WO2023133696A1 - 电化学装置管理方法、充电装置、电池系统及电子设备 - Google Patents

电化学装置管理方法、充电装置、电池系统及电子设备 Download PDF

Info

Publication number
WO2023133696A1
WO2023133696A1 PCT/CN2022/071411 CN2022071411W WO2023133696A1 WO 2023133696 A1 WO2023133696 A1 WO 2023133696A1 CN 2022071411 W CN2022071411 W CN 2022071411W WO 2023133696 A1 WO2023133696 A1 WO 2023133696A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
degree
electrochemical device
analysis
lithium analysis
Prior art date
Application number
PCT/CN2022/071411
Other languages
English (en)
French (fr)
Inventor
陈英杰
贺国达
Original Assignee
东莞新能安科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能安科技有限公司 filed Critical 东莞新能安科技有限公司
Priority to CN202280004129.2A priority Critical patent/CN115668580A/zh
Priority to PCT/CN2022/071411 priority patent/WO2023133696A1/zh
Publication of WO2023133696A1 publication Critical patent/WO2023133696A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present disclosure relate to the field of electrochemical technology, and in particular, to a method for managing an electrochemical device, a charging device, a battery system, and electronic equipment.
  • Lithium-ion batteries have many advantages such as high specific energy density, long cycle life, high nominal voltage, low self-discharge rate, small size, and light weight, and are widely used in the field of new energy.
  • lithium-ion batteries have become more and more important, and the market demand for lithium-ion batteries is also increasing .
  • lithium precipitation often occurs, which is likely to cause a short circuit of the battery and cause a safety risk, which affects the safety of the battery.
  • embodiments of the present disclosure provide an electrochemical device management method, a charging device, a battery system, and an electronic device, which can reduce the impact of lithium analysis on the safety and life of the lithium-ion battery, so as to improve the performance of the lithium-ion battery.
  • a method for managing an electrochemical device including:
  • the lithium analysis degree of the electrochemical device can be determined, and then in response to the lithium analysis degree of the electrochemical device being greater than the first lithium analysis degree threshold, the charging of the electrochemical device is restricted, thereby The electrochemical device can be reasonably managed, the impact of lithium analysis on the safety and life of the electrochemical device can be effectively reduced, and the performance of the electrochemical device can be improved.
  • the limiting the charging of the electrochemical device includes: if the lithium analysis degree is greater than the first lithium analysis degree threshold and not greater than the second lithium analysis degree threshold, reducing the electrochemical device charging current, wherein the second lithium analysis degree threshold is greater than the first lithium analysis degree threshold; if the lithium analysis degree is greater than the second lithium analysis degree threshold and not greater than the third lithium analysis degree threshold, Reduce the charge current and/or discharge current of the electrochemical device, and reduce the allowable upper limit of the charge voltage of the electrochemical device, wherein, the third lithium analysis degree threshold is greater than the second lithium analysis degree threshold; if the The lithium analysis degree is greater than the third lithium analysis degree threshold, which limits the use of the electrochemical device.
  • the electrochemical device through the above method, it is more targeted to limit the charging of the electrochemical device when it is determined that the lithium analysis degree of the electrochemical device is greater than the first lithium analysis degree threshold, so that the electrochemical device can be managed more reasonably, More effectively reduce the impact of lithium analysis on the safety and life of the electrochemical device, and improve the performance of the electrochemical device.
  • the reducing the charging current of the electrochemical device includes: reducing the charging current of the electrochemical device at a first rate.
  • the charging current of the electrochemical device is reduced at the first rate, so as to facilitate the management of the electrochemical device when the lithium analysis degree of the electrochemical device is greater than the first lithium analysis degree threshold and not greater than the second lithium analysis degree threshold, In order to reduce the impact of lithium analysis on the safety and life of the electrochemical device, and improve the performance of the electrochemical device.
  • the reducing the charging current and/or discharging current of the electrochemical device, and reducing the allowable upper limit of the charging voltage of the electrochemical device includes: reducing the charging current of the electrochemical device at a second rate. charging current, and reduce the allowable upper limit of the charging voltage of the electrochemical device with a third ratio, and/or reduce the discharge current of the electrochemical device with a fourth ratio, and reduce the electrochemical device's discharge current with a third ratio Allowable upper limit of charging voltage.
  • the embodiment of the present disclosure in this way, it is convenient to manage the electrochemical device when the lithium analysis degree is greater than the second lithium analysis degree threshold and not greater than the third lithium analysis degree threshold, so as to reduce the safety and security of the electrochemical device caused by lithium analysis. The impact of life, improve the performance of electrochemical devices.
  • the electrochemical device management method further includes: increasing the charging current and/or increasing the charging current and/or Discharge current.
  • the electrochemical device in this way, the electrochemical device can be managed more reasonably when the lithium analysis degree of the electrochemical device is lower than the first lithium analysis degree threshold, so as to further improve the performance of the electrochemical device.
  • the increasing the charging current and/or discharging current of the electrochemical device includes: increasing the charging current and/or discharging current of the electrochemical device at a fifth ratio.
  • the charging current and/or discharge current of the electrochemical device is increased at a fifth ratio, so as to manage the electrochemical device more reasonably, thereby facilitating More effectively improve the performance of the electrochemical device.
  • the electrochemical device management method further includes: in response to increasing the electrochemical device at the fifth rate After the charging current and/or discharging current, the charging current exceeds the first current threshold and/or the discharging current exceeds the second current threshold, the charging current is limited to the first current threshold and/or the discharging current is limited is the second current threshold.
  • the charging current exceeds the first current threshold and/or the discharging current exceeds the second current threshold, the charging current is limited to the first current threshold and/or the discharging current is limited is the second current threshold.
  • the first current threshold is 110% of the charging current when the lithium-analysis degree of the electrochemical device is first determined
  • the second current threshold is 110% of the charging current when the lithium-analysis degree of the electrochemical device is first determined. degree at 110% of the discharge current.
  • the value range of the first ratio includes [3%, 7%].
  • the value range of the second ratio includes [3%, 7%]
  • the value range of the third ratio includes [0.5%, 2%]
  • the value range of the fourth ratio The value range includes [3%, 7%].
  • the value range of the fifth ratio includes [0.5%, 2%].
  • the determination of the lithium separation degree of the electrochemical device includes: obtaining the charging initial SOC of the electrochemical device;
  • the charging initial SOC being less than a first threshold
  • performing intermittent charging on the electrochemical device acquiring first data of the electrochemical device during the intermittent charging, and determining the The first degree of lithium analysis of the electrochemical device; when the SOC of the electrochemical device reaches the second threshold, the electrochemical device is charged with a constant current and left standing, and the electrochemical device is obtained when standing still
  • the second lithium analysis degree of the electrochemical device is determined according to the second data, and the first threshold is smaller than the second threshold; according to the first lithium analysis degree and the second lithium analysis The degree of lithium is used to determine the degree of lithium separation of the electrochemical device.
  • the electrochemical device when the initial charging SOC is less than the first threshold, the electrochemical device is intermittently charged, and the first degree of lithium analysis is determined, and when the SOC reaches the second threshold, the electrochemical device is charged with a constant current and left standing , to determine the second degree of lithium analysis, and according to the first degree of lithium analysis and the second degree of lithium analysis, determine the degree of lithium analysis of the electrochemical device, thereby realizing the detection of various lithium analysis degrees for the electrochemical device, without Lithium analysis detection of electrochemical devices is limited to only one charging method, which avoids possible errors in lithium analysis detection of electrochemical devices under a single charging method, thereby effectively improving the determination of lithium analysis of electrochemical devices.
  • the accuracy of the results improves the accuracy of determining the degree of lithium analysis of the electrochemical device, which facilitates the subsequent management of the electrochemical device according to the degree of lithium analysis, so as to reduce the impact of lithium analysis on the safety and life of the electrochemical device, and improve the efficiency of the electrochemical device.
  • the performance of the electrochemical device is also convenient to deal with the electrochemical device in time to ensure the safe use of the electrochemical device.
  • the intermittent charging includes multiple charging periods and multiple intermittent periods
  • the first data includes the SOC and internal resistance of the electrochemical device during the intermittent periods, according to the The first data determines the first lithium-extraction degree of the electrochemical device, including: obtaining the first terminal voltage of the electrochemical device at the start time point of the intermittent period and the second terminal voltage at the end time point of the intermittent period; determining the voltage difference between the first terminal voltage and the second terminal voltage; determining the internal resistance based on the voltage difference and the charging current of the electrochemical device during the charging period; obtaining the SOC during the intermittent period; Based on the SOC and the internal resistance, the first curve is obtained, and the first curve represents the change of the internal resistance with the SOC; based on the first curve, the first degree of lithium extraction is determined.
  • the first lithium analysis degree can be determined more accurately in this way, so as to facilitate the subsequent more accurate determination of the lithium analysis degree of the electrochemical device, so as to facilitate subsequent management of the electrochemical device according to the lithium analysis degree
  • the determination of the first lithium extraction degree based on the first curve includes at least one of mode A1 and mode A2:
  • the method A1 includes: differentiating the first curve to obtain a first differential curve; determining whether the first differential curve has a maximum value and a minimum value; if the maximum value and the minimum value Both exist, determine that the SOC corresponding to the maximum value is the lithium analysis SOC; based on the lithium analysis SOC, determine the first lithium analysis degree;
  • the method A2 includes: differentiating the first curve to obtain a first differential curve; differentiating the first differential curve to obtain a second differential curve; if the second differential curve has a first zero-crossing point and The second zero-crossing point, and the second differential curve is positive on the left side of the first zero-crossing point, negative on the right side, negative on the left side of the second zero-crossing point, and positive on the right side, determine the second differential curve
  • the SOC corresponding to the first zero-crossing point of the curve is the lithium analysis SOC; based on the lithium analysis SOC, the first lithium analysis degree is determined.
  • the embodiment of the present disclosure provides multiple ways to determine the first lithium separation degree based on the first curve, which can facilitate the more accurate determination of the separation degree later, so as to facilitate the subsequent management of the electrochemical device according to the lithium separation degree.
  • the determining the first lithium-analysis degree based on the lithium-analysis SOC includes: obtaining a first critical lithium-analysis SOC and a second critical lithium-analysis SOC, wherein the first critical lithium-analysis SOC
  • the lithium SOC is the SOC at the boundary point between the lithium analysis reaching the first predetermined level and not reaching the first predetermined level, and the second critical lithium analysis SOC is between the lithium analysis reaching the second predetermined level and not reaching the second predetermined level
  • the SOC of the demarcation point, the second predetermined degree is greater than the first predetermined degree; the first lithium analysis degree is calculated by the formula (SOC i -SOC 0 )/( SOCH -SOC 0 ), wherein, SOC 0 is the first critical lithium-analysis SOC, SOC H is the second critical SOC, and SOC i is the lithium-analysis SOC.
  • the first lithium analysis degree is determined based on the lithium analysis SOC in the above-mentioned manner, which is more convenient for calculation, so that the lithium analysis degree of the electrochemical device can be determined according to the first lithium analysis degree, so as to facilitate subsequent adjustments according to the lithium analysis degree. Electrochemical devices are managed.
  • the second data includes the terminal voltage of the electrochemical device during the standing period
  • the determination of the second lithium extraction degree of the electrochemical device according to the second data includes: Based on the terminal voltage, obtain a second curve, the second curve represents the change of the terminal voltage with time; based on the second curve, determine the lithium analysis integral value corresponding to the second curve; based on the analysis
  • the integral value of lithium is used to determine the second degree of lithium analysis.
  • the second lithium analysis degree can be determined more accurately in this way, so as to facilitate the subsequent more accurate determination of the lithium analysis degree of the electrochemical device, so as to facilitate subsequent management of the electrochemical device according to the lithium analysis degree.
  • the determination of the lithium analysis integral value corresponding to the second curve based on the second curve includes at least one of mode B1 and mode B2, wherein,
  • the method B1 includes: differentiating the second curve to obtain a third differential curve; determining whether the third differential curve has a maximum value and a minimum value; if the maximum value and the minimum value Both exist, and the integral between the maximum value and the minimum value on the third differential curve is determined to be the lithium analysis integral value;
  • the method B2 includes: differentiating the second curve to obtain a third differential curve; differentiating the third differential curve to obtain a fourth differential curve; if the fourth differential curve has a third zero-crossing point and The fourth zero-crossing point, and the fourth differential curve is positive on the left side of the third zero-crossing point, negative on the right side, negative on the left side of the fourth zero-crossing point, and positive on the right side, determine the fourth differential
  • the double integral of the curve between the third zero-crossing point and the fourth zero-crossing point is the integral value of lithium analysis.
  • the embodiment of the present disclosure provides multiple ways to determine the integral value of lithium analysis based on the second curve, which can facilitate the more accurate determination of the degree of separation later, so as to facilitate the subsequent management of the electrochemical device according to the degree of lithium analysis.
  • the determining the second lithium-analysis degree based on the lithium-analysis integral value includes: obtaining a first critical lithium-analysis integral value and a second critical lithium-analysis integral value, wherein the first A critical lithium analysis integral value is the lithium analysis integral value of the boundary point between the lithium analysis reaching the third predetermined level and not reaching the third predetermined level, and the second critical lithium analysis integral value is the lithium analysis reaching the fourth predetermined level and the third predetermined level.
  • the integral value of lithium analysis that has not reached the cut-off point between the fourth predetermined degree, the fourth predetermined degree is greater than the third predetermined degree; calculated by the formula (IG i -IG 0 )/(IG H -IG 0 ) Describe the second lithium analysis degree, wherein, IG 0 is the first critical lithium analysis integral value, IG H is the second critical lithium analysis integral value, and IG i is the lithium analysis integral value.
  • the second lithium analysis degree is determined based on the lithium analysis integral value in the above-mentioned manner, which is more convenient for calculation, so that the lithium analysis degree of the electrochemical device can be determined according to the first lithium analysis degree and the second lithium analysis degree, so that It is convenient for subsequent management of the electrochemical device according to the degree of lithium analysis.
  • the determining the lithium analysis degree of the electrochemical device according to the first lithium analysis degree and the second lithium analysis degree includes: determining the first lithium analysis degree and the The sum of the second lithium analysis degree is used as the lithium analysis degree; or, the average number of the first lithium analysis degree and the second lithium analysis degree is determined as the lithium analysis degree; or, the first lithium analysis degree is determined; The weighted average of the first degree of lithium analysis and the second degree of lithium analysis is used as the degree of lithium analysis.
  • the lithium analysis degree of the electrochemical device is determined according to the first lithium analysis degree and the second lithium analysis degree through various implementation methods, so that the determination of the lithium analysis degree is more accurate and reliable, so as to facilitate the implementation of the present disclosure
  • the electrochemical device will be managed according to the degree of lithium analysis.
  • the determination of the lithium extraction degree of the electrochemical device includes: charging the electrochemical device with a constant current to the cut-off voltage of the electrochemical device, and standing still, and obtaining the The second data of the electrochemical device; according to the second data, the degree of lithium separation of the electrochemical device is determined.
  • the electrochemical device is charged to the cut-off voltage of the electrochemical device with a constant current, and then left to stand, and the second data of the electrochemical device is obtained during the rest, and then the analysis of the electrochemical device is determined according to the second data.
  • the degree of lithium can ensure the accuracy of the lithium analysis results of the electrochemical device, improve the accuracy of the determination of the lithium analysis degree of the electrochemical device, and facilitate subsequent management of the electrochemical device according to the lithium analysis degree, so as to reduce the impact of lithium analysis on the electrochemical device. Improve the performance of the electrochemical device, and facilitate the timely treatment of the electrochemical device to ensure the safe use of the electrochemical device.
  • the second data includes the terminal voltage of the electrochemical device during the standing period
  • the determining the degree of lithium extraction of the electrochemical device according to the second data includes: based on the terminal voltage Voltage, to obtain a second curve, the second curve represents the change of the terminal voltage with time; based on the second curve, determine the degree of lithium precipitation.
  • the determining the degree of lithium analysis based on the second curve includes: determining the integral value of lithium analysis corresponding to the second curve based on the second curve; The integral value determines the degree of lithium analysis. In the embodiments of the present disclosure, in this way, the degree of lithium analysis of the electrochemical device can be determined more accurately, so as to facilitate subsequent management of the electrochemical device according to the degree of lithium analysis.
  • the determination of the lithium analysis integral value corresponding to the second curve based on the second curve includes at least one of mode B1 and mode B2, wherein,
  • the method B1 includes: differentiating the second curve to obtain a third differential curve; determining whether the third differential curve has a maximum value and a minimum value; if the maximum value and the minimum value Both exist, and the integral between the maximum value and the minimum value on the third differential curve is determined to be the lithium analysis integral value;
  • the method B2 includes: differentiating the second curve to obtain a third differential curve; differentiating the third differential curve to obtain a fourth differential curve; if the fourth differential curve has a third zero-crossing point and The fourth zero-crossing point, and the fourth differential curve is positive on the left side of the third zero-crossing point, negative on the right side, negative on the left side of the fourth zero-crossing point, and positive on the right side, determine the fourth differential
  • the double integral of the curve between the third zero-crossing point and the fourth zero-crossing point is the integral value of lithium analysis.
  • the embodiment of the present disclosure provides multiple ways to determine the integral value of lithium analysis based on the second curve, which can facilitate the more accurate determination of the degree of separation later, so as to facilitate the subsequent management of the electrochemical device according to the degree of lithium analysis.
  • the determination of the lithium analysis degree based on the lithium analysis integral value includes: obtaining a first critical lithium analysis integral value and a second critical lithium analysis integral value, wherein the first critical lithium analysis integral value
  • the lithium analysis integral value is the lithium analysis integral value of the boundary point between the lithium analysis reaching the third predetermined level and not reaching the third predetermined level
  • the second critical lithium analysis integral value is the lithium analysis reaching the fourth predetermined level and not reaching the third predetermined level.
  • the lithium analysis integral value of the boundary point between the fourth predetermined degree, the fourth predetermined degree is greater than the third predetermined degree; the analysis is calculated by the formula (IG i2 -IG 0 )/(IG H -IG 0 ) Lithium degree, wherein, IG 0 is the first critical lithium analysis integral value, IG H is the second critical lithium analysis integral value, and IG i2 is the lithium analysis integral value.
  • the degree of lithium analysis is determined based on the integrated value of lithium analysis in the above manner, which is more convenient for calculation, and thus facilitates subsequent management of the electrochemical device according to the degree of lithium analysis.
  • a charging device which includes a processor and a machine-readable storage medium, where the machine-readable storage medium stores machine-executable instructions that can be executed by the processor, When the processor executes the machine-executable instructions, the foregoing electrochemical device management method is realized.
  • a battery system which includes a processor and a machine-readable storage medium, where the machine-readable storage medium stores machine-executable instructions that can be executed by the processor, When the processor executes the machine-executable instructions, the foregoing electrochemical device management method is realized.
  • an electronic device which includes: a determining device and a charging control device, wherein,
  • the determination device is used to determine the degree of lithium analysis of the electrochemical device
  • the charge control device is used for limiting the charging of the electrochemical device in response to the lithium release degree of the electrochemical device being greater than a first lithium release degree threshold.
  • the determination device can determine the lithium analysis degree of the electrochemical device, and then the charge control device can respond to the lithium analysis degree of the electrochemical device being greater than the first lithium analysis degree threshold, limit the charging of the electrochemical device. charging, so that the electronic device can reasonably manage the electrochemical device, effectively reduce the impact of lithium analysis on the safety and life of the electrochemical device, and improve the performance of the electrochemical device.
  • the charge control device is specifically configured to: if the lithium analysis degree is greater than the first lithium analysis degree threshold and not greater than the second lithium analysis degree threshold, reduce the charging current of the electrochemical device, wherein , the second lithium analysis degree threshold is greater than the first lithium analysis degree threshold; if the lithium analysis degree is greater than the second lithium analysis degree threshold and not greater than the third lithium analysis degree threshold, reduce the electrochemical The charging current and/or discharging current of the device, and reduce the allowable upper limit of the charging voltage of the electrochemical device, wherein, the third lithium analysis degree threshold is greater than the second lithium analysis degree threshold; if the lithium analysis degree is greater than The third threshold of lithium-analysis degree limits the use of the electrochemical device.
  • the electrochemical device through the above method, it is more targeted to limit the charging of the electrochemical device when it is determined that the lithium analysis degree of the electrochemical device is greater than the first lithium analysis degree threshold, so that the electrochemical device can be managed more reasonably, More effectively reduce the impact of lithium analysis on the safety and life of the electrochemical device, and improve the performance of the electrochemical device.
  • the charging control device is specifically configured to: reduce the charging current of the electrochemical device at a first rate.
  • the charging current of the electrochemical device is reduced at the first rate, so as to facilitate the management of the electrochemical device when the lithium analysis degree of the electrochemical device is greater than the first lithium analysis degree threshold and not greater than the second lithium analysis degree threshold, In order to reduce the impact of lithium analysis on the safety and life of the electrochemical device, and improve the performance of the electrochemical device.
  • the charging control device is specifically configured to: reduce the charging current of the electrochemical device at a second rate, and reduce the allowable upper limit of the charging voltage of the electrochemical device at a third rate, and/or , reducing the discharge current of the electrochemical device at a fourth rate, and reducing the allowable upper limit of the charging voltage of the electrochemical device at a third rate.
  • reduce the charging current of the electrochemical device at a second rate and reduce the allowable upper limit of the charging voltage of the electrochemical device at a third rate, and/or , reducing the discharge current of the electrochemical device at a fourth rate, and reducing the allowable upper limit of the charging voltage of the electrochemical device at a third rate.
  • the charging control device is specifically configured to: increase the charging current and/or discharge of the electrochemical device in response to the lithium-dissolving degree of the electrochemical device being less than the first lithium-dissolving degree threshold. current.
  • the electrochemical device in this way, the electrochemical device can be managed more reasonably when the lithium analysis degree of the electrochemical device is lower than the first lithium analysis degree threshold, so as to further improve the performance of the electrochemical device.
  • the charging control device is specifically configured to: increase the charging current and/or the discharging current of the electrochemical device at a fifth ratio.
  • the charging current and/or discharge current of the electrochemical device is increased at a fifth ratio, so as to manage the electrochemical device more reasonably, thereby facilitating More effectively improve the performance of the electrochemical device.
  • the charging control device is further configured to: respond to the charging current exceeding the first current threshold and/or the charging current of the electrochemical device after increasing the charging current and/or discharging current of the electrochemical device at a fifth rate
  • the discharge current exceeds a second current threshold, the charge current is limited to the first current threshold and/or the discharge current is limited to the second current threshold.
  • the first current threshold is 110% of the charging current when the lithium-analysis degree of the electrochemical device is first determined
  • the second current threshold is 110% of the charging current when the lithium-analysis degree of the electrochemical device is first determined. degree at 110% of the discharge current.
  • the value range of the first ratio includes [3%, 7%].
  • the value range of the second ratio includes [3%, 7%]
  • the value range of the third ratio includes [0.5%, 2%]
  • the value range of the fourth ratio The value range includes [3%, 7%].
  • the value range of the fifth ratio includes [0.5%, 2%].
  • the determining device is specifically configured to: acquire the initial charging SOC of the electrochemical device; and perform intermittent charging on the electrochemical device in response to the charging initial SOC being less than a first threshold value, Acquiring the first data of the electrochemical device during the intermittent charging, and determining the first lithium extraction degree of the electrochemical device according to the first data; in response to when the SOC of the electrochemical device reaches a second threshold , charging the electrochemical device with a constant current, and standing still, obtaining second data of the electrochemical device when standing still, and determining the second lithium analysis degree of the electrochemical device according to the second data,
  • the first threshold is smaller than the second threshold; according to the first lithium analysis degree and the second lithium analysis degree, the lithium analysis degree of the electrochemical device is determined.
  • the determination device can intermittently charge the electrochemical device when the initial charging SOC is less than the first threshold, and determine the first degree of lithium analysis, and perform constant current charging on the electrochemical device when the SOC reaches the second threshold, and stand still to determine the second degree of lithium analysis, and according to the first degree of lithium analysis and the second degree of lithium analysis, determine the degree of lithium analysis of the electrochemical device, thereby realizing the detection of various lithium analysis degrees for the electrochemical device , not limited to only one charging method for lithium analysis detection of electrochemical devices, avoiding possible errors when electrochemical devices are tested for lithium analysis under a single charging method, thus effectively improving the determination of electrochemical devices.
  • the accuracy of the lithium analysis results can improve the accuracy of determining the lithium analysis degree of the electrochemical device, which is convenient for subsequent management of the electrochemical device according to the lithium analysis degree, so as to reduce the impact of lithium analysis on the safety and life of the electrochemical device, and improve
  • the efficiency of the electrochemical device is also convenient to process the electrochemical device in time to ensure the safe use of the electrochemical device.
  • the intermittent charging includes multiple charging periods and multiple intermittent periods
  • the first data includes the SOC and internal resistance of the electrochemical device during the intermittent periods
  • the determining device specifically Used to: acquire the first terminal voltage of the electrochemical device at the start time point of the intermittent period and the second terminal voltage at the end time point of the intermittent period; determine the first terminal voltage and the second terminal voltage voltage difference; based on the voltage difference and the charging current of the electrochemical device during the charging period, determine the internal resistance; obtain the SOC during the interval; based on the SOC and the internal resistance, obtain the first Curve, the first curve represents the change of the internal resistance with the SOC; based on the first curve, determine the first degree of lithium extraction.
  • the first lithium analysis degree can be determined more accurately in this way, so as to facilitate the subsequent more accurate determination of the lithium analysis degree of the electrochemical device, so as to facilitate subsequent management of the electrochemical device according to the lithium analysis degree.
  • the determining device is specifically configured to: differentiate the first curve to obtain a first differential curve; determine whether the first differential curve has a maximum value and a minimum value; if the Both the maximum value and the minimum value exist, and it is determined that the SOC corresponding to the maximum value is the lithium analysis SOC; based on the lithium analysis SOC, the first lithium analysis degree is determined; or, the first curve is differentiated , to obtain the first differential curve; differentiate the first differential curve to obtain the second differential curve; if the second differential curve has a first zero-crossing point and a second zero-crossing point, and the second differential curve is at The left side of a zero-crossing point is positive, the right side is negative, the left side of the second zero-crossing point is negative, and the right side is positive, and the SOC corresponding to the first zero-crossing point of the second differential curve is determined to be the lithium analysis SOC; Based on the lithium analysis SOC, a first lithium analysis degree is determined.
  • the embodiment of the present disclosure provides multiple ways to determine
  • the determination device is specifically used to: obtain the first critical lithium-analysis SOC and the second critical lithium-analysis SOC, wherein the first critical lithium-analysis SOC is the lithium-analysis reached the first predetermined level and not yet Reach the SOC of the boundary point between the first predetermined level, the second critical lithium analysis SOC is the SOC of the boundary point between the lithium analysis reaching the second predetermined level and not reaching the second predetermined level, the second predetermined level Greater than the first predetermined degree; calculate the first lithium-analysis degree with the formula (SOC i -SOC 0 )/(SOC H -SOC 0 ), wherein, SOC 0 is the first critical lithium-analysis SOC, and SOC H is the first lithium-analysis SOC The second critical SOC, SOC i is the lithium-analysis SOC.
  • the first lithium analysis degree is determined based on the lithium analysis SOC in the above-mentioned manner, which is more convenient for calculation, so that the lithium analysis degree of the electrochemical device can be determined according to the first lithium analysis degree, so as to facilitate subsequent adjustments according to the lithium analysis degree. Electrochemical devices are managed.
  • the determination device is specifically configured to: obtain a second curve based on the terminal voltage, the second curve represents the change of the terminal voltage with time; based on the second curve, determine the The lithium analysis integral value corresponding to the second curve; based on the lithium analysis integral value, determine the second lithium analysis degree.
  • the second lithium analysis degree can be determined more accurately in this way, so as to facilitate the subsequent more accurate determination of the lithium analysis degree of the electrochemical device, so as to facilitate subsequent management of the electrochemical device according to the lithium analysis degree.
  • the determining device is specifically configured to: differentiate the second curve to obtain a third differential curve; determine whether the third differential curve has a maximum value and a minimum value; if the Both the maximum value and the minimum value exist, and the integral between the maximum value and the minimum value on the third differential curve is determined to be the integral value of lithium analysis; or, for the second Differentiate the curve to obtain a third differential curve; differentiate the third differential curve to obtain a fourth differential curve; if the fourth differential curve has a third zero-crossing point and a fourth zero-crossing point, and the fourth differential The curve is positive on the left side of the third zero-crossing point, negative on the right side, negative on the left side of the fourth zero-crossing point, and positive on the right side.
  • the double integral between is the integral value of lithium analysis.
  • the embodiment of the present disclosure provides multiple ways to determine the integral value of lithium analysis based on the second curve, which can facilitate the more accurate determination of the degree of separation later, so as to facilitate the subsequent management of the electrochemical device according to the degree of lithium analysis.
  • the determination device is specifically configured to: acquire a first critical lithium-analysis integral value and a second critical lithium-analysis integral value, wherein the first critical lithium-analysis integral value is when the lithium-analysis reaches the third predetermined
  • the second critical lithium analysis integral value is the analysis of the boundary point between the lithium analysis reaching the fourth predetermined level and the fourth predetermined level.
  • the lithium integral value, the fourth predetermined degree is greater than the third predetermined degree; the second lithium analysis degree is calculated by the formula (IG i -IG 0 )/(IG H -IG 0 ), wherein, IG 0 is the first A critical lithium analysis integral value, IG H is the second critical lithium analysis integral value, IG i is the lithium analysis integral value.
  • the second lithium analysis degree is determined based on the lithium analysis integral value in the above-mentioned manner, which is more convenient for calculation, so that the lithium analysis degree of the electrochemical device can be determined according to the first lithium analysis degree and the second lithium analysis degree, so that It is convenient for subsequent management of the electrochemical device according to the degree of lithium analysis.
  • the determining device is specifically used to: determine the sum of the first lithium analysis degree and the second lithium analysis degree as the lithium analysis degree; or, determine the first lithium analysis degree and the average of the second degree of lithium analysis, as the degree of lithium analysis; or, determine the weighted average of the first degree of lithium analysis and the second degree of lithium analysis, as the degree of lithium analysis.
  • the lithium analysis degree of the electrochemical device is determined according to the first lithium analysis degree and the second lithium analysis degree through various implementation methods, so that the determination of the lithium analysis degree is more accurate and reliable, so as to facilitate the implementation of the present disclosure In the following example, the electrochemical device will be managed according to the degree of lithium analysis.
  • the determining device is specifically used for: charging the electrochemical device with a constant current to the cut-off voltage of the electrochemical device, and standing still, and obtaining the voltage of the electrochemical device when standing still. second data; determining the degree of lithium separation of the electrochemical device according to the second data.
  • the determination device charges the electrochemical device with a constant current to the cut-off voltage of the electrochemical device, and then stands still, acquires the second data of the electrochemical device during the standstill, and then determines the electrochemical device according to the second data.
  • the lithium analysis degree of the device can ensure the accuracy of the determination of the lithium analysis results of the electrochemical device, improve the accuracy of the determination of the lithium analysis degree of the electrochemical device, and facilitate subsequent management of the electrochemical device according to the lithium analysis degree to reduce lithium analysis.
  • the impact on the safety and life of the electrochemical device improves the performance of the electrochemical device and facilitates timely processing of the electrochemical device to ensure the safe use of the electrochemical device.
  • the determination device is specifically configured to: obtain a second curve based on the terminal voltage, the second curve represents the change of the terminal voltage with time; based on the second curve, determine the Describe the level of lithium.
  • the degree of lithium analysis of the electrochemical device can be determined more accurately, so as to facilitate subsequent management of the electrochemical device according to the degree of lithium analysis.
  • the determination device is specifically configured to: determine the lithium analysis integral value corresponding to the second curve based on the second curve; determine the lithium analysis degree based on the lithium analysis integral value. In the embodiments of the present disclosure, in this way, the degree of lithium analysis of the electrochemical device can be determined more accurately, so as to facilitate subsequent management of the electrochemical device according to the degree of lithium analysis.
  • the determining device is specifically configured to: differentiate the second curve to obtain a third differential curve; determine whether the third differential curve has a maximum value and a minimum value; if the Both the maximum value and the minimum value exist, and the integral between the maximum value and the minimum value on the third differential curve is determined to be the integral value of lithium analysis; or, for the second Differentiate the curve to obtain a third differential curve; differentiate the third differential curve to obtain a fourth differential curve; if the fourth differential curve has a third zero-crossing point and a fourth zero-crossing point, and the fourth differential The curve is positive on the left side of the third zero-crossing point, negative on the right side, negative on the left side of the fourth zero-crossing point, and positive on the right side.
  • the double integral between is the integral value of lithium analysis.
  • the embodiment of the present disclosure provides multiple ways to determine the integral value of lithium analysis based on the second curve, which can facilitate the more accurate determination of the degree of separation later, so as to facilitate the subsequent management of the electrochemical device according to the degree of lithium analysis.
  • the determination device is specifically configured to: acquire a first critical lithium-analysis integral value and a second critical lithium-analysis integral value, wherein the first critical lithium-analysis integral value is when the lithium-analysis reaches the third predetermined
  • the second critical lithium analysis integral value is the analysis of the boundary point between the lithium analysis reaching the fourth predetermined level and the fourth predetermined level.
  • Integral value of lithium the fourth predetermined degree is greater than the third predetermined degree; the lithium analysis degree is calculated by the formula (IG i2 -IG 0 )/(IG H -IG 0 ), wherein IG 0 is the first critical Lithium analysis integral value, IG H is the second critical lithium analysis integral value, IG i2 is described lithium analysis integral value.
  • the degree of lithium analysis is determined based on the integrated value of lithium analysis in the above manner, which is more convenient for calculation, and thus facilitates subsequent management of the electrochemical device according to the degree of lithium analysis.
  • the lithium analysis detection method, electronic equipment, charging device and storage medium provided by the embodiments of the present disclosure can determine the lithium analysis degree of the electrochemical device, and then respond to the lithium analysis degree of the electrochemical device greater than the first analysis.
  • the lithium level threshold limits the charging of the electrochemical device, so that the electrochemical device can be managed reasonably, effectively reducing the impact of lithium analysis on the safety and life of the electrochemical device, and improving the performance of the electrochemical device.
  • FIG. 1 is a flowchart of steps of a method for managing an electrochemical device according to an embodiment of the present disclosure.
  • Fig. 2 is a specific flowchart of step S101 in an implementation manner according to an embodiment of the present disclosure.
  • Fig. 3 is a specific flowchart of step S101 in another implementation manner according to an embodiment of the present disclosure.
  • FIG. 4 is a specific flow chart of limiting the charging of the electrochemical device in step S102 according to an embodiment of the present disclosure.
  • Fig. 5 is a structural block diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 6 is a structural diagram of a charging device according to an embodiment of the disclosure.
  • FIG. 7 is a structural diagram of a battery system according to an embodiment of the present disclosure.
  • FIG. 8 is a waveform diagram of a charging voltage and a charging current of an intermittent charging according to an embodiment of the disclosure.
  • FIG. 9 is a graph of a first curve according to an example of an embodiment of the disclosure.
  • FIG. 10 is a graph of a first differential curve according to an example of an embodiment of the present disclosure.
  • FIG. 11 is a graph of a second differential curve according to an example of an embodiment of the present disclosure.
  • FIG. 12 is a graph of a second curve according to an example of an embodiment of the disclosure.
  • FIG. 13 is a graph of a third differential curve according to an example of an embodiment of the present disclosure.
  • FIG. 14 is a graph of a fourth differential curve according to an example of an embodiment of the present disclosure.
  • the electrochemical device management method, electronic equipment, charging device and storage medium in the embodiment of the present disclosure are firstly described in detail, and then some related experiments of the electrochemical device management method in the embodiment of the present disclosure are given Examples and comparative examples are used to illustrate the significant advantages of the electrochemical device management method, electronic equipment, charging device and storage medium provided in the embodiments of the present disclosure over the prior art.
  • the present disclosure is explained by taking a lithium-ion battery as an example of an electrochemical device, but the electrochemical device of the present disclosure is not limited to the lithium-ion battery.
  • the embodiments of the present disclosure provide a method for managing an electrochemical device. As shown in FIG. 1 , the method for managing an electrochemical device includes the following steps S101 and S102:
  • S101 Determine the degree of lithium separation of the electrochemical device.
  • the determination device 101 of the electronic device 1000 can determine the degree of lithium analysis of the electrochemical device.
  • the degree of lithium analysis in the embodiment of the present disclosure can be an amount indicating the amount of lithium analysis of the electrochemical device. If it does not exceed a certain threshold, it can be considered that lithium is not separated, otherwise it is considered to be lithium.
  • the determining device 101 can set some charging conditions for the electrochemical device, and then charge the electrochemical device under the charging conditions, and obtain some data corresponding to the charging conditions during the charging process, so as to determine the charging condition of the electrochemical device by means of the analysis of the corresponding data.
  • This step S101 is equivalent to performing a lithium analysis detection on the electrochemical device, and the result of the lithium analysis detection is to determine the lithium analysis degree of the electrochemical device.
  • the electrochemical device of an embodiment of the present disclosure may include at least one lithium ion battery, and when multiple lithium ion batteries are included, these lithium ion batteries may exist in the electrochemical device in a series and/or parallel manner.
  • the method for determining the degree of lithium analysis of the electrochemical device may include the following steps S1011, S1012, S1013 and S1014:
  • S1011 Obtain the initial charging SOC (State of Charge, state of charge) of the electrochemical device.
  • the determining device 101 can obtain the charging initial SOC of the electrochemical device.
  • the charging initial SOC refers to the state of charge of the electrochemical device before the intermittent charging of S1012 (the intermittent charging is to obtain some data in S1013-S1014 to determine whether the electrochemical device is releasing lithium).
  • the SOC cannot be measured directly, and its size can be estimated by parameters such as battery terminal voltage, charge and discharge current, and internal resistance.
  • the initial charging SOC can be obtained through the internal resistance method.
  • the internal resistance method uses alternating currents of different frequencies to excite the electrochemical device, measures the internal AC resistance of the electrochemical device, and obtains an estimated SOC value through the established calculation model.
  • the determined initial charging capacity of the electrochemical device is a definite value, for example, the initial charging SOC can be 0%, 10%, 50%, 85%, etc., which only depends on the electrochemical The initial charge state of the device when performing lithium analysis detection.
  • S1012 In response to the charging initial SOC being less than the first threshold, intermittently charge the electrochemical device, acquire first data of the electrochemical device during the intermittent charging, and determine according to the first data The first degree of lithium analysis of the electrochemical device.
  • intermittent charging can be simply understood as charging the electrochemical device for a period of time at intervals, which can protect the electrochemical device under the premise of ensuring the charging effect. It does not require that each charging time is equal, nor does it require that the interval between two adjacent charges be equal. Pulse charging is a specific implementation of intermittent charging, which requires equal charging time each time, and the interval between adjacent two charging is also equal, that is, each charging and standing after charging form a cycle, these cycles continue repeat.
  • the electrochemical device is intermittently charged in response to the initial charging SOC being less than the first threshold, and obtains The first data of the electrochemical device is analyzed for the degree of lithium analysis, so as to determine the first degree of lithium analysis of the electrochemical device according to the first data.
  • the reason why the intermittent charging is performed when the SOC of the electrochemical device is relatively small is that the detection result of lithium analysis obtained by intermittently charging the electrochemical device is relatively accurate, and when the SOC of the electrochemical device is relatively large When the electrochemical device is charged with a constant current, the detection result of lithium analysis is more accurate.
  • intermittent charging is used for charging when the SOC of the electrochemical device is relatively small, and constant current charging is used for charging when the SOC is relatively large, which combines the advantages of the two charging methods to improve the detection accuracy, thereby improving the analysis of the electrochemical device. Lithium level accuracy.
  • the first data is data that can reflect the state of the electrochemical device during intermittent charging, for example, it may be the charging voltage, charging current, internal resistance, SOC, terminal voltage ( That is, data such as the voltage difference between the positive electrode voltage and the negative electrode voltage of the electrochemical device).
  • the first threshold may be set according to actual needs, for example, it may be configured in the determining device in advance.
  • the value of the first threshold can be smaller, so that the lithium analysis degree detection of intermittent charging can be carried out in the electrochemical device when the power is relatively small, and the problem of poor detection effect of the lithium analysis degree of intermittent charging when the power is large is avoided.
  • the value range of the first threshold can be [20%, 40%], of course, it can also be other value ranges, such as [10%, 40%], [20%, 50%], [15%, 35%] % ⁇ etc.
  • the specific value of the first threshold can be selected according to the needs, for example, the first threshold is determined to be 20%, 25%, 30%, 35%, 40% %wait.
  • the intermittent charging includes multiple charging periods and multiple intermittent periods
  • the first data includes the SOC and internal resistance of the electrochemical device during the intermittent periods, on this basis
  • the Determining the first lithium extraction degree of the electrochemical device according to the first data includes the following steps S10121 and S10122:
  • S10121 Obtain a first curve based on the SOC and the internal resistance in each intermittent period, where the first curve represents a change of the internal resistance with the SOC.
  • the charging period is the time period during which the electrochemical device is charged during intermittent charging
  • the intermittent period is the time period during which the electrochemical device is not charged during intermittent charging.
  • the intermittent charging of an electrochemical device may be the following process: charge the electrochemical device during the first charging period, then stop charging, and continue after the first intermittent period. The electrochemical device is charged during the two charging periods, and this is repeated until the SOC of the electrochemical device reaches a certain critical value.
  • the embodiments of the present disclosure can stop the intermittent charging when the SOC of the electrochemical device reaches the critical value, and complete the intermittent charging operation.
  • the embodiment of the present disclosure has no special limitation on the critical value, as long as the purpose of the present disclosure can be achieved, for example, the critical value may be 60%, 70%, 80%, 90% or 100%.
  • the obtaining the first curve based on the SOC and the internal resistance of each intermittent period specifically includes: obtaining the first terminal voltage of the electrochemical device at the start time point of the intermittent period and the The second terminal voltage at the end time point of the intermittent period; determining the voltage difference between the first terminal voltage and the second terminal voltage; based on the voltage difference and the charging current of the electrochemical device during the charging period, determining the internal resistance; obtaining the SOC during the intermittent period; and obtaining the first curve based on the SOC and the internal resistance.
  • the first terminal voltage of the electrochemical device at the start time point of the intermittent period and the second terminal voltage at the end time point of the intermittent period can be realized through an analog front end (AFE) of a battery management system (BMS).
  • AFE analog front end
  • BMS battery management system
  • the charging device is the voltage difference between the positive and negative electrodes of the lithium battery when charging the lithium battery.
  • the second terminal voltage is at the end time point of the intermittent period.
  • the charging device The voltage difference between the positive and negative terminals of a lithium battery when charging a lithium battery.
  • the internal resistance of the electrochemical device can be obtained through the terminal voltage and charging current of the electrochemical device in each intermittent period.
  • the method of calculating the internal resistance of the electrochemical device may be: obtaining the first terminal voltage of the electrochemical device at the start time point of the intermittent period and the second terminal voltage at the end time point of the intermittent period and determining a voltage difference between the first terminal voltage and the second terminal voltage, and determining the internal resistance based on the voltage difference and a charging current of the electrochemical device during the charging period.
  • the charging voltage waveform diagram shows the change of the terminal voltage of the electrochemical device with time in each intermittent period during intermittent charging, and the first one can be directly determined from the charging voltage waveform diagram. terminal voltage and the magnitude of the second terminal voltage.
  • the first terminal voltage corresponds to the terminal voltage at the start time point of the intermittent charging period (that is, the voltage difference between the positive voltage and the negative voltage)
  • the second terminal voltage corresponds to the intermittent charging.
  • the terminal voltage i.e. the voltage difference between the positive electrode voltage and the negative electrode voltage
  • the voltage difference between the first terminal voltage and the second terminal voltage can be obtained by subtracting the second terminal voltage from the first terminal voltage .
  • the internal resistance (referred to as R) of the electrochemical device during this intermittent period was obtained.
  • the method for obtaining the SOC during the interval is the same as the method for measuring the initial SOC of charging in the aforementioned S1011.
  • the internal resistance method can be used for measurement, except that the SOC during each interval is measured in real time during charging.
  • the initial charging SOC in S1011 is measured before charging.
  • the SOC of the intermittent period may refer to the SOC of the electrochemical device at the start time point of the intermittent period, or may refer to the SOC of the electrochemical device at the end time point of the intermittent period, or may refer to the electrochemical device at the central time point of the intermittent period. SOC of chemical devices, etc. Wherein, adopting the SOC of the electrochemical device at the central time point of the intermittent period can better reflect the average condition of the intermittent period, and the measurement accuracy is higher.
  • the first curve is obtained by using the SOC and internal resistance in multiple intermittent periods, which is convenient for data processing in the subsequent lithium analysis detection process.
  • S10122 Based on the first curve, determine the first degree of lithium extraction.
  • the first curve represents the variation of the internal resistance of the electrochemical device with the SOC of the electrochemical device, so the first degree of lithium analysis can be determined based on the first curve.
  • the first degree of lithium separation may be an amount to measure the amount of lithium separation of the electrochemical device determined by the intermittent charging method. When the amount of lithium analysis does not exceed a certain threshold, it can be considered as no lithium analysis, otherwise it is considered as lithium analysis.
  • step S10122 includes multiple ways, which will be described in detail below.
  • way A1 including the following steps SA11, SA12, SA13 and SA14:
  • SA11 Differentiate the first curve to obtain a first differential curve.
  • the first differential curve obtained by differentiating the first curve that is, the first differential curve is the first-order differential curve of the first curve , which actually represents the rate of change of the internal resistance of the electrochemical device with SOC.
  • SA12 Determine whether the first differential curve has a maximum value and a minimum value.
  • the first differential curve when the first differential curve has both a maximum value and a minimum value, it means that the original flat area on the first differential curve has obvious ups and downs, that is, an abnormal decrease.
  • the first differential curve represents the rate of change of the internal resistance of the electrochemical device with SOC. When the rate of change does not decrease abnormally in the flat area of the curve, it means that the electrochemical device has no active lithium precipitation.
  • FIG. 10 shows a graph of an exemplary first differential curve D1 in an embodiment of the present disclosure, and the first differential curve has a maximum value and a minimum value. It can be understood that the graph is only used for schematic description and understanding of the embodiments of the present disclosure, and is not intended to limit the embodiments of the present disclosure.
  • the lithium analysis SOC may refer to the state of charge related to the lithium analysis state of the electrochemical device, and the smaller the lithium analysis SOC, the more serious the lithium analysis state.
  • the SOC corresponding to the maximum value can be determined as the lithium-separating SOC.
  • the existence of the lithium-separating SOC indicates that the electrochemical device has a lithium-separating tendency at this SOC. Or lithium analysis has occurred, reasonably determining the lithium analysis SOC of the electrochemical device will help to determine the first lithium analysis level according to the lithium analysis SOC, so as to accurately determine the lithium analysis detection results of the electrochemical device, thereby improving the determination of the electrochemical device. The accuracy of the lithium analysis degree.
  • step SA13 includes: if both the maximum value and the minimum value exist, the maximum value and the minimum value are continuous on the first differential curve An extreme value appears, and the SOC corresponding to the minimum value is greater than the SOC corresponding to the maximum value, and the SOC corresponding to the maximum value is determined to be the lithium analysis SOC.
  • the maximum value appears earlier than the minimum value on the first differential curve, and it is more accurate to determine the lithium analysis SOC in this way, which is convenient for subsequent determination of the first lithium analysis degree according to the lithium analysis SOC, so that This makes the result of determining the degree of lithium separation of the electrochemical device in the embodiments of the present disclosure more accurate.
  • the lithium analysis SOC may be directly used as the first lithium analysis level, so as to determine the lithium analysis detection result of the electrochemical device in the subsequent stage.
  • the detection results of lithium analysis are also determined during constant current charging and standing still. The two determination results need a reasonable comparison and superimposition , to further determine the lithium analysis status of the electrochemical device, so the lithium analysis SOC can also be further processed to obtain the first lithium analysis degree.
  • the lithium analysis SOC can be normalized according to certain rules, and the result of the normalization processing can be used as the first lithium analysis degree, which is convenient for subsequent processing.
  • SA14 may specifically include: acquiring a first critical lithium-analysis SOC and a second critical lithium-analysis SOC, wherein the first critical lithium-analysis SOC is between the lithium-analysis reaching the first predetermined level and the first predetermined level not reaching the first predetermined level.
  • the SOC of the demarcation point, the second critical lithium-analysis SOC is the SOC of the demarcation point between the lithium-analysis reaching the second predetermined level and not reaching the second predetermined degree;
  • the first lithium-analysis degree is calculated by the formula (SOC i -SOC 0 )/(SOC H -SOC 0 ), wherein SOC 0 is the first critical lithium-analysis SOC, SOC H is the second critical SOC, and SOC i is the Analysis of lithium SOC.
  • the first critical lithium separation SOC is the SOC at which the electrochemical device reaches the first predetermined level and does not reach the first predetermined level.
  • the first predetermined level may be that the electrochemical device has just undergone lithium separation.
  • the first critical lithium separation SOC is the SOC corresponding to the boundary point between no lithium separation and lithium separation in the electrochemical device. If the lithium separation SOC of the electrochemical device reaches the first critical lithium separation SOC, it means that the electrochemical device detects lithium by this method. If the lithium separation SOC of the electrochemical device does not reach the first critical lithium separation SOC, it means that the detection result of the electrochemical device by this method is that no lithium is separated.
  • the first critical lithium-analysis SOC can be determined based on experiments performed on a plurality of electrochemical devices in advance, for example, a plurality of electrochemical devices of the same type are tested separately. A plurality of electrochemical devices were used to obtain lithium-analyzed SOC according to the above method. Then, multiple electrochemical devices were disassembled, the internal conditions were observed, and the management staff marked them as lithium-deposited and undecomposed lithium. According to the lithium analysis SOC of the electrochemical device marked as lithium analysis and the lithium analysis SOC of the electrochemical device marked as not lithium analysis, determine the boundary SOC, that is, the first critical lithium analysis SOC.
  • the first critical lithium separation SOC is determined to be 20%, which is of course only used as an example for easy understanding rather than limitation.
  • the second critical lithium evolution SOC is the SOC at the boundary point between the electrochemical device reaching the second predetermined level and not reaching the second predetermined level, for example, the second predetermined level may be a serious lithium evolution level.
  • the second critical lithium-analysis SOC is the SOC corresponding to the cut-off point between the lithium-analysis of the electrochemical device not reaching the severe lithium-analysis level and the lithium-analysis reaching the serious lithium-analysis level.
  • What is the degree of severe lithium deposition can be specified in advance, for example, it can be determined through the following experiment: a plurality of electrochemical devices of the same type are tested separately. A plurality of electrochemical devices were used to obtain lithium-analyzed SOC according to the above method.
  • the first degree of lithium separation is calculated by the formula (SOC i -SOC 0 )/(SOC H -SOC 0 ), which can indicate the relative degree of lithium separation in the electrochemical device obtained by the above method.
  • the first degree of lithium analysis based on the lithium analysis SOC in other ways, which is not limited in the embodiment of the present disclosure.
  • the above-mentioned normalization process is only used as an optional implementation mode and does not As a limitation on the embodiments of the present disclosure.
  • way A2 including the following steps SA21, SA22, SA23 and SA24:
  • SA21 Differentiate the first curve to obtain a first differential curve.
  • the step SA21 is the same as the step SA11, which can be understood with reference to SA11, and will not be repeated in this embodiment of the present disclosure.
  • SA22 Differentiate the first differential curve to obtain a second differential curve.
  • the first differential curve represents the change of the internal resistance R of the electrochemical device with the SOC of the electrochemical device
  • the first differential curve obtained by differentiating the first curve actually represents the internal resistance of the electrochemical device
  • the second differential curve is the differential curve of the first differential curve, that is, the second differential curve is the second-order differential curve of the first curve, so the first-order differential curve (that is, the first differential curve) and The properties between the second-order differential curves (that is, the second differential curve) are used to further determine the lithium analysis SOC.
  • SA23 If the second differential curve has a first zero-crossing point and a second zero-crossing point, and the second differential curve is positive on the left side of the first zero-crossing point, negative on the right side, and negative on the left side of the second zero-crossing point The side is negative, and the right is positive, and the SOC corresponding to the first zero-crossing point of the second differential curve is determined to be the SOC for lithium analysis.
  • the curve W1 shown in FIG. 11 is a second differential curve obtained by differentiating the first differential curve D1 .
  • the meaning of the zero-crossing point is the intersection point of the curve and the horizontal axis (the axis representing SOC). Since the vertical axis corresponding to the horizontal axis is 0, the intersection with the horizontal axis is called a zero-crossing point.
  • the left side and the right side refer to the left side and the right side of a certain point on the second differential curve along the direction of the horizontal axis.
  • the left side of the first zero-crossing point M is positive
  • the right side is negative, indicating that the slope on the left side of the corresponding point on the corresponding first differential curve D1 is positive
  • the right side is negative.
  • the slope is negative, indicating that it is a maximum value point
  • the left side of the second zero-crossing point N is negative
  • the right side is positive, indicating that the slope on the left side of the corresponding point on the corresponding first differential curve D1 is negative, and the right side is negative.
  • the slope is positive, indicating that it is a minimum value point. Therefore, when the above-mentioned conditions in SA23 are met, there are both maximum and minimum values on the first differential curve. Furthermore, the SOC corresponding to the first zero-crossing point of the second differential curve can be used as the lithium analysis SOC, so that the first lithium analysis degree can be subsequently determined according to the lithium analysis SOC.
  • step SA23 includes: if the second differential curve has a first zero-crossing point and a second zero-crossing point, the first zero-crossing point and the second zero-crossing point are the second zero-crossing points Two consecutive zero-crossing points on the differential curve, the second zero-crossing point is on the right side of the first zero-crossing point, and the second differential curve is positive on the left side of the first zero-crossing point and negative on the right side, and the The left side of the second zero-crossing point is negative, and the right side is positive, and the SOC corresponding to the first zero-crossing point of the second differential curve is determined to be the lithium-analysis SOC.
  • the step SA24 is the same as the step SA14, which can be understood with reference to SA14, and will not be repeated in this embodiment of the present disclosure.
  • S1013 In response to when the SOC of the electrochemical device reaches a second threshold, charge the electrochemical device with a constant current and leave it at rest, and acquire second data of the electrochemical device during the rest, according to the The second data determines a second lithium extraction degree of the electrochemical device, and the first threshold is smaller than the second threshold.
  • the electrochemical device when the charging initial SOC of the electrochemical device is less than the first threshold, the electrochemical device is intermittently charged, and when the intermittent charging makes the electrochemical device SOC reach the second threshold, the electrochemical device is charged with a constant current. After the charging is completed, the electrochemical device is started to stand still, which means that the electrochemical device is not charged or discharged.
  • the second threshold may be the second threshold of this step S1013.
  • the second threshold is similar to the first threshold, and it can also be set according to actual needs.
  • the second threshold is greater than the first threshold, for example, it can be configured in the determining device in advance, for example, the second threshold can be larger.
  • the SOC of the electrochemical device is relatively large, the lithium analysis results obtained by charging the electrochemical device with a constant current are more accurate.
  • the SOC of the electrochemical device is relatively small, use intermittent charging for charging, and when the SOC is relatively large, use constant current.
  • Charging for charging combines the advantages of the two types of charging to improve detection accuracy, thereby improving the accuracy of determining the degree of lithium analysis of the electrochemical device.
  • the value of the second threshold can be [70%, 90%], of course, it can also be in other value ranges, such as [75%, 85%], [75%, 95%], [80%, 95%] ⁇ etc.
  • the specific value of the second threshold can be selected according to the needs, for example, the second threshold is determined to be 70%, 75%, 80%, 85%, 90% %wait.
  • Carrying out constant current charging to the electrochemical device can be charged below the cut-off voltage of the electrochemical device.
  • Embodiments of the present disclosure can specify the voltage reached by the constant current battery, and the voltage cannot be greater than the cut-off voltage.
  • the cut-off voltage of the electrochemical device varies with the type of the electrochemical device, and can be obtained by looking up a table.
  • the second data of the electrochemical device is obtained, and the second lithium extraction degree of the electrochemical device is determined according to the second data.
  • the second data is data that can reflect the state of the electrochemical device when it is left standing after constant current charging, for example, it can be the internal resistance of the electrochemical device, SOC, the terminal voltage of the electrochemical device (that is, the electrochemical The voltage difference between the positive pole voltage and the negative pole voltage of the device) and other data.
  • the second data includes the terminal voltage of the electrochemical device during the standing period, that is, the voltage difference between the positive electrode voltage and the negative electrode voltage of the electrochemical device. Based on this, the "according to The second data determines the "second lithium analysis degree" of the electrochemical device, including:
  • S10131 Obtain a second curve based on the terminal voltage, where the second curve represents a change of the terminal voltage with time.
  • the second curve represents the curve of the terminal voltage of the electrochemical device changing with time when it is at rest, and the whole is a curve of the terminal voltage decreasing with time.
  • the terminal voltage may be measured by an analog front end (AFE) of a battery management system (BMS), which is not particularly limited in the present disclosure.
  • AFE analog front end
  • BMS battery management system
  • the terminal voltage of the electrochemical device at rest may be obtained while the corresponding time is recorded, so as to obtain a data pair consisting of multiple terminal voltages and times.
  • Time (Time) can be used as the abscissa
  • the terminal voltage (V, Voltage) of the electrochemical device can be used as the ordinate
  • the points represented by these data pairs can be filled in the coordinate system, and then fitted to obtain the second curve Q2, obviously, this second curve can be used to represent the change of the terminal voltage with time.
  • the graph is only used for schematic description and understanding of the embodiments of the present disclosure, and is not intended to limit the embodiments of the present disclosure.
  • the second curve represents the change of the terminal voltage of the electrochemical device with time, so the second degree of lithium evolution can be determined based on the second curve.
  • the second degree of lithium desorption may be an amount to measure the amount of lithium desorption of the electrochemical device determined by charging with a constant current and standing still.
  • the amount of lithium analysis does not exceed a certain threshold, it can be considered as no lithium analysis, otherwise it is considered as lithium analysis.
  • the integral value of lithium analysis can be obtained by processing and calculating the second curve, which can be used to reflect the state of lithium analysis of the electrochemical device.
  • step S10132 (that is, "based on the second curve, determine the lithium analysis integral value corresponding to the second curve") may include various methods, such as the following methods B1 and B2. Detailed description.
  • the first way, way B1 includes steps SB11, SB12, SB13 and SB14, wherein:
  • SB11 Differentiate the second curve to obtain a third differential curve.
  • the third differential curve obtained by differentiating the second curve that is, the third differential curve is the first-order differential curve of the second curve, which actually represents The rate of change of the terminal voltage of an electrochemical device with time.
  • SB12 Determine whether the third differential curve has a maximum value and a minimum value.
  • FIG. 13 shows a graph of an exemplary third differential curve D3 in an embodiment of the present disclosure, wherein the third differential curve D3 has a maximum value and a minimum value. It can be understood that the graph is only used for schematic description and understanding of the embodiments of the present disclosure, and is not intended to limit the embodiments of the present disclosure.
  • SB13 If both the maximum value and the minimum value exist, determine the integral between the maximum value and the minimum value on the third differential curve as the lithium analysis integral value.
  • the lithium analysis integral value for example, the function expression between the maximum value and the minimum value on the third differential curve can be calculated, and then through Newton-Leibney
  • the Ci formula calculates the definite integral between the maximum value point and the minimum value point for this function expression, and determines it as the lithium analysis integral value; or, can calculate the maximum value, the minimum value and the minimum value on the third differential curve
  • the area of the geometric figure enclosed between the horizontal axes, obviously, this area can also be used as the integral value of lithium analysis.
  • the existence of the lithium analysis integral value indicates that the electrochemical device has a lithium analysis tendency or has already occurred lithium analysis.
  • Reasonable determination of the lithium analysis integral value of the electrochemical device is helpful for subsequent determination of the second lithium analysis integral value based on the lithium analysis integral value.
  • the degree of lithium analysis is used to accurately determine the lithium analysis detection result of the electrochemical device, thereby improving the accuracy of determining the lithium analysis degree of the electrochemical device.
  • step SB13 may specifically be: if both the maximum value and the minimum value exist, the maximum value and the minimum value are the third differential curve The extreme value that appears continuously on the above, and the time corresponding to the minimum value is greater than the time corresponding to the maximum value, determine the integral between the maximum value and the minimum value on the third differential curve as The integral value of lithium analysis.
  • the maximum value appears earlier than the minimum value on the third differential curve, and it is more accurate to determine the lithium analysis integral value in this way, which is convenient for subsequent determination of the second lithium analysis degree according to the lithium analysis integral value , so as to make the result of determining the degree of lithium separation of the electrochemical device in the embodiment of the present disclosure more accurate.
  • the second way, way B2 includes steps SB21, SB22 and SB23, wherein:
  • SB21 Differentiate the second curve to obtain a third differential curve.
  • the step SB21 is the same as the step SB11, which can be understood with reference to the step SB11, and will not be repeated in this embodiment of the present disclosure.
  • SB22 Differentiate the third differential curve to obtain a fourth differential curve.
  • the fourth differential curve is the differential curve of the third differential curve, that is, the fourth differential curve is the second-order differential curve of the second curve, so the first-order differential curve (that is, the third differential curve) and the second-order differential curve ( That is, the properties between the fourth differential curve) to further determine the integral value of lithium analysis.
  • SB23 If the fourth differential curve has a third zero-crossing point and a fourth zero-crossing point, and the fourth differential curve is positive on the left side of the third zero-crossing point, negative on the right side, and negative on the left side of the fourth zero-crossing point The side is negative, the right is positive, and the double integral between the third zero-crossing point and the fourth zero-crossing point of the fourth differential curve is determined as the lithium analysis integral value.
  • the curve W3 shown in FIG. 14 is the fourth differential curve obtained by differentiating the third differential curve D3.
  • the meaning of the zero-crossing point is the intersection point of the curve and the horizontal axis (the axis representing time). Since the vertical axis corresponding to the horizontal axis is 0, the intersection with the horizontal axis is called a zero-crossing point.
  • the left side and the right side refer to the left side and the right side of a certain point on the fourth differential curve along the direction of the horizontal axis.
  • the left side of the third zero-crossing point M3 is positive, and the right side is negative, indicating that the left slope of the corresponding point on the third differential curve D3 is positive, and the right slope is negative , indicating that it is a maximum value point, and the left side of the fourth zero-crossing point N3 is negative, and the right side is positive, indicating that the left slope of the corresponding point on the third differential curve D3 is negative, and the right slope is positive, which is Therefore, when the above-mentioned conditions in SB23 are satisfied, both the maximum value and the minimum value exist on the third differential curve.
  • the double integral of the fourth differential curve on the left side of the third zero-crossing point can be used as the lithium analysis integral value, so that the second lithium analysis degree can be subsequently determined according to the lithium analysis integral value.
  • step SB23 may specifically be: if the fourth differential curve has a third zero-crossing point and a fourth zero-crossing point, the third zero-crossing point and the fourth zero-crossing point are the first Two consecutive zero-crossing points on the four differential curves, the fourth zero-crossing point is on the right side of the third zero-crossing point, and the fourth differential curve is positive on the left side of the third zero-crossing point and negative on the right side, The left side of the fourth zero-crossing point is negative and the right side is positive, and the double integral between the third zero-crossing point and the fourth zero-crossing point of the fourth differential curve is determined as the lithium analysis integral value.
  • Determining the integral value of lithium analysis in this way is more accurate, and it is convenient to determine the second lithium analysis degree according to the integral value of lithium analysis later, so that the result of determining the lithium analysis degree of the electrochemical device in the embodiment of the present disclosure is more accurate.
  • S10133 Based on the integral value of lithium analysis, determine the second lithium analysis degree.
  • the integral value of lithium analysis may be directly used as the second lithium analysis degree to determine the lithium analysis detection result of the electrochemical device subsequently.
  • the second degree of lithium analysis is obtained during constant current charging and standing still, and the detection results of lithium analysis are also determined during intermittent charging. The two determination results need a reasonable comparison and superposition. To further determine the lithium analysis situation of the electrochemical device, therefore, the integral value of lithium analysis can also be further processed to obtain the second lithium analysis degree.
  • Determining the second degree of lithium precipitation based on the integral value of lithium precipitation is convenient for subsequent final determination of whether lithium precipitation occurs in the electrochemical device.
  • the integral value of lithium analysis can be normalized according to certain rules, and the result of the normalization processing can be used as the second degree of lithium analysis, which is convenient for subsequent processing. Obviously, after the integral value of lithium analysis is normalized, the second lithium analysis degree and the aforementioned first lithium analysis degree can be calculated together later.
  • S10133 may specifically include: acquiring a first critical lithium-analysis integral value and a second critical lithium-analysis integral value, wherein the first critical lithium-analysis integral value is the third predetermined degree of lithium-analysis reaching and not reaching the third predetermined degree.
  • the lithium analysis integral value of the boundary point between the degrees, the second critical lithium analysis integral value is the lithium analysis integral value of the boundary point between the lithium analysis reaching the fourth predetermined level and not reaching the fourth predetermined level;
  • the first critical integral value of lithium analysis is the integral value of lithium analysis corresponding to the boundary point between the lithium analysis of the electrochemical device reaching the third predetermined level and the third predetermined level, for example, the third predetermined level may be The extent to which the chemical device has just undergone lithium desorption, in other words, the first critical lithium desorption integral value is the lithium desorption integral value corresponding to the cutoff point between no lithium desorption and lithium desorption in the electrochemical device. If the lithium separation integral value of the electrochemical device has reached the first critical lithium separation integral value, it means that the electrochemical device is detected by this method and lithium separation occurs. If the integral value of lithium separation of the electrochemical device does not reach the first critical integral value of lithium separation, it means that the result of detection by the electrochemical device in this way is that lithium separation does not occur.
  • the first critical lithium separation integral value can be determined based on experiments performed on multiple electrochemical devices in advance. Lithium analysis integral value corresponding to the demarcation point. A plurality of electrochemical devices were used to obtain the integral value of lithium analysis according to the above method. Then, multiple electrochemical devices were disassembled, the internal conditions were observed, and the management staff marked them as lithium-deposited and undecomposed lithium. According to the lithium analysis integral value of the electrochemical device marked as lithium analysis and the lithium analysis integral value of the electrochemical device marked as not lithium analysis, determine the boundary integral value, that is, the first critical lithium analysis integral value.
  • the integral value of the first critical lithium evolution is determined to be 0.1, of course, this is only used as an example for easy understanding rather than limitation.
  • the second critical lithium-analysis integral value can be determined according to experiments performed on a plurality of electrochemical devices in advance, such as performing experiments on a plurality of similar electrochemical devices respectively, and calculating the seriousness and occurrence of lithium-analysis in each electrochemical device.
  • the integral value of lithium analysis corresponding to lithium reaching the serious cut-off point.
  • a plurality of electrochemical devices were used to obtain the integral value of lithium analysis according to the above method. Then, multiple electrochemical devices were disassembled, and the internal conditions were observed, and the management staff marked them as severe lithium precipitation and non-severe lithium precipitation. What is serious can be specified in advance, for example, by the following experiment:
  • electrochemical devices of the same type were tested separately.
  • a plurality of electrochemical devices were used to obtain the integral value of lithium analysis according to the above method.
  • multiple electrochemical devices were disassembled, the internal conditions were observed, and the management staff marked them as severe lithium precipitation and non-severe lithium precipitation according to actual needs.
  • the electrochemical devices with a certain amount of lithium analysis can be marked as serious lithium analysis;
  • the more obvious electrochemical devices are marked as severe lithium evolution.
  • the lithium analysis integral value of the electrochemical device marked as serious lithium analysis and the lithium analysis integral value of the electrochemical device marked as not serious lithium analysis determine the boundary integral value, that is, the second critical lithium analysis integral value.
  • the second critical lithium evolution integral value is determined to be 0.6, of course, this is only an example for easy understanding and not a limitation.
  • the second degree of lithium formation is calculated by the formula (IG i -IG 0 )/(IG H -IG 0 ), which can indicate the relative degree of lithium formation in the electrochemical device obtained by the above method.
  • the calculated second lithium separation degree is convenient for this optional embodiment to finally determine the lithium separation degree of the electrochemical device.
  • S1014 According to the first lithium separation degree and the second lithium separation degree, determine the lithium separation degree of the electrochemical device.
  • the determining device 101 in the electronic device 1000 determines the lithium analysis degree of the electrochemical device according to the obtained first lithium analysis degree and the second lithium analysis degree.
  • the electrochemical device when the initial charging SOC is less than the first threshold, the electrochemical device is intermittently charged, and the first degree of lithium analysis is determined, and when the SOC reaches the second threshold, the electrochemical device is charged with a constant current and left standing , to determine the second degree of lithium analysis, and according to the first degree of lithium analysis and the second degree of lithium analysis, determine the degree of lithium analysis of the electrochemical device, thereby realizing the detection of various lithium analysis degrees for the electrochemical device, without Lithium analysis detection of electrochemical devices is limited to only one charging method, which avoids possible errors in lithium analysis detection of electrochemical devices under a single charging method, thereby effectively improving the determination of lithium analysis of electrochemical devices.
  • the accuracy of the results is to improve the accuracy of determining the degree of lithium analysis of the electrochemical device, so as to facilitate subsequent management of the electrochemical device according to the degree of lithium analysis, so as to reduce the impact of lithium analysis on the safety and life of the electrochemical device, and improve the accuracy of the electrochemical device.
  • the effectiveness of the device is also convenient for timely processing of the electrochemical device to ensure the safe use of the electrochemical device.
  • the specific manner and conditions for determining the lithium analysis degree of the electrochemical device can be set according to actual needs.
  • the embodiments of the present disclosure several ways are provided to meet actual detection requirements. A brief description is given below.
  • the lithium analysis degree of the electrochemical device can be determined through the first lithium analysis degree and the second lithium analysis degree, so that the determination of the lithium analysis degree is more accurate and reliable.
  • step S1014 may include: determining the sum of the first lithium analysis degree and the second lithium analysis degree as the lithium analysis degree; or, determining the first lithium analysis degree and the second lithium analysis degree The average number of the degree of lithium is used as the degree of lithium analysis; or, the weighted average of the first degree of lithium analysis and the second degree of lithium analysis is determined as the degree of lithium analysis.
  • the sum of the first lithium analysis degree and the second lithium analysis degree may be used as the lithium analysis degree, so as to facilitate the implementation of the electrochemical device management method.
  • the electrochemical device is managed according to the degree of lithium analysis.
  • the sum of the first lithium analysis degree and the second lithium analysis degree can be 50%, 80%, 100%, 120% and so on. This is not limited.
  • the average of the first lithium analysis degree and the second lithium analysis degree may be used as the lithium analysis degree, so that in the subsequent steps of the electrochemical device management method, according to the lithium analysis
  • the extent to which electrochemical devices are managed can be 25%, 40%, 50%, 60% and so on. Embodiments of the present disclosure There are no restrictions on this.
  • the weighted average of the first lithium analysis degree and the second lithium analysis degree may be used as the lithium analysis degree, so that in the subsequent steps of the electrochemical device management method, according to the analysis The lithium level manages the electrochemical device.
  • the weight of the first degree of lithium analysis and the weight coefficient of the second degree of lithium analysis can be set as required, for example, the weight coefficients of the first degree of lithium analysis are 0.2, 0.3, 0.5, 0.7, etc., then the weight coefficients of the second degree of lithium analysis can be 0.8, 0.7, 0.5, 0.3, etc. correspondingly.
  • the average of the first degree of lithium analysis and the second degree of lithium analysis can be 25%, 40%, 50%, 60%, etc. etc., which are not limited by the embodiments of the present disclosure. It can be understood that, in the embodiment of the present disclosure, it is also possible to determine the degree of lithium analysis according to the first degree of lithium analysis and the second degree of lithium analysis in other optional ways, so as to facilitate the subsequent steps of the electrochemical device management method.
  • the electrochemical device is managed according to the degree of lithium precipitation.
  • the method for determining the degree of lithium analysis of the electrochemical device may include the following steps S2011 and S2012:
  • S2011 Charge the electrochemical device with a constant current to the cut-off voltage of the electrochemical device, and stand still, and acquire second data of the electrochemical device when standing still.
  • S2012 Determine the degree of lithium separation of the electrochemical device according to the second data.
  • the electrochemical device is charged to the cut-off voltage of the electrochemical device with a constant current, and then left to stand, and the second data of the electrochemical device is obtained during the rest, and then the analysis of the electrochemical device is determined according to the second data.
  • the degree of lithium can ensure the accuracy of the lithium analysis results of the electrochemical device, improve the accuracy of the determination of the lithium analysis degree of the electrochemical device, and facilitate subsequent management of the electrochemical device according to the lithium analysis degree, so as to reduce the impact of lithium analysis on the electrochemical device. Improve the performance of the electrochemical device, and facilitate the timely treatment of the electrochemical device to ensure the safe use of the electrochemical device.
  • the difference from the above optional embodiments is that the determining device 101 in the electronic device in the embodiment of the present disclosure only performs constant current charging on the electrochemical device and stands still to obtain the second data, regardless of The size of the initial SOC of the electrochemical device is finally obtained only according to the second data to obtain the degree of lithium precipitation, while in the above optional embodiment, when the initial SOC of the electrochemical device is relatively small, the first data is first obtained by intermittent charging to determine the second First analyze the degree of lithium analysis, then carry out constant current charging and stand still to obtain the second data to determine the second lithium analysis degree, and finally determine the lithium analysis degree according to the first lithium analysis degree and the second lithium analysis degree. It can be understood that both of these two methods can meet the requirement of determining the degree of lithium separation of the electrochemical device.
  • the second data of the electrochemical device is obtained, and the degree of lithium precipitation of the electrochemical device is determined according to the second data.
  • the second data is data that can reflect the state of the electrochemical device when it is left standing after constant current charging, for example, it can be the internal resistance of the electrochemical device, SOC, the terminal voltage of the electrochemical device (that is, the electrochemical The voltage difference between the positive pole voltage and the negative pole voltage of the device) and other data.
  • the second data includes the terminal voltage of the electrochemical device during the standing period, that is, the voltage difference between the positive electrode voltage and the negative electrode voltage of the electrochemical device. Based on this, the "according to The second data determines the degree of lithium separation of the electrochemical device", which may specifically include two sub-steps of S20121 and S20122:
  • S20121 Obtain a second curve based on the terminal voltage, where the second curve represents a change of the terminal voltage with time.
  • the second curve represents the curve of the terminal voltage of the electrochemical device changing with time when it is at rest, and the whole is a curve of the terminal voltage decreasing with time.
  • the terminal voltage may be measured by an analog front end (AFE) of a battery management system (BMS), which is not particularly limited in the embodiments of the present disclosure.
  • AFE analog front end
  • BMS battery management system
  • the time used for obtaining the terminal voltage of the electrochemical device at rest can be recorded, thereby obtaining a data pair composed of multiple terminal voltages and time, still referring to FIG. 12 , Time (Time) can be used as the abscissa, and the terminal voltage (V, Voltage) of the electrochemical device can be used as the ordinate, and the points represented by these data pairs can be filled in the coordinate system, and then fitted to obtain the second curve Q2, obviously, this second curve can be used to represent the change of the terminal voltage with time.
  • the graph is only used for schematic description and understanding of the embodiments of the present disclosure, and is not intended to limit the embodiments of the present disclosure.
  • the second curve is obtained by using the terminal voltage and time of the electrochemical device that has been left standing after constant current charging, which is convenient for data processing in the subsequent lithium analysis detection process.
  • the second curve represents the change of the terminal voltage of the electrochemical device with time, so the degree of lithium precipitation can be determined based on the second curve.
  • the degree of lithium desorption may be an amount to measure the amount of lithium desorption of the electrochemical device determined by charging with a constant current and standing still.
  • the amount of lithium analysis does not exceed a certain threshold, it can be considered as no lithium analysis, otherwise it is considered as lithium analysis.
  • step S20122 may include steps S20122A and S20122B.
  • the integral value of lithium analysis can be obtained by processing and calculating the second curve, which can be used to reflect the state of lithium analysis of the electrochemical device.
  • step S20122A (that is, based on the second curve, determining the lithium analysis integral value corresponding to the second curve) may include various methods, which will be described in detail below.
  • the first way, way B1 includes steps SB11, SB12 and SB13, wherein:
  • SB11 Differentiate the second curve to obtain a third differential curve.
  • the third differential curve obtained by differentiating the second curve that is, the third differential curve is the first-order differential curve of the second curve, which actually represents The rate of change of the terminal voltage of an electrochemical device with time.
  • SB12 Determine whether the third differential curve has a maximum value and a minimum value.
  • FIG. 13 there is shown a graph of an exemplary third differential curve D3 in an embodiment of the present disclosure, wherein the third differential curve D3 has a maximum value and a minimum value. It can be understood that the graph is only used for schematic description and understanding of the embodiments of the present disclosure, and is not intended to limit the embodiments of the present disclosure.
  • SB13 If both the maximum value and the minimum value exist, determine the integral between the maximum value and the minimum value on the third differential curve as the lithium analysis integral value.
  • the lithium analysis integral value for example, the function expression between the maximum value and the minimum value on the third differential curve can be calculated, and then through Newton-Leibney
  • the Ci formula calculates the definite integral between the maximum value point and the minimum value point for this function expression, and determines it as the lithium analysis integral value; or, can calculate the maximum value, the minimum value and the minimum value on the third differential curve
  • the area of the geometric figure enclosed between the horizontal axes, obviously, this area can also be used as the integral value of lithium analysis.
  • the existence of the lithium analysis integral value indicates that the electrochemical device has a tendency to analyze lithium or has already occurred lithium analysis.
  • Reasonable determination of the lithium analysis integral value of the electrochemical device is helpful for subsequent determination of lithium analysis based on the lithium analysis integral value. degree, to accurately determine the detection result of lithium analysis of the electrochemical device, thereby improving the accuracy of determining the degree of lithium analysis of the electrochemical device.
  • step SB13 may specifically be: if both the maximum value and the minimum value exist, the maximum value and the minimum value are the third differential curve The extreme value that appears continuously on the above, and the time corresponding to the minimum value is greater than the time corresponding to the maximum value, determine the integral between the maximum value and the minimum value on the third differential curve as The integral value of lithium analysis.
  • the maximum value appears earlier than the minimum value on the third differential curve, and it is more accurate to determine the lithium analysis integral value in this way, which is convenient for subsequent determination of the lithium analysis degree according to the lithium analysis integral value, thereby This makes the result of determining the degree of lithium separation of the electrochemical device in the embodiments of the present disclosure more accurate.
  • the second way, way B2 includes steps SB21, SB22 and SB23, wherein:
  • SB21 Differentiate the second curve to obtain a third differential curve.
  • the step SB21 is the same as the step SB11, which can be understood with reference to the step SB11, and will not be repeated in this embodiment of the present disclosure.
  • SB22 Differentiate the third differential curve to obtain a fourth differential curve.
  • the fourth differential curve is the differential curve of the third differential curve, that is, the fourth differential curve is the second-order differential curve of the second curve, so the first-order differential curve (that is, the third differential curve) and the second-order differential curve ( That is, the properties between the fourth differential curve) to further determine the integral value of lithium analysis.
  • SB23 If the fourth differential curve has a third zero-crossing point and a fourth zero-crossing point, and the fourth differential curve is positive on the left side of the third zero-crossing point, negative on the right side, and negative on the left side of the fourth zero-crossing point The side is negative, the right is positive, and the double integral between the third zero-crossing point and the fourth zero-crossing point of the fourth differential curve is determined as the lithium analysis integral value.
  • the curve W3 shown in FIG. 14 is the fourth differential curve obtained by differentiating the third differential curve D3.
  • the meaning of the zero-crossing point is the intersection point of the curve and the horizontal axis (the axis representing time). Since the vertical axis corresponding to the horizontal axis is 0, the intersection with the horizontal axis is called a zero-crossing point.
  • the left side and the right side refer to the left side and the right side of a certain point on the fourth differential curve along the direction of the horizontal axis.
  • the left side of the third zero-crossing point M3 is positive, and the right side is negative, indicating that the left slope of the corresponding point on the third differential curve D3 is positive, and the right slope is negative , indicating that it is a maximum value point, and the left side of the fourth zero-crossing point N3 is negative, and the right side is positive, indicating that the left slope of the corresponding point on the third differential curve D3 is negative, and the right slope is positive, which is Therefore, when the above-mentioned conditions in SB23 are satisfied, both the maximum value and the minimum value exist on the third differential curve.
  • the double integral of the fourth differential curve on the left side of the third zero-crossing point can be used as the integrated value of lithium analysis, so as to determine the degree of lithium analysis according to the integrated value of lithium analysis.
  • step SB23 may specifically be: if the fourth differential curve has a third zero-crossing point and a fourth zero-crossing point, the third zero-crossing point and the fourth zero-crossing point are the first Two consecutive zero-crossing points on the four differential curves, the fourth zero-crossing point is on the right side of the third zero-crossing point, and the fourth differential curve is positive on the left side of the third zero-crossing point and negative on the right side, The left side of the fourth zero-crossing point is negative and the right side is positive, and the double integral between the third zero-crossing point and the fourth zero-crossing point of the fourth differential curve is determined as the lithium analysis integral value.
  • S20122B Based on the integral value of lithium analysis, determine the degree of lithium analysis.
  • the integral value of lithium analysis may be directly used as the degree of lithium analysis, so as to manage the electrochemical device according to the degree of lithium analysis in subsequent steps of the electrochemical device management method.
  • Determining the degree of lithium precipitation based on the integral value of lithium precipitation is convenient for subsequent final determination of whether lithium precipitation occurs in the electrochemical device.
  • the integral value of lithium analysis can be normalized according to certain rules, and the result of the normalization processing can be used as the degree of lithium analysis, which is convenient for subsequent processing.
  • S20122B may specifically include: acquiring a first critical lithium-analysis integral value and a second critical lithium-analysis integral value, wherein the first critical lithium-analysis integral value is that the lithium-analysis reaches the third predetermined level and does not reach the third predetermined level.
  • the lithium analysis integral value of the boundary point between the degrees, the second critical lithium analysis integral value is the lithium analysis integral value of the boundary point between the lithium analysis reaching the fourth predetermined level and not reaching the fourth predetermined level, the first The fourth predetermined degree is greater than the third predetermined degree;
  • the degree of lithium analysis is calculated by the formula (IG i2 -IG 0 )/(IG H -IG 0 ), wherein, IG 0 is the integral value of the first critical lithium analysis, IG H is the integral value of the second critical lithium analysis, and IG i2 is the integral value of lithium analysis.
  • the first critical integral value of lithium analysis is the integral value of lithium analysis corresponding to the boundary point between the lithium analysis of the electrochemical device reaching the third predetermined level and the third predetermined level, for example, the third predetermined level may be The extent to which the chemical device has just undergone lithium desorption, in other words, the first critical lithium desorption integral value is the lithium desorption integral value corresponding to the cutoff point between no lithium desorption and lithium desorption in the electrochemical device. If the integral value of lithium separation of the electrochemical device reaches the first critical integral value of lithium separation, it means that lithium separation occurs as a result of detection by the electrochemical device in this way. If the integral value of lithium separation of the electrochemical device does not reach the first critical integral value of lithium separation, it means that the result of detection by the electrochemical device in this way is that lithium separation does not occur.
  • the first critical lithium separation integral value can be determined based on experiments performed on multiple electrochemical devices in advance. Lithium analysis integral value corresponding to the demarcation point. A plurality of electrochemical devices were used to obtain the integral value of lithium analysis according to the above method. For example, if there are 100 electrochemical devices in total, there are 50 electrochemical devices marked as lithium analysis, and the integral values of lithium analysis are all less than 0.1, and there are 50 electrochemical devices marked as lithium analysis, and the integral values of lithium analysis are all greater than 0.1, then The integral value of the first critical lithium evolution is determined to be 0.1, of course, this is only used as an example for easy understanding rather than limitation.
  • the second critical lithium-analysis integral value can be determined according to experiments performed on a plurality of electrochemical devices in advance, such as performing experiments on a plurality of similar electrochemical devices respectively, and calculating the seriousness and occurrence of lithium-analysis in each electrochemical device.
  • the integral value of lithium analysis corresponding to lithium reaching the serious cut-off point.
  • a plurality of electrochemical devices were used to obtain the integral value of lithium analysis according to the above method. Then, multiple electrochemical devices were disassembled, and the internal conditions were observed, and the management staff marked them as severe lithium precipitation and non-severe lithium precipitation. What is serious can be specified in advance, for example, by the following experiment:
  • electrochemical devices of the same type were tested separately.
  • a plurality of electrochemical devices were used to obtain the integral value of lithium analysis according to the above method.
  • multiple electrochemical devices were disassembled, the internal conditions were observed, and the management staff marked them as severe lithium precipitation and non-severe lithium precipitation according to actual needs.
  • the electrochemical devices with a certain amount of lithium analysis can be marked as serious lithium analysis;
  • the more obvious electrochemical devices are marked as severe lithium evolution.
  • the lithium analysis integral value of the electrochemical device marked as serious lithium analysis and the lithium analysis integral value of the electrochemical device marked as not serious lithium analysis determine the boundary integral value, that is, the second critical lithium analysis integral value.
  • the second critical lithium evolution integral value is determined to be 0.6, of course, this is only an example for easy understanding and not a limitation.
  • the degree of lithium analysis is calculated by the formula (IG i2 -IG 0 )/(IG H -IG 0 ).
  • the degree of lithium analysis can indicate the degree of lithium analysis in the electrochemical device obtained by the above method.
  • the accuracy of the lithium level is good, so that it is convenient to manage the electrochemical device according to the lithium analysis level in the subsequent steps of the electrochemical device management method. .
  • the degree of lithium analysis of the electrochemical device can be accurately determined, thereby facilitating the result of the lithium analysis degree of the electrochemical device in the subsequent steps of the electrochemical device management method in the embodiment of the present disclosure
  • the electrochemical device is managed, so as to reduce the impact of lithium analysis on the safety and life of the electrochemical device, so as to improve the performance of the lithium-ion battery.
  • the charging control device 102 can take different measures to manage the charging of the electrochemical device according to the result, specifically , in the determination unit 101, it is determined that the degree of lithium evolution of the electrochemical device is greater than the first threshold of the degree of lithium evolution, and the charging of the electrochemical device is limited.
  • the specific structure of the charging control device 102 is not limited in the embodiments of the present disclosure, as long as it can fulfill the requirements in the embodiments of the present disclosure.
  • Limiting the charging of the electrochemical device in the embodiments of the present disclosure may refer to reducing the charging current and/or charging voltage for charging the electrochemical device, which may be to reduce the charging current and charging voltage together, or only Reducing the magnitude of the charging current may also be only reducing the magnitude of the charging voltage, etc., which are not limited in the embodiments of the present disclosure.
  • the limiting the charging of the electrochemical device includes S1021, S1022, and S1023:
  • the lithium analysis degree of the electrochemical device is greater than the first lithium analysis degree threshold and not greater than the second lithium analysis degree threshold. It can be considered that the electrochemical device has determined that lithium analysis occurs, but the amount of lithium analysis is relatively slight ( For example, it can be simply understood with a slight lithium analysis), at this time, reducing the charging current of the electrochemical device can effectively weaken the tendency of the electrochemical device to analyze lithium, thereby effectively reducing the impact of lithium analysis on the electrochemical device (for example, it can be Lithium-ion batteries) to improve the performance of electrochemical devices.
  • the first lithium analysis threshold in the embodiments of the present disclosure can be set according to actual needs, and is not limited in the embodiments of the present disclosure. For example, it could be 50% in one embodiment, 25% in another embodiment, and 20% in yet another alternative embodiment.
  • the second lithium analysis threshold in the embodiments of the present disclosure can be set according to actual needs, and is not limited in the embodiments of the present disclosure. For example, it could be 80% in one embodiment, 40% in another embodiment, and 50% in yet another alternative embodiment.
  • the reduction of the charging current of the electrochemical device in the embodiments of the present disclosure can be performed according to any rules, for example, it can be reduced by the same amount each time the charging current is reduced, or it can be reduced by a different amount each time the charging current is reduced.
  • the embodiment of the present disclosure does not limit.
  • "reducing the charging current of the electrochemical device" in S1021 includes: reducing the charging current of the electrochemical device at a first rate.
  • the first ratio can be set according to actual needs, as long as the requirements can be met, for example, the value range of the first ratio can be [3%, 7%], of course, it can also be other value ranges, such as [2%, 5% %], [5%, 10%], [6%, 10%], etc., which are not particularly limited in the embodiments of the present disclosure.
  • the value range of the first ratio is [3%, 7%]
  • the specific value of the first ratio can be taken according to the needs, for example, the first ratio can be determined as 3%, 4%, 5%, 6%, 7% % etc., which are not particularly limited in the embodiments of the present disclosure.
  • the lithium analysis degree of the electrochemical device is greater than the second lithium analysis degree threshold and not greater than the third lithium analysis degree threshold, it can be considered that the electrochemical device has already undergone lithium analysis, and the lithium analysis has reached a certain level (For example, it can be simply understood with moderate lithium analysis), at this time, reducing the charging current and/or discharging current of the electrochemical device and reducing the allowable upper limit of the charging voltage of the electrochemical device can effectively weaken the tendency of the electrochemical device to analyze lithium. Therefore, the impact of lithium analysis on the safety and life of the electrochemical device (for example, a lithium ion battery) can be effectively reduced, so as to improve the performance of the electrochemical device.
  • the electrochemical device for example, a lithium ion battery
  • the third lithium analysis degree threshold in the embodiments of the present disclosure can also be set according to actual needs, which is not limited in the embodiments of the present disclosure.
  • the third lithium analysis degree threshold can be 100%; in another optional embodiment, the third lithium analysis degree threshold can be 50%; in yet another optional embodiment, the third The threshold value of the degree of lithium precipitation can be 95%.
  • the allowable upper limit of the charging voltage may be the cut-off voltage of the electrochemical device, and reducing the allowable upper limit of the charging voltage may also be understood as reducing the cut-off voltage of the electrochemical device during charging.
  • the reduction of the charging current and/or discharging current of the electrochemical device in the embodiment of the present disclosure can be carried out according to any rule.
  • reducing the charging current and discharging current of the electrochemical device for example, it can be reduced each time
  • the same size can also be reduced by different sizes each time the charging current is reduced; when only the charging current or discharging current is reduced, different sizes can be reduced according to actual needs.
  • lowering the allowable upper limit of the charging voltage may also be lowered according to actual needs, which is not limited in the embodiments of the present disclosure.
  • "reducing the charging current and/or discharging current of the electrochemical device, and lowering the allowable upper limit of the charging voltage of the electrochemical device” in S1022 includes: reducing the charging current and/or discharging current of the electrochemical device at a second rate.
  • the charging current of the electrochemical device, and the allowable upper limit of the charging voltage of the electrochemical device is reduced by a third ratio, and/or, the discharge current of the electrochemical device is reduced by a fourth ratio, and the upper limit of the charging voltage of the electrochemical device is reduced by a third ratio.
  • the allowable upper limit of the charging voltage of the above electrochemical device includes: reducing the charging current and/or discharging current of the electrochemical device at a second rate.
  • the charging current of the electrochemical device, and the allowable upper limit of the charging voltage of the electrochemical device is reduced by a third ratio, and/or, the discharge current of the electrochemical device is reduced by a fourth ratio, and the upper limit of the charging voltage of the electrochemical device is reduced by a
  • the second ratio, the third ratio and the fourth ratio in the embodiments of the present disclosure can also be set according to actual needs, as long as the requirements can be fulfilled, for example, the value range of the second ratio can be [ 3%, 7%], of course, can also be other value ranges, such as [2%, 5%], [5%, 10%], [6%, 10%], etc., for this, the embodiment of the present disclosure There are no special restrictions.
  • the value range of the second ratio is [3%, 7%]
  • the specific value of the second ratio can be taken according to the needs, for example, the second ratio can be determined as 3%, 4%, 5%, 6%, 7% etc., which are not particularly limited in the embodiments of the present disclosure.
  • the value range of the third ratio can be [0.5%, 2%], of course, it can also be other value ranges, such as [0.2%, 0.8%], [1.5%, 2.5%], [1.5%, 3%] ] and so on, there is no special limitation in this embodiment of the present disclosure.
  • the value range of the third ratio is [0.5%, 2%]
  • the specific value of the third ratio can be taken according to the needs, for example, the third ratio can be determined as 0.5%, 0.8%, 1%, 1.2%, 1.5% , 2%, etc., which are not particularly limited in the embodiments of the present disclosure.
  • the value range of the fourth ratio can be [3%, 7%], of course, it can also be other value ranges, such as [2%, 5%], [5%, 10%], [6%, 10%] %] and so on, which are not particularly limited in the embodiments of the present disclosure.
  • the value range of the fourth ratio is [3%, 7%]
  • the specific value of the fourth ratio can be taken according to the needs, for example, the fourth ratio can be determined as 3%, 4%, 5%, 6%, 7% etc., which are not particularly limited in the embodiments of the present disclosure.
  • the fourth ratio may be the same value as the second ratio.
  • both the fourth ratio and the second ratio are 5%, and the third ratio is 1%.
  • the threshold of the second lithium analysis level is 50%
  • the threshold of the third lithium analysis level is 95%
  • the charging current is 2A
  • the discharge current is 2A
  • the cut-off voltage of the electrochemical device is 5V.
  • the lithium analysis degree of the electrochemical device is greater than the third lithium analysis degree threshold, it can be considered that the electrochemical device has undergone serious lithium analysis (for example, it can be simply understood by severe lithium analysis), and it is difficult to continue to use. Further use will cause serious failure of the electrochemical device, and even cause harm to the user, so restrict the use of the electrochemical device at this time (in the embodiments of the present disclosure, restricting the use of the electrochemical device may refer to stopping charging the electrochemical device, And lock the electrochemical device forcibly, so that the electrochemical device cannot be used.), effectively protect the safety of the electrochemical device, and also ensure the safety of users.
  • the threshold value of the third lithium analysis degree is 95%, then for example, it is detected that the lithium analysis degree of the electrochemical device is 98%, and if it is greater than 95%, charging is stopped, and the electrochemical device is forcibly locked, so that the electrochemical device cannot used.
  • the degree of lithium analysis determined by the electrochemical device may be different, and the conditions for determining the electrochemical device are also different.
  • the foregoing is combined below Give an example.
  • the first calculation method of the degree of lithium analysis is the first degree of lithium analysis
  • the first lithium analysis degree threshold can be set to 50%
  • the second lithium analysis degree threshold can be set to 80%
  • the third lithium analysis degree threshold can be set to 100%
  • of course is another optional value, which can be set according to the actual situation.
  • the second calculation method of the degree of lithium analysis is the first degree of lithium analysis and the average number of the second lithium analysis degree, then the first lithium analysis degree threshold can be set to 25%, the second lithium analysis degree threshold is set to 40%, the third lithium analysis degree threshold is set to 50%, and of course It can be other optional values, which can be set according to the actual situation.
  • the third calculation method of the lithium analysis degree is the first lithium analysis degree and the weighted average of the second lithium analysis degree, then the first lithium analysis degree threshold can be set to 25%, the second lithium analysis degree threshold is set to 40%, the third lithium analysis degree threshold is set to 50%, of course It can also be other optional values, which can be set according to the actual situation.
  • the method for determining the degree of lithium analysis of the electrochemical device in the second embodiment of the aforementioned step S101 is somewhat different from the first method
  • the calculation method of the degree of lithium analysis calculate the degree of lithium analysis based on the formula (IG i2 -IG 0 )/(IG H -IG 0 ) (for details, please refer to the relevant content of the aforementioned step S20122B, and will not repeat it here), then you can
  • the first lithium analysis degree threshold is set to 20%
  • the second lithium analysis degree threshold is set to 50%
  • the third lithium analysis degree threshold is set to 95%
  • other optional values can also be used, which can be based on actual conditions to set.
  • the electrochemical device management method in the embodiments of the present disclosure in addition to the above steps S101 and S102, also includes step S103, specifically:
  • S103 Increase the charge current and/or discharge current of the electrochemical device in response to the lithium release degree of the electrochemical device being less than the first lithium release degree threshold.
  • the charging control device 102 can take different measures to manage the charging of the electrochemical device according to the result, specifically In the determining device 101, it is determined that the degree of lithium analysis of the electrochemical device is less than the first threshold value of the degree of lithium analysis, and the charging current and/or the discharging current of the electrochemical device is increased. In this way, it is more reasonable to manage the electrochemical device when the lithium analysis degree of the electrochemical device is less than the first lithium analysis degree threshold, and further improve the performance of the electrochemical device.
  • increasing the charging current and/or discharging current of the electrochemical device (either increasing the magnitude of the charging current and the discharging current at the same time, or only increasing the magnitude of the charging current, or only increasing the discharging current size, which is not limited in the embodiments of the present disclosure).
  • the specific structure of the charging control device 102 is not limited in the embodiments of the present disclosure, as long as it can fulfill the requirements in the embodiments of the present disclosure.
  • the "increasing the charging current and/or discharging current of the electrochemical device" in S103 includes: increasing the charging current and/or discharging current of the electrochemical device at a fifth rate current.
  • the fifth ratio can be set according to actual needs, as long as the requirements can be fulfilled, for example, the value range of the fifth ratio can be [0.5%, 2%], of course, it can also be other value ranges, For example, [0.2%, 0.8%], [1.5%, 2.5%], [1.5%, 3%], etc., which are not particularly limited in the embodiments of the present disclosure.
  • the value range of the fifth ratio is [0.5%, 2%]
  • the specific value of the fifth ratio can be taken according to the needs, for example, the fifth ratio can be determined as 0.5%, 0.8%, 1%, 1.2%, 1.5 %, 2%, etc., which are not particularly limited in the embodiments of the present disclosure.
  • Increasing the discharge current can be deduced by analogy, which will not be repeated here.
  • the fifth step of increasing the charging current and/or discharging current of the electrochemical device After the ratio, the electrochemical device management method further includes: in response to increasing the charging current and/or discharging current of the electrochemical device at a fifth ratio, the charging current exceeds a first current threshold and/or the discharging current exceeds A second current threshold limits the charging current to the first current threshold and/or limits the discharging current to the second current threshold.
  • the electrochemical device can be prevented from being affected by a larger current when the charging current/discharging current of the electrochemical device is increased, thereby ensuring the safety and life stability of the electrochemical device.
  • both the first current threshold and the second current threshold can be set according to actual needs.
  • the first current threshold can be reasonably set according to different conditions of the electrochemical device.
  • the first current threshold can be adjusted to be relatively higher.
  • the first current threshold can be adjusted relatively lower.
  • the second current threshold can be adjusted to be relatively higher, and for an electrochemical device with a weaker capacity to withstand discharge current, the second current threshold can be adjusted to be relatively high. lower.
  • the first current threshold is 110% of the charging current when the lithium-analysis degree of the electrochemical device is determined for the first time
  • the second current threshold is 110% of the discharge current when the lithium-analysis degree of the electrochemical device is determined for the first time
  • the first current threshold and the second current threshold may also be other values, for example, 105%, 108%, 112%, 115%, 120%, etc., which are not limited in this embodiment of the present disclosure.
  • the case of increasing the discharge current can be analogized in turn, and will not be repeated here.
  • the charging current of the electrochemical device may be increased multiple times until it reaches the first current threshold, and/or the discharge current of the electrochemical device may be increased multiple times until it reaches the second current threshold.
  • the fifth ratio of the charging current is increased once, for example, 1%, until the first current threshold, for example, the first current threshold is the charging current and/or when the lithium-extracting degree of the electrochemical device is determined for the first time.
  • the discharge current 110% of the discharge current, then it can be increased 10 times; correspondingly, to increase the discharge current, the fifth ratio of the discharge current is increased once, for example 1%, until the second current threshold, for example the second current threshold is the first time 110% of the discharge current when determining the degree of lithium analysis of the electrochemical device can be increased 10 times.
  • the second current threshold for example the second current threshold is the first time 110% of the discharge current when determining the degree of lithium analysis of the electrochemical device can be increased 10 times.
  • the charging voltage of the electrochemical device in response to the lithium analysis degree of the electrochemical device being less than the first lithium analysis degree threshold, in addition to increasing the charging current and/or discharging current of the electrochemical device, the charging voltage of the electrochemical device is also increased, When increasing the charging voltage, it can also be carried out according to the above method of charging current and/or discharging current, which is not limited in the embodiments of the present disclosure.
  • the electrochemical device management method in the embodiment of the present disclosure can determine the lithium analysis degree of the electrochemical device, and then respond to the lithium analysis degree of the electrochemical device being greater than the first lithium analysis degree threshold, limiting the use of the electrochemical device. charging, so that the electrochemical device can be reasonably managed, effectively reducing the impact of lithium analysis on the safety and life of the electrochemical device, and improving the performance of the electrochemical device.
  • the embodiments of the present disclosure provide an electronic device 1000, which includes: a determining device 101 and a charging control device 102, wherein,
  • the determining device 101 is used to determine the degree of lithium analysis of the electrochemical device
  • the charge control device 102 is used for the charge control device to limit the charging of the electrochemical device in response to the lithium release degree of the electrochemical device being greater than a first lithium release degree threshold.
  • the charge control device 102 is specifically configured to: reduce the charging current of the electrochemical device if the lithium analysis degree is greater than the first lithium analysis degree threshold and not greater than the second lithium analysis degree threshold, Wherein, the second lithium analysis degree threshold is greater than the first lithium analysis degree threshold; if the lithium analysis degree is greater than the second lithium analysis degree threshold and not greater than the third lithium analysis degree threshold, reduce the lithium The charging current and/or discharging current of the chemical device, and reduce the allowable upper limit of the charging voltage of the electrochemical device, wherein, the third lithium analysis degree threshold is greater than the second lithium analysis degree threshold; if the lithium analysis degree If it is greater than the third lithium-analysis degree threshold, the use of the electrochemical device is limited.
  • the charging control device 102 is specifically configured to: reduce the charging current of the electrochemical device at a first rate.
  • the charging control device 102 is specifically configured to: reduce the charging current of the electrochemical device at a second rate, and reduce the allowable upper limit of the charging voltage of the electrochemical device at a third rate, and/or Or, reduce the discharge current of the electrochemical device at a fourth rate, and reduce the allowable upper limit of the charging voltage of the electrochemical device at a third rate.
  • the charging control device 102 is specifically configured to: increase the charging current and/or Discharge current.
  • the charging control device 102 is specifically configured to: increase the charging current and/or discharging current of the electrochemical device at a fifth ratio.
  • the charging control device is further configured to: respond to the charging current exceeding the first current threshold and/or the charging current of the electrochemical device after increasing the charging current and/or discharging current of the electrochemical device at a fifth rate
  • the discharge current exceeds a second current threshold, the charge current is limited to the first current threshold and/or the discharge current is limited to the second current threshold.
  • the first current threshold is 110% of the charging current when the lithium analysis degree of the electrochemical device is determined for the first time
  • the second current threshold is 110% of the charging current when the lithium analysis degree of the electrochemical device is determined for the first time. 110% of the discharge current at the lithium level.
  • the value range of the first ratio includes [3%, 7%].
  • the value range of the second ratio includes [3%, 7%]
  • the value range of the third ratio includes [0.5%, 2%]
  • the value range of the fourth ratio The value range includes [3%, 7%].
  • the value range of the fifth ratio includes [0.5%, 2%].
  • the determining device 101 is specifically used for:
  • the electrochemical device In response to when the SOC of the electrochemical device reaches the second threshold, the electrochemical device is charged with a constant current and left to stand, and the second data of the electrochemical device is obtained during the standstill, according to the second The data determines a second lithium-extraction degree of the electrochemical device, and the first threshold is smaller than the second threshold;
  • the lithium separation degree of the electrochemical device is determined.
  • the intermittent charging includes multiple charging periods and multiple intermittent periods
  • the first data includes the SOC and internal resistance of the electrochemical device during the intermittent periods
  • the determining device 101 Specifically used for: obtaining the first terminal voltage of the electrochemical device at the start time point of the intermittent period and the second terminal voltage at the end time point of the intermittent period; determining the first terminal voltage and the second terminal voltage The voltage difference; based on the voltage difference and the charging current of the electrochemical device during the charging period, determine the internal resistance; obtain the SOC during the intermittent period; based on the SOC and the internal resistance, obtain the first A curve, the first curve represents the change of the internal resistance with the SOC; based on the first curve, determine the first degree of lithium extraction.
  • the determining means 101 is specifically configured to: differentiate the first curve to obtain a first differential curve; determine whether the first differential curve has a maximum value and a minimum value; if the Both the maximum value and the minimum value exist, and the SOC corresponding to the maximum value is determined to be the lithium analysis SOC; based on the lithium analysis SOC, the first lithium analysis degree is determined; or, the first curve is carried out Differentiate to obtain a first differential curve; differentiate the first differential curve to obtain a second differential curve; if the second differential curve has a first zero-crossing point and a second zero-crossing point, and the second differential curve is at The left side of the first zero-crossing point is positive, the right side is negative, the left side of the second zero-crossing point is negative, and the right side is positive, and the SOC corresponding to the first zero-crossing point of the second differential curve is determined to be the lithium analysis SOC ; Based on the lithium analysis SOC, determine the first lithium analysis degree.
  • the determining device 101 is specifically configured to: acquire a first critical lithium-analysis SOC and a second critical lithium-analysis SOC, wherein the first critical lithium-analysis SOC is the first predetermined level of lithium-analysis and The SOC that has not reached the boundary point between the first predetermined level, the second critical lithium-analysis SOC is the SOC that has reached the boundary point between the second predetermined level and the second predetermined level, the second predetermined The degree is greater than the first predetermined degree; the first lithium-analysis degree is calculated by the formula (SOC i -SOC 0 )/(SOC H -SOC 0 ), wherein SOC 0 is the first critical lithium-analysis SOC, and SOC H is The second critical SOC, SOC i is the SOC for lithium separation.
  • the determining device 101 is specifically configured to: obtain a second curve based on the terminal voltage, the second curve represents the change of the terminal voltage with time; based on the second curve, determine The lithium analysis integral value corresponding to the second curve; based on the lithium analysis integral value, the second lithium analysis degree is determined.
  • the determining means 101 is specifically configured to: differentiate the second curve to obtain a third differential curve; determine whether the third differential curve has a maximum value and a minimum value; if the Both the maximum value and the minimum value exist, and the integral between the maximum value and the minimum value on the third differential curve is determined to be the integral value of lithium analysis; or, for the first Differentiate the two curves to obtain a third differential curve; differentiate the third differential curve to obtain a fourth differential curve; if the fourth differential curve has a third zero-crossing point and a fourth zero-crossing point, and the fourth The differential curve is positive on the left side of the third zero-crossing point, negative on the right side, negative on the left side of the fourth zero-crossing point, and positive on the right side.
  • the double integral between zero points is the integral value of lithium analysis.
  • the determining device 101 is specifically configured to: acquire a first critical lithium-analysis integral value and a second critical lithium-analysis integral value, wherein, the first critical lithium-analysis integral value is when the lithium-analysis reaches the third The lithium analysis integral value of the cutoff point between the predetermined level and the third predetermined level, the second critical lithium analysis integral value is the cutoff point between the lithium analysis reaching the fourth predetermined level and not reaching the fourth predetermined level
  • the integrated value of lithium analysis, the fourth predetermined degree is greater than the third predetermined degree; the second lithium analysis degree is calculated with the formula (IG i -IG 0 )/(IG H -IG 0 ), wherein, IG 0 is The first critical lithium analysis integral value, IG H is the second critical lithium analysis integral value, IG i is the lithium analysis integral value.
  • the determining device 101 is specifically configured to: determine the sum of the first lithium analysis degree and the second lithium analysis degree as the lithium analysis degree; or, determine the first lithium analysis degree
  • the average of lithium degree and the second degree of lithium analysis is used as the degree of lithium analysis; or, the weighted average of the first degree of lithium analysis and the second degree of lithium analysis is determined as the degree of lithium analysis .
  • the determining device 101 is specifically configured to: charge the electrochemical device with a constant current to the cut-off voltage of the electrochemical device, and then let it stand still, and obtain the electrochemical device when standing still. the second data; determine the degree of lithium separation of the electrochemical device according to the second data.
  • the determining device 101 is specifically configured to: obtain a second curve based on the terminal voltage, the second curve represents the change of the terminal voltage with time; based on the second curve, determine The degree of lithium analysis.
  • the determining device 101 is specifically configured to: determine the lithium analysis integral value corresponding to the second curve based on the second curve; determine the lithium analysis degree based on the lithium analysis integral value .
  • the determining means 101 is specifically configured to: differentiate the second curve to obtain a third differential curve; determine whether the third differential curve has a maximum value and a minimum value; if the Both the maximum value and the minimum value exist, and the integral between the maximum value and the minimum value on the third differential curve is determined to be the integral value of lithium analysis; or, for the first Differentiate the two curves to obtain a third differential curve; differentiate the third differential curve to obtain a fourth differential curve; if the fourth differential curve has a third zero-crossing point and a fourth zero-crossing point, and the fourth The differential curve is positive on the left side of the third zero-crossing point, negative on the right side, negative on the left side of the fourth zero-crossing point, and positive on the right side.
  • the double integral between zero points is the integral value of lithium analysis.
  • the determining device 101 is specifically configured to: acquire a first critical lithium-analysis integral value and a second critical lithium-analysis integral value, wherein, the first critical lithium-analysis integral value is when the lithium-analysis reaches the third The lithium analysis integral value of the cutoff point between the predetermined level and the third predetermined level, the second critical lithium analysis integral value is the cutoff point between the lithium analysis reaching the fourth predetermined level and not reaching the fourth predetermined level
  • the integral value of lithium analysis, the fourth predetermined degree is greater than the third predetermined degree; the lithium analysis degree is calculated with the formula (IG i2 -IG 0 )/(IG H -IG 0 ), wherein IG 0 is the first Critical lithium analysis integral value, IG H is the second critical lithium analysis integral value, IG i2 is said lithium analysis integral value.
  • the electronic device 1000 in the embodiments of the present disclosure can be used to implement the corresponding electrochemical device management methods in the foregoing method embodiments, and has the beneficial effects of the corresponding method embodiments, which will not be repeated here.
  • the function implementation of each device in the electronic device 1000 in the embodiment of the present disclosure reference may be made to the description of the corresponding part in the foregoing method embodiment, and details are not repeated here.
  • the charging control device 102 can respond to the lithium analysis degree of the electrochemical device being greater than the first lithium analysis degree threshold, limit the battery The charging of the electrochemical device, so that the electronic equipment can reasonably manage the electrochemical device, effectively reduce the impact of lithium analysis on the safety and life of the electrochemical device, and improve the performance of the electrochemical device.
  • the embodiments of the present disclosure provide a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, any of the foregoing A method for electrochemical device management.
  • the embodiments of the present disclosure provide a charging device.
  • the charging device 200 includes a processor 201 and a machine-readable storage medium 202. It includes a charging circuit module 203 , an interface 204 , a power interface 205 and a rectifying circuit 206 .
  • the charging circuit module 203 is used for receiving the instruction sent by the processor 201, and charging the lithium-ion battery 2000 (ie, an electrochemical device); the charging circuit module 203 can also obtain relevant parameters of the lithium-ion battery 2000, and send it to The processor 201; the interface 204 is used to electrically connect the lithium-ion battery 2000 to connect the lithium-ion battery 2000 to the charging device 200; the power interface 205 is used to connect to an external power supply; the rectifier circuit 206 is used to rectify the input current;
  • the machine-readable storage medium 202 stores machine-executable instructions that can be executed by the processor. When the processor 201 executes the machine-executable instructions, the steps of the electrochemical device management method described in any of the above embodiments are implemented.
  • the embodiments of the present disclosure also provide a battery system, as shown in FIG. 7 , the battery system 300 includes a second processor 301 and a second machine-readable storage medium 302, the The battery system 300 may further include a charging circuit module 303 , a lithium-ion battery 304 (ie, an electrochemical device) and a second interface 305 .
  • the charging circuit module 303 is used for receiving the instruction sent by the second processor 301, and charging the electrochemical device; to the second processor 301.
  • the second interface 305 is used to interface with the external charger 400; the external charger 400 is used to provide power; the second machine-readable storage medium 302 stores machine-executable instructions that can be executed by the processor, and the second processor 301 When the machine-executable instructions are executed, the steps of the electrochemical device management method described in any one of the above embodiments are realized.
  • the external charger 400 may include a first processor 401, a first machine-readable storage medium 402, a first interface 403 and a corresponding rectification circuit.
  • the external charger may be a commercially available charger. Be specific.
  • the embodiments of the present disclosure further provide an electronic device, which includes the above-mentioned battery system.
  • the machine-readable storage medium may include a random access memory (Random Access Memory, RAM for short), and may also include a non-volatile memory (non-volatile memory), such as at least one magnetic disk memory.
  • the memory may also be at least one storage device located far away from the aforementioned processor.
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as CPU), a network processor (Network Processor, referred to as NP), etc.; it can also be a digital signal processor (Digital Signal Processing, referred to as DSP) , Application Specific Integrated Circuit (ASIC for short), Field Programmable Gate Array (Field-Programmable Gate Array, FPGA for short) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU Central Processing Unit
  • NP Network Processor
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • This experimental example 1.1 adopts the following experimental process:
  • Process 1 is: measure the initial SOC of the Li-ion battery. If the initial SOC is less than 30%, pulse charging is carried out to the lithium-ion battery, wherein the charging duration in the pulse cycle is 1 minute, and then the standing time is 10 seconds, and the charging current during charging is 5A. Obtain the SOC and the internal resistance of the lithium-ion battery during pulse charging, and calculate the first degree of lithium analysis through the above-mentioned method embodiment according to the change of the internal resistance with the SOC; when the SOC of the lithium-ion battery reaches more than 80%, charge with a current of 5A Charge the lithium-ion battery with a constant current. When the cut-off voltage is reached, stop charging, and then let it stand still.
  • Scheme 1 is: in this scheme 1, the threshold value of the first degree of lithium analysis is 50%, the threshold value of the second degree of lithium analysis is 80%, and the threshold value of the third degree of lithium analysis is 100%.
  • the charging current of the lithium ion battery i.e. the electrochemical device
  • the charging current of this lithium-ion battery can not exceed 110% of the charging current when determining the degree of lithium analysis of the electrochemical device for the first time; Not greater than the second lithium analysis degree threshold (80%), reduce the charging current of the lithium-ion battery with the first ratio of 5%; if it is determined according to the above-mentioned process 1 that the lithium extraction degree is greater than the second lithium analysis degree threshold (80%) %) and not greater than the third lithium analysis degree threshold (100%), reduce the charging current of the lithium-ion battery with the second ratio of 5%, and reduce the allowable upper limit of the charging voltage with the third ratio of 1%; if according to the above Process 1 determines that the degree of lithium precipitation is above the third threshold (100%) of the degree of lithium precipitation
  • Example 1.2 Except for the following differences between Experimental Example 1.2 and Experimental Example 1.1, the rest of the process and parameters are the same as in Example 1.1:
  • Example 1.3 Except for the following differences between Experimental Example 1.3 and Experimental Example 1.1, the rest of the process and parameters are the same as in Example 1.1:
  • Example 1.4 Except for the following differences between Experimental Example 1.4 and Experimental Example 1.1, the rest of the process and parameters are the same as in Example 1.1:
  • Example 1.5 Except for the following differences between Experimental Example 1.5 and Experimental Example 1.1, the rest of the process and parameters are the same as in Example 1.1:
  • Example 1.1 Except for the following differences between Comparative Example 1.1 and Experimental Example 1.1, the remaining processes and parameters are the same as in Example 1.1:
  • the final lithium-ion battery integrity rates of experimental examples 1.1-1.5 are all more than 90%, but the integrity rates of comparative examples 1.1-1.2 are all lower than 85%, indicating that if the lithium analysis degree of the electrochemical device is determined to be less than the first lithium analysis degree threshold (50%), when the fifth ratio of increasing the charging current of the lithium-ion battery is in [0.5%, 2%], the good rate of the lithium-ion battery can be greatly improved than when it is not in this range.
  • the integrity rate of Experimental Example 1.1-1.5 is more than 90%, the integrity rate of Experimental Example 1.1 is more than 99%, and the integrity rate of Experimental Example 1.2-1.5 is lower than 95%.
  • the degree of lithium analysis is less than the first threshold (50%) of the degree of lithium analysis, and the charging current of the lithium-ion battery is increased by 1% with the fifth ratio, which is better than other numerical values in [0.5%, 2%] for the first ratio Improve the integrity rate of lithium-ion batteries.
  • Example 2.1 Except for the following differences between Experimental Example 2.1 and Experimental Example 1.1, the rest of the process and parameters are the same as in Example 1.1:
  • Example 2.2 Except for the following differences between Experimental Example 2.2 and Experimental Example 1.1, the rest of the process and parameters are the same as in Example 1.1:
  • Example 2.3 Except for the following differences between Experimental Example 2.3 and Experimental Example 1.1, the rest of the process and parameters are the same as in Example 1.1:
  • Example 2.4 Except for the following differences between Experimental Example 2.4 and Experimental Example 1.1, the rest of the process and parameters are the same as in Example 1.1:
  • the final lithium-ion battery integrity rates of Experimental Example 1.1 and Experimental Examples 2.1-2.4 are all over 90%, but the integrity rates of Comparative Examples 2.1-2.2 are all lower than 85%, indicating that if the degree of lithium precipitation is determined to be greater than the threshold of the first lithium precipitation degree (50%) and not greater than the second lithium-analysis degree threshold (80%), the first ratio of reducing the charging current of the electrochemical device is [3%, 7%] when it is not in this range, it can greatly increase the lithium ion rate. The good rate of the battery.
  • the lithium analysis degree is greater than the first lithium analysis degree threshold value (50%) and not greater than the second lithium analysis degree threshold value (80%), and the first ratio of reducing the charging current of the electrochemical device is 5%, compared with [3%, Other values in 7%] can improve the integrity rate of lithium-ion batteries.
  • Example 3.1 Except for the following differences between Experimental Example 3.1 and Experimental Example 1.1, the rest of the process and parameters are the same as in Example 1.1:
  • Example 3.2 Except for the following differences between Experimental Example 3.2 and Experimental Example 1.1, the rest of the process and parameters are the same as in Example 1.1:
  • Example 3.3 Except for the following differences between Experimental Example 3.3 and Experimental Example 1.1, the rest of the process and parameters are the same as in Example 1.1:
  • Example 3.4 Except for the following differences between Experimental Example 3.4 and Experimental Example 1.1, the rest of the process and parameters are the same as in Example 1.1:
  • the intact rate of the final lithium-ion batteries in Experimental Example 1.1 and Experimental Example 3.1-3.4 is more than 90%, but the intact rate of Comparative Example 3.1-3.2 is lower than 85%, indicating that if the degree of lithium precipitation is determined to be greater than the second degree of lithium precipitation Threshold (80%) and not greater than the third lithium analysis threshold (100%), reduce the value of the second ratio of the charging current of the lithium-ion battery in [3%, 7%], reduce the allowable upper limit of the charging voltage
  • the value of the third ratio is within [0.5%, 2%], which can greatly improve the integrity rate of the lithium-ion battery when the second ratio and the third ratio are not in the corresponding range.
  • the lithium separation degree is greater than the second lithium separation degree threshold (80%) and not greater than the third lithium separation degree threshold (100%), the charging current of the lithium ion battery is reduced by 5% at the second rate, and the third
  • the ratio is 1% to reduce the allowable upper limit of the charging voltage
  • the charging current of the lithium-ion battery is reduced by other values in the second ratio [3%, 7%]
  • the third ratio is [0.5%, 2%]
  • Example 4.0 Except for the following differences between Experimental Example 4.0 and Experimental Example 1.1, the rest of the process and parameters are the same as in Example 1.1:
  • Example 4.1 Except for the following differences between Experimental Example 4.1 and Experimental Example 4.0, the rest of the process and parameters are the same as in Example 4.0:
  • Example 4.2 Except for the following differences between Experimental Example 4.2 and Experimental Example 4.0, the rest of the process and parameters are the same as in Example 4.0:
  • Example 4.3 Except for the following differences between Experimental Example 4.3 and Experimental Example 4.0, the rest of the process and parameters are the same as in Example 4.0:
  • Example 4.4 Except for the following differences between Experimental Example 4.4 and Experimental Example 4.0, the rest of the process and parameters are the same as in Example 4.0:
  • the goodness rate of the final lithium-ion battery of experimental example 4.0-4.4 is all more than 94%, but the goodness rate of comparative example 4.1-4.2 is all lower than 87%, illustrates that if it is determined that the degree of precipitation of lithium is greater than the second threshold of the degree of lithium separation (80% ) and not greater than the third lithium analysis degree threshold (100%), reduce the charging current of the lithium-ion battery with the second ratio of 5%, and reduce the allowable upper limit of the charging voltage of the lithium-ion battery with the third ratio of 1%. , and reduce the discharge current of the lithium-ion battery with the fourth ratio within [3%, 7%], which can greatly improve the integrity of the lithium-ion battery when the fourth ratio is not within [3%, 7%] Rate.
  • the lithium separation degree is greater than the second lithium separation degree threshold (80%) and not greater than the third lithium separation degree threshold (100%), the charging current of the lithium ion battery is reduced by 5% at the second rate, and the third When the ratio is 1% to reduce the allowable upper limit of the charging voltage of the lithium-ion battery, and the fourth ratio is 5% to reduce the discharge current of the lithium-ion battery, which is lower than other values in [3%, 7%] by the fourth ratio.
  • the discharge current of the lithium-ion battery described above can improve the integrity rate of the lithium-ion battery.
  • the integrity rate of the lithium-ion battery can measure to a certain extent the impact of lithium analysis on the safety and life of the lithium-ion battery under the corresponding experimental conditions, and the impact of the lithium-ion battery on the safety and life of the lithium-ion battery.
  • the limit is limited to the lithium analysis degree threshold.
  • the charging of the electrochemical device can be carried out reasonably, so that the electrochemical device can be managed reasonably, the impact of lithium analysis on the safety and life of the electrochemical device can be effectively reduced, and the performance of the electrochemical device can be improved.
  • the term “comprise” and its variations are open-ended, ie “including but not limited to”.
  • the term “based on” is “based at least in part on”.
  • the term “one embodiment” means “at least one embodiment”; the term “another embodiment” means “at least one further embodiment”; the term “some embodiments” means “at least some embodiments.”
  • Relevant definitions of other terms will be given in the description below. It should be noted that concepts such as “first” and “second” mentioned in this disclosure are only used to distinguish different devices, modules or units, and are not used to limit the sequence of functions performed by these devices, modules or units or interdependence.
  • steps of the methods of the present disclosure are depicted in the drawings in a particular order, there is no requirement or implication that the steps must be performed in that particular order, or that all illustrated steps must be performed to achieve the desired result. Additionally or alternatively, certain steps may be omitted, multiple steps may be combined into one step for execution, and/or one step may be decomposed into multiple steps for execution, etc.
  • the technical solutions according to the embodiments of the present disclosure can be embodied in the form of software products, and the software products can be stored in a non-volatile storage medium (which can be CD-ROM, U disk, mobile hard disk, etc.) or on the network , including several instructions to make a computing device (which may be a personal computer, a server, a mobile terminal, or a network device, etc.) execute the method according to the embodiments of the present disclosure.
  • a non-volatile storage medium which can be CD-ROM, U disk, mobile hard disk, etc.
  • a computing device which may be a personal computer, a server, a mobile terminal, or a network device, etc.

Abstract

本公开实施例提供了一种电化学装置管理方法、充电装置、电池系统及电子设备,该电化学装置管理方法包括:确定电化学装置的析锂程度;响应于电化学装置的析锂程度大于第一析锂程度阈值,限制对电化学装置的充电。该电化学装置管理方法能够合理地对电化学装置进行管理,有效地降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。

Description

电化学装置管理方法、充电装置、电池系统及电子设备 技术领域
本公开实施例涉及电化学技术领域,尤其涉及一种电化学装置管理方法、充电装置、电池系统及电子设备。
背景技术
锂离子电池具有比能量密度大、循环寿命长、标称电压高、自放电率低、体积小、重量轻等许多优点,在新能源领域具有广泛的应用。
近年随着平板电脑、手机、电动交通工具、储能设备的高速发展,并且由于新能源行业的不断发展,锂离子电池变得越来越重要,市场对锂离子电池的需求也越来越多。但锂离子电池在使用过程中由于副反应、撞击等原因,经常发生析锂,容易造成电池短路产生安全风险,对电池的安全性造成影响。
因此,如何降低析锂对锂离子电池的安全和寿命的影响,以提高锂离子电池的效能,就成了一个亟待解决的问题。
发明内容
有鉴于此,本公开实施例提供一种电化学装置管理方法、充电装置、电池系统及电子设备,其能够降低析锂对锂离子电池的安全和寿命的影响,以提高锂电池的效能。
根据本公开实施例的一方面,提供了一种电化学装置管理方法,包括:
确定电化学装置的析锂程度;
响应于所述电化学装置的析锂程度大于第一析锂程度阈值,限制对所述电化学装置的充电。
本公开实施例中的电化学装置管理方法,由于能够确定电化学装置的析锂程度,之后响应于电化学装置的析锂程度大于第一析锂程度阈值,限制对电化学装置的充电,从而能够合理地对电化学装置进行管理,有效地降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
在其中一个实施例中,所述限制对所述电化学装置的充电,包括:如果所述析锂程度大于第一析锂程度阈值且不大于第二析锂程度阈值,降低所述电化学装置的充电电流,其中,所述第二析锂程度阈值大于所述第一析锂程度阈值;如果所述析锂程度大于所述第二析锂程度阈值,且不大于第三析锂程度阈值,降低所述电化学装置的充电电流和/或放电电流,并降低所述电化学装置的充电电压允许上限,其中,所述第三析锂程度阈值大于所述第二析锂程度阈值;如果所述析锂程度大于所述第三析锂程度阈值,限制所述电化学装置使用。本公开实施例中,通过以上方式,更具针对性在确定电化学装置的析锂程度大于第一析锂程度阈值时限制电化学装置的充电,从而能够更加合理地对电化学装置进行管理,更有效地降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
在其中一个实施例中,所述降低所述电化学装置的充电电流,包括:以第一比率降低所述电化学装置的充电电流。本公开实施例中以第一比率降低电化学装置的充电电流,便于在电化学装置的析锂程度大于第一析锂程度阈值且不大于第二析锂程度阈值时对电化学装置进行管理,以降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
在其中一个实施例中,所述降低所述电化学装置的充电电流和/或放电电流,并降低所述电化学装置的充电电压允许上限,包括:以第二比率降低所述电化学装置的充电电流,并以第三比率降低所述电化学装置的充电电压允许上限,和/或,以第四比率降低所述电化学装置的放电电流,并以第三比率降低所述电化学装置的充电电压允许上限。本公开实施例中通过这样的方式,便于在析锂程度大于第二析锂程度阈值且不大于第三析锂程度阈值时对电化学装置进行管理,以降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
在其中一个实施例中,所述电化学装置管理方法还包括:响应于所述电化学装置的析锂程度小于所述第一析锂程度阈值,提高所述电化学装置的充电电流和/或放电电流。本公开实施例中,通过这种方式更合理地在电化学装置的析锂程度小于第一析锂程度阈值时对电化学装置进行管理,进一步提高电化学装置的效能。
在其中一个实施例中,所述提高所述电化学装置的充电电流和/或放电电流,包括:以第五比率提高所述电化学装置的充电电流和/或放电电流。本公开实施例中在电化学装置的析锂程度小于第一析锂程度阈值时以第五比率提高电化学装置的充电电流和/或放电电流,更合理地对电化学装置进行管理,从而便于更有效地提高电化学装置的效能。
在其中一个实施例中,在以第五比率提高所述电化学装置的充电电流和/或放电电流之后,所述电化学装置管理方法还包括:响应于以第五比率提高所述电化学装置的充电电流和/或放电电流后,所述充电电流超过第一电流阈值和/或放电电流超过第二电流阈值,将所述充电电流限制为所述第一电流阈值和/或将放电电流限制为所述第二电流阈值。本公开实施例中通过设置提高充电电流和/或放电电流的上限,可以避免电化学装置充电电流/放电电流提高时出现电化学装置被较大的电流所影响,从而保证电化学装置的安全和寿命稳定。
在其中一个实施例中,所述第一电流阈值为首次确定电化学装置的析锂程度时的充电电流的110%,和/或,所述第二电流阈值为首次确定电化学装置的析锂程度时的放电电流的110%。本公开实施例中通过将通过这样的第一电流阈值和/或第二电流阈值的取值,更有利于避免电化学装置充电电流/放电电流提高时出现电化学装置被较大的电流所影响,从而保证电化学装置的安全和寿命稳定。
在其中一个实施例中,所述第一比率的取值范围包括【3%,7%】。通过从这样的第一比率的取值范围中对第一比率进行取值,便于在电化学装置的析锂程度大于第一析锂程度阈值且不大于第二析锂程度阈值时对电化学装置进行管理,以降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
在其中一个实施例中,所述第二比率的取值范围包括【3%,7%】,所述第三比率的取值范围包括【0.5%,2%】,所述第四比率的取值范围包括【3%,7%】。通过从这样的第二比率、第三比率、第四比率的取值范围中对第二比率、第三比率、第四比率进行取值,便于在析锂程度大于第二析锂程度阈值且不大于第三析锂程度阈值时对电化学装置进行管理,以降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
在其中一个实施例中,所述第五比率的取值范围包括【0.5%,2%】。通过从这样的第五比率的取值范围中对第五比率进行取值,便于在电化学装置的析锂程度小于第一析锂程度阈值时对电化学装置进行管理,以降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
在其中一个实施例中,所述确定电化学装置的析锂程度,包括:获取所述电化学装置的充电初始SOC;
响应于所述充电初始SOC小于第一阈值,对所述电化学装置进行间歇式充电,在所述间歇式充电时获取所述电化学装置的第一数据,根据所述第一数据确定所述电化学装置的第一析锂程度;响应于所述电化学装置的SOC到达第二阈值时,对所述电化学装置进行恒流充电,并静置,在静置时获取所述电化学装置的第二数据,根据所述第二数据确定所述电化学装置的第二析锂程度,所述第一阈值小于所述第二阈值;根据所述第一析锂程度和所述第二析锂程度,确定所述电化学装置的析锂程度。
本公开实施例中,在充电初始SOC小于第一阈值时对电化学装置进行间歇式充电,并确定第一析锂程度,SOC到达第二阈值时对电化学装置进行恒流充电,并静置,以确定第二析锂程度,并根据第一析锂程度以及第二析锂程度,确定出电化学装置的析锂程度,从而实现了对电化学装置进行多种析锂程度检测,而不局限于仅在一种充电方式下对电化学装置进行析锂检测,避免了单种充电方式下对电化学装置进行析锂检测时可能出现的误差,从而能够有效提高确定电化学装置的析锂结果的准确性,提高确定电化学装置的析锂程度的准确性,便于后续根据析锂程度对电化学装置进行管理,以降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能,也便于及时对电化学装置进行处理以保证电化学装置的安全使用。
在其中一个实施例中,所述间歇式充电包括多个充电期间以及多个间断期间,所述第一数据包括在所述间断期间所述电化学装置的SOC和内阻,所述根据所述第一数据确定所述电化学装置的第一析锂程度,包括:获取所述电化学装置在该间断期间开始时间点的第一端电压和在该间断期间结束时间点的第二端电压;确定所述第一端电压和所述第二端电压的电压差;基于所述电压差和所述充电期间所述电化学装置的充电电流,确定所述内阻;获取该间断期间的SOC;基于所述SOC和所述内阻,得到所述第一曲线,所述第一曲线表示所述内阻随所述SOC的变化;基于所述第一曲线,确定所述第一析锂程度。本公开实施例中通过这种方式能够更准确地确定第一析锂程度,从而方便在后续更准确地确定电化学装置的析锂程度,以方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述基于所述第一曲线,确定所述第一析锂程度,包括方式A1和方式A2中的至少一个:
所述方式A1包括:对所述第一曲线进行微分,得到第一微分曲线;确定所述第一微分曲线是否具有极大值和极小值;如果所述极大值和所述极小值都存在,确定所述极大值对应的SOC为析锂SOC;基于所述析锂SOC,确定第一析锂程度;
所述方式A2包括:对所述第一曲线进行微分,得到第一微分曲线;对所述第一微分曲线进行微分,得到第二微分曲线;如果所述第二微分曲线存在第一过零点和第二过零点,且所述第二微分曲线在第一过零点的左侧为正,右侧为负,在第二过零点的左侧为负,右侧为正,确定所述第二微分曲线在第一过零点对应的SOC为析锂SOC;基于所述析锂SOC,确定第一析锂程度。
本公开实施例中提供多种方式基于第一曲线确定第一析锂程度,可以便于之后更准确的确定析离程度,从而方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述基于所述析锂SOC,确定所述第一析锂程度,包括:获取第一临界析锂SOC和第二临界析锂SOC,其中,所述第一临界析锂SOC是析锂到达第一预定程度和未到达第一预定程度之间的分界点的SOC,所述第二临界析锂SOC是析锂到达第二预定程度和未到达第二预定程度之间的分界点的SOC,所述第二预定程度大于所述第一预定程度;以公式(SOC i-SOC 0)/(SOC H-SOC 0)计算所述第一析锂程度,其中,SOC 0是第一临界析锂SOC,SOC H是第二临界SOC,SOC i是所述析锂SOC。本公开实施例中通过上述方式基于析锂SOC确定第一析锂程度,更便于进行计算,以便于之后根据第一析锂程度确定电化学装置的析锂程度,从而方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述第二数据包括所述静置期间所述电化学装置的端电压,所述根据所述第二数据确定所述电化学装置的第二析锂程度,包括:基于所述端电压,得到第二曲线,所述第二曲线表示所述端电压随时间的变化;基于所述第二曲线,确定所述第二曲线对应的析锂积分值;基于所述析锂积分值,确定所述第二析锂程度。本公开实施例中通过这种方式能够更准确地确定第二析锂程度,从而方便在后续更准确地确定电化学装置的析锂程度,以方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述基于所述第二曲线,确定所述第二曲线对应的析锂积分值,包括方式B1和方式B2中的至少一个,其中,
所述方式B1包括:对所述第二曲线进行微分,得到第三微分曲线;确定所述第三微分曲线是否具有极大值和极小值;如果所述极大值和所述极小值都存在,确定所述第三微分曲线上所述极大值和所述极小值之间的积分为所述析锂积分值;
所述方式B2包括:对所述第二曲线进行微分,得到第三微分曲线;对所述第三微分曲线进行微分,得到第四微分曲线;如果所述第四微分曲线存在第三过零点和第四过零点,且所述第四微分曲线在第三过零点的左侧为正,右侧为 负,在第四过零点的左侧为负,右侧为正,确定所述第四微分曲线在第三过零点和第四过零点之间的双重积分为所述析锂积分值。
本公开实施例中提供多种方式基于第二曲线确定析锂积分值,可以便于之后更准确的确定析离程度,从而方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述基于所述析锂积分值,确定所述第二析锂程度,包括:获取第一临界析锂积分值和第二临界析锂积分值,其中,所述第一临界析锂积分值是析锂到达第三预定程度和未到达第三预定程度之间的分界点的析锂积分值,所述第二临界析锂积分值是析锂到达第四预定程度和未到达第四预定程度之间的分界点的析锂积分值,所述第四预定程度大于所述第三预定程度;以公式(IG i-IG 0)/(IG H-IG 0)计算所述第二析锂程度,其中,IG 0是第一临界析锂积分值,IG H是第二临界析锂积分值,IG i是所述析锂积分值。本公开实施例中通过上述方式基于析锂积分值确定第二析锂程度,更便于进行计算,以便于之后根据第一析锂程度和第二析锂程度确定电化学装置的析锂程度,从而方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述根据所述第一析锂程度和所述第二析锂程度,确定所述电化学装置的析锂程度,包括:确定所述第一析锂程度和所述第二析锂程度的和,作为所述析锂程度;或者,确定所述第一析锂程度和所述第二析锂程度的平均数,作为所述析锂程度;或者,确定所述第一析锂程度和所述第二析锂程度的加权平均数,作为所述析锂程度。本公开实施例中通过多种实现方式根据第一析锂程度和第二析锂程度确定电化学装置的析锂程度,使得析锂程度的确定更具准确性和可靠性,以便于本公开实施例后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述确定电化学装置的析锂程度,包括:对所述电化学装置进行恒流充电至所述电化学装置的截止电压,并静置,在静置时获取所述电化学装置的第二数据;根据所述第二数据确定所述电化学装置的析锂程度。
本公开实施例中通过对电化学装置进行恒流充电至电化学装置的截止电压,并静置,在静置时获取电化学装置的第二数据,之后根据第二数据确定电化学装置的析锂程度,可以保证确定电化学装置的析锂结果的准确性,提高确定电化学装置的析锂程度的准确性,便于后续根据析锂程度对电化学装置进行管理,以降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能,也便于及时对电化学装置进行处理以保证电化学装置的安全使用。
在其中一个实施例中,所述第二数据包括所述静置期间所述电化学装置的端电压,所述根据第二数据确定所述电化学装置的析锂程度,包括:基于所述端电压,得到第二曲线,所述第二曲线表示所述端电压随时间的变化;基于所述第二曲线,确定所述析锂程度。本公开实施例中通过这种方式能更准确地确定电化学装置的析锂程度,以方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述基于所述第二曲线,确定所述析锂程度,包括:基于所述第二曲线,确定所述第二曲线对应的析锂积分值;基于所述析锂积分值,确定所述析锂程度。本公开实施例中通过这种方式能够更准确地确定电化学装置的析锂程度,以方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述基于所述第二曲线,确定所述第二曲线对应的析锂积分值,包括方式B1和方式B2中的至少一个,其中,
所述方式B1包括:对所述第二曲线进行微分,得到第三微分曲线;确定所述第三微分曲线是否具有极大值和极小值;如果所述极大值和所述极小值都存在,确定所述第三微分曲线上所述极大值和所述极小值之间的积分为所述析锂积分值;
所述方式B2包括:对所述第二曲线进行微分,得到第三微分曲线;对所述第三微分曲线进行微分,得到第四微分曲线;如果所述第四微分曲线存在第三过零点和第四过零点,且所述第四微分曲线在第三过零点的左侧为正,右侧为负,在第四过零点的左侧为负,右侧为正,确定所述第四微分曲线在第三过零点和第四过零点之间的双重积分为所述析锂积分值。
本公开实施例中提供多种方式基于第二曲线确定析锂积分值,可以便于之后更准确的确定析离程度,从而方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述基于所述析锂积分值,确定所述析锂程度,包括:获取第一临界析锂积分值和第二临界析锂积分值,其中,所述第一临界析锂积分值是析锂到达第三预定程度和未到达第三预定程度之间的分界点的析锂积分值,所述第二临界析锂积分值是析锂到达第四预定程度和未到达第四预定程度之间的分界点的析锂积分值,所述第四预定程度大于所述第三预定程度;以公式(IG i2-IG 0)/(IG H-IG 0)计算所述析锂程度,其中,IG 0是第一临界析锂积分值,IG H是第二临界析锂积分值,IG i2是所述析锂积分值。本公开实施例中通过上述方式基于析锂积分值确定析锂程度,更便于进行计算,从而方便后续根据析锂程度对电化学装置进行管理。
根据本公开实施例的另一方面,提供了一种充电装置,其包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器执行所述机器可执行指令时,实现前述的电化学装置管理方法。
根据本公开实施例的再一方面,提供了一种电池系统,其包括处理器、机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器执行所述机器可执行指令时,实现前述的电化学装置管理方法。
根据本公开实施例的再一方面,提供了一种电子设备,其包括:确定装置和充电控制装置,其中,
所述确定装置用于确定电化学装置的析锂程度;
所述充电控制装置用于响应于所述电化学装置的析锂程度大于第一析锂程度阈值,限制对所述电化学装置的充电。
本公开实施例中的电子设备,由于其确定装置能够确定电化学装置的析锂程度,然后充电控制装置能够响应于电化学装置的析锂程度大于第一析锂程度阈值,限制对电化学装置的充电,从而该电子设备能够合理地对电化学装置进行管理,有效地降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
在其中一个实施例中,所述充电控制装置具体用于:如果所述析锂程度大于第一析锂程度阈值且不大于第二析锂程度阈值,降低所述电化学装置的充电电流,其中,所述第二析锂程度阈值大于所述第一析锂程度阈值;如果所述析锂程度大于所述第二析锂程度阈值,且不大于第三析锂程度阈值,降低所述电化学装置的充电电流和/或放电电流,并降低所述电化学装置的充电电压允许上限,其中,所述第三析锂程度阈值大于所述第二析锂程度阈值;如果所述析锂程度大于所述第三析锂程度阈值,限制所述电化学装置使用。本公开实施例中,通过以上方式,更具针对性在确定电化学装置的析锂程度大于第一析锂程度阈值时限制电化学装置的充电,从而能够更加合理地对电化学装置进行管理,更有效地降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
在其中一个实施例中,所述充电控制装置具体用于:以第一比率降低所述电化学装置的充电电流。本公开实施例中以第一比率降低电化学装置的充电电流,便于在电化学装置的析锂程度大于第一析锂程度阈值且不大于第二析锂程度阈值时对电化学装置进行管理,以降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
在其中一个实施例中,所述充电控制装置具体用于:以第二比率降低所述电化学装置的充电电流,并以第三比率降低所述电化学装置的充电电压允许上限,和/或,以第四比率降低所述电化学装置的放电电流,并以第三比率降低所述电化学装置的充电电压允许上限。本公开实施例中通过这样的方式,便于在析锂程度大于第二析锂程度阈值且不大于第三析锂程度阈值时对电化学装置进行管理,以降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
在其中一个实施例中,所述充电控制装置具体用于:响应于所述电化学装置的析锂程度小于所述第一析锂程度阈值,提高所述电化学装置的充电电流和/或放电电流。本公开实施例中,通过这种方式更合理地在电化学装置的析锂程度小于第一析锂程度阈值时对电化学装置进行管理,进一步提高电化学装置的效能。
在其中一个实施例中,所述充电控制装置具体用于:以第五比率提高所述电化学装置的充电电流和/或放电电流。本公开实施例中在电化学装置的析锂程度小于第一析锂程度阈值时以第五比率提高电化学装置的充电电流和/或放电电流,更合理地对电化学装置进行管理,从而便于更有效地提高电化学装置的效能。
在其中一个实施例中,所述充电控制装置还用于:响应于以第五比率提高所述电化学装置的充电电流和/或放电电流后,所述充电电流超过第一电流阈值和/或放电电流超过第二电流阈值,将所述充电电流限制为所述第一电流阈值和/或将放电电流限制为所述第二电流阈值。本公开实施例中通过设置提高充电电流和/或放电电流的上限,可以避免电化学装置充电电流/放电电流提高时出现电化学装置被较大的电流所影响,从而保证电化学装置的安全和寿命稳定。
在其中一个实施例中,所述第一电流阈值为首次确定电化学装置的析锂程度时的充电电流的110%,和/或,所述第二电流阈值为首次确定电化学装置的析锂程度时的放电电流的110%。本公开实施例中通过将通过这样的第一电流阈值和/或第二电流阈值的取值,更有利于避免电化学装置充电电流/放电电流提高时出现电化学装置被较大的电流所影响,从而保证电化学装置的安全和寿命稳定。
在其中一个实施例中,所述第一比率的取值范围包括【3%,7%】。通过从这样的第一比率的取值范围中对第一比率进行取值,便于在电化学装置的析锂程度大于第一析锂程度阈值且不大于第二析锂程度阈值时对电化学装置进行管理,以降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
在其中一个实施例中,所述第二比率的取值范围包括【3%,7%】,所述第三比率的取值范围包括【0.5%,2%】,所述第四比率的取值范围包括【3%,7%】。通过从这样的第二比率、第三比率、第四比率的取值范围中对第二比率、第三比率、第四比率进行取值,便于在析锂程度大于第二析锂程度阈值且不大于第三析锂程度阈值时对电化学装置进行管理,以降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
在其中一个实施例中,所述第五比率的取值范围包括【0.5%,2%】。通过从这样的第五比率的取值范围中对第五比率进行取值,便于在电化学装置的析锂程度小于第一析锂程度阈值时对电化学装置进行管理,以降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
在其中一个实施例中,所述确定装置具体用于:获取所述电化学装置的充电初始SOC;响应于所述充电初始SOC小于第一阈值,对所述电化学装置进行间歇式充电,在所述间歇式充电时获取所述电化学装置的第一数据,根据所述第一数据确定所述电化学装置的第一析锂程度;响应于所述电化学装置的SOC到达第二阈值时,对所述电化学装置进行恒流充电,并静置,在静置时获取所述电化学装置的第二数据,根据所述第二数据确定所述电化学装置的第二析锂程度,所述第一阈值小于所述第二阈值;根据所述第一析锂程度和所述第二析锂程度,确定所述电化学装置的析锂程度。
本公开实施例中,确定装置能在充电初始SOC小于第一阈值时对电化学装置进行间歇式充电,并确定第一析锂程度,SOC到达第二阈值时对电化学装置进行恒流充电,并静置,以确定第二析锂程度,并根据第一析锂程度以及第二析锂程度,确定出电化学装置的析锂程度,从而实现了对电化学装置进行多种析锂程度检测,而不局限于仅在一种充电方式下对电化学装置进行析锂检测,避免了单种充电方式下对电化学装置进行析锂检测时可能出现的误差,从而能够有效提高确定电化学装置的析锂结果的准确性,提高确定电化学装置的析锂程度的准确性,便于后续根据析锂程度对电化学装置进行管理,以降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能,也便于及时对电化学装置进行处理以保证电化学装置的安全使用。
在其中一个实施例中,所述间歇式充电包括多个充电期间以及多个间断期间,所述第一数据包括在所述间断期间 所述电化学装置的SOC和内阻,所述确定装置具体用于:获取所述电化学装置在该间断期间开始时间点的第一端电压和在该间断期间结束时间点的第二端电压;确定所述第一端电压和所述第二端电压的电压差;基于所述电压差和所述充电期间所述电化学装置的充电电流,确定所述内阻;获取该间断期间的SOC;基于所述SOC和所述内阻,得到所述第一曲线,所述第一曲线表示所述内阻随所述SOC的变化;基于所述第一曲线,确定所述第一析锂程度。本公开实施例中通过这种方式能够更准确地确定第一析锂程度,从而方便在后续更准确地确定电化学装置的析锂程度,以方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述确定装置具体用于:对所述第一曲线进行微分,得到第一微分曲线;确定所述第一微分曲线是否具有极大值和极小值;如果所述极大值和所述极小值都存在,确定所述极大值对应的SOC为析锂SOC;基于所述析锂SOC,确定第一析锂程度;或者,对所述第一曲线进行微分,得到第一微分曲线;对所述第一微分曲线进行微分,得到第二微分曲线;如果所述第二微分曲线存在第一过零点和第二过零点,且所述第二微分曲线在第一过零点的左侧为正,右侧为负,在第二过零点的左侧为负,右侧为正,确定所述第二微分曲线在第一过零点对应的SOC为析锂SOC;基于所述析锂SOC,确定第一析锂程度。本公开实施例中提供多种方式基于第一曲线确定第一析锂程度,可以便于之后更准确的确定析离程度,从而方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述确定装置具体用于:获取第一临界析锂SOC和第二临界析锂SOC,其中,所述第一临界析锂SOC是析锂到达第一预定程度和未到达第一预定程度之间的分界点的SOC,所述第二临界析锂SOC是析锂到达第二预定程度和未到达第二预定程度之间的分界点的SOC,所述第二预定程度大于所述第一预定程度;以公式(SOC i-SOC 0)/(SOC H-SOC 0)计算所述第一析锂程度,其中,SOC 0是第一临界析锂SOC,SOC H是第二临界SOC,SOC i是所述析锂SOC。本公开实施例中通过上述方式基于析锂SOC确定第一析锂程度,更便于进行计算,以便于之后根据第一析锂程度确定电化学装置的析锂程度,从而方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述确定装置具体用于:基于所述端电压,得到第二曲线,所述第二曲线表示所述端电压随时间的变化;基于所述第二曲线,确定所述第二曲线对应的析锂积分值;基于所述析锂积分值,确定所述第二析锂程度。本公开实施例中通过这种方式能够更准确地确定第二析锂程度,从而方便在后续更准确地确定电化学装置的析锂程度,以方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述确定装置具体用于:对所述第二曲线进行微分,得到第三微分曲线;确定所述第三微分曲线是否具有极大值和极小值;如果所述极大值和所述极小值都存在,确定所述第三微分曲线上所述极大值和所述极小值之间的积分为所述析锂积分值;或者,对所述第二曲线进行微分,得到第三微分曲线;对所述第三微分曲线进行微分,得到第四微分曲线;如果所述第四微分曲线存在第三过零点和第四过零点,且所述第四微分曲线在第三过零点的左侧为正,右侧为负,在第四过零点的左侧为负,右侧为正,确定所述第四微分曲线在第三过零点和第四过零点之间的双重积分为所述析锂积分值。本公开实施例中提供多种方式基于第二曲线确定析锂积分值,可以便于之后更准确的确定析离程度,从而方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述确定装置具体用于:获取第一临界析锂积分值和第二临界析锂积分值,其中,所述第一临界析锂积分值是析锂到达第三预定程度和未到达第三预定程度之间的分界点的析锂积分值,所述第二临界析锂积分值是析锂到达第四预定程度和未到达第四预定程度之间的分界点的析锂积分值,所述第四预定程度大于所述第三预定程度;以公式(IG i-IG 0)/(IG H-IG 0)计算所述第二析锂程度,其中,IG 0是第一临界析锂积分值,IG H是第二临界析锂积分值,IG i是所述析锂积分值。本公开实施例中通过上述方式基于析锂积分值确定第二析锂程度,更便于进行计算,以便于之后根据第一析锂程度和第二析锂程度确定电化学装置的析锂程度,从而方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述确定装置具体用于:确定所述第一析锂程度和所述第二析锂程度的和,作为所述析锂程度;或者,确定所述第一析锂程度和所述第二析锂程度的平均数,作为所述析锂程度;或者,确定所述第一析锂程度和所述第二析锂程度的加权平均数,作为所述析锂程度。本公开实施例中通过多种实现方式根据第一析锂程度和第二析锂程度确定电化学装置的析锂程度,使得析锂程度的确定更具准确性和可靠性,以便于本公开实施例后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述确定装置具体用于:对所述电化学装置进行恒流充电至所述电化学装置的截止电压,并静置,在静置时获取所述电化学装置的第二数据;根据所述第二数据确定所述电化学装置的析锂程度。
本公开实施例中,确定装置通过对电化学装置进行恒流充电至电化学装置的截止电压,并静置,在静置时获取电化学装置的第二数据,之后根据第二数据确定电化学装置的析锂程度,可以保证确定电化学装置的析锂结果的准确性,提高确定电化学装置的析锂程度的准确性,便于后续根据析锂程度对电化学装置进行管理,以降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能,也便于及时对电化学装置进行处理以保证电化学装置的安全使用。
在其中一个实施例中,所述确定装置具体用于:基于所述端电压,得到第二曲线,所述第二曲线表示所述端电压随时间的变化;基于所述第二曲线,确定所述析锂程度。本公开实施例中通过这种方式能更准确地确定电化学装置的析锂程度,以方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述确定装置具体用于:基于所述第二曲线,确定所述第二曲线对应的析锂积分值;基于所述析锂积分值,确定所述析锂程度。本公开实施例中通过这种方式能够更准确地确定电化学装置的析锂程度,以方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述确定装置具体用于:对所述第二曲线进行微分,得到第三微分曲线;确定所述第三微分曲线是否具有极大值和极小值;如果所述极大值和所述极小值都存在,确定所述第三微分曲线上所述极大值和所述 极小值之间的积分为所述析锂积分值;或者,对所述第二曲线进行微分,得到第三微分曲线;对所述第三微分曲线进行微分,得到第四微分曲线;如果所述第四微分曲线存在第三过零点和第四过零点,且所述第四微分曲线在第三过零点的左侧为正,右侧为负,在第四过零点的左侧为负,右侧为正,确定所述第四微分曲线在第三过零点和第四过零点之间的双重积分为所述析锂积分值。本公开实施例中提供多种方式基于第二曲线确定析锂积分值,可以便于之后更准确的确定析离程度,从而方便后续根据析锂程度对电化学装置进行管理。
在其中一个实施例中,所述确定装置具体用于:获取第一临界析锂积分值和第二临界析锂积分值,其中,所述第一临界析锂积分值是析锂到达第三预定程度和未到达第三预定程度之间的分界点的析锂积分值,所述第二临界析锂积分值是析锂到达第四预定程度和未到达第四预定程度之间的分界点的析锂积分值,所述第四预定程度大于所述第三预定程度;以公式(IG i2-IG 0)/(IG H-IG 0)计算所述析锂程度,其中,IG 0是第一临界析锂积分值,IG H是第二临界析锂积分值,IG i2是所述析锂积分值。本公开实施例中通过上述方式基于析锂积分值确定析锂程度,更便于进行计算,从而方便后续根据析锂程度对电化学装置进行管理。
综合以上内容可知,本公开实施例提供的析锂检测方法、电子设备、充电装置及存储介质,由于能够确定电化学装置的析锂程度,之后响应于电化学装置的析锂程度大于第一析锂程度阈值,限制对电化学装置的充电,从而能够合理地对电化学装置进行管理,有效地降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为根据本公开实施例的一个电化学装置管理方法的步骤流程图。
图2为根据本公开实施例的一个实施方式中步骤S101的具体流程图。
图3为根据本公开实施例的另一个实施方式中步骤S101的具体流程图。
图4为根据本公开实施例的步骤S102中的限制对所述电化学装置的充电的具体流程图。
图5为根据本公开实施例的一个电子设备的结构框图。
图6为根据本公开实施例的一个充电装置的结构图。
图7为根据本公开实施例的一个电池系统的结构图。
图8为根据本公开实施例的一个间歇式充电的充电电压以及充电电流波形图。
图9为根据本公开实施例的一个示例的第一曲线的曲线图。
图10为根据本公开实施例的一个示例的第一微分曲线的曲线图。
图11为根据本公开实施例的一个示例的第二微分曲线的曲线图。
图12为根据本公开实施例的一个示例的第二曲线的曲线图。
图13为根据本公开实施例的一个示例的第三微分曲线的曲线图。
图14为根据本公开实施例的一个示例的第四微分曲线的曲线图。
具体实施方式
为了使本领域的人员更好地理解本公开实施例中的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、详细地描述,显然,所描述的实施例仅是本公开实施例一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本公开实施例保护的范围。
在下面的描述中,先对本公开实施例中的电化学装置管理方法、电子设备、充电装置及存储介质进行具体说明,然后给出本公开实施例中的电化学装置管理方法的一些相关的实验例和对比例,用于说明本公开实施例中提供的电化学装置管理方法、电子设备、充电装置及存储介质相对于现有技术的显著优势。
下面先结合附图说明本公开实施例具体实现。
需要说明的是,本公开实施例的内容中,以锂离子电池作为电化学装置的例子来解释本公开,但是本公开的电化学装置并不仅限于锂离子电池。
根据本公开实施例中的一方面,本公开实施例提供了一种电化学装置管理方法,如图1所示,该电化学装置管理方法包括以下步骤S101和S102:
S101:确定电化学装置的析锂程度。
本公开实施例中,电子设备1000的确定装置101可以确定电化学装置的析锂程度,本公开实施例中的析锂程度可以是指示电化学装置的析锂多少的量,当析锂的量不超过某个阈值,就可以认为不析锂,否则认为析锂。确定装置101可以对电化学装置设置一些充电条件,然后在该充电条件下对电化学装置充电,在充电过程获取对该充电条件相应的一些数据,从而借助于相应数据的分析,确定电化学装置的析锂程度。本步骤S101相当于是对电化学装置进行了析锂检测,析锂检测的结果是确定了电化学装置的析锂程度。
本公开实施例的电化学装置可以包括至少一个锂离子电池,当包括多个锂离子电池时,这些锂离子电池可以通过串联和/或并联的方式存在于电化学装置中。
本公开实施例中,提供了多种确定电化学装置的析锂程度的具体实现方法,通过这些实现方法可以有效地保证确定电化学装置的析锂程度的结果的准确性,下面进行详细说明。
在其中一个可选的实施例中,参照图2中的流程图,确定电化学装置的析锂程度的方法(也即S101),其可以包括以下步骤S1011、S1012、S1013和S1014:
S1011:获取电化学装置的充电初始SOC(State of Charge,荷电状态)。
在一个实施例中,确定装置101可以获取电化学装置的充电初始SOC。充电初始SOC是指在进行S1012的间歇式充电(该间歇式充电是为了在S1013-S1014中获取一些数据,从而确定电化学装置是否析锂)之前电化学装置的荷电状态。该SOC一般不能直接测量,可以通过电池端电压、充放电电流及内阻等参数来估算其大小。本公开实施例中,可以通过内阻法获取充电初始SOC,内阻法是用不同频率的交流电激励电化学装置,测量电化学装置内部交流电阻,并通过建立的计算模型得到SOC估计值。
对于一次析锂检测而言,确定的电化学装置的充电初始荷电量是一个确定的数值,例如充电初始SOC可以是0%、10%、50%、85%等等,其仅取决于电化学装置在进行析锂检测时的初始电量状态。
S1012:响应于所述充电初始SOC小于第一阈值,对所述电化学装置进行间歇式充电,在所述间歇式充电时获取所述电化学装置的第一数据,根据所述第一数据确定所述电化学装置的第一析锂程度。
本公开实施例中,间歇式充电可以简单理解为每隔一段时间对电化学装置进行一段时间的充电,可以在保证充电效果的前提下,保护电化学装置。其不要求每次充电时间相等,也不要求相邻两次充电之间的间隔时间相等。脉冲充电是间歇式充电的一个具体实施方式,它要求每次充电时间相等,相邻两次充电之间的间隔时间也相等,即每次充电和充电后的静置形成一个周期,这些周期不断重复。
在其中一个示例中,电子设备1000中的确定装置101获取电化学装置的充电初始SOC后,响应于充电初始SOC小于第一阈值,对电化学装置进行间歇式充电,并在间歇式充电时获取电化学装置的第一数据进行析锂程度分析,从而根据第一数据确定电化学装置的第一析锂程度。之所以在小于第一阈值时进行间歇式充电是因为,在电化学装置的SOC比较小时,对电化学装置进行间歇式充电得到的析锂检测结果比较准确,而当电化学装置的SOC比较大时,对电化学装置进行恒流充电得到的析锂检测结果比较准确。因此,在电化学装置的SOC比较小时运用间歇式充电进行充电,而SOC比较大时运用恒流充电进行充电,结合了两种充电的优势,提高检测准确度,从而提高确定电化学装置的析锂程度的准确度。
本公开实施例中,第一数据是在间歇式充电时能够反映电化学装置的状态的数据,例如可以是电化学装置的充电电压、充电电流、内阻、SOC、电化学装置的端电压(即电化学装置正极电压与负极电压的电压差)等数据。
本公开实施例中,第一阈值可以随实际需要进行设置,例如其可以被提前配置在确定装置中。例如第一阈值的取值可以较小,以便于在电化学装置在电量比较小时可以进行间歇式充电的析锂程度检测,避免在电量大时间歇式充电的析锂程度检测效果较差的问题。例如,第一阈值的取值范围可以为【20%,40%】,当然也可以为其他取值范围,例如【10%,40%】、【20%,50%】、【15%,35%】等等。
当第一阈值的取值范围是【20%,40%】时,可以再依据需要进行取第一阈值的具体数值,例如确定第一阈值为20%、25%、30%、35%、40%等。
在其中一个实施例中,间歇式充电包括多个充电期间以及多个间断期间,所述第一数据包括在所述间断期间所述电化学装置的SOC和内阻,在此基础上,所述根据所述第一数据确定所述电化学装置的第一析锂程度,包括以下步骤S10121和S10122:
S10121:基于各间断期间的所述SOC和所述内阻,得到第一曲线,所述第一曲线表示所述内阻随所述SOC的变化。
本公开实施例中,对电化学装置进行间歇式充电时,充电期间即间歇式充电时对电化学装置进行充电的时间期间,间断期间即间歇式充电时不对电化学装置进行充电的时间期间。举一个便于理解的示例,对电化学装置进行间歇式充电,可以是如下的过程:在第一个充电期间对电化学装置进行充电,然后停止充电,间隔第一个间断期间后,继续在第二个充电期间对电化学装置进行充电,如此重复,直至电化学装置的SOC达到某一个临界值。可以理解的是,随着间歇式充电的进行,电化学装置的SOC随之升高,本公开实施例可以在电化学装置的SOC达到该临界值时停止间歇式充电,完成间歇式充电操作。本公开实施例对临界值没有特别限制,只要能实现本公开目的即可,例如,该临界值可以为60%、70%、80%、90%或100%。
在一个实施例中,所述基于各间断期间的所述SOC和所述内阻,得到第一曲线,具体包括:获取所述电化学装置在该间断期间开始时间点的第一端电压和在该间断期间结束时间点的第二端电压;确定所述第一端电压和所述第二端电压的电压差;基于所述电压差和所述充电期间所述电化学装置的充电电流,确定所述内阻;获取该间断期间的SOC;基于所述SOC和所述内阻,得到所述第一曲线。
获取所述电化学装置在该间断期间开始时间点的第一端电压和在该间断期间结束时间点的第二端电压可以通过电池管理系统(BMS)的模拟前端(AFE)实现。以锂电池为例,第一端电压是在间断期间开始时间点,充电装置为锂电池充电时锂电池正负极之间的电压差,第二端电压是在间断期间结束时间点,充电装置为锂电池充电时锂电池正负极之间的电压差。
本公开实施例中,所述电化学装置的内阻可以通过各个间断期间内的电化学装置的端电压与充电电流进行求得。
例如在一个实施例中,计算电化学装置的内阻的方式可以是:获取所述电化学装置在该间断期间开始时间点的第一端电压和在该间断期间结束时间点的第二端电压,确定所述第一端电压和所述第二端电压的电压差,基于所述电压差和所述充电期间所述电化学装置的充电电流,确定所述内阻。
具体地,如图8所示,以间歇式充电时周期内充电时段的电流I(A)为固定值为例,其示出了间隙式充电的充电电压(E)以及充电电流(I)的随时间(Time)变化的波形图,该充电电压波形图也表示了间歇式充电时电化学装置的端电压在每一个间断期间内随时间的变化,可直接从充电电压波形图上确定第一端电压和第二端电压的大小。第一 端电压(记为U1)对应的是间歇式充电的间断期间开始时间点的端电压(即正极电压与负极电压的电压差),第二端电压(记为U2)对应的是间歇式充电的间断期间结束时间点的端电压(即正极电压与负极电压的电压差),第一端电压和所述第二端电压的电压差可以通过第一端电压减去第二端电压求得。将所述电压差(记为ΔV,ΔV=U1-U2)与周期内充电时段的电流I(A)(记为I)代入欧姆定律(即:R=(ΔV)/(I))可以直接求出该间断期间内所述电化学装置的内阻(记为R)。
关于获取该间断期间的SOC的方法,与前述S1011中测量充电初始SOC的方法相同,例如都可以采用内阻法等进行测量,只不过这里各间断期间的所述SOC是在充电期间实时测量的,而S1011中充电初始SOC是充电前测量的。该间断期间的SOC可以指该间断期间开始时间点所述电化学装置的SOC,也可以指该间断期间结束时间点所述电化学装置的SOC,也可以指该间断期间中心时间点所述电化学装置的SOC,等等。其中,采用该间断期间中心时间点所述电化学装置的SOC,更能反映该间断期间的平均状况,测量准确性更高。
显然,对于对电化学装置进行间歇式充电的过程中,随充电时间增加,电化学装置的SOC、电压差ΔV(进而电化学装置的内阻R)在间歇式充电的每一个间断期间内都会发生变化,因此各间断期间的SOC和内阻都有区别,那么分别以每个间断期间得到的SOC和内阻R作为横坐标和纵坐标,得到一个点。将各个间断期间得到的点连起来并进行平滑处理,得到第一曲线Q1,如图9,其示出了一个示例性的第一曲线Q1。可以理解的是,该曲线图仅用于便于示意性描述和理解本公开实施例,而不作为对本公开实施例的限制。
可以理解的是,电化学装置的SOC和内阻R数据采集的越密集,则得到的SOC和内阻R的数据对越多,可以得到更加细致的第一曲线。利用数据进行曲线拟合的过程为本领域技术人员所熟知的,本公开实施例对此不做具体限定。
显然,本公开实施例中利用多个间断期间中的SOC与内阻得到第一曲线,便于后面进行析锂检测的过程中对数据进行处理。
S10122:基于所述第一曲线,确定所述第一析锂程度。
由上述S10121已经介绍,第一曲线表示电化学装置的内阻随电化学装置的SOC的变化,因此可以基于第一曲线,来确定第一析锂程度。本公开实施例中,第一析锂程度可以是,衡量用间歇式充电方法确定的电化学装置的析锂多少的量。当析锂的量不超过某个阈值,就可以认为不析锂,否则认为析锂。
具体地,在其中一个实施例中,步骤S10122包括多种方式,下面进行具体说明。
在其中一个方式中,方式A1,包括以下步骤SA11、SA12、SA13和SA14:
SA11:对所述第一曲线进行微分,得到第一微分曲线。
由于第一曲线表示电化学装置的内阻R随电化学装置的SOC的变化,因此对第一曲线进行微分获得的第一微分曲线,也即第一微分曲线为第一曲线的一阶微分曲线,其实际上表示电化学装置的内阻随SOC的变化率。
SA12:确定所述第一微分曲线是否具有极大值和极小值。
从数学意义上而言,当第一微分曲线同时具有极大值和极小值,则说明第一微分曲线上的原本的平坦区域出现了较明显的起伏变化,即出现了异常降低。本公开实施例中,第一微分曲线表示电化学装置的内阻随SOC的变化率,当变化率在曲线平坦区域不出现异常降低时,表示电化学装置无活性锂析出,当变化率在曲线平坦区域出现异常降低时,由于活性锂在负极表面析出并与负极接触,相当于负极石墨部分并联一个锂金属器件,使整个负极部分的阻抗降低,从而使电化学装置的内阻在活性锂析出时出现异常降低,对应的,使得第二曲线的平坦区域出现异常降低。
具体地,可参照图10所示,其示出了本公开实施例中一个示例性的第一微分曲线D1的曲线图,该第一微分曲线中具有极大值以及极小值。可以理解的是,该曲线图仅用于便于示意性描述和理解本公开实施例,而不作为对本公开实施例的限制。
SA13:如果所述极大值和所述极小值都存在,确定所述极大值对应的SOC为析锂SOC。
本公开实施例中,析锂SOC可以是指与电化学装置的析锂状态相关的电荷状态,析锂SOC越小析锂状态越严重。
在极大值和极小值都存在时,可以将极大值对应的SOC确定为析锂SOC,本公开实施例中,析锂SOC的存在表明该电化学装置在该SOC时出现析锂倾向或已经出现析锂,合理地确定电化学装置的析锂SOC有助于后续根据析锂SOC确定第一析锂程度,以准确地确定电化学装置的析锂检测结果,从而提高确定电化学装置的析锂程度的准确性。
更具体地,在其中一个实施方式中,步骤SA13包括:如果所述极大值和所述极小值都存在、所述极大值和所述极小值是所述第一微分曲线上连续出现的极值、且所述极小值对应的SOC大于所述极大值对应的SOC,确定所述极大值对应的SOC为所述析锂SOC。
即在该实施方式中,在第一微分曲线上极大值出现的要比极小值早,通过这样的方式确定析锂SOC更加准确,便于后续根据析锂SOC确定第一析锂程度,从而使得本公开实施例中确定电化学装置的析锂程度的结果更加准确。
SA14:基于所述析锂SOC,确定第一析锂程度。
本公开实施例中,可以是直接将析锂SOC作为第一析锂程度,以在后续进行电化学装置的析锂检测结果的确定。在本公开另一实施例中,在间歇式充电时获得第一析锂程度后,还在恒流充电并静置中进行了析锂检测结果的确定,两种确定结果需要一个合理比较并叠加,进一步确定电化学装置的析锂情况,因此也可以对析锂SOC进行进一步的处理来获得第一析锂程度。
其中,在一个可选的实施例中,可以将析锂SOC按照一定规则进行归一化,将归一化处理的结果作为第一析锂程度,便于在后需进行处理。
具体地,SA14具体可以包括:获取第一临界析锂SOC和第二临界析锂SOC,其中,所述第一临界析锂SOC是析锂到达第一预定程度和未到达第一预定程度之间的分界点的SOC,所述第二临界析锂SOC是析锂到达第二预定程度和 未到达第二预定程度之间的分界点的SOC;
以公式(SOC i-SOC 0)/(SOC H-SOC 0)计算所述第一析锂程度,其中,SOC 0是第一临界析锂SOC,SOC H是第二临界SOC,SOC i是所述析锂SOC。
本公开实施例中,第一临界析锂SOC为电化学装置析锂到达第一预定程度和未到达第一预定程度的分界点的SOC,例如第一预定程度可以是电化学装置刚刚发生析锂的程度,换句话说,第一临界析锂SOC也即是电化学装置未发生析锂和发生析锂的分界点所对应的SOC。如果电化学装置的析锂SOC达到了第一临界析锂SOC,说明电化学装置按这种方法检测的结果是析锂。如果电化学装置的析锂SOC未达到第一临界析锂SOC,说明电化学装置按这种方法检测的结果是未析锂。
举例来说,第一临界析锂SOC其可以是根据提前对多个电化学装置进行实验确定,比如将多个同类的电化学装置分别进行实验。将多个电化学装置分别按上述方法得到析锂SOC。然后,将多个电化学装置拆解,观察内部情况,由管理人员标记为析锂和未析锂。根据标记为析锂的电化学装置的析锂SOC、和标记为未析锂的电化学装置的析锂SOC,确定分界SOC,即第一临界析锂SOC。例如,共有100个电化学装置,标记为析锂的电化学装置有50个,析锂SOC都小于20%,标记为析锂的电化学装置有50个,析锂SOC都大于20%,则将第一临界析锂SOC确定为20%,当然这仅作为一个便于理解的例子而非限制。
第二临界析锂SOC为电化学装置到达第二预定程度和未到达第二预定程度的分界点的SOC,例如第二预定程度可以是严重析锂程度。换句话说,第二临界析锂SOC也即是电化学装置析锂未到达严重析锂程度和析锂到达严重析锂程度的分界点所对应的SOC。何为严重析锂程度,可以事先规定,例如通过下面的实验确定:将多个同类的电化学装置分别进行实验。将多个电化学装置分别按上述方法得到析锂SOC。然后,将多个电化学装置拆解,观察内部情况,由管理人员按照实际需要标记为严重析锂和未严重析锂。在应用场景对析锂要求比较严格的情况下,可以将肉眼观察有一定析锂的电化学装置都标记为严重析锂;在应用场景对析锂要求不太严格的情况下,可以将肉眼观察比较明显的电化学装置标记为严重析锂。根据标记为严重析锂的电化学装置的析锂SOC、和标记为未严重析锂的电化学装置的析锂SOC,确定分界SOC,即第二临界析锂SOC。例如,共有100个电化学装置,标记为严重析锂的电化学装置有50个,析锂SOC都小于4%,标记为不严重析锂的电化学装置有50个,析锂SOC都大于4%,则将第二临界析锂SOC确定为4%,当然这仅作为一个便于理解的例子而非限制。
然后,以公式(SOC i-SOC 0)/(SOC H-SOC 0)计算第一析锂程度,该第一析锂程度可以指示用上述方法得到的电化学装置出现析锂的相对程度。
本公开实施例中,也可以是其它方式基于析锂SOC确定第一析锂程度,本公开实施例中不进行限制,上述归一化的过程是仅作为一种可选的实施方式,并不作为对本公开实施例中的限制。
在其中一个方式中,方式A2,包括以下步骤SA21、SA22、SA23和SA24:
SA21:对所述第一曲线进行微分,得到第一微分曲线。
该步骤SA21与步骤SA11相同,可参照SA11进行理解,本公开实施例中不再进行赘述。
SA22:对所述第一微分曲线进行微分,得到第二微分曲线。
由于第一曲线表示电化学装置的内阻R随电化学装置的SOC的变化,因此对第一曲线进行微分(即一阶微分)获得的第一微分曲线,实际上表示电化学装置的内阻随SOC的变化率,第二微分曲线是第一微分曲线的微分曲线,也即第二微分曲线是第一曲线的二阶微分曲线,因此可以通过一阶微分曲线(即第一微分曲线)与二阶微分曲线(即第二微分曲线)之间的性质来进一步确定析锂SOC。
SA23:如果所述第二微分曲线存在第一过零点和第二过零点,且所述第二微分曲线在第一过零点的左侧为正,右侧为负,在第二过零点的左侧为负,右侧为正,确定所述第二微分曲线在第一过零点对应的SOC为析锂SOC。
如图11的曲线W1是对第一微分曲线D1进行微分得到的第二微分曲线。过零点的含义是曲线与横轴(表示SOC的轴)的交点。由于横轴对应的纵坐标为0,因此,与横轴的交点叫做过零点。如图11的曲线W1与横轴有两个交点,即过零点M、N。可以理解的是,该曲线图仅用于便于描述和理解本公开实施例,而不作为对本公开实施例的限制。
可以理解的是,左侧、右侧是指第二微分曲线上某一点沿横轴方向的左侧和右侧。如图11所示的第二微分曲线W1上,其第一过零点M左侧为正,右侧为负,说明在相应的第一微分曲线D1上的对应点左侧斜率为正,右侧斜率为负,说明它是极大值点,而其第二过零点N左侧为负,右侧为正,说明在相应的第一微分曲线D1上的对应点左侧斜率为负,右侧斜率为正,说明它是极小值点,因此,在满足上述SA23中的条件时,第一微分曲线上即同时存在极大值和极小值。进而可以将第二微分曲线在第一过零点对应的SOC为析锂SOC,以便于后续根据析锂SOC确定第一析锂程度。
更具体地,在其中一种实施例中,步骤SA23包括:如果所述第二微分曲线存在第一过零点和第二过零点,所述第一过零点和第二过零点是所述第二微分曲线上两个连续的过零点,所述第二过零点在所述第一过零点右侧,且所述第二微分曲线在第一过零点的左侧为正,右侧为负,在第二过零点的左侧为负,右侧为正,确定所述第二微分曲线在第一过零点对应的SOC为所述析锂SOC。
通过这样的方式确定析锂SOC更加准确,便于后续根据析锂SOC确定第一析锂程度,从而使得本公开实施例中确定电化学装置的析锂程度的结果更加准确。
当然也可以是其它方式确定析锂SOC,本公开实施例中不进行限制。
SA24:基于所述析锂SOC,确定第一析锂程度。
该步骤SA24与步骤SA14相同,可参照SA14进行理解,本公开实施例中不再进行赘述。
可以理解的是,上述方式A1、A2仅作为一些的可选实施方式,而非对本公开实施例的限制。
S1013:响应于所述电化学装置的SOC到达第二阈值时,对所述电化学装置进行恒流充电,并静置,在静置时获取所述电化学装置的第二数据,根据所述第二数据确定所述电化学装置的第二析锂程度,所述第一阈值小于所述第二阈值。
具体地,当电化学装置的充电初始SOC小于第一阈值对电化学装置进行间歇式充电,并当间歇式充电使得电化学装置SOC到达第二阈值时对电化学装置进行恒流充电,恒流充电结束后开始对电化学装置进行静置,静置即是指不对电化学装置采取充电或者放电操作。
结合前述S10121中介绍的临界值,可以为本步骤S1013的第二阈值。例如,第二阈值同第一阈值类似,其也可以是通过实际需要进行设置,第二阈值大于第一阈值,例如其可以被提前配置在确定装置中,例如第二阈值可以较大。在电化学装置的SOC比较大时,对电化学装置进行恒流充电得到的析锂检测结果比较准确,在电化学装置的SOC比较小时运用间歇式充电进行充电,而SOC比较大时运用恒流充电进行充电,结合了两种充电的优势,提高检测准确度,从而提高确定电化学装置的析锂程度的准确度。
例如,第二阈值的取值可以为【70%,90%】,当然也可以为其他取值范围,例如【75%,85%】、【75%,95%】、【80%,95%】等等。
当第二阈值的取值范围是【70%,90%】时,可以再依据需要进行取第二阈值的具体数值,例如确定第二阈值为70%、75%、80%、85%、90%等。
对所述电化学装置进行恒流充电,可以充电到电化学装置的截止电压以下。本公开实施例可以具体规定进行恒流电池所到达的电压,该电压不能大于截止电压。电化学装置的截止电压随电化学装置的种类不同,可以查表获得。
电化学装置静置时,获取所述电化学装置的第二数据,并根据第二数据确定电化学装置的第二析锂程度。本公开实施例中,第二数据是在恒流充电之后静置时能够反映电化学装置的状态的数据,例如可以是电化学装置的内阻、SOC、电化学装置的端电压(即电化学装置正极电压与负极电压的电压差)等数据。
在其中一个实施例中,所述第二数据包括所述静置期间所述电化学装置的端电压,即电化学装置正极电压与负极电压的电压差,基于此,本步骤S1013中的“根据所述第二数据确定所述电化学装置的第二析锂程度”,包括:
S10131:基于所述端电压,得到第二曲线,所述第二曲线表示所述端电压随时间的变化。
本公开实施例中,第二曲线表示电化学装置在静置时的端电压随时间的变化曲线,其整体是端电压随时间下降的曲线。
本公开实施例中,所述端电压可以由电池管理系统(BMS)的模拟前端(AFE)测量,本公开对此不进行特别限制。
具体来说,建立第二曲线时,可以是在获取电化学装置的静置时的端电压的同时记录其所对应的时间,从而得到多个端电压和时间组成的数据对,参照图12,可以以时间(Time)为横坐标,以电化学装置的端电压(V,Voltage)为纵坐标,将这些数据对所代表的点填充在坐标系中,再进行拟合,从而获得第二曲线Q2,显然,该第二曲线可以用来表示所述端电压随时间的变化。可以理解的是,该曲线图仅用于便于示意性描述和理解本公开实施例,而不作为对本公开实施例的限制。
可以理解的是,电化学装置的端电压和时间数据采集的越密集,则得到的数据对越多,可以得到更加细致的第二曲线。利用数据进行曲线拟合的过程为本领域技术人员所熟知的,本公开实施例对此不做具体限定。
S10132:基于所述第二曲线,确定所述第二曲线对应的析锂积分值。
由上述S10131已经介绍,第二曲线表示电化学装置的端电压随时间的变化,因此可以基于第二曲线,来确定第二析锂程度。
本公开实施例中,第二析锂程度可以是,衡量用恒流充电并静置的方法确定的电化学装置的析锂多少的量。当析锂的量不超过某个阈值,就可以认为不析锂,否则认为析锂。
本公开实施例中,析锂积分值可以由第二曲线进行处理计算得到,其可以用于反映电化学装置的析锂状态。其中,析锂积分值越大,电化学装置的析锂状态越严重。
具体地,本公开实施例中,步骤S10132(即“基于所述第二曲线,确定所述第二曲线对应的析锂积分值”)可以包括多种方式,如下面的方式B1、B2下面进行详细说明。
其中第一种方式,方式B1,其包括步骤SB11、SB12、SB13以及SB14,其中:
SB11:对所述第二曲线进行微分,得到第三微分曲线。
由于第二曲线表示电化学装置的端电压随时间的变化,因此对第二曲线进行微分获得的第三微分曲线,也即第三微分曲线为第二曲线的一阶微分曲线,其实际上表示电化学装置的端电压随时间的变化率。
SB12:确定所述第三微分曲线是否具有极大值和极小值。
从数学意义上而言,当第三微分曲线同时具有极大值和极小值,则说明第三微分曲线上的原本的平坦区域出现了较明显的起伏变化。如图13,示出了本公开实施例中的一个示例性的第三微分曲线D3的曲线图,其中第三微分曲线D3中具有极大值和极小值。可以理解的是,该曲线图仅用于便于示意性描述和理解本公开实施例,而不作为对本公开实施例的限制。
SB13:如果所述极大值和所述极小值都存在,确定所述第三微分曲线上所述极大值和所述极小值之间的积分为所述析锂积分值。
在极大值和极小值都存在时,计算析锂积分值,例如,可以将第三微分曲线上极大值和极小值之间的函数表达式 计算出来,然后通过牛顿-莱布尼茨公式对该函数表达式求极大值点与极小值点之间的定积分,并将其确定为析锂积分值;或者,可以计算第三微分曲线上极大值、极小值与横轴之间围成的几何图形的面积,显然,该面积也能够作为析锂积分值。
本公开实施例中,析锂积分值的存在表明该电化学装置出现析锂倾向或已经出现析锂,合理地确定电化学装置的析锂积分值有助于后续根据析锂积分值确定第二析锂程度,以准确地确定电化学装置的析锂检测结果,从而提高确定电化学装置的析锂程度的准确性。
更具体地,在其中一个实施方式中,步骤SB13具体可以为:如果所述极大值和所述极小值都存在、所述极大值和所述极小值是所述第三微分曲线上连续出现的极值、且所述极小值对应的时间大于所述极大值对应的时间,确定所述第三微分曲线上所述极大值和所述极小值之间的积分为所述析锂积分值。
即在该实施方式中,在第三微分曲线上极大值出现的要比极小值早,通过这样的方式确定析锂积分值更加准确,便于后续根据析锂积分值确定第二析锂程度,从而使得本公开实施例中确定电化学装置的析锂程度的结果更加准确。
其中第二种方式,方式B2,其包括步骤SB21、SB22以及SB23,其中:
SB21:对所述第二曲线进行微分,得到第三微分曲线。
该步骤SB21与步骤SB11相同,可参照SB11进行理解,本公开实施例中不再进行赘述。
SB22:对所述第三微分曲线进行微分,得到第四微分曲线。
由于第二曲线表示电化学装置的端电压随时间的变化,因此对第二曲线进行微分(即一阶微分)获得的第三微分曲线,实际上表示电化学装置的端电压随时间的变化率,第四微分曲线是第三微分曲线的微分曲线,也即第四微分曲线是第二曲线的二阶微分曲线,因此可以通过一阶微分曲线(即第三微分曲线)与二阶微分曲线(即第四微分曲线)之间的性质来进一步确定析锂积分值。
SB23:如果所述第四微分曲线存在第三过零点和第四过零点,且所述第四微分曲线在第三过零点的左侧为正,右侧为负,在第四过零点的左侧为负,右侧为正,确定所述第四微分曲线在第三过零点和第四过零点之间的双重积分为所述析锂积分值。
如图14的曲线W3是对第三微分曲线D3微分得到的第四微分曲线。过零点的含义是曲线与横轴(表示时间的轴)的交点。由于横轴对应的纵坐标为0,因此,与横轴的交点叫做过零点。如图14的曲线W3与横轴有两个交点,即过零点M3、N3。可以理解的是,该曲线图仅用于便于示意性描述和理解本公开实施例,而不作为对本公开实施例的限制。
可以理解的是,左侧、右侧是指第四微分曲线上某一点沿横轴方向的左侧和右侧。如图14所示的第四微分曲线上,其第三过零点M3左侧为正,右侧为负,说明在第三微分曲线D3上的对应点左侧斜率为正,右侧斜率为负,说明它为极大值点,而其第四过零点N3左侧为负,右侧为正说明在第三微分曲线D3上的对应点左侧斜率为负,右侧斜率为正,其为极小值点,因此,在满足上述SB23中的条件时,第三微分曲线上即同时存在极大值和极小值。进而可以将第四微分曲线在第三过零点左侧的双重积分为析锂积分值,以便于后续根据析锂积分值确定第二析锂程度。
更具体地,在其中一个实施例中,步骤SB23具体可以为:如果所述第四微分曲线存在第三过零点和第四过零点,所述第三过零点和第四过零点是所述第四微分曲线上两个连续的过零点,所述第四过零点在所述第三过零点右侧,且所述第四微分曲线在第三过零点的左侧为正,右侧为负,在第四过零点的左侧为负,右侧为正,确定所述第四微分曲线在第三过零点和第四过零点之间的双重积分为所述析锂积分值。
通过这样的方式确定析锂积分值更加准确,便于后续根据析锂积分值确定第二析锂程度,从而使得本公开实施例中确定电化学装置的析锂程度的结果更加准确。
当然也可以是其它方式确定析锂积分值,本公开实施例中不进行限制,上述方式B1、B2仅作为一些的可选实施方式,而非对本公开实施例的限制。
S10133:基于所述析锂积分值,确定所述第二析锂程度。
本公开实施例中,可以是直接将析锂积分值作为第二析锂程度以在后续进行电化学装置的析锂检测结果的确定。在本公开另一实施例中,在恒流充电并静置中获得第二析锂程度,还在间歇式充电时进行了析锂检测结果的确定,两种确定结果需要一个合理比较并叠加,进一步确定电化学装置的析锂情况,因此也可以对析锂积分值进行进一步的处理来获得第二析锂程度。
基于析锂积分值来确定第二析锂程度,便于后续最终确定电化学装置是否发生析锂。
其中,在一个可选的实施例中,可以将析锂积分值按照一定规则进行归一化,将归一化处理的结果作为第二析锂程度,便于在后需进行处理。显然,当析锂积分值被归一化处理后,第二析锂程度与前述的第一析锂程度在后续可以在一起进行运算。
具体地,S10133具体可以包括:获取第一临界析锂积分值和第二临界析锂积分值,其中,所述第一临界析锂积分值是析锂到达第三预定程度和未到达第三预定程度之间的分界点的析锂积分值,所述第二临界析锂积分值是析锂到达第四预定程度和未到达第四预定程度之间的分界点的析锂积分值;
以公式(IG i-IG 0)/(IG H-IG 0)计算所述第二析锂程度,其中,IG 0是第一临界析锂积分值,IG H是第二临界析锂积分值,IG i是所述析锂积分值。
本公开实施例中,第一临界析锂积分值为电化学装置析锂到达第三预定程度和未到达第三预定程度的分界点所对应的析锂积分值,例如第三预定程度可以是电化学装置刚刚发生析锂的程度,换句话说,第一临界析锂积分值也即是电化学装置未发生析锂和发生析锂的分界点所对应的析锂积分值。如果电化学装置的析锂积分值达到了第一临界析锂 积分值,说明电化学装置按这种方法检测的结果是发生析锂。如果电化学装置的析锂积分值未达到第一临界析锂积分值,说明电化学装置按这种方法检测的结果是未发生析锂。
举例来说,第一临界析锂积分值可以是根据提前对多个电化学装置进行实验确定,比如将多个电化学装置分别进行实验,计算每个电化学装置未发生析锂和发生析锂的分界点所对应的析锂积分值。将多个电化学装置分别按上述方法得到析锂积分值。然后,将多个电化学装置拆解,观察内部情况,由管理人员标记为析锂和未析锂。根据标记为析锂的电化学装置的析锂积分值、和标记为未析锂的电化学装置的析锂积分值,确定分界积分值,即第一临界析锂积分值。例如,共有100个电化学装置,标记为析锂的电化学装置有50个,析锂积分值都小于0.1,标记为析锂的电化学装置有50个,析锂积分值都大于0.1,则将第一临界析锂积分值确定为0.1,当然这仅作为一个便于理解的例子而非限制。
第二临界析锂积分值其可以是根据提前对多个电化学装置进行实验确定,比如将多个同类的电化学装置分别进行实验,计算每个电化学装置发生析锂未到达严重和发生析锂到达严重的分界点所对应的析锂积分值。将多个电化学装置分别按上述方法得到析锂积分值。然后,将多个电化学装置拆解,观察内部情况,由管理人员标记为严重析锂和未严重析锂。何为严重,可以事先规定,例如通过下面的实验确定:
将多个同类的电化学装置分别进行实验。将多个电化学装置分别按上述方法得到析锂积分值。然后,将多个电化学装置拆解,观察内部情况,由管理人员按照实际需要标记为严重析锂和未严重析锂。在应用场景对析锂要求比较严格的情况下,可以将肉眼观察有一定析锂的电化学装置都标记为严重析锂;在应用场景对析锂要求不太严格的情况下,可以将肉眼观察比较明显的电化学装置标记为严重析锂。根据标记为严重析锂的电化学装置的析锂积分值、和标记为未严重析锂的电化学装置的析锂积分值,确定分界积分值,即第二临界析锂积分值。例如,共有100个电化学装置,标记为严重析锂的电化学装置有50个,析锂积分值都大于0.6,标记为不严重析锂的电化学装置有50个,析锂SOC都小于0.6,则将第二临界析锂积分值确定为0.6,当然这仅作为一个便于理解的例子而非限制。
然后,以公式(IG i-IG 0)/(IG H-IG 0)计算第二析锂程度,第二析锂程度可以指示采用上述方法得到了电化学装置出现析锂的相对程度。
由此计算出的第二析锂程度,便于此可选实施例后续最终确定电化学装置的析锂程度。
本公开实施例中,也可以是其它方式基于析锂积分值确定第二析锂程度,本公开实施例中不进行限制,上述归一化的过程是仅作为一种可选的实施方式,并不作为对本公开实施例中的限制。
S1014:根据所述第一析锂程度和所述第二析锂程度,确定所述电化学装置的析锂程度。
本公开实施例中,电子设备1000中的确定装置101根据得到的第一析锂程度以及第二析锂程度,确定电化学装置的析锂程度。
本公开实施例中,在充电初始SOC小于第一阈值时对电化学装置进行间歇式充电,并确定第一析锂程度,SOC到达第二阈值时对电化学装置进行恒流充电,并静置,以确定第二析锂程度,并根据第一析锂程度以及第二析锂程度,确定出电化学装置的析锂程度,从而实现了对电化学装置进行多种析锂程度检测,而不局限于仅在一种充电方式下对电化学装置进行析锂检测,避免了单种充电方式下对电化学装置进行析锂检测时可能出现的误差,从而能够有效提高确定电化学装置的析锂结果的准确性,以提高确定电化学装置的析锂程度的准确性,便于后续根据析锂程度对电化学装置进行管理,以降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能,也便于及时对电化学装置进行处理以保证电化学装置的安全使用。
本公开实施例中根据第一析锂程度以及第二析锂程度,确定电化学装置的析锂程度的具体方式和条件可以根据实际需要进行设定。例如,在本公开实施例中,提供了几种方式能够满足实际检测需求。下面进行简单说明。
在本可选实施例中,可以通过第一析锂程度和第二析锂程度来确定电化学装置的析锂程度,从而使得析锂程度的确定更加准确可靠。
具体地,步骤S1014可以包括:确定所述第一析锂程度和所述第二析锂程度的和,作为所述析锂程度;或者,确定所述第一析锂程度和所述第二析锂程度的平均数,作为所述析锂程度;或者,确定所述第一析锂程度和所述第二析锂程度的加权平均数,作为所述析锂程度。
下面进行具体说明,即,在其中一种实现方式中,本公开实施例中可以是根据第一析锂程度和第二析锂程度的和作为析锂程度,以便于本电化学装置管理方法的后续步骤中根据析锂程度对电化学装置进行管理。举例来说,在一些实施例中,第一析锂程度和第二析锂程度的和(即析锂程度)可以为50%、80%、100%、120%等等,本公开实施例对此不进行限制。在另一种实现方式中,本公开实施例中可以是根据第一析锂程度以及第二析锂程度的平均数作为析锂程度,以便于本电化学装置管理方法的后续步骤中根据析锂程度对电化学装置进行管理。举例来说,在一些实施例中,第一析锂程度和第二析锂程度的平均数(即析锂程度)可以为25%、40%、50%、60%等等,本公开实施例对此不进行限制。
在再一种实现方式中,本公开实施例中可以是根据第一析锂程度以及第二析锂程度的加权平均数作为析锂程度,以便于本电化学装置管理方法的后续步骤中根据析锂程度对电化学装置进行管理。
在此实现方式中,计算加权平均数时,第一析锂程度的权重和第二析锂程度的权重系数可以根据需要进行设置,例如,第一析锂程度的权重系数分别为0.2、0.3、0.5、0.7等,则第二析锂程度的权重系数分别对应地可以为0.8、0.7、0.5、0.3等。
在此实现方式中,举例来说,在一些实施例中,第一析锂程度和第二析锂程度的平均数(即析锂程度)可以为25%、40%、50%、60%等等,本公开实施例对此不进行限制。可以理解的是,本公开实施例中,也可以是通过其他可选的方 式根据第一析锂程度以及第二析锂程度来确定析锂程度,以便于本电化学装置管理方法的后续步骤中根据析锂程度对电化学装置进行管理。本公开实施例中不进行限制,上述实现方式仅作为一些可选实现方式,而非对本公开实施例中的限制。
在另一个可选的实施例中,参照图3的流程图,确定电化学装置的析锂程度的方法(也即S101),其可以包括以下步骤S2011和S2012:
S2011:对所述电化学装置进行恒流充电至所述电化学装置的截止电压,并静置,在静置时获取所述电化学装置的第二数据。
S2012:根据所述第二数据确定所述电化学装置的析锂程度。
本公开实施例中通过对电化学装置进行恒流充电至电化学装置的截止电压,并静置,在静置时获取电化学装置的第二数据,之后根据第二数据确定电化学装置的析锂程度,可以保证确定电化学装置的析锂结果的准确性,提高确定电化学装置的析锂程度的准确性,便于后续根据析锂程度对电化学装置进行管理,以降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能,也便于及时对电化学装置进行处理以保证电化学装置的安全使用。
在此可选实施例中,区别于上述可选实施例中的是,本公开实施例中的电子设备中的确定装置101仅对电化学装置进行恒流充电并静置获取第二数据,不管该电化学装置的初始SOC大小,最后仅根据第二数据获得析锂程度,而上述可选实施例中则在该电化学装置的初始SOC比较小时,先进行间歇式充电获得第一数据确定第一析锂程度,再进行恒流充电并静置获取第二数据确定第二析锂程度,最后根据第一析锂程度和第二析锂程度来确定析锂程度。可以理解的是,这两种方式都可以满足确定电化学装置的析锂程度的需求。
电化学装置静置时,获取所述电化学装置的第二数据,并根据第二数据确定电化学装置的析锂程度。本公开实施例中,第二数据是在恒流充电之后静置时能够反映电化学装置的状态的数据,例如可以是电化学装置的内阻、SOC、电化学装置的端电压(即电化学装置正极电压与负极电压的电压差)等数据。
在其中一个实施例中,所述第二数据包括所述静置期间所述电化学装置的端电压,即电化学装置正极电压与负极电压的电压差,基于此,本步骤S2012中的“根据所述第二数据确定所述电化学装置的析锂程度”,具体可以包括S20121以及S20122两个子步骤:
S20121:基于所述端电压,得到第二曲线,所述第二曲线表示所述端电压随时间的变化。
本公开实施例中,第二曲线表示电化学装置在静置时的端电压随时间的变化曲线,其整体是端电压随时间下降的曲线。
本公开实施例中,所述端电压可以由电池管理系统(BMS)的模拟前端(AFE)测量,本公开实施例对此不进行特别限制。
具体来说,建立第二曲线时,可以是在获取电化学装置的静置时的端电压的同时记录其所用的时间,从而得到多个端电压和时间组成的数据对,仍参照图12,可以以时间(Time)为横坐标,以电化学装置的端电压(V,Voltage)为纵坐标,将这些数据对所代表的点填充在坐标系中,再进行拟合,从而获得第二曲线Q2,显然,该第二曲线可以用来表示所述端电压随时间的变化。可以理解的是,该曲线图仅用于便于示意性描述和理解本公开实施例,而不作为对本公开实施例的限制。
可以理解的是,电化学装置的端电压和时间数据采集的越密集,则得到的数据对越多,可以得到更加细致的第二曲线。利用数据进行曲线拟合的过程为本领域技术人员所熟知的,本公开实施例对此不做具体限定。
显然,本公开实施例中利用恒流充电后静置的电化学装置的端电压与时间得到第二曲线,便于后面进行析锂检测的过程中对数据进行处理。
S20122:基于所述第二曲线,确定所述析锂程度。
由上述S20121已经介绍,第二曲线表示电化学装置的端电压随时间的变化,因此可以基于第二曲线,来确定析锂程度。
在此可选实施例中,析锂程度可以是可以是衡量用恒流充电并静置的方法确定的电化学装置的析锂多少的量。当析锂的量不超过某个阈值,就可以认为不析锂,否则认为析锂。
具体地,在其中一个实施例中,步骤S20122可以包括步骤S20122A和S20122B。
S20122A:基于所述第二曲线,确定所述第二曲线对应的析锂积分值。
本公开实施例中,析锂积分值可以由第二曲线进行处理计算得到,其可以用于反映电化学装置的析锂状态。其中,析锂积分值越大,电化学装置的析锂状态越严重。
具体地,本公开实施例中,步骤S20122A(即基于所述第二曲线,确定所述第二曲线对应的析锂积分值)可以包括多种方式,下面进行详细说明。
其中第一种方式,方式B1,其包括步骤SB11、SB12以及SB13,其中:
SB11:对所述第二曲线进行微分,得到第三微分曲线。
由于第二曲线表示电化学装置的端电压随时间的变化,因此对第二曲线进行微分获得的第三微分曲线,也即第三微分曲线为第二曲线的一阶微分曲线,其实际上表示电化学装置的端电压随时间的变化率。
SB12:确定所述第三微分曲线是否具有极大值和极小值。
从数学意义上而言,当第三微分曲线同时具有极大值和极小值,则说明第三微分曲线上的原本的平坦区域出现了较明显的起伏变化。仍参照图13,示出了本公开实施例中的一个示例性的第三微分曲线D3的曲线图,其中第三微分曲线D3中具有极大值和极小值。可以理解的是,该曲线图仅用于便于示意性描述和理解本公开实施例,而不作为对本 公开实施例的限制。
SB13:如果所述极大值和所述极小值都存在,确定所述第三微分曲线上所述极大值和所述极小值之间的积分为所述析锂积分值。
在极大值和极小值都存在时,计算析锂积分值,例如,可以将第三微分曲线上极大值和极小值之间的函数表达式计算出来,然后通过牛顿-莱布尼茨公式对该函数表达式求极大值点与极小值点之间的定积分,并将其确定为析锂积分值;或者,可以计算第三微分曲线上极大值、极小值与横轴之间围成的几何图形的面积,显然,该面积也能够作为析锂积分值。
本公开实施例中,析锂积分值的存在表明该电化学装置出现析锂倾向或已经出现析锂,合理地确定电化学装置的析锂积分值有助于后续根据析锂积分值确定析锂程度,以准确地确定电化学装置的析锂检测结果,从而提高确定电化学装置的析锂程度的准确性。
更具体地,在其中一个实施方式中,步骤SB13具体可以为:如果所述极大值和所述极小值都存在、所述极大值和所述极小值是所述第三微分曲线上连续出现的极值、且所述极小值对应的时间大于所述极大值对应的时间,确定所述第三微分曲线上所述极大值和所述极小值之间的积分为所述析锂积分值。
即在该实施方式中,在第三微分曲线上极大值出现的要比极小值早,通过这样的方式确定析锂积分值更加准确,便于后续根据析锂积分值确定析锂程度,从而使得本公开实施例中确定电化学装置的析锂程度的结果更加准确。
其中第二种方式,方式B2,其包括步骤SB21、SB22以及SB23,其中:
SB21:对所述第二曲线进行微分,得到第三微分曲线。
该步骤SB21与步骤SB11相同,可参照SB11进行理解,本公开实施例中不再进行赘述。
SB22:对所述第三微分曲线进行微分,得到第四微分曲线。
由于第二曲线表示电化学装置的端电压随时间的变化,因此对第二曲线进行微分(即一阶微分)获得的第三微分曲线,实际上表示电化学装置的端电压随时间的变化率,第四微分曲线是第三微分曲线的微分曲线,也即第四微分曲线是第二曲线的二阶微分曲线,因此可以通过一阶微分曲线(即第三微分曲线)与二阶微分曲线(即第四微分曲线)之间的性质来进一步确定析锂积分值。
SB23:如果所述第四微分曲线存在第三过零点和第四过零点,且所述第四微分曲线在第三过零点的左侧为正,右侧为负,在第四过零点的左侧为负,右侧为正,确定所述第四微分曲线在第三过零点和第四过零点之间的双重积分为所述析锂积分值。
如图14的曲线W3是对第三微分曲线D3微分得到的第四微分曲线。过零点的含义是曲线与横轴(表示时间的轴)的交点。由于横轴对应的纵坐标为0,因此,与横轴的交点叫做过零点。如图14的曲线W3与横轴有两个交点,即过零点M3、N3。可以理解的是,该曲线图仅用于便于示意性描述和理解本公开实施例,而不作为对本公开实施例的限制。
可以理解的是,左侧、右侧是指第四微分曲线上某一点沿横轴方向的左侧和右侧。如图14所示的第四微分曲线上,其第三过零点M3左侧为正,右侧为负,说明在第三微分曲线D3上的对应点左侧斜率为正,右侧斜率为负,说明它为极大值点,而其第四过零点N3左侧为负,右侧为正说明在第三微分曲线D3上的对应点左侧斜率为负,右侧斜率为正,其为极小值点,因此,在满足上述SB23中的条件时,第三微分曲线上即同时存在极大值和极小值。进而可以将第四微分曲线在第三过零点左侧的双重积分为析锂积分值,以便于后续根据析锂积分值确定所述析锂程度。
更具体地,在其中一个实施例中,步骤SB23具体可以为:如果所述第四微分曲线存在第三过零点和第四过零点,所述第三过零点和第四过零点是所述第四微分曲线上两个连续的过零点,所述第四过零点在所述第三过零点右侧,且所述第四微分曲线在第三过零点的左侧为正,右侧为负,在第四过零点的左侧为负,右侧为正,确定所述第四微分曲线在第三过零点和第四过零点之间的双重积分为所述析锂积分值。
通过这样的方式确定析锂积分值更加准确,便于后续根据析锂积分值确定析锂程度,从而使得本公开实施例中确定电化学装置的析锂程度的结果更加准确。
当然也可以是其它方式确定析锂积分值,本公开实施例中不进行限制,上述方式B1、B2仅作为一些的可选实施方式,而非对本公开实施例的限制。
S20122B:基于所述析锂积分值,确定所述析锂程度。
本公开实施例中,可以是直接将析锂积分值作为析锂程度,以便于本电化学装置管理方法的后续步骤中根据析锂程度对电化学装置进行管理。但为了确定结果更准确,也可以是通过将析锂积分值进行进一步处理以获得析锂程度,以便于本电化学装置管理方法的后续步骤中根据析锂程度对电化学装置进行管理。,本公开实施例中不进行限制。
基于析锂积分值来确定析锂程度,便于后续最终确定电化学装置是否发生析锂。
其中,在一个可选的实施例中,可以将析锂积分值按照一定规则进行归一化,将归一化处理的结果作为析锂程度,便于在后需进行处理。
具体地,S20122B具体可以包括:获取第一临界析锂积分值和第二临界析锂积分值,其中,所述第一临界析锂积分值是析锂到达第三预定程度和未到达第三预定程度之间的分界点的析锂积分值,所述第二临界析锂积分值是析锂到达第四预定程度和未到达第四预定程度之间的分界点的析锂积分值,所述第四预定程度大于所述第三预定程度;
以公式(IG i2-IG 0)/(IG H-IG 0)计算所述析锂程度,其中,IG 0是第一临界析锂积分值,IG H是第二临界析锂积分值,IG i2是所述析锂积分值。
本公开实施例中,第一临界析锂积分值为电化学装置析锂到达第三预定程度和未到达第三预定程度的分界点所对 应的析锂积分值,例如第三预定程度可以是电化学装置刚刚发生析锂的程度,换句话说,第一临界析锂积分值也即是电化学装置未发生析锂和发生析锂的分界点所对应的析锂积分值。如果电化学装置的析锂积分值达到了第一临界析锂积分值,说明电化学装置按这种方法检测的结果是发生析锂。如果电化学装置的析锂积分值未达到第一临界析锂积分值,说明电化学装置按这种方法检测的结果是未发生析锂。
举例来说,第一临界析锂积分值可以是根据提前对多个电化学装置进行实验确定,比如将多个电化学装置分别进行实验,计算每个电化学装置未发生析锂和发生析锂的分界点所对应的析锂积分值。将多个电化学装置分别按上述方法得到析锂积分值。例如,共有100个电化学装置,标记为析锂的电化学装置有50个,析锂积分值都小于0.1,标记为析锂的电化学装置有50个,析锂积分值都大于0.1,则将第一临界析锂积分值确定为0.1,当然这仅作为一个便于理解的例子而非限制。
第二临界析锂积分值其可以是根据提前对多个电化学装置进行实验确定,比如将多个同类的电化学装置分别进行实验,计算每个电化学装置发生析锂未到达严重和发生析锂到达严重的分界点所对应的析锂积分值。将多个电化学装置分别按上述方法得到析锂积分值。然后,将多个电化学装置拆解,观察内部情况,由管理人员标记为严重析锂和未严重析锂。何为严重,可以事先规定,例如通过下面的实验确定:
将多个同类的电化学装置分别进行实验。将多个电化学装置分别按上述方法得到析锂积分值。然后,将多个电化学装置拆解,观察内部情况,由管理人员按照实际需要标记为严重析锂和未严重析锂。在应用场景对析锂要求比较严格的情况下,可以将肉眼观察有一定析锂的电化学装置都标记为严重析锂;在应用场景对析锂要求不太严格的情况下,可以将肉眼观察比较明显的电化学装置标记为严重析锂。根据标记为严重析锂的电化学装置的析锂积分值、和标记为未严重析锂的电化学装置的析锂积分值,确定分界积分值,即第二临界析锂积分值。例如,共有100个电化学装置,标记为严重析锂的电化学装置有50个,析锂积分值都大于0.6,标记为不严重析锂的电化学装置有50个,析锂SOC都小于0.6,则将第二临界析锂积分值确定为0.6,当然这仅作为一个便于理解的例子而非限制。
然后,以公式(IG i2-IG 0)/(IG H-IG 0)计算析锂程度,析锂程度可以指示采用上述方法得到了电化学装置出现析锂的程度,通过这样的方式确定的析锂程度准确性好,从而便于本电化学装置管理方法的后续步骤中根据析锂程度对电化学装置进行管理。。
本公开实施例中,也可以是其它方式基于析锂积分值确定析锂程度,本公开实施例中不进行限制,上述归一化的过程是仅作为一种可选的实施方式,并不作为对本公开实施例中的限制。
通过本公开实施例中的以上实施方式,可以准确地确定电化学装置的析锂程度,从而便于本公开实施例中的电化学装置管理方法的后续步骤中根据电化学装置的析锂程度的结果对电化学装置进行管理,从而便于降低析锂对电化学装置的安全和寿命的影响,以提高锂离子电池的效能。
S102:响应于所述电化学装置的析锂程度大于第一析锂程度阈值,限制对所述电化学装置的充电。
本公开实施例中,电子设备1000的确定装置101确定电化学装置的析锂程度的结果得到后,充电控制装置102可以根据该结果采取对电化学装置的充电采取不同的措施进行管理,具体地,在确定装置101确定电化学装置的析锂程度大于第一析锂程度阈值,限制对所述电化学装置的充电。本公开实施例中不限制充电控制装置102的具体结构,只要其能够完成本公开实施例中的需求即可。
本公开实施例中的限制电化学装置的充电,可以是指降低对电化学装置进行充电的充电电流和/或充电电压的大小,其可以是将充电电流和充电电压一起降低,也可以是只降低充电电流的大小,也可以是只降低充电电压的大小,等等,本公开实施例中不进行限制。
可以理解的是,结合上述S101的相关说明,对于不同的实现方式中,析锂程度具体可能并不相同。具体地,将在下面内容中对其进行详细说明。
在此基础上,具体地,参照图4的流程图,所述限制所述电化学装置的充电,包括S1021、S1022、S1023:
S1021:如果所述析锂程度大于第一析锂程度阈值且不大于第二析锂程度阈值,降低所述电化学装置的充电电流,其中,所述第二析锂程度阈值大于所述第一析锂程度阈值。
本公开实施例中,电化学装置的析锂程度大于第一析锂程度阈值且不大于第二析锂程度阈值,可以认为是电化学装置已经确定发生析锂,但析锂的量较为轻微(例如可以用轻度析锂来简单理解),在此时降低所述电化学装置的充电电流,能够有效减弱电化学装置析锂的趋势,从而可以有效降低析锂对电化学装置(例如可以为锂离子电池)的安全和寿命的影响,以提高电化学装置的效能。
本公开实施例中的第一析锂程度阈值可以根据实际需要进行设置,本公开实施例中不进行限制。例如在一个实施例中可以为50%,在另一实施例中可以为25%,而在再一个可选实施例中可以为20%。
本公开实施例中的第二析锂程度阈值可以根据实际需要进行设置,本公开实施例中不进行限制。例如在一个实施例中可以为80%,在另一实施例中可以为40%,而在再一个可选实施例中可以为50%。
本公开实施例中的降低电化学装置的充电电流可以是按照任意规则进行,例如可以是每次降低充电电流降低相同大小,也可以是每次降低充电电流降低不同大小,本公开实施例不进行限制。
在其中一个实施例中,S1021中的“降低所述电化学装置的充电电流”,包括:以第一比率降低所述电化学装置的充电电流。
第一比率可以根据实际需要进行设置,只要能够完成需求即可,例如第一比率的取值范围可以为【3%,7%】,当然也可以是其他取值范围,例如【2%,5%】、【5%、10%】、【6%,10%】等等,对此,本公开实施例中并不进行特别限制。当第一比率的取值范围是【3%,7%】时,可以依据需要进行取第一比率的具体数值,例如第一比率可以确定为 3%、4%、5%、6%、7%等等,本公开实施例中对此不进行特别限制。
以降低电化学装置的充电电流5%举例来说,若电化学装置的充电电流为2A,则电子设备1000的充电控制装置102将电化学装置的充电电流从2A降低到2A*(1-5%)=1.90A。降低放电电流可以依次类推,在此不再进行赘述。
S1022:如果所述析锂程度大于所述第二析锂程度阈值,且不大于第三析锂程度阈值,降低所述电化学装置的充电电流和/或放电电流,并降低所述电化学装置的充电电压允许上限,其中,所述第三析锂程度阈值大于所述第二析锂程度阈值。
本公开实施例中,电化学装置的析锂程度大于第二析锂程度阈值且不大于第三析锂程度阈值,可以认为是电化学装置已经发生析锂,且析锂的已经达到了一定程度(例如可以用中度析锂来简单理解),在此时降低电化学装置的充电电流和/或放电电流并降低电化学装置的充电电压允许上限,能够有效减弱电化学装置析锂的趋势,从而可以有效降低析锂对电化学装置(例如可以为锂离子电池)的安全和寿命的影响,以提高电化学装置的效能。
与第一析锂程度阈值和第二析锂程度阈值相同,本公开实施例中的第三析锂程度阈值也可以根据实际需要进行设置,本公开实施例中不进行限制。例如在其中一个实施例中,第三析锂程度阈值可以为100%;在另一可选实施例中,第三析锂程度阈值可以为50%;在再一可选实施例中,第三析锂程度阈值可以为95%。
本公开实施例中,充电电压允许上限可以是电化学装置的截止电压,降低充电电压允许上限,也可以理解为降低电化学装置的充电时的截止电压的大小。
本公开实施例中的降低电化学装置的充电电流和/或放电电流可以是按照任意规则进行,当降低电化学装置的充电电流和放电电流时,例如可以是每次降低充电电流和放电电流降低相同大小,也可以是每次降低充电电流降低不同大小;当只降低充电电流或者放电电流时,可以按照实际需要降低不同的大小。此外降低充电电压允许上限也可以是依据实际需要进行降低,本公开实施例不进行限制。
例如,在其中一个实施例中,S1022中的“降低所述电化学装置的充电电流和/或放电电流,并降低所述电化学装置的充电电压允许上限”,包括:以第二比率降低所述电化学装置的充电电流,并以第三比率降低所述电化学装置的充电电压允许上限,和/或,以第四比率降低所述电化学装置的放电电流,并以第三比率降低所述电化学装置的充电电压允许上限。
可以理解的是,本公开实施例中的第二比率、第三比率和第四比率也可以是根据实际需要进行设置,只要能够完成需求即可,例如,第二比率的取值范围可以为【3%,7%】,当然也可以是其他取值范围,例如【2%,5%】、【5%、10%】、【6%,10%】等等,对此,本公开实施例中并不进行特别限制。当第二比率的取值范围是【3%,7%】时,可以依据需要取第二比率的具体数值,例如第二比率可以确定为3%、4%、5%、6%、7%等等,本公开实施例中对此不进行特别限制。
例如第三比率的取值范围可以为【0.5%,2%】,当然也可以是其他取值范围,例如【0.2%,0.8%】、【1.5%、2.5%】、【1.5%,3%】等等,对此,本公开实施例中并不进行特别限制。当第三比率的取值范围是【0.5%,2%】时,可以依据需要取第三比率的具体数值,例如第三比率可以确定为0.5%、0.8%、1%、1.2%、1.5%、2%等等,本公开实施例中对此不进行特别限制。
例如,第四比率的取值范围可以为【3%,7%】,当然也可以是其他取值范围,例如【2%,5%】、【5%、10%】、【6%,10%】等等,对此,本公开实施例中并不进行特别限制。当第四比率的取值范围是【3%,7%】时,可以依据需要取第四比率的具体数值,例如第四比率可以确定为3%、4%、5%、6%、7%等等,本公开实施例中对此不进行特别限制。
在一些可选实施例中,第四比率可以与第二比率数值相同。例如在一个示例性的实施例中,第四比率和第二比率都为5%,此外第三比率为1%。
以第二比率为5%、第三比率为1%、第四比率为5%举例来说,若第二析锂程度阈值为50%,第三析锂程度阈值为95%,充电电流为2A,放电电流为2A,电化学装置的截止电压为5V,例如检测到电化学装置的析锂程度大于等于50%且小于等于95%,则单次降低充电电流5%和/或降低放电电流5%,即充电电流降低后为2A*(1-5%)=1.90A和/或放电电流降低后为2A*(1-5%)=1.90A,充电电压允许上限降低后为:5V*(1-1%)=4.95V。可以理解的是,这示例并不作为对本公开实施例中的任何限制。
S1023:如果所述析锂程度大于所述第三析锂程度阈值,限制所述电化学装置使用。
本公开实施例中,电化学装置的析锂程度大于第三析锂程度阈值,可以认为电化学装置已经发生了严重的析锂(例如可以用重度析锂来简单理解),已经难以继续使用,再进行使用则会使电化学装置出现严重故障,甚至对用户产生伤害,所以在此时限制电化学装置使用(本公开实施例中,限制电化学装置使用可以是指停止对电化学装置充电,并强行锁闭电化学装置,使得电化学装置不能被使用。),有效保护电化学装置的安全,也保障用户的安全。
例如,第三析锂程度阈值为95%时,则例如检测到电化学装置析锂程度为98%,大于95%,则停止对其充电,并强行锁闭电化学装置,使电化学装置不能被使用。
由前所述,对于不同的确定电化学装置的析锂程度的可选方式,电化学装置所确定的析锂程度大小可能并不相同,确定电化学装置的条件也有所区别,下面结合前述内容进行举例说明。
例如,前述步骤S101中的第一种实施方式中确定电化学装置的析锂程度的方法(即S1011~S1014),其中第一种析锂程度的计算方式:析锂程度为第一析锂程度和第二析锂程度的和,则可以将第一析锂程度阈值设置为50%,将第二析锂程度阈值设置为80%,将第三析锂程度阈值设置为100%,当然也可以是其他可选值,其可以依据实际情况进行设置。
例如,前述步骤S101中的第一种实施方式中确定电化学装置的析锂程度的方法(即S1011~S1014),其中第二种 析锂程度的计算方式:析锂程度为第一析锂程度和第二析锂程度的平均数,则可以将第一析锂程度阈值设置为25%,将第二析锂程度阈值设置为40%,将第三析锂程度阈值设置为50%,当然也可以是其他可选值,其可以依据实际情况进行设置。
例如,前述步骤S101中的第一种实施方式中确定电化学装置的析锂程度的方法(即S1011~S1014),其中第三种析锂程度的计算方式:析锂程度为第一析锂程度和第二析锂程度的加权平均数,则可以将第一析锂程度阈值设置为25%,将第二析锂程度阈值设置为40%,将第三析锂程度阈值设置为50%,当然也可以是其他可选值,其可以依据实际情况进行设置。
例如,前述步骤S101中的第二种实施方式中确定电化学装置的析锂程度的方法(即S2011~S2012),这种确定电化学装置的析锂程度的方法与第一种有一些区别,其析锂程度的计算方式:基于公式(IG i2-IG 0)/(IG H-IG 0)计算析锂程度(具体可参照前述步骤S20122B的相关内容,再此不再进行赘述),则可以将第一析锂程度阈值设置为20%,将第二析锂程度阈值设置为50%,将第三析锂程度阈值设置为95%,当然也可以是其他可选值,其可以依据实际情况进行设置。
通过以上方式,更具针对性在确定电化学装置的析锂程度大于第一析锂程度阈值时限制电化学装置的充电,从而能够更加合理地对电化学装置进行管理,更有效地降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。应当理解的是,这些例子仅用于便于理解本公开实施例,而不作为对本公开实施例中的限制。
在其中一些实施例中,本公开实施例中的电化学装置管理方法,除上述的步骤S101和S102以外,还包括步骤S103,具体地:
S103:响应于所述电化学装置的析锂程度小于所述第一析锂程度阈值,提高所述电化学装置的充电电流和/或放电电流。
本公开实施例中,电子设备1000的确定装置101确定电化学装置的析锂程度的结果得到后,充电控制装置102可以根据该结果采取对电化学装置的充电采取不同的措施进行管理,具体地,在确定装置101确定电化学装置的析锂程度小于第一析锂程度阈值,提高电化学装置的充电电流和/或放电电流。通过这种方式,更合理地在电化学装置的析锂程度小于第一析锂程度阈值时对电化学装置进行管理,进一步提高电化学装置的效能。
本公开实施例中,提高电化学装置的充电电流和/或放电电流(既可以是同时提高充电电流和放电电流的大小,也可以是只提高充电电流的大小,也可以是只提高放电电流的大小,本公开实施例中不进行限制)。本公开实施例中不限制充电控制装置102的具体结构,只要其能够完成本公开实施例中的需求即可。
其中,在提高电化学装置的充电电流和/或放电电流时,如果是同时提高充电电流和放电电流的大小,可以是提高充电电流和放电电流相同的值,也可以是提高充电电流和放电电流不同的值,本公开实施例中不进行限制。
在一个可选的实施例中,S103中的所述“提高所述电化学装置的充电电流和/或放电电流”,包括:以第五比率提高所述电化学装置的充电电流和/或放电电流。
本公开实施例中,第五比率可以根据实际需要进行设置,只要能够完成需求即可,例如第五比率的取值范围可以为【0.5%,2%】,当然也可以是其他取值范围,例如【0.2%,0.8%】、【1.5%、2.5%】、【1.5%,3%】等等,对此,本公开实施例中并不进行特别限制。
当第五比率的取值范围是【0.5%,2%】时,可以依据需要进行取第五比率的具体数值,例如第五比率可以确定为0.5%、0.8%、1%、1.2%、1.5%、2%等等,本公开实施例中对此不进行特别限制。
以提高电化学装置的充电电流1%举例来说,若电化学装置的充电电流为2A,则电子设备1000的充电控制装置102将电化学装置的充电电流从2A提高到2A*(1+1%)=2.02A。提高放电电流可以依次类推,在此不再进行赘述。
为了在提高电化学装置的充电电流和/或放电电流时防止对电化学装置的安全和寿命产生影响,本公开实施例中,在提高所述电化学装置的充电电流和/或放电电流第五比率之后,所述电化学装置管理方法还包括:响应于以第五比率提高所述电化学装置的充电电流和/或放电电流后,所述充电电流超过第一电流阈值和/或放电电流超过第二电流阈值,将所述充电电流限制为所述第一电流阈值和/或将放电电流限制为所述第二电流阈值。
通过设置提高充电电流和/或放电电流的上限,可以避免电化学装置充电电流/放电电流提高时出现电化学装置被较大的电流所影响,从而保证电化学装置的安全和寿命稳定。
本公开实施例中,第一电流阈值和第二电流阈值都可以依据实际需要进行设置。例如,第一电流阈值可以是依据电化学装置的不同情况进行合理设置,对于耐充电电流能力较高的电化学装置而言,可以将第一电流阈值调整地相对高一些,对于耐充电电流能力较弱的电化学装置,可以将第一电流阈值调整地相对低一些。同理,对于耐放电电流能力较高的电化学装置而言,可以将第二电流阈值调整地相对高一些,对于耐放电电流能力较弱的电化学装置,可以将第二电流阈值调整地相对低一些。
例如,第一电流阈值为首次确定电化学装置的析锂程度时的充电电流的110%,和/或,第二电流阈值为首次确定电化学装置的析锂程度时的放电电流的110%,当然第一电流阈值、第二电流阈值也可以是其他取值,例如,105%、108%、112%、115%、120%等等,本公开实施例中不进行限制。
以第一电流阈值为首次确定电化学装置的析锂程度时的充电电流的110%举例来说,若电化学装置的充电电流为2A,则电子设备1000的充电控制装置102将电化学装置的充电电流从2A提高到2A*110%=2.20A之后,不再提高电化学装置的充电电流,也即电化学装置的充电电流最高允许值为2.20A,从而将充电电流限制为第一电流阈值(即首次确定电化学装置的析锂程度时的充电电流的110%)。提高放电电流的情况可以依次类推,不再进行赘述。
可选的,可以是将电化学装置的充电电流进行多次提高,直至达到第一电流阈值停止,和/或,将电化学装置的放 电电流进行多次提高,直至达到第二电流阈值停止。例如,以提高充电电流来说,单次提高充电电流第五比率,例如1%,直至第一电流阈值,例如第一电流阈值为首次确定电化学装置的析锂程度时的充电电流和/或放电电流的110%,那么则可以是提高10次;相应地,以提高放电电流来说,单次提高放电电流第五比率,例如1%,直至第二电流阈值,例如第二电流阈值为首次确定电化学装置的析锂程度时的放电电流的110%,那么则可以是提高10次。当然这仅作为便于理解的示例,而非对本公开实施例中的任何限制。
在其中一个可选实施例中,响应于电化学装置的析锂程度小于第一析锂程度阈值,除了提高电化学装置的充电电流和/或放电电流以外,也提高电化学装置的充电电压,在提高充电电压时,也可以依照上述充电电流和/或放电电流的方法进行,本公开实施例中对此不进行限制。
可以理解的是,上文中所介绍的内容,均为本公开实施例中的一些可选的实施方式,而并不作为对本公开实施例中的任何限制。
由此可见,本公开实施例中的电化学装置管理方法,由于能够确定电化学装置的析锂程度,之后响应于电化学装置的析锂程度大于第一析锂程度阈值,限制对电化学装置的充电,从而能够合理地对电化学装置进行管理,有效地降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
根据本公开实施例中的另一方面,参照图5的结构框图,本公开实施例提供了一种电子设备1000,其包括:确定装置101和充电控制装置102,其中,
所述确定装置101用于确定电化学装置的析锂程度;
所述充电控制装置102用于所述充电控制装置用于响应于所述电化学装置的析锂程度大于第一析锂程度阈值,限制对所述电化学装置的充电。
在其中一个实施例中,所述充电控制装置102具体用于:如果所述析锂程度大于第一析锂程度阈值且不大于第二析锂程度阈值,降低所述电化学装置的充电电流,其中,所述第二析锂程度阈值大于所述第一析锂程度阈值;如果所述析锂程度大于所述第二析锂程度阈值,且不大于第三析锂程度阈值,降低所述电化学装置的充电电流和/或放电电流,并降低所述电化学装置的充电电压允许上限,其中,所述第三析锂程度阈值大于所述第二析锂程度阈值;如果所述析锂程度大于所述第三析锂程度阈值,限制所述电化学装置使用。
在其中一个实施例中,所述充电控制装置102具体用于:以第一比率降低所述电化学装置的充电电流。
在其中一个实施例中,所述充电控制装置102具体用于:以第二比率降低所述电化学装置的充电电流,并以第三比率降低所述电化学装置的充电电压允许上限,和/或,以第四比率降低所述电化学装置的放电电流,并以第三比率降低所述电化学装置的充电电压允许上限。
在其中一个实施例中,所述充电控制装置102具体用于:响应于所述电化学装置的析锂程度小于所述第一析锂程度阈值,提高所述电化学装置的充电电流和/或放电电流。
在其中一个实施例中,所述充电控制装置102具体用于:以第五比率提高所述电化学装置的充电电流和/或放电电流。
在其中一个实施例中,所述充电控制装置还用于:响应于以第五比率提高所述电化学装置的充电电流和/或放电电流后,所述充电电流超过第一电流阈值和/或放电电流超过第二电流阈值,将所述充电电流限制为所述第一电流阈值和/或将放电电流限制为所述第二电流阈值。
在其中一个实施例中,所述第一电流阈值为首次确定电化学装置的析锂程度时的充电电流的110%,和/或,所述第二电流阈值为首次确定确定电化学装置的析锂程度时的放电电流的110%。
在其中一个实施例中,所述第一比率的取值范围包括【3%,7%】。
在其中一个实施例中,所述第二比率的取值范围包括【3%,7%】,所述第三比率的取值范围包括【0.5%,2%】,所述第四比率的取值范围包括【3%,7%】。
在其中一个实施例中,所述第五比率的取值范围包括【0.5%,2%】。
在其中一个实施例中,所述确定装置101具体用于:
获取所述电化学装置的充电初始SOC;
响应于所述充电初始SOC小于第一阈值,对所述电化学装置进行间歇式充电,在所述间歇式充电时获取所述电化学装置的第一数据,根据所述第一数据确定所述电化学装置的第一析锂程度;
响应于所述电化学装置的SOC到达第二阈值时,对所述电化学装置进行恒流充电,并静置,在静置时获取所述电化学装置的第二数据,根据所述第二数据确定所述电化学装置的第二析锂程度,所述第一阈值小于所述第二阈值;
根据所述第一析锂程度和所述第二析锂程度,确定所述电化学装置的析锂程度。
在其中一个实施例中,所述间歇式充电包括多个充电期间以及多个间断期间,所述第一数据包括在所述间断期间所述电化学装置的SOC和内阻,所述确定装置101具体用于:获取所述电化学装置在该间断期间开始时间点的第一端电压和在该间断期间结束时间点的第二端电压;确定所述第一端电压和所述第二端电压的电压差;基于所述电压差和所述充电期间所述电化学装置的充电电流,确定所述内阻;获取该间断期间的SOC;基于所述SOC和所述内阻,得到所述第一曲线,所述第一曲线表示所述内阻随所述SOC的变化;基于所述第一曲线,确定所述第一析锂程度。
在其中一个实施例中,所述确定装置101具体用于:对所述第一曲线进行微分,得到第一微分曲线;确定所述第一微分曲线是否具有极大值和极小值;如果所述极大值和所述极小值都存在,确定所述极大值对应的SOC为析锂SOC;基于所述析锂SOC,确定第一析锂程度;或者,对所述第一曲线进行微分,得到第一微分曲线;对所述第一微分曲线进行微分,得到第二微分曲线;如果所述第二微分曲线存在第一过零点和第二过零点,且所述第二微分曲线在第一过 零点的左侧为正,右侧为负,在第二过零点的左侧为负,右侧为正,确定所述第二微分曲线在第一过零点对应的SOC为析锂SOC;基于所述析锂SOC,确定第一析锂程度。
在其中一个实施例中,所述确定装置101具体用于:获取第一临界析锂SOC和第二临界析锂SOC,其中,所述第一临界析锂SOC是析锂到达第一预定程度和未到达第一预定程度之间的分界点的SOC,所述第二临界析锂SOC是析锂到达第二预定程度和未到达第二预定程度之间的分界点的SOC,所述第二预定程度大于所述第一预定程度;以公式(SOC i-SOC 0)/(SOC H-SOC 0)计算所述第一析锂程度,其中,SOC 0是第一临界析锂SOC,SOC H是第二临界SOC,SOC i是所述析锂SOC。
在其中一个实施例中,所述确定装置101具体用于:基于所述端电压,得到第二曲线,所述第二曲线表示所述端电压随时间的变化;基于所述第二曲线,确定所述第二曲线对应的析锂积分值;基于所述析锂积分值,确定所述第二析锂程度。
在其中一个实施例中,所述确定装置101具体用于:对所述第二曲线进行微分,得到第三微分曲线;确定所述第三微分曲线是否具有极大值和极小值;如果所述极大值和所述极小值都存在,确定所述第三微分曲线上所述极大值和所述极小值之间的积分为所述析锂积分值;或者,对所述第二曲线进行微分,得到第三微分曲线;对所述第三微分曲线进行微分,得到第四微分曲线;如果所述第四微分曲线存在第三过零点和第四过零点,且所述第四微分曲线在第三过零点的左侧为正,右侧为负,在第四过零点的左侧为负,右侧为正,确定所述第四微分曲线在第三过零点和第四过零点之间的双重积分为所述析锂积分值。
在其中一个实施例中,所述确定装置101具体用于:获取第一临界析锂积分值和第二临界析锂积分值,其中,所述第一临界析锂积分值是析锂到达第三预定程度和未到达第三预定程度之间的分界点的析锂积分值,所述第二临界析锂积分值是析锂到达第四预定程度和未到达第四预定程度之间的分界点的析锂积分值,所述第四预定程度大于所述第三预定程度;以公式(IG i-IG 0)/(IG H-IG 0)计算所述第二析锂程度,其中,IG 0是第一临界析锂积分值,IG H是第二临界析锂积分值,IG i是所述析锂积分值。
在其中一个实施例中,所述确定装置101具体用于:确定所述第一析锂程度和所述第二析锂程度的和,作为所述析锂程度;或者,确定所述第一析锂程度和所述第二析锂程度的平均数,作为所述析锂程度;或者,确定所述第一析锂程度和所述第二析锂程度的加权平均数,作为所述析锂程度。
在其中一个实施例中,所述确定装置101具体用于:对所述电化学装置进行恒流充电至所述电化学装置的截止电压,并静置,在静置时获取所述电化学装置的第二数据;根据所述第二数据确定所述电化学装置的析锂程度。
在其中一个实施例中,所述确定装置101具体用于:基于所述端电压,得到第二曲线,所述第二曲线表示所述端电压随时间的变化;基于所述第二曲线,确定所述析锂程度。
在其中一个实施例中,所述确定装置101具体用于:基于所述第二曲线,确定所述第二曲线对应的析锂积分值;基于所述析锂积分值,确定所述析锂程度。
在其中一个实施例中,所述确定装置101具体用于:对所述第二曲线进行微分,得到第三微分曲线;确定所述第三微分曲线是否具有极大值和极小值;如果所述极大值和所述极小值都存在,确定所述第三微分曲线上所述极大值和所述极小值之间的积分为所述析锂积分值;或者,对所述第二曲线进行微分,得到第三微分曲线;对所述第三微分曲线进行微分,得到第四微分曲线;如果所述第四微分曲线存在第三过零点和第四过零点,且所述第四微分曲线在第三过零点的左侧为正,右侧为负,在第四过零点的左侧为负,右侧为正,确定所述第四微分曲线在第三过零点和第四过零点之间的双重积分为所述析锂积分值。
在其中一个实施例中,所述确定装置101具体用于:获取第一临界析锂积分值和第二临界析锂积分值,其中,所述第一临界析锂积分值是析锂到达第三预定程度和未到达第三预定程度之间的分界点的析锂积分值,所述第二临界析锂积分值是析锂到达第四预定程度和未到达第四预定程度之间的分界点的析锂积分值,所述第四预定程度大于所述第三预定程度;以公式(IG i2-IG 0)/(IG H-IG 0)计算所述析锂程度,其中,IG 0是第一临界析锂积分值,IG H是第二临界析锂积分值,IG i2是所述析锂积分值。
本公开实施例中的电子设备1000可用于实现前述多个方法实施例中相应的电化学装置管理方法,并具有相应的方法实施例的有益效果,在此不再赘述。此外,本公开实施例的电子设备1000中的各个装置的功能实现均可参照前述方法实施例中的相应部分的描述,在此亦不再赘述。
本公开实施例中的电子设备1000,由于其确定装置101能够确定电化学装置的析锂程度,然后充电控制装置102能够响应于电化学装置的析锂程度大于第一析锂程度阈值,限制对电化学装置的充电,从而该电子设备能够合理地对电化学装置进行管理,有效地降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
根据本公开实施例中的再一方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质内存储有计算机程序,所述计算机程序被处理器执行时实现前述任一项的电化学装置管理方法。
根据本公开实施例中的再一方面,本公开实施例提供了一种充电装置,如图6所示,该充电装置200包括处理器201和机器可读存储介质202,该充电装置200还可以包括充电电路模块203、接口204、电源接口205、整流电路206。其中,充电电路模块203用于接收处理器201发出的指令,对锂离子电池2000(即电化学装置)进行充电;充电电路模块203还可以获取锂离子电池2000的相关参数,并将其发送至处理器201;接口204用于与锂离子电池2000电连接,以将锂离子电池2000连接到充电装置200上;电源接口205用于与外部电源连接;整流电路206用于对输入电流进行整流;机器可读存储介质202存储有能够被处理器执行的机器可执行指令,处理器201执行机器可执行指令时,实现上述任一实施方案所述的电化学装置管理方法步骤。
根据本公开实施例中的再一方面,本公开实施例还提供了一种电池系统,如图7所示,该电池系统300包括第二处理器301和第二机器可读存储介质302,该电池系统300还可以包括充电电路模块303、锂离子电池304(即电化学装置)以及第二接口305。其中,充电电路模块303用于接收第二处理器301发出的指令,对电化学装置进行充电;充电电路模块303还可以获取锂离子电池304(即电化学装置)的相关参数,并将其发送至第二处理器301。第二接口305用于与外部充电器400的接口连接;外部充电器400用于提供电力;第二机器可读存储介质302存储有能够被处理器执行的机器可执行指令,第二处理器301执行机器可执行指令时,实现上述任一实施方案所述的电化学装置管理方法步骤。外部充电器400可以包括第一处理器401、第一机器可读存储介质402、第一接口403及相应的整流电路,该外部充电器可以是市售充电器,本公开实施例对其结构不做具体限定。
根据本公开实施例中的再一方面,本公开实施例还提供了一种电子设备,其包括上述的电池系统。
机器可读存储介质可以包括随机存取存储器(Random Access Memory,简称RAM),也可以包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
对于电子设备/充电装置/存储介质/电池系统实施例而言,由于其基本相似于上述电化学装置管理方法实施例,所以描述的比较简单,相关之处参见上述电化学装置管理方法实施例的部分说明即可,在此不再进行赘述。
下面对本公开实施例中的一些实验例以及对比例进行具体说明,通过这些实验例和对比例,可以更方便且明确地看出本公开实施例中提供的电化学装置管理方法、充电装置、电池系统及电子设备相对于现有技术的显著优势。应当理解,该实验例和对比例并非对本公开实施例中的限制。
实验例及对比例部分
【实验例1.1】
本实验例1.1采取如下实验过程进行:
取1000个同型号锂离子电池(电池容量为4Ah),每隔5小时按照下述过程1进行析锂检测。然后,按照方案1进行充放电电流和充电电压的调整。
过程1是:测量锂离子电池的初始SOC。如果该初始SOC小于30%,对锂离子电池进行脉冲充电,其中,脉冲周期中充电持续时长为1分钟,之后静置时长为10秒,充电期间的充电电流大小为5A。在脉冲充电时获取SOC以及锂离子电池的内阻,根据内阻随SOC的变化,通过上述方法实施例计算第一析锂程度;在锂离子电池的SOC到达80%以上时,以5A充电电流对锂离子电池进行恒流充电,到达截止电压时,停止充电,之后静置,在静置时获取锂离子电池的端电压随时间的变化,根据该变化通过上述方法实施例计算第二析锂程度,计算第一析锂程度与第二析锂程度的和作为电化学装置的析锂程度。
方案1是:该方案1中,设定第一析锂程度阈值为50%、第二析锂程度阈值为80%、第三析锂程度阈值为100%。
如果按照上述的过程1确定出电化学装置的析锂程度小于第一析锂程度阈值(50%),则以第五比率为1%提高该锂离子电池(即电化学装置)的充电电流,但该锂离子电池的充电电流不能超过首次确定电化学装置的析锂程度时的充电电流的110%;如果按照上述的过程1确定出析锂程度大于第一析锂程度阈值(50%)且不大于第二析锂程度阈值(80%),以第一比率为5%降低所述锂离子电池的充电电流;如果按照上述的过程1确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),以第二比率为5%降低所述锂离子电池的充电电流,并以第三比率为1%降低充电电压允许上限;如果按照上述的过程1确定出析锂程度在第三析锂程度阈值(100%)以上,停止对锂离子电池充电并锁闭锂离子电池以限制锂离子电池使用。
每隔5小时进行析锂检测并按照方案1进行充放电电流和充电电压的调整,这样持续一个月时间,然后在一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有993个,完好率99.3%。
【实验例1.2】实验例1.2与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
实验例1.2中,如果按照上述的过程1确定出电化学装置的析锂程度小于第一析锂程度阈值(50%),则以第五比率为0.5%提高该锂离子电池的充电电流而不是1%。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有925个,完好率92.5%。
【实验例1.3】实验例1.3与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
实验例1.3中,如果按照上述的过程1确定出电化学装置的析锂程度小于第一析锂程度阈值(50%),则以第五比率为0.8%提高该锂离子电池的充电电流而不是1%。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有947个,完好率94.7%。
【实验例1.4】实验例1.4与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
实验例1.4中,如果按照上述的过程1确定出电化学装置的析锂程度小于第一析锂程度阈值(50%),则以第五比率为1.5%提高该锂离子电池的充电电流而不是1%。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有940个,完好率94%。
【实验例1.5】实验例1.5与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
实验例1.5中,如果按照上述的过程1确定出电化学装置的析锂程度小于第一析锂程度阈值(50%),则以第五比率为2%提高该锂离子电池的充电电流而不是1%。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有911个,完好率91.1%。
【对比例1.1】对比例1.1与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
对比例1.1中,如果按照上述的过程1确定出电化学装置的析锂程度小于第一析锂程度阈值(50%),则以第五比率为0.4%提高该锂离子电池的充电电流而不是1%。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有819个,完好率81.9%。
【对比例1.2】对比例1.2与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
对比例1.2中,如果按照上述的过程1确定出电化学装置的析锂程度小于第一析锂程度阈值(50%),则以第五比率为2.1%提高该锂离子电池的充电电流而不是1%。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有703个,完好率70.3%。
【实验例1.1-1.5与对比例1.1-1.2的对比分析及结果】
实验例1.1-1.5的最终锂离子电池完好率都超过90%,但对比例1.1-1.2的完好率都低于85%,说明如果确定出电化学装置的析锂程度小于第一析锂程度阈值(50%),提高该锂离子电池的充电电流的第五比率处于【0.5%,2%】时比不在该范围时能大大提高锂离子电池的完好率。
【实验例1.1-1.5之间的对比分析及结果】
虽然实验例1.1-1.5的最终锂离子电池完好率都超过90%,但实验例1.1的完好率超过99%,实验例1.2-1.5的完好率低于95%,说明如果确定出电化学装置的析锂程度小于第一析锂程度阈值(50%),以第五比率为1%提高该锂离子电池的充电电流比第一比率取值为【0.5%,2%】中的其它数值更能提高锂离子电池的完好率。
【实验例2.1】实验例2.1与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
实验例2.1中,如果按照上述的过程1确定出析锂程度大于第一析锂程度阈值(50%)且不大于第二析锂程度阈值(80%),则以第一比率为3%降低所述电化学装置的充电电流而不是5%。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有913个,完好率91.3%。
【实验例2.2】实验例2.2与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
实验例2.2中,如果按照上述的过程1确定出析锂程度大于第一析锂程度阈值(50%)且不大于第二析锂程度阈值(80%),则以第一比率为4%降低所述电化学装置的充电电流而不是5%。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有936个,完好率93.6%。
【实验例2.3】实验例2.3与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
实验例2.3中,如果按照上述的过程1确定出析锂程度大于第一析锂程度阈值(50%)且不大于第二析锂程度阈值(80%),则以第一比率为6%降低所述电化学装置的充电电流而不是5%。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有948个,完好率94.8%。
【实验例2.4】实验例2.4与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
实验例2.4中,如果按照上述的过程1确定出析锂程度大于第一析锂程度阈值(50%)且不大于第二析锂程度阈值(80%),则以第一比率为7%降低所述电化学装置的充电电流而不是5%。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有955个,完好率95.5%。
【对比例2.1】对比例2.1与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
对比例2.1中,如果按照上述的过程1确定出析锂程度大于第一析锂程度阈值(50%)且不大于第二析锂程度阈值(80%),则以第一比率为2%降低所述电化学装置的充电电流而不是5%。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有736个,完好率73.6%。
【对比例2.2】对比例2.2与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
对比例2.2中,如果按照上述的过程1确定出析锂程度大于第一析锂程度阈值(50%)且不大于第二析锂程度阈值(80%),则以第一比率为8%降低所述电化学装置的充电电流而不是5%。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有824个,完好率82.4%。
【实验例1.1、实验例2.1-2.4与对比例2.1-2.2的对比分析及结果】
实验例1.1、实验例2.1-2.4的最终锂离子电池完好率都超过90%,但对比例2.1-2.2的完好率都低于85%,说明如果确定出析锂程度大于第一析锂程度阈值(50%)且不大于第二析锂程度阈值(80%),降低所述电化学装置的充电电流的第一比率处于【3%,7%】时比不在该范围时能大大提高锂离子电池的完好率。
【实验例1.1、实验例2.1-2.4之间的对比分析及结果】
虽然实验例1.1、实验例2.1-2.4的最终锂离子电池完好率都超过90%,但实验例1.1的完好率超过99%,实验例2.1-2.4的完好率低于95%,说明如果确定出析锂程度大于第一析锂程度阈值(50%)且不大于第二析锂程度阈值(80%),降低所述电化学装置的充电电流的第一比率为5%,比【3%,7%】中的其它值,更能提高锂离子电池的完好率。
【实验例3.1】实验例3.1与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
实验例3.1中,如果按照上述的过程1确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),则以第二比率为3%降低所述锂离子电池的充电电流,并以第三比率为0.5%降低充电电压允许上限,而不是以5%降低所述锂离子电池的充电电流,并以1%降低充电电压允许上限。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有906个,完好率90.6%。
【实验例3.2】实验例3.2与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
实验例3.2中,如果按照上述的过程1确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈 值(100%),则以第二比率为4%降低所述锂离子电池的充电电流,并以第三比率为0.7%降低充电电压允许上限,而不是以5%降低所述锂离子电池的充电电流,并以1%降低充电电压允许上限。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有933个,完好率93.3%。
【实验例3.3】实验例3.3与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
实验例3.3中,如果按照上述的过程1确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),则以第二比率为6%降低所述锂离子电池的充电电流,并以第三比率为1.5%降低充电电压允许上限,而不是以5%降低所述锂离子电池的充电电流,并以1%降低充电电压允许上限。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有934个,完好率93.4%。
【实验例3.4】实验例3.4与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
实验例3.4中,如果按照上述的过程1确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),则以第二比率为7%降低所述锂离子电池的充电电流,并以第三比率为2%降低充电电压允许上限,而不是以5%降低所述锂离子电池的充电电流,并以1%降低充电电压允许上限。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有905个,完好率90.5%。
【对比例3.1】对比例3.1与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
对比例3.1中,如果按照上述的过程1确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),则以第二比率为2%降低所述锂离子电池的充电电流,并第三比率为0.4%降低充电电压允许上限,而不是以5%降低所述锂离子电池的充电电流,并以1%降低充电电压允许上限。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有816个,完好率81.6%。
【对比例3.2】对比例3.2与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
对比例3.2中,如果按照上述的过程1确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),则以第二比率为8%降低所述锂离子电池的充电电流,并以第三比率为2.1%降低充电电压允许上限,而不是以5%降低所述锂离子电池的充电电流,并以1%降低充电电压允许上限。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有825个,完好率82.5%。
【实验例1.1、实验例3.1-3.4与对比例3.1-3.2的对比分析及结果】
实验例1.1、实验例3.1-3.4的最终锂离子电池的完好率都超过90%,但对比例3.1-3.2的完好率都低于85%,说明如果确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),降低所述锂离子电池的充电电流的第二比率取值在【3%,7%】中,降低充电电压允许上限的第三比率取值在【0.5%,2%】中,比第二比率和第三比率不在相应范围中时,能大大提高锂离子电池的完好率。
【实验例1.1、实验例3.1-3.4之间的对比分析及结果】
虽然实验例1.1、实验例3.1-3.4的最终锂离子电池的完好率都超过90%,但实验例1.1的完好率超过99%,实验例3.1-3.4的完好率低于95%,说明如果确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),以第二比率为5%降低所述锂离子电池的充电电流,并以第三比率为1%降低充电电压允许上限时,比以第二比率为【3%,7%】中的其它数值降低所述锂离子电池的充电电流,并以第三比率为【0.5%,2%】中的其它数值降低充电电压允许上限,更能提高锂离子电池的完好率。
【实验例4.0】实验例4.0与实验例1.1除了以下不同外,其余过程和参数与实施例1.1相同:
实验例4.0中,如果按照上述的过程1确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),则除了以第二比率为5%降低锂离子电池的充电电流,以第三比率为1%降低充电电压允许上限以外,还以第四比率为5%降低所述锂离子电池的放电电流。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有994个,完好率99.4%。
【实验例4.1】实验例4.1与实验例4.0除了以下不同外,其余过程和参数与实施例4.0相同:
实验例4.1中,如果按照上述的过程1确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),则以第四比率为3%降低所述锂离子电池的放电电流,而不是以5%降低所述锂离子电池的放电电流。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有952个,完好率95.2%。
【实验例4.2】实验例4.2与实验例4.0除了以下不同外,其余过程和参数与实施例4.0相同:
实验例4.2中,如果按照上述的过程1确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),则以第四比率为4%降低所述锂离子电池的放电电流,而不是以5%降低所述锂离子电池的放电电流。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有962个,完好率96.2%。
【实验例4.3】实验例4.3与实验例4.0除了以下不同外,其余过程和参数与实施例4.0相同:
实验例4.3中,如果按照上述的过程1确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),则以第四比率为6%降低所述锂离子电池的放电电流,而不是以5%降低所述锂离子电池的放电电流。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有967个,完好率96.7%。
【实验例4.4】实验例4.4与实验例4.0除了以下不同外,其余过程和参数与实施例4.0相同:
实验例4.4中,如果按照上述的过程1确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),则以第四比率为7%降低所述锂离子电池的充电电流,并以2%降低充电电压允许上限,而不是以5%降低所述锂离子电池的充电电流,并以1%降低充电电压允许上限。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有945个,完好率94.5%。
【对比例4.1】对比例4.1与实验例4.0除了以下不同外,其余过程和参数与实施例4.0相同:
对比例4.1中,如果按照上述的过程1确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),则以第四比率为2%降低所述锂离子电池的放电电流,而不是以5%降低所述锂离子电池的放电电流。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有869个,完好率86.9%。
【对比例4.2】对比例4.2与实验例4.0除了以下不同外,其余过程和参数与实施例4.0相同:
对比例4.2中,如果按照上述的过程1确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),则以第四比率为8%降低所述锂离子电池的放电电流,而不是以5%降低所述锂离子电池的放电电流。
一个月后对1000个锂离子电池进行性能测试,测试完好的锂离子电池有854个,完好率85.4%。
【实验例4.0-4.4与对比例4.1-4.2的对比分析及结果】
实验例4.0-4.4的最终锂离子电池的完好率都超过94%,但对比例4.1-4.2的完好率都低于87%,说明如果确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),以第二比率为5%降低所述锂离子电池的充电电流,以第三比率为1%降低所述锂离子电池的充电电压允许上限,并以取值在【3%,7%】内的第四比率降低锂离子电池的放电电流,比第四比率不处于【3%,7%】内时,能大大提高锂离子电池的完好率。
【实验例4.0、实验例4.1-4.4之间的对比分析及结果】
虽然实验例4.0、实验例4.1-4.4的最终锂离子电池的完好率都超过94%,但实验例4.0的完好率超过99%,实验例4.1-4.4的完好率低于97%,说明如果确定出析锂程度大于第二析锂程度阈值(80%)且不大于第三析锂程度阈值(100%),以第二比率为5%降低所述锂离子电池的充电电流,并以第三比率为1%降低锂离子电池的充电电压允许上限时,并以第四比率为5%降低锂离子电池的放电电流,比以第四比率为【3%,7%】中的其它数值降低所述锂离子电池的放电电流,更能提高锂离子电池的完好率。
可以理解的是,上述各实验例和对比例里,锂离子电池的完好率可以在一定程度上衡量在对应的实验条件下析锂对锂离子电池的安全和寿命的影响大小,以及锂离子电池在对应的实验条件下的能效,完好率越高,在对应的实验条件下析锂对锂离子电池的安全和寿命的影响也就越小,能效也越好。
由此可见,本公开实施例中的电化学装置管理方法,由于能够确定电化学装置的析锂程度,之后响应于所述电化学装置的析锂程度大于第一析锂程度阈值,限制对所述电化学装置的充电,从而能够合理地对电化学装置进行管理,有效地降低析锂对电化学装置的安全和寿命的影响,提高电化学装置的效能。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
应当理解,本公开的方法实施方式中记载的各个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本公开的范围在此方面不受限制。
本文使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”;术语“一些实施例”表示“至少一些实施例”。其他术语的相关定义将在下文描述中给出。需要注意,本公开中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。
需要注意,本公开中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。
本公开实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本公开实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台计算设备(可以是个人计算机、服务器、移动终端、或者网络设备等)执行根据本公开实施方式的方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (50)

  1. 一种电化学装置管理方法,包括:
    确定电化学装置的析锂程度;
    响应于所述电化学装置的析锂程度大于第一析锂程度阈值,限制对所述电化学装置的充电。
  2. 根据权利要求1所述的方法,其中,所述限制对所述电化学装置的充电,包括:
    如果所述析锂程度大于第一析锂程度阈值且不大于第二析锂程度阈值,降低所述电化学装置的充电电流,其中,所述第二析锂程度阈值大于所述第一析锂程度阈值;
    如果所述析锂程度大于所述第二析锂程度阈值,且不大于第三析锂程度阈值,降低所述电化学装置的充电电流和/或放电电流,并降低所述电化学装置的充电电压允许上限,其中,所述第三析锂程度阈值大于所述第二析锂程度阈值;
    如果所述析锂程度大于所述第三析锂程度阈值,限制所述电化学装置使用。
  3. 根据权利要求2所述的方法,其中,所述降低所述电化学装置的充电电流,包括:以第一比率降低所述电化学装置的充电电流。
  4. 根据权利要求2所述的方法,其中,所述降低所述电化学装置的充电电流和/或放电电流,并降低所述电化学装置的充电电压允许上限,包括:
    以第二比率降低所述电化学装置的充电电流,并以第三比率降低所述电化学装置的充电电压允许上限,和/或,以第四比率降低所述电化学装置的放电电流,并以第三比率降低所述电化学装置的充电电压允许上限。
  5. 根据权利要求1所述的方法,还包括:
    响应于所述电化学装置的析锂程度小于所述第一析锂程度阈值,提高所述电化学装置的充电电流和/或放电电流。
  6. 根据权利要求5所述的方法,其中,所述提高所述电化学装置的充电电流和/或放电电流,包括:以第五比率提高所述电化学装置的充电电流和/或放电电流。
  7. 根据权利要求6所述的方法,其中,在以第五比率提高所述电化学装置的充电电流和/或放电电流之后,所述方法还包括:
    响应于以第五比率提高所述电化学装置的充电电流和/或放电电流后,所述充电电流超过第一电流阈值和/或放电电流超过第二电流阈值,将所述充电电流限制为所述第一电流阈值和/或将放电电流限制为所述第二电流阈值。
  8. 根据权利要求7所述的方法,其中,所述第一电流阈值为首次确定电化学装置的析锂程度时的充电电流的110%,和/或,所述第二电流阈值为首次确定电化学装置的析锂程度时的放电电流的110%。
  9. 根据权利要求3所述的方法,其中,所述第一比率的取值范围包括【3%,7%】。
  10. 根据权利要求4所述的方法,其中,所述第二比率的取值范围包括【3%,7%】,所述第三比率的取值范围包括【0.5%,2%】,所述第四比率的取值范围包括【3%,7%】。
  11. 根据权利要求6所述的方法,其中,所述第五比率的取值范围包括【0.5%,2%】。
  12. 根据权利要求1所述的方法,其中,所述确定电化学装置的析锂程度,包括:
    获取所述电化学装置的充电初始SOC;
    响应于所述充电初始SOC小于第一阈值,对所述电化学装置进行间歇式充电,在所述间歇式充电时获取所述电化学装置的第一数据,根据所述第一数据确定所述电化学装置的第一析锂程度;
    响应于所述电化学装置的SOC到达第二阈值时,对所述电化学装置进行恒流充电,并静置,在静置时获取所述电化学装置的第二数据,根据所述第二数据确定所述电化学装置的第二析锂程度,所述第一阈值小于所述第二阈值;
    根据所述第一析锂程度和所述第二析锂程度,确定所述电化学装置的析锂程度。
  13. 根据权利要求12所述的方法,其中,所述间歇式充电包括多个充电期间以及多个间断期间,所述第一数据包括在所述间断期间所述电化学装置的SOC和内阻,所述根据所述第一数据确定所述电化学装置的第一析锂程度,包括:
    获取所述电化学装置在该间断期间开始时间点的第一端电压和在该间断期间结束时间点的第二端电压;
    确定所述第一端电压和所述第二端电压的电压差;
    基于所述电压差和所述充电期间所述电化学装置的充电电流,确定所述内阻;
    获取该间断期间的SOC;
    基于所述SOC和所述内阻,得到所述第一曲线,所述第一曲线表示所述内阻随所述SOC的变化;
    基于所述第一曲线,确定所述第一析锂程度。
  14. 根据权利要求13所述的方法,其中,所述基于所述第一曲线,确定所述第一析锂程度,包括方式A1和方式A2中的至少一个:
    所述方式A1包括:
    对所述第一曲线进行微分,得到第一微分曲线;
    确定所述第一微分曲线是否具有极大值和极小值;
    如果所述极大值和所述极小值都存在,确定所述极大值对应的SOC为析锂SOC;
    基于所述析锂SOC,确定第一析锂程度;
    所述方式A2包括:
    对所述第一曲线进行微分,得到第一微分曲线;
    对所述第一微分曲线进行微分,得到第二微分曲线;
    如果所述第二微分曲线存在第一过零点和第二过零点,且所述第二微分曲线在第一过零点的左侧为正,右侧为负,在第二过零点的左侧为负,右侧为正,确定所述第二微分曲线在第一过零点对应的SOC为析锂SOC;
    基于所述析锂SOC,确定第一析锂程度。
  15. 根据权利要求14所述的方法,其中,所述基于所述析锂SOC,确定所述第一析锂程度,包括:
    获取第一临界析锂SOC和第二临界析锂SOC,其中,所述第一临界析锂SOC是析锂到达第一预定程度和未到达第一预定程度之间的分界点的SOC,所述第二临界析锂SOC是析锂到达第二预定程度和未到达第二预定程度之间的分界点的SOC,所述第二预定程度大于所述第一预定程度;
    以公式(SOC i-SOC 0)/(SOC H-SOC 0)计算所述第一析锂程度,其中,SOC 0是第一临界析锂SOC,SOC H是第二临界SOC,SOC i是所述析锂SOC。
  16. 根据权利要求12所述的方法,其中,所述第二数据包括所述静置期间所述电化学装置的端电压,所述根据所述第二数据确定所述电化学装置的第二析锂程度,包括:
    基于所述端电压,得到第二曲线,所述第二曲线表示所述端电压随时间的变化;
    基于所述第二曲线,确定所述第二曲线对应的析锂积分值;
    基于所述析锂积分值,确定所述第二析锂程度。
  17. 根据权利要求16所述的方法,其中,所述基于所述第二曲线,确定所述第二曲线对应的析锂积分值,包括方式B1和方式B2中的至少一个,其中,
    所述方式B1包括:
    对所述第二曲线进行微分,得到第三微分曲线;
    确定所述第三微分曲线是否具有极大值和极小值;
    如果所述极大值和所述极小值都存在,确定所述第三微分曲线上所述极大值和所述极小值之间的积分为所述析锂积分值;
    所述方式B2包括:
    对所述第二曲线进行微分,得到第三微分曲线;
    对所述第三微分曲线进行微分,得到第四微分曲线;
    如果所述第四微分曲线存在第三过零点和第四过零点,且所述第四微分曲线在第三过零点的左侧为正,右侧为负,在第四过零点的左侧为负,右侧为正,确定所述第四微分曲线在第三过零点和第四过零点之间的双重积分为所述析锂积分值。
  18. 根据权利要求16所述的方法,其中,所述基于所述析锂积分值,确定所述第二析锂程度,包括:
    获取第一临界析锂积分值和第二临界析锂积分值,其中,所述第一临界析锂积分值是析锂到达第三预定程度和未到达第三预定程度之间的分界点的析锂积分值,所述第二临界析锂积分值是析锂到达第四预定程度和未到达第四预定程度之间的分界点的析锂积分值,所述第四预定程度大于所述第三预定程度;
    以公式(IG i-IG 0)/(IG H-IG 0)计算所述第二析锂程度,其中,IG 0是第一临界析锂积分值,IG H是第二临界析锂积分值,IG i是所述析锂积分值。
  19. 根据权利要求12所述的方法,其中,所述根据所述第一析锂程度和所述第二析锂程度,确定所述电化学装置的析锂程度,包括:
    确定所述第一析锂程度和所述第二析锂程度的和,作为所述析锂程度;或者,
    确定所述第一析锂程度和所述第二析锂程度的平均数,作为所述析锂程度;或者,
    确定所述第一析锂程度和所述第二析锂程度的加权平均数,作为所述析锂程度。
  20. 根据权利要求1所述的方法,其中,所述确定电化学装置的析锂程度,包括:
    对所述电化学装置进行恒流充电至所述电化学装置的截止电压,并静置,在静置时获取所述电化学装置的第二数据;
    根据所述第二数据确定所述电化学装置的析锂程度。
  21. 根据权利要求20所述的方法,其中,所述第二数据包括所述静置期间所述电化学装置的端电压,所述根据第二数据确定所述电化学装置的析锂程度,包括:
    基于所述端电压,得到第二曲线,所述第二曲线表示所述端电压随时间的变化;
    基于所述第二曲线,确定所述析锂程度。
  22. 根据权利要求21所述的方法,其中,所述基于所述第二曲线,确定所述析锂程度,包括:
    基于所述第二曲线,确定所述第二曲线对应的析锂积分值;
    基于所述析锂积分值,确定所述析锂程度。
  23. 根据权利要求22所述的方法,其中,所述基于所述第二曲线,确定所述第二曲线对应的析锂积分值,包括方式B1和方式B2中的至少一个,其中,
    所述方式B1包括:
    对所述第二曲线进行微分,得到第三微分曲线;
    确定所述第三微分曲线是否具有极大值和极小值;
    如果所述极大值和所述极小值都存在,确定所述第三微分曲线上所述极大值和所述极小值之间的积分为所述析锂 积分值;
    所述方式B2包括:
    对所述第二曲线进行微分,得到第三微分曲线;
    对所述第三微分曲线进行微分,得到第四微分曲线;
    如果所述第四微分曲线存在第三过零点和第四过零点,且所述第四微分曲线在第三过零点的左侧为正,右侧为负,在第四过零点的左侧为负,右侧为正,确定所述第四微分曲线在第三过零点和第四过零点之间的双重积分为所述析锂积分值。
  24. 根据权利要求22所述的方法,其中,所述基于所述析锂积分值,确定所述析锂程度,包括:
    获取第一临界析锂积分值和第二临界析锂积分值,其中,所述第一临界析锂积分值是析锂到达第三预定程度和未到达第三预定程度之间的分界点的析锂积分值,所述第二临界析锂积分值是析锂到达第四预定程度和未到达第四预定程度之间的分界点的析锂积分值,所述第四预定程度大于所述第三预定程度;
    以公式(IG i2-IG 0)/(IG H-IG 0)计算所述析锂程度,其中,IG 0是第一临界析锂积分值,IG H是第二临界析锂积分值,IG i2是所述析锂积分值。
  25. 一种充电装置,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器执行所述机器可执行指令时,实现权利要求1-24任一项所述的方法。
  26. 一种电池系统,其中,包括处理器、机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器执行所述机器可执行指令时,实现权利要求1-24任一项所述的方法。
  27. 一种电子设备,其中,所述电子设备包括:确定装置、充电控制装置,其中,
    所述确定装置用于确定电化学装置的析锂程度;
    所述充电控制装置用于响应于所述电化学装置的析锂程度大于第一析锂程度阈值,限制对所述电化学装置的充电。
  28. 根据权利要求27所述的电子设备,其中,所述充电控制装置具体用于:如果所述析锂程度大于第一析锂程度阈值且不大于第二析锂程度阈值,降低所述电化学装置的充电电流,其中,所述第二析锂程度阈值大于所述第一析锂程度阈值;
    如果所述析锂程度大于所述第二析锂程度阈值,且不大于第三析锂程度阈值,降低所述电化学装置的充电电流和/或放电电流,并降低所述电化学装置的充电电压允许上限,其中,所述第三析锂程度阈值大于所述第二析锂程度阈值;
    如果所述析锂程度大于所述第三析锂程度阈值,限制所述电化学装置使用。
  29. 根据权利要求28所述的电子设备,其中,所述充电控制装置还用于:以第一比率降低所述电化学装置的充电电流。
  30. 根据权利要求28所述的电子设备,所述充电控制装置还用于:以第二比率降低所述电化学装置的充电电流,并以第三比率降低所述电化学装置的充电电压允许上限,和/或,以第四比率降低所述电化学装置的放电电流,并以第三比率降低所述电化学装置的充电电压允许上限。
  31. 根据权利要求27所述的电子设备,其中,所述充电控制装置还用于:响应于所述电化学装置的析锂程度小于所述第一析锂程度阈值,提高所述电化学装置的充电电流和/或放电电流。
  32. 根据权利要求31所述的电子设备,其中,所述充电控制装置具体用于:以第五比率提高所述电化学装置的充电电流和/或放电电流。
  33. 根据权利要求32所述的电子设备,其中,所述充电控制装置还用于:响应于以第五比率提高所述电化学装置的充电电流和/或放电电流后,所述充电电流超过第一电流阈值和/或放电电流超过第二电流阈值,将所述充电电流限制为所述第一电流阈值和/或将放电电流限制为所述第二电流阈值。
  34. 根据权利要求33所述的电子设备,其中,所述第一电流阈值为首次确定电化学装置的析锂程度时的充电电流的110%,和/或,所述第二电流阈值为首次确定电化学装置的析锂程度时的放电电流的110%。
  35. 根据权利要求29所述的电子设备,其中,所述第一比率的取值范围包括【3%,7%】。
  36. 根据权利要求30所述的电子设备,其中,所述第二比率的取值范围包括【3%,7%】,所述第三比率的取值范围包括【0.5%,2%】,所述第四比率的取值范围包括【3%,7%】。
  37. 根据权利要求32所述的电子设备,其中,所述第五比率的取值范围包括【0.5%,2%】。
  38. 根据权利要求27所述的电子设备,其中,所述确定装置具体用于:
    获取所述电化学装置的充电初始SOC;
    响应于所述充电初始SOC小于第一阈值,对所述电化学装置进行间歇式充电,在所述间歇式充电时获取所述电化学装置的第一数据,根据所述第一数据确定所述电化学装置的第一析锂程度;
    响应于所述电化学装置的SOC到达第二阈值时,对所述电化学装置进行恒流充电,并静置,在静置时获取所述电化学装置的第二数据,根据所述第二数据确定所述电化学装置的第二析锂程度,所述第一阈值小于所述第二阈值;
    根据所述第一析锂程度和所述第二析锂程度,确定所述电化学装置的析锂程度。
  39. 根据权利要求38所述的电子设备,其中,所述间歇式充电包括多个充电期间以及多个间断期间,所述第一数据包括在所述间断期间所述电化学装置的SOC和内阻,所述确定装置具体用于:
    获取所述电化学装置在该间断期间开始时间点的第一端电压和在该间断期间结束时间点的第二端电压;确定所述第一端电压和所述第二端电压的电压差;基于所述电压差和所述充电期间所述电化学装置的充电电流,确定所述内阻;获取该间断期间的SOC;基于所述SOC和所述内阻,得到所述第一曲线,所述第一曲线表示所述内阻随所述SOC的 变化;基于所述第一曲线,确定所述第一析锂程度。
  40. 根据权利要求39所述的电子设备,其中,所述确定装置具体用于:
    对所述第一曲线进行微分,得到第一微分曲线;确定所述第一微分曲线是否具有极大值和极小值;如果所述极大值和所述极小值都存在,确定所述极大值对应的SOC为析锂SOC;基于所述析锂SOC,确定第一析锂程度;
    或者,
    对所述第一曲线进行微分,得到第一微分曲线;对所述第一微分曲线进行微分,得到第二微分曲线;如果所述第二微分曲线存在第一过零点和第二过零点,且所述第二微分曲线在第一过零点的左侧为正,右侧为负,在第二过零点的左侧为负,右侧为正,确定所述第二微分曲线在第一过零点对应的SOC为析锂SOC;基于所述析锂SOC,确定第一析锂程度。
  41. 根据权利要求40所述的电子设备,其中,所述确定装置具体用于:
    获取第一临界析锂SOC和第二临界析锂SOC,其中,所述第一临界析锂SOC是析锂到达第一预定程度和未到达第一预定程度之间的分界点的SOC,所述第二临界析锂SOC是析锂到达第二预定程度和未到达第二预定程度之间的分界点的SOC,所述第二预定程度大于所述第一预定程度;
    以公式(SOC i-SOC 0)/(SOC H-SOC 0)计算所述第一析锂程度,其中,SOC 0是第一临界析锂SOC,SOC H是第二临界SOC,SOC i是所述析锂SOC。
  42. 根据权利要求38所述的电子设备,其中,所述确定装置具体用于:
    基于所述端电压,得到第二曲线,所述第二曲线表示所述端电压随时间的变化;
    基于所述第二曲线,确定所述第二曲线对应的析锂积分值;
    基于所述析锂积分值,确定所述第二析锂程度。
  43. 根据权利要求42所述的电子设备,其中,所述确定装置具体用于:
    对所述第二曲线进行微分,得到第三微分曲线;确定所述第三微分曲线是否具有极大值和极小值;如果所述极大值和所述极小值都存在,确定所述第三微分曲线上所述极大值和所述极小值之间的积分为所述析锂积分值;
    或者,
    对所述第二曲线进行微分,得到第三微分曲线;对所述第三微分曲线进行微分,得到第四微分曲线;如果所述第四微分曲线存在第三过零点和第四过零点,且所述第四微分曲线在第三过零点的左侧为正,右侧为负,在第四过零点的左侧为负,右侧为正,确定所述第四微分曲线在第三过零点和第四过零点之间的双重积分为所述析锂积分值。
  44. 根据权利要求42所述的电子设备,其中,所述确定装置具体用于:
    获取第一临界析锂积分值和第二临界析锂积分值,其中,所述第一临界析锂积分值是析锂到达第三预定程度和未到达第三预定程度之间的分界点的析锂积分值,所述第二临界析锂积分值是析锂到达第四预定程度和未到达第四预定程度之间的分界点的析锂积分值,所述第四预定程度大于所述第三预定程度;
    以公式(IG i-IG 0)/(IG H-IG 0)计算所述第二析锂程度,其中,IG 0是第一临界析锂积分值,IG H是第二临界析锂积分值,IG i是所述析锂积分值。
  45. 根据权利要求38所述的电子设备,其中,所述确定装置具体用于:
    确定所述第一析锂程度和所述第二析锂程度的和,作为所述析锂程度;或者,
    确定所述第一析锂程度和所述第二析锂程度的平均数,作为所述析锂程度;或者,
    确定所述第一析锂程度和所述第二析锂程度的加权平均数,作为所述析锂程度。
  46. 根据权利要求27所述的电子设备,其中,所述确定装置具体用于:
    对所述电化学装置进行恒流充电至所述电化学装置的截止电压,并静置,在静置时获取所述电化学装置的第二数据;根据所述第二数据确定所述电化学装置的析锂程度。
  47. 根据权利要求46所述的电子设备,其中,所述确定装置具体用于:基于所述端电压,得到第二曲线,所述第二曲线表示所述端电压随时间的变化;基于所述第二曲线,确定所述析锂程度。
  48. 根据权利要求47所述的电子设备,其中,所述确定装置具体用于:基于所述第二曲线,确定所述第二曲线对应的析锂积分值;基于所述析锂积分值,确定所述析锂程度。
  49. 根据权利要求48所述的电子设备,其中,所述确定装置具体用于:
    对所述第二曲线进行微分,得到第三微分曲线;确定所述第三微分曲线是否具有极大值和极小值;如果所述极大值和所述极小值都存在,确定所述第三微分曲线上所述极大值和所述极小值之间的积分为所述析锂积分值;
    或者,
    对所述第二曲线进行微分,得到第三微分曲线;对所述第三微分曲线进行微分,得到第四微分曲线;如果所述第四微分曲线存在第三过零点和第四过零点,且所述第四微分曲线在第三过零点的左侧为正,右侧为负,在第四过零点的左侧为负,右侧为正,确定所述第四微分曲线在第三过零点和第四过零点之间的双重积分为所述析锂积分值。
  50. 根据权利要求48所述的电子设备,其中,所述确定装置具体用于:
    获取第一临界析锂积分值和第二临界析锂积分值,其中,所述第一临界析锂积分值是析锂到达第三预定程度和未到达第三预定程度之间的分界点的析锂积分值,所述第二临界析锂积分值是析锂到达第四预定程度和未到达第四预定程度之间的分界点的析锂积分值,所述第四预定程度大于所述第三预定程度;
    以公式(IG i2-IG 0)/(IG H-IG 0)计算所述析锂程度,其中,IG 0是第一临界析锂积分值,IG H是第二临界析锂积分值,IG i2是所述析锂积分值。
PCT/CN2022/071411 2022-01-11 2022-01-11 电化学装置管理方法、充电装置、电池系统及电子设备 WO2023133696A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280004129.2A CN115668580A (zh) 2022-01-11 2022-01-11 电化学装置管理方法、充电装置、电池系统及电子设备
PCT/CN2022/071411 WO2023133696A1 (zh) 2022-01-11 2022-01-11 电化学装置管理方法、充电装置、电池系统及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/071411 WO2023133696A1 (zh) 2022-01-11 2022-01-11 电化学装置管理方法、充电装置、电池系统及电子设备

Publications (1)

Publication Number Publication Date
WO2023133696A1 true WO2023133696A1 (zh) 2023-07-20

Family

ID=85022875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071411 WO2023133696A1 (zh) 2022-01-11 2022-01-11 电化学装置管理方法、充电装置、电池系统及电子设备

Country Status (2)

Country Link
CN (1) CN115668580A (zh)
WO (1) WO2023133696A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089363A (ja) * 2011-10-14 2013-05-13 Toyohashi Univ Of Technology リチウムデンドライトの析出判定方法及びリチウムデンドライトの析出判定装置
JP2015176821A (ja) * 2014-03-17 2015-10-05 トヨタ自動車株式会社 リチウムイオン二次電池の充電方法
CN106450536A (zh) * 2016-11-09 2017-02-22 清华大学 一种锂离子电池快速充电方法
CN109613436A (zh) * 2018-12-27 2019-04-12 蜂巢能源科技有限公司 电池管理系统、电池系统及电池析锂的检测方法、装置
WO2021035736A1 (zh) * 2019-08-30 2021-03-04 Oppo广东移动通信有限公司 充电控制方法及装置、充电测试方法及系统、电子设备
CN114285103A (zh) * 2020-09-27 2022-04-05 比亚迪股份有限公司 基于析锂检测的电池充电方法、系统、汽车及介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105142948B (zh) * 2013-04-25 2018-01-30 丰田自动车株式会社 车辆控制装置
CN103825060B (zh) * 2014-02-28 2016-06-29 清华大学 电池的低温预热与充电方法
CN106099230B (zh) * 2016-08-09 2019-02-05 清华大学 一种可预防析锂的锂离子电池快速充电方法
CN108572325B (zh) * 2018-04-28 2021-03-26 北京新能源汽车股份有限公司 一种电池析锂的检测方法、装置及测试设备
CN108845262A (zh) * 2018-04-28 2018-11-20 北京新能源汽车股份有限公司 一种电池析锂的检测方法、装置及测试设备
CN109358290A (zh) * 2018-09-06 2019-02-19 深圳市比克动力电池有限公司 一种锂离子电池析锂的无损检测方法
JP2020068577A (ja) * 2018-10-23 2020-04-30 トヨタ自動車株式会社 電池制御システム
KR102392399B1 (ko) * 2018-12-21 2022-04-28 주식회사 엘지에너지솔루션 이차 전지의 스텝 충전 제어 장치 및 방법
CN109655760A (zh) * 2018-12-27 2019-04-19 深圳市比克动力电池有限公司 一种锂离子电池析锂的无损检测方法及其应用方法
CN109916987B (zh) * 2018-12-29 2021-11-12 欣旺达惠州动力新能源有限公司 一种电化学析锂分析方法及其模块装置
WO2021217662A1 (zh) * 2020-04-30 2021-11-04 华为技术有限公司 析锂检测方法及装置、极化比例的获取方法及装置
CN111638461A (zh) * 2020-06-27 2020-09-08 天能帅福得能源股份有限公司 一种锂离子电池充电析锂实时检测方法及系统
CN112703125B (zh) * 2020-08-10 2022-04-08 华为技术有限公司 一种锂电池的析锂检测方法及装置
CN112710957B (zh) * 2020-12-26 2022-09-09 清华大学 电池充电析锂检测方法、装置及计算机设备
CN113258151B (zh) * 2021-04-25 2022-10-25 同济大学 一种避免析锂的锂离子电池充电方法
CN113075566A (zh) * 2021-06-07 2021-07-06 四川新能源汽车创新中心有限公司 锂离子动力电池析锂检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089363A (ja) * 2011-10-14 2013-05-13 Toyohashi Univ Of Technology リチウムデンドライトの析出判定方法及びリチウムデンドライトの析出判定装置
JP2015176821A (ja) * 2014-03-17 2015-10-05 トヨタ自動車株式会社 リチウムイオン二次電池の充電方法
CN106450536A (zh) * 2016-11-09 2017-02-22 清华大学 一种锂离子电池快速充电方法
CN109613436A (zh) * 2018-12-27 2019-04-12 蜂巢能源科技有限公司 电池管理系统、电池系统及电池析锂的检测方法、装置
WO2021035736A1 (zh) * 2019-08-30 2021-03-04 Oppo广东移动通信有限公司 充电控制方法及装置、充电测试方法及系统、电子设备
CN114285103A (zh) * 2020-09-27 2022-04-05 比亚迪股份有限公司 基于析锂检测的电池充电方法、系统、汽车及介质

Also Published As

Publication number Publication date
CN115668580A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
JP6731041B2 (ja) リチウム析出探知方法、それを用いた二次電池充電方法及び装置、並びに二次電池システム
US10236702B2 (en) Method and apparatus for rapidly charging battery
EP2838176B1 (en) Method for charging secondary battery
CN107437642B (zh) 一种智能充电方法及装置
WO2023088037A1 (zh) 电化学装置管理方法、电子设备及电池系统
WO2020259039A1 (zh) 荷电状态修正方法及装置
KR20170100526A (ko) 리튬 이온 이차 전지의 충전 방법 및 그 충전 제어 시스템, 및 그 충전 제어 시스템을 구비한 전자기기 및 전지 팩
US20200363475A1 (en) Continuous derating fast charging method based on multiple particle reduced order model
WO2022063236A1 (zh) 基于析锂检测的电池充电方法、系统、汽车及介质
WO2023133696A1 (zh) 电化学装置管理方法、充电装置、电池系统及电子设备
WO2022041662A1 (zh) 一种bms控制方法、系统、电子设备及存储介质
WO2021169162A1 (zh) 电池备电单元监测方法、装置、服务器及可读存储介质
US20230398902A1 (en) Method for charging traction battery and battery management system
WO2023070323A1 (zh) 电化学装置管理方法、系统、电化学装置及电子设备
CN114397582B (zh) 析锂检测方法、电子设备、充电装置及存储介质
JP6895452B2 (ja) 制御装置、制御方法、及びプログラム
CN114611836A (zh) 一种储能电池风险预测方法、装置、介质及设备
WO2023197132A1 (zh) 电化学装置管理方法、装置、充电装置、电池系统及介质
JP2021100374A (ja) 放電方法、電子装置及び記憶媒体
CN113341329A (zh) 一种电压弛豫判定电芯析锂的方法及系统
WO2023070325A1 (zh) 电化学装置管理方法、系统、电化学装置及电子设备
CN115993541B (zh) 磷酸铁锂电池的无损析锂检测方法及相关装置
WO2023279866A1 (zh) 电池充电方法、装置、充电设备和计算机可读存储介质
TWI518964B (zh) Battery pack charging method
WO2023035161A1 (zh) 动力电池充电的方法和电池管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919362

Country of ref document: EP

Kind code of ref document: A1