WO2023134351A1 - 一种硫化锂的制备方法 - Google Patents

一种硫化锂的制备方法 Download PDF

Info

Publication number
WO2023134351A1
WO2023134351A1 PCT/CN2022/137808 CN2022137808W WO2023134351A1 WO 2023134351 A1 WO2023134351 A1 WO 2023134351A1 CN 2022137808 W CN2022137808 W CN 2022137808W WO 2023134351 A1 WO2023134351 A1 WO 2023134351A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
solution
lithium sulfide
solid
preparation
Prior art date
Application number
PCT/CN2022/137808
Other languages
English (en)
French (fr)
Inventor
韩金龙
陆子恒
杨春雷
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2023134351A1 publication Critical patent/WO2023134351A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of lithium ion battery materials, in particular to a preparation method of lithium sulfide.
  • Safety is one of the key requirements for electric vehicles, next-generation portable electronic devices, and large-scale energy storage devices.
  • LIBs lithium-ion batteries
  • ASSLBs all-solid-state lithium batteries
  • ASSLBs did not have any advantages in competing with LIBs in organic electrolytes due to their relatively low ionic conductivity.
  • Chinese patent application uses elemental sulfur and lithium hydride to produce lithium sulfide under mechanical ball milling.
  • the preparation process takes a long time and the price of lithium hydride as a raw material is relatively high, and the purity of the finally obtained lithium sulfide is not high.
  • Chinese patent application uses carbon source to thermally reduce lithium sulfate to obtain lithium sulfide, high temperature and high energy, harsh preparation conditions, high process requirements, and high production costs.
  • the purpose of the present invention is to provide a preparation method of lithium sulfide, which has the advantages of low production cost, simple process requirements, and safety High, short preparation process, simple product purification advantages.
  • the present invention adopts the following technical solutions:
  • the invention provides a kind of preparation method of lithium sulfide, comprising the following steps carried out under the protection of an inert atmosphere:
  • the solution A is mixed with the solution B according to the ratio of the amount of the lithium element to the sulfur element in a ratio of (2-5): 1 to obtain a suspension;
  • the lithium elemental substance is selected from at least one of lithium strips, lithium sheets, lithium dices, and lithium powders.
  • the benzene series is selected from at least one of naphthalene, tetralin and biphenyl; the cyclic ether is selected from at least one of tetrahydrofuran and dioxolane.
  • the concentration of the benzene series in the cyclic ether is 0.06 g/mL ⁇ 1 g/mL.
  • the organic solvent is at least one selected from carbon disulfide, dimethyl sulfoxide, dimethyl ether, and ethylene glycol dimethyl ether.
  • the step S3 specifically includes: adding the solution A to the solution B according to a predetermined flow rate or adding the solution B according to the A predetermined flow rate is added to the solution A.
  • the suspension is subjected to solid-liquid separation by means of centrifugation or filtration.
  • the step S4 further includes: washing and drying the solid-phase product obtained by solid-liquid separation to obtain a solid-phase lithium sulfide product.
  • the number of washings is at least two, and the detergent is selected as the cyclic ether; the drying treatment is selected as drying or natural drying.
  • a preparation method of lithium sulfide provided in the embodiment of the present invention uses lithium element, benzene series, cyclic ether, sulfur element, and organic solvent as raw materials, and the production cost is low; Solution A with cyclic ether and solution B containing sulfur and organic solvents, and then mix solution A with solution B for reaction. Mixing reaction between solution A and solution B is accompanied by local exotherm, and instantaneous local exotherm promotes the reaction. , so that the self-exothermic reaction does not require high temperature and high energy conditions, the process requirements are simple, and the safety is high; after the mixed reaction is completed, the suspension can be simply separated to obtain solid phase lithium sulfide, the preparation process is short and the product purification is simple .
  • Fig. 1 is the technological process schematic diagram of the lithium sulfide preparation method of the embodiment of the present invention
  • Fig. 2 is the SEM scanning result figure of the sample obtained in Example 1 of the present invention.
  • Fig. 3 is an XRD result graph of the sample obtained in Example 1 of the present invention.
  • the inventor of the present invention aims to provide a preparation method of lithium sulfide, which has the advantages of low production cost, high technological It has the advantages of simple requirements, high safety, short preparation process and simple product purification.
  • Fig. 1 is a process flow chart of the preparation method of lithium sulfide provided by the present invention .
  • the embodiment of the present invention provides a kind of preparation method of lithium sulfide, comprises the following steps:
  • solution A Dissolving the lithium element in the cyclic ether containing benzene series to obtain solution A; wherein, the mass ratio of the lithium element to the benzene series is 1: (1 ⁇ 10), when the mass ratio of lithium element to benzene series is in the range of 1: (1 ⁇ 10), lithium element can completely react with benzene series.
  • the mass ratio of the lithium element to the benzene series can be, for example, 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1: 9 or 1:10.
  • the lithium element is selected from at least one of lithium strips, lithium sheets, lithium butyl, and lithium powder;
  • the benzene series is selected from at least one of naphthalene, tetralin, and biphenyl;
  • the ether is at least one selected from tetrahydrofuran and dioxolane.
  • the concentration of the benzene series in the cyclic ether solution is 0.06 g/mL ⁇ 1 g/mL, within this range, the reaction product of lithium element and benzene series can be completely dissolved in the cyclic ether, and will not cause waste of resources.
  • the system has a stabilizing effect.
  • the concentration of the benzene series in the cyclic ether solution can be, for example, 0.06 g/mL, 0.1 g/mL, 0.15 g/mL, 0.2 g/mL, 0.3 g/mL, 0.5 g/mL, 0. 6 g/mL, 0.8 g/mL or 1 g/mL.
  • solution B Dissolving elemental sulfur in an organic solvent to obtain solution B; wherein, the concentration of elemental sulfur in the organic solvent is 0.01 g/mL ⁇ 0.3 g/mL.
  • concentration of the sulfur element in the organic solvent can be, for example, 0.01 g/mL, 0.02 g/mL, 0.05 g/mL, 0.1g/mL, 0.15 g/mL, 0.2g/mL, 0.25 g/mL or 0.3 g/mL.
  • the organic solvent is at least one selected from carbon disulfide, dimethyl sulfoxide, dimethyl ether, and ethylene glycol dimethyl ether.
  • step S1 since there is no correlation between step S1 and step S2, the order of these two steps is actually not limited, and may or may not be performed at the same time.
  • the solution A is mixed with the solution B according to the ratio of the amount of the lithium element to the sulfur element in a ratio of (2-5):1 to obtain a suspension.
  • the solution A and the solution B may be mixed according to a ratio of 2:1, 3:1, 4:1 or 5:1 in the ratio of the amount of the lithium element to the sulfur element.
  • the step S3 is preferably carried out in the following manner: in a cold water bath with a temperature lower than 20°C, under stirring conditions, the solution A is A predetermined flow rate is added to the solution B, wherein the predetermined flow rate needs to meet the requirement that the solution B does not boil when the solution A is added to the solution B; or, in a cold water bath with a temperature lower than 20 ° C, while stirring Under the condition of , the solution B is added to the solution A according to a predetermined flow rate, wherein the predetermined flow rate needs to satisfy that the solution A does not boil when the solution B is added to the solution A.
  • the suspension is subjected to solid-liquid separation by centrifugation or filtration.
  • the solid-phase material obtained by solid-liquid separation is washed and dried to obtain a solid-phase lithium sulfide product.
  • the detergent is selected as the cyclic ether described in step S1; the drying treatment is selected as drying or natural drying.
  • a kind of preparation method of lithium sulfide as described in the above embodiment of the present invention uses lithium simple substance, benzene series, cyclic ether, sulfur simple substance and organic solvent as raw materials, and the production cost is low;
  • the preparation process is short and the product Purification is simple.
  • the suspension is subjected to solid-liquid separation by centrifugation, and the solid phase is collected and washed twice with a tetrahydrofuran solution, and then dried to obtain a solid-phase lithium sulfide powder.
  • Fig. 2 is the SEM scanning result of the lithium sulfide powder sample obtained in Example 1 of the present invention. It can be seen from Fig. 2 that the lithium sulfide prepared by the present invention has better dispersion, larger particle size, and no regular shape.
  • Fig. 3 is an XRD result graph of the lithium sulfide powder sample obtained in Example 2 of the present invention. It can be seen from Fig. 3 that the lithium sulfide powder prepared by the present invention has a high purity.
  • Carbon disulfide is used as an organic solvent to dissolve elemental sulfur. Carbon disulfide is flammable and explosive, and its gasification temperature is lower than 50°C. It is more dangerous to heat it in a reactor. In this embodiment, the partial exotherm is used to promote the reaction when the solution A and the solution B are mixed and reacted, and the reaction is carried out in a cold water bath, avoiding dangerous high temperature and high pressure conditions.
  • the suspension is subjected to solid-liquid separation by centrifugation, the solid phase is collected, washed twice with dioxolane solution, and then dried to obtain solid lithium sulfide powder.
  • the suspension is subjected to solid-liquid separation by centrifugation, and the solid phase is collected and washed twice with a tetrahydrofuran solution, and then dried to obtain a solid-phase lithium sulfide powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供的一种硫化锂的制备方法,包括在惰性气氛保护下进行的以下步骤:S1、将锂单质溶解于含苯系物的环醚中,得到溶液A;其中,所述锂单质与所述苯系物的质量比为1:(1~ 10);S2、将硫单质溶解于有机溶剂中,得到溶液B;其中,所述硫单质在所述有机溶剂中的浓度为0.01 g/mL~0.3 g/mL;S3、按照锂单质和硫单质的物质的量之比为(2~5):1的比例将所述溶液A与所述溶液B混合,得到悬浊液;S4、将所述悬浊液进行固液分离,获得固相的硫化锂产品。本发明提供的一种硫化锂的制备方法,具有生产成本低、工艺要求简单、安全性高、制备流程短、产品提纯简单的优点。

Description

一种硫化锂的制备方法 技术领域
本发明涉及锂离子电池材料技术领域,具体涉及一种硫化锂的制备方法。
背景技术
安全性是电动汽车、下一代便携式电子设备以及大规模储能器件的关键要求之一。与目前商用的基于有机电解液的锂离子电池(LIBs)相比,全固态锂电池(ASSLBs)因具有更高的能量密度与安全性,有望突破现有液态电解质LIBs的发展瓶颈。然而,在早期固态电解质的发展过程中,由于离子电导率相对较低,ASSLBs在与有机电解液LIBs的竞争中并不具有任何优势。近年的研究发现,硫化物固态电解质具有很高的离子电导率,室温锂离子电导率已经达到甚至超过有机电解液,并与硫基正极具有良好界面相容性。作为合成硫化物固态电解质的核心原材料,硫化锂成为研究热点之一。
中国专利申请(公开号CN108336400A)在利用单质硫和氢化锂在机械球磨下生成硫化锂,制备流程时间长且作为原料的氢化锂价格较高,最后获得的硫化锂纯度也不高。
中国专利申请(公开号CN109360953A)利用碳源热还原硫酸锂获得硫化锂,高温高能,制备条件苛刻,工艺要求较高,生产成本也较高。
技术问题
针对现有技术中生产硫化锂生产成本高、制备流程时间长、工艺要求苛刻的问题,本发明的目的在于提供一种硫化锂的制备方法,该方法具有生产成本低、工艺要求简单、安全性高、制备流程短、产品提纯简单的优点。
技术解决方案
为解决上述问题,本发明采用如下的技术方案:
本发明提供了一种硫化锂的制备方法,包括在惰性气氛保护下进行的以下步骤:
S1、将锂单质溶解于含苯系物的环醚中,得到溶液A;其中,所述锂单质与所述苯系物的质量比为1:(1~ 10);
S2、将硫单质溶解于有机溶剂中,得到溶液B;其中,所述硫单质在所述有机溶剂中的浓度为0.01 g/mL~0.3 g/mL;
S3、按照锂单质和硫单质的物质的量之比为(2~5):1的比例将所述溶液A与所述溶液B混合,得到悬浊液;
S4、将所述悬浊液进行固液分离,获得固相的硫化锂产品。
优选地,所述步骤S1中,所述锂单质选自锂条、锂片、锂丁、锂粉中的至少一种。
优选地,所述步骤S1中,所述苯系物选自萘、四氢化萘、联苯中的至少一种;所述环醚选自四氢呋喃、二氧戊环中的至少一种。
再优选的,所述苯系物在所述环醚中的浓度为0.06 g/mL~ 1 g/mL。
优选地,所述步骤S2中,所述有机溶剂选自二硫化碳、二甲亚砜、二甲醚、乙二醇二甲醚中的至少一种。
优选地,所述步骤S3具体包括:在温度低于20℃的冷水浴中,在搅拌的条件下,将所述溶液A按照预定流量加入到所述溶液B中或者是将所述溶液B按照预定流量加入到所述溶液A中。
优选地,所述步骤S4中,所述悬浊液采用离心或者过滤的方法进行固液分离。
再优选地,所述步骤S4还包括:将固液分离获得的固相物洗涤和干燥处理,获得固相的硫化锂产品。
再优选地,洗涤次数为至少两次,洗涤剂选择为所述环醚;所述干燥处理选择为烘干或自然晾干。
有益效果
本发明实施例提供的一种硫化锂的制备方法,使用锂单质、苯系物、环醚、硫单质、有机溶剂为原料,生产成本低;该方法中,首先分别配制包含锂、苯系物和环醚的溶液A和包含硫和有机溶剂的溶液B,然后再将溶液A与溶液B混合反应,溶液A与溶液B混合反应时伴有局部放热,瞬时的局部放热促进反应的进行,由此利用反应自放热而无需高温高能条件,工艺要求简单、安全性高;混合反应完成后将悬浊液进行简单的分离即可获得固相的硫化锂,制备流程短且产品提纯简单。
附图说明
图1是本发明实施例的硫化锂制备方法的工艺流程示意图;
图2是本发明实施例1所得样品的SEM扫描结果图;
图3是本发明实施例1所得样品的XRD结果图。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式进行详细说明。这些优选实施方式的示例在附图中进行了例示。附图中所示和根据附图描述的本发明的实施方式仅仅是示例性的,并且本发明并不限于这些实施方式。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
本发明的发明人根据现有技术中生产硫化锂生产成本高、制备流程时间长、工艺要求苛刻的问题,本发明的目的在于提供一种硫化锂的制备方法,该方法具有生产成本低、工艺要求简单、安全性高、制备流程短、产品提纯简单的优点。
如图所示,图1为本发明提供的硫化锂的制备方法的工艺流程图
本发明实施例提供了一种硫化锂的制备方法,包括以下步骤:
S1、将锂单质溶解于含苯系物的环醚中,得到溶液A;其中,所述锂单质与所述苯系物的质量比为1:(1~ 10),当锂单质与苯系物的质量比在1:(1~10)范围内时,锂单质能完全和苯系物反应。所述锂单质与所述苯系物的质量比例如可以是1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9或1:10。
具体地,所述锂单质选自锂条、锂片、锂丁、锂粉中的至少一种;所述苯系物选自萘、四氢化萘、联苯中的至少一种;所述环醚选自四氢呋喃、二氧戊环中的至少一种。
优选的方案中,所述苯系物在所述环醚溶液中的浓度为0.06 g/mL~ 1 g/mL,在这个范围内,锂单质和苯系物的反应产物能够完全溶解于环醚中,且不会造成资源的浪费,同时环醚中氧的孤对电子对整个体系有稳定作用。所述苯系物在所述环醚溶液中的浓度例如可以是0.06 g/mL、0.1 g/mL、0.15 g/mL、0.2 g/mL、0.3 g/mL、0.5 g/mL、0. 6 g/mL、0.8 g/mL或1 g/mL。
S2、将硫单质溶解于有机溶剂中,得到溶液B;其中,所述硫单质在所述有机溶剂中的浓度为0.01 g/mL~0.3 g/mL。所述硫单质在所述有机溶剂中的浓度例如可以是0.01 g/mL、0.02g/mL、0.05 g/mL、0.1g/mL、0.15 g/mL、0.2g/mL、0.25 g/mL或0.3 g/mL。
具体地,所述有机溶剂选自二硫化碳、二甲亚砜、二甲醚、乙二醇二甲醚中的至少一种。
另外,由于步骤S1和步骤S2之间没有关联性,因此这两个步骤实际是没有顺序限制的,可以同时也可以不同时进行。
S3、按照锂单质和硫单质的物质的量之比为(2~5):1的比例将所述溶液A与所述溶液B混合,得到悬浊液。例如,可以按照锂单质和硫单质的物质的量之比为2:1、3:1、4:1或5:1的比例将所述溶液A与所述溶液B混合。
所述溶液A与所述溶液B混合反应时伴有局部放热,能够巧妙的利用此热量促进反应的进行,随着反应的进行,放出的热量越多,为了减少所述溶液A中的苯系物、环醚和所述溶液B中的有机溶剂的挥发,所述步骤S3优选按照以下方式进行:在温度低于20℃的冷水浴中,在搅拌的条件下,将所述溶液A按照预定流量加入到所述溶液B中,其中,所述预定流量需要满足将所述溶液A加入所述溶液B时溶液B不沸腾;或者是,在温度低于20℃的冷水浴中,在搅拌的条件下,将所述溶液B按照预定流量加入到所述溶液A中,其中,所述预定流量需要满足将所述溶液B加入所述溶液A时溶液A不沸腾。
S4、将所述悬浊液进行固液分离,获得固相的硫化锂产品。
具体地,所述悬浊液采用离心或者过滤的方法进行固液分离。
另外,为获得更高纯度的硫化锂,将固液分离获得的固相物洗涤和干燥处理,获得固相的硫化锂产品。其中洗涤次数为至少两次,洗涤剂选择为步骤S1中所述环醚;所述干燥处理选择为烘干或自然晾干。
本发明如上实施例所述的一种硫化锂的制备方法,使用锂单质、苯系物、环醚、硫单质、有机溶剂为原料,生产成本低;该方法中,首先分别配制包含锂、苯系物和环醚的溶液A和包含硫和有机溶剂的溶液B,然后再将溶液A与溶液B混合反应,溶液A与溶液B混合反应时伴有局部放热,瞬时的局部放热促进反应的进行,由此利用反应自放热而无需高温高能条件,工艺要求简单、安全性高;混合反应完成后将悬浊液进行简单的分离即可获得固相的硫化锂,制备流程短且产品提纯简单。
为了进一步说明本发明,下面结合实施例对本发明提供的一种硫化锂的制备方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
在无水无氧的氩气手套箱中进行以下工艺步骤:
S1、将0.6g锂丁溶解于萘的浓度为0.2g/mL的10mL四氢呋喃溶液中,搅拌至锂丁完全溶解,溶液变为墨绿色至黑色,得到溶液A。
 S2、将1.39g硫粉溶解于8mL的二硫化碳中,搅拌至完全溶解,得到溶液B。
 S3、在5℃冷水浴的条件中,在搅拌的条件下,将所述溶液A加入到所述溶液B中,且溶液B保持不沸腾;滴加完成后,继续搅拌60min,得到悬浊液。
S4、将所述悬浊液采用离心的方法进行固液分离,收集固相物并将固相物用四氢呋喃溶液洗涤两次后晾干,获得固相的硫化锂粉末。
如图所示,图2为本发明实施例1所得硫化锂粉末样品的SEM扫描结果图,由图2可知,本发明制备的硫化锂分散性较好,粒径较大,没有规则外形。
图3为本发明实施例2所得硫化锂粉末样品的XRD结果图,由图3可知,本发明制备的硫化锂粉末纯度较高。
以二硫化碳为有机溶剂溶解硫单质,二硫化碳易燃易爆,气化温度低于50℃,用反应釜加热危险性比较大。在本实施例中,利用溶液A与溶液B混合反应时伴有局部放热促进反应的进行,并且是在冷水浴的条件中进行反应,避免了危险的高温高压条件。
实施例2
在无水无氧的氩气手套箱中进行以下工艺步骤:
S1、将1.0g锂粉溶解于联苯的溶度为0.6g/mL的10mL二氧戊环溶液中,搅拌至锂丁完全溶解,溶液变为墨绿色至黑色,得到溶液A。
 S2、将1.39g硫粉溶解于8mL的二甲亚砜中,搅拌至完全溶解,得到溶液B。
 S3、在10℃冷水浴的条件中,在搅拌的条件下,将所述溶液A加入到所述溶液B中,且溶液B保持不沸腾;滴加完成后,继续搅拌60min,得到悬浊液。
S4、将所述悬浊液采用离心的方法进行固液分离,收集固相物并将固相物用二氧戊环溶液洗涤两次后烘干,获得固相的硫化锂粉末。
实施例3
在无水无氧的氩气手套箱中进行以下工艺步骤:
S1、将0.6g锂条溶解于萘的溶度为1g/mL的10mL四氢呋喃溶液中,搅拌至锂丁完全溶解,溶液变为墨绿色至黑色,得到溶液A。
 S2、将0.64g硫粉溶解于8mL的二甲醚中,搅拌至完全溶解,得到溶液B。
 S3、在7℃冷水浴的条件中,在搅拌的条件下,将所述溶液B加入到所述溶液A中,且溶液A保持不沸腾;滴加完成后,继续搅拌60min,得到悬浊液。
S4、将所述悬浊液采用离心的方法进行固液分离,收集固相物并将固相物用四氢呋喃溶液洗涤两次后晾干,获得固相的硫化锂粉末。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (9)

  1. 一种硫化锂的制备方法,其特征在于,包括在惰性气氛保护下进行的以下步骤:
    S1、将锂单质溶解于含苯系物的环醚中,得到溶液A;其中,所述锂单质与所述苯系物的质量比为1:(1~ 10);
    S2、将硫单质溶解于有机溶剂中,得到溶液B;其中,所述硫单质在所述有机溶剂中的浓度为0.01 g/mL~0.3 g/mL;
    S3、按照锂单质和硫单质的物质的量之比为(2~5):1的比例将所述溶液A与所述溶液B混合,得到悬浊液;
    S4、将所述悬浊液进行固液分离,获得固相的硫化锂产品。
  2. 根据权利要求1所述的一种硫化锂的制备方法,其特征在于,所述步骤S1中,所述锂单质选自锂条、锂片、锂丁、锂粉中的至少一种。
  3. 根据权利要求1所述的一种硫化锂的制备方法,其特征在于,所述步骤S1中,所述苯系物选自萘、四氢化萘、联苯中的至少一种;所述环醚选自四氢呋喃、二氧戊环中的至少一种。
  4. 根据权利要求3所述的一种硫化锂的制备方法,其特征在于,所述苯系物在所述环醚中的浓度为0.06 g/mL~ 1 g/mL。
  5. 根据权利要求1所述的一种硫化锂的制备方法,其特征在于,所述步骤S2中,所述有机溶剂选自二硫化碳、二甲亚砜、二甲醚、乙二醇二甲醚中的至少一种。
  6. 根据权利要求1所述的一种硫化锂的制备方法,其特征在于,所述步骤S3具体包括:在温度低于20℃的冷水浴中,在搅拌的条件下,将所述溶液A按照预定流量加入到所述溶液B中或者是将所述溶液B按照预定流量加入到所述溶液A中。
  7. 根据权利要求1所述的一种硫化锂的制备方法,其特征在于,所述步骤S4中,所述悬浊液采用离心或者过滤的方法进行固液分离。
  8. 根据权利要求1-7任一所述的一种硫化锂的制备方法,其特征在于,所述步骤S4还包括:将固液分离获得的固相物洗涤和干燥处理,获得固相的硫化锂产品。
  9. 根据权利要求8所述的一种硫化锂的制备方法,其特征在于,洗涤次数为至少两次,洗涤剂选择为所述环醚;所述干燥处理选择为烘干或自然晾干。
PCT/CN2022/137808 2022-01-17 2022-12-09 一种硫化锂的制备方法 WO2023134351A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210051536.0 2022-01-17
CN202210051536.0A CN114394608A (zh) 2022-01-17 2022-01-17 一种硫化锂的制备方法

Publications (1)

Publication Number Publication Date
WO2023134351A1 true WO2023134351A1 (zh) 2023-07-20

Family

ID=81229943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137808 WO2023134351A1 (zh) 2022-01-17 2022-12-09 一种硫化锂的制备方法

Country Status (2)

Country Link
CN (1) CN114394608A (zh)
WO (1) WO2023134351A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114394608A (zh) * 2022-01-17 2022-04-26 深圳先进技术研究院 一种硫化锂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330312A (ja) * 1994-06-03 1995-12-19 Idemitsu Petrochem Co Ltd 硫化リチウムの製造方法
CN108190845A (zh) * 2018-01-31 2018-06-22 湖南省正源储能材料与器件研究所 一种制备硫化锂的方法
CN109019526A (zh) * 2018-10-16 2018-12-18 河南工程学院 一种利用有机溶剂法制备硫化锂的方法
CN111517288A (zh) * 2020-05-07 2020-08-11 天目湖先进储能技术研究院有限公司 一种合成硫化锂的方法
CN114394608A (zh) * 2022-01-17 2022-04-26 深圳先进技术研究院 一种硫化锂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108358175B (zh) * 2018-04-25 2020-02-07 北京卫蓝新能源科技有限公司 一种硫化锂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07330312A (ja) * 1994-06-03 1995-12-19 Idemitsu Petrochem Co Ltd 硫化リチウムの製造方法
CN108190845A (zh) * 2018-01-31 2018-06-22 湖南省正源储能材料与器件研究所 一种制备硫化锂的方法
CN109019526A (zh) * 2018-10-16 2018-12-18 河南工程学院 一种利用有机溶剂法制备硫化锂的方法
CN111517288A (zh) * 2020-05-07 2020-08-11 天目湖先进储能技术研究院有限公司 一种合成硫化锂的方法
CN114394608A (zh) * 2022-01-17 2022-04-26 深圳先进技术研究院 一种硫化锂的制备方法

Also Published As

Publication number Publication date
CN114394608A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
Zhang et al. Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries
Yao et al. Recycling and synthesis of LiNi 1/3 Co 1/3 Mn 1/3 O 2 from waste lithium ion batteries using d, l-malic acid
JP5303428B2 (ja) 硫化リチウム及びその製造方法
CN106920989B (zh) 一种铜硒化合物为负极材料的钠离子电池
CN111517288A (zh) 一种合成硫化锂的方法
CN107123803A (zh) 一种基于金属有机骨架结构合成二氧化钛和碳复合材料的方法及应用
CN103730638A (zh) 一种氮掺杂碳材料的制备方法
CN108933308B (zh) 一种报废锂电池正负极的综合回收利用方法
WO2023036284A1 (zh) 一种固态电解质用硫化锂及其制备方法和应用
WO2023134351A1 (zh) 一种硫化锂的制备方法
CN112110421A (zh) 一种制备高纯度硫化锂的方法
CN103199319A (zh) 一种从钴酸锂电池废旧正极片中回收钴酸锂的方法
CN107706394B (zh) 一种MoO2/Mo4O11混合相纳米电极材料及其制备方法
CN107093729B (zh) 预锂化负极材料及其制备方法与应用
CN108091874A (zh) 一种用作锂硫电池正极的纳米镍钴硫粒子的制备方法
Wei et al. Preferential extraction of lithium from spent LiCoO2 cathodes and regeneration of LiCoO2 cathodes
Zhang et al. Environmentally friendly method for efficiently recycling LiMn 2 O 4 cathode materials
CN109534401B (zh) 一种钒酸铜的制备方法,该方法制备得到的钒酸铜及其在锂离子电池中的应用
WO2023184994A1 (zh) 多孔微球碳负极材料的制备方法及其应用
CN115417465B (zh) 一种二硫化镍电极材料及制备方法和应用
CN106587020A (zh) 一种高电导率硫掺杂石墨烯的快速制备方法
CN116613372A (zh) 一种两相互掺的硫化物固态电解质及其制备方法
CN110676438A (zh) 一种熔盐溶剂制备锂电池用纳米氧化亚铜电极的方法
CN108091836B (zh) 一种碳原位复合二氧化钛纤维锂离子电池负极材料的制备方法
CN111525107B (zh) 一种新型的有机小分子包覆的硅负极材料的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919984

Country of ref document: EP

Kind code of ref document: A1