及电动汽车(质量≥1.35吨)。
附图说明
图1为轮胎截面示意图;
图2为轮胎截面的另一张剖面示意图;
图3为轮毂示意图;
图4为轮毂与轮胎0胎压被压扁轮胎内部互相接触的截面示意图;
图5为轮胎内表面上设置第一润滑涂层的示意图;
图6为本发明轮胎内表面上设置第一润滑涂层和第二润滑涂层的示意图;
图7为轮胎内表面排气线和压花纹路的示意图;
图8为轮胎正常气压的示意图;
图9为轮胎0气压被压扁的示意图;
图10为未设置润滑涂层的无内胎无侧壁支撑轮胎0气压状态滚动轨迹示意图;
图11为设置润滑涂层后的无内胎无侧壁支撑轮胎0气压状态滚动轨迹示意图;
图12为车辆进行45°凸起轮胎冲击测试示意图;
附图中的轮胎为均为硫化成型后的轮胎。
图中标记示意为:
10-水平地面,20-车辆外侧面,21-车辆内侧面;
30-轮毂,31-内轮缘;32-车体内侧胎圈座;33-轮毂轮槽;34-车体外侧胎圈座;35-外轮缘;36-轮辋内表面;37-外轮缘距离水平地面的高度;38-内轮缘距离水平地面的高度;
40-轮胎,41-未设置润滑涂层的轮胎0气压状态滚动轨迹,42-设置润滑涂层后的轮胎0气压状态滚动轨迹,43-凸起鼓包;
100-胎圈,101-胎圈三角胶,102-胎唇;
110-未设置润滑涂层的胎圈内表面,120-轮胎胎圈内表面第一润滑涂层,130-轮胎胎圈内表面第一润润滑涂层和第二润滑涂层;
200-胎侧,210-未设置润滑涂层的胎侧内表面,220-轮胎胎侧内表面第一润滑涂层,230-轮胎胎侧内表面第一润润滑涂层和第二润滑涂层;
300-胎肩,310-未设置润滑涂层的胎肩内表面,320-轮胎胎肩内表面第一润滑涂层,330-轮胎胎侧内表面第一润润滑涂层和第二润滑涂层;
400-胎面,410-未设置润滑涂层的胎面内表面;
500-轮胎内表面,510-车辆外侧面轮胎内部互相接触位置,520-车辆内侧面轮胎内部互相接触位置;530-轮胎断面高度;
600-排气线,610-压花花纹。
700-车辆,710-车轮;
800-45°路障;
具体实施方式
下面结合实施例及附图对本发明的技术方案作进一步阐述。
测试环境:气温≥20℃,轮胎内部空气相对湿度<10%RH,测试道路标准不低于《公路工程质量检验评定标准》JTGF80/1里面规定的高速公路标准,干燥路面,最大纵坡坡度≤1%,车辆静止放置在水平路面上轮胎最大载重≥负荷能力×65%。
实施例1
参考图1-图11,测试车辆为2013款标致408四轮前驱,测试轮胎为米其林205/60R16,轮胎为无内胎无侧壁支撑的轮胎(胶囊硫化轮胎),轮胎负荷指数为92,负荷能力为630kg,车辆静止放置在水平路面上轮胎最大载重≥负荷能力×65%,轮辋宽度为7J,轮胎断面高度530约为123mm,车辆外侧面轮胎内部互相接触位置510,车辆内侧面轮胎内部互相接触位置520;测试全程轮胎两侧的胎唇102没有从轮毂30和车体内侧胎圈座32和车体外侧胎圈座34上脱落;轮胎40的轮胎内表面500为硫化成型后的轮胎内表面,轮胎内表面是硫化胶囊成型的,有排气线600和压花花纹610,如图7;米其林轮胎相比其它轮胎厂家,它的排气线600较疏,压花花纹610有多种形状,图示中仅为示意。按照权利要求5进行测定,f2≤1.1f22,f1≤1.1f11,f2≤0.65f1,f2≤1/4f;根据权利要求4,μ2≤0.65μ1,μ20≤1.1μ2,μ10≤1.1μ1。
方案1,轮胎40的轮胎内表面500为硫化成型后的轮胎内表面,没有设置任何润滑涂层,参考图1、图2:未设置润滑涂层的胎圈内表面110、未设置润滑涂层的胎侧内表面210、未设置润滑涂层的胎肩内表面310、未设置润滑涂层的胎面内表面410,车辆外侧面轮胎内部互相接触位置510和车辆内侧面轮胎内部互相接触位置520是轮胎硫化成型后的轮胎内表面互相接触。
方案2,轮胎40内表面两侧的胎圈、胎侧、胎肩三个部位先清洗,再刷涂水基润滑剂、待干燥固化后得到均匀厚度的第一润滑涂层(三个部位),如图5,轮胎胎圈内表面第一润滑涂层120,轮胎胎侧内表面第一润滑涂层220,轮胎胎肩内表面第一润滑涂层320;第一润滑涂层的主要润滑成分为石墨,润滑涂层厚度在0.1-0.2mm之间,石墨润滑性能好,具有很高的承载能力,同时石墨散热性能耗,便于轮胎散热;车辆外侧面轮胎内部互相接触位置510和车辆内侧面轮胎内部互相接触位置520是第一润滑涂层互相接触。
方案3,轮胎40内表面两侧的胎圈、胎侧、胎肩三个部位先清洗,再刷涂水基润滑剂、待干燥固化后得到均匀厚度的第一润滑涂层,然后刷涂第二润滑涂层(三个部位),如图6是在图5的基础上增加了均匀厚度的第二润滑涂层,轮胎胎圈内表面第一润润滑涂层和第二润滑涂层130,轮胎胎侧内表面第一润润滑涂层和第二润滑涂层230,轮胎胎肩内表面第一润润滑涂层和第二润滑涂层330;第一润滑涂层的主要润滑成分为石墨,第一润滑涂层厚度在0.1-0.2mm之间,石墨润滑性能好,具有很高的承载能力,同时石墨散热性能耗,便于轮胎散热;第二润滑涂层为1号有机硅润滑脂、粘度小,流动性好、施工便捷;第二润滑涂层吸附和侵入第一润滑涂层中,膜厚不超过0.1mm,这样第二润滑涂层不会在离心力的作用下被甩飞,第一润滑涂层与第二润滑涂层的总质量不超过30g,质量轻,节能环保。车辆外侧面轮胎内部互相接触位置510和车辆内侧面轮胎内部互相接触位置520是第二润滑涂层互相接触。
测试过程:采用所述的测试环境进行测试,右前轮轮胎40胎压为0,轮胎40被压扁,如图4和图9;方案1车辆直线加速到60km/h以上时,加大加速踏板,车速提升缓慢,车速不到80km/h,车辆就很难再进行加速,车辆抖动严重,方向盘也发生抖动,噪声很大,参考图10,未设置润滑涂层的轮胎0气压状态滚动轨迹,轨迹上有多个凸起鼓包43(轮胎失圆情况严重);车辆停止拆开轮胎,发现轮胎内部有大量气密层碎片;方案2车辆直线加速到90km/h以上时,车辆加大加速踏板,车速提升缓慢,车速不到110km/h,车辆就很难再进行加速,车辆出现较明显的抖动现象,噪声较大,车辆停止拆开轮胎,发现轮胎内部气密层脱层;方案3车辆可以顺利的直线加速到120km/h以上,车辆没有明显感觉到抖动现象,噪声较小,拆开轮胎,轮胎内部没有发现明显异常,参考图11,设置润滑涂层后的轮胎0气压状态滚动轨迹42,滚动轨迹为圆形或近似为圆形。
实施例2
本实施例与实施例1的不同之处在于测试过程不同。
测试过程:采用所述的测试环境进行测试,右前轮轮胎40胎压为0,轮胎40被压扁,如图4和图9;车辆加速到40km/h进行匀速行驶,方案1车辆行驶不到2km,车辆抖动严重,方向盘也发生抖动,噪声很大;车辆停止拆开轮胎,发现轮胎内部有大量气密层碎片;方案2车辆行驶不到4km,车辆出现较明显的抖动现象,噪声较大,车辆停止拆开轮胎,发现轮胎内部气密层脱层;方案3车辆可以顺利行驶7km以上,车辆没有明显感觉到抖动现象,噪声较小,拆开轮胎,轮胎内部没有发现肉眼可见的碎屑。由此可见,方案3有较好的0气压应急续航能力。
实施例3
本实施例与实施例1的不同之处在于测试过程不同。
测试过程:采用所述的测试环境进行测试,轮胎初始温度位60℃±1℃,车辆以120km/h±1km/h匀速行驶,轮胎如图8,车辆右前轮发生突然泄气到环境气压,泄气的时间<0.5s,爆胎后的0.75s之内保持方向盘角度不变,爆胎后3.5s不能踩刹车(根据相关资料统计,驾驶员在120km/h±1km/h驾驶车辆时,如果突发爆胎,驾驶员的双手的平均反应时间是0.75s,脚从油门放到制动踏板的平均时间为3.5s),如图4和图9;
爆胎后方案1车辆不受方向盘控制车身向右前方急剧偏航偏离车道,随后爆胎车轮轴线上下跳动,车辆急剧抖动,方向盘急剧抖动;如果在现实场景中,爆胎后车辆的急剧偏航和车辆的剧烈抖动会让驾驶员恐慌造成交通事故;根据图10所示,未设置润滑涂层的轮胎0气压状态滚动轨迹,轨迹上有多个凸起鼓包43,0气压轮胎受力也呈现类似脉冲的力,这样会导致车辆在爆胎后车辆偏航时存在欺骗性,意味着偏航的程度也是呈脉冲形式体现的,驾驶员如果按照最严重的偏航程度进行矫正就会矫枉过正,导致车辆向爆胎的另一侧冲出造成交通事故,根据相关统计这种事故占比在80%以上。
由于轮胎内表面的摩擦系数较大,方案2车辆爆胎后,车辆也会出现一定程度的偏航,随后车身会出现一定程度的颠簸,凸起鼓包43没有被压平,车辆较难控制;
由于轮胎内表面的摩擦系数较小,方案3车辆爆胎后,车辆偏航很小;摩擦系数小,在圆周方向胎面相对轮辋相对滑动,凸起鼓包43会被压平,因此车辆行驶平稳没有明显的跳动现象,车辆很好控制,从而能降低交通事故,本方案适用于驾驶员或无人驾驶操控。
实施例4
本实施例与实施例3不同之处在于,爆胎时方向盘锁死,让方向盘在爆胎后的5s内转向角保持不变(由于配合间隙导致的方向盘角度微小的变化可以忽略不计),爆胎的轮胎为右后轮是从动轮,在爆胎车轮上安装车轮扭矩传感器,测试爆胎后5s内爆胎车轮的滚动扭矩。方案1的扭矩为T1,由于爆胎后方案的车轮会产生较大的跳动,因此扭矩变动很大;方案2的扭矩为T2,由于爆胎后方案的车轮会产生较小的跳动,因此扭矩变动较小;方案3的扭矩为T3,由于爆胎后方案的车轮几乎不产生跳动,因此扭矩变动最小;测试结果:T3max≤0.65T2max,T2max≤0.5T1max,从结果上可以得知,方案3的0气压阻力最小,从而能够让车辆在爆胎后更加可控。
实施例5
本实施例与实施例3的不同之处在于爆胎时速为132km/h±2km/h,对比实施例1中的方案2和方案3。
由于轮胎内表面的摩擦系数较大,方案2在爆胎后,车辆也会出现较大程度的跑偏,随后车身会出现较大程度的颠簸,车辆较难控制。
由于轮胎内表面的摩擦系数较小,方案3车辆爆胎后,车辆偏航很小(这里的偏航主要是由于车轮直径变小引起的),摩擦系数小,凸起鼓包43会被压平,因此车辆行驶平稳没有明显的跳动现象,车辆很好控制,从而能降低交通事故;本方案适用于人工驾驶、辅助驾驶和无人驾驶操控。
实施例6
本实施例与实施例5的不同之处在于爆胎时速为144km/h±2km/h,对比实施例1中的方案2和方案3。
由于轮胎内表面的摩擦系数较大,方案2在爆胎后,车辆也会出现严重的跑偏,随后车身会出现颠簸,车辆很难控制。
由于轮胎内表面的摩擦系数较小,方案3车辆爆胎后,车辆偏航较小(这里的偏航主要是由于车轮直径变小引起的),摩擦系数小,凸起鼓包43会被压平,因此车辆行驶平稳没有明显的跳动现象,车辆较好控制,从而能降低交通事故;本方案适用于人工驾驶、辅助驾驶和无人驾驶操控。
实施例7
采用所述的测试环境进行测试,测试车辆为2013款标致408四轮前驱,测试轮胎为米其林205/60R16,轮胎为无内胎无侧壁支撑的轮胎,轮胎负荷指数为92,负荷能力为630kg,车辆静止放置在水平路面上轮胎最大载重≥负荷能力×65%,轮辋宽度为7J,轮胎断面高度530约为123m。车辆以120km/h匀速行驶1小时,所有轮胎在1秒之内达到0胎压,在轮胎负荷指数对应的负荷能力≥85%时,轮胎被压扁,轮胎内部的两个面互相接触,所有轮胎0胎压后松开油门踏板,让手动挡车辆保持空挡直线自由滑动到时速50km/h时,或者让自动挡车辆保持D档直线自由滑动到时速50km/h时,滑行道路的最大纵坡坡度≤1%,轮胎全程不脱圈:
A、硫化成型后的轮胎内表面未设置第一润滑涂层和第二润滑涂层前,滑行的距离为L;
B、在硫化成型后的轮胎内部互相接触的两个面上仅设置第一润滑涂层,滑行的距离为L1;
C、在硫化成型后的轮胎内部互相接触的两个面上设置第一润滑涂层和第二润滑涂层,滑行的距离为L2;
L≤0.5L,L1≤0.8L2,L≤1/3L2。
实施例8
本实施例的无内胎无侧壁支撑的轮胎与实施例1-7所述的轮胎不同,实施例1-6所述的轮胎在0气压时,在载荷的作用下轮胎就会被压扁,轮胎胎侧橡胶不能支撑车辆载荷,轮胎内部两个内表面互相接触。
本实施例所述的是一种特殊的无内胎无侧壁支撑的轮胎:是轮胎胎侧橡胶弯曲强度较低的缺气保用轮胎,这种轮胎相比侧橡胶弯曲强度大的缺气保用轮胎乘坐舒适性要好;在水平路面车辆静止状况,这种轮胎在0气压时,轮胎胎侧橡胶能够支撑车辆载荷保持轮胎内表面不发生互相接触,并且0气压状态能够行驶较远距离;但轮胎在爆胎瞬间,由于运动车辆的瞬间下沉冲击导致轮胎在短时间内承载增大增,会导致轮胎内部的两个面会产生互相接触,这种轮胎称为柔性缺气保用轮胎。
轮胎0气压后,轮胎内部的两个面一旦互相接触,就会造成轮胎0气压阻力大幅增加,这将导致车辆偏航失控,造成交通事故。采用胶囊硫化的柔性缺气保用轮胎,车辆132km/h±2km/h,采用所述测试环境进行测试,车辆为前驱4轮SUV车辆,载重1.65吨,车辆右前轮发生突然爆胎泄气到环境气压,泄气的时间<0.5s,胎后的0.75s之内保持方向盘角度不变,爆胎后3.5s不能踩刹车(根据相关资料统计,驾驶员在120km/h以上驾驶车辆时,如果突发爆胎,驾驶员的双手的平均反应时间是0.75s,脚从油门放到制动踏板的平均时间为3.5s),爆胎车辆向下冲击力最大时,两个轮胎内表面互相接触如图4和图9;
A.轮胎内表面未设置润滑涂层,爆胎后,轮胎内表面互相接触位置摩擦力f大,爆胎后轮胎0气压阻力很大,车辆向右剧烈偏航,车辆很难控制车辆。
B.轮胎胎肩、胎侧、胎圈内表面设置第一润滑涂层,第一润滑涂层主要润滑材质为二硫化钼,第一润滑涂层厚度在0.2mm之内,轮胎内表面互相接触位置摩擦力f1,f1,f1≤0.5f,爆胎轮胎0气压阻力较小,爆胎后车辆向右有一定程度的偏航,车辆比较容易控制。
C.轮胎胎肩、胎侧、胎圈内表面内表面设置第一润滑涂层和第二润滑涂层,第一润滑涂层主要润滑材质为二硫化钼,第一润滑涂层厚度在0.2mm之内;第二润滑涂层为含氟润滑脂,第二润滑涂层厚度小于0.1mm,两层润滑材料的总重小于80g,轮胎内表面互相接触位置摩擦力f2最小,f2≤0.65f1,爆胎后轮胎0气压阻力最小,爆胎后车辆向右轻微偏航,车辆很好控制。
实施例9
参考图12,车辆700以v箭头方向行驶,车轮710进行45°路障(100mm高)800冲击测试,测试充气轮胎型号:215/50R17,胎压为2.3bar,车辆:标致408,,车辆满载。
方案1,参考图2,轮胎内表面500没有设置润滑涂层的轮胎,数量为3条。
方案2,参考图6,轮胎40内表面两侧的胎圈、胎侧、胎肩三个部位先清洗,再刷涂水基润滑剂、待干燥固化后得到均匀厚度的第一润滑涂层,然后刷涂第二润滑涂层(三个部位),如图6是在图5的基础上增加了均匀厚度的第二润滑涂层,轮胎胎圈内表面第一润润滑涂层和第二润滑涂层130,轮胎胎侧内表面第一润润滑涂层和第二润滑涂层230,轮胎胎肩内表面第一润润滑涂层和第二润滑涂层330;第一润滑涂层的主要润滑成分为石墨,第一润滑涂层厚度在0.1-0.2mm之间,石墨润滑性能好,具有很高的承载能力,同时石墨散热性能耗,便于轮胎散热;第二润滑涂层为1号有机硅润滑脂、粘度小,流动性好、施工便捷;第二润滑涂层吸附和侵入第一润滑涂层中,膜厚不超过0.1mm,这样第二润滑涂层不会在离心力的作用下被甩飞,第一润滑涂层与第二润滑涂层的总质量不超过30g,质量轻,节能环保。车辆外侧面轮胎内部互相接触位置510和车辆内侧面轮胎内部互相接触位置520是第二润滑涂层互相接触;轮胎数量为3条。
测试过程:
方案1
测试第1条轮胎,车辆以35时速冲击100mm高的凸起50,共冲击4次,轮胎胎侧没有损伤和漏气;车辆继续以40时速冲击100mm高的凸起50,第1次冲击,轮胎三角胶开裂漏气,开裂口朝向轮毂轮缘,终止测试。
测试第2条轮胎,车辆以35时速冲击100mm高的凸起50,共冲击4次,轮胎胎侧没有损伤和漏气;车辆继续以40时速冲击100mm高的凸起50,第1次冲击,轮胎胎侧鼓包并开裂漏气,终止测试。
测试第3条轮胎,车辆以35时速冲击100mm高的凸起50,共冲击4次,轮胎胎侧没有损伤和漏气;车辆继续以40时速冲击100mm高的凸起50,第1次冲击,轮胎爆胎,终止测试。
方案2
测试的3条轮胎在完成35时速和40时速各4次冲击后,轮胎没有漏气现象,轮胎胎侧没有鼓包和开裂现象。
根据测试可以发现,轮胎在鼓包冲击时,轮胎挤压变形,轮胎内表面会触碰在一起;方案2在轮胎内表面设置润滑涂层后,轮胎内表面相互解除后会产生滑动泄力,从而保护了轮胎胎侧不易产生鼓包和开裂,降低了论调鼓包、开裂风险,同时降低了爆胎风险。

Claims (16)

  1. 一种爆胎安全轮胎,轮胎为无内胎无侧壁支撑的轮胎,当轮胎爆胎后,轮胎被压扁,轮胎胎侧发生弯曲,轮胎内部的两个面互相接触,其特征在于,在硫化成型后的无内胎无侧壁支撑轮胎内表面两侧的胎圈、胎侧、胎肩三个部位中的至少一个部位上,设置有第一润滑涂层和第二润滑涂层。
  2. 根据权利要求1任一项权利要求所述的爆胎安全轮胎,其特征在于,第一润滑涂层与硫化成型后的轮胎内表面接触,第一润滑涂层为固态润滑涂层;第二润滑涂层覆盖在第一润滑涂层上,第二润滑涂层为半固态润滑脂涂层、半流体润滑脂涂层、液体润滑剂涂层中的一种。
  3. 根据权利要求2任一项权利要求所述的爆胎安全轮胎,其特征在于,固态润滑涂层至少有一层固态润滑涂层组成;或者固态润滑涂层有至少一层粘合涂层和至少一层固态润滑涂层组成,粘合涂层与轮胎内表面接触。
  4. 根据权利要求2所述的爆胎安全轮胎,所述轮胎为无内胎无侧壁支撑的轮胎,气温≥20℃,轮胎内部空气相对湿度<10%RH,测试道路标准不低于《公路工程质量检验评定标准》JTGF80/1里面规定的高速公路标准,干燥路面,最大纵坡坡度≤1%,车辆静止放置在水平路面上轮胎最大载重≥负荷能力×65%,当轮胎0气压后,轮胎被压扁,轮胎胎侧发生弯曲,轮胎内部的两个面互相接触:
    A、车辆静止状态,在硫化成型后的轮胎内表面未设置第一润滑涂层和第二润滑涂层之前,两个硫化成型后的轮胎内表面互相接触,单位面积受力最大接触位置的摩擦系数为μ;
    B、车辆静止状态,在硫化成型后的轮胎内部互相接触的两个面上仅设置第一层固态润滑涂层,两轮胎内表面上的第一润滑涂层互相接触,受力最大的接触位置的摩擦系数为μ1;
    C、车辆静止状态,在硫化成型后的轮胎内部互相接触的两个面上设置第一和第二润滑涂层,两轮胎内表面上的第二润滑涂层互相接触,受力最大的接触位置的摩擦系数为μ2;
    D、车辆在轮胎0气压状况下直线行驶到500m位置停止,轮胎全程不脱圈,30km/h≤车辆最高时速≤40km/h,车辆时速大于等于30km/h行驶距离≥200m;在硫化成型后的轮胎内部互相接触的两个面上仅设置第一层固态润滑涂层,两轮胎内表面上的第一润滑涂层互相接触,受力最大的接触位置的摩擦系数为μ10;
    E、车辆在轮胎0气压状况下直线行驶到500m位置停止,轮胎全程不脱圈,30km/h≤车辆最高时速≤40km/h,车辆时速大于等于30km/h行驶距离≥200m;在硫化成型后的轮胎内部互相接触的两个面上设置第一和第二润滑涂层,两轮胎内表面上的第二润滑 涂层互相接触,受力最大的接触位置的摩擦系数为μ20;
    其特征在于,所述μ2<μ1<μ,μ20<μ10,μ20<μ,μ、μ1、μ2、μ10、μ20为滚动摩擦系数或滑动摩擦系数。
  5. 根据权利要求2所述的爆胎安全轮胎,所述轮胎为无内胎无侧壁支撑的轮胎,轮胎负荷能力≥400kg,将轮胎胎侧橡胶分割成大小形状相同的橡胶小块,通过打磨橡胶小块的胎侧外表面使其平整,做成厚度均匀的橡胶小块,厚度≥3mm,将2块厚度均匀的橡胶小块分别牢固粘结在2个表面平整光滑的硬质板上;气温在35℃到36℃之间,相对湿度小于10%RH,将分割好的小块放置3个小时以上,让2块加工好的轮胎小块的硫化成型后的轮胎内表面互相接触贴合,贴合面平行于水平面,在垂直于接触区域均匀施加每平方厘米15kg的载荷,施加力的方向平行于接触表面:
    A、未使用过的硫化成型后的轮胎内表面未设置第一润滑涂层和第二润滑涂层之前,两个互相接触位置的最大静摩擦力为f;
    B、未使用过的硫化成型后的轮胎胎侧内表面仅设置第一润滑涂层,两个第一润滑涂层互相接触位置的最大静摩擦力为f1;
    C、未使用过的硫化成型后的轮胎胎侧内表面设置第一润滑涂层和第二润滑涂层,两个互相接触位置的最大静摩擦力为f2;
    D、气温≥20℃,轮胎内部空气相对湿度<10%RH,测试道路标准不低于《公路工程质量检验评定标准》JTGF80/1里面规定的高速公路标准,干燥路面,最大纵坡坡度≤1%,车辆静止放置在水平路面上轮胎最大载重≥负荷能力×65%,当轮胎0气压后,轮胎被压扁,轮胎胎侧发生弯曲,轮胎内部的两个面互相接触;车辆在轮胎0气压状况下直线行驶到500m位置停止,轮胎全程不脱圈,30km/h≤车辆最高时速≤40km/h,车辆时速大于等于30km/h行驶距离≥200m;按照上述条件将轮胎胎侧橡胶分割成大小形状相同的橡胶小块进行测试;硫化成型后的轮胎胎侧内表面仅设置第一润滑涂层,两个第一润滑涂层互相接触位置的最大静摩擦力为f11;
    E、气温≥20℃,轮胎内部空气相对湿度<10%RH,测试道路标准不低于《公路工程质量检验评定标准》JTGF80/1里面规定的高速公路标准,干燥路面,最大纵坡坡度≤1%,车辆静止放置在水平路面上轮胎最大载重≥负荷能力×65%,当轮胎0气压后,轮胎被压扁,轮胎胎侧发生弯曲,轮胎内部的两个面互相接触;车辆在轮胎0气压状况下直线行驶到500m位置停止,轮胎全程不脱圈,30km/h≤车辆最高时速≤40km/h,车辆时速大于等于30km/h行驶距离≥200m;按照上述条件将轮胎胎侧橡胶分割成大小形状相同的橡胶小块进行测试;硫化成型后的轮胎胎侧内表面设置第一润滑涂层和第二润滑涂层,两个互相接触位置的最大静摩擦力为f22;
    其特征在于,所述f2<f1<f,f22<f11,f22<f;
  6. 根据权利要求2所述的爆胎安全轮胎,其特征在于,轮胎断面高度不大于150mm的轮胎,第一润滑涂层与第二润滑涂层的总质量不大于80g;轮胎断面高度不大于200mm的轮胎,第一润滑涂层与第二润滑涂层的总质量不大于160g。
  7. 根据权利要求4所述的爆胎安全轮胎,其特征在于,μ20≤1.1μ2,和/或μ10≤1.1μ1;
  8. 根据权利要求4所述的爆胎安全轮胎,其特征在于,μ2≤0.8μ1,和/或μ2≤1/3μ。
  9. 根据权利要求5所述的爆胎安全轮胎,其特征在于,f2≤1.1f22,和/或f1≤1.1f11。
  10. 根据权利要求5所述的爆胎安全轮胎,其特征在于,f2≤0.8f1,和/或f2≤1/3f。
  11. 根据权利要求2所述的爆胎安全轮胎,第一润滑涂层的厚度小于0.5mm,和/或第二润滑涂层厚度小于0.1mm。
  12. 根据权利要求2所述的爆胎安全轮胎,所述轮胎是采用硫化胶囊硫化成型的轮胎,硫化成型在轮胎内表面有用于排气的压花花纹,或用于硫化排气的排气线条和压花花纹。
  13. 根据权利要求2所述的爆胎安全轮胎,爆胎安全轮胎的涂层施工方法,其特征在于包括以下步骤:首先,对硫化成型后的轮胎内表面进行清洗;其次,待硫化成型后的轮胎内表面清洗干净并干燥后,至少在硫化成型后的轮胎内表面两侧的胎圈部位上喷涂或刷涂第一润滑涂层;待第一润滑涂层干燥固化后,最后在第一润滑涂层上喷涂或刷涂第二润滑涂层。
  14. 根据权利要求4所述的爆胎安全轮胎,其特征在于,μ1≤1/2μ,和/或μ2≤0.7μ1;
  15. 根据权利要求5所述的爆胎安全轮胎,其特征在于,f1≤0.5f。
  16. 根据权利要求2所述的爆胎安全轮胎,其特征在于,所述半固态润滑脂和半流体润滑脂在25℃时ASTM锥入度>22mm,和/或半固态润滑脂和半流体润滑脂在20℃时相似粘度<500pa.s。
PCT/CN2023/072260 2022-01-18 2023-01-16 一种爆胎安全轮胎 WO2023138518A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210051749.3 2022-01-18
CN202210051749.3A CN114193979A (zh) 2022-01-18 2022-01-18 一种爆胎安全轮胎

Publications (1)

Publication Number Publication Date
WO2023138518A1 true WO2023138518A1 (zh) 2023-07-27

Family

ID=80658602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072260 WO2023138518A1 (zh) 2022-01-18 2023-01-16 一种爆胎安全轮胎

Country Status (2)

Country Link
CN (1) CN114193979A (zh)
WO (1) WO2023138518A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118294176A (zh) * 2024-06-04 2024-07-05 山东新戈锐能源科技有限公司 一种铁路列车车轮运行状态测试系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114193979A (zh) * 2022-01-18 2022-03-18 卫向坡 一种爆胎安全轮胎

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090071585A1 (en) * 2005-04-25 2009-03-19 The Yokohama Rubber Co., Ltd. Low Noise Pneumatic Tire
JP2009083717A (ja) * 2007-10-01 2009-04-23 Bridgestone Corp 安全タイヤ及び安全タイヤ用空気のう
US20180117973A1 (en) * 2016-10-28 2018-05-03 Sumitomo Rubber Industries, Ltd. Pneumatic tire
CN109733129A (zh) * 2019-02-28 2019-05-10 卫向坡 一种新型无内胎无侧壁支撑的充气轮胎
CN114193979A (zh) * 2022-01-18 2022-03-18 卫向坡 一种爆胎安全轮胎

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090071585A1 (en) * 2005-04-25 2009-03-19 The Yokohama Rubber Co., Ltd. Low Noise Pneumatic Tire
JP2009083717A (ja) * 2007-10-01 2009-04-23 Bridgestone Corp 安全タイヤ及び安全タイヤ用空気のう
US20180117973A1 (en) * 2016-10-28 2018-05-03 Sumitomo Rubber Industries, Ltd. Pneumatic tire
CN109733129A (zh) * 2019-02-28 2019-05-10 卫向坡 一种新型无内胎无侧壁支撑的充气轮胎
CN114193979A (zh) * 2022-01-18 2022-03-18 卫向坡 一种爆胎安全轮胎

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118294176A (zh) * 2024-06-04 2024-07-05 山东新戈锐能源科技有限公司 一种铁路列车车轮运行状态测试系统

Also Published As

Publication number Publication date
CN114193979A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2023138518A1 (zh) 一种爆胎安全轮胎
EP0600404B1 (en) Pneumatic tire with improved snow and ice traction
JPS644922B2 (zh)
IL46497A (en) Radial ply pneumatic tire construction
JP7215642B2 (ja) タイヤ
CN1464849A (zh) 充气轮胎及其制造方法
JP3390149B2 (ja) スタッドレスタイヤ
JPH02147411A (ja) 空気入りタイヤ及びその加硫金型
US20210387485A1 (en) Pneumatic tire without inner tube and unsupported by sidewall
JP7205668B2 (ja) タイヤ
JP3894563B2 (ja) 乗用車用空気入りタイヤ
JP4820969B2 (ja) タイヤとその製造方法及びそれを用いた自動車
CN218463418U (zh) 一种爆胎安全轮胎
CN103373175B (zh) 一组充气轮胎和安装充气轮胎的布置
JP3352064B2 (ja) スタッドレスタイヤ
CN113733817B (zh) 一种车辆安全轮胎的制备方法
JP3562772B2 (ja) 空気入りタイヤ
KR101963970B1 (ko) 댐퍼를 포함한 런플랫 성능을 가지는 타이어
CN215244169U (zh) 一种带有防刺穿涂料的胶轮车轮胎
JP2981532B2 (ja) スタッドレス空気入りタイヤ
JP2829861B2 (ja) 空気入りタイヤ
WO2004062947A1 (fr) Pneu non pneumatique
CN211892734U (zh) 安全保险轮胎
CN115091900A (zh) 一种新型轮胎
CN208343838U (zh) 一种汽车用防爆胎侧滑装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23742833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE