WO2023134598A1 - 聚合性化合物、组合物、液晶显示器件 - Google Patents

聚合性化合物、组合物、液晶显示器件 Download PDF

Info

Publication number
WO2023134598A1
WO2023134598A1 PCT/CN2023/071150 CN2023071150W WO2023134598A1 WO 2023134598 A1 WO2023134598 A1 WO 2023134598A1 CN 2023071150 W CN2023071150 W CN 2023071150W WO 2023134598 A1 WO2023134598 A1 WO 2023134598A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
liquid crystal
carbon atoms
straight
Prior art date
Application number
PCT/CN2023/071150
Other languages
English (en)
French (fr)
Inventor
舒克伦
黄曼萍
张孟勋
赖育宏
丰佩川
Original Assignee
烟台显华科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台显华科技集团股份有限公司 filed Critical 烟台显华科技集团股份有限公司
Publication of WO2023134598A1 publication Critical patent/WO2023134598A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/10Esters
    • C08F22/12Esters of phenols or saturated alcohols
    • C08F22/24Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3833Polymers with mesogenic groups in the side chain
    • C09K19/3842Polyvinyl derivatives
    • C09K19/3852Poly(meth)acrylate derivatives
    • C09K19/3857Poly(meth)acrylate derivatives containing at least one asymmetric carbon atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/42Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40
    • C09K19/46Mixtures of liquid crystal compounds covered by two or more of the preceding groups C09K19/06 - C09K19/40 containing esters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Definitions

  • the invention relates to the field of liquid crystal display materials, in particular to novel polymeric compounds, compositions and liquid crystal display devices.
  • liquid crystal compounds used in the above-mentioned display fields, among which nematic liquid crystals are most widely used. Nematic liquid crystals have been used in passive TN, STN matrix displays and systems with TFT active matrix.
  • TFT-LCD thin film transistor technology
  • VA vertical orientation IPS in-plane switching
  • FFS Display types such as fringe field switching.
  • liquid crystal media having negative dielectric anisotropy or liquid crystal media having positive dielectric anisotropy are widely used.
  • PS-VA Polymer Stabilized Vertical Alignment, Polymer Stabilized Vertical Alignment
  • PS-FFS Polymer Stabilized Fringe Field Switching, Polymer Stabilized Fringe Field Switching
  • PS-IPS Polymer Stabilized In-Plane Switching, Polymer Stabilized Plane Switching
  • a voltage is applied between the substrates to align the liquid crystal molecules, and ultraviolet rays are irradiated in the aligned state. This causes the polymerizable compound to be polymerized and cured so that the orientation state of the liquid crystal molecules is memorized in the cured product.
  • the inventors of the present invention have conducted in-depth research on the problems in the above-mentioned prior art and found that the novel polymeric compound represented by the following formula I of the present invention contains the novel polymeric compound when used in a liquid crystal display device.
  • the polymerization reaction rate of the polymeric compound monomer is high, so when the polymeric compound of the present application is used in the liquid crystal composition, the polymer stabilized (PS, Polymer stabilized) process speed is fast, and the production efficiency improve.
  • the novel polymerizable compound represented by the formula I of the present invention when the liquid crystal composition containing the novel polymerizable compound is used in a liquid crystal display device, a higher voltage retention rate can be obtained, and the quality stability improve.
  • the present invention comprises following technical scheme:
  • the present invention provides a polymeric compound having a structure represented by the following formula I:
  • P 1 and P 2 each independently represent an acrylate group, a methacrylate group, an ethacrylate group, a propyl acrylate group, a butyl acrylate group, an amyl acrylate group, a fluoroacrylic acid group ester group, fluoromethacrylate group, fluoroethylacrylate group, fluoropropylacrylate group, fluorobutylacrylate group or fluoropentylacrylate group;
  • Z 1 and Z 2 each independently represent a single bond, a straight chain alkylene group having 1 to 8 carbon atoms, a straight chain alkyleneoxy group having 1 to 8 carbon atoms, a straight chain alkylene group having 2 to 8 carbon atoms
  • Straight-chain alkenylene, or straight-chain alkenyleneoxy with 2 to 8 carbon atoms wherein one or two non-adjacent -CH 2 -s are optionally substituted by -O-, and any H is optionally substituted by F atom substitution;
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , Y 8 , Y 9 , and Y 10 each independently represent -H, -F, -CH 3 , -CH 2 F, -CHF 2 , -CF 3 , -C 2 H 5 , -OCH 3 , -OCH 2 F, -OCHF 2 , -OCF 3 or -OC 2 H 5 ;
  • n 0, 1 or 2.
  • Another aspect of the present invention provides a composition comprising the aforementioned polymerizable compound of the present invention.
  • Still another aspect of the present invention provides a liquid crystal display device, which is endowed with liquid crystal alignment capability by polymerizing the polymerizable compound in a liquid crystal composition containing the polymerizable compound of the present invention and a non-polymerizable liquid crystal compound.
  • the polymerizable compound of the present invention is used in a polymerizable liquid crystal composition and is used for a liquid crystal display device that imparts liquid crystal orientation ability by polymerization, since the polymerization reaction rate of the polymerizable compound monomer is fast, the polymer is stable (PS , Polymer stabilized) The process speed is fast and the production efficiency is improved.
  • PS Polymer stabilized
  • liquid crystal composition of the present invention can have high voltage retention and excellent quality stability by containing the polymerizable compound monomer of the present invention.
  • Fig. 1 is the 1 H nuclear magnetic resonance spectrum of the compound BH(S)-MAO-OMA prepared in Example 1 of the present invention dissolved in CD 2 Cl 2 .
  • Fig. 2 is a 13 C nuclear magnetic resonance spectrum of the compound BH(S)-MAO-OMA prepared in Example 1 of the present invention dissolved in CD 2 Cl 2 .
  • Fig. 3 is the 1 H nuclear magnetic resonance spectrum of the compound PB(S)-MAO-OMA prepared in Example 8 of the present invention dissolved in CD 2 Cl 2 .
  • Fig. 4 is a 13 C nuclear magnetic resonance spectrum of the compound PB(S)-MAO-OMA prepared in Example 8 of the present invention dissolved in CD 2 Cl 2 .
  • the polymerizable compound of the present invention has the structure shown in the following formula I:
  • P 1 and P 2 each independently represent an acrylate group, a methacrylate group, an ethacrylate group, a propyl acrylate group, a butyl acrylate group, an amyl acrylate group, a fluoroacrylic acid group Ester group, fluoromethacrylate group, fluoroethylacrylate group, fluoropropylacrylate group, fluorobutylacrylate group, or fluoropentylacrylate group;
  • Z 1 and Z 2 each independently represent a single bond, a straight chain alkylene group having 1 to 8 carbon atoms, a straight chain alkyleneoxy group having 1 to 8 carbon atoms, a straight chain alkylene group having 2 to 8 carbon atoms
  • Straight-chain alkenylene, or straight-chain alkenyleneoxy with 2 to 8 carbon atoms wherein one or two non-adjacent -CH 2 -s are optionally substituted by -O-, and any H is optionally substituted by F atom substitution;
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , Y 8 , Y 9 , and Y 10 each independently represent -H, -F, -CH 3 , -CH 2 F, -CHF 2 , -CF 3 , -C 2 H 5 , -OCH 3 , -OCH 2 F, -OCHF 2 , -OCF 3 or -OC 2 H 5 ;
  • n 0, 1 or 2.
  • the polymeric compound of the present invention has the structure represented by the above-mentioned formula I, and the polymerization reaction rate is fast, so that the polymer stabilization process is fast and the production efficiency is improved.
  • liquid crystal composition of the present invention can have high voltage retention and excellent quality stability by containing the polymerizable compound monomer of the present invention.
  • the acrylate group, methacrylate group, ethyl acrylate group, propyl acrylate group, butyl acrylate group, pentyl acrylate group represented by P1 and P2 , Fluoroacrylate, fluoromethacrylate, fluoroethylacrylate, fluoropropylacrylate, fluorobutylacrylate, or fluoropentylacrylate are polymerizable group.
  • P 1 and P 2 are optionally the same or different. Considering the difficulty of the preparation method, P 1 and P 2 are the same and easier to prepare.
  • These polymerizable groups can be cured by, for example, radical polymerization, radical addition polymerization, or the like.
  • P 1 and P 2 each independently represent an acrylate group, a methacrylate group, an ethacrylate group, a fluoroacrylate group, a fluoromethacrylate group, or a fluoroethylacrylate group . More preferably, P 1 and P 2 each independently represent an acrylate group, a methacrylate group, a fluoroacrylate group, or a fluoromethacrylate group.
  • P 1 and P 2 each independently preferably represent an acrylate group or a methacrylate group. Most preferably, both P 1 and P 2 are methacrylate groups.
  • the aforementioned Z 1 and Z 2 each independently represent a single bond, a straight-chain alkylene group with 1 to 8 carbon atoms, a straight-chain alkyleneoxy group with 1 to 8 carbon atoms, and a straight-chain alkyleneoxy group with 2 to 8 carbon atoms.
  • the aforementioned "one or two non-adjacent -CH 2 - optionally substituted by -O-" means that the aforementioned linear alkyl group with 1 to 8 carbon atoms, straight chain alkyl group with 1 to 8 carbon atoms Any -CH 2 - in alkoxy, straight-chain alkenyl with 2 to 8 carbon atoms, and straight-chain alkenyloxy with 2 to 8 carbon atoms is optionally substituted with -O-, but the adjacent The -CH 2 - is not simultaneously substituted.
  • any H is optionally substituted by an F atom
  • F substitutions which may be monofluoro, polyfluoro, or perfluoro substituted.
  • the aforementioned Z 1 and Z 2 each independently represent a single bond, a straight-chain alkylene group with 1 to 5 carbon atoms, a straight-chain alkyleneoxy group with 1 to 5 carbon atoms, a A straight-chain alkenylene group of 2 to 5, or a straight-chain alkenyleneoxy group with 2 to 5 carbon atoms, wherein one or two non-adjacent -CH 2 -s are optionally substituted by -O-, any The H of is optionally substituted by an F atom.
  • the aforementioned Z 1 and Z 2 each independently represent a single bond, a linear alkylene group with 1 to 3 carbon atoms, or a linear alkyleneoxy group with 1 to 3 carbon atoms, One or two non-adjacent -CH 2 -s are optionally substituted by -O-, and any H is optionally substituted by F atoms.
  • Examples of the aforementioned "straight-chain alkylene group having 1 to 3 carbon atoms” include methylene group, ethylene group, propylene group and the like.
  • Examples of the aforementioned "straight-chain alkyleneoxy group having 1 to 3 carbon atoms” include methyleneoxy group, ethyleneoxy group, and propyleneoxy group.
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , Y 8 , Y 9 , and Y 10 each independently represent -H, -F, -CH3 , -CH2F , -CHF2 , -CF3 , -C2H5 , -OCH3 , -OCH2F , -OCHF2 , -OCF3, or -OC2H5 .
  • Y 1 and Y 2 are optionally the same or different.
  • Y 1 , Y 2 , Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , Y 8 , Y 9 , Y 10 each independently represent -H, -F, -CH 3 , -CF 3 , -C 2 H 5 , -OCH 3 , -OCF 3 or -OC 2 H 5 .
  • Y 1 and Y 2 more preferably each independently represent -H, -F, -CF 3 , or -OCF 3 . More preferably, Y 1 and Y 2 are each independently -H or -F.
  • Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , Y 8 , Y 9 , and Y 10 each independently preferably represent -H or -F. More preferably, Y 3 , Y 4 , Y 5 , Y 6 , Y 7 , Y 8 , Y 9 , and Y 10 are all -H.
  • the compound represented by the formula I is preferably selected from the group consisting of the compounds represented by the following formulas I-1 to I-57, wherein P 1 , P 2 , Z 1 , Z 2 definition is the same as above.
  • the compound represented by formula I of the present invention is preferably selected from compounds represented by the following formulas II-1 to II-258.
  • the production method of the polymerizable compound of the present invention is not limited to the production method described below. Those skilled in the art can use other suitable methods for preparation.
  • a polymerizable compound represented by the following structural formula is prepared by a method comprising the following preparation steps, wherein the definitions of P 1 , P 2 , Z 1 , and Z 2 are the same as described above.
  • the above-mentioned polymerizable compound represented by the formula I-1 is prepared by a method comprising the following preparation steps, wherein the definitions of P 1 , P 2 , Z 1 and Z 2 are the same as above.
  • Step C1 performing a bromination reaction of benzothiophene dioxide and a brominating reagent to generate dibromobenzothiophene dioxide (C1);
  • Step C2 reducing the aforementioned dibromobenzothiophene dioxide (C1) with an organometallic reducing agent to obtain dibromobenzothiophene (C2);
  • Step C3 Under the catalysis of copper metal, dibromobenzothiophene (C2) is subjected to Ullman coupling reaction with sodium alkylate reagent to generate benzothiophene compound (C3) with Z1 and Z2 ;
  • Step C4 subjecting the benzothiophene compound (C3) with Z 1 and Z 2 to a de-alkoxylation reaction with Lewis acid to generate bisphenol benzothiophene (C4);
  • Step C5 Reaction of bisphenol-bearing benzothiophene (C4) with P 1 X and P 2 X (X represents bromine or iodine) under basic conditions to generate compound (I-1).
  • liquid crystal compound represented by the formula I-29 is prepared by a method comprising the following preparation steps, wherein the definitions of R 1 , R 2 , Y 1 and Y 2 are the same as above.
  • Step D1 carrying out palladium metal carbon-carbon coupling reaction of bromofluorophenol and difluorophenylboronic acid substituted with Z 1 to obtain a biphenyl compound (D1) with Z 1 ;
  • Step D2 react the biphenyl compound ( D1 ) with Z1 with trifluoromethanesulfonic anhydride under the catalysis of the base, replace the phenolic group with a trifluoromethanesulfonate group, and generate Z1 and trifluoromethanesulfonate Mesylate-based biphenyl compounds (D2);
  • Step D3 react the aforementioned biphenyl compound (D2) with a thiol reagent under the conditions of palladium metal and alkali, and replace the trifluoromethanesulfonate group with a thiol group to generate a biphenyl compound with Z and a thiol group.
  • Step D4 deprotecting and ring-closing the biphenyl compound (D3) with Z1 and a thio group under the action of a strong base to generate difluorobenzothiophene (D4) with Z1 ;
  • Step D5 react the difluorobenzothiophene (D4) with Z1 with trimethyl borate in sequence, followed by hydrolysis to generate difluorobenzothiophene compound with Z1 and boronic acid group (D5);
  • Step D6 Carrying out the palladium metal carbon-carbon coupling reaction of the difluorobenzothiophene compound (D5) with Z1 and boronic acid group and alkoxybromobenzene to generate difluorobenzothiophene with Z1 and Z2 (D6);
  • Step D7 Dealkoxylate the difluorobenzothiophene (D6) with Z 1 and Z 2 with Lewis acid to generate difluorobenzothiophene (D7) with bisphenol. ;
  • Step D8 Reaction of bisphenol-bearing difluorobenzothiophene (D7) with P 1 X, P 2 X (X represents bromine or iodine) under basic conditions to generate bisymmetric or asymmetric phenyl difluorobenzo Thiophene compound (I-29).
  • composition of the present invention contains the aforementioned polymerizable compound of the present invention as an essential component.
  • composition of the present invention in addition to the polymerizable compound represented by the aforementioned formula (I), other polymerizable compounds may be added in any range as required, as long as the desired performance of the liquid crystal composition is not impaired.
  • a non-polymerizable liquid crystal compound may be contained, so that the composition exhibits a liquid crystal phase.
  • non-polymerizable compounds may be contained as long as the desired performance of the liquid crystal composition is not impaired.
  • non-polymerizable compounds include, for example, generally known non-polymerizable compounds used in fluorine-based nematic liquid crystal compositions having positive or negative dielectric anisotropy, and are not particularly limited.
  • the content of the polymerizable compound represented by the formula (I) of the present invention contained therein is not particularly limited. From the perspectives of low temperature solubility, reliability, etc., preferably, in the polymerizable liquid crystal composition of the present invention, the mass percentage of the polymerizable compound represented by formula (I) is, for example, 0.001 to 5%, more preferably 0.001 to 3%. %, more preferably 0.001 to 1%.
  • various functional dopants may also be added, and these dopants include, for example, antioxidants, ultraviolet absorbers, and chiral agents.
  • the polymerizable compound of the present invention may be doped in a positive or negative liquid crystal composition.
  • Those skilled in the art can adjust the proportion of the polymerizable monomer compound according to the needs to meet the requirements of stable polymer orientation speed and high-quality stability performance.
  • composition of the present invention there are no particular limitations on the preparation of the composition of the present invention.
  • those skilled in the art can select appropriate other components for preparation as needed.
  • composition of the present invention due to the polymerizable compound represented by the formula (I) contained, it is possible to polymerize with heat or light without adding a polymerization initiator to the composition.
  • photopolymerization initiators such as benzoin-type, benzophenone-type, acetophenone-type, benzil ketal-type, and acylphosphine oxide-type polymerization initiators may be added.
  • the composition of the present invention it is preferable to polymerize by irradiating active energy rays such as ultraviolet rays or electron rays.
  • active energy rays such as ultraviolet rays or electron rays.
  • the polymerization conditions can be appropriately selected by those skilled in the art according to the needs, and will not be repeated here.
  • the third aspect of the present invention provides a liquid crystal display device, which is endowed with liquid crystal alignment capability by polymerizing the polymerizable compound in the liquid crystal phase composition containing the aforementioned polymerizable compound and non-polymerizable compound.
  • the liquid crystal display component is preferably a PS-VA type, PS-FFS type or PS-IPS type liquid crystal display component.
  • the prepared compound II-2 (BH(S)-MAO-OMA) was subjected to mass spectrometry and nuclear magnetic resonance spectrometry tests, and the data obtained from the tests are as follows. According to the test results, compound II-2 has the structure shown as BH(S)-MAO-OMA.
  • the target compound II-52-2 was prepared from the compound II-52-1 prepared above with a yield of 45%.
  • the target compound II-52-3 was prepared from the compound II-52-2 prepared above with a yield of 70%.
  • the target compound II-52 was prepared from the compound II-52-3 prepared above with a yield of 60%.
  • the prepared compound II-52 (B(S)[CH3,CH3]-MAO-OMA) was tested by mass spectrometry and nuclear magnetic resonance spectrum, and the data obtained from the test are as follows. According to the test results, compound II-52 has the structure shown as B(S)[CH3,CH3]-MAO-OMA.
  • Reaction flask A Take 50 g of 2-bromo-6-fluorophenol and 56 g of potassium carbonate in a double-neck flask, replace nitrogen, add 500 ml of tetrahydrofuran and 190 ml of water, and heat to reflux.
  • Reaction bottle B Get 44.2 grams of 2,3-difluorophenylboronic acid and 3.7 grams of two [di-tert-butyl-(4-dimethylaminophenyl) phosphine] dichloropalladium (II) (Pd(Amphos) Cl 2 ) in a single-necked bottle, replaced with nitrogen, injected with 500 ml of tetrahydrofuran, and stirred evenly.
  • reaction bottle A After the reaction bottle A starts to reflux, pour the B reaction solution into the reaction bottle A, and reflux until the next day. Spot the film to confirm the completion of the reaction, add water and ethyl acetate for extraction, collect the organic layer to remove water with anhydrous magnesium sulfate, filter and concentrate under reduced pressure, and purify the crude product by column chromatography.
  • Reaction bottle C Take 40 grams of compound II-28-2 in a double-neck flask, replace nitrogen, inject 270 ml of toluene, 25.4 ml of N,N-diisopropylethylamine and 16 ml of ethyl 3-mercaptopropionate , stir until dissolved.
  • Reaction bottle D Take 3.2 grams of Pd(dba) 2 and 6 grams of DPEPhos in a single-necked bottle, replace the nitrogen, inject 100 ml of toluene and stir for about 20 minutes, add the reaction solution D to the reaction bottle C and heat to 120 ° C under reflux , reacted to the next day.
  • compound II-28 (B(S)-MAO-OMA) was subjected to mass spectrometry and nuclear magnetic resonance spectrometry tests, and the data obtained from the tests are as follows. According to the test results, compound II-28 has the structure shown as B(S)-MAO-OMA.
  • the target compound II-94-2 was prepared from the compound II-94-1 prepared above with a yield of 83%.
  • the target compound II-94-3 was prepared using the compound II-94-2 prepared above as a raw material.
  • the target compound II-94-4 was prepared from the compound II-94-3 prepared above with a yield of 88%.
  • the target compound II-94-5 was prepared from the compound II-94-4 prepared above with a yield of 76%.
  • the target compound II-94 was prepared from the compound II-94-5 prepared above with a yield of 63%.
  • the prepared compound II-94 (B(S)[CF3,CF3]-MAO-OMA) was tested by mass spectrometry and nuclear magnetic resonance spectrum, and the data obtained from the test are as follows. According to the test results, compound II-94 has the structure shown as B(S)[CF3,CF3]-MAO-OMA.
  • the target compound II-112-2 was prepared from the compound II-112-1 prepared above, with a yield of 87%
  • the target compound II-112-3 was prepared using the compound II-112-2 prepared above as a raw material.
  • the target compound II-112-4 was prepared from the compound II-112-3 prepared above with a yield of 88%.
  • the target compound II-112-5 was prepared from the compound II-112-4 prepared above with a yield of 76%.
  • the target compound II-112 was prepared from the compound II-112-5 prepared above with a yield of 65%.
  • the prepared compound II-112 (B(S)[OCF3,OCF3]-MAO-OMA) was tested by mass spectrometry and nuclear magnetic resonance spectrum, and the data obtained from the test are as follows. According to the test results, the compound II-112 has the structure shown as B(S)[OCF3,OCF3]-MAO-OMA.
  • compound II-74 (B(S)[OCH3,OCH3]-MAO-OMA) was tested by mass spectrometry and nuclear magnetic resonance spectrum, and the data obtained from the test are as follows. According to the test results, compound II-74 has the structure shown as B(S)[OCH3,OCH3]-MAO-OMA.
  • the prepared compound II-30 (B(S)-MAO-3OMA) was subjected to mass spectrometry and nuclear magnetic resonance spectrometry tests, and the data obtained from the tests are as follows. According to the test results, compound II-30 has the structure shown as B(S)-MAO-3OMA.
  • the target compound II-144-2 was prepared according to a similar preparation method to compound II-28-2 using the previously prepared compound II-144-1 as a starting material, with a yield of 81%.
  • the target compound II-144-3 was prepared according to a similar preparation method to compound II-28-3 using the previously prepared compound II-144-2 as a starting material.
  • the target compound II-144-4 was prepared according to a similar preparation method to compound II-28-4 using the previously prepared compound II-144-3 as a starting material, with a yield of 88.5%.
  • the target compound II-144 was prepared from the compound II-144-7 prepared above with a yield of 71%.
  • the prepared compound II-144 (PB(S)-MAO-OMA) was subjected to mass spectrometry and nuclear magnetic resonance spectrometry tests, and the data obtained from the tests are as follows. According to the test results, compound II-144 has the structure shown as PB(S)-MAO-OMA.
  • compound II-144-6 was replaced by compound II-146-1 for reaction to obtain 15.8 g of white solid II-146-2 with a yield of 82%.
  • compound II-144-7 was replaced with 5 g of compound II-146-2 for reaction, and 4.3 g of white solid II-146 was obtained with a yield of 64%.
  • the prepared compound II-146 (PB(S)-MAO-3OMA) was subjected to mass spectrometry and nuclear magnetic resonance spectrometry tests, and the data obtained from the tests are as follows. According to the test results, compound II-146 has the structure shown as PB(S)-MAO-3OMA.
  • the maximum ultraviolet absorption wavelength measurement equipment is JASCO V-530, the sample concentration is 1% dissolved in toluene, and the wavelength range is 200-800nm.
  • Table 3 Physical property parameters of liquid crystals of parent liquid crystals, examples and comparative examples
  • T NI represents the temperature at which the liquid crystal monomer changes from a nematic phase to a clear phase, and its temperature is measured by MP-90 equipment;
  • ⁇ n represents optical anisotropy
  • ⁇ n n e -n o
  • n o is the refractive index of ordinary light
  • ne is the refractive index of extraordinary light. Test conditions: 589nm, 25 ⁇ 0.2°C.
  • K 11 is the torsional elastic constant
  • K 33 is the splay elastic constant
  • the test conditions are: 25°C
  • INSTEC ALCT-IR1, 18 micron vertical box.
  • Gamma1 is the coefficient of rotational viscosity, abbreviated as "G1", and the test conditions are: 25°C, INSTEC: ALCT-IR1, 18 micron vertical box.
  • the addition of the polymerizable liquid crystal monomer compounds of Examples 1 to 9 in the matrix liquid crystal has no significant change in the physical properties of each other, indicating that the polymerizable liquid crystal monomer compounds of Examples 1 to 9 are added to The matrix liquid crystal does not affect the physical properties of the matrix liquid crystal itself, and forms a reactive liquid crystal composition.
  • the polymerization reaction rate of the polymerizable monomer is evaluated based on the reaction polymerization conversion rate of the polymerizable monomer compound in a certain period of time.
  • the test equipment is TOYO VHR-AMP01 to measure the voltage retention before and after ultraviolet irradiation of the reactive liquid crystal composition rate (VHR).
  • VHR reactive liquid crystal composition rate
  • VHR voltage retention ratio

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

本发明涉及聚合性化合物、组合物及液晶显示器件。本发明的聚合性化合物具有下述的通式I所述的结构。本发明的聚合性化合物在聚合性液晶组合物中使用并用于通过聚合而赋予液晶取向能力的液晶显示装置的情况下,由于聚合性化合物单体的聚合反应速率快。另外,在液晶显示器件中使用含有本发明的聚合性化合物单体的液晶组合物,能够具有较高的电压保持率,从而具有优异的品质稳定性。

Description

聚合性化合物、组合物、液晶显示器件 技术领域
本发明涉及液晶显示材料领域,具体涉及新型聚合性化合物、组合物、以及液晶显示器件。
背景技术
目前,液晶化合物的应用范围拓展的越来越广,其可应用于多种类型的显示器、电光器件、传感器等中。用于上述显示领域的液晶化合物的种类繁多,其中向列相液晶应用最为广泛。向列相液晶已经应用在无源TN、STN矩阵显示器和具有TFT有源矩阵的系统中。
对于薄膜晶体管技术(TFT-LCD)应用领域,宽视角模式、高透过率、高分辨率已成为行业内追求的目标,目前主流的宽视角技术主要采用VA垂直取向、IPS面内开关及FFS边缘场开关等显示类型。这些显示模式,广泛采用具有负介电各向异性的液晶介质或正介电各向异性的液晶介质。
对于PS-VA(Polymer Stabilized Vertical Alignment,聚合物稳定垂直取向)、PS-FFS(Polymer Stabilized Fringe Field Switching,聚合物稳定边缘场开关)、PS-IPS(Polymer Stabilized In-Plane Switching,聚合物稳定平面转换)等液晶显示模式的液晶显示器件,在基板间配置含有聚合性化合物的液晶组合物的状态下,根据情况在基板间施加电压使液晶分子取向,并在取向的状态下照射紫外线等,由此使得聚合性化合物聚合固化从而使得液晶分子的取向状态被记忆到固化物。
对于这样的液晶显示器件,还存在品质稳定性、制作工艺导致的生产效率不高等问题。因此,如何提高聚合性单体化合物的聚合反应速率从而提高生产效率、品质稳定性提高是本领域亟待解决的问题之一。
发明内容
本发明人等针对上述现有技术存在的问题,进行了深入的研究后发现,采用本发明的下述的式I所示的新型的聚合性化合物,在液晶显示装置中使用时含有该新型的聚合性化合物的液晶组合物时,聚合性化合物单体的聚合反应速率高,因此在液晶组合物中使用本申请的聚合性化合物时,聚合物稳定(PS,Polymer stabilized)制程速度快,生产效率提高。
另外,通过采用本发明的式I所示的新型的聚合性化合物,在液晶显示器件中使用时含有该新型的聚合性化合物的液晶组合物时,能够获得较高的电压保持率,品质稳定性提高。
本发明包括下述的技术方案:
一方面,本发明提供一种聚合性化合物,其具有下述的式Ⅰ所示的结构:
Figure PCTCN2023071150-appb-000001
式I中,P 1、P 2各自独立地表示丙烯酸酯基、甲基丙烯酸酯基、乙基丙烯酸酯基、丙基丙烯酸酯基、丁基丙烯酸酯基、戊基丙烯酸酯基、氟代丙烯酸酯基、氟代甲基丙烯酸酯基、氟代乙基丙烯酸酯基、氟代丙基丙烯酸酯基、氟代丁基丙烯酸酯基或氟代戊基丙烯酸酯基;
Z 1、Z 2各自独立地表示单键、碳原子数为1~8的直链亚烷基、碳原子数为1~8的直链亚烷基氧基、碳原子数为2~8的直链亚烯基、或者碳原子数为2~8的直链亚烯基氧基,其中一个或两个不相邻的-CH 2-任选被-O-取代,任意的H任选被F原子取代;
Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7、Y 8、Y 9、Y 10各自独立地表示-H、-F、-CH 3、-CH 2F、-CHF 2、-CF 3、-C 2H 5、-OCH 3、-OCH 2F、-OCHF 2、-OCF 3或者-OC 2H 5
n表示0、1或2。
本发明另一方面提供一种组合物,其含有前述的本发明的聚合性化合 物。
本发明的又一方面提供一种液晶显示器件,通过使用含有本发明的聚合性化合物以及非聚合性液晶化合物的液晶组合物,使其中的聚合性化合物聚合而被赋予液晶取向能力。
发明效果
本发明的聚合性化合物在聚合性液晶组合物中使用并用于通过聚合而赋予液晶取向能力的液晶显示装置的情况下,由于聚合性化合物单体的聚合反应速率快,因此,聚合物稳定(PS,Polymer stabilized)制程速度快,生产效率提高。
另外,本发明的液晶组合物通过含有本发明的聚合性化合物单体,能够具有较高的电压保持率,从而具有优异的品质稳定性。
附图说明
图1为本发明的实施例1中制备的化合物BH(S)-MAO-OMA溶于CD 2Cl 21H核磁共振光谱图。
图2为本发明的实施例1中制备的化合物BH(S)-MAO-OMA溶于CD 2Cl 213C核磁共振光谱图。
图3为本发明的实施例8中制备的化合物PB(S)-MAO-OMA溶于CD 2Cl 21H核磁共振光谱图。
图4为本发明的实施例8中制备的化合物PB(S)-MAO-OMA溶于CD 2Cl 213C核磁共振光谱图。
具体实施方式
以下将结合具体实施方案来说明本发明。需要说明的是,下面的实施例为本发明的示例,仅用来说明本发明,而不用来限制本发明。在不偏离本发明主旨或范围的情况下,可进行本发明构思内的其他组合和各种改良。
[聚合性化合物]
本发明的聚合性化合物具有下述的式Ⅰ所示的结构:
Figure PCTCN2023071150-appb-000002
式I中,P 1、P 2各自独立地表示丙烯酸酯基、甲基丙烯酸酯基、乙基丙烯酸酯基、丙基丙烯酸酯基、丁基丙烯酸酯基、戊基丙烯酸酯基、氟代丙烯酸酯基、氟代甲基丙烯酸酯基、氟代乙基丙烯酸酯基、氟代丙基丙烯酸酯基、氟代丁基丙烯酸酯基、或者氟代戊基丙烯酸酯基;
Z 1、Z 2各自独立地表示单键、碳原子数为1~8的直链亚烷基、碳原子数为1~8的直链亚烷基氧基、碳原子数为2~8的直链亚烯基、或者碳原子数为2~8的直链亚烯基氧基,其中一个或两个不相邻的-CH 2-任选被-O-取代,任意的H任选被F原子取代;
Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7、Y 8、Y 9、Y 10各自独立地表示-H、-F、-CH 3、-CH 2F、-CHF 2、-CF 3、-C 2H 5、-OCH 3、-OCH 2F、-OCHF 2、-OCF 3或者-OC 2H 5
n表示0、1或2。
本发明的聚合性化合物通过具有上述的式I所示的结构,聚合反应速率快,从而聚合物稳定制程速度快,生产效率提高。
另外,本发明的液晶组合物通过含有本发明的聚合性化合物单体,能够具有较高的电压保持率,从而具有良好的品质稳定性。
前述式I所示的结构中,P 1、P 2表示的丙烯酸酯基、甲基丙烯酸酯基、乙基丙烯酸酯基、丙基丙烯酸酯基、丁基丙烯酸酯基、戊基丙烯酸酯基、氟代丙烯酸酯基、氟代甲基丙烯酸酯基、氟代乙基丙烯酸酯基、氟代丙基丙烯酸酯基、氟代丁基丙烯酸酯基、或者氟代戊基丙烯酸酯基均为聚合性基团。其中的P 1、P 2任选相同或者不同。从制备方法的难易度考虑,P 1、P 2相同更容易制备。
这些聚合性基团可以通过例如自由基聚合、自由基加成聚合等进行固化。
优选地,P 1、P 2各自独立地表示丙烯酸酯基、甲基丙烯酸酯基、乙基丙 烯酸酯基、氟代丙烯酸酯基、氟代甲基丙烯酸酯基、或者氟代乙基丙烯酸酯基。更优选地,P 1、P 2各自独立地表示丙烯酸酯基、甲基丙烯酸酯基、氟代丙烯酸酯基、或者氟代甲基丙烯酸酯基。
进一步优选地,P 1、P 2各自独立地优选表示丙烯酸酯基、甲基丙烯酸酯基。最优选P 1、P 2均为甲基丙烯酸酯基。
前述的Z 1、Z 2各自独立地表示单键、碳原子数为1~8的直链亚烷基、碳原子数为1~8的直链亚烷基氧基、碳原子数为2~8的直链亚烯基、或者碳原子数为2~8的直链亚烯基氧基,其中一个或两个不相邻的-CH 2-任选被-O-取代,任意的H任选被F原子取代。
前述的“一个或两个不相邻的-CH 2-任选被-O-取代”是指,前述的碳原子数为1~8的直链烷基、碳原子数为1~8的直链烷氧基、碳原子数为2~8的直链烯基、碳原子数为2~8的直链烯氧基中的任意-CH 2-任选被取代为-O-,但是相邻的-CH 2-不会同时被取代。
前述的“任意H任选被F原子取代”,是指,对于F取代的个数没有任何的限定,可以为单氟取代、多氟取代、或者全氟取代。
优选地,前述的Z 1、Z 2各自独立地表示单键、碳原子数为1~5的直链亚烷基、碳原子数为1~5的直链亚烷基氧基、碳原子数为2~5的直链亚烯基、或者碳原子数为2~5的直链亚烯基氧基,其中一个或两个不相邻的-CH 2-任选被-O-取代,任意的H任选被F原子取代。
进一步优选地,前述的Z 1、Z 2各自独立地表示单键、碳原子数为1~3的直链亚烷基、或者、碳原子数为1~3的直链亚烷基氧基,其中一个或两个不相邻的-CH 2-任选被-O-取代,任意的H任选被F原子取代。
前述的“碳原子数为1~3的直链亚烷基”例如可以列举出亚甲基、亚乙基、亚丙基等。前述的“碳原子数为1~3的直链亚烷基氧基”例如可以列举出亚甲基氧基、亚乙基氧基、亚丙基氧基。
本发明的式I所示化合物的一些实施方式中,Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7、Y 8、Y 9、Y 10各自独立地表示-H、-F、-CH 3、-CH 2F、-CHF 2、-CF 3、-C 2H 5、-OCH 3、-OCH 2F、-OCHF 2、-OCF 3或者-OC 2H 5。其中,Y 1、Y 2任选相同或 者不同。优选地,Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7、Y 8、Y 9、Y 10各自独立地表示-H、-F、-CH 3、-CF 3、-C 2H 5、-OCH 3、-OCF 3或者-OC 2H 5
其中,Y 1、Y 2更优选各自独立地表示-H、-F、-CF 3、或者-OCF 3。进一步优选Y 1、Y 2各自独立地为-H、或者、-F。
其中,Y 3、Y 4、Y 5、Y 6、Y 7、Y 8、Y 9、Y 10优选各自独立地表示-H或者-F。更优选Y 3、Y 4、Y 5、Y 6、Y 7、Y 8、Y 9、Y 10均为-H。
本发明的式I所示化合物的一些实施方式中,从获得更快的聚合反应速率等方面考虑,n优选为0或者1,进一步优选n=1。
本发明的式I所示化合物的一些实施方式中,优选式I所示化合物为选自下述的式I-1~I-57所示化合物组成的组,其中P 1、P 2、Z 1、Z 2定义与前述相同。
Figure PCTCN2023071150-appb-000003
Figure PCTCN2023071150-appb-000004
Figure PCTCN2023071150-appb-000005
Figure PCTCN2023071150-appb-000006
Figure PCTCN2023071150-appb-000007
Figure PCTCN2023071150-appb-000008
Figure PCTCN2023071150-appb-000009
Figure PCTCN2023071150-appb-000010
本发明的式I所示的化合物,具体而言,优选选自下述式II-1~II-258所示化合物的组成。
Figure PCTCN2023071150-appb-000011
Figure PCTCN2023071150-appb-000012
Figure PCTCN2023071150-appb-000013
Figure PCTCN2023071150-appb-000014
Figure PCTCN2023071150-appb-000015
Figure PCTCN2023071150-appb-000016
Figure PCTCN2023071150-appb-000017
Figure PCTCN2023071150-appb-000018
Figure PCTCN2023071150-appb-000019
Figure PCTCN2023071150-appb-000020
Figure PCTCN2023071150-appb-000021
Figure PCTCN2023071150-appb-000022
Figure PCTCN2023071150-appb-000023
Figure PCTCN2023071150-appb-000024
Figure PCTCN2023071150-appb-000025
Figure PCTCN2023071150-appb-000026
Figure PCTCN2023071150-appb-000027
Figure PCTCN2023071150-appb-000028
Figure PCTCN2023071150-appb-000029
Figure PCTCN2023071150-appb-000030
Figure PCTCN2023071150-appb-000031
Figure PCTCN2023071150-appb-000032
Figure PCTCN2023071150-appb-000033
Figure PCTCN2023071150-appb-000034
Figure PCTCN2023071150-appb-000035
Figure PCTCN2023071150-appb-000036
Figure PCTCN2023071150-appb-000037
Figure PCTCN2023071150-appb-000038
Figure PCTCN2023071150-appb-000039
Figure PCTCN2023071150-appb-000040
Figure PCTCN2023071150-appb-000041
Figure PCTCN2023071150-appb-000042
Figure PCTCN2023071150-appb-000043
Figure PCTCN2023071150-appb-000044
Figure PCTCN2023071150-appb-000045
Figure PCTCN2023071150-appb-000046
Figure PCTCN2023071150-appb-000047
[聚合性化合物的制备方法]
下面,对本发明的聚合性化合物的制备方法进行说明。
需要理解的是,本发明的聚合性化合物的制备方法,并非限于下述说明的制备方法。本领域技术人员可以采用其他的适宜的方法进行制备。
另外,下述的说明中对于式I所示的部分化合物进行说明,对于其他的化合物,本领域技术人员可以参照下述的说明并结合本领域的常规技术手段来获得。
采用包括如下制备步骤的方法制备下述结构式所示的聚合性化合物,其中,P 1、P 2、Z 1、Z 2的定义与前述相同。
[式I-1所示的聚合性化合物的制备]
采用包括如下制备步骤的方法制备前述式I-1所示的聚合性化合物,其中,P 1、P 2、Z 1以及Z 2的定义与前述相同。
Figure PCTCN2023071150-appb-000048
步骤C1:将苯并二氧化噻吩与溴化试剂进行溴化反应,生成二溴苯并噻吩二氧化物(C1);
Figure PCTCN2023071150-appb-000049
步骤C2:将前述的二溴苯并噻吩二氧化物(C1)与有机金属还原剂进行还原反应,得到二溴苯并噻吩(C2);
Figure PCTCN2023071150-appb-000050
步骤C3:将二溴苯并噻吩(C2)在铜金属的催化作用下与烷基醇钠试剂进行乌尔曼偶联反应,生成带有Z 1及Z 2的苯并噻吩化合物(C3);
Figure PCTCN2023071150-appb-000051
步骤C4:将带有Z 1及Z 2的苯并噻吩化合物(C3)与刘易斯酸进行去烷氧基化反应,生成双酚苯并噻吩(C4);
Figure PCTCN2023071150-appb-000052
步骤C5:将带双酚苯并噻吩(C4)与P 1X、P 2X(X表示溴或碘)于碱性条件反应,生成化合物(I-1)。
Figure PCTCN2023071150-appb-000053
[式I-29所示的聚合性化合物的制备]
采用包括如下制备步骤的方法制备前述式I-29所示的液晶化合物,其中,R 1、R 2、Y 1以及Y 2的定义与前述相同。
Figure PCTCN2023071150-appb-000054
步骤D1:将溴氟苯酚与带有Z 1取代的二氟苯基硼酸进行钯金属碳-碳偶合反应,得到带有Z 1的联苯化合物(D1);
Figure PCTCN2023071150-appb-000055
步骤D2:将带有Z 1的联苯化合物(D1)与三氟甲磺酸酐在碱的催化下进行反应,将酚基取代为三氟甲磺酸酯基,生成带有Z 1及三氟甲磺酸酯基的联苯化合物(D2);
Figure PCTCN2023071150-appb-000056
步骤D3:将前述的联苯化合物(D2)在钯金属和碱的条件下与硫醇试剂进行反应,将三氟甲磺酸酯基取代为硫基,生成带有Z 1及硫基的联苯化合物(D3);
Figure PCTCN2023071150-appb-000057
步骤D4:将带有Z 1及硫基的联苯化合物(D3)在强碱作用下进行去保护及合环反应,生成带有Z 1的二氟苯并噻吩(D4);
Figure PCTCN2023071150-appb-000058
步骤D5:将带有Z 1的二氟苯并噻吩(D4)依序使用强碱与硼酸三甲酯反应后,接着进行水解反应,生成带有Z 1及硼酸基的二氟苯并噻吩化合物(D5);
Figure PCTCN2023071150-appb-000059
步骤D6:将带有Z 1及硼酸基的二氟苯并噻吩化合物(D5)与烷氧基溴苯进行钯金属碳-碳偶合反应,生成带有Z 1及Z 2的二氟苯并噻吩(D6);
Figure PCTCN2023071150-appb-000060
步骤D7:将带有Z 1及Z 2的二氟苯并噻吩(D6)与刘易斯酸进行去烷氧基化反应,生成带有双酚的二氟苯并噻吩(D7)。;
Figure PCTCN2023071150-appb-000061
步骤D8:将带有双酚的二氟苯并噻吩(D7)与P 1X、P 2X(X表示溴或碘)于碱性条件反应生成两边对称或者不对称的苯基二氟苯并噻吩化合物(I-29)。
Figure PCTCN2023071150-appb-000062
以上,示出了前述的式I-1、式I-29所示化合物的制备方法。对于其他 化合物的制备,本领域技术人员能够参照前述制备方法,根据本领域的技术常识,改变前述制备方法中的反应原料进行制备,没有特别的限定。
[组合物]
本发明的组合物含有前述的本发明的聚合性化合物作为必要成分。
本发明的组合物中,除了前述的式(I)所示的聚合性化合物之外,根据需要,还可以在任意范围内添加其他的聚合性化合物,只要不破坏期望的液晶组合物的性能。
进一步,本发明的组合物的一个实施方式中,还可以含有非聚合性液晶化合物,组合物呈液晶相。
在呈现液晶相的组合物中,还可以在不破坏其期望的液晶组合物的性能的基础上含有其他非聚合性化合物。作为这样的非聚合性的化合物,可以列举出例如通常所知的介电各向异性为正或负的氟系向列型液晶组合物中使用的非聚合性的化合物等,没有特别的限定。
将本发明的聚合性化合物混合于液晶组合物中使用的情况下,对于其中含有的本发明的式(I)所示的聚合性化合物的含量没有特别的限定。从低温溶解性、可靠性等方面考虑,优选地,本发明的聚合性液晶组合物中,式(I)所示的聚合性化合物的质量百分比为例如0.001~5%,更优选为0.001~3%,进一步优选为0.001~1%。
本发明的组合物的一个实施方式中,可选的,还可以加入各种功能的掺杂剂,这些掺杂剂可以列举出例如抗氧化剂、紫外线吸收剂、手性剂。
如前所述,本发明的聚合性化合物中,可以掺杂于正型或负型液晶组合物中。本领域技术人员能够根据需要调节聚合性单体化合物的比例以满足聚合物稳定取向速度、优质的稳定性性能。
对于本发明的组合物的制备,没有特别的限定。在含有本发明的聚合性单体化合物的基础上,本领域技术人员能够根据需要,选择适宜的其他组分进行调制。
本发明的组合物中,由于所含有的式(I)所示的聚合性化合物,即使在组合物中不添加聚合引发剂,也能够利用热、光进行聚合。另外,也可以 添加光聚合引发剂,例如苯偶姻类、二苯甲酮类、苯乙酮类、苯偶酰缩酮类、酰基氧化膦类等聚合引发剂。
作为使本发明的组合物聚合的方法,优选通过紫外线或者电子射线等活性能量射线照射进行聚合。对于聚合的条件,本领域技术人员能够根据需要适宜选择,在此不再赘述。
[液晶显示器件]
本发明的第三方面提供一种液晶显示器件,其通过使用前述的含有聚合性化合物以及非聚合性化合物的呈液晶相的组合物,使其中的聚合性化合物聚合而被赋予液晶取向能力。
液晶显示组件优选为PS-VA型、PS-FFS型或者PS-IPS型的液晶显示组件。
实施例1
BH(S)-MAO-OMA(II-2)
Figure PCTCN2023071150-appb-000063
合成路线:
Figure PCTCN2023071150-appb-000064
取1500毫升硫酸于单颈瓶中,降温至0℃后,避光下加入50克二苯并噻吩5,5-二氧化物及82克N-溴代琥珀酰亚胺,搅拌直至溶解后移至室温反应至隔夜。反应结束后将反应液于冰浴下加入冰水中,待反应液冷却后,以滤板过滤并以水冲洗,稍微抽干后,将滤饼加入甲醇搅拌约10分钟,再次过滤,将滤饼抽干后再以甲苯再结晶,得II-2-1 74克,产率85.6%。
1H-NMR(500MHz,CDCl 3,ppm):8.13(s,2H)、7.54(m,4H)。
取20克化合物II-2-1于双颈瓶中,置换氮气,打入THF1100毫升,接着打入DIBAL-H 220毫升,于80℃下回流反应至隔夜。点片确认反应结束,待降温后于冰浴下缓慢滴加水至反应液呈现胶状,在缓慢滴加盐酸水溶液至反应液呈透明澄清状,移至室温搅拌约10分钟,加入乙酸乙酯进行萃取,有机层再以水萃取约2次,收集有机层以无水硫酸镁除水,过滤后减压浓缩,将粗产物以管柱层析纯化,冲提液比例为乙酸乙酯:正己烷=1:3,抽干后可得II-2-2 17克,产率95.4%。
1H-NMR(500MHz,CDCl 3,ppm):8.03(s,2H)、7.67(d,2H)、7.5(m,2H)。
取30克化合物II-2-2及84克碘化铜(I)于双颈瓶中,置换氮气,打入300毫升二甲基甲酰胺及320毫升甲醇钠,将反应液于120℃下反应至隔夜。点片确认反应结束,待降温后加入乙酸乙酯搅拌溶解产物,过滤不溶物,并使用乙酸乙酯及水萃取,收集有机层以无水硫酸镁除水,过滤后减压浓缩,以乙酸乙酯再结晶两次,得白色固体II-2-3 10克,产率47%。
1H-NMR(500MHz,CDCl 3,ppm):7.67(d,2H)、7.37(s,2H)、6.84(d,2H)、3.73(s,6H)。
取10克化合物II-2-3及76克四丁基碘化铵于双颈瓶中,抽真空约1小时,置换氮气,打入二氯甲烷400毫升,降温至-78℃,缓慢打入200毫升三氯化硼,维持-78℃搅拌约5分钟,移至室温搅拌约4~5小时,点片追踪反应。反应结束后,缓慢滴加水并搅拌30分钟,分离水层,有机层以碳酸氢钠水溶液和硫代硫酸钠水溶液搅拌至呈现近透明无色状即可,将有机层以水洗至中性后再以盐酸水溶液萃取,接着水洗至中性,收集有机层以无水硫酸镁除水,过滤后减压浓缩,将粗产物以管柱层析纯化,冲提液比例为乙酸 乙酯:正己烷=1:4~1:2,抽干后再以甲苯和丙酮进行再结晶,可得淡咖啡-白色固体II-2-4 6.5克,产率73%。
1H-NMR(500MHz,CDCl 3,ppm):7.61(m,2H)、7.33(s,2H)、6.80(m,2H)、5.0(s,2H)。
取1克化合物II-162-4于双颈瓶中,置换氮气,打入30毫升四氢呋喃及2毫升三乙胺,在冰浴下滴加1.4毫升甲基丙烯酰氯,维持冰浴搅拌10分钟,移至室温搅拌10分钟。点片确认反应结束,加入水中止反应,分离水层,有机层以碳酸钠水溶液萃取后水洗至中性,再以盐酸水溶液萃取并水洗至中性,收集有机层以无水硫酸镁除水,过滤后减压浓缩,将粗产物以短管柱冲提,在使用乙醇或甲苯再结晶,可得II-2 1克白色棉絮状固体,产率63%。
制备得到的化合物II-2(BH(S)-MAO-OMA)进行质谱、核磁共振谱测试,测试得到的数据如下。根据测试结果,化合物II-2为BH(S)-MAO-OMA所示结构。
MS(EI,m/z):69,352。
1H-NMR(500MHz,CDCl 3,ppm):8.15(d,2H)、7.66(s,2H)、7.27-7.24(dd,2H)、6.38(s,2H)、5.81(s,2H)、2.09(s,6H)。
13C-NMR(500MHz,CDCl 3,ppm):165.8、149.8、140.3、135.9、132.6、127.2、121.98、119.0、115.7、18.1。
实施例2
B(S)[CH3,CH3]-MAO-OMA(II-52)
Figure PCTCN2023071150-appb-000065
合成路线:
Figure PCTCN2023071150-appb-000066
取50克4,6-二甲基二苯并噻吩于单颈瓶中加入790毫升醋酸,接着加入82.8克溴水于常温下反应16小时,将反应液过滤后收集滤饼,将滤饼以乙酸乙酯再结晶,得II-52-1 63.6克,产率73%。
1H-NMR(500MHz,CDCl 3,ppm):7.48(d,2H)、7.38(d,2H)、2.35(s,6H)。
根据化合物II-2-3制备方式以前述制备的化合物II-52-1为原料制备目标化合物II-52-2,产率45%。
1H-NMR(500MHz,CDCl 3,ppm):7.48(d,2H)、6.72(d,2H)、3.73(s,6H)、2.35(s,6H)。
根据化合物II-2-4制备方式以前述制备的化合物II-52-2为原料制备制备目标化合物II-52-3,产率70%。
1H-NMR(500MHz,CDCl 3,ppm):7.42(d,2H)、6.68(d,2H)、5.0(s,2H)、2.35(s,6H)。
根据化合物II-2制备方式以前述制备的化合物II-52-3为原料制备目标化合物II-52,产率60%。
制备得到的化合物II-52(B(S)[CH3,CH3]-MAO-OMA)进行质谱、核磁共振谱测试,测试得到的数据如下。根据测试结果,化合物II-52为B(S)[CH3,CH3]-MAO-OMA所示结构。
MS(EI,m/z):69,380。
1H-NMR(500MHz,CDCl 3,ppm):7.56(d,2H)、7.02(d,2H)、5.98(s,2H)、5.49(s,2H)、2.35(s,6H)、1.93(s,6H)。
13C-NMR(500MHz,CDCl 3,ppm)166、149.7、135.4、133.2、128.5、128、124.7、120.7、18、11。
实施例3
B(S)-MAO-OMA(II-28)
Figure PCTCN2023071150-appb-000067
合成路线:
Figure PCTCN2023071150-appb-000068
反应瓶A:取50克2-溴-6-氟苯酚及56克碳酸钾于双颈瓶中,置换氮气,打入500毫升四氢呋喃及190毫升水,加热至回流。反应瓶B;取44.2克2,3-二氟苯基硼酸及3.7克双[二叔丁基-(4-二甲基氨基苯基)膦]二氯化钯(II)(Pd(Amphos)Cl 2)于单颈瓶中,置换氮气,打入500毫升四氢呋喃,搅拌均匀。待反应瓶A开始回流后将B反应液打入反应瓶A中,回流至隔天。点片确认反应结束,加入水及乙酸乙酯萃取,收集有机层以无水硫酸镁除水,过滤后减压浓缩,将粗产物以管柱层析纯化,冲提液比例为乙酸乙酯:正己烷=1:9,可得II-28-1 45.8克,产率78%。
1H-NMR(500MHz,CDCl 3,ppm):7.23(m,1H)、7.08(m,2H)、6.91-6.76(m, 3H)、5.0(s,1H)。
取30克化合物II-28-1及0.5克4-二甲基氨基吡啶于双颈瓶中,置换氮气,打入300毫升二氯甲烷及30.6毫升三乙胺,于冰浴下缓慢滴加34毫升三氟甲磺酸酐,加完后移至室温搅拌约4~5小时。点片确认反应结束,直接以减压浓缩移除溶剂及多余的三氟甲磺酸酐,将粗产物以管柱层析纯化,冲提液比例为二氯甲烷:正己烷=1:2,抽干后再以正己烷进行重结晶,可得II-28-2 40.5克,产率85%。
1H-NMR(500MHz,CDCl 3,ppm):7.32-7.23(m,3H)、7.07-6.91(m,3H)。
反应瓶C:取40克化合物II-28-2于双颈瓶中,置换氮气,打入270毫升甲苯、25.4毫升N,N-二异丙基乙胺及16毫升3-巯基丙酸乙酯,搅拌至溶解。反应瓶D:取3.2克Pd(dba) 2及6克DPEPhos于单颈瓶中,置换氮气,打入100毫升甲苯搅拌约20分钟,将反应液D加入至反应瓶C中加热至120℃回流,反应至隔天。点片确认反应结束,以乙酸乙酯及盐酸水溶液萃取,再水洗至中性,收集有机层以无水硫酸镁除水,过滤后减压浓缩,将粗产物以短管柱进行纯化,冲提液比例为乙酸乙酯:正己烷=1:5,抽干即可得II-28-3,无须进一步纯化。
1H-NMR(500MHz,CDCl 3,ppm):7.23(m,1H)、7.15(d,1H)、7.07(m,2H)、6.91(m,1H)、6.83(m,1H)、4.12(q,2H)、3.16(t,2H)、2.59(t,2H)、1.30(t,3H)。
取40克化合物II-28-3于双颈瓶中,置换氮气,打入350毫升四氢呋喃及141毫升叔丁醇钾,加热至回流,反应至隔天。点片确认反应结束,加入醋酸水溶液至水层呈酸性,加入乙酸乙酯溶解产物,水洗至中性,收集有机层以无水硫酸镁除水,过滤后减压浓缩,将粗产物以短管柱进行纯化,冲提液比例为乙酸乙酯:正己烷=1:5,再以正己烷搅洗至产物呈白色即可,得II-28-4 23.3克,产率90%。
1H-NMR(500MHz,CDCl 3,ppm):7.55(d,2H)、7.31(m,2H)、7.02(m,2H)。
取30克化合物II-28-4于双颈瓶中,置换氮气,打入1360毫升四氢呋喃,将反应瓶降温至-78℃后缓慢滴加入131毫升正丁基锂(2.5M),将反应液 维持在0℃搅拌1小时,接着重新降温-78℃并快速加入94毫升硼酸三异丙酯后,将反应液维持在0℃搅拌4小时。加入23毫升冰醋酸与31毫升双氧水(30%),接着继续搅拌至隔日。以乙酸乙酯及水进行萃取,可得到II-28-525.8克,产率75%。
1H-NMR(500MHz,CDCl 3,ppm):7.38(d,2H)、6.78(m,2H)、5.0(s,2H)。根据化合物II-2制备方式以前述制备的化合物II-28-5为原料制备目标化合物II-28,产率65%。
制备得到的化合物II-28(B(S)-MAO-OMA)进行质谱、核磁共振谱测试,测试得到的数据如下。根据测试结果,化合物II-28为B(S)-MAO-OMA所示结构。
MS(EI,m/z):69,388。
1H-NMR(500MHz,CDCl 3,ppm):7.52(d,2H)、7.12(m,2H)、5.98(s,2H))、5.49(s,2H))、1.93(s,6H)。
13C-NMR(500MHz,CDCl 3,ppm)166、149.1、136、135.4、134.1、130.2、128、126.8、119.3、18。
实施例4
B(S)[CF3,CF3]-MAO-OMA(II-94)
Figure PCTCN2023071150-appb-000069
合成路线:
Figure PCTCN2023071150-appb-000070
将起始物更换为2-溴-6-三氟甲基苯酚及2-氟-3-三氟甲基苯基硼酸并根据化合物II-28-1制备方式制备目标化合物II-94-1,产率75%。
1H-NMR(500MHz,CDCl 3,ppm):7.46(m,1H)、7.39(m,1H)、7.31(d,1H)、7.24(d,1H)、7.02(t,1H)、6.81(t,1H)、5.0(s,1H)。
根据化合物II-28-2制备方式以前述制备的化合物II-94-1为原料制备目标化合物II-94-2,产率83%。
1H-NMR(500MHz,CDCl 3,ppm):7.55(d,1H)、7.48-7.46(m,2H)、7.39(m,1H)、7.24(t,1H)、7.02(t,1H)。
根据化合物II-28-3制备方式以前述制备的化合物II-94-2为原料制备目标化合物II-94-3。
1H-NMR(500MHz,CDCl 3,ppm):7.46(m,1H)、7.39-7.38(m,2H)、7.31(d,1H)、7.02-7.01(m,2H)、4.12(q,2H)、3.16(t,2H)、2.59(t,2H)、1.30(t,3H)。
根据化合物II-28-4制备方式以前述制备的化合物II-94-3为原料制备目标化合物II-94-4,产率88%。
1H-NMR(500MHz,CDCl 3,ppm):7.78(d,2H)、7.50(d,2H)、7.26(t,2H)。
根据化合物II-28-5制备方式以前述制备的化合物II-94-4为原料制备目标化合物II-94-5,产率76%。
1H-NMR(500MHz,CDCl 3,ppm):7.61(d,2H)、6.73(d,2H)、5.0(s,2H)。
根据化合物II-2制备方式以前述制备的化合物II-94-5为原料制备目标化合物II-94,产率63%。
制备得到的化合物II-94(B(S)[CF3,CF3]-MAO-OMA)进行质谱、核磁共振谱测试,测试得到的数据如下。根据测试结果,化合物II-94为B(S)[CF3,CF3]-MAO-OMA所示结构。
MS(EI,m/z):69,488。
1H-NMR(500MHz,CDCl 3,ppm):7.75(d,2H)、7.07(d,2H)、5.98(s,2H)、5.49(s,2H)、1.93(s,6H)。
13C-NMR(500MHz,CDCl 3,ppm)166、145.8、135.4、133.4、131.2、128.9、128、127、118、110.9、18。
实施例5
B(S)[OCF3,OCF3]-MAO-OMA(II-112)
Figure PCTCN2023071150-appb-000071
合成路线:
Figure PCTCN2023071150-appb-000072
将起始物更换为2-溴-6-三氟甲氧基苯酚及2-氟-3-三氟甲氧基苯基硼酸并根据化合物II-28-1制备方式做出目标化合物II-112-1,产率80%。
1H-NMR(500MHz,CDCl 3,ppm):7.02-6.98(m,2H)、6.87(d,1H)、6.77(d,1H)、6.71(m,1H)、6.56(d,1H)、5.0(s,1H)。
根据化合物II-28-2制备方式以前述制备的化合物II-112-1为原料制备目标化合物II-112-2,产率87%
1H-NMR(500MHz,CDCl 3,ppm):7.20(t,1H)、7.11(d,1H)、7.02-6.98(m,2H)、6.80(d,1H)、6.71(m,1H)
根据化合物II-28-3制备方式以前述制备的化合物II-112-2为原料制备目标化合物II-112-3。
1H-NMR(500MHz,CDCl 3,ppm):7.02-6.94(m,4H)、6.71(m,1H)、6.63(m,1H)、4.12(q,2H)、3.16(t,2H)、2.59(t,2H)、1.30(t,3H)。
根据化合物II-28-4制备方式以前述制备的化合物II-112-3为原料制备目标化合物II-112-4,产率88%。
1H-NMR(500MHz,CDCl 3,ppm):7.34(d,2H)、7.22(t,2H)、6.82(d,2H)。
根据化合物II-28-5制备方式以前述制备的化合物II-112-4为原料制备目标化合物II-112-5,产率76%。
1H-NMR(500MHz,CDCl 3,ppm):7.17(d,2H)、6.69(d,2H)、5.0(s,2H)。
根据化合物II-28的制备方式以前述制备的化合物II-112-5为原料制备目标化合物II-112,产率65%。
制备得到的化合物II-112(B(S)[OCF3,OCF3]-MAO-OMA)进行质谱、核磁共振谱测试,测试得到的数据如下。根据测试结果,化合物II-112为B(S)[OCF3,OCF3]-MAO-OMA所示结构。
MS(EI,m/z):69,520。
1H-NMR(500MHz,CDCl 3,ppm):7.31(d,2H)、7.03(d,2H)、5.98(s,2H)、5.49(s,2H)、1.93(s,6H)。
13C-NMR(500MHz,CDCl 3,ppm):166、149、135.4、134.6、133.8、129.6、 128、126.6、121.4、116、18。
实施例6
B(S)[OCH3,OCH3]-MAO-OMA(II-74)
Figure PCTCN2023071150-appb-000073
合成路线:
Figure PCTCN2023071150-appb-000074
取20克化合物II-74-1于双颈瓶中,后续加入300毫升的四氢呋喃与27毫升的三乙胺,之后用冰浴将反应液冷却至0℃。缓慢滴加14.8毫升的2M溴甲烷的四氢呋喃溶液,滴加完后再冰浴反应30分钟,接着在室温下反应1小时。反应结束用乙酸乙酯与水进行萃取、收集有机相。有机相,以无水硫酸钠干燥、进行减压浓缩,然后将浓缩液用硅胶管柱层析纯化,收集得到20克白色固体II-74-2,产率90%。
1H-NMR(500MHz,CDCl 3,ppm):7.78(d,2H)、7.42(t,2H)、6.92(d,2H)、3.83(s,6H)。
取10克化合物II-74-2于双颈瓶中、置换氮气,打入200毫升四氢呋喃与12.2毫升四甲基乙二胺,然后降温至-78℃后,缓慢滴加30毫升的1.4M仲丁基锂的环己烷溶液,维持-78℃搅拌30分钟,接着在室温下反应3小时。后续将温度降至-78℃后,加入9.2毫升硼酸三甲酯,将温度回至室温反应2小时。接着把温度降至0℃,在反应瓶滴入10毫升的30%双氧水反应1小时。接着在室温下加入盐酸水溶液搅拌20分钟,再用乙酸乙酯进行萃取,完成后收集有机层、水洗、无水流酸镁除水。有机层进行减压浓缩后,将浓 缩液进行管柱层析,可得到5.9克白色固体II-74-3,产率56%。
1H-NMR(500MHz,CDCl 3,ppm):9.62(br,2H)、7.32(d,2H)、6.85(d,2H)、3.81(s,6H)。
取3克化合物II-74-3于双颈瓶中,置换氮气,打入40毫升四氢呋喃及2.9毫升三乙胺,冰浴下滴加2.3毫升甲基丙烯酰氯,冰浴下搅拌10分钟,移至室温搅拌20分钟。反应结束后加入水中止反应,再加入乙酸乙酯进行萃取、分离水层,有机层以碳酸钠水溶液萃取,水洗至中性,再以盐酸水溶液萃取,水洗至中性,收集有机层以无水硫酸镁除水,过滤后减压浓缩,用乙酸乙酯进行再结晶,可得到2.32克白色固体II-74,产率51.6%。
制备得到的化合物II-74(B(S)[OCH3,OCH3]-MAO-OMA)进行质谱、核磁共振谱测试,测试得到的数据如下。根据测试结果,化合物II-74为B(S)[OCH3,OCH3]-MAO-OMA所示结构。
MS(EI,m/z):69,412。
1H-NMR(500MHz,CDCl 3,ppm):7.68(d,2H)、7.21(d,2H)、6.38(s,2H)、5.85(s,2H)、3.83(s,6H)、2.08(s,6H)。
13C-NMR(500MHz,CDCl 3,ppm):168、147、143、136.1、132.6、130.2、128、124.5、115.6、61.6、18.2。
实施例7
B(S)-MAO-3OMA(II-30)
Figure PCTCN2023071150-appb-000075
合成路线:
Figure PCTCN2023071150-appb-000076
取20克化合物II-28-4于双颈瓶中、置换氮气,接着打入400毫升四氢呋喃,然后降温至-78℃后,缓慢滴加59.6毫升的1.6M正丁基锂的正己烷溶液,维持温度在-78℃下搅拌30分钟,接着加入7.7毫升二甲基甲酰胺,再将温度回至室温反应30分钟。接着在室温下加入盐酸水溶液搅拌20分钟,再用乙酸乙酯进行萃取,完成后收集有机层、水洗、无水流酸镁除水。有机层进行减压浓缩后,将浓缩液进行管柱层析,可得到19.2克白色固体II-30-1,产率85%。
1H-NMR(500MHz,CDCl 3,ppm):10.23(s,1H)、7.98(d,1H)、7.89(d,1H)、7.68(d,1H)、7.42(s,1H)、7.12(s,1H)。
在0℃下将20.7克溴代乙醛缩乙二醇三苯基磷盐和5.4克叔丁醇钾于双颈瓶中,加入300毫升四氢呋喃溶解,之后回到室温反应1小时。接着再将温度降至0℃后,滴入四氢呋喃溶液[10克化合物II-30-1与100毫升四氢呋喃]、加热至回流反应6小时。等待反应液冷却至室温,加入乙酸乙酯与水 溶液进行萃取、收集有机相、无水硫酸镁除水、减压抽干,接着将浓缩液以管柱层析分离,可得到9.5克白色固体II-30-2,产率74%。
1H-NMR(500MHz,CDCl 3,ppm):7.88(d,1H)、7.75(d,1H)、7.52(t,1H)、7.35(d,1H)、7.12(d,1H)、6.29(d,1H)、6.12(d,1H)、5.32(d,1H)、3.92~3.72(m,4H)。
500毫升反应瓶内加入10克化合物II-30-2、1克碳钯与300毫升四氢呋喃搅拌。接着在常压下以氢气气泡通入反应液内,气泡通入过程并且搅拌2小时。后续将反应液滤除碳钯、减压浓缩,接着将抽干的剩余物以管柱层析分离,抽干后得到8.1克白色固体II-30-3,产率81%。
1H-NMR(500MHz,CDCl 3,ppm):7.88(d,1H)、7.75(d,1H)、7.52(t,1H)、7.33(d,1H)、7.12(d,1H)、5.35(d,1H)、3.92~3.72(m,4H)、2.57(t,2H)、2.02(q,2H)。
取10克化合物II-30-3于双颈瓶中、置换氮气,打入200毫升四氢呋喃,然后降温至-78℃后,缓慢滴加20.5毫升的1.6M正丁基锂的正己烷溶液,维持-78℃搅拌30分钟,接着在室温下反应1小时。后续将温度降至-78℃后,加入7.9毫升硼酸三异丙酯,将温度回至室温反应30分钟。接着把温度降至0℃,在反应瓶滴入3.9毫升的30%双氧水反应1小时。接着在室温下加入盐酸水溶液搅拌20分钟,再用乙酸乙酯进行萃取,完成后收集有机层、水洗、无水流酸镁除水。有机层进行减压浓缩后,将浓缩液进行管柱层析,可得到6.6克白色固体II-30-4,产率72%。
1H-NMR(500MHz,CDCl 3,ppm):9.62(t,1H)、9.36(s,1H)、7.85(d,1H)、7.68(d,1H)、7.28(d,1H)、7.05(d,1H)、2.83(t,2H)、2.71(q,2H)。
取10克化合物II-30-4于双颈瓶中,并且加入150毫升甲醇。在室温下加入1.4克硼氢化钠搅拌,后续升温至50℃反应1小时。反应完成后用乙酸乙酯与水进行萃取,接着收集有机层、水洗、无水流酸镁除水。把有机层抽干后,可得到9克白色固体II-30-5,产率89%。
1H-NMR(500MHz,CDCl 3,ppm):9.36(s,1H)、7.85(d,1H)、7.68(d,1H)、7.28(d,1H)、7.05(d,1H)、4.09(br,1H)、3.42(q,2H)、2.83(t,2H)、1.93(q,2H)。
取5克化合物II-30-5于双颈瓶中、置换氮气,打入100毫升四氢呋喃及4.6毫升三乙胺,冰浴下滴加3.6毫升甲基丙烯酰氯,冰浴下搅拌10分钟,移至室温搅拌20分钟。反应结束后加入水中止反应,再加入乙酸乙酯进行萃取、分离水层,有机层以碳酸钠水溶液萃取,水洗至中性,再以盐酸水溶液萃取,水洗至中性,收集有机层以无水硫酸镁除水,过滤后减压浓缩,用乙酸乙酯进行再结晶,可得到4.8克白色固体II-30,产率66%。
制备得到的化合物II-30(B(S)-MAO-3OMA)进行质谱、核磁共振谱测试,测试得到的数据如下。根据测试结果,化合物II-30为B(S)-MAO-3OMA所示结构。
MS(EI,m/z):69,430。
1H-NMR(500MHz,CDCl 3,ppm):7.80(m,2H)、7.35(m,2H)、6.48(dd,3H)、6.08(d,1H)、4.23(t,2H)、2.73(t,2H)、2.11(s,6H)、1.95(t,2H)。
13C-NMR(500MHz,CDCl 3,ppm):169、166.1、155.8、149、140.8、136.3、132、130.2、128.8、127、126.6、124.2、121.8、119.2、118、65.8、31、26.3、18.1。
实施例8
PB(S)-MAO-OMA(II-144)
Figure PCTCN2023071150-appb-000077
合成路线:
Figure PCTCN2023071150-appb-000078
将起始物更换为2-溴-6-氟苯酚及2,3-二氟-4-甲氧基苯基硼酸,并根据与化合物II-28-1类似的制备方式做出目标化合物II-144-1,产率84%。
1H-NMR(500MHz,CDCl 3,ppm):7.12-7.08(m,2H)、6.86(m,1H)、6.76(m,1H)、6.58(m,1H)、5.0(s,1H)、3.76(s,3H)。
根据与化合物II-28-2类似的制备方式以前述制备的化合物II-144-1为原料制备目标化合物II-144-2,产率81%。
1H-NMR(500MHz,CDCl 3,ppm):7.32-7.29(m,2H)、7.12(m,1H)、7.0(m,1H)、6.58(m,1H)、3.73(s,3H)。
根据与化合物II-28-3类似的制备方式以前述制备的化合物II-144-2为原料制备目标化合物II-144-3。
1H-NMR(500MHz,CDCl 3,ppm):7.15-7.06(m,3H)、6.83(t,1H)、6.58(m,1H)、4.12(q,2H)、3.73(s,3H)、3.16(t,2H)、2.59(t,2H)、1.30(t,3H)。
根据与化合物II-28-4类似的制备方式以前述制备的化合物II-144-3为原料制备目标化合物II-144-4,产率88.5%。
1H-NMR(500MHz,CDCl 3,ppm):7.55(d,1H)、7.44(d,1H)、7.31(t,1H)、7.02(t,1H)、6.82(m,1H)、3.73(s,3H)。
取50.6克化合物II-144-4于双颈瓶中,置换氮气,打入1000毫升四氢呋喃,降温至-78℃,缓慢滴加97毫升正丁基锂,维持-78℃搅拌1小时,于相同温度下快速加入140毫升硼酸三异丙酯,缓慢回至室温反应至隔天。加入盐酸水溶液至水层呈酸性,搅拌30分钟,加入乙酸乙酯溶解产物,水洗至中性,收集有机层以无水硫酸镁除水,过滤后减压浓缩,抽干即可,无须进一步纯化,可得淡黄色固体II-144-5 51.2克,产率86%。
1H-NMR(500MHz,CDCl 3,ppm):7.6(d,1H)、7.44(m,1H)、7.3(m,1H)、6.82(m,1H)、3.73(s,3H)、2.0(s,2H)。
取51.3克化合物II-144-5、2.1克Pd(dba) 2、2.5克[(t-Bu) 3PH]BF 4、38克氟化钾、36克4-溴苯甲醚于双颈瓶中,置换氮气,打入350毫升四氢呋喃,加热至回流,反应至隔夜。点片确认反应结束,待冷却后以滤纸过滤,将滤饼加入THF加热溶解产物,再次过滤去除金属,将滤液以水萃取,收集有机层以无水硫酸镁除水,过滤后减压浓缩,抽干后以乙酸乙酯搅洗至产物呈白色即可,得II-144-6 45克,产率72%。
1H-NMR(500MHz,CDCl 3,ppm):7.61(d,1H)、7.53(m,1H)、7.44(d,1H)、7.37(m,2H)、6.82(m,3H)、3.73(s,6H)。
取20克化合物II-144-6及137克四丁基碘化铵于双颈瓶中,抽真空约1小时,置换氮气,打入560毫升二氯甲烷,降温至-78℃,缓慢滴加370毫升三氯化硼,维持-78℃搅拌5分钟,移至室温反应5~6小时。点片确认反应结束,缓慢滴加水中止反应,搅拌30分钟,加入乙酸乙酯溶解产物,分离水层,有机层以碳酸氢钠水溶液及硫代硫酸钠水溶液萃取至有层接近透明无色,水洗至中性,再以盐酸水溶液萃取至水层呈酸性,水洗至中性,收集有机层以无水硫酸镁除水,过滤后减压浓缩,以管柱层析纯化,冲提液比例为乙酸乙酯:正己烷=1:3-1:2,抽干后以甲苯及丙酮再结晶,得米黄色或淡咖啡色固体II-144-7 16.7克,产率91%。
1H-NMR(500MHz,CDCl 3,ppm):7.61(d,1H)、7.53(m,1H)、7.38(m,1H)、 7.31(m,2H)、6.78(m,3H)、5.0(s,2H)。
根据化合物II-2制备方式以前述制备的化合物II-144-7为原料制备目标化合物II-144,产率71%。
制备得到的化合物II-144(PB(S)-MAO-OMA)进行质谱、核磁共振谱测试,测试得到的数据如下。根据测试结果,化合物II-144为PB(S)-MAO-OMA所示结构。
MS(EI,m/z):69,464。
1H-NMR(500MHz,CDCl 3,ppm):8.0(m,2H)、7.71-7.69(dd,2H)、7.6(t,1H)、7.35(t,1H)、7.28-.27(m,2H)、2.12(s,3H)、2.1(s,3H)。
13C-NMR(500MHz,CDCl 3,ppm):165.7、164.8、155.3、153.4、150.4、150.3、148.3、137.2、136.6、136.5、135.9、135.7、135.1、132.5、130.3、128.1、127.8、127.7、127.3、125.9、125.8、121.9、121.5、117.6、117.8、18.1。
实施例9
PB(S)-MAO-3OMA(II-146)
Figure PCTCN2023071150-appb-000079
合成路线:
Figure PCTCN2023071150-appb-000080
参照化合物II-144-6的合成方法,将4-溴苯甲醚换成4-溴苯丙醇进行反应,可得到36.8克白色固体II-146-1,产率55%。
1H-NMR(500MHz,CDCl 3,ppm):7.61(d,1H)、7.53(m,1H)、7.44(d,1H)、7.37(m,2H)、6.75(m,3H)、4.21(br,1H)、3.73(s,3H)、3.42(t,2H)、2.68(t,2H)、1.68(q,2H)。
参照化合物II-144-7的合成方法,将化合物II-144-6换成化合物II-146-1进行反应,可得到15.8克白色固体II-146-2,产率82%。
1H-NMR(500MHz,CDCl 3,ppm):9.13(br,1H)、8.05(d,1H)、7.96(d,1H)、7.62(d,1H)、7.53(d,2H)、7.21(d,1H)、7.02(d,2H)、4.21(br,1H)、3.42(t,2H)、2.68(t,2H)、1.68(q,2H)。
参照化合物II-144的合成方法,将化合物II-144-7换成5克化合物II-146-2进行反应,可得到4.3克白色固体II-146,产率64%。
制备得到的化合物II-146(PB(S)-MAO-3OMA)进行质谱、核磁共振谱测试,测试得到的数据如下。根据测试结果,化合物II-146为PB(S)-MAO-3OMA所示结构。
MS(EI,m/z):69,506。
1H-NMR(500MHz,CDCl 3,ppm):8.02(d,1H)、7.93(d,1H)、7.62(d,1H)、7.53(d,2H)、7.21(d,1H)、7.02(d,2H)、6.45(dd,3H)、6.06(d,1H)、4.19(t,2H)、2.72(t,2H)、2.12(s,6H)、1.98(t,2H)。
13C-NMR(500MHz,CDCl 3,ppm):168.2、166.3、154、149.5、1444、141、136.2、135.8、134、130.3、128.5、127、126.1、125.3、124、120、119.1、65.8、32、30.8、18.1。
使用下述的母体液晶(组成示于表1)与前述实施例制备的聚合性化合物以及对比例的化合物(示于后述的表2)调配成反应型液晶组合物,其组成为0.3质量份聚合性液晶单体与100质量份母体液晶,混合后,在下述的条件下测量T NI(℃)、Δn、Δε、K 11(pN)、K 33(pN)、G1(mPa.s),得到母体液晶中添加各聚合性单体化合物后的物理性能,结果示于后述的表3中。
表1母体液晶中各组分及其质量百分含量
Figure PCTCN2023071150-appb-000081
表2实施例及对比例的各聚合性液晶单体化合物
Figure PCTCN2023071150-appb-000082
Figure PCTCN2023071150-appb-000083
紫外线最大吸收波长测定设备为JASCO V-530,样品浓度1%溶于甲苯,波长范围为200~800nm。
通过表2中的紫外线最大吸收波长(nm)位置可以发现,实施例1~9的聚合性单体化合物的紫外线最大吸收波长约落于300~330nm间,相较于对比例1来呈现红位移现象,接近PS-VA制程的紫外光区间。
表3:母体液晶、实施例及对比例的液晶物理性能参数
Figure PCTCN2023071150-appb-000084
T NI代表液晶单体由向列相相变至澄清相之温度,其温度通过MP-90设备测量;
Δn表示光学各向异性,Δn=n e-n o,其中,n o为寻常光的折射率,n e为非寻常光的折射率,测试条件:589nm、25±0.2℃。
Δε表示介电各向异性,Δε=ε ,其中,ε 为平行于分子轴的介电常数,ε 为垂直于分子轴的介电常数,测试条件:25℃、INSTEC:ALCT-IR1、18微米垂直盒;
K 11为扭曲弹性常数,K 33为展曲弹性常数,测试条件为:25℃、INSTEC:ALCT-IR1、18微米垂直盒。
Gamma1(mPa.s)为旋转粘滞系数,简写为“G1”,测试条件为:25℃、INSTEC:ALCT-IR1、18微米垂直盒。
根据表3的测量结果,实施例1~9的聚合性液晶单体化合物添加于母体液晶中对各项物理性能彼此间无明显变化,表明实施例1~9的聚合性液晶单体化合物添加于母体液晶中并不会影响母体液晶本身的物理性能,并形成反应型液晶组合物。
在本申请中,根据聚合性单体化合物在一定时间的反应聚合转化率来评价聚合性单体的聚合反应速率。反应聚合转化率越大,表明聚合性单体的聚合反应速率越快。
实验中,在紫外线波长主波段=365nm、照度值为~2mW/cm 2、照射总能量为3J、6J、及9J的固定照射条件下,照射对比例、实施例的反应型液晶组合物,再利用Agilent1200高效液相色谱测(HPLC)量照射前后聚合性单体的浓度,计算[照射后聚合性单体的浓度(%)/照射前聚合性单体的浓度(%)]比值后,可求得其聚合反应转化率=1-[照射后聚合性单体的浓度(%)/照射前聚合性单体的浓度(%)],结果示于下述的表4中。
表4:实施例及对比例经紫外线照射后的聚合反应转化率
照射总能量 紫外线3J 紫外线6J 紫外线9J
对比例1 26.0% 39.1% 49.2%
实施例1 38.7% 54.7% 64.5%
实施例2 39.8% 55.8% 65.8%
实施例3 40.2% 56.4% 66.3%
实施例4 41.5% 57.1% 67.4%
实施例5 41.0% 56.7% 66.9%
实施例6 40.8% 56.3% 66.4%
实施例7 40.0% 56.1% 65.9%
实施例8 45.2% 61.2% 71.5%
实施例9 44.7% 59.3% 70.8%
从表4可知,实施例1~9的聚合性单体化合物经紫外线照射能量3J、6J、9J后,其聚合反应转化率均高于对比例1,由此说明实施例1~9的聚合性单体化合物的聚合反应速率皆快于对比例1的化合物。因此从表4结果可以认为,实施例1~9的聚合性液晶单体化合物具有快速聚合性能,可以缩短现有量产聚合物稳定排列制程时间。
进一步,将实施例、比较例的反应型液晶组合物注入测试盒(TN模式,盒厚=4.0μm,PI,SE-7951)中后,同时控制照射紫外线射总能量在9J的固定照射条件下,照射对比例、实施例的反应型液晶组合物,并在固定温度60℃、电压5V、频率60Hz的条件下,测试设备为TOYO VHR-AMP01来测量紫外线照射反应型液晶组合物前后的电压保持率(VHR)。结果示于后述的表5。
表5:实施例及对比例的聚合性组合物的电压保持率
Figure PCTCN2023071150-appb-000085
通过表5中的VHR(电压保持率)结果显示,母体液晶添加对比例1及实 施例的聚合性单体化合物的情况下,经紫外线(UV)照射后的VHR会明显高于未添加聚合性单体化合物的母体液晶,而其中实施例1~9的聚合性液晶单体组合物经紫外线照射后的电压保持率(VHR)表现明显优于对比例1,说明实施例1~9的聚合性液晶单体具有高电压保持率的性能。
本发明可用其他的不违背本发明的精神或主要特征的具体形式来概述。因此,无论从哪一点来看,本发明的上述实施方案都只能认为是对本发明的说明而不能限制本发明,权利要求书指出了本发明的范围,而上述的说明并未指出本发明的范围,因此,在与本发明的权利要求书相当的含义和范围内的任何改变,都应认为是包括在本发明的权利要求书的范围内。

Claims (11)

  1. 一种聚合性化合物,其具有下述通式I所示结构:
    Figure PCTCN2023071150-appb-100001
    式I中,P 1、P 2各自独立地表示丙烯酸酯基、甲基丙烯酸酯基、乙基丙烯酸酯基、丙基丙烯酸酯基、丁基丙烯酸酯基、戊基丙烯酸酯基、氟代丙烯酸酯基、氟代甲基丙烯酸酯基、氟代乙基丙烯酸酯基、氟代丙基丙烯酸酯基、氟代丁基丙烯酸酯基、或者、氟代戊基丙烯酸酯基;
    Z 1、Z 2各自独立地表示单键、碳原子数为1~8的直链亚烷基、碳原子数为1~8的直链亚烷基氧基、碳原子数为2~8的直链亚烯基、或者碳原子数为2~8的直链亚烯基氧基,其中一个或两个不相邻的-CH 2-任选被-O-取代,任意的H任选被F原子取代;
    Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7、Y 8、Y 9、Y 10各自独立地表示-H、-F、-CH 3、-CH 2F、-CHF 2、-CF 3、-C 2H 5、-OCH 3、-OCH 2F、-OCHF 2、-OCF 3、或者、-OC 2H 5
    n表示0、1或2。
  2. 根据权利要求1所述的聚合性化合物,其中,所述P 1、P 2各自独立地表示丙烯酸酯基、甲基丙烯酸酯基、氟代丙烯酸酯基、或者、氟代甲基丙烯酸酯基。
  3. 根据权利要求1或2所述的聚合性化合物,其中,所述Z 1、Z 2各自独立地表示单键、碳原子数为1~5的直链亚烷基、碳原子数为1~5的直链亚烷基氧基、碳原子数为2~5的直链亚烯基、或者、碳原子数为2~5的直链亚烯基氧基,其中一个或两个不相邻的-CH 2-任选被-O-取代,任意的H任选被F原子取代。
  4. 根据权利要求3所述的聚合性化合物,其中,所述Z 1、Z 2各自独立地表示单键、碳原子数为1~3的直链亚烷基、或者、碳原子数为1~3的直链亚烷基氧基,其中一个或两个不相邻的-CH 2-任选被-O-取代,任意的H任选被F原子取代。
  5. 根据权利要求1~4的任一项所述的聚合性化合物,其中,Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7、Y 8、Y 9、Y 10各自独立地表示-H、-F、-CH 3、-CF 3、-C 2H 5、-OCH 3、-OCF 3或者-OC 2H 5
  6. 根据权利要求1~5的任一项所述的聚合性化合物,其中,n表示0或者1。
  7. 根据权利要求1所述的聚合性化合物,其为选自下述的式I-1~I-57所示化合物组成的组,其中P 1、P 2、Z 1、Z 2的定义与权利要求1中相同,
    Figure PCTCN2023071150-appb-100002
    Figure PCTCN2023071150-appb-100003
    Figure PCTCN2023071150-appb-100004
    Figure PCTCN2023071150-appb-100005
    Figure PCTCN2023071150-appb-100006
    Figure PCTCN2023071150-appb-100007
    Figure PCTCN2023071150-appb-100008
    Figure PCTCN2023071150-appb-100009
  8. 根据权利要求1所述的聚合性化合物,其选自下述的式II-1~II-258所示化合物组成的组,
    Figure PCTCN2023071150-appb-100010
    Figure PCTCN2023071150-appb-100011
    Figure PCTCN2023071150-appb-100012
    Figure PCTCN2023071150-appb-100013
    Figure PCTCN2023071150-appb-100014
    Figure PCTCN2023071150-appb-100015
    Figure PCTCN2023071150-appb-100016
    Figure PCTCN2023071150-appb-100017
    Figure PCTCN2023071150-appb-100018
    Figure PCTCN2023071150-appb-100019
    Figure PCTCN2023071150-appb-100020
    Figure PCTCN2023071150-appb-100021
    Figure PCTCN2023071150-appb-100022
    Figure PCTCN2023071150-appb-100023
    Figure PCTCN2023071150-appb-100024
    Figure PCTCN2023071150-appb-100025
    Figure PCTCN2023071150-appb-100026
    Figure PCTCN2023071150-appb-100027
    Figure PCTCN2023071150-appb-100028
    Figure PCTCN2023071150-appb-100029
    Figure PCTCN2023071150-appb-100030
    Figure PCTCN2023071150-appb-100031
    Figure PCTCN2023071150-appb-100032
    Figure PCTCN2023071150-appb-100033
    Figure PCTCN2023071150-appb-100034
    Figure PCTCN2023071150-appb-100035
    Figure PCTCN2023071150-appb-100036
    Figure PCTCN2023071150-appb-100037
    Figure PCTCN2023071150-appb-100038
    Figure PCTCN2023071150-appb-100039
    Figure PCTCN2023071150-appb-100040
    Figure PCTCN2023071150-appb-100041
    Figure PCTCN2023071150-appb-100042
    Figure PCTCN2023071150-appb-100043
    Figure PCTCN2023071150-appb-100044
    Figure PCTCN2023071150-appb-100045
    Figure PCTCN2023071150-appb-100046
  9. 一种组合物,其含有权利要求1~8的任一项所述的聚合性化合物。
  10. 根据权利要求9所述的组合物,其还含有非聚合性液晶化合物,所述组合物呈液晶相。
  11. 一种液晶显示器件,其通过使用权利要求10所述的组合物,使其中的聚合性化合物聚合而被赋予液晶取向能力。
PCT/CN2023/071150 2022-01-13 2023-01-08 聚合性化合物、组合物、液晶显示器件 WO2023134598A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210034515.8 2022-01-13
CN202210034515.8A CN114394953A (zh) 2022-01-13 2022-01-13 聚合性化合物、组合物、液晶显示器件

Publications (1)

Publication Number Publication Date
WO2023134598A1 true WO2023134598A1 (zh) 2023-07-20

Family

ID=81231099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071150 WO2023134598A1 (zh) 2022-01-13 2023-01-08 聚合性化合物、组合物、液晶显示器件

Country Status (3)

Country Link
CN (1) CN114394953A (zh)
TW (1) TW202328406A (zh)
WO (1) WO2023134598A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116999889A (zh) * 2023-10-07 2023-11-07 莱州市莱玉化工有限公司 一种硫酸镁结晶分离系统及工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350380B (zh) * 2022-01-13 2024-08-16 烟台显华科技集团股份有限公司 负介电各向异性液晶组合物、光学各向异构体及液晶显示器件
CN114394953A (zh) * 2022-01-13 2022-04-26 烟台显华科技集团股份有限公司 聚合性化合物、组合物、液晶显示器件

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439114A (zh) * 2009-05-22 2012-05-02 默克专利股份有限公司 液晶显示器
WO2013011893A1 (ja) * 2011-07-20 2013-01-24 Dic株式会社 (メタ)アクリレート化合物、ラジカル重合性組成物、硬化物及びプラスチックレンズ
CN109503534A (zh) * 2018-12-19 2019-03-22 西安瑞立电子材料有限公司 可聚合化合物及液晶介质
CN110343082A (zh) * 2018-04-02 2019-10-18 北京八亿时空液晶科技股份有限公司 一种二苯并呋喃类可聚性化合物及其应用
CN110343531A (zh) * 2018-04-02 2019-10-18 北京八亿时空液晶科技股份有限公司 一种二苯并噻吩类可聚性化合物及其应用
CN110386912A (zh) * 2018-04-16 2019-10-29 北京八亿时空液晶科技股份有限公司 一种新型二苯并呋喃类可聚性化合物及其应用
CN110386917A (zh) * 2018-04-16 2019-10-29 北京八亿时空液晶科技股份有限公司 一种新型二苯并噻吩类可聚性化合物及其应用
CN113913193A (zh) * 2021-07-23 2022-01-11 烟台显华化工科技有限公司 具有负介电各向异性的液晶化合物、液晶组合物、液晶显示器件
CN114350380A (zh) * 2022-01-13 2022-04-15 烟台显华科技集团股份有限公司 负介电各向异性液晶组合物、光学各向异构体及液晶显示器件
CN114381279A (zh) * 2022-01-17 2022-04-22 烟台显华科技集团股份有限公司 聚合性化合物、组合物、液晶显示器件
CN114381280A (zh) * 2022-01-17 2022-04-22 烟台显华科技集团股份有限公司 负介电各向异性液晶组合物、光学各向异构体及液晶显示器件
CN114394953A (zh) * 2022-01-13 2022-04-26 烟台显华科技集团股份有限公司 聚合性化合物、组合物、液晶显示器件
JP2022065315A (ja) * 2020-10-15 2022-04-27 Dic株式会社 重合性化合物及びそれを含有する液晶組成物
CN115287083A (zh) * 2022-09-01 2022-11-04 烟台显华科技集团股份有限公司 负介电各向异性液晶组合物及液晶显示器件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108865177B (zh) * 2018-08-13 2020-06-09 石家庄晶奥量新材料有限公司 液晶介质及在液晶显示器中的应用

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439114A (zh) * 2009-05-22 2012-05-02 默克专利股份有限公司 液晶显示器
WO2013011893A1 (ja) * 2011-07-20 2013-01-24 Dic株式会社 (メタ)アクリレート化合物、ラジカル重合性組成物、硬化物及びプラスチックレンズ
CN110343531A (zh) * 2018-04-02 2019-10-18 北京八亿时空液晶科技股份有限公司 一种二苯并噻吩类可聚性化合物及其应用
CN110343082A (zh) * 2018-04-02 2019-10-18 北京八亿时空液晶科技股份有限公司 一种二苯并呋喃类可聚性化合物及其应用
CN110386917A (zh) * 2018-04-16 2019-10-29 北京八亿时空液晶科技股份有限公司 一种新型二苯并噻吩类可聚性化合物及其应用
CN110386912A (zh) * 2018-04-16 2019-10-29 北京八亿时空液晶科技股份有限公司 一种新型二苯并呋喃类可聚性化合物及其应用
CN109503534A (zh) * 2018-12-19 2019-03-22 西安瑞立电子材料有限公司 可聚合化合物及液晶介质
JP2022065315A (ja) * 2020-10-15 2022-04-27 Dic株式会社 重合性化合物及びそれを含有する液晶組成物
CN113913193A (zh) * 2021-07-23 2022-01-11 烟台显华化工科技有限公司 具有负介电各向异性的液晶化合物、液晶组合物、液晶显示器件
CN114350380A (zh) * 2022-01-13 2022-04-15 烟台显华科技集团股份有限公司 负介电各向异性液晶组合物、光学各向异构体及液晶显示器件
CN114394953A (zh) * 2022-01-13 2022-04-26 烟台显华科技集团股份有限公司 聚合性化合物、组合物、液晶显示器件
CN114381279A (zh) * 2022-01-17 2022-04-22 烟台显华科技集团股份有限公司 聚合性化合物、组合物、液晶显示器件
CN114381280A (zh) * 2022-01-17 2022-04-22 烟台显华科技集团股份有限公司 负介电各向异性液晶组合物、光学各向异构体及液晶显示器件
CN115287083A (zh) * 2022-09-01 2022-11-04 烟台显华科技集团股份有限公司 负介电各向异性液晶组合物及液晶显示器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116999889A (zh) * 2023-10-07 2023-11-07 莱州市莱玉化工有限公司 一种硫酸镁结晶分离系统及工艺
CN116999889B (zh) * 2023-10-07 2023-12-22 莱州市莱玉化工有限公司 一种硫酸镁结晶分离系统及工艺

Also Published As

Publication number Publication date
CN114394953A (zh) 2022-04-26
TW202328406A (zh) 2023-07-16

Similar Documents

Publication Publication Date Title
WO2023134598A1 (zh) 聚合性化合物、组合物、液晶显示器件
US11091699B2 (en) Liquid crystal composition and liquid crystal display element
TWI737834B (zh) 液晶組成物用自發配向助劑
WO2023134595A1 (zh) 聚合性化合物、组合物、液晶显示器件
WO2018221236A1 (ja) 重合性モノマー、それを用いた液晶組成物及び液晶表示素子
JP6258349B2 (ja) 負の誘電異方性液晶混合物
TWI586645B (zh) 聚合性化合物、液晶組成物及液晶顯示元件
KR101778817B1 (ko) 중합가능한 화합물 및 이의 액정 디스플레이에서의 용도
US11078420B2 (en) Liquid crystal composition and liquid crystal display element
US10759997B2 (en) Polymerizable compound, liquid crystal medium containing same and liquid crystal display device
JP2013180974A (ja) 重合性化合物及びそれを用いた液晶組成物
JP7006659B2 (ja) 重合性モノマー、それを用いた液晶組成物及び液晶表示素子
JP6308415B2 (ja) 重合性化合物及びそれを用いた液晶組成物
WO2019098040A1 (ja) 重合性化合物、並びにそれを使用した液晶組成物及び液晶表示素子
WO2023134594A1 (zh) 负介电各向异性液晶组合物、光学各向异构体及液晶显示器件
TW202007692A (zh) 化合物、液晶組合物、液晶顯示元件及液晶顯示器
US11130911B2 (en) Liquid crystal compound and liquid crystal composition
WO2021192439A1 (ja) 液晶組成物、液晶表示素子及び化合物
CN113710652B (zh) 化合物、液晶组合物及液晶显示元件
JP6701611B2 (ja) 液晶組成物及び液晶表示素子
CN109384796B (zh) 可聚合化合物及液晶组合物
JP2014240469A (ja) 重合性化合物
CN110804005A (zh) 化合物、液晶组合物、液晶显示元件及液晶显示器
CN112368260B (zh) 化合物、液晶组合物及液晶显示元件
JP2013256497A (ja) 隣接基としてカルボニル基を有するフェノール化合物およびその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23739941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE