WO2022063236A1 - 基于析锂检测的电池充电方法、系统、汽车及介质 - Google Patents

基于析锂检测的电池充电方法、系统、汽车及介质 Download PDF

Info

Publication number
WO2022063236A1
WO2022063236A1 PCT/CN2021/120362 CN2021120362W WO2022063236A1 WO 2022063236 A1 WO2022063236 A1 WO 2022063236A1 CN 2021120362 W CN2021120362 W CN 2021120362W WO 2022063236 A1 WO2022063236 A1 WO 2022063236A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
lithium
charging
evolution
detection
Prior art date
Application number
PCT/CN2021/120362
Other languages
English (en)
French (fr)
Inventor
冯天宇
舒时伟
邓林旺
李晓倩
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP21871605.8A priority Critical patent/EP4220817A4/en
Priority to KR1020237012656A priority patent/KR20230069182A/ko
Priority to JP2023519225A priority patent/JP2023544289A/ja
Publication of WO2022063236A1 publication Critical patent/WO2022063236A1/zh
Priority to US18/189,474 priority patent/US20230231403A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/371Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007184Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage in response to battery voltage gradient
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of battery charging, and in particular, to a battery charging method, system, vehicle and medium based on lithium deposition detection.
  • the fast charging of the battery is mainly realized by optimizing the charging waveform and combining the control method with the model.
  • the control methods for optimizing the charging waveform include optimizing the constant current and constant voltage charging method, the step charging method, the pulse charging method and the alternating current charging method, etc.
  • this method is aimed at the off-line method of the new battery that has just left the factory, and does not fully consider the battery life in the battery. Actual changes during actual use, resulting in low battery safety.
  • the control method combined with the model includes the method of combining the equivalent circuit model, the thermal model, the electrochemical model and the combined model combining the above models, etc., so as to realize the fast charging of the battery through the above model, but this method has the following shortcomings: the battery The aging gap during use is relatively large, it is difficult to accurately use the unified model to quickly charge the battery, and the cost of using the model method is high.
  • Embodiments of the present disclosure provide a battery charging method, system, vehicle, and medium based on lithium deposition detection, so as to improve the safety of charging while realizing fast charging of the battery.
  • the present disclosure proposes a battery charging method based on lithium evolution detection, including:
  • the battery is charged according to the charging current in the battery charging strategy table, and the battery is subjected to at least one charge lithium evolution detection during the battery charging process to obtain a first lithium evolution detection result;
  • the first lithium-evolution detection result is that no lithium-evolution phenomenon occurs
  • continue to charge the battery according to the charging current and continue to charge the battery for lithium-evolution detection during the battery charging process, until
  • the first lithium-evolution detection result is that a lithium-evolution phenomenon occurs, or until the battery is fully charged, stop charging the battery for lithium-evolution detection;
  • the charging current in the battery charging strategy table is updated according to the preset first current reduction strategy, and at the same time, according to the updated charging current, the The battery continues to be charged until the battery is fully charged.
  • the present disclosure proposes a battery charging system based on lithium deposition detection, including:
  • the charging strategy table acquisition module is used to acquire the battery charging strategy table after receiving the battery charging instruction
  • the charging lithium evolution detection module is used to charge the battery according to the charging current in the battery charging strategy table, and perform at least one charging lithium evolution detection on the battery during the battery charging process to obtain the first lithium evolution detection result;
  • the first charging module is used for continuing to charge the battery according to the charging current when the first lithium deposition detection result is that the lithium deposition phenomenon does not occur, and continues to charge the battery during the charging process of the battery Carry out charging lithium-evolution detection until the battery is fully charged;
  • the second charging module is configured to update the charging current in the battery charging strategy table according to the preset current reduction strategy when the first lithium deposition detection result is that the lithium deposition phenomenon occurs, and at the same time according to the updated charging current The charging current continues to charge the battery until the battery is fully charged.
  • the present disclosure provides an automobile, including the above-mentioned battery charging system based on detection of lithium deposition.
  • the present disclosure proposes a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements the above-mentioned method for charging a battery based on detection of lithium evolution.
  • the above-mentioned battery charging method, system and vehicle based on lithium deposition detection the method obtains a battery charging strategy table after receiving a battery charging instruction; During the charging process, the battery is subjected to at least one charge lithium-evolution detection to obtain a first lithium-evolution detection result; when the first lithium-evolution detection result is that no lithium-evolution phenomenon occurs, continue to detect the lithium-evolution phenomenon according to the charging current. The battery is charged, and the battery continues to be charged for lithium-evolution detection during the charging process of the battery, until the first lithium-evolution detection result shows that the phenomenon of lithium-evolution occurs, or until the battery is fully charged, stop charging.
  • the battery is charged for lithium deposition detection; when the first lithium deposition detection result is that lithium deposition occurs, the charging current in the battery charging strategy table is updated according to a preset first current reduction strategy, and at the same time The battery continues to be charged according to the updated charging current until the battery is fully charged.
  • the present disclosure detects whether lithium precipitation occurs in the battery during the battery charging process, and when the lithium precipitation phenomenon occurs in the battery, reduces the current charging current of the battery according to a preset first current reduction strategy, thereby improving the safety of the battery charging process. At the same time, it also fully guarantees the fast charging characteristics of the battery.
  • the method in this embodiment can be applied to different types of batteries, it only needs to adjust the charging current in the battery charging strategy table of different types of batteries according to the first lithium deposition detection result, and the calculation amount involved in this method is relatively large. It is small, which reduces the computational complexity of the system and improves the running rate of the system.
  • Fig. 1 is a flow chart of a battery charging method based on lithium evolution detection in an embodiment of the present disclosure
  • FIG. 2 is another flowchart of a battery charging method based on lithium evolution detection in an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a voltage-time coordinate system in a battery charging method based on lithium evolution detection in an embodiment of the present disclosure
  • step S20 is a flowchart of step S20 in the battery charging method based on lithium evolution detection in an embodiment of the present disclosure
  • FIG. 5 is a schematic block diagram of a battery charging system based on detection of lithium evolution in an embodiment of the present disclosure
  • FIG. 6 is another principle block diagram of a battery charging system based on lithium evolution detection in an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a computer device according to an embodiment of the present disclosure.
  • a battery charging method based on the detection of lithium evolution comprising the following steps:
  • the battery charging command is used to instruct the power battery pack to start charging at this time. For example, if the user finds that the current SOC (State Of Charge, battery state of charge) value of the power battery pack is too low, at this time, the car is charged through the charging pile.
  • SOC State Of Charge, battery state of charge
  • the battery charging strategy table contains data related to battery charging, such as charging current, charging voltage, etc.
  • the battery charging strategy table is obtained based on the fast charging strategy formulated by the battery at the factory.
  • the charging current may be updated and adjusted during and/or after the battery is charged, depending on whether the battery has lithium precipitation.
  • the lithium deposition phenomenon refers to the phenomenon that metallic lithium is precipitated in the negative electrode of the battery.
  • S20 Charge the battery according to the charging current in the battery charging strategy table, and perform at least one charge lithium evolution detection on the battery during the battery charging process to obtain a first lithium evolution detection result.
  • the detection of lithium evolution by charging refers to the process of detecting the phenomenon of lithium evolution on the battery during the charging process of the battery.
  • the detection of lithium evolution by charging includes but is not limited to the following methods: three-electrode direct measurement method, Coulomb efficiency measurement method and electrochemical impedance. measurement method.
  • the first lithium-evolution detection result is obtained after the battery is charged with lithium-evolution detection during the battery charging process, and the first lithium-evolution detection result includes two kinds of results: lithium-evolution occurs in the battery, and lithium-evolution does not occur in the battery.
  • a battery charging strategy table is obtained to charge the battery according to the charging current in the battery charging strategy table, and during the battery charging process, the battery is subjected to at least one charge lithium-evolution detection to obtain
  • the first lithium precipitation detection result is used to determine whether there is lithium precipitation during the charging process of the battery. If lithium precipitation occurs during the charging process of the battery, the charging current in the current charging process of the battery should be reduced to suppress lithium precipitation, thereby reducing the amount of lithium precipitation in the subsequent charging process. If the battery does not undergo lithium deposition during the charging process, the battery will continue to be charged with the charging current during the current charging process, and the battery will continue to be charged for lithium deposition detection in the subsequent charging process until the battery is fully charged.
  • the lithium precipitation detection result is no lithium precipitation
  • the lithium deposition detection result is that lithium deposition occurs
  • stop charging the battery for lithium deposition detection and update the charging current in the battery charging strategy table according to the preset first current reduction strategy.
  • the charging current continues to charge the battery until the battery is fully charged; when the first detection result obtained by the subsequent charging of the battery for lithium-evolution detection shows no lithium-evolution phenomenon, it indicates that the battery charging strategy does not need to be updated
  • the preset first current reduction strategy refers to a strategy of reducing the current charging current by a preset proportion.
  • the first current reduction strategy may be: reducing the charging current of the battery during the current charging process by a predetermined percentage.
  • Set the ratio, the preset ratio can be 0.1% to 1% of the current charging current, for example, the preset ratio is 0.5% of the current charging current; in this way, when the charging current is 1A, the charging current can be reduced by 0.5%, That is to say, the charging current is reduced to 0.995A. Understandably, whether the battery is fully charged can be determined according to different situations.
  • the battery can be determined that the battery is fully charged after the current SOC value of the battery reaches the preset SOC value; in another scenario, the battery can also be charged in advance.
  • Perform power failure processing such as a sudden power failure that causes the battery to be unable to continue charging, or to end charging prematurely through manual operations (such as unplugging the charging plug from the charging pile), at this time, it can be considered that the battery has also been charged at this time.
  • the charging current of the battery during the current charging process is reduced according to the preset first current reduction strategy (due to the lithium precipitation phenomenon of the battery, the lithium potential of the negative electrode of the battery is reduced to below 0V , if the current charging current is still maintained to charge the battery, the polarization phenomenon during the charging process will make it easier to reduce the lithium potential of the negative electrode of the battery to a smaller value, so it is necessary to reduce the current charging current of the battery), and will reduce
  • the updated charging current is updated to the battery charging strategy table; and the battery continues to be charged according to the charging current in the updated battery charging strategy table (that is, the above-mentioned reduced charging current), so as to reduce the subsequent charging process of the battery.
  • the probability of increasing the amount of lithium precipitation indicates that
  • the current charging current of the battery is reduced according to the preset first current reduction strategy, so as to improve the battery
  • the method in this embodiment can be applied to different types of lithium batteries, it only needs to adjust the charging current in the battery charging strategy table of different types of batteries according to the first lithium deposition detection result, and the calculation amount involved in this method is enough. It is smaller, which reduces the computational complexity of the system, thereby improving the running rate of the system.
  • step S30 or S40 after the battery is charged, it includes:
  • the resting state refers to a state in which other operations (such as discharging, charging, etc.) are no longer performed on the battery.
  • the static lithium deposition detection refers to the method of performing lithium deposition detection on the battery after the battery is fully charged.
  • the stationary lithium deposition detection includes but is not limited to the following methods: voltage resting method, nonlinear frequency response method and voltage relaxation method Wait.
  • the second lithium-evolution detection result is obtained after the battery is left to stand for lithium-evolution detection after the battery is charged.
  • the second lithium-evolution detection result includes two kinds of results: the battery has lithium-evolution phenomenon, and the battery does not appear lithium-evolution phenomenon.
  • the second lithium deposition detection result can also characterize the lithium deposition characteristic quantity of the battery.
  • step S50 that is, after the battery has been charged and is in a stationary state, the battery is subjected to a stationary lithium evolution detection, and obtaining the second lithium deposition detection result includes the following steps:
  • the voltage of the battery is periodically collected according to a preset time interval, and the collected voltage is stored in association with the voltage collection time as voltage data.
  • the battery in this step refers to the battery that is waiting for the static lithium deposition detection after the charging is completed.
  • the occurrence of lithium precipitation during the charging process of the battery refers to the precipitation of a part of lithium metal at the negative electrode of the battery during the charging process of the battery.
  • the preset time interval may be determined according to actual detection requirements (such as the detected battery type, etc.), for example, the preset time interval may be every 5s. Or every 10s and so on.
  • the collection time refers to the time point corresponding to the voltage of the battery collected according to the preset time interval.
  • the voltage data includes each group of voltages and the corresponding acquisition time.
  • a time differential voltage curve is constructed in a voltage-time coordinate system from the voltage data.
  • the time differential voltage curve represents the change curve of the first-order derivative relationship of the battery with the voltage, and the first-order derivative relationship is calculated according to the acquisition time and the voltage.
  • the voltage-time coordinate system is the coordinate system shown in FIG. 3 , the horizontal axis of the coordinate system represents the voltage of the acquisition battery, and the vertical axis represents the time corresponding to the voltage of the acquisition battery.
  • the time differential voltage is used to obtain and voltage data After the corresponding first derivative relationship, the time differential voltage curve is determined.
  • the determining the time differential voltage curve according to the voltage data includes: generating the time differential voltage curve according to the voltage data and a preset first-order derivative relationship.
  • the preset first-order derivative relationship is calculated according to the voltage of each group of collected batteries and the collection time, and the preset first-order derivative relationship is dt/dU.
  • the time differential voltage curve is determined.
  • the second lithium deposition detection result is obtained.
  • the preset peak-seeking identification algorithm is used to find the characteristic peak voltage corresponding to the characteristic peak when the characteristic peak appears in the time differential voltage curve, and the characteristic peak voltage is used to characterize the occurrence of lithium precipitation during the charging process of the battery.
  • the peak-seeking identification algorithm can set a search area in the above-mentioned voltage-time coordinate system (for example, it can be divided according to time), if the maximum value is searched in this area (ie, as shown in FIG. , the time differential voltage curve L1 has a point where the curve first rises and then falls, which is the characteristic peak phenomenon), then the point corresponding to the maximum value is determined as the characteristic peak point.
  • a preset peak-seeking identification algorithm is used to find whether there is a characteristic peak voltage in the time differential voltage curve, if the time differential voltage curve is If the characteristic peak voltage is found in the time difference voltage curve, it means that the second lithium precipitation detection result is that the battery has lithium precipitation after charging; Lithium precipitation did not occur after completion.
  • the second current reduction strategy refers to: determining the reduction ratio of the charging current that needs to be reduced according to the lithium-evolution characteristics after the battery is charged and the lithium-evolution standard corresponding to the battery, and then updating the reduction ratio according to the reduction ratio.
  • the reduction ratio is 1% of the current charging current; thus, when the charging current in the battery charging strategy table is 1A, the charging current can be reduced by 1%, that is, the charging current is reduced to 0.99A .
  • the preset ratio of the first current reduction strategy and the reduction ratio in the second current reduction strategy may or may not be the same.
  • the lithium evolution characteristic quantity of the battery is further confirmed, Obtaining a lithium precipitation characteristic quantity corresponding to the lithium precipitation phenomenon after the battery is charged; and then updating the charging current in the battery charging strategy table according to the lithium precipitation characteristic quantity and the preset second current reduction strategy.
  • step S60 that is, when the second lithium precipitation detection result is that a lithium precipitation phenomenon occurs, the charging current in the battery charging strategy table is updated according to a preset second current reduction strategy, It includes the following steps:
  • the characteristic peak voltage in the time differential voltage curve is identified by the preset peak-seeking identification algorithm, and after the characteristic peak voltage is determined, the stable voltage corresponding to the time differential voltage curve reaching a preset stability standard is recorded.
  • the preset stability standard refers to that the curve value of the time differential voltage curve meets the following requirements: in the range of -100 to - ⁇ , it approaches a stable and constant state.
  • the change of the time differential voltage curve with the voltage is particularly small for a long period of time (the curve is close to a straight line, and the curve value of the time differential voltage curve is close to a stable state at this time)
  • the voltage value corresponding to the differential voltage curve at the starting time of the state is recorded as the stable voltage.
  • the characteristic peak voltage in the time differential voltage curve is identified by a peak-seeking identification algorithm, which indicates that lithium precipitation occurs in the battery during the charging process, that is, it is determined that the battery is in the charging process.
  • a lithium precipitation state in the at this time, after the characteristic peak voltage is determined, the stable voltage corresponding to when the time differential voltage curve reaches the preset stability standard needs to be recorded.
  • the characteristic peak voltage, the stable voltage and the time differential voltage curve, the first area area and the second area area are determined in the voltage-time coordinate system.
  • the starting point of the time differential voltage curve corresponds to the charging voltage
  • the reference horizontal axis and the first reference vertical axis are determined
  • the reference horizontal axis refers to the voltage-time In the coordinate system
  • the first reference vertical axis refers to the vertical axis corresponding to the characteristic peak voltage in the voltage-time coordinate system
  • U1 is the starting point corresponding to the charging voltage in the time differential voltage curve
  • U2 refers to the point corresponding to the characteristic peak voltage in the time differential voltage curve
  • U3 refers to is the point corresponding to the stable voltage in the time differential voltage curve
  • L3 is the reference horizontal axis
  • L4 is the first reference vertical axis
  • L5 is the second reference vertical axis.
  • the second reference vertical axis is determined; the second reference vertical axis refers to the vertical axis corresponding to the stable voltage in the voltage-time coordinate system; the calculation consists of the reference horizontal axis, the first reference vertical axis axis, the second reference vertical axis, and the area of the second region corresponding to the region jointly enclosed by the time differential voltage curve.
  • the area of the first area and the area of the second area determine the characteristic quantity of lithium evolution of the battery; and update the information in the battery charging strategy table according to the characteristic quantity of lithium evolution and the preset standard of lithium evolution of the battery the charging current.
  • the lithium-evolution indicator characterizes the degree of lithium-evolution of the battery during the charging process.
  • the preset battery lithium deposition standard refers to the lithium deposition standard obtained by testing the battery before the battery leaves the factory, that is, each battery has a corresponding preset battery lithium deposition standard.
  • the stable voltage and the time difference voltage curve according to The area of the first area and the area of the second area are used to determine the amount of lithium evolution of the battery, and then the lithium evolution standard of the battery in the factory specification (that is, the preset battery lithium evolution standard) can be used to determine the battery during the charging process.
  • the severity of lithium precipitation in the battery if the amount of the lithium precipitation exceeds the corresponding lithium precipitation standard of the battery, a second current reduction strategy needs to be adopted to reduce the current charging current in the battery charging strategy table, that is, according to the battery After charging is completed, the difference between the characteristic quantity of lithium evolution and the standard of lithium evolution is determined, and the reduction ratio of the charging current needs to be reduced, and then the charging current in the battery charging strategy table is updated and reduced according to the reduction ratio. . For example, after the battery is charged, the amount of the lithium-evolution indicator exceeds the lithium-evolution standard, and the reduction ratio is preset to 1% of the current charging current.
  • the charging current in the battery charging strategy table is 1A
  • the charging current can be set to Adjusting it by 1% means reducing the charging current to 0.99A. In this way, the battery can be charged with the reduced charging current when the battery is charged next time, thereby reducing the amount of lithium precipitation of the battery, thereby achieving the effect of protecting the battery. .
  • the amount of the lithium-evolution indicator seriously exceeds the lithium-evolution standard corresponding to the battery (for example, the excess amount is greater than or equal to the preset percentage of the lithium-evolution standard, exemplarily, the preset percentage may be 40%; but the The preset percentage can also be set to other percentages other than 40% according to requirements; understandably, when the excess amount is less than the preset percentage, the current in the battery charging strategy table is reduced according to the second current reduction strategy. The charging current is sufficient), it means that the battery should be returned to the factory for maintenance to avoid safety accidents caused by the excessive lithium deposition of the battery.
  • the time point when the characteristic peak voltage appears in the time differential voltage curve is the time point when the active lithium is completely embedded in the graphite, that is, the physical meaning of the area of the first region refers to the "active lithium” precipitated during the charging process of the battery.
  • the second area corresponding to the characteristic peak voltage to the stable voltage indicates that the lithium ion concentration is basically balanced from the separator to the copper foil; therefore, lithium ions are more inclined to diffuse from the outside of the graphite particles to the inside of the particles, so that the lithium ions of the entire graphite particle are more likely to diffuse. evenly distributed.
  • the physical meaning of the area of the first region refers to the time required for the "live lithium” precipitated during the charging process to be embedded from the outside of the graphite into the inside. It is inaccurate to use the area of the first region to characterize the total lithium evolution of the battery, because the time elapsed is related to the lithium evolution and the lithium insertion rate of graphite, and the lithium insertion rate of graphite is related to temperature. , so at the same temperature, the time can be used to characterize the amount of lithium evolution.
  • the present disclosure adopts the inverse of the area of the second region to characterize the lithium deposition rate of the battery.
  • the time for some "active lithium” to be equilibrated in the negative electrode is different from that of the negative electrode.
  • the acquisition times of the areas of the first region coincide.
  • the concentration difference of lithium ions in the graphite particles of the negative electrode is the largest. All calculations are made from the complete insertion of "active lithium” into the negative electrode.
  • the reciprocal of the time at which the negative electrode graphite particles reach the final equilibrium ie the area of the second region
  • the area of the first area can be recorded as the lithium-evolution time of the battery; the reciprocal of the area of the second area is recorded as the lithium-evolution rate of the battery; and the product of the reciprocal area of the second area and the area of the first area is recorded as The lithium-evolution characteristic quantity of the battery, that is, the product of the lithium-evolution time duration and the lithium-evolution rate is recorded as the lithium-evolution characteristic quantity of the battery.
  • the method further includes:
  • the second lithium precipitation detection result shows that no lithium precipitation occurs, that is, after the battery is charged, no lithium precipitation occurs, it means that in the next charging process of the battery, the current charging current in the battery charging strategy table is used. Charging the battery will not increase the lithium deposition characteristics of the battery, and thus will not update the charging current in the battery charging strategy table.
  • the characteristic peak voltage in the time differential voltage curve is not identified by the peak-seeking identification algorithm, it may be prompted that no lithium precipitation occurs in the battery during the charging process.
  • the characteristic peak voltage in the present disclosure is used to characterize the lithium precipitation during the charging process of the battery in a physical sense, after the time difference voltage curve is determined according to the voltage data, the time difference is not identified by the peak-seeking identification algorithm The characteristic peak voltage in the voltage curve indicates that the battery did not undergo lithium precipitation during the charging process.
  • the battery is subjected to a static test for lithium precipitation to determine whether the lithium precipitation phenomenon occurs in the battery after charging is completed, and when the lithium precipitation phenomenon occurs in the battery, the second current is preset according to the second current.
  • the reduction strategy reduces the current charging current of the battery, thereby improving the safety of the battery charging process, and ensuring that the battery is charged with the updated charging current in the battery charging strategy table when the battery receives a charging command next time. Lithium phenomenon, further improve the safety of the battery.
  • step S20 as shown in FIG. 3, that is, during the charging process of the battery, the battery is subjected to at least one charge lithium evolution detection to obtain a first lithium evolution detection result, including:
  • S201 Acquire a first electrochemical impedance and a second electrochemical impedance of the battery at a preset frequency according to a preset SOC variation, where the preset SOC variation is equal to the second SOC value and the first SOC
  • the first SOC value corresponds to the first electrochemical impedance
  • the second SOC value corresponds to the second electrochemical impedance
  • both the first SOC value and the second SOC value are greater than the predetermined value.
  • the first SOC value refers to the ratio of the current remaining capacity of the battery before the charging lithium-evolution detection to the capacity of the battery in a fully charged state
  • the second SOC value refers to the battery after the charging lithium-evolution detection.
  • the preset SOC threshold may be determined according to the type of the battery and the charging requirement.
  • the preset SOC threshold may be 70%, 75%, and the like.
  • the electrochemical impedance refers to the ratio of the AC voltage to the current signal of the battery during the charging process, and the electrochemical impedance corresponds to the SOC value of the battery and the preset frequency (for example, the first electrochemical impedance corresponds to the first SOC value and the preset frequency).
  • the second electrochemical impedance corresponds to the second SOC value and the preset frequency).
  • the preset frequency can be any value selected from a frequency range of 0.01 Hz to 10 Hz, and the preset frequency can be determined according to the type of battery, that is, different types of batteries (such as power batteries, 3C batteries) ) corresponds to different preset frequencies.
  • the preset SOC change amount can be set according to requirements, such as 5%, 10%, etc.; assuming that the preset SOC change amount is 5%, and the preset SOC threshold is 70%; then the first The first SOC value may be 75%, and the second SOC value may be 80%.
  • the electrochemical impedance measurement method is used to detect the lithium evolution during charging of the battery. After the battery is charged according to the charging current in the battery charging strategy table, the first electrochemical impedance and the second electrochemical impedance of the battery at a preset frequency are acquired according to a preset SOC change amount.
  • the battery is only tested for lithium evolution by one charge during the charging process, and the first test result of lithium evolution is that the battery has lithium evolution during the charging process.
  • the first test result of lithium evolution is that the battery has lithium evolution during the charging process.
  • the first lithium deposition detection result determined according to this set of first electrochemical impedance and second electrochemical impedance is that the battery is in the charging process. Lithium precipitation occurs.
  • the battery is subjected to multiple charging lithium evolution tests, and the result of the last lithium evolution test is that the battery has lithium evolution during the charging process.
  • the first lithium deposition detection result is that the battery does not have lithium deposition during the charging process
  • the second electrochemical impedance at this time can be used as the lower limit.
  • a new first electrochemical impedance detected by lithium evolution in one charge, and a new second electrochemical impedance corresponding to it is obtained according to the preset SOC change amount, and according to the new first electrochemical impedance and the new second electrochemical impedance Impedance determines the new first lithium deposition detection result.
  • the difference between the second SOC value and the first SOC value corresponding to each group is equal to a preset SOC change amount.
  • S202 According to the first electrochemical impedance and the second electrochemical impedance, determine the first lithium deposition detection result of the battery at the second detection time.
  • the first electrochemical impedance and the second electrochemical impedance are compared, and then according to the result obtained after the comparison Determine the first lithium deposition detection result of the battery at the second detection time.
  • a battery charging system based on lithium evolution detection comprising the following modules:
  • the charging strategy table acquiring module 10 is configured to acquire the battery charging strategy table after receiving the battery charging instruction;
  • the charging lithium-evolution detection module 20 is used to charge the battery according to the charging current in the battery charging strategy table, and perform at least one charge lithium-evolution detection on the battery during the battery charging process to obtain the first lithium-evolution Test results;
  • the first charging module 30 is used for continuing to charge the battery according to the charging current when the first detection result of lithium precipitation is that no lithium precipitation occurs, and continues to charge the battery during the charging process of the battery.
  • the battery is charged for lithium-evolution detection, until the first lithium-evolution detection result is that the phenomenon of lithium-evolution occurs, or until the battery is fully charged, the battery is stopped from being charged for lithium-evolution detection;
  • the second charging module 40 is configured to update the charging current in the battery charging strategy table according to a preset current reduction strategy when the first lithium deposition detection result is that a lithium deposition phenomenon occurs, and at the same time according to the updated charging current The charging current continues to charge the battery until the battery is fully charged.
  • the battery charging system based on lithium evolution detection also includes the following modules:
  • the stand-still lithium-evolution detection module 50 is used to perform a stand-still lithium-evolution detection on the battery after the battery has been charged and is in a stand-still state to obtain a second lithium-evolution detection result;
  • the charging current updating module 60 is configured to update the charging current in the battery charging strategy table according to a preset second current reduction strategy when the second lithium deposition detection result is that a lithium deposition phenomenon occurs.
  • the static lithium precipitation detection module 50 includes the following units:
  • a voltage acquisition unit configured to periodically collect the voltage of the battery according to a preset time interval after the battery has been charged and is in a static state, and store the collected voltage in association with the collection time of the voltage as a voltage data
  • a curve construction unit configured to construct a time differential voltage curve in a voltage-time coordinate system according to the voltage data
  • the peak-seeking identification unit is configured to obtain the second lithium deposition detection result according to the time differential voltage curve and the preset peak-seeking identification algorithm.
  • the charging current update module 60 includes the following units:
  • a voltage recording unit configured to identify the characteristic peak voltage in the time differential voltage curve through the preset peak-seeking identification algorithm, and after determining the characteristic peak voltage, record the corresponding time difference voltage curve when the time differential voltage curve reaches a preset stability standard stable voltage;
  • an area determination unit configured to determine the first area area and the second area area in the voltage-time coordinate system according to the characteristic peak voltage, the stable voltage and the time differential voltage curve;
  • a lithium-evolution character quantity determination unit configured to determine the lithium-evolution character quantity of the battery according to the area of the first area and the area of the second area;
  • a current update unit configured to update the charging current in the battery charging strategy table according to the lithium-evolution indicator quantity and a preset battery lithium-evolution standard.
  • the charging lithium precipitation detection module 20 includes the following units:
  • an electrochemical impedance obtaining unit configured to obtain a first electrochemical impedance and a second electrochemical impedance of the battery at a preset frequency according to a preset SOC variation; the first SOC corresponding to the first electrochemical impedance value and the second SOC value corresponding to the second electrochemical impedance are both greater than a preset SOC threshold; the difference between the second SOC value and the first SOC value is equal to a preset SOC change amount;
  • a lithium-evolution detection result obtaining unit configured to obtain the first lithium-evolution detection result according to the first electrochemical impedance and the second electrochemical impedance.
  • the lithium precipitation detection result acquisition unit includes the following subunits:
  • a first impedance comparison unit used for the first precipitation when the first electrochemical impedance is greater than the second electrochemical impedance, determining that the first lithium precipitation detection result is a lithium precipitation phenomenon
  • the second impedance comparison unit is configured to determine, when the first electrochemical impedance is less than or equal to the second electrochemical impedance, that the first lithium deposition detection result is that no lithium deposition occurs.
  • an automobile including the above-mentioned battery charging system based on lithium deposition detection.
  • a computer device is provided, and the computer device may be a server, and its internal structure diagram may be as shown in FIG. 7 .
  • the computer device includes a processor, memory, a network interface, and a database connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium, an internal memory.
  • the nonvolatile storage medium stores an operating system, a computer program, and a database.
  • the internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium.
  • the network interface of the computer equipment is used to communicate with external terminals through a network connection. When the computer program is executed by the processor, a battery charging method based on the detection of lithium deposition is realized.
  • a computer device comprising a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor implements the lithium-evolution-based detection in the foregoing embodiment when the processor executes the computer program battery charging method.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the method for charging a battery based on detection of lithium evolution in the embodiment is implemented.
  • Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

提供了一种基于析锂检测的电池充电方法、系统、汽车及介质,涉及电池充电技术领域。方法包括:接收电池充电指令之后,获取电池充电策略表(S10);根据电池充电策略表中的充电电流对电池进行充电,并在电池充电过程中对电池进行至少一次充电析锂检测以得到第一析锂检测结果(S20);在第一析锂检测结果为未出现析锂现象时,根据充电电流继续对电池进行充电,并继续对电池进行充电析锂检测,直至第一析锂检测结果为出现析锂现象,或者直至电池完成充电时,停止进行充电析锂检测(S30);在第一析锂检测结果为出现析锂现象时,根据预设的第一电流减小策略更新电池充电策略表中的充电电流,同时根据更新后的充电电流对电池继续进行充电,直至完成充电(S40)。

Description

基于析锂检测的电池充电方法、系统、汽车及介质
相关申请的交叉引用
本公开要求于2020年09月27日提交的申请号为202011032994.7、名称为“基于析锂检测的电池充电方法、系统、汽车及介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电池充电技术领域,尤其涉及一种基于析锂检测的电池充电方法、系统、汽车及介质。
背景技术
随着科学技术的发展,新能源汽车发展也越来越迅速。电池作为新能源汽车的重要配件,用户对汽车电池的充电时间提出了越来越高的要求。进一步缩短电池充电时间,能够有效提高用户的用车体验。
相关技术中,主要通过优化充电波形、结合模型的控制方法,实现对电池的快速充电。优化充电波形的控制方法包括优化恒流恒压充电法、台阶充电法、脉冲充电法和交流电充电法等,但是该方法针对的是刚出厂的新电池的离线方法,并没有完全考虑到电池在实际使用过程中的实际变化,从而会导致电池的安全性低。而结合模型的控制方法包括结合等效电路模型、结合热模型、结合电化学模型以及结合上述模型的组合模型等的方法,以通过上述模型实现电池的快速充电,但是该方法存在以下不足:电池在使用过程中的老化差距比较大,难以准确使用统一模型对电池进行快速充电,且采用模型方法成本较高。
发明内容
本公开实施例提供一种基于析锂检测的电池充电方法、系统、汽车及介质,以在实现电池快速充电的同时提高充电的安全性。
第一方面,本公开提出了一种基于析锂检测的电池充电方法,包括:
接收电池充电指令之后,获取电池充电策略表;
根据所述电池充电策略表中的充电电流对电池进行充电,并在所述电池充电过程中对所述电池进行至少一次充电析锂检测以得到第一析锂检测结果;
在所述第一析锂检测结果为未出现析锂现象时,根据所述充电电流继续对所述电池进行充电,并继续在所述电池充电过程中对所述电池进行充电析锂检测,直至所述第一析锂 检测结果为出现析锂现象时,或者直至所述电池完成充电时,停止对所述电池进行充电析锂检测;
在所述第一析锂检测结果为出现析锂现象时,根据预设的第一电流减小策略更新所述电池充电策略表中的所述充电电流,同时根据更新后的所述充电电流对所述电池继续进行充电,直至所述电池完成充电。
第二方面,本公开提出了一种基于析锂检测的电池充电系统,包括:
充电策略表获取模块,用于接收电池充电指令之后,获取电池充电策略表;
充电析锂检测模块,用于根据所述电池充电策略表中的充电电流对电池进行充电,并在所述电池充电过程中对所述电池进行至少一次充电析锂检测以得到第一析锂检测结果;
第一充电模块,用于在所述第一析锂检测结果为未出现析锂现象时,根据所述充电电流继续对所述电池进行充电,并继续在所述电池充电过程中对所述电池进行充电析锂检测,直至所述电池完成充电;
第二充电模块,用于在所述第一析锂检测结果为出现析锂现象时,根据预设的电流减小策略更新所述电池充电策略表中的所述充电电流,同时根据更新后的所述充电电流对所述电池继续进行充电,直至所述电池完成充电。
第三方面,本公开提出了一种汽车,包括上述基于析锂检测的电池充电系统。
第四方面,本公开提出了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述基于析锂检测的电池充电方法。
上述基于析锂检测的电池充电方法、系统以及汽车,该方法通过接收电池充电指令之后,获取电池充电策略表;根据所述电池充电策略表中的充电电流对电池进行充电,并在所述电池充电过程中对所述电池进行至少一次充电析锂检测,以得到第一析锂检测结果;在所述第一析锂检测结果为未出现析锂现象时,根据所述充电电流继续对所述电池进行充电,并继续在所述电池充电过程中对所述电池进行充电析锂检测,直至所述第一析锂检测结果为出现析锂现象时,或者直至所述电池完成充电时,停止对所述电池进行充电析锂检测;在所述第一析锂检测结果为出现析锂现象时,根据预设的第一电流减小策略更新所述电池充电策略表中的所述充电电流,同时根据更新后的所述充电电流对所述电池继续进行充电,直至所述电池完成充电。
本公开在电池充电过程中检测电池是否出现析锂现象,并在电池出现析锂现象时,根据预设的第一电流减小策略减小电池的当前充电电流,从而在提高电池充电过程的安全性的同时,还充分保证了电池的快充特性。并且本实施例中的方法,可以适用于不同类型的电池,只需要根据第一析锂检测结果,调整不同类型电池的电池充电策略表中的充电电流即可,并且本方法涉及的计算量较小,减小了系统的计算复杂度,提高了系统的运行速率。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一实施例中基于析锂检测的电池充电方法的一流程图;
图2是本公开一实施例中基于析锂检测的电池充电方法的另一流程图;
图3是本公开一实施例中基于析锂检测的电池充电方法中的电压-时间坐标系的示意图;
图4是本公开一实施例中基于析锂检测的电池充电方法中步骤S20的一流程图;
图5是本公开一实施例中基于析锂检测的电池充电系统的一原理框图;
图6是本公开一实施例中基于析锂检测的电池充电系统的另一原理框图;
图7是本公开一实施例中计算机设备的一示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在一实施例中,如图1所示,提供一种基于析锂检测的电池充电方法,包括如下步骤:
S10:接收电池充电指令之后,获取电池充电策略表。
其中,电池充电指令用于指示此时开始对动力电池组进行充电,比如,用户发现动力电池组当前的SOC(State Of Charge,电池荷电状态)值过低,此时通过充电桩对汽车进行充电,在开始充电的时刻,即生成电池充电指令。电池充电策略表中包含与电池充电相关的数据,例如,充电电流、充电电压等,该电池充电策略表是基于电池出厂制定的快充策略得到的,可理解地,该电池充电策略表中的充电电流,可能会在电池充电过程和/或充电完成之后,根据电池是否发生析锂现象进行更新调整。其中,析锂现象指的是电池的负极中析出金属锂的现象。
S20:根据所述电池充电策略表中的充电电流对电池进行充电,并在所述电池充电过程中对所述电池进行至少一次充电析锂检测以得到第一析锂检测结果。
其中,充电析锂检测指的是在电池充电过程中对电池进行析锂现象检测的过程,该充 电析锂检测包括但不限于如下方法:三电极直接测量法、库伦效率测量法以及电化学阻抗测量法。第一析锂检测结果为在电池充电过程中对电池进行充电析锂检测后得到的,该第一析锂检测结果包括两种结果:电池出现析锂现象,以及电池未出现析锂现象。
具体地,在接收到电池充电指令之后,获取电池充电策略表,以根据该电池充电策略表中的充电电流对电池进行充电,并在电池充电过程中对电池进行至少一次充电析锂检测,得到第一析锂检测结果,以确定电池在充电过程中是否存在析锂现象。若电池在充电过程中发生析锂现象,则应减小电池当前充电过程中的充电电流,进而抑制析锂,进而减小后续充电过程中的析锂表征量。若电池在充电过程中未发生析锂现象,则以当前充电过程中的充电电流继续对电池进行充电,并在后续充电过程中继续对电池进行充电析锂检测,直至电池完成充电。
S30:在所述第一析锂检测结果为未出现析锂现象时,根据所述充电电流继续对所述电池进行充电,并继续在所述电池充电过程中对所述电池进行充电析锂检测,直至所述第一析锂检测结果为出现析锂现象时,或者直至所述电池完成充电时,停止对所述电池进行充电析锂检测。
具体地,在根据所述电池充电策略表中的充电电流对电池进行充电,并在所述电池充电过程中对所述电池进行充电析锂检测,得到第一析锂检测结果之后,在第一析锂检测结果为未出现析锂现象时,根据电池充电策略表中的充电电流对电池继续充电,并继续在电池充电过程中对电池进行充电析锂检测;在后续任意一个时刻得到的第一析锂检测结果为出现析锂现象时,停止对电池进行充电析锂检测,并根据预设的第一电流减小策略更新所述电池充电策略表中的所述充电电流,同时根据更新后的所述充电电流对所述电池继续进行充电,直至所述电池完成充电;在后续对电池进行充电析锂检测得到的第一检测结果均未出现析锂现象时,表明无需更新所述电池充电策略表中的所述充电电流,并在电池充电完成后,停止对电池进行充电析锂检测。
S40:在所述第一析锂检测结果为出现析锂现象时,根据预设的第一电流减小策略更新所述电池充电策略表中的所述充电电流,同时根据更新后的所述充电电流对所述电池继续进行充电,直至所述电池完成充电。
其中,预设的第一电流减小策略是指将当前充电电流减小预设比例的策略,示例性地,第一电流减小策略可以为:令当前充电过程中电池的充电电流减小预设比例,该预设比例可以为当前充电电流的0.1%~1%,比如,该预设比例为当前充电电流的0.5%;如此,在充电电流为1A时,可以令充电电流下调0.5%,也即将充电电流减小至0.995A。可理解地,电池是否完成充电,可以根据不同情况进行确定,比如,可以设定在电池当前SOC值达到预设SOC值后,即确定电池完成充电;在另一场景下,也可以提前对电池进行断电处理, 如突然停电导致电池不能继续进行充电或者通过人为操作(比如从充电桩上拔下充电插头)提前结束充电,此时可以认为此时电池亦已经完成充电。
具体地,在根据所述电池充电策略表中的充电电流对电池进行充电,并在所述电池充电过程中对所述电池进行充电析锂检测,得到第一析锂检测结果之后,在第一析锂检测结果为出现析锂现象时,根据预设的第一电流减小策略,减小当前充电过程中电池的充电电流(由于电池出现析锂现象时,电池负极的锂电位降低至0V以下,若仍保持当前的充电电流对电池进行充电,在充电过程中的极化现象会更容易让电池负极的锂电位降低至更小,因此需要减小电池当前的充电电流),并将减小后的充电电流更新至电池充电策略表中;并根据更新后的电池充电策略表中的充电电流(也即上述减小后的充电电流)对电池继续进行充电,以减小后续充电过程中电池出现析锂表征量增加的概率,直至电池完成充电,进而保证电池在充电过程中的安全性,也即表明,在充电过程中若检测到电池出现一次析锂现象,则不需要继续对电池进行充电析锂检测。
在本实施例中,在电池充电过程中检测电池是否出现析锂现象,并在电池出现析锂现象时,根据预设的第一电流减小策略减小电池的当前充电电流,从而在提高电池充电过程的安全性的同时,确保电池在安全前提下发挥电池的快充特性。并且本实施例中的方法,可以适用于不同类型的锂电池,只需要根据第一析锂检测结果,调整不同类型电池的电池充电策略表中的充电电流即可,并且本方法涉及的计算量较小,减小了系统的计算复杂度,进而提高了系统的运行速率。
在一实施例中,步骤S30或者S40之后,如图2所示,所述电池完成充电之后,包括:
S50:在所述电池完成充电并处于静置状态之后,对所述电池进行静置析锂检测,得到第二析锂检测结果。
其中,静置状态指的是不再对电池进行其它操作(如放电、充电等)的状态。静置析锂检测指的是在电池完成充电后对电池进行析锂检测的方法,该静置析锂检测包括但不限于如下方法:电压静置法、非线性频率响应法以及电压弛豫法等。第二析锂检测结果为在电池充电完成后对电池进行静置析锂检测后得到的,该第二析锂检测结果包括两种结果,电池出现析锂现象,以及电池未出现析锂现象,并且该第二析锂检测结果为电池出现析锂现象时,第二析锂检测结果还可以表征电池的析锂表征量。
具体地,在根据更新后的所述充电电流对所述电池继续进行充电,并继续在所述电池充电过程中对所述电池进行充电析锂检测,直至所述电池完成充电之后,令完成充电的电池处于静置状态,以对电池进行静置析锂检测,得到第二析锂检测结果。
在一具体实施例中,步骤S50中,也即在所述电池完成充电并处于静置状态之后,对所述电池进行静置析锂检测,得到第二析锂检测结果包括如下步骤:
在所述电池完成充电并处于静置状态之后,根据预设时间间隔定时采集所述电池的电压,并将采集得到的所述电压与该电压的采集时间关联存储为电压数据。
其中,该步骤中的电池是指完成充电后等待进行静置析锂检测的电池。其中,电池在充电过程中发生析锂指的是电池在充电过程中,在电池的负极析出一部分锂金属。预设时间间隔可以根据实际检测需求(如检测的电池类别等)进行确定,示例性地,预设时间间隔可以为每隔5s。或者每隔10s等。采集时间指的是与根据预设时间间隔采集到电池的电压对应的时间点。电压数据中包含了每一组电压以及与其对应的采集时间。
根据所述电压数据在电压-时间坐标系中构建时间差分电压曲线。
其中,时间差分电压曲线表征电池的一阶导数关系随电压的变化曲线,该一阶导数关系是根据采集时间以及电压计算得到的。电压-时间坐标系为如图3所示的坐标系,该坐标系的横轴表征采集电池的电压,纵轴表征采集电池的电压对应的时间。其中,L1表征时间差分电压曲线;L2表征采集电池的电压随采集时间变化的曲线。具体地,在根据预设时间间隔定时采集所述电池的电压,并将采集得到的所述电压与该电压的采集时间关联存储为电压数据之后,根据电压数据,采用时间差分电压得到与电压数据对应的一阶导数关系之后,确定时间差分电压曲线。
可选地,在该步骤中,所述根据所述电压数据确定时间差分电压曲线,包括:根据所述电压数据以及预设的一阶导数关系生成所述时间差分电压曲线。其中,预设的一阶导数关系是根据每组采集的电池的电压以及采集时间计算得到的,该预设的一阶导数关系为dt/dU。
具体地,在根据预设时间间隔定时采集所述电池的电压,并将采集得到的所述电压与该电压的采集时间关联存储为电压数据之后,根据电压数据中每一组电压以及对应的采集时间,得到预设的一阶导数关系;由于每一采集电压具有对应的一阶导数关系值进而确定时间差分电压曲线。
根据所述时间差分电压曲线以及预设寻峰识别算法,得到第二析锂检测结果。
其中,预设寻峰识别算法用于寻找时间差分电压曲线中出现特征峰时与该特征峰对应的特征峰电压,该特征峰电压用于表征电池在充电过程中发生析锂。在本实施例中,该寻峰识别算法可以在上述电压-时间坐标系中设定一个搜索区域(例如可以根据时间划分),若在该区域中搜索到最大值(也即如图3所示,时间差分电压曲线L1出现曲线先上升再下滑的点,即为出现特征峰现象),则将该最大值对应的点确定为特征峰点。
具体地,在根据所述电压数据在电压-时间坐标系中构建时间差分电压曲线之后,通过预设寻峰识别算法,在时间差分电压曲线中寻找是否存在特征峰电压,若该时间差分电 压曲线中发现特征峰电压,则表征第二析锂检测结果为电池在充电完成后出现析锂现象;若该时间差分电压曲线中未发现特征峰电压,则表征第二析锂检测结果为电池在充电完成后未出现析锂现象。
S60:在所述第二析锂检测结果为出现析锂现象时,根据预设的第二电流减小策略更新所述电池充电策略表中的所述充电电流。
其中,第二电流减小策略是指:根据电池充电完成后的析锂表征量以及与该电池对应的析锂标准,确定需要减小充电电流的减小比例,进而根据该减小比例更新减小所述电池充电策略表中的所述充电电流。比如,该减小比例为当前充电电流的1%;如此,在所述电池充电策略表中的所述充电电流为1A时,可以令充电电流下调1%,也即将充电电流减小至0.99A。可理解地,在本公开中,第一电流减小策略的预设比例和第二电流减小策略中的减小比例可能相同也可能并不相同。
具体地,在对所述电池进行静置析锂检测,得到第二析锂检测结果之后,在第二析锂检测结果为出现析锂现象时,对电池的析锂表征量进行进一步的确认,得到电池充电完成后出现析锂现象对应的析锂表征量;进而根据该析锂表征量以及预设的第二电流减小策略更新电池充电策略表中的充电电流。
可选地,步骤S60中,也即在所述第二析锂检测结果为出现析锂现象时,根据预设的第二电流减小策略更新所述电池充电策略表中的所述充电电流,包括如下步骤:
通过所述预设寻峰识别算法识别出所述时间差分电压曲线中的特征峰电压,并在确定特征峰电压之后,记录所述时间差分电压曲线达到预设稳定标准时对应的稳定电压。
其中,预设稳定标准指的是时间差分电压曲线的曲线数值满足以下要求:在-100至-∞范围内,趋近于稳定不变的状态。在本实施例中,在一段较长时间内时间差分电压曲线随电压的变化特别小(曲线趋近于直线,此时时间差分电压曲线的曲线数值趋近于稳定不变的状态)时,则将该状态的开始时间差分电压曲线对应的电压值记录为稳定电压。
具体地,在根据所述电压数据确定时间差分电压曲线之后,通过寻峰识别算法识别出时间差分电压曲线中的特征峰电压,表征电池在充电过程中发生析锂,也即确定电池在充电过程中存在析锂状态,此时,需要在确定特征峰电压之后,记录所述时间差分电压曲线达到预设稳定标准时对应的稳定电压。
根据所述特征峰电压、稳定电压以及所述时间差分电压曲线,在所述电压-时间坐标系中确定第一区域面积和第二区域面积。
具体地,在通过寻峰识别算法识别出所述时间差分电压曲线中的特征峰电压,并在出现特征峰电压之后记录所述时间差分电压曲线达到预设稳定标准时对应的稳定电压之后,获取所述电池充电结束时的充电电压,其中,所述时间差分电压曲线的起始点与所述充电 电压对应;确定基准横轴和第一基准纵轴;所述基准横轴是指在所电压-时间坐标系中,与所述起始点对应的横轴,所述第一基准纵轴是指在所述电压-时间坐标系中,与所述特征峰电压对应的纵轴;计算由所述基准横轴、第一基准纵轴以及所述时间差分电压曲线共同围成的区域对应的第一区域面积。其中,在图3所示的电压-时间坐标系中,U1为时间差分电压曲线中与充电电压对应的起始点;U2指的是时间差分电压曲线中与特征峰电压对应的点;U3指的是时间差分电压曲线中与稳定电压对应的点;L3为基准横轴;L4为第一基准纵轴;L5为第二基准纵轴。
其中,确定第二基准纵轴;所述第二基准纵轴是指在所述电压-时间坐标系中,与所述稳定电压对应的纵轴;计算由所述基准横轴、第一基准纵轴、第二基准纵轴以及所述时间差分电压曲线共同围成的区域对应的第二区域面积。
根据所述第一区域面积以及所述第二区域面积,确定所述电池的析锂表征量;并根据所述析锂表征量以及预设电池析锂标准,更新所述电池充电策略表中的所述充电电流。
其中,析锂表征量表征电池在充电过程中的析锂程度。预设电池析锂标准指的是电池在出厂之前对电池进行检测得到的析锂标准,也即每一电池均具有对应的预设电池析锂标准。
具体地,在根据所述特征峰电压以及所述时间差分电压曲线,得到第一区域面积,以及根据所述特征峰电压、稳定电压以及所述时间差分电压曲线,得到第二区域面积之后,根据第一区域面积以及第二区域面积,确定电池的析锂表征量,进而可以通过该电池在出厂规格书中的析锂标准(也即预设电池析锂标准),确定此次电池在充电过程中发生析锂的严重程度;若该析锂表征量超过该电池的对应的析锂标准,则需采取第二电流减小策略减小电池充电策略表中当前的充电电流,也即,根据电池充电完成后的析锂表征量与析锂标准之间的差值,确定需要减小充电电流的减小比例,进而根据该减小比例更新减小所述电池充电策略表中的所述充电电流。比如,在电池充电完成后的析锂表征量超过析锂标准,且减小比例预先设置为当前充电电流的1%,若电池充电策略表中的充电电流为1A,此时,可以令充电电流下调1%,也即将充电电流减小至0.99A,如此,可以使得电池在下一次充电时,采用下调后的充电电流对电池进行充电,从而降低电池的析锂表征量,进而达到保护电池的效果。可以理解地,若该析锂表征量严重超过该电池对应的析锂标准(比如超过量大于或等于该析锂标准的预设百分比,示例性地,该预设百分比可以为40%;但该预设百分比亦可以根据需求设定为除40%之外的其他百分比;可理解地,在超过量小于该预设百分比时,则按照上述第二电流减小策略减小电池充电策略表中当前的充电电流即可),则表征该电池应该进行返厂检修,避免由于电池的析锂表征量过大导致的安全事故发生。
需要说明的是,时间差分电压曲线中出现特征峰电压的时间点为活锂完全嵌入石墨的 时间点,也即第一区域面积的物理意义指的是电池在充电过程中析出的“活锂”从石墨外部嵌入内部所需要的时长。而特征峰电压至稳定电压对应的第二区域面积,表征锂离子浓度从隔膜处到铜箔处基本平衡;因此锂离子更倾向于从石墨颗粒外部扩散至颗粒内部,从而使得整个石墨颗粒锂离子分布均匀。
具体地,由于第一区域面积的物理意义指的是电池在充电过程中析出的“活锂”从石墨外部嵌入内部所需要的时长。如果单纯用第一区域面积来表征电池的总析锂表征量是不准确的,原因是经历的时长和析锂表征量以及石墨的嵌锂速率有关系,而石墨的嵌锂速率又和温度相关,所以在同一温度下,时长才可以用来表征析锂表征量。
因此,本公开采用了第二区域面积的倒数来表征电池的析锂速率。然而由于在第一区域面积的采集时间内,已经进入负极的部分“活锂”在其它“活锂”嵌入负极的过程中已经开始处于平衡,存在部分“活锂”在负极内平衡的时间与第一区域面积的采集时间重合。但是在达到特征峰电压之前,是以“活锂”进入负极为主,在达到特征峰电压之后,负极石墨颗粒中的锂离子的浓度差是最大的所有从“活锂”完全嵌入负极再计算负极石墨颗粒达到最终的平衡时间(也即第二区域面积)的倒数来表征石墨嵌锂的速率(也即析锂速率)。
根据上述说明指出,可以将第一区域面积记录为电池的析锂时长;第二区域面积的倒数记录为电池的析锂速率;进而将第二区域面积的倒数与第一区域面积的乘积记录为电池的析锂表征量,也即将所述析锂时长与所述析锂速率的乘积记录为所述电池的析锂表征量。
在另一具体实施例中,在对所述电池进行静置析锂检测,得到第二析锂检测结果之后,还包括:
在第二析锂检测结果为未出现析锂现象时,也即在电池完成充电后,未出现析锂现象,则表征在下一次对电池的充电过程中,以电池充电策略表中当前的充电电流对电池进行充电,不会增加电池的析锂表征量,进而不更新电池充电策略表中的充电电流。可选地,可以通过所述寻峰识别算法未识别出所述时间差分电压曲线中的特征峰电压时,提示所述电池在充电过程中未发生析锂。具体地,由于在本公开中特征峰电压在物理意义上用于表征电池在充电过程中发生析锂,因此在根据电压数据确定时间差分电压曲线之后,在通过寻峰识别算法未识别出时间差分电压曲线中的特征峰电压时,表征电池在充电过程中未发生析锂。
在本实施例中,在电池完成充电之后,对电池进行静置析锂检测,以确定电池在完成充电之后是否出现析锂现象,并在电池出现析锂现象时,根据预设的第二电流减小策略减小电池的当前充电电流,从而提高电池充电过程的安全性的同时,确保电池在下一次接收到充电指令时,采用电池充电策略表中已更新的充电电流进行充电时,避免出现析锂现象,进一步提高电池的安全性。
在一实施例中,步骤S20中,如图3所示,也即在所述电池充电过程中对所述电池进行至少一次充电析锂检测以得到第一析锂检测结果,包括:
S201:根据预设的SOC变化量获取所述电池处于预设频率下的第一电化学阻抗和第二电化学阻抗,其中,所述预设的SOC变化量等于第二SOC值与第一SOC值之差,所述第一SOC值与第一电化学阻抗对应,所述第二SOC值与所述第二电化学阻抗对应,所述第一SOC值和所述第二SOC值均大于预设SOC阈值。
其中,在一次充电析锂检测中,第一SOC值指的是充电析锂检测前电池当前剩余容量与电池完全充电状态的容量的比值,第二SOC值指的是充电析锂检测后电池当前剩余容量与电池完全充电状态的容量的比值。可选地,预设SOC阈值可以根据电池的类型以及充电需求进行确定,示例性地,该预设SOC阈值可以为70%,75%等。电化学阻抗指的是充电过程中电池的交流电压与电流信号的比值,该电化学阻抗与电池的SOC值以及预设频率对应(如第一电化学阻抗与第一SOC值以及预设频率对应,第二电化学阻抗与第二SOC值以及预设频率对应)。示例性地,预设频率可以从频率范围为0.01Hz至10Hz之间选取的任意一个数值,该预设频率可以根据电池的类型进行确定,也即不同类型的电池(如动力电池、3C类电池)对应的预设频率有所不同。
可选地,预设的SOC变化量可以根据需求设定,比如设定为5%、10%等;假设所述预设的SOC变化量为5%,预设SOC阈值为70%;则第一SOC值可以为75%,第二SOC值则为80%。
具体地,本实施例中采用电化学阻抗测量法对电池进行充电析锂检测。在根据所述电池充电策略表中的充电电流对电池进行充电之后,根据预设的SOC变化量获取所述电池处于预设频率下的第一电化学阻抗和第二电化学阻抗。
在一具体实施方式中,假设在充电过程中只对电池进行了一次充电析锂检测,且该第一析锂检测结果为电池在充电过程出现析锂现象,则此次充电析锂检测中仅存在一组相对应的第一电化学阻抗和第二电化学阻抗,也即根据这一组第一电化学阻抗和第二电化学阻抗确定出的第一析锂检测结果为电池在充电过程中出现析锂现象。
在另一具体实施方式中,假设在充电过程中对电池进行了多次充电析锂检测,且其中最后一次析锂检测结果为电池在充电过程出现析锂现象,则此时充电析锂检测中存在多组相对应的第一电化学阻抗和第二电化学阻抗,在第一析锂检测结果为电池在充电过程未出现析锂现象时,则可以将此时的第二电化学阻抗作为下一次充电析锂检测的新的第一电化学阻抗,并且根据预设的SOC变化量获取与其对应的新的第二电化学阻抗,并根据新的第一电化学阻抗以及新的第二电化学阻抗确定新的第一析锂检测结果。每一组相对应的第二SOC值与第一SOC值之间的差值等于预设的SOC变化量。
S202:根据所述第一电化学阻抗和所述第二电化学阻抗,确定所述电池在所述第二检测时间的第一析锂检测结果。
具体地,在获取所述电池在所述第二检测时间处于预设频率下的第二电化学阻抗之后,对第一电化学阻抗以及第二电化学阻抗进行比较,进而根据比较后得到的结果确定电池在第二检测时间的第一析锂检测结果。
对第一电化学阻抗以及第二电化学阻抗进行比较之后,在所述第一电化学阻抗大于所述第二电化学阻抗时,确定所述第二检测时间的所述第一析锂检测结果为出现析锂现象。
对第一电化学阻抗以及第二电化学阻抗进行比较之后,在所述第一电化学阻抗小于或等于所述第二电化学阻抗时,确定所述第二检测时间的所述第一析锂检测结果为未出现析锂现象。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
在一实施例中,如图5所示,提供一种基于析锂检测的电池充电系统,包括如下模块:
充电策略表获取模块10,用于接收电池充电指令之后,获取电池充电策略表;
充电析锂检测模块20,用于根据所述电池充电策略表中的充电电流对电池进行充电,并在所述电池充电过程中对所述电池进行至少一次充电析锂检测以得到第一析锂检测结果;
第一充电模块30,用于在所述第一析锂检测结果为未出现析锂现象时,根据所述充电电流继续对所述电池进行充电,并继续在所述电池充电过程中对所述电池进行充电析锂检测,直至所述第一析锂检测结果为出现析锂现象时,或者直至所述电池完成充电时,停止对所述电池进行充电析锂检测;
第二充电模块40,用于在所述第一析锂检测结果为出现析锂现象时,根据预设的电流减小策略更新所述电池充电策略表中的所述充电电流,同时根据更新后的所述充电电流对所述电池继续进行充电,直至所述电池完成充电。
可选地,如图6所示,该基于析锂检测的电池充电系统还包括如下模块:
静置析锂检测模块50,用于在所述电池完成充电并处于静置状态之后,对所述电池进行静置析锂检测,得到第二析锂检测结果;
充电电流更新模块60,用于在所述第二析锂检测结果为出现析锂现象时,根据预设的第二电流减小策略更新所述电池充电策略表中的所述充电电流。
可选地,静置析锂检测模块50中包括如下单元:
电压采集单元,用于在所述电池完成充电并处于静置状态之后,根据预设时间间隔定时采集所述电池的电压,并将采集得到的所述电压与该电压的采集时间关联存储为电压数 据;
曲线构建单元,用于根据所述电压数据在电压-时间坐标系中构建时间差分电压曲线;
寻峰识别单元,用于根据所述时间差分电压曲线以及预设寻峰识别算法,得到第二析锂检测结果。
可选地,充电电流更新模块60包括如下单元:
电压记录单元,用于通过所述预设寻峰识别算法识别出所述时间差分电压曲线中的特征峰电压,并在确定特征峰电压之后,记录所述时间差分电压曲线达到预设稳定标准时对应的稳定电压;
面积确定单元,用于根据所述特征峰电压、稳定电压以及所述时间差分电压曲线,在所述电压-时间坐标系中确定第一区域面积和第二区域面积;
析锂表征量确定单元,用于根据所述第一区域面积以及所述第二区域面积,确定所述电池的析锂表征量;
电流更新单元,用于根据所述析锂表征量以及预设电池析锂标准,更新所述电池充电策略表中的所述充电电流。
可选地,充电析锂检测模块20包括如下单元:
电化学阻抗获取单元,用于根据预设的SOC变化量获取所述电池处于预设频率下的第一电化学阻抗和第二电化学阻抗;与第一电化学阻抗对应的所述第一SOC值以及与所述第二电化学阻抗对应的第二SOC值均大于预设SOC阈值;所述第二SOC值与所述第一SOC值之差等于预设的SOC变化量;
析锂检测结果获取单元,用于根据所述第一电化学阻抗和所述第二电化学阻抗获取所述第一析锂检测结果。
可选地,析锂检测结果获取单元包括如下子单元:
第一阻抗比对单元,用于第一析在所述第一电化学阻抗大于所述第二电化学阻抗时,确定所述第一析锂检测结果为出现析锂现象;
第二阻抗比对单元,用于在所述第一电化学阻抗小于或等于所述第二电化学阻抗时,确定所述第一析锂检测结果为未出现析锂现象。
在一实施例中,提供一种汽车,包括上述基于析锂检测的电池充电系统。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图7所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该 计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种基于析锂检测的电池充电方法。
在一个实施例中,提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述实施例中的基于析锂检测的电池充电方法。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现实施例中的基于析锂检测的电池充电方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。
以上所述实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种基于析锂检测的电池充电方法,其特征在于,包括:
    接收电池充电指令之后,获取电池充电策略表;
    根据所述电池充电策略表中的充电电流对电池进行充电,并在所述电池充电过程中对所述电池进行至少一次充电析锂检测以得到第一析锂检测结果;
    在所述第一析锂检测结果为未出现析锂现象时,根据所述充电电流继续对所述电池进行充电,并继续在所述电池充电过程中对所述电池进行充电析锂检测,直至所述第一析锂检测结果为出现析锂现象时,或者直至所述电池完成充电时,停止对所述电池进行充电析锂检测;
    在所述第一析锂检测结果为出现析锂现象时,根据预设的第一电流减小策略更新所述电池充电策略表中的所述充电电流,同时根据更新后的所述充电电流对所述电池继续进行充电,直至所述电池完成充电。
  2. 如权利要求1所述的基于析锂检测的电池充电方法,其特征在于,所述电池完成充电之后,包括:
    在所述电池完成充电并处于静置状态之后,对所述电池进行静置析锂检测,得到第二析锂检测结果;
    在所述第二析锂检测结果为出现析锂现象时,根据预设的第二电流减小策略更新所述电池充电策略表中的所述充电电流。
  3. 如权利要求2所述的基于析锂检测的电池充电方法,其特征在于,所述在所述电池完成充电并处于静置状态之后,对所述电池进行静置析锂检测,得到第二析锂检测结果,包括:
    在所述电池完成充电并处于静置状态之后,根据预设时间间隔定时采集所述电池的电压,并将采集得到的所述电压与该电压的采集时间关联存储为电压数据;
    根据所述电压数据在电压-时间坐标系中构建时间差分电压曲线;
    根据所述时间差分电压曲线以及预设寻峰识别算法,得到第二析锂检测结果。
  4. 如权利要求3所述的基于析锂检测的电池充电方法,其特征在于,所述根据预设的第二电流减小策略更新所述电池充电策略表中的所述充电电流,包括:
    通过所述预设寻峰识别算法识别出所述时间差分电压曲线中的特征峰电压,并在确定特征峰电压之后,记录所述时间差分电压曲线达到预设稳定标准时对应的稳定电压;
    根据所述特征峰电压、稳定电压以及所述时间差分电压曲线,在所述电压-时间坐标系中确定第一区域面积和第二区域面积;
    根据所述第一区域面积以及所述第二区域面积,确定所述电池的析锂表征量;
    根据所述析锂表征量以及预设电池析锂标准,更新所述电池充电策略表中的所述充电电流。
  5. 如权利要求1-4任一项所述的基于析锂检测的电池充电方法,其特征在于,所述在所述电池充电过程中对所述电池进行至少一次充电析锂检测,得到第一析锂检测结果,包括:
    根据预设的SOC变化量获取所述电池处于预设频率下的第一电化学阻抗和第二电化学阻抗,其中,所述预设的SOC变化量等于所述第二SOC值与所述第一SOC值之差,所述第一SOC值与第一电化学阻抗对应,所述第二SOC值与所述第二电化学阻抗对应,所述第一SOC值和所述第二SOC值均大于预设SOC阈值;
    根据所述第一电化学阻抗和所述第二电化学阻抗获取所述第一析锂检测结果。
  6. 如权利要求5所述的基于析锂检测的电池充电方法,其特征在于,所述根据所述第一电化学阻抗和所述第二电化学阻抗确定所述电池的第一析锂检测结果,包括:
    在所述第一电化学阻抗大于所述第二电化学阻抗时,确定所述第一析锂检测结果为出现析锂现象;
    在所述第一电化学阻抗小于或等于所述第二电化学阻抗时,确定所述第一析锂检测结果为未出现析锂现象。
  7. 一种基于析锂检测的电池充电系统,其特征在于,包括:
    充电策略表获取模块,用于接收电池充电指令之后,获取电池充电策略表;
    充电析锂检测模块,用于根据所述电池充电策略表中的充电电流对电池进行充电,并在所述电池充电过程中对所述电池进行至少一次充电析锂检测以得到第一析锂检测结果;
    第一充电模块,用于在所述第一析锂检测结果为未出现析锂现象时,根据所述充电电流继续对所述电池进行充电,并继续在所述电池充电过程中对所述电池进行充电析锂检测,直至所述第一析锂检测结果为出现析锂现象时,或者直至所述电池完成充电时,停止对所述电池进行充电析锂检测;
    第二充电模块,用于在所述第一析锂检测结果为出现析锂现象时,根据预设的电流减小策略更新所述电池充电策略表中的所述充电电流,同时根据更新后的所述充电电流对所述电池继续进行充电,直至所述电池完成充电。
  8. 如权利要求7所述的基于析锂检测的电池充电系统,其特征在于,所述基于析锂检测的电池充电系统还包括:
    静置析锂检测模块,用于在所述电池完成充电并处于静置状态之后,对所述电池进行静置析锂检测,得到第二析锂检测结果;
    充电电流更新模块,用于在所述第二析锂检测结果为出现析锂现象时,根据预设的第二电流减小策略更新所述电池充电策略表中的所述充电电流。
  9. 一种汽车,其特征在于,包括如权利要求7至8任一项所述的基于析锂检测的电池充电系统。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述的基于析锂检测的电池充电方法。
PCT/CN2021/120362 2020-09-27 2021-09-24 基于析锂检测的电池充电方法、系统、汽车及介质 WO2022063236A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21871605.8A EP4220817A4 (en) 2020-09-27 2021-09-24 BATTERY CHARGING METHOD AND SYSTEM BASED ON LITHIUM PLATING DETECTION AND AUTOMOTIVE AND MEDIUM
KR1020237012656A KR20230069182A (ko) 2020-09-27 2021-09-24 리튬 플레이팅 검출에 기초하는 배터리 충전 방법 및 시스템, 자동차, 및 매체
JP2023519225A JP2023544289A (ja) 2020-09-27 2021-09-24 リチウム析出検出に基づく電池充電方法、システム、自動車及び媒体
US18/189,474 US20230231403A1 (en) 2020-09-27 2023-03-24 Battery charging method and system based on lithium plating detection, and automobile and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011032994.7A CN114285103A (zh) 2020-09-27 2020-09-27 基于析锂检测的电池充电方法、系统、汽车及介质
CN202011032994.7 2020-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/189,474 Continuation US20230231403A1 (en) 2020-09-27 2023-03-24 Battery charging method and system based on lithium plating detection, and automobile and medium

Publications (1)

Publication Number Publication Date
WO2022063236A1 true WO2022063236A1 (zh) 2022-03-31

Family

ID=80846226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120362 WO2022063236A1 (zh) 2020-09-27 2021-09-24 基于析锂检测的电池充电方法、系统、汽车及介质

Country Status (6)

Country Link
US (1) US20230231403A1 (zh)
EP (1) EP4220817A4 (zh)
JP (1) JP2023544289A (zh)
KR (1) KR20230069182A (zh)
CN (1) CN114285103A (zh)
WO (1) WO2022063236A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115032556A (zh) * 2022-06-27 2022-09-09 国网湖北省电力有限公司电力科学研究院 储能电池系统状态评估方法、装置、存储介质及电子设备
CN115494400A (zh) * 2022-11-07 2022-12-20 河南科技学院 一种基于集成学习的锂电池析锂状态在线监控方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023133696A1 (zh) * 2022-01-11 2023-07-20 东莞新能安科技有限公司 电化学装置管理方法、充电装置、电池系统及电子设备
CN117233104B (zh) * 2023-11-16 2024-04-05 宁德时代新能源科技股份有限公司 基于光纤传感器的电池析锂检测方法及其设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576306A (zh) * 2014-10-17 2016-05-11 东莞新能源科技有限公司 电池快速充电方法
CN106099230A (zh) * 2016-08-09 2016-11-09 清华大学 一种可预防析锂的锂离子电池快速充电方法
US10164456B2 (en) * 2016-02-23 2018-12-25 Dongguan Amperex Technology Limited Method for charging a lithium ion battery
CN109613436A (zh) * 2018-12-27 2019-04-12 蜂巢能源科技有限公司 电池管理系统、电池系统及电池析锂的检测方法、装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11228193B2 (en) * 2018-12-31 2022-01-18 Chongqing Jinkang Powertrain New Energy Co., Ltd. Serial SOC testing for improved fast-charge algorithm

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576306A (zh) * 2014-10-17 2016-05-11 东莞新能源科技有限公司 电池快速充电方法
US10164456B2 (en) * 2016-02-23 2018-12-25 Dongguan Amperex Technology Limited Method for charging a lithium ion battery
CN106099230A (zh) * 2016-08-09 2016-11-09 清华大学 一种可预防析锂的锂离子电池快速充电方法
CN109613436A (zh) * 2018-12-27 2019-04-12 蜂巢能源科技有限公司 电池管理系统、电池系统及电池析锂的检测方法、装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4220817A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115032556A (zh) * 2022-06-27 2022-09-09 国网湖北省电力有限公司电力科学研究院 储能电池系统状态评估方法、装置、存储介质及电子设备
CN115494400A (zh) * 2022-11-07 2022-12-20 河南科技学院 一种基于集成学习的锂电池析锂状态在线监控方法
CN115494400B (zh) * 2022-11-07 2023-03-28 河南科技学院 一种基于集成学习的锂电池析锂状态在线监控方法

Also Published As

Publication number Publication date
US20230231403A1 (en) 2023-07-20
EP4220817A4 (en) 2024-04-17
KR20230069182A (ko) 2023-05-18
CN114285103A (zh) 2022-04-05
JP2023544289A (ja) 2023-10-23
EP4220817A1 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
WO2022063236A1 (zh) 基于析锂检测的电池充电方法、系统、汽车及介质
US11408942B2 (en) Method for predicting service life of retired power battery
WO2022063234A1 (zh) 电池析锂状态检测方法、系统、汽车、设备及存储介质
WO2020239114A1 (zh) 充电方法及装置、充电系统、电子设备、存储介质
EP3261213A1 (en) Method and apparatus of battery charging
CN109557477B (zh) 一种电池系统健康状态估算方法
WO2023088037A1 (zh) 电化学装置管理方法、电子设备及电池系统
CN116027199B (zh) 基于电化学模型参数辨识检测电芯全寿命内短路的方法
WO2023109088A1 (zh) 电池总容量计算方法、装置、系统和存储介质
CN114523878A (zh) 一种锂离子电池析锂安全预警方法及装置
CN115993541B (zh) 磷酸铁锂电池的无损析锂检测方法及相关装置
CN116865388A (zh) 一种快充策略的制定方法、装置和电子设备
WO2023185713A1 (zh) 二次电池内阻检测方法、装置及电子设备
CN113665436B (zh) 一种电池管理方法及装置
CN114284586B (zh) 一种电池快充方法和装置
CN113740754B (zh) 一种检测电池组不一致性的方法与系统
CN112964994A (zh) 一种电池最大电流测量方法及装置
KR20220094905A (ko) 전기자동차 리튬이온전지의 리튬 석출을 방지하기 위한 급속 충전 방법
WO2023184880A1 (zh) 电池容量确定方法和装置、以及存储介质
CN114397582B (zh) 析锂检测方法、电子设备、充电装置及存储介质
CN113671396A (zh) 一种电芯寿命的确定方法及装置
CN114264961B (zh) 一种电芯内短路的检测方法、装置和电子设备
JP2024505804A (ja) リン酸鉄リチウム電池におけるセルの電圧変曲点を決定する方法、装置、媒体及び機器
CN108539296B (zh) 一种基于异常点检测的均衡方法
CN115668580A (zh) 电化学装置管理方法、充电装置、电池系统及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871605

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023519225

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237012656

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021871605

Country of ref document: EP

Effective date: 20230428