WO2023185713A1 - 二次电池内阻检测方法、装置及电子设备 - Google Patents

二次电池内阻检测方法、装置及电子设备 Download PDF

Info

Publication number
WO2023185713A1
WO2023185713A1 PCT/CN2023/084020 CN2023084020W WO2023185713A1 WO 2023185713 A1 WO2023185713 A1 WO 2023185713A1 CN 2023084020 W CN2023084020 W CN 2023084020W WO 2023185713 A1 WO2023185713 A1 WO 2023185713A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
internal resistance
target soc
charging
soc value
Prior art date
Application number
PCT/CN2023/084020
Other languages
English (en)
French (fr)
Inventor
陈英杰
贺国达
蔡国全
Original Assignee
东莞新能安科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能安科技有限公司 filed Critical 东莞新能安科技有限公司
Publication of WO2023185713A1 publication Critical patent/WO2023185713A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application belongs to the technical field of battery testing, and in particular relates to a secondary battery internal resistance detection method, device and electronic equipment.
  • the DC internal resistance of secondary batteries is usually obtained by offline testing with battery testing equipment before use. However, as the use time of the secondary battery increases, its DC internal resistance will change. If the battery status is still preset and analyzed based on the DC internal resistance obtained by offline testing, the accuracy of the battery analysis will be reduced.
  • Embodiments of the present application provide a secondary battery internal resistance detection method, device and electronic equipment, which can test the DC internal resistance of the secondary battery online, thereby improving the accuracy of battery analysis.
  • embodiments of the present application provide a method for detecting the internal resistance of a secondary battery.
  • the method includes: step S1, charging the secondary battery with a charging current, and responding to the real-time state of charge SOC of the secondary battery reaching the target SOC. value, stop charging and maintain it for the first time period t, step S2, obtain the data related to the secondary battery during the charging period and the disconnected charging period, and determine the content of the secondary battery based on the data related to the secondary battery. Resistance, where the target SOC value includes multiple values.
  • the secondary battery responds to the secondary charge when charging.
  • steps S1 and S2 are executed to determine the internal resistance of the secondary battery corresponding to any target SOC value.
  • the target SOC value is determined based on the equivalent number of cycles of the secondary battery, where the equivalent number of cycles N of the secondary battery is determined by one of the following methods:
  • N takes an integer
  • N cumulative charging capacity ⁇ h, h is the aging coefficient of the secondary battery, 0.75 ⁇ h ⁇ 0.95, N is an integer.
  • the target SOC value includes M target values. Based on the equivalent number of cycles of the secondary battery, the target SOC value is determined, including: the equivalent number of cycles N of the secondary battery is modulated by M to obtain the remainder R, based on the following The formula determines the target SOC value SOC cal : Among them, 2 ⁇ M ⁇ 50, and M is an integer.
  • the target SOC value is determined based on the adjustment coefficient b, where the target SOC value SOC cal ⁇ [SOC cal -b, SOC cal +b], 0 ⁇ b ⁇ 10%.
  • target SOC values include 0% and 100%.
  • the internal resistance of the secondary battery includes at least one of DC internal resistance R1, ohmic resistance R2, and polarization resistance R3.
  • the data related to the secondary battery includes: the terminal voltage of the secondary battery corresponding to different moments within the first duration t, the terminal voltage corresponding to the target SOC value
  • the open circuit voltage of the secondary battery, the terminal voltage when polarization begins after the secondary battery stops charging, and the polarization impedance R3 is obtained based on the least squares method.
  • the state of charge SOC and/or state of health SOH of the secondary battery is determined based on the internal resistance of the secondary battery corresponding to different target SOC values.
  • the DC internal resistance growth rate of the battery pack is determined based on the internal resistance of the secondary battery corresponding to different target SOC values.
  • the DC internal resistance growth rate of the battery pack is the ratio of the current DC internal resistance of the battery pack to the initial DC internal resistance of the battery pack.
  • the battery pack includes a plurality of secondary batteries, and the electric The initial DC internal resistance of the battery pack is the average DC internal resistance of the battery pack after a cycle, 0 ⁇ a ⁇ 10.
  • the current DC internal resistance of the battery pack R1 pack satisfies the following formula:
  • n is the number of secondary batteries.
  • R1' is the average value of DC internal resistance corresponding to different target SOC values, and R1' satisfies the following formula:
  • m is the number of different target SOC values, and R1 is the DC internal resistance corresponding to different target SOC values.
  • inventions of the present application provide a secondary battery internal resistance detection device.
  • the device includes: a control unit, used to charge the secondary battery with a charging current, in response to the real-time state of charge SOC of the secondary battery.
  • a control unit used to charge the secondary battery with a charging current, in response to the real-time state of charge SOC of the secondary battery.
  • the target SOC value is reached, charging is stopped and maintained for the first time period t; the calculation unit is used to obtain data related to the secondary battery during charging and during disconnection of charging, and determine based on the data related to the secondary battery Internal resistance of secondary battery.
  • the target SOC value includes multiple values.
  • the device may also include an execution unit configured to respond to the real-time SOC value of the secondary battery reaching any target SOC value when the secondary battery is charging for different target SOC values, through the control unit and the calculation unit. , determine the internal resistance of the secondary battery corresponding to any target SOC value.
  • an execution unit configured to respond to the real-time SOC value of the secondary battery reaching any target SOC value when the secondary battery is charging for different target SOC values, through the control unit and the calculation unit. , determine the internal resistance of the secondary battery corresponding to any target SOC value.
  • the device may further include a first determination unit for determining the target SOC value based on the equivalent cycle number of the secondary battery, wherein the equivalent cycle number N of the secondary battery is determined by one of the following methods:
  • N takes an integer
  • N cumulative charging capacity ⁇ h, h is the aging coefficient of the secondary battery, 0.75 ⁇ h ⁇ 0.95, N is an integer.
  • the target SOC value may include M target values
  • the first determination unit may include: a calculation subunit, which is used to modulate M from the equivalent number of cycles N of the secondary battery to obtain a remainder R, which is determined based on the following formula Target SOC value SOC cal : Among them, 2 ⁇ M ⁇ 50, and M is an integer.
  • the device may further include a second determination unit for determining the target SOC value based on the adjustment coefficient b, where the target SOC value SOC cal ⁇ [SOC cal -b, SOC cal +b], 0 ⁇ b ⁇ 10%.
  • target SOC values include 0% and 100%.
  • the internal resistance of the secondary battery includes DC internal resistance R1, ohmic resistance R2 and polarization resistance.
  • Anti-R3 at least one.
  • the device may further include a third determination unit configured to determine the state of charge SOC and/or health state SOH of the secondary battery based on the internal resistance of the secondary battery corresponding to different target SOC values.
  • a third determination unit configured to determine the state of charge SOC and/or health state SOH of the secondary battery based on the internal resistance of the secondary battery corresponding to different target SOC values.
  • the device may further include a third determination unit configured to determine the DC internal resistance growth rate of the battery pack based on the internal resistance of the secondary battery corresponding to different target SOC values, wherein the DC internal resistance of the battery pack grows by is the ratio of the current DC internal resistance of the battery pack to the initial DC internal resistance of the battery pack; where the battery pack includes multiple secondary batteries, and the initial DC internal resistance of the battery pack is the average DC internal resistance of the battery pack after a cycle Resistance, 0 ⁇ a ⁇ 10.
  • the current DC internal resistance of the battery pack R1 pack satisfies the following formula:
  • n is the number of secondary batteries, where R1' is the average DC internal resistance corresponding to different target SOC values, and R1' satisfies the following formula: Among them, m is the number of different target SOC values, and R1 is the DC internal resistance corresponding to different target SOC values.
  • embodiments of the present application provide a battery pack, including a plurality of cells and a processor.
  • the processor applies the secondary battery internal resistance detection method provided in the first aspect to detect the internal resistance of the cells and/or Check the DC internal resistance of the battery pack.
  • embodiments of the present application provide an electrical device, including an electrical main body and the battery pack described in the third aspect.
  • the battery pack is used to supply power to the electrical main body.
  • embodiments of the present application provide a program product.
  • the electronic device can perform the secondary battery internal resistance detection method as described in the first aspect.
  • the secondary battery internal resistance detection method, device, battery pack, electrical equipment and program product of the embodiments of the present application charge the secondary battery with the charging current, and respond to the real-time state of charge SOC of the secondary battery to reach the target SOC value, stop charging and maintain it for a first period of time t; obtain the data related to the secondary battery during charging and during disconnection of charging, and determine the internal resistance of the secondary battery based on the data related to the secondary battery; where , the target SOC value includes multiple values, and the DC internal resistance of the secondary battery can be tested online, thereby improving the accuracy of battery analysis.
  • Figure 1 is a schematic flow chart of a secondary battery internal resistance detection method provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of the terminal voltage collection result curve of the secondary battery internal resistance detection method provided by one embodiment of the present application;
  • Figure 3 is a schematic diagram 1 of the curve comparing the terminal voltage acquisition results and calculation results of the secondary battery internal resistance detection method provided by an embodiment of the present application;
  • Figure 4 is a schematic diagram 1 of the curve comparing the terminal voltage collection results and calculation results of the secondary battery internal resistance detection method provided by an embodiment of the present application;
  • Figure 5 is a schematic diagram 1 of the curve comparing the terminal voltage collection results and calculation results of the secondary battery internal resistance detection method provided by an embodiment of the present application;
  • Figure 6 is a schematic diagram 1 of the curve comparing the terminal voltage collection results and the calculation results of the secondary battery internal resistance detection method provided by an embodiment of the present application;
  • Figure 7 is a schematic diagram of the ohmic impedance curve of the secondary battery internal resistance detection method provided by one embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a secondary battery internal resistance detection device provided by another embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a battery management system provided by yet another embodiment of the present application.
  • embodiments of the present application provide a secondary battery internal resistance detection method, device, battery pack, electrical equipment and program products. The following first introduces the secondary battery internal resistance detection method provided by the embodiment of the present application.
  • Figure 1 shows a schematic flowchart of a secondary battery internal resistance detection method provided by an embodiment of the present application. As shown in Figure 1, the method includes the following steps:
  • step S1 the secondary battery is charged with a charging current.
  • step S2 the secondary battery is charged with a charging current.
  • step S3 the secondary battery is charged with a charging current.
  • Step S2 Obtain data related to the secondary battery during charging and disconnected charging of the secondary battery, and determine the internal resistance of the secondary battery based on the data related to the secondary battery.
  • the secondary battery may be a lithium battery, a sodium battery, or the like.
  • the secondary battery internal resistance detection method provided by the embodiment of the present application is executed by a processor in the battery pack.
  • a processor in the battery pack can be a micro control unit (MCU) on a battery management system (Battery Management System, BMS) circuit board.
  • MCU microcontroller Unit
  • Flash flash memory
  • BMS circuit The plate is an integral unit of the battery pack.
  • the charging current can be cut off once or several times to create an interval charging working condition, so that the secondary battery can be calculated based on the data related to the secondary battery obtained each time the charging current is cut off.
  • internal resistance which may include at least one of DC internal resistance R1, ohmic impedance R2 and polarization resistance R3.
  • the timing for cutting off the charging current may be when the real-time state of charge (SOC) of the secondary battery reaches the target SOC value, that is, when the current real-time SOC value reaches the target SOC value, the charging current is cut off.
  • SOC state of charge
  • the target SOC value is a set value and can include multiple values, that is, the charging current can be cut off multiple times. Multiple target SOC values may be different.
  • steps S1 and S2 are executed to determine the relationship with any The internal resistance of the secondary battery corresponding to the target SOC value. That is, whenever the real-time SOC value reaches any target SOC value, charging is stopped and maintained for the first time period t, and then the data related to the secondary battery during the charging period and the disconnected charging period are obtained, based on Data related to the secondary battery to determine the internal resistance of the secondary battery.
  • the measurement of multiple target SOC values may be distributed in different charge and discharge cycles, that is, in each charge and discharge cycle, only the internal resistance corresponding to one or part of the target SOC values may be detected. , rather than necessarily detecting all target SOC values within a charge and discharge cycle. This can reduce the impact of each internal resistance test on the normal use of the battery and avoid disconnecting the charge multiple times in a single charge and discharge cycle. In this way, as much internal resistance data as possible can be obtained through simple online testing steps, and relevant technologies can be Simplify the complex testing process.
  • the internal resistance data table can be updated once, and the internal resistance data table is used to represent Internal resistance data corresponding to different SOC values.
  • the setting of the target SOC value may be determined based on the equivalent number of cycles of the secondary battery.
  • the equivalent number of cycles N of the secondary battery is determined by one of the following methods:
  • N takes an integer.
  • the cumulative charging capacity + the cumulative discharge capacity is the sum of the cumulative charging and discharging capacities.
  • the nominal capacity is 10Ah
  • the battery cell is The corresponding capacity at 100% SOC
  • the cumulative discharge capacity is 28Ah and the cumulative charge capacity is 30Ah
  • the calculation result is 2.9.
  • the equivalent number of cycles is 2 cycles.
  • N cumulative charging capacity ⁇ h, h is the aging coefficient of the secondary battery, 0.75 ⁇ h ⁇ 0.95, N is an integer.
  • the aging coefficient h can be 0.75 to 0.9, where the SOH corresponding to the aging coefficient of 0.75 is 50%, and the state of health (State of Health, SOH) of 50% indicates that the capacity of the battery core at this time is 50% of the nominal capacity.
  • the target SOC value may include M target values. Furthermore, when determining the target SOC value based on the equivalent cycle number of the secondary battery, the equivalent cycle number N of the secondary battery may be modulated by M to obtain the remainder R, and then The target SOC value SOC cal is determined based on the following formula:
  • the charging current can be adjusted each time the charge is disconnected.
  • the charging current is determined based on the characteristics of the charger. If it is a smart charger, the charging current can be adjusted so that the internal resistance can be detected at multiple different charging rates.
  • the target SOC value can also be adjusted based on the adjustment coefficient b, and the adjusted SOC value is used as the final target SOC value, for example, the target SOC value SOC cal ⁇ [SOC cal -b, SOC cal +b], 0 ⁇ b ⁇ 10%.
  • the target SOC value SOC cal ⁇ [SOC cal -b, SOC cal +b] can be taken, that is, SOC cal -b and SOC cal +b.
  • a target SOC value is set in advance, or after a target SOC value is calculated based on the above optional implementation, it can be adjusted based on b to detect more target SOC values to make the detection more detailed, or Detects a wider range of SOC values.
  • the target SOC values can include: 0%, 3% , 7%, 13%, 17%, 23%, 27%, 33%..., 100%.
  • the above steps of determining the target SOC value can be calculated specifically by the MCU in the BMS.
  • the first duration t may be a set value, which is not limited in the embodiments of the present application. For example, it may be selected based on the actual operating conditions of the battery core and the RC time constant.
  • the RC time constant may be defined as polarization
  • the time required for the voltage to rebound by 66.6% is usually between 5 and 20 seconds.
  • the instruction to cut off the charging current can be issued by the BMS.
  • the action of disconnecting charging can include: 1 disconnecting the charging and discharging MOS tube (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET, metal oxygen semi-field effect transistor); 2 disconnecting the relay; 3 smart charger
  • the requested charging current is 0.
  • the BMS can request the corresponding charging current from the smart charger through communication, and the smart charger can adjust the charging current. At this time, the internal resistance at multiple different charging rates can be detected by adjusting the charging current.
  • Data related to the secondary battery can be recorded before and after disconnection of charging.
  • the relevant data can include the voltage and current of all cells.
  • relevant data of two time points can be collected.
  • the interval between two time points can be set to ns, such as 1s, or of course 100ms, 250ms, etc.
  • charging is disconnected at t0 , in addition to obtaining the charging current collected at time t0, you can also obtain the charging current collected at time (t0-1)s.
  • the internal resistance of the secondary battery may be determined based on the data related to the secondary battery.
  • the internal resistance of the secondary battery includes at least one of direct current internal resistance R1, ohmic resistance R2, and polarization resistance R3.
  • the data related to the secondary battery may include: the charging current I when the secondary battery stops charging and the terminal of the secondary battery.
  • Voltage V1 the terminal voltage V0 of the secondary battery when it stops charging and maintains it for the first period of time; refer to Figure 2, which is a schematic diagram of the curve of the terminal voltage from when charging is stopped until it is maintained for the first period of time, where the abscissa is The number of sampling, the ordinate is the voltage value of the terminal voltage, V1 and V0 are the terminal voltages collected at the first and last sampling moments respectively.
  • the DC internal resistance R1 can be calculated based on the collected voltage and current.
  • the data related to the secondary battery includes: the charging current I when the secondary battery stops charging and the terminal voltage V1 of the secondary battery.
  • the secondary battery starts to polarize after stopping charging.
  • V2 is the terminal voltage of the corresponding cell after one sampling time after the charging is terminated, and it is also the initial moment of cell polarization.
  • the data related to the secondary battery includes: the terminal voltage of the secondary battery corresponding to different moments within the first period of time t, and the open circuit of the secondary battery corresponding to the target SOC value. voltage, the terminal voltage V2 when polarization begins after the secondary battery stops charging, and then the polarization impedance R3 can be obtained based on the least squares method.
  • V ⁇ is the RC time constant
  • C P is the capacitance in the RC parallel circuit
  • V ocv (SOC cal ) is the open circuit voltage of the secondary battery corresponding to the target SOC value, which can be obtained through the SOC-OCV table lookup, based on the target SOC
  • the OCV corresponding to the value query is V acv (SOC cal ), which is a known fixed value quantity
  • V(t i ) is the terminal voltage of the secondary battery collected by the chip at the i-th sampling moment, which is a known quantity
  • t i is the i-th sampling time.
  • V2 is the initial moment of cell polarization after charging is terminated. For example, referring to Figure 2, V2 is the voltage of the corresponding cell collected after one sampling time.
  • Curve comparison chart of terminal voltage the abscissa is the sampling point number (Point Number), the ordinate is the voltage (Volatge, unit V), the curve marked with the symbol “ ⁇ ” is the actual sampled terminal voltage (Real), the symbol "*"
  • the marked curve is the terminal voltage (Model) calculated after parameter identification. It can be seen that the two curves basically overlap.
  • the state of charge SOC and/or the state of health SOH of the secondary battery may be determined.
  • the DC internal resistance growth rate of the battery pack can also be determined, where the DC internal resistance growth rate of the battery pack is the current DC internal resistance of the battery pack and the battery pack
  • the ratio of the initial DC internal resistance of the battery pack includes multiple secondary batteries.
  • the initial DC internal resistance of the battery pack is the average DC internal resistance of the battery pack after a cycle, 0 ⁇ a ⁇ 10.
  • the data of the internal resistance and the impedance growth factor can be updated every 10 charge and discharge cycles. After 10 cycles of charging, the internal resistance at all target SOC values can be obtained.
  • the internal resistance can include ohmic impedance, polarization impedance and DC internal resistance.
  • An example calculation result can refer to the internal resistance table shown below:
  • the above-mentioned internal resistance meter can be measured within a certain temperature range. Multiple temperature ranges can be divided, and each temperature range detects an internal resistance meter, such as an internal resistance meter above 25°C, an internal resistance meter between 0°C and 25°C, and an internal resistance meter between -20°C and 0°C. The specific divisions vary. Subject to limitations, the finer and more precise.
  • the variation curve of the ohmic impedance with the target SOC value is produced, as shown in Figure 7.
  • the polarization impedance is similar to the DC internal resistance, so no example diagram is provided here.
  • an impedance growth factor can also be calculated.
  • an impedance growth factor can also be calculated. For the specific calculation process, please refer to the following instructions:
  • the current DC internal resistance of the battery pack R1 pack satisfies the following formula:
  • n is the number of secondary batteries
  • R1’ is the average value of DC internal resistance corresponding to different target SOC values, and R1’ satisfies the following formula:
  • m is the number of different target SOC values
  • R1 is the DC internal resistance corresponding to different target SOC values.
  • the impedance growth factor DCR increase is greater than or equal to 0
  • R1 pack (i) is the current equivalent DC impedance corresponding to the i-th target SOC value of the battery pack
  • R1 pack (0) is the equivalent DC impedance at the initial moment of the Pack, which can be The average value of the first 5 to 10 charge and discharge cycles.
  • Figure 8 shows a schematic structural diagram of a secondary battery internal resistance detection device provided by an embodiment of the present application.
  • the secondary battery internal resistance detection device provided by the embodiment of the present application can be used to perform the secondary battery internal resistance detection method provided by the embodiment of the present application.
  • the secondary battery internal resistance detection device provided by the embodiment of the present application includes a control unit 11 and a calculation unit 12 .
  • the control unit 11 is used to charge the secondary battery with a charging current, in response to the When the real-time state of charge SOC reaches the target SOC value, charging is stopped and maintained for the first period of time t.
  • the calculation unit 12 is configured to obtain data related to the secondary battery during charging and during off-charging of the secondary battery, and determine the internal resistance of the secondary battery based on the data related to the secondary battery.
  • the charging current can be cut off once or several times to create an interval charging working condition, so that the secondary battery can be calculated based on the data related to the secondary battery obtained each time the charging current is cut off.
  • internal resistance which may include at least one of DC internal resistance R1, ohmic impedance R2 and polarization resistance R3.
  • the timing for cutting off the charging current may be when the real-time state of charge (SOC) of the secondary battery reaches the target SOC value, that is, when the current real-time SOC value reaches the target SOC value, the charging current is cut off.
  • SOC state of charge
  • the target SOC value is a set value and can include multiple values, that is, the charging current can be cut off multiple times.
  • the device may also include an execution unit configured to respond to the real-time SOC value of the secondary battery reaching any target SOC value when the secondary battery is charging for different target SOC values, through the control unit and the calculation unit. , determine the internal resistance of the secondary battery corresponding to any target SOC value.
  • an execution unit configured to respond to the real-time SOC value of the secondary battery reaching any target SOC value when the secondary battery is charging for different target SOC values, through the control unit and the calculation unit. , determine the internal resistance of the secondary battery corresponding to any target SOC value.
  • Multiple target SOC values can be different. Whenever the real-time SOC value reaches any target SOC value, the execution unit can stop charging and maintain it for a first time period t, thereby obtaining the status of the secondary battery during charging and during disconnected charging. Based on the data related to the secondary battery, the internal resistance of the secondary battery is determined. The internal resistance is the internal resistance corresponding to the current target SOC value.
  • the device may further include a first determination unit configured to determine the target SOC value based on the equivalent number of cycles of the secondary battery.
  • the equivalent number of cycles N of the secondary battery is determined by one of the following methods:
  • N takes an integer.
  • the cumulative charging capacity + the cumulative discharge capacity is the sum of the cumulative charging and discharging capacities.
  • N cumulative charging capacity ⁇ h, h is the aging coefficient of the secondary battery, 0.75 ⁇ h ⁇ 0.95, N is an integer.
  • the aging coefficient h can range from 0.75 to 0.9.
  • the aging coefficient of 0.75 corresponds to a SOH of 50% and a healthy state of 50%. (State of Health, SOH) indicates that the capacity of the cell at this time is 50% of the nominal capacity.
  • the target SOC value may include M target values
  • the first determining unit may include:
  • the calculation subunit is used to take the remainder of the equivalent number of cycles N of the secondary battery to M to obtain the remainder R, and determine the target SOC value SOC cal based on the following formula:
  • the calculation subunit can divide the equivalent number of cycles N by the preset value M as a percentage of the ratio of the remainder R to M as the target SOC value.
  • the device may also include a second determination unit for determining the target SOC value based on the adjustment coefficient b; wherein the target SOC value SOC cal ⁇ [SOC cal -b, SOC cal +b], 0 ⁇ b ⁇ 10%.
  • the second determination unit may adjust the target SOC value based on the adjustment coefficient b, and use the adjusted SOC value as the final target SOC value.
  • target SOC values may include 0% and 100%.
  • the internal resistance of the secondary battery may include at least one of direct current internal resistance R1, ohmic resistance R2, and polarization resistance R3.
  • the data related to the secondary battery may include: the terminal voltage of the secondary battery corresponding to different moments within the first period of time t, the open circuit voltage of the secondary battery corresponding to the target SOC value, the starting voltage of the secondary battery after stopping charging.
  • the terminal voltage during polarization is obtained, and based on the least squares method, the polarization impedance R3 is obtained.
  • the device may further include a third determination unit configured to determine the state of charge SOC and/or health state SOH of the secondary battery based on the internal resistance of the secondary battery corresponding to different target SOC values.
  • a third determination unit configured to determine the state of charge SOC and/or health state SOH of the secondary battery based on the internal resistance of the secondary battery corresponding to different target SOC values.
  • the device may also include a third determination unit for determining the DC internal resistance growth rate of the battery pack based on the internal resistance of the secondary battery corresponding to different target SOC values; wherein the DC internal resistance growth of the battery pack is the ratio of the current DC internal resistance of the battery pack to the initial DC internal resistance of the battery pack; where the battery pack includes multiple secondary batteries, and the initial DC internal resistance of the battery pack is the average DC internal resistance of the battery pack after a cycle Resistance, 0 ⁇ a ⁇ 10.
  • the current DC internal resistance of the battery pack R1 pack satisfies the following formula:
  • n is the number of secondary batteries; among them, R1’ is the average value of DC internal resistance corresponding to different target SOC values.
  • R1' satisfies the following formula:
  • m is the number of different target SOC values
  • R1 is the DC internal resistance corresponding to different target SOC values.
  • the secondary battery is charged with the charging current, and in response to the real-time state of charge SOC of the secondary battery reaching the target SOC value, charging is stopped and maintained for a first period of time t; the state of charge of the secondary battery during charging and during Disconnect the data related to the secondary battery during charging, and determine the internal resistance of the secondary battery based on the data related to the secondary battery; where the target SOC value includes multiple values, and the DC internal resistance of the secondary battery can be tested online. This improves the accuracy of battery analysis.
  • Embodiments of the present application also provide a battery pack, including multiple cells and a processor.
  • the processor applies the secondary battery internal resistance detection method provided by embodiments of the present application to detect the internal resistance of the cells and/or detect the battery.
  • the DC internal resistance of the package is also provided by embodiments of the present application.
  • the above-mentioned processor may be a microprocessing unit MCU on the battery management system BMS chip in the battery pack.
  • the structure of an example battery management system BMS can be shown in Figure 9.
  • the battery management system 300 includes a second processor 301 and a second machine-readable storage medium 302.
  • the battery management system 300 can also include a charging circuit module 303.
  • Lithium-ion battery 304 ie, electrochemical device
  • second interface 305 ie, voltage, current and temperature collection circuit 306.
  • the charging circuit module 303 is used to receive instructions issued by the second processor 301; the charging circuit module 303 can also obtain relevant parameters of the lithium-ion battery 304 (ie, the electrochemical device) and send them to the second processor 301.
  • the second interface 305 is used for interface connection with the external charger 400; the external charger 400 is used for In order to provide power; the second machine-readable storage medium 302 stores machine-executable instructions that can be executed by the processor, and the second processor 301 executes the machine-executable instructions.
  • the external charger 400 may include a first processor 401, a first machine-readable storage medium 402, a first interface 403 and a corresponding rectifier circuit.
  • the external charger may be a commercially available charger. The structure of the embodiment of this application is No specific restrictions are made.
  • An embodiment of the present application also provides a program product.
  • the instructions in the program product are executed by a processor of an electronic device, the electronic device can perform the secondary battery internal resistance detection method as provided by the embodiment of the present application.
  • An embodiment of the present application also provides an electric device, which includes a main body and a battery pack provided by the embodiment of the present application.
  • the battery pack is used to supply power to the main body.
  • the functional blocks shown in the above structural block diagram can be implemented as hardware, software, firmware or a combination thereof.
  • it may be, for example, an electronic circuit, an application specific integrated circuit (ASIC), appropriate firmware, a plug-in, a function card, or the like.
  • ASIC application specific integrated circuit
  • elements of the application are programs or code segments that are used to perform the required tasks.
  • the program or code segments may be stored in a machine-readable medium or transmitted over a transmission medium or communications link via a data signal carried in a carrier wave.
  • "Machine-readable medium” may include any medium capable of storing or transmitting information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and the like.
  • Code segments may be downloaded via computer networks such as the Internet, intranets, and the like.
  • Such a processor may be, but is not limited to, a general-purpose processor, a special-purpose processor, a special application processor, or a field-programmable logic circuit. It will also be understood that each block in the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations, can also be implemented by special purpose hardware that performs the specified functions or actions, or can be implemented by special purpose hardware and A combination of computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

本申请公开了一种二次电池内阻检测方法、装置及电子设备。该二次电池内阻检测方法包括:以充电电流对二次电池进行充电,响应于二次电池的实时荷电状态SOC到达目标SOC值,停止充电并保持第一时长t,获取二次电池在充电期间以及在断开充电期间与二次电池相关的数据,基于与二次电池相关的数据,确定二次电池的内阻,其中,目标SOC值包括多个值,根据本申请实施例,可以在线测试二次电池的直流内阻,从而提高电池分析的精确度。

Description

二次电池内阻检测方法、装置及电子设备
相关申请的交叉引用
本申请要求享有于2022年03月29日提交的名称为“二次电池内阻检测方法、装置及电子设备”的中国专利申请202210319702.0的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于电池测试技术领域,尤其涉及一种二次电池内阻检测方法、装置及电子设备。
背景技术
二次电池的直流内阻通常是在使用之前,通过电池测试设备进行离线测试得到的。但是,随着二次电池使用时间的增加,其直流内阻会发生变化,如果仍然按照离线测试得到的直流内阻对电池状态进行预设和分析,会导致对电池分析的精确度降低。
发明内容
本申请实施例提供一种二次电池内阻检测方法、装置及电子设备,能够在线测试二次电池的直流内阻,从而提高电池分析的精确度。
第一方面,本申请实施例提供一种二次电池内阻检测方法,该方法包括:步骤S1,以充电电流对二次电池进行充电,响应于二次电池的实时荷电状态SOC到达目标SOC值,停止充电并保持第一时长t,步骤S2,获取二次电池在充电期间以及在断开充电期间与二次电池相关的数据,基于与二次电池相关的数据,确定二次电池的内阻,其中,目标SOC值包括多个值。
可选地,对于不同的目标SOC值,二次电池在充电时,响应于二次电 池的实时SOC值达到任一目标SOC值,执行步骤S1和S2,确定与任一目标SOC值对应的二次电池的内阻。
可选地,基于二次电池的等效循环次数,确定目标SOC值,其中,二次电池的等效循环次数N通过以下其中一种方式确定:
a1)N取整数;
b1)N=累计充电容量×h,h为二次电池的老化系数,0.75≤h≤0.95,N取整数。
可选地,目标SOC值包括M个目标值,基于二次电池的等效循环次数,确定目标SOC值,包括:二次电池的等效循环次数N对M取余,得到余数R,基于以下公式确定目标SOC值SOCcal其中,2≤M≤50,且M取整数。
可选地,基于调整系数b,确定目标SOC值,其中,目标SOC值SOCcal∈[SOCcal-b,SOCcal+b],0≤b≤10%。
可选地,目标SOC值包括0%和100%。
可选地,二次电池的内阻包括直流内阻R1、欧姆阻抗R2以及极化阻抗R3中的至少一种。
可选地,与二次电池相关的数据包括:二次电池停止充电时的充电电流I以及二次电池的端电压V1,二次电池停止充电并保持第一时长时的端电压V0,其中,R1=(V1-V0)/I;或,与二次电池相关的数据包括:二次电池停止充电时的充电电流I以及二次电池的端电压V1,二次电池停止充电后开始极化时的端电压V2,其中,R2=(V1-V2)/I;或,与二次电池相关的数据包括:第一时长t内不同时刻对应的二次电池的端电压、与目标SOC值对应的二次电池的开路电压、二次电池停止充电后开始极化时的端电压,并基于最小二乘法,获取极化阻抗R3。
可选地,基于与不同目标SOC值对应的二次电池的内阻,确定二次电池的荷电状态SOC和/或健康状态SOH。
可选地,基于与不同目标SOC值对应的二次电池的内阻,确定电池包的直流内阻增长率。其中,电池包的直流内阻增长率为电池组的当前直流内阻与电池组的初始直流内阻之比。其中,电池组包括多个二次电池,电 池组的初始直流内阻为电池组在a个循环后的平均直流内阻,0≤a≤10。
可选地,电池组当前直流内阻R1pack满足以下公式:
其中,n为二次电池的个数。其中,R1’为不同目标SOC值对应的直流内阻的平均值,R1’满足以下公式:其中,m为不同目标SOC值的个数,R1为对应不同目标SOC值的直流内阻。
第二方面,本申请实施例提供了一种二次电池内阻检测装置,该装置包括:控制单元,用于以充电电流对二次电池进行充电,响应于二次电池的实时荷电状态SOC到达目标SOC值,停止充电并保持第一时长t;计算单元,用于获取二次电池在充电期间以及在断开充电期间与二次电池相关的数据,基于与二次电池相关的数据,确定二次电池的内阻。其中,目标SOC值包括多个值。
可选地,该装置还可以包括执行单元,用于对于不同的目标SOC值,二次电池在充电时,响应于二次电池的实时SOC值达到任一目标SOC值,通过控制单元和计算单元,确定与任一目标SOC值对应的二次电池的内阻。
可选地,该装置还可以包括第一确定单元,用于基于二次电池的等效循环次数,确定目标SOC值,其中,二次电池的等效循环次数N通过以下其中一种方式确定:
a1)N取整数;
b1)N=累计充电容量×h,h为二次电池的老化系数,0.75≤h≤0.95,N取整数。
可选地,目标SOC值可以包括M个目标值,第一确定单元可以包括:计算子单元,用于将二次电池的等效循环次数N对M取余,得到余数R,基于以下公式确定目标SOC值SOCcal其中,2≤M≤50,且M取整数。
可选地,该装置还可以包括第二确定单元,用于基于调整系数b,确定目标SOC值,其中,目标SOC值SOCcal∈[SOCcal-b,SOCcal+b],0≤b≤10%。
可选地,目标SOC值包括0%和100%。
可选地,二次电池的内阻包括直流内阻R1、欧姆阻抗R2以及极化阻 抗R3中的至少一种。
可选地,与二次电池相关的数据可以包括:二次电池停止充电时的充电电流I以及二次电池的端电压V1,二次电池停止充电并保持第一时长时的端电压V0,其中,R1=(V1-V0)/I;或,与二次电池相关的数据包括:二次电池停止充电时的充电电流I以及二次电池的端电压V1,二次电池停止充电后开始极化时的端电压V2,其中,R2=(V1-V2)/I;或,与二次电池相关的数据包括:第一时长t内不同时刻对应的二次电池的端电压、与目标SOC值对应的二次电池的开路电压、二次电池停止充电后开始极化时的端电压,并基于最小二乘法,获取极化阻抗R3。
可选地,该装置还可以包括第三确定单元,用于基于与不同目标SOC值对应的二次电池的内阻,确定二次电池的荷电状态SOC和/或健康状态SOH。
可选地,该装置还可以包括第三确定单元,用于基于与不同目标SOC值对应的二次电池的内阻,确定电池包的直流内阻增长率,其中,电池包的直流内阻增长率为电池组的当前直流内阻与电池组的初始直流内阻之比;其中,电池组包括多个二次电池,电池组的初始直流内阻为电池组在a个循环后的平均直流内阻,0≤a≤10。
可选地,电池组当前直流内阻R1pack满足以下公式:
其中,n为二次电池的个数,其中,R1’为不同目标SOC值对应的直流内阻的平均值,R1’满足以下公式:其中,m为不同目标SOC值的个数,R1为对应不同目标SOC值的直流内阻。
第三方面,本申请实施例提供了一种电池包,包括多个电芯和处理器,处理器应用第一方面提供的二次电池内阻检测方法,以检测电芯的内阻和/或检测电池包的直流内阻。
第四方面,本申请实施例提供了一种用电设备,包括用电主体和第三方面所述的电池包,电池包用于给用电主体供电。
第五方面,本申请实施例提供了一种程序产品,该程序产品中的指令由电子设备的处理器执行时,使得电子设备能够执行如第一方面所述的二次电池内阻检测方法。
本申请实施例的二次电池内阻检测方法、装置、电池包、用电设备及程序产品,通过以充电电流对二次电池进行充电,响应于二次电池的实时荷电状态SOC到达目标SOC值,停止充电并保持第一时长t;获取二次电池在充电期间以及在断开充电期间与二次电池相关的数据,基于与二次电池相关的数据,确定二次电池的内阻;其中,目标SOC值包括多个值,可以在线测试二次电池的直流内阻,从而提高电池分析的精确度。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单的介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个实施例提供的二次电池内阻检测方法的流程示意图;
图2是本申请一个实施例提供的二次电池内阻检测方法的端电压采集结果曲线示意图;
图3是本申请一个实施例提供的二次电池内阻检测方法的端电压采集结果和计算结果对比的曲线示意图一;
图4是本申请一个实施例提供的二次电池内阻检测方法的端电压采集结果和计算结果对比的曲线示意图一;
图5是本申请一个实施例提供的二次电池内阻检测方法的端电压采集结果和计算结果对比的曲线示意图一;
图6是本申请一个实施例提供的二次电池内阻检测方法的端电压采集结果和计算结果对比的曲线示意图一;
图7是本申请一个实施例提供的二次电池内阻检测方法的欧姆阻抗的曲线示意图;
图8是本申请另一个实施例提供的二次电池内阻检测装置的结构示意图;
图9是本申请又一个实施例提供的电池管理系统的结构示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
为了解决现有技术问题,本申请实施例提供了一种二次电池内阻检测方法、装置、电池包、用电设备及程序产品。下面首先对本申请实施例所提供的二次电池内阻检测方法进行介绍。
图1示出了本申请一个实施例提供的二次电池内阻检测方法的流程示意图。如图1所示,该方法包括如下步骤:
步骤S1,以充电电流对二次电池进行充电,响应于二次电池的实时荷电状态SOC到达目标SOC值,停止充电并保持第一时长t。
步骤S2,获取二次电池在充电期间以及在断开充电期间与二次电池相关的数据,基于与二次电池相关的数据,确定二次电池的内阻。
二次电池可以是锂电池或钠电池等。可选地,本申请实施例提供的二次电池内阻检测方法由电池包中的处理器执行,举例而言,可以是电池管理系统(Battery Management System,BMS)电路板上的微控制单元(Microcontroller Unit,MCU)和存储在闪存(Flash)中的程序实现的,也即,本申请实施例的各个步骤可以是由BMS执行的。其中,BMS电路 板是电池包的一个组成单元。
在以充电电流对二次电池充电的过程中,可以切断一次或数次充电电流来制造间隔充电的工况,从而根据每次切断充电电流时得到的二次电池相关的数据,计算二次电池的内阻(可以包括直流内阻R1、欧姆阻抗R2以及极化阻抗R3中的至少一种)。
这里,切断充电电流的时机可为二次电池的实时荷电状态(State of Charge,SOC)到达目标SOC值,也即,在当前的实时SOC值达到目标SOC值时,切断充电电流。
目标SOC值是设置的数值,可以包括多个数值,也即,可以多次切断充电电流。多个目标SOC值可以是不同的,对于不同的目标SOC值,二次电池在充电时,响应于二次电池的实时SOC值达到任一目标SOC值,执行步骤S1和S2,确定与任一目标SOC值对应的二次电池的内阻。也即,每当实时SOC值到达任意一个目标SOC值的时候,停止充电并保持第一时长t,进而获取二次电池在充电期间以及在断开充电期间与二次电池相关的数据,基于与二次电池相关的数据,确定二次电池的内阻。
在其中一种实施例中,多个目标SOC值的测量可以是分布在不同的充放电循环中,也即,在每个充放电循环内,可以仅检测一个或部分目标SOC值对应的内阻,而不一定在一个充放电循环内检测所有的目标SOC值。这样可以减少每次的内阻检测对电池正常使用的影响,避免在一次充放电循环中多次断开充电,这样可以通过在线的简单的测试步骤,获取尽量多的内阻数据,将相关技术中复杂的测试流程进行简化。
可选地,每当测试至少一个(具体数值可以根据情况设置,本申请实施例对此不作限定)目标SOC值的内阻之后,可以更新一次内阻数据表,该内阻数据表用于表示不同SOC值对应的内阻数据。
可选地,目标SOC值的设置,可以是基于二次电池的等效循环次数确定的。其中,二次电池的等效循环次数N通过以下其中一种方式确定:
a1)N取整数。
其中,累计充电容量+累计放电容量即为累计的充放电容量之和。
例如,如果标称容量是10Ah,对应电芯的额定容量,即电芯在 100%SOC时对应的容量,当累计放电容量为28Ah,累计充电容量为30Ah,计算结果为2.9,取整之后得到等效循环次数为2个循环(cycle)。
b1)N=累计充电容量×h,h为二次电池的老化系数,0.75≤h≤0.95,N取整数。
这里是考虑到电芯老化,可以乘以老化系数h。老化系数h可以取0.75~0.9,其中,0.75老化系数对应的SOH为50%,50%的健康状态(State of Health,SOH)表征此时电芯的容量为标称容量的50%。
目标SOC值可以包括M个目标值,进一步地,基于二次电池的等效循环次数确定目标SOC值时,可以是将二次电池的等效循环次数N对M取余,得到余数R,然后基于以下公式确定目标SOC值SOCcal
其中,2≤M≤50,且M取整数。
也就是说,在确定二次电池的等效循环次数N之后,将其除以预设的数值M得到的余数R与M之比的百分比作为目标SOC值。
例如,M取10的情况下,如果N=15,则R=5,目标SOC值 如果N=10,则R=0或10,目标SOC值SOCcal=0%或100%。
又如,M取8的情况下,N=8~15的目标SOC值分别为:0%和100%,12.5%,25%,37.5%,50%,62.5%,75%,87.5%。
每当实时SOC值到达目标SOC值时,断开充电并触发一次内阻的计算。在每次断开充电时,可以调整充电电流的大小。充电电流大小是根据充电器特性确定的,如果是智能充电器,则充电电流大小可以调整,这样可以在多个不同充电倍率下检测内阻。
可选地,还可以基于调整系数b对目标SOC值进行调整,将调整后的SOC值作为最终的目标SOC值,例如,目标SOC值SOCcal∈[SOCcal-b,SOCcal+b],0≤b≤10%。可选地,可以取[SOCcal-b,SOCcal+b]范围内的两个端点,即SOCcal-b和SOCcal+b。
也就是说,如果预先设置一个目标SOC值,或者基于上述可选的实施方式计算出一个目标SOC值之后,可以基于b对其进行调整,以检测更多的目标SOC值使检测更细,或者检测更宽范围的SOC值。
例如,b为3%,多个目标SOC值分别为0%、10%、20%、30%、……、100%,则通过b进行调整之后,目标SOC值可以包括:0%、3%、7%、13%、17%、23%、27%、33%……,100%。
上述确定目标SOC值的步骤具体可以由BMS中的MCU来计算。
每当实时SOC值到达目标SOC值的时候,切断充电电流,停止充电保持第一时长t,然后再恢复充电。其中,第一时长t可以是设置的数值,本申请实施例对此不作限定,例如,可以是根据电芯的实际使用工况和RC时间常数来选取,这里,RC时间常数可以定义为极化电压回弹66.6%所需的时间,通常在5~20s之间。
可选地,切断充电电流的指令可以是由BMS发出的,具体来说,BMS可以在实时SOC值到达目标SOC值时,向BMS底层发出计算标志位CalFlag=1,这里,CalFlag=1用于表示断开充电。然后在持续第一时长t之后,BMS将计算标志位CalFlag设置为0,以表示恢复充电。
BMS底层在接收到计算标志位为CalFlag=1时,可以执行断开充电的动作。具体而言,执行断开充电的动作可以包括:①断开充放电MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET,金氧半场效晶体管);②断开继电器;③智能充电器请求充电电流为0,具体可以由BMS通过通讯向智能充电器请求相应大小的充电电流,智能充电器可以调整充电电流的大小。此时可以通过调整充电电流的大小,检测多个不同充电倍率下的内阻。
在断开充电前后可以记录与二次电池相关的数据,具体的,相关数据可以包括所有电芯的电压和电流。断开充电前的最后时刻,可以采集两个时间点的相关数据,两个时间点的间隔时间可以设置为ns,例如1s,当然也可以是100ms、250ms等,例如,在t0时刻断开充电,除了获取t0时刻采集的充电电流,还可以获取(t0-1)s时刻采集的充电电流。
在获取二次电池在充电期间以及在断开充电期间与二次电池相关的数据之后,可以基于与二次电池相关的数据,确定二次电池的内阻。
二次电池的内阻包括直流内阻R1、欧姆阻抗R2以及极化阻抗R3中的至少一种。
相应地,在二次电池的内阻包括直流内阻(Directive Current Resistance,DCR)R1时,与二次电池相关的数据可以包括:二次电池停止充电时的充电电流I以及二次电池的端电压V1,二次电池停止充电并保持第一时长时的端电压V0;参考图2,为从停止充电时开始,一直采集到保持第一时长为止的端电压的曲线示意图,其中,横坐标为采样的次数,纵坐标为端电压的电压值,V1和V0分别为首、尾两个采样时刻采集到的端电压。其中,直流内阻R1的公式为:
R1=(V1-V0)/I   公式1
根据采集到的电压和电流可以计算求得直流内阻R1。
在二次电池的内阻包括欧姆阻抗R2时,与二次电池相关的数据包括:二次电池停止充电时的充电电流I以及二次电池的端电压V1,二次电池停止充电后开始极化时的端电压V2,具体来说,参考图2,V2为充电截止后,经过1个采样时间,对应的电芯的端电压,也是电芯极化的初始时刻。其中,欧姆阻抗R2的辨识公式为:
R2=(V1-V2)/I   公式2
在二次电池的内阻包括极化阻抗R3时,与二次电池相关的数据包括:第一时长t内不同时刻对应的二次电池的端电压、与目标SOC值对应的二次电池的开路电压、二次电池停止充电后开始极化时的端电压V2,然后,可以基于最小二乘法,获取极化阻抗R3。
极化阻抗R3的辨识公式为:
τ=R3CP          公式4
其中,τ为RC时间常数,CP为RC并联电路中的电容;Vocv(SOCcal)为与目标SOC值对应的二次电池的开路电压,可以通过SOC-OCV查表得到,基于目标SOC值查询对应的OCV即为Vacv(SOCcal),是一个已知的定值量;V(ti)为第i个采样时刻芯片采集到二次电池的端电压,是已知量;ti为第i个采样时刻。V2为充电截止后,电芯极化的初始时刻示例性地,参考图2,V2是经过1个采样时间采集到的对应的电芯的电压。
基于上面的公式2、3、4,将采集到的电压和电流代入辨识公式,组

成超定方程,使用最小二乘拟合待定参数,从而可以把未知的R2、R3、CP辨识出来,获得欧姆阻抗R2和极化阻抗R3。
经过实验,将参数辨识之后获得的R3和Cp反代入至公式3计算出的端电压,与采集到的端电压的结果是非常接近的,两者的曲线图基本重合,参考图3~图7,分别为在不同的目标SOC值(分别为0.5%、49.2%、79.5%、99.9%)下,在不同采样时刻采集到的端电压V(ti)和基于参数辨识计算出的不同时刻的端电压的曲线对比图,横坐标为采样点序号(Point Number),纵坐标为电压(Volatge,单位V),符号“○”标识的曲线为实际采样的端电压(Real),符号“*”标识的曲线为参数辨识后计算出的端电压(Model),可以看出两者的曲线基本重合。
基于与不同目标SOC值对应的二次电池的内阻,可以确定二次电池的荷电状态SOC和/或健康状态SOH。
此外,基于与不同目标SOC值对应的二次电池的内阻,还可以确定电池包的直流内阻增长率,其中,电池包的直流内阻增长率为电池组的当前直流内阻与电池组的初始直流内阻之比,电池组包括多个二次电池,电池组的初始直流内阻为电池组在a个循环后的平均直流内阻,0≤a≤10。
示例性地,a=10,每10个充放电循环可以更新内阻的数据和阻抗增长因子。循环充电10次后可以获取所有目标SOC值处的内阻,内阻可以包括欧姆阻抗、极化阻抗和直流内阻,一个示例的计算结果可以参考下面所示的内阻表:
表1内阻表

可选地,上述内阻表可以是在一定温度范围内测量得到的。可以划分多个温度区间,每个温度区间检测一个内阻表,比如25℃以上一个内阻表,0℃~25℃一个内阻表,-20℃~0℃一个内阻表,具体划分不受限制,越细越精确。
其中,以表1提供的欧姆阻抗与目标SOC值之间的对应关系,制作欧姆阻抗随目标SOC值的变化曲线如图7所示。极化阻抗和直流内阻相似的,在此不再提供示例附图。
此外,还可以计算出一个阻抗增长因子,具体计算过程可以参考如下说明:
电池组当前直流内阻R1pack满足以下公式:
其中,n为二次电池的个数;
其中,R1’为不同目标SOC值对应的直流内阻的平均值,R1’满足以下公式:
其中,m为不同目标SOC值的个数,R1为对应不同目标SOC值的直流内阻。
那么,阻抗增长因子的计算公式为:
其中,阻抗增长因子DCRincrease大于等于0,R1pack(i)是电池组第i个目标SOC值对应的当前等效直流阻抗,R1pack(0)是Pack初始时刻的等效直流阻抗,可以取前5~10个充放电循环的平均值。
图8示出了本申请一个实施例提供的二次电池内阻检测装置的结构示意图。本申请实施例提供的二次电池内阻检测装置,可以用于执行本申请实施例提供的二次电池内阻检测方法。在本申请实施例提供的二次电池内阻检测装置的实施例中未详述的部分,可以参考本申请实施例提供的二次电池内阻检测方法的实施例中的说明。
如图8所示,本申请实施例提供的二次电池内阻检测装置包括控制单元11和计算单元12。
控制单元11用于以充电电流对二次电池进行充电,响应于二次电池的 实时荷电状态SOC到达目标SOC值,停止充电并保持第一时长t。
计算单元12用于获取二次电池在充电期间以及在断开充电期间与二次电池相关的数据,基于与二次电池相关的数据,确定二次电池的内阻。
在以充电电流对二次电池充电的过程中,可以切断一次或数次充电电流来制造间隔充电的工况,从而根据每次切断充电电流时得到的二次电池相关的数据,计算二次电池的内阻(可以包括直流内阻R1、欧姆阻抗R2以及极化阻抗R3中的至少一种)。
这里,切断充电电流的时机可为二次电池的实时荷电状态(State of Charge,SOC)到达目标SOC值,也即,在当前的实时SOC值达到目标SOC值时,切断充电电流。
目标SOC值是设置的数值,可以包括多个数值,也即,可以多次切断充电电流。
可选地,该装置还可以包括执行单元,用于对于不同的目标SOC值,二次电池在充电时,响应于二次电池的实时SOC值达到任一目标SOC值,通过控制单元和计算单元,确定与任一目标SOC值对应的二次电池的内阻。
多个目标SOC值可以是不同的,每当实时SOC值到达任意一个目标SOC值的时候,执行单元可以停止充电并保持第一时长t,进而获取二次电池在充电期间以及在断开充电期间与二次电池相关的数据,基于与二次电池相关的数据,确定二次电池的内阻该内阻是与当前的目标SOC值相对应的内阻。
可选地,该装置还可以包括第一确定单元,用于基于二次电池的等效循环次数,确定目标SOC值。
其中,二次电池的等效循环次数N通过以下其中一种方式确定:
a1)N取整数。
其中,累计充电容量+累计放电容量即为累计的充放电容量之和。
b1)N=累计充电容量×h,h为二次电池的老化系数,0.75≤h≤0.95,N取整数。
这里是考虑到电芯老化,可以乘以老化系数h。老化系数h可以取0.75~0.9,其中,0.75老化系数对应的SOH为50%,50%的健康状态 (State of Health,SOH)表征此时电芯的容量为标称容量的50%。
可选地,目标SOC值可以包括M个目标值,第一确定单元可以包括:
计算子单元,用于将二次电池的等效循环次数N对M取余,得到余数R,基于以下公式确定目标SOC值SOCcal
其中,2≤M≤50,且M取整数。
也就是说,第一确定单元在确定二次电池的等效循环次数N之后,计算子单元可以将等效循环次数N除以预设的数值M得到的余数R与M之比的百分比作为目标SOC值。
可选地,该装置还可以包括第二确定单元,用于基于调整系数b,确定目标SOC值;其中,目标SOC值SOCcal∈[SOCcal-b,SOCcal+b],0≤b≤10%。
也即,第二确定单元可以基于调整系数b对目标SOC值进行调整,将调整后的SOC值作为最终的目标SOC值。
可选地,目标SOC值可以包括0%和100%。
可选地,二次电池的内阻可以包括直流内阻R1、欧姆阻抗R2以及极化阻抗R3中的至少一种。
可选地,与二次电池相关的数据可以包括:二次电池停止充电时的充电电流I以及二次电池的端电压V1,二次电池停止充电并保持第一时长时的端电压V0;其中,R1=(V1-V0)/I。
或者,与二次电池相关的数据可以包括:二次电池停止充电时的充电电流I以及二次电池的端电压V1,二次电池停止充电后开始极化时的端电压V2;其中,R2=(V1-V2)/I。
又或者,与二次电池相关的数据可以包括:第一时长t内不同时刻对应的二次电池的端电压、与目标SOC值对应的二次电池的开路电压、二次电池停止充电后开始极化时的端电压,并基于最小二乘法,获取极化阻抗R3。
可选地,该装置还可以包括第三确定单元,用于基于与不同目标SOC值对应的二次电池的内阻,确定二次电池的荷电状态SOC和/或健康状态SOH。
可选地,该装置还可以包括第三确定单元,用于基于与不同目标SOC值对应的二次电池的内阻,确定电池包的直流内阻增长率;其中,电池包的直流内阻增长率为电池组的当前直流内阻与电池组的初始直流内阻之比;其中,电池组包括多个二次电池,电池组的初始直流内阻为电池组在a个循环后的平均直流内阻,0≤a≤10。
可选地,电池组当前直流内阻R1pack满足以下公式:
其中,n为二次电池的个数;其中,R1’为不同目标SOC值对应的直流内阻的平均值。
R1’满足以下公式:
其中,m为不同目标SOC值的个数,R1为对应不同目标SOC值的直流内阻。
通过本申请实施例,以充电电流对二次电池进行充电,响应于二次电池的实时荷电状态SOC到达目标SOC值,停止充电并保持第一时长t;获取二次电池在充电期间以及在断开充电期间与二次电池相关的数据,基于与二次电池相关的数据,确定二次电池的内阻;其中,目标SOC值包括多个值,可以在线测试二次电池的直流内阻,从而提高电池分析的精确度。
本申请实施例还提供了一种电池包,包括多个电芯和处理器,处理器应用本申请实施例提供的二次电池内阻检测方法,以检测电芯的内阻和/或检测电池包的直流内阻。
可选地,上述的处理器可以是电池包中的电池管理系统BMS芯片上的微处理单元MCU。一个示例的电池管理系统BMS的结构可以如图9所示,该电池管理系统300包括第二处理器301和第二机器可读存储介质302,该电池管理系统300还可以包括充电电路模块303、锂离子电池304(即电化学装置)以及第二接口305,电压、电流和温度的采集电路306。其中,充电电路模块303用于接收第二处理器301发出的指令;充电电路模块303还可以获取锂离子电池304(即电化学装置)的相关参数,并将其发送至第二处理器301。
第二接口305用于与外部充电器400的接口连接;外部充电器400用 于提供电力;第二机器可读存储介质302存储有能够被处理器执行的机器可执行指令,第二处理器301执行机器可执行指令时。
外部充电器400可以包括第一处理器401、第一机器可读存储介质402、第一接口403及相应的整流电路,该外部充电器可以是市售的充电器,本申请实施例对其结构不做具体限定。
本申请实施例还提供了一种程序产品,该程序产品中的指令由电子设备的处理器执行时,使得电子设备能够执行如本申请实施例提供的二次电池内阻检测方法。
本申请实施例还提供了一种用电设备,包括用电主体和本申请实施例提供的电池包,电池包用于给用电主体供电。
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或系统。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
上面参考根据本申请的实施例的方法、装置(系统)和程序产品的流程图和/或框图描述了本申请的各方面。应当理解,流程图和/或框图中的每个方框以及流程图和/或框图中各方框的组合可以由程序指令实现。这些程序指令可被提供给通用计算机、专用计算机、或其它可编程数据处理装置的处理器,以产生一种机器,使得经由计算机或其它可编程数据处理装置的处理器执行的这些指令使能对流程图和/或框图的一个或多个方框中指定的功能/动作的实现。这种处理器可以是但不限于是通用处理器、专用处理器、特殊应用处理器或者现场可编程逻辑电路。还可理解,框图和/或流程图中的每个方框以及框图和/或流程图中的方框的组合,也可以由执行指定的功能或动作的专用硬件来实现,或可由专用硬件和计算机指令的组合来实现。
以上所述,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。

Claims (15)

  1. 一种二次电池内阻检测方法,包括:
    步骤S1,以充电电流对所述二次电池进行充电,响应于所述二次电池的实时荷电状态SOC到达目标SOC值,停止充电并保持第一时长t,
    步骤S2,获取所述二次电池在充电期间以及在断开充电期间与所述二次电池相关的数据,基于与所述二次电池相关的数据,确定所述二次电池的内阻,
    其中,所述目标SOC值包括多个值。
  2. 根据权利要求1所述的方法,其中,对于不同的目标SOC值,所述二次电池在充电时,响应于所述二次电池的实时SOC值达到任一目标SOC值,执行步骤S1和S2,确定与所述任一目标SOC值对应的二次电池的内阻。
  3. 根据权利要求1或2所述的方法,其中,基于所述二次电池的等效循环次数,确定所述目标SOC值,
    其中,所述二次电池的等效循环次数N通过以下其中一种方式确定:
    a1)N取整数,
    b1)N=累计充电容量×h,h为所述二次电池的老化系数,0.75≤h≤0.95,N取整数。
  4. 根据权利要求3所述的方法,其中,所述目标SOC值包括M个目标值,所述基于所述二次电池的等效循环次数,确定所述目标SOC值,包括:
    所述二次电池的等效循环次数N对M取余,得到余数R,基于以下公式确定所述目标SOC值SOCcal
    其中,2≤M≤50,且M取整数。
  5. 根据权利要求4所述的方法,其中,基于调整系数b,确定所述目标SOC值,
    其中,所述目标SOC值SOCcal∈[SOCcal-b,SOCcal+b],0≤b≤10%。
  6. 根据权利要求3或4所述的方法,其中,所述目标SOC值包括0%和100%。
  7. 根据权利要求1所述的方法,其中,所述二次电池的内阻包括直流内阻R1、欧姆阻抗R2以及极化阻抗R3中的至少一种。
  8. 根据权利要求7所述的方法,其中,所述与所述二次电池相关的数据包括:所述二次电池停止充电时的充电电流I以及所述二次电池的端电压V1,所述二次电池停止充电并保持第一时长时的端电压V0,
    其中,R1=(V1-V0)/I,或,
    所述与所述二次电池相关的数据包括:所述二次电池停止充电时的充电电流I以及所述二次电池的端电压V1,所述二次电池停止充电后开始极化时的端电压V2,
    其中,R2=(V1-V2)/I,或,
    所述与所述二次电池相关的数据包括:所述第一时长t内不同时刻对应的所述二次电池的端电压、与所述目标SOC值对应的所述二次电池的开路电压、所述二次电池停止充电后开始极化时的端电压,并基于最小二乘法,获取所述极化阻抗R3。
  9. 根据权利要求7或8所述的方法,其中,基于与所述不同目标SOC值对应的二次电池的内阻,确定所述二次电池的荷电状态SOC和/或健康状态SOH。
  10. 根据权利要求7或8所述的方法,其中,基于与所述不同目标SOC值对应的二次电池的内阻,确定电池包的直流内阻增长率,
    其中,所述电池包的直流内阻增长率为电池组的当前直流内阻与电池组的初始直流内阻之比,
    其中,所述电池组包括多个所述二次电池,所述电池组的初始直流内阻为所述电池组在a个循环后的平均直流内阻,0≤a≤10。
  11. 根据权利要求11所述的方法,其中,所述电池组当前直流内阻R1pack满足以下公式:
    其中,n为二次电池的个数,
    其中,R1’为不同目标SOC值对应的直流内阻的平均值,R1’满足以下 公式:
    其中,m为不同目标SOC值的个数,R1为对应不同目标SOC值的直流内阻。
  12. 一种二次电池内阻检测装置,包括:
    控制单元,用于以充电电流对所述二次电池进行充电,响应于所述二次电池的实时荷电状态SOC到达目标SOC值,停止充电并保持第一时长t,
    计算单元,用于获取所述二次电池在充电期间以及在断开充电期间与所述二次电池相关的数据,基于与所述二次电池相关的数据,确定所述二次电池的内阻,
    其中,所述目标SOC值包括多个值。
  13. 一种电池包,包括多个电芯和处理器,所述处理器应用权利要求1至11中任一项权利要求的二次电池内阻检测方法,以检测电芯的内阻和/或检测电池包的直流内阻。
  14. 一种用电设备,包括用电主体和权利要求12所述的电池包,所述电池包用于给所述用电主体供电。
  15. 一种程序产品,所述程序产品中的指令由电子设备的处理器执行时,使得所述电子设备执行如权利要求1-11任意一项所述的二次电池内阻检测方法。
PCT/CN2023/084020 2022-03-29 2023-03-27 二次电池内阻检测方法、装置及电子设备 WO2023185713A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210319702.0A CN115036590B (zh) 2022-03-29 2022-03-29 二次电池内阻检测方法、装置及电子设备
CN202210319702.0 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023185713A1 true WO2023185713A1 (zh) 2023-10-05

Family

ID=83119506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084020 WO2023185713A1 (zh) 2022-03-29 2023-03-27 二次电池内阻检测方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN115036590B (zh)
WO (1) WO2023185713A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036590B (zh) * 2022-03-29 2024-08-16 东莞新能安科技有限公司 二次电池内阻检测方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104134831A (zh) * 2014-07-31 2014-11-05 智慧城市系统服务(中国)有限公司 一种基于tec级联的电池包的温度控制装置、方法及系统
CN106093793A (zh) * 2016-07-28 2016-11-09 河南许继仪表有限公司 一种基于电池放电倍率的soc估算方法和装置
CN112180276A (zh) * 2019-07-04 2021-01-05 南京德朔实业有限公司 电池的soh估算方法、装置、电池状态显示方法和电池包的充电控制方法
CN115036590A (zh) * 2022-03-29 2022-09-09 东莞新能安科技有限公司 二次电池内阻检测方法、装置及电子设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5595361B2 (ja) * 2011-09-27 2014-09-24 プライムアースEvエナジー株式会社 二次電池の充電状態推定装置
CN104122447B (zh) * 2014-06-26 2017-05-10 武汉理工大学 一种电动汽车动力电池组直流阻抗的在线估算方法
KR102071589B1 (ko) * 2016-01-19 2020-01-30 주식회사 엘지화학 리튬 이차전지의 충방전 방법
JP6652743B2 (ja) * 2016-01-19 2020-02-26 日立化成株式会社 電池状態推定方法および装置
CN106154171B (zh) * 2016-06-17 2019-02-05 清华大学 建立电池直流内阻函数的方法
CN109752663A (zh) * 2017-11-01 2019-05-14 微宏动力系统(湖州)有限公司 一种电池内阻的测量方法
CN109116242B (zh) * 2018-06-29 2021-03-02 上海科列新能源技术有限公司 一种动力电池的数据处理方法和装置
JP2021071333A (ja) * 2019-10-30 2021-05-06 パナソニックIpマネジメント株式会社 バッテリ装置および電動アシスト自転車
CN111098756A (zh) * 2019-12-05 2020-05-05 浙江合众新能源汽车有限公司 一种电动汽车寿命管理方法及系统
CN112666464B (zh) * 2021-01-27 2023-11-07 北京嘀嘀无限科技发展有限公司 电池健康状态预测方法、装置、电子设备和可读存储介质
CN113009367A (zh) * 2021-02-19 2021-06-22 哈尔滨理工大学 一种电池健康度的在线测试装置及方法
CN113504480A (zh) * 2021-06-22 2021-10-15 盛德东南(福建)新能源科技有限公司 一种锂离子动力蓄电池的直流内阻检测方法
CN114236395A (zh) * 2021-12-15 2022-03-25 湖北德普电气股份有限公司 电动汽车动力电池在线全面检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104134831A (zh) * 2014-07-31 2014-11-05 智慧城市系统服务(中国)有限公司 一种基于tec级联的电池包的温度控制装置、方法及系统
CN106093793A (zh) * 2016-07-28 2016-11-09 河南许继仪表有限公司 一种基于电池放电倍率的soc估算方法和装置
CN112180276A (zh) * 2019-07-04 2021-01-05 南京德朔实业有限公司 电池的soh估算方法、装置、电池状态显示方法和电池包的充电控制方法
CN115036590A (zh) * 2022-03-29 2022-09-09 东莞新能安科技有限公司 二次电池内阻检测方法、装置及电子设备

Also Published As

Publication number Publication date
CN115036590B (zh) 2024-08-16
CN115036590A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2021143592A1 (zh) 电池等效电路模型的建立方法、健康状态估算方法及装置
CN109557477B (zh) 一种电池系统健康状态估算方法
WO2021217662A1 (zh) 析锂检测方法及装置、极化比例的获取方法及装置
CN107437642B (zh) 一种智能充电方法及装置
US20200346558A1 (en) Battery equalization method and system, vehicle, storage medium, and electronic device
TW200532966A (en) Battery apparatus and discharge controlling method of battery apparatus
CN113359043B (zh) 电芯自放电电流检测方法、装置、设备及计算机存储介质
WO2010034179A1 (zh) 一种快速充电方法
CN109596993B (zh) 锂离子电池荷电状态检测的方法
CN109671997A (zh) 电子装置与充电方法
WO2023185713A1 (zh) 二次电池内阻检测方法、装置及电子设备
WO2019052146A1 (zh) 一种电池电量预估方法和装置、无人机
US11835587B2 (en) Method for determining full-charge capacity of battery pack, method for determining state of health of battery pack, system, and apparatus
US20220190626A1 (en) Charging control method and charging control apparatus
WO2023109088A1 (zh) 电池总容量计算方法、装置、系统和存储介质
CN103427128A (zh) 一种二次电池的快速充电方法和装置
WO2023097547A1 (zh) 电池加热方法、装置、设备及存储介质
WO2022183459A1 (zh) 一种估算电池包soc的方法、装置及电池管理系统
CN112327163B (zh) 一种动力电池系统可用充放电功率的估算方法
WO2023070323A1 (zh) 电化学装置管理方法、系统、电化学装置及电子设备
CN113671392B (zh) 一种电池过充安全边界的测定方法
CN118044093A (zh) 电池的充电方法和充电装置
CN113740754A (zh) 一种检测电池组不一致性的方法与系统
CN112964994A (zh) 一种电池最大电流测量方法及装置
KR20160077875A (ko) 배터리 팩의 측정 데이터 선별 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778080

Country of ref document: EP

Kind code of ref document: A1