WO2023088037A1 - 电化学装置管理方法、电子设备及电池系统 - Google Patents

电化学装置管理方法、电子设备及电池系统 Download PDF

Info

Publication number
WO2023088037A1
WO2023088037A1 PCT/CN2022/126986 CN2022126986W WO2023088037A1 WO 2023088037 A1 WO2023088037 A1 WO 2023088037A1 CN 2022126986 W CN2022126986 W CN 2022126986W WO 2023088037 A1 WO2023088037 A1 WO 2023088037A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal resistance
soc
lithium
electrochemical device
analysis
Prior art date
Application number
PCT/CN2022/126986
Other languages
English (en)
French (fr)
Inventor
贺国达
Original Assignee
东莞新能安科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞新能安科技有限公司 filed Critical 东莞新能安科技有限公司
Publication of WO2023088037A1 publication Critical patent/WO2023088037A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of electrochemical technology, in particular to a method for managing an electrochemical device, electronic equipment and a battery system.
  • Lithium-ion batteries have many advantages such as high specific energy density, long cycle life, high nominal voltage, low self-discharge rate, small size, and light weight, and have a wide range of applications in the field of consumer electronics.
  • Lithium-ion batteries are in the battery life (End of Life, EOL) state, and the safety risk is greater than that of the initial use.
  • EOL End of Life
  • the purpose of the embodiments of the present application is to provide a management method for an electrochemical device, an electronic device, and a battery system, so as to improve the safety of the electrochemical device during use.
  • a method for managing an electrochemical device including: performing an intermittent charging operation on the electrochemical device, acquiring data related to the electrochemical device during the intermittent charging operation, and based on the The data related to the electrochemical device determines the lithium analysis SOC and the reference internal resistance of the electrochemical device, and the reference internal resistance is used to indicate the internal resistance when the electrochemical device is charged to the first SOC; based on the lithium analysis SOC and the reference internal resistance, determine the target lithium analysis SOC and the target internal resistance; in response to the value of the target lithium analysis SOC and the target internal resistance is in the value range of the electrochemical device for lithium analysis or the electrochemical device The range of values where aging occurs determines the end-of-life EOL state of the electrochemical device.
  • the EOL state of the electrochemical device When determining the end-of-life EOL state of the electrochemical device, it is considered whether the target SOC and the target internal resistance of the electrochemical device are in the value range where the electrochemical device undergoes lithium deposition or the value range where the electrochemical device ages. That is to say, the EOL state of the electrochemical device is comprehensively judged by considering the SOC of lithium analysis, internal resistance and the relationship between the two at the same time, which reduces the possibility of misjudgment and improves the accuracy of judgment.
  • the value range where the electrochemical device produces lithium precipitation includes a first value range and a second value range.
  • the first value range is used to indicate the value range of the lithium separation SOC and the reference internal resistance when the electrochemical device is in the first lithium separation degree;
  • the second value range is used to indicate that the electrochemical device is in the The value ranges of the SOC of lithium analysis and the reference internal resistance at the second lithium analysis level before the first lithium analysis level.
  • the end of life of the electrochemical device is determined in response to the value of the target lithium separation SOC and the target internal resistance being in the value range where the electrochemical device undergoes lithium separation or the value range where the electrochemical device is aging
  • the EOL state includes: reducing the charging current of the electrochemical device by a first current drop in response to the target lithium-extracting SOC and the target internal resistance being in the first value range, and/or reducing
  • the charging cut-off voltage of the electrochemical device is reduced by a first voltage drop; or in response to the value of the target lithium separation SOC and the target internal resistance being in the second value range, the charging of the electrochemical device
  • the current is reduced by a second current drop, and/or the charging cut-off voltage of the electrochemical device is reduced by a second voltage drop, the second current drop is smaller than the first current drop, and the second voltage drop is smaller than the first voltage drop A voltage drop; or in response to the target Lithium SOC and the target internal resistance being in the value range where the electrochemical device is
  • the first value range includes a range in which the reference internal resistance and the SOC of lithium desorption meet the first value condition.
  • the first value selection condition includes: the reference internal resistance is less than or equal to the first internal resistance threshold, and the lithium analysis SOC is less than or equal to the smaller one of the lithium analysis SOC threshold and the function value of the first function.
  • the first function includes a linear function with a reference internal resistance as an independent variable, a lithium-analysis SOC as a dependent variable, and a negative first slope. The minimum decrease rate of lithium SOC with the reference internal resistance is analyzed when the degree is measured.
  • the second value range includes a range where the reference internal resistance and lithium-ion SOC satisfy the second value condition.
  • the second value condition includes: the reference internal resistance is greater than the second internal resistance threshold and less than or equal to the first internal resistance threshold, and the lithium analysis SOC is greater than the function value of the first function, and is less than the lithium analysis SOC The smaller one of the threshold value and the function value of the second function; or, the reference internal resistance is greater than the first internal resistance threshold and less than or equal to the third internal resistance threshold, and the lithium analysis SOC is less than the second function function value.
  • the second function includes a linear function with the reference internal resistance as an independent variable, the lithium-analysis SOC as a dependent variable, and a negative second slope. The minimum decrease rate of lithium SOC with reference internal resistance, the first internal resistance threshold is greater than the second internal resistance threshold and less than the third internal resistance threshold.
  • the aging value range of the electrochemical device includes a range where the reference internal resistance and the lithium-ion SOC meet the third value condition.
  • the third value-taking condition includes that the reference internal resistance is greater than the third internal resistance threshold, and the lithium separation SOC is smaller than the lithium separation SOC threshold.
  • the determining the target lithium analysis SOC and the target internal resistance based on the lithium analysis SOC and the reference internal resistance includes: using the lithium analysis SOC as the target lithium analysis SOC SOC; and using the reference internal resistance as the target internal resistance. In this way, the target SOC for lithium separation and the target internal resistance can be calculated in a simple manner, thereby simplifying the calculation process of the EOL state of the electrochemical device.
  • the method further includes: acquiring at least one historical lithium-ion SOC of the electrochemical device and at least one historical reference internal resistance of the electrochemical device.
  • the determining the target lithium analysis SOC and target internal resistance based on the lithium analysis SOC and the reference internal resistance includes: using the weighted average of the lithium analysis SOC and the at least one historical lithium analysis SOC as the a target SOC for lithium separation; and a weighted average of the reference internal resistance and the at least one historical reference internal resistance as the target internal resistance.
  • At least one lithium analysis SOC and at least one reference internal resistance of the previously obtained electrochemical device are also taken into account when determining the target lithium analysis SOC and target internal resistance, it is possible to prevent subsequent misjudgment of the electrochemical device entering the EOL state and improve accuracy of judgment.
  • the data related to the electrochemical device includes the SOC of the electrochemical device and the internal resistance of the electrochemical device
  • the intermittent charging operation includes multiple charging periods and multiple intermittent periods
  • the step of determining the lithium analysis SOC and the reference internal resistance of the electrochemical device based on the data related to the electrochemical device comprises: obtaining the internal resistance and the SOC of the sample electrochemical device during the interval; The SOC and the internal resistance obtain a first curve, and the first curve represents the change of the internal resistance with the SOC; based on the first curve, the lithium analysis SOC is determined, and based on the first curve A curve to determine the reference internal resistance.
  • the determination of the lithium-extracting SOC based on the first curve includes at least one of manner A1 and manner A2.
  • the method A1 includes: differentiating the first curve to obtain a first differential curve; determining whether the first differential curve has a maximum value and a minimum value; if the maximum value and the maximum value Small values exist, and the SOC corresponding to the maximum value is determined to be the lithium analysis SOC.
  • the method A2 includes: differentiating the first curve to obtain a first differential curve; differentiating the first differential curve to obtain a second differential curve; determining the point where the ordinate is less than zero in the second differential curve for the first time The corresponding SOC is lithium analysis SOC.
  • a battery system including a processor and a machine-readable storage medium, where the machine-readable storage medium stores machine-executable instructions that can be executed by the processor, so When the processor executes the machine-executable instructions, the method described in any one of the foregoing method embodiments is implemented.
  • an electronic device is provided, wherein the electronic device includes the battery system described in the foregoing embodiments.
  • an electronic device including: a data analysis device, a target data determination device, and a protection device.
  • the data analysis device is used to perform an intermittent charging operation on the electrochemical device, acquire data related to the electrochemical device during the intermittent charging operation, and determine the performance of the electrochemical device based on the data related to the electrochemical device.
  • the lithium analysis SOC and the reference internal resistance are used to indicate the internal resistance of the electrochemical device when it is charged to the first SOC.
  • the target data determination device is used to determine a target lithium analysis SOC and a target internal resistance based on the lithium analysis SOC and the reference internal resistance.
  • the protection device is configured to determine the electric current in response to the target SOC for lithium desorption and the value of the target internal resistance being in the value range where lithium desorption occurs in the electrochemical device or in the value range where the electrochemical device is aging.
  • the end-of-life EOL status of the chemical unit When determining the end-of-life EOL state of the electrochemical device, it is considered whether the target SOC and the target internal resistance of the electrochemical device are in the value range where the electrochemical device undergoes lithium deposition or the value range where the electrochemical device ages. That is to say, the EOL state of the electrochemical device is comprehensively judged by considering the SOC of lithium analysis, internal resistance and the relationship between the two at the same time, which reduces the possibility of misjudgment and improves the accuracy of judgment.
  • the value range where the electrochemical device produces lithium precipitation includes a first value range and a second value range.
  • the first value range is used to indicate the value range of the lithium separation SOC and the reference internal resistance when the electrochemical device is in the first lithium separation degree;
  • the second value range is used to indicate that the electrochemical device is in the The value ranges of the SOC of lithium analysis and the reference internal resistance at the second lithium analysis level before the first lithium analysis level.
  • the protection device is specifically configured to: reduce the charging current of the electrochemical device by a first current drop in response to the target lithium-separating SOC and the target internal resistance being in the first value range, and /or reduce the charging cut-off voltage of the electrochemical device by a first voltage drop; or in response to the target lithium-separating SOC and the value of the target internal resistance being in the second value range, the electrochemical device
  • the charging current of the device is reduced by a second current drop, and/or the charging cut-off voltage of the electrochemical device is reduced by a second voltage drop, the second current drop is smaller than the first current drop, and the second voltage drop is less than The first voltage drop; or in response to the target Lithium SOC and the target internal resistance being in the value range where the electrochemical device is aging, reducing the charging current of the electrochemical device by a third current drop , and/or reduce the charging cut-off voltage of the electrochemical device by a third voltage drop, the third current drop is smaller than the first current drop, and the third voltage drop is smaller than the
  • the first value range includes a range where the reference internal resistance and lithium-ion SOC satisfy the first value condition.
  • the first value selection condition includes: the reference internal resistance is less than or equal to the first internal resistance threshold, and the lithium analysis SOC is less than or equal to the smaller one of the lithium analysis SOC threshold and the function value of the first function.
  • the first function includes a linear function with a reference internal resistance as an independent variable, a lithium-analysis SOC as a dependent variable, and a negative first slope. The maximum decrease rate of lithium SOC with the reference internal resistance is analyzed at the time of degree.
  • the second value range includes a range where the reference internal resistance and lithium-ion SOC satisfy the second value condition.
  • the second value condition includes: the reference internal resistance is greater than the second internal resistance threshold and less than or equal to the first internal resistance threshold, and the lithium analysis SOC is greater than the function value of the first function, and is less than the lithium analysis SOC The smaller one of the threshold value and the function value of the second function; or, the reference internal resistance is greater than the first internal resistance threshold and less than or equal to the third internal resistance threshold, and the lithium analysis SOC is less than the second function function value.
  • the second function includes a linear function with the reference internal resistance as an independent variable, the lithium-analysis SOC as a dependent variable, and a negative second slope. The minimum decrease rate of lithium SOC with reference internal resistance, the first internal resistance threshold is greater than the second internal resistance threshold and less than the third internal resistance threshold.
  • the value range where the electrochemical device is aged includes a region where the reference internal resistance and the SOC of lithium analysis meet the third value condition; wherein, the third value condition includes the reference internal resistance The resistance is greater than the third internal resistance threshold, and the lithium separation SOC is less than the lithium separation SOC threshold.
  • the target data determining device is specifically configured to: use the lithium-analysis SOC as the target lithium-analysis SOC; and use the reference internal resistance as the target internal resistance.
  • the target SOC for lithium separation and the target internal resistance can be calculated in a simple manner, thereby simplifying the calculation process of the EOL state of the electrochemical device.
  • the electronic device further includes a historical lithium analysis data acquisition device, configured to acquire at least one historical lithium analysis SOC of the electrochemical device and at least one historical reference internal resistance of the electrochemical device.
  • the target data determination device is specifically used to: use the weighted average of the lithium analysis SOC and the at least one historical lithium analysis SOC as the target lithium analysis SOC; and use the reference internal resistance and the at least one A weighted average of historical reference internal resistances is used as the target internal resistance. Since at least one lithium analysis SOC and at least one reference internal resistance of the previously obtained electrochemical device are also taken into account when determining the target lithium analysis SOC and target internal resistance, it is possible to prevent subsequent misjudgment of the electrochemical device entering the EOL state and improve accuracy of judgment.
  • the data related to the electrochemical device includes the SOC of the electrochemical device and the internal resistance of the electrochemical device
  • the intermittent charging operation includes a plurality of charging periods and a plurality of rest periods.
  • the data analysis device is specifically used to: obtain the internal resistance and SOC of the electrochemical device during the interval; obtain a first curve based on the SOC and the internal resistance during each interval, and the first curve Indicates the variation of the internal resistance with the SOC; based on the first curve, the lithium analysis SOC is determined, and based on the first curve, the reference internal resistance is determined.
  • the data analysis device is specifically configured to: execute at least one of mode A1 and mode A2.
  • the method A1 includes: differentiating the first curve to obtain a first differential curve; determining whether the first differential curve has a maximum value and a minimum value; if the maximum value and the maximum value Small values exist, and the SOC corresponding to the maximum value is determined to be the lithium analysis SOC.
  • the method A2 includes: differentiating the first curve to obtain a first differential curve; differentiating the first differential curve to obtain a second differential curve; determining the point where the ordinate is less than zero in the second differential curve for the first time The corresponding SOC is lithium analysis SOC.
  • an electrochemical device management method, electronic equipment, and battery system are provided.
  • the battery system is determined.
  • the target lithium analysis SOC of the chemical device and the target internal resistance of the electrochemical device, and then by responding to the value of the target lithium analysis SOC of the electrochemical device and the target internal resistance of the electrochemical device are in the value range where the electrochemical device produces lithium. Or the value range where the electrochemical device is aging, to determine the EOL state of the electrochemical device.
  • the target SOC and target internal resistance of the electrochemical device are in the value range where the electrochemical device undergoes lithium deposition or the value where the electrochemical device ages Area, that is, considering the lithium-ion SOC, internal resistance and the relationship between the two at the same time, comprehensively judge the EOL state of the electrochemical device, reducing the possibility of misjudgment and improving the accuracy of judgment.
  • FIG. 1 is a flowchart of steps of a method for managing an electrochemical device according to an embodiment of the present application
  • FIG. 2 is an exemplary flowchart of step 110 according to an embodiment of the present application.
  • FIG. 3 is a flowchart of steps of another electrochemical device management method according to an embodiment of the present application.
  • FIG. 4 is a flow chart of steps of another electrochemical device management method according to an embodiment of the present application.
  • Fig. 5 is a schematic diagram of the value range where the electrochemical device undergoes lithium precipitation and the value range where the electrochemical device ages according to an embodiment of the present application;
  • FIG. 6 is a flowchart of steps of another electrochemical device management method according to an embodiment of the present application.
  • Fig. 7 is a flowchart of steps of another electrochemical device management method.
  • FIG. 8 is a schematic diagram of the division of the first value range and the second value range according to the embodiment of the present application.
  • FIG. 9 is a structural block diagram of an electronic device according to an embodiment of the present application.
  • FIG. 10 is a structural block diagram of a charging device according to an embodiment of the present application.
  • Fig. 11 is a structural block diagram of a battery system according to an embodiment of the present application.
  • a lithium-ion battery is used as an example of an electrochemical device to illustrate the present application, but the electrochemical device of the present disclosure is not limited to the lithium-ion battery.
  • An embodiment of the present application provides a method for managing an electrochemical device, and the method may be executed by a battery management system (Battery Management System, BMS). As shown in Figure 1, the method includes the following steps:
  • Step 110 Perform an intermittent charging operation on the electrochemical device, acquire data related to the electrochemical device during the intermittent charging operation, and determine the state of charge of the electrochemical device for lithium analysis based on the data related to the electrochemical device (State of Charge, SOC) and reference internal resistance.
  • the reference internal resistance is used to indicate a corresponding internal resistance value when the electrochemical device is charged to the first SOC during the intermittent charging process.
  • the first SOC may be 50%. It should be understood that the first SOC may be any value between 40% and 70% as the first SOC, which is not limited in this embodiment.
  • the SOC for lithium separation may refer to the SOC related to the lithium separation state of the electrochemical device.
  • the intermittent charging operation may refer to a process of performing intermittent charging operation on the electrochemical device.
  • the intermittent charging operation includes multiple charging periods and multiple intermittent periods.
  • the electrochemical device is charged during the first charging period, then the charging is stopped, and after the first intermittent period, the electrochemical device is continued to be charged during the second charging period, and so on, until the electrochemical device The SOC reaches the first critical value. It can be understood that as the intermittent charging proceeds, the SOC of the electrochemical device increases accordingly.
  • the intermittent charging can be stopped when the SOC of the electrochemical device reaches the first critical value, and the intermittent charging operation can be completed. .
  • the embodiment of the present application has no special limitation on the first critical value, as long as the purpose of the present application can be achieved.
  • the first critical value may be 60%, 70%, 80%, 90% or 100%.
  • the embodiment of the present application has no special restrictions on the charging method in the intermittent charging operation, as long as the purpose of the embodiment of the present application can be achieved, it can be constant voltage charging, constant current charging, or constant current and constant voltage charging , or segmental constant current charging.
  • the data related to the electrochemical device may refer to data that can reflect the state of the electrochemical device, including but not limited to data such as charging voltage, charging current, internal resistance, and SOC of the electrochemical device.
  • step 110 includes:
  • Step 1101 acquire the internal resistance and SOC of the electrochemical device during the intermittent period.
  • the internal resistance of the electrochemical device may be determined based on the detected terminal voltage and charging current of the electrochemical device during each interval.
  • the first terminal voltage of the electrochemical device at the start time point of the intermittent period and the second terminal voltage at the end time point of the intermittent period are obtained (for example, obtained through an analog front end (Analog Front End, AFE) of the BMS ), determining a voltage difference between the first terminal voltage and the second terminal voltage, and determining an internal resistance of the electrochemical device based on the voltage difference and a charging current of the electrochemical device detected during charging.
  • AFE Analog Front End
  • the SOC of the electrochemical device in the intermittent charging operation, may be determined based on a pre-stored voltage-SOC relationship table.
  • a voltage-SOC relationship table can be pre-stored in the BMS, and the voltage-SOC relationship table records the SOC of electrochemical devices corresponding to different terminal voltages, for example, 4.2V corresponds to 85% SOC, and 4.3V corresponds to 90% SOC.
  • the SOC of the electrochemical device can be determined based on the terminal voltage and the voltage-SOC relationship table.
  • the SOC of the electrochemical device may also be determined based on the terminal voltage of the electrochemical device at the start time point of the current intermittent period and the voltage-SOC relationship table, which is not limited in this embodiment.
  • Step 1102 Obtain a first curve based on the SOC and internal resistance of each intermittent period.
  • a plurality of data pairs consisting of SOC and internal resistance can be obtained, and the SOC of the electrochemical device can be used as the abscissa, and the The internal resistance is the ordinate, and the points represented by these data pairs are filled in the coordinate system, and the first curve is obtained after fitting.
  • the first curve represents the change of the internal resistance of the electrochemical device with the SOC.
  • Step 1103 based on the first curve, determine the SOC of lithium analysis, and based on the first curve, determine the reference internal resistance.
  • determining the reference internal resistance based on the first curve may include: determining the target point when the SOC is the first SOC on the first curve, setting the target point The value of the internal resistance is taken as the reference internal resistance, so the reference internal resistance can be accurately determined in a relatively simple way. It should be understood that the reference internal resistance may also be determined in any other appropriate manner, which is not limited in this embodiment.
  • the determination of the SOC for lithium analysis based on the first curve can be realized in various ways. Two specific implementation manners are used for illustration below.
  • Method A1 includes:
  • Step A11 Differentiate the first curve to obtain a first differential curve.
  • the first differential curve obtained by differentiating the first curve that is, the first differential curve is the first-order differential curve of the first curve , which actually represents the rate of change of the internal resistance of the electrochemical device with SOC.
  • Step A12. Determine whether the first differential curve has a maximum value and a minimum value.
  • the first differential curve when the first differential curve has both a maximum value and a minimum value, it means that the original flat area on the first differential curve has obvious ups and downs, that is, an abnormal decrease.
  • the first differential curve represents the rate of change of the internal resistance of the electrochemical device with the SOC. When the rate of change does not decrease abnormally in the flat area of the curve, it means that the electrochemical device has no active lithium precipitation.
  • Step A13 if both the maximum value and the minimum value exist, determine that the SOC corresponding to the maximum value is the lithium analysis SOC.
  • the electrochemical device When both the maximum value and the minimum value exist, it indicates that the electrochemical device has a tendency to precipitate lithium at the maximum value or has already occurred lithium precipitation, and the SOC corresponding to the maximum value is determined as the lithium precipitation SOC to reasonably determine
  • the lithium analysis SOC of the electrochemical device is helpful to determine that the electrochemical device enters the EOL state according to the lithium analysis SOC, and improves the safety of the electrochemical device.
  • Method A2 includes:
  • Step A21 Differentiate the first curve to obtain a first differential curve.
  • step A21 is the same as the step A11, which can be understood with reference to the step A11, and will not be repeated here.
  • Step A22 Differentiate the first differential curve to obtain a second differential curve.
  • the second differential curve can be understood as the second-order differential curve of the first curve
  • Step A23 determining the SOC corresponding to the point where the ordinate is smaller than zero on the second differential curve for the first time is the lithium analysis SOC.
  • the SOC corresponding to the point where the ordinate of the second differential curve first appears less than zero is determined as the lithium-analysis SOC.
  • step 110 may be performed by a data analysis device.
  • the embodiment of the present application has no special limitation on the data analysis device 1010, as long as the intermittent charging operation can be realized.
  • the data analysis device 1010 may be a controller unit (Microcontroller Unit, MCU) in a battery management system (Battery Management System, BMS).
  • MCU Microcontroller Unit
  • BMS Battery Management System
  • Step 112 based on the lithium analysis SOC and the reference internal resistance, determine the target lithium analysis SOC of the electrochemical device and the target internal resistance of the electrochemical device.
  • the target lithium analysis SOC and the target internal resistance may be respectively the lithium analysis SOC and the reference internal resistance used for judging whether the electrochemical device enters the EOL state.
  • step 112 may include: taking the lithium separation SOC of the electrochemical device as the target lithium separation SOC; taking the reference internal resistance of the electrochemical device as the target internal resistance of the electrochemical device. That is, in the subsequent steps, directly use the lithium analysis SOC of the electrochemical device and the value situation of the reference internal resistance to judge whether the electrochemical device enters the EOL state.
  • At least one lithium analysis SOC and at least one reference value obtained previously for the electrochemical device can also be considered.
  • Internal resistance that is, considering at least one historical lithium analysis SOC and at least one historical reference internal resistance.
  • the electrochemical device management method may further include: acquiring at least one historical lithium-ion SOC of the electrochemical device and at least one historical reference internal resistance of the electrochemical device.
  • step 112 may include:
  • the electrochemical device when judging whether the electrochemical device enters the EOL state, not only the lithium analysis SOC and the reference internal resistance of the currently acquired electrochemical device are considered, but also at least one of the previously acquired electrochemical devices is considered.
  • the historical lithium analysis SOC and at least one historical reference internal resistance avoid errors in the currently acquired lithium analysis SOC and reference internal resistance of the electrochemical device, resulting in misjudgment of the electrochemical device entering the EOL state, and improve the accuracy of judgment.
  • At least one data pair consisting of historical lithium analysis SOC of the chemical device and at least one reference internal resistance is used to draw a two-dimensional diagram of lithium analysis SOC-internal resistance. That is to say, with the reference internal resistance as the abscissa and the Lithium SOC of the electrochemical device as the ordinate, the points represented by these data pairs are filled in the coordinate system to draw a two-dimensional graph. In a subsequent step, it is judged whether the electrochemical device enters the EOL state according to the value of each point in the two-dimensional graph.
  • Step 114 Determine the EOL state of the electrochemical device in response to the target SOC for lithium desorption and the target internal resistance being in the value range where lithium desorption occurs in the electrochemical device or in the value range where aging occurs in the electrochemical device.
  • the value range of lithium separation in the electrochemical device may refer to the data point composed of the lithium separation SOC and the reference internal resistance when the electrochemical device undergoes a certain degree of lithium separation. , the distribution area in the two-dimensional coordinate system with the lithium SOC as the ordinate.
  • the aging value range of the electrochemical device can refer to when the electrochemical device is aging to a certain extent, the data points composed of the lithium analysis SOC and the reference internal resistance are in the horizontal axis with the reference internal resistance as the abscissa and the lithium analysis SOC as the vertical axis.
  • the lithium ions deposited on the surface of the negative electrode of the electrochemical device may pierce the diaphragm between the cathode and the anode of the electrochemical device, resulting in an internal short circuit of the electrochemical device, which poses a greater safety risk to the electrochemical device. Therefore, when it is determined that the electrochemical device has undergone a certain degree of lithium precipitation, it can be considered that the electrochemical device has entered the EOL state, and the use of the electrochemical device should be limited.
  • the values of the lithium separation SOC and the internal resistance have the following distribution rules: the smaller the lithium separation SOC, the smaller the internal resistance, and the smaller the lithium separation SOC, the higher the lithium separation. serious.
  • the lithium separation SOC changes faster relative to the internal resistance, that is, the internal resistance increases slowly, while the lithium separation SOC decreases rapidly. Therefore, the EOL state of the electrochemical device can be determined based on whether the target lithium separation SOC of the electrochemical device and the target internal resistance of the electrochemical device are in the value range where the electrochemical device undergoes lithium deposition.
  • the value range in which lithium precipitation occurs in the electrochemical device can be obtained by performing cycle tests on samples of the electrochemical device under at least one operating condition in which the electrochemical device is prone to lithium precipitation.
  • an electrochemical device when an electrochemical device is operated at an ambient temperature below 10°C, lithium deposition is likely to occur, and when it is operated at an ambient temperature above 20°C, lithium deposition is not likely to occur.
  • charge-discharge cycle operations on multiple electrochemical device samples at multiple ambient temperatures above 20°C and below 10°C, respectively.
  • One of the electrochemical device samples corresponds to one ambient temperature.
  • the lithium analysis SOC and reference internal resistance of the electrochemical device sample are obtained through analysis of lithium analysis, and the above process is repeated. , until the capacity retention rate of the electrochemical device is less than a preset value (for example, 70%).
  • Curve fitting is performed according to multiple lithium-analysis SOCs and multiple reference internal resistances obtained for each electrochemical device sample, and a curve of the lithium-analysis SOC of the electrochemical device as a function of the reference internal resistance is obtained.
  • the slope is to determine the first dividing line between the former plurality of curves and the latter plurality of curves through a known binary classification algorithm. According to the first demarcation line, and the distribution of the lithium separation SOC and the internal resistance of the electrochemical device, determine the value range where the lithium separation occurs in the electrochemical device.
  • the slope of the curve which may also be referred to as the rate of change of the curve, represents the rate of change of the SOC of lithium analysis with the reference internal resistance, which can be obtained by differentiating the curve.
  • the charging rate, charging depth, etc. are also the main factors affecting lithium deposition in the electrochemical device. Therefore, it is also possible to test the electrochemical device sample with a charging rate and/or a charging depth that is easy to cause lithium separation in the electrochemical device and a charging rate and/or a charging depth that is not easy to cause lithium separation in the electrochemical device, based on the test The slopes of the obtained multiple curves determine the range of values in which lithium evolution occurs in the electrochemical device in a manner similar to testing at different ambient temperatures.
  • the solid electrolyte interphase (SEI) film of the negative electrode of the electrochemical device will gradually grow, and the diaphragm between the positive and negative electrodes of the electrochemical device will become thicker, resulting in the diffusion of lithium ions. Blocked, the charging of the electrochemical device is slowed down and the capacity decays, that is, the aging of the electrochemical device.
  • the SOC of lithium-ion lithium changes slightly, while the internal resistance changes greatly. That is, the values of SOC and internal resistance of the lithium-analysis have the following distribution rules: the SOC of the lithium-analysis is larger, and the internal resistance is larger.
  • the EOL state of the electrochemical device can be determined based on whether the target SOC of the electrochemical device and the target internal resistance of the electrochemical device are in the value range where the electrochemical device is aging.
  • the aging value range of the electrochemical device can be determined through experiments, according to the corresponding internal resistance when the capacity of the electrochemical device sample drops to a preset value, and the distribution of SOC when the electrochemical device sample undergoes lithium precipitation.
  • the range of values where lithium deposition occurs in the electrochemical device and/or the value range where aging occurs in the electrochemical device may be pre-stored in the internal storage device of the BMS of the electrochemical device, or stored in other storage devices that the BMS can access.
  • the target lithium analysis SOC of the electrochemical device and the target internal resistance of the electrochemical device are determined , and then by responding to the target SOC of the electrochemical device and the value of the target internal resistance of the electrochemical device being in the value range where the electrochemical device undergoes lithium deposition or the value range where the electrochemical device is aging, the electrochemical The device enters the EOL state.
  • the target SOC and target internal resistance of the electrochemical device are in the value range where the electrochemical device undergoes lithium deposition or the value where the electrochemical device ages Area, that is, considering the lithium-ion SOC, internal resistance and the relationship between the two at the same time, comprehensively judge the EOL state of the electrochemical device, reducing the possibility of misjudgment and improving the accuracy of judgment.
  • the value range where the electrochemical device undergoes lithium separation includes a first value range, and the first value range is used to indicate that the electrochemical device is at the first lithium separation level Time analysis of lithium SOC and reference internal resistance value range.
  • Step 114A in response to the value of the target lithium separation SOC and the target internal resistance being in the value range where the electrochemical device is decomposing lithium or the value range where the electrochemical device is aging, it is determined that the electrochemical device enters the end-of-life EOL state, including: Step 114A, in response to the value of the target lithium separation SOC and the target internal resistance being in the first value range, reducing the charging current of the electrochemical device by a first current drop, and reducing the charging cut-off voltage of the electrochemical device by a first voltage drop .
  • the first degree of lithium analysis may represent serious lithium analysis, that is, the first value range is the value range of lithium analysis SOC and reference internal resistance when serious lithium analysis occurs in the electrochemical device.
  • the first value range can be based on at least one electrochemical device sample under at least one operating condition where the electrochemical device is prone to severe lithium deposition and at least one operating condition where the electrochemical device is prone to slight lithium deposition. Cyclic tests are obtained, wherein one electrochemical device corresponds to one operating condition. For example, when an electrochemical device is operated at an ambient temperature below -10°C, severe lithium deposition is prone to occur, and when the electrochemical device is operated at an ambient temperature below 10°C and above -5°C, slight lithium deposition is prone to occur. When acquiring the first value range, multiple electrochemical The device samples were subjected to charge-discharge cycle operation.
  • the lithium analysis SOC and the reference internal resistance of the electrochemical device sample are obtained through analysis of lithium analysis, and the above process is repeated, until the capacity retention rate of the electrochemical device is less than a preset value (for example, 70%).
  • Curve fitting is carried out according to a plurality of lithium analysis SOCs and a plurality of reference internal resistances of the electrochemical device samples obtained for each electrochemical device, and the curve of the lithium analysis SOC of the electrochemical device changing with the reference internal resistance (i.e. lithium analysis SOC-internal resistance curve).
  • the second boundary line between the former multiple curves and the latter multiple curves is determined through a known binary classification algorithm.
  • the first range of values is determined according to the second boundary line and the distribution of lithium-ion SOC and internal resistance of the electrochemical device. It should be understood that the charging rate, charging depth, etc. are also the main factors affecting lithium deposition in the electrochemical device. Therefore, it is also possible to perform a cycle test on the electrochemical device sample at a charging rate and/or a charging depth that is likely to cause severe lithium deposition in the electrochemical device, to obtain the first value range.
  • the first value range includes a region where the reference internal resistance and the lithium separation SOC meet the first value condition
  • the first value condition includes: the reference internal resistance is less than or equal to the first internal resistance threshold , the lithium analysis SOC is less than or equal to the smaller of the lithium analysis SOC threshold and the function value of the first function.
  • the first function includes a linear function with the reference internal resistance as the independent variable, the lithium analysis SOC as the dependent variable, and a negative first slope.
  • the minimum rate of decrease of SOC with the reference internal resistance is a linear function with the reference internal resistance as the independent variable, the lithium analysis SOC as the dependent variable, and a negative first slope.
  • the first function is a functional representation of the second boundary line
  • the slope of the first function is the slope of the second boundary line.
  • the function value of the first function is the value of the SOC of lithium desorption corresponding to the reference internal resistance when the reference internal resistance is known.
  • the solid line 810 is the lithium analysis SOC-internal resistance curve obtained at -10°C
  • the solid line 830 is the lithium analysis SOC-internal resistance curve obtained at 10°C, which are respectively located in the first function (i.e. On both sides of the second dividing line), the first function is represented by a dashed line 820.
  • the value of the internal resistance is referred to when the function value of the first function is 0. That is, the first internal resistance threshold is determined by the first function.
  • the SOC threshold for lithium separation is the minimum SOC when lithium separation occurs in the electrochemical device.
  • the SOC threshold for lithium precipitation can be set according to the distribution of SOC when lithium precipitation occurs. For example, in the process of experimenting with electrochemical device samples, it is found that when the electrochemical device sample undergoes lithium deposition, most of the SOC of the electrochemical device sample is 50%, then the threshold value of the lithium deposition SOC can be determined to be slightly higher to allow A certain margin, for example, determining the SOC of lithium analysis as 60%.
  • the first value range consists of the dotted line 501, the dotted line 502 and the two-dimensional The area A enclosed by the horizontal axis and the vertical axis of the coordinate system represents.
  • the dotted line 501 represents the first function
  • the dotted line 502 represents the SOC threshold for lithium analysis.
  • the charging current and charging cut-off voltage of the electrochemical device can be greatly reduced.
  • the charging current of the electrochemical device is reduced by a first current reduction range
  • the charging cut-off voltage of the electrochemical device is reduced by a first voltage reduction range.
  • the charging current may refer to a current used during charging of the electrochemical device.
  • the charge cut-off voltage may refer to a voltage at which the electrochemical device reaches a fully charged state during charging of the electrochemical device.
  • the first current drop may be 10% of the nominal charging current.
  • the first current drop can be 0.3A. It should be understood that the first current drop may also be any value within the range of 8% to 12% of the nominal charging current, which is not limited in this embodiment of the present application.
  • the first voltage drop may be 4% of the nominal cut-off charging voltage.
  • the first voltage drop is 0.168V. It should be understood that the first voltage drop may also be any value within the range of 2% to 6% of the nominal charging voltage, which is not limited in this embodiment of the present application.
  • the value range where the electrochemical device undergoes lithium deposition also includes a second value range, and the second value range is used to indicate that the electrochemical device is in the first
  • the value ranges of the SOC and reference internal resistance of the lithium-separated SOC and the reference internal resistance at the second lithium-separated degree before the lithium-separated degree that is, the second degree of lithium separation is smaller than the first degree of lithium separation.
  • the end-of-life EOL state of the electrochemical device is determined, including: Step 114B, in response to the target lithium separation SOC and the target internal resistance of the electrochemical device being in the second value range, reducing the charging current of the electrochemical device by a second current drop, and reducing the charging cut-off voltage of the electrochemical device by a second voltage
  • the drop range, the second current drop range is smaller than the first current drop range, and the second voltage drop range is smaller than the first voltage drop range.
  • the second degree of lithium analysis is smaller than the first degree of lithium analysis, which can indicate that the first electrochemical device has a slight lithium analysis, that is, the second value range is the lithium analysis SOC and the reference internal resistance when the electrochemical device has a slight lithium analysis. range of values.
  • the second value range adopts a method basically similar to that of the first value range. At least one operating condition in which the electrochemical device is prone to slight lithium deposition, at least one operating condition in which the electrochemical device is prone to severe lithium deposition, and the battery The chemical device is not prone to lithium precipitation in at least one operating condition of the cycle test.
  • the first demarcation line is determined based on the curve obtained by testing at least one operating condition in which the electrochemical device is prone to slight lithium deposition and at least one operating condition in which the electrochemical device is not prone to lithium deposition.
  • the first dividing line may be represented by a second function, which is shown as dashed line 840 in FIG. 8 .
  • the second score is determined.
  • the boundary line, the second boundary line is represented by the first function, which is shown as dashed line 820 in FIG. 8 .
  • the solid line 810 is the SOC-internal resistance curve of lithium deposition obtained at -10°C, which represents the serious lithium deposition in the electrochemical device.
  • the solid line 850 is the SOC-internal resistance curve obtained at 25° C., which represents that the electrochemical device does not easily or does not undergo lithium precipitation.
  • the solid line 830 is the SOC-internal resistance curve obtained at 10° C., which represents the slight lithium precipitation in the electrochemical device.
  • the solid line 830 is located between the first boundary line 840 and the second boundary line 820 .
  • the second value range includes a region where the reference internal resistance and lithium-ion SOC meet the second value condition
  • the second value condition includes: the reference internal resistance is greater than the second internal resistance threshold and less than Or equal to the first internal resistance threshold, the SOC of lithium analysis is greater than the function value of the first function, and smaller than the smaller one of the threshold value of lithium analysis SOC and the function value of the second function.
  • the second function includes a linear function with the reference internal resistance as the independent variable, the lithium analysis SOC as the dependent variable, and a negative second slope. The second slope represents the lithium analysis when the electrochemical device is at the second lithium analysis level
  • the minimum decrease rate of SOC with the reference internal resistance, the first internal resistance threshold is greater than the second internal resistance threshold and less than the third internal resistance threshold.
  • the second internal resistance threshold is a reference internal resistance when the function value of the first function is the first SOC threshold, that is, the second internal resistance threshold is set according to the first SOC threshold and the first function.
  • the lithium analysis SOC of the electrochemical device is greater than the function value of the first function, and is less than the smaller of the lithium analysis SOC threshold and the function value of the second function one.
  • the lithium deposition SOC is relatively large.
  • the second value selection condition may also include: the reference internal resistance is greater than the first internal resistance threshold and less than or equal to the third internal resistance threshold, and the SOC of lithium desorption is less than the function value of the second function.
  • the third internal resistance threshold is used to indicate the minimum internal resistance of the electrochemical device when severe aging occurs.
  • the third internal resistance threshold can be set according to the corresponding internal resistance when the capacity of the electrochemical device drops to a certain level (for example, 80%). Specifically, during the use of the electrochemical device, as the number of charging and discharging cycles increases, the capacity of the electrochemical device decreases. At the same time, as the number of charging and discharging cycles increases, the internal resistance of the electrochemical device will also increase, so there is a certain correspondence between the capacity of the electrochemical device and the internal resistance of the electrochemical device.
  • the third internal resistance threshold can be set according to the corresponding internal resistance when the capacity of the electrochemical device drops to a certain degree, so that when the electrochemical device When the internal resistance is greater than the third internal resistance threshold, it is determined that the capacity of the electrochemical device is severely aged.
  • the lithium desorption SOC of the electrochemical device is less than the preset SOC threshold or the function value of the second function, but the reference internal resistance has not yet reached the third internal resistance threshold.
  • the second value range consists of the dotted line 501, the dotted line 502, the dotted line 503, the dotted line 504 and the horizontal axis of the coordinate system
  • the area B enclosed by the axes is indicated.
  • the dashed line 503 represents the second function
  • the value on the horizontal axis corresponding to the dashed line 504 represents the third internal resistance threshold.
  • the target lithium-extraction SOC of the electrochemical device and the target internal resistance of the electrochemical device are in the second value range, it is determined that a slight lithium-extraction occurs in the electrochemical device.
  • the electrochemical device has slight lithium precipitation, the possibility of causing safety problems is relatively small, and the charging current and charging voltage can be reduced relatively small. For example, reducing the charging current of the electrochemical device by a second current drop, and reducing the charging cut-off voltage of the electrochemical device by a second voltage drop, the second current drop is smaller than the first current drop, the The second voltage drop is smaller than the first voltage drop. As a result, the charging speed is ensured while improving the safety of the electrochemical device.
  • the second current drop may be 5% of the nominal charging current.
  • the first current drop range may be 0.15A.
  • the second current drop can also be any value between 3% and 6% of the nominal charging current, which is not limited in this embodiment of the present application.
  • the second voltage drop may be 2% of the nominal charging cut-off voltage.
  • the first voltage drop range is 0.084V.
  • the second voltage drop may also be any value between 1% and 3% of the nominal charging voltage, which is not limited in this embodiment of the present application.
  • the aging value range of the electrochemical device includes the region where the reference internal resistance and the lithium-ion SOC satisfy the third value condition, and the third value condition includes the reference internal resistance
  • the resistance is greater than the third internal resistance threshold, and the lithium analysis SOC is less than the lithium analysis SOC threshold.
  • the third internal resistance threshold is used to indicate the minimum internal resistance at which the electrochemical device undergoes severe aging.
  • the third internal resistance threshold can be set according to the corresponding internal resistance when the capacity of the electrochemical device drops to a certain level (for example, 80%).
  • a certain level for example, 80%.
  • the lithium-analysis SOC is lower than the lithium-analysis SOC threshold, and the reference internal resistance is greater than the third internal resistance threshold, that is, the reference internal resistance is relatively large.
  • the aging area of the electrochemical device is surrounded by the dotted line 502, the dotted line 504 and the abscissa of the coordinate system Area C indicates.
  • the target lithium separation SOC of the electrochemical device and the target internal resistance of the electrochemical device are in the value range where the electrochemical device is aging, it is determined that the electrochemical device is severely aged. Considering the severe aging of the electrochemical device, only the charging speed is slowed down and the capacity of the electrochemical device is small, and the possibility of causing safety problems is relatively small, so the charging current and charging voltage can be reduced relatively small.
  • determining the end-of-life EOL state of the electrochemical device may include : Step 114C, reducing the charging current of the electrochemical device by a third current drop, and reducing the charging cut-off voltage of the electrochemical device by a third voltage drop, the third current drop is smaller than the first current drop, The third voltage drop is smaller than the first voltage drop.
  • the third voltage drop may be equal to the second voltage drop.
  • the third current drop may be equal to the second current drop.
  • the third current drop may be 5% of the nominal charging current.
  • the first current drop range may be 0.15A. It should be understood that the third current drop may also be any value between 3% and 6% of the nominal charging current, which is not limited in this embodiment of the present application.
  • the third voltage drop may be 2% of the nominal cut-off charging voltage.
  • the first voltage drop is 0.084V.
  • the third voltage drop may also be any value between 1% and 3% of the nominal charging voltage, which is not limited in this embodiment of the present application.
  • the embodiment of the present application also provides an electronic device.
  • the electronic device 900 includes a data analysis device 910 , a target data determination device 912 and a protection device 914 .
  • the data analysis device 910 is used to perform an intermittent charging operation on the electrochemical device, acquire data related to the electrochemical device during the intermittent charging operation, and determine the lithium analysis SOC and the reference content of the electrochemical device based on the data related to the electrochemical device. resistance.
  • the reference internal resistance is used to indicate the internal resistance of the electrochemical device when it is charged to the first SOC.
  • the target data determination device 912 is used to determine the target lithium analysis SOC and the target internal resistance based on the lithium analysis SOC and the reference internal resistance.
  • the protection device 914 is used to determine the end-of-life EOL state of the electrochemical device in response to the value of the target lithium separation SOC and the target internal resistance being in the value range where the electrochemical device undergoes lithium deposition or in the value range where the electrochemical device is aging .
  • the electronic device in the embodiment of the present application may include an electrochemical device.
  • the electronic device may be a new energy vehicle, a mobile phone, a tablet computer and the like with a built-in lithium-ion battery and a device capable of data processing.
  • the structures of the data analyzing device 910, the target data determining device 912, and the protecting device 914 there is no special limitation on the structures of the data analyzing device 910, the target data determining device 912, and the protecting device 914, as long as the corresponding functions can be realized.
  • the value range where the electrochemical device undergoes lithium precipitation includes a first value range and a second value range; wherein, the first value range is used to indicate that the electrochemical device is in the first value range
  • the value range of lithium analysis SOC and reference internal resistance at lithium level; the second value area is used to indicate the value of lithium analysis SOC and reference internal resistance when the electrochemical device is in the second lithium analysis level before the first lithium analysis level scope.
  • the protection device 914 is specifically used to: reduce the charging current of the electrochemical device by a first current drop in response to the target lithium-separating SOC and the target internal resistance being in the first value range, and/or cut off the charging of the electrochemical device
  • the voltage is reduced by the first voltage drop; or in response to the value of the target lithium analysis SOC and the target internal resistance being in the second value range, the charging current of the electrochemical device is reduced by the second current drop, and/or the charging current of the electrochemical device
  • the cut-off voltage reduces the second voltage drop, the second current drop is smaller than the first current drop, and the second voltage drop is smaller than the first voltage drop; or in response to the value of the target lithium analysis SOC and the target internal resistance being in the value of the aging of the electrochemical device value range, the charging current of the electrochemical device is reduced by a third current drop, and/or the charging cut-off voltage of the electrochemical device is reduced by a third voltage drop, the third current drop is smaller than the first current drop, and the third voltage drop is
  • the first value range includes a range in which the reference internal resistance and the SOC of lithium desorption meet the first value condition.
  • the first value-taking condition includes: the reference internal resistance is less than or equal to the first internal resistance threshold, and the lithium-separation SOC is less than or equal to the smaller one of the lithium-separation SOC threshold and the function value of the first function.
  • the first function includes a linear function with the reference internal resistance as the independent variable and the lithium SOC as the dependent variable, and has a negative first slope. Refers to the maximum rate of decrease in internal resistance.
  • the second value range includes a region in which the reference internal resistance and lithium-ion SOC meet the second value condition.
  • the second value selection condition includes: the reference internal resistance is greater than the second internal resistance threshold and less than or equal to the first internal resistance threshold, the lithium analysis SOC is greater than the function value of the first function, and is less than the function value of the lithium analysis SOC threshold and the second function. The smaller one of the two; or the reference internal resistance is greater than the first internal resistance threshold and less than or equal to the third internal resistance threshold, and the SOC of lithium analysis is less than the function value of the second function.
  • the second function includes a linear function with the reference internal resistance as an independent variable, the lithium SOC as a dependent variable, and a negative second slope. Referring to the minimum change rate of the internal resistance, the first internal resistance threshold is greater than the second internal resistance threshold and less than the third internal resistance threshold.
  • the value range where the electrochemical device is aged includes a region where the reference internal resistance and the lithium-ion SOC meet the third value condition, and the third value condition includes that the reference internal resistance is greater than the third internal resistance Threshold, and the lithium analysis SOC is less than the lithium analysis SOC threshold.
  • the target data determining device 912 is specifically configured to: use the lithium analysis SOC as the target lithium analysis SOC; and use the reference internal resistance as the target internal resistance.
  • the electronic device further includes a historical lithium analysis data acquisition device, configured to acquire at least one historical lithium analysis SOC of the electrochemical device and at least one historical reference internal resistance of the electrochemical device.
  • the target data determination device 912 is specifically configured to: use the weighted average of the lithium analysis SOC and at least one historical lithium analysis SOC as the target lithium analysis SOC; and use the weighted average of the reference internal resistance and at least one historical reference internal resistance value, as the target internal resistance.
  • the data related to the electrochemical device includes the SOC of the electrochemical device and the internal resistance of the electrochemical device
  • the intermittent charging operation includes multiple charging periods and multiple intermittent periods
  • the data analysis device 910 Specifically used for: obtaining the internal resistance and SOC of the electrochemical device during the intermittent period; based on the SOC and internal resistance during each intermittent period, the first curve is obtained, and the first curve represents the change of the internal resistance with the SOC; based on the first curve, determining the analysis Lithium SOC, and based on the first curve, determine the reference internal resistance.
  • the data analysis device 910 is specifically configured to: execute at least one of manner A1 and manner A2.
  • method A1 includes: differentiating the first curve to obtain the first differential curve; determining whether the first differential curve has a maximum value and a minimum value; if both the maximum value and the minimum value exist, determining the corresponding value of the maximum value
  • the SOC is the lithium SOC.
  • Method A2 includes: differentiating the first curve to obtain the first differential curve; differentiating the first differential curve to obtain the second differential curve; determining the SOC corresponding to the point where the ordinate of the second differential curve appears for the first time less than zero is the lithium analysis SOC.
  • the electronic devices in the embodiments of the present application can be used to implement the corresponding lithium analysis detection methods in the foregoing method embodiments, and have the beneficial effects of the corresponding method embodiments, which will not be repeated here.
  • the function implementation of each device in the electronic device of this embodiment reference may be made to the description of corresponding parts in the foregoing method embodiments, and details are not repeated here.
  • the charging device 1000 includes a processor 1001 and a processor 1002. rectification circuit 1006.
  • the charging circuit module 1003 is used for intermittently charging the lithium-ion battery (that is, an electrochemical device); the charging circuit module 1003 can also be used to collect parameters such as the terminal voltage and the charging current of the lithium-ion battery, and store these parameters sent to the processor; the interface 1004 is used for electrical connection with the electrochemical device 2000; the power interface 1005 is used for connecting with an external power supply; the rectification circuit 1006 is used for rectifying the input current; the processor 1002 stores a machine that can be executed by the processor Executable instructions, when the processor 1001 executes the machine-executable instructions, implement the method steps described in any one of the foregoing method embodiments.
  • the embodiment of the present application also provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the method steps described in any one of the above method embodiments are implemented.
  • the battery system 1100 includes a second processor 1101 and a second machine-readable storage medium 1102.
  • the lithium ion battery 1104 and the second interface 1105 are used for intermittently charging the lithium-ion battery; the charging circuit module 1103 can also be used for collecting parameters such as terminal voltage and charging current of the lithium-ion battery, and sending these parameters to the second processor.
  • the second interface 1105 is used to interface with the external charger 1200; the external charger 1200 is used to provide power; the second machine-readable storage medium 1102 stores machine-executable instructions that can be executed by the processor, and the second processor 1101 When the machine-executable instructions are executed, the method steps described in any one of the above method embodiments are implemented.
  • the external charger 1200 may include a first processor 1201, a first machine-readable storage medium 1202, a first interface 1203 and a corresponding rectification circuit.
  • the external charger may be a commercially available charger, and the embodiment of the present application does not change its structure. Be specific.
  • An embodiment of the present application also provides an electronic device, including the battery system described in the foregoing embodiments.
  • the above-mentioned machine-readable storage medium may include a random access memory (Random Access Memory, RAM for short), and may also include a non-volatile memory (non-volatile memory), such as at least one magnetic disk memory.
  • the memory may also be at least one storage device located far away from the aforementioned processor.
  • the above-mentioned processor can be a general-purpose processor, including a central processing unit (Central Processing Unit, referred to as CPU), a network processor (Network Processor, referred to as NP), etc.; it can also be a digital signal processor (Digital Signal Processing, referred to as DSP) , Application Specific Integrated Circuit (ASIC for short), Field Programmable Gate Array (Field-Programmable Gate Array, FPGA for short) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • CPU Central Processing Unit
  • NP Network Processor
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电化学装置管理方法、电子设备及电池系统,方法包括:对电化学装置进行间歇式充电操作,在间歇式充电操作中获取与电化学装置相关的数据,基于与电化学装置相关的数据确定电化学装置的析锂SOC和参考内阻;基于析锂SOC和参考内阻,确定目标析锂SOC和目标内阻。响应于目标析锂SOC和目标内阻的取值处于电化学装置发生析锂的取值区域;确定电化学装置进入寿命末期EOL状态。由于在确定电化学装置是否进入寿命末期EOL状态时,同时考虑电化学装置的析锂SOC、内阻以及二者之间的关系,对电化学装置的EOL状态进行综合判断,减少了误判的可能性,提高了判断的准确率。

Description

电化学装置管理方法、电子设备及电池系统 技术领域
本申请涉及电化学技术领域,特别是涉及一种电化学装置管理方法、电子设备及电池系统。
背景技术
锂离子电池具有比能量密度大、循环寿命长、标称电压高、自放电率低、体积小、重量轻等许多优点,在消费电子领域具有广泛的应用。
近年随着平板电脑、手机、电动车的高速发展,并且由于新能源行业的不断发展,市场对锂离子电池的需求也越来越多。锂离子电池在电池寿命使用(End of Life,EOL)状态,安全风险与初始使用时相比更大。现有技术中,通常根据充放电循环次数或容量保持率来判断电化学装置是否进入EOL状态,这种判断指标单一,且忽略析锂对锂离子电池老化的影响,造成电化学装置的EOL状态判断不够准确。因此,如何准确确定电化学装置进入EOL状态,就成了一个亟待解决的问题。
发明内容
本申请实施例的目的在于提供一种电化学装置管理方法、电子设备及电池系统,以提高电化学装置在使用过程中的安全性。
根据本申请实施例的一方面,提供了一种电化学装置管理方法,包括:对电化学装置进行间歇式充电操作,在所述间歇式充电操作中获取与电化学装置相关的数据,基于所述与电化学装置相关的数据确定电化学装置的析锂SOC和参考内阻,所述参考内阻用于指示所述电化学装置被充电至第一SOC时的内阻;基于所述析锂SOC和所述参考内阻,确定目标析锂SOC和目标内阻;响应于所述目标析锂SOC和所述目标内阻的取值处于电化学装置发生析锂的取值区域或电化学装置发生老化的取值区域,确定所述电化学装置的寿命末期EOL状态。由于在确定电化学装置的寿命末期EOL状态时,考虑由电化学装置的目标析锂SOC和目标内阻是否处于电化学装置发生析锂的取值区域或电化学装置发生老化的取值区域,即同时考虑电化学装置的析锂SOC、内阻以及二者之间的关系,对电化学装置的EOL状态进行综合判断,减少了误判的可能性,提高了判断的准确率。
在本申请的一种实施方案中,所述电化学装置发生析锂的取值区域包括第一取值区域和第二取值区域。其中,所述第一取值区域用于指示电化学装置处于第一析锂程度时析锂SOC和参考内阻的取值范围;所述第二取值区域用于指示电化学装置处于所述第一析锂程度之前的第二析锂程度时析锂SOC和参考内阻的取值范围。所述响应于所述目标析锂SOC和所述目标内阻的取值处于电化学装置发生析锂的取值区域或电化学装置发生老化的取值区域,确定所述电化学装置的寿命末期EOL状态,包括:响应于所述目标析锂SOC和所述目标内阻的取值处于所述第一取值区域,将所述电化学装置的充电电流降低第一电流降幅,和/或将所述电化学装置的充电截止电压降低第一电压降幅;或者响应于所述目标析锂SOC和所述目标内阻的取值处于所述第二取值区域,将所述电化学装置的充电电流降低第二电流降幅,和/或将所述电化学装置的充电截止电压降低第二电压降幅,所述第二电流降幅小于所述第一电流降幅,所述第二电压降幅小于所述第一电压降幅;或者响应于所述目标析锂SOC和所述目标 内阻的取值处于电化学装置发生老化的取值区域,将所述电化学装置的充电电流降低第三电流降幅,和/或将所述电化学装置的充电截止电压降低第三电压降幅,所述第三电流降幅小于所述第一电流降幅,所述第三电压降幅小于所述第一电压降幅。由于降低了电化学装置的充电电流和充电截止电压,因此可以避免继续使用过程中引发安全性问题。
在本申请的另一种实现方案中,所述第一取值区域包括参考内阻和析锂SOC满足第一取值条件的区域。其中,所述第一取值条件包括:参考内阻小于或等于第一内阻阈值,且析锂SOC小于或等于析锂SOC阈值与第一函数的函数值二者中的较小一个。所述第一函数包括以参考内阻为自变量、以析锂SOC为因变量,且具有负的第一斜率的直线函数,所述第一斜率表征在所述电化学装置处于第一析锂程度时析锂SOC随参考内阻的最小减小速率。
在本申请的另一种实现方案中,所述第二取值区域包括参考内阻和析锂SOC满足第二取值条件的区域。其中,所述第二取值条件包括:参考内阻大于第二内阻阈值且小于或等于所述第一内阻阈值,且析锂SOC大于第一函数的函数值、小于所述析锂SOC阈值与第二函数的函数值二者中的较小一个;或者,参考内阻大于所述第一内阻阈值且小于或等于第三内阻阈值,且析锂SOC小于所述第二函数的函数值。所述第二函数包括以参考内阻为自变量、以析锂SOC为因变量,且具有负的第二斜率的直线函数,所述第二斜率表征在电化学装置处于第二析锂程度时析锂SOC随参考内阻的最小减小速率,所述第一内阻阈值大于所述第二内阻阈值且小于所述第三内阻阈值。
在本申请的另一种实现方案中,所述电化学装置发生老化的取值区域包括参考内阻和析锂SOC满足第三取值条件的区域。其中,所述第三取值条件包括参考内阻大于所述第三内阻阈值,且析锂SOC小于所述析锂SOC阈值。
在本申请的另一种实现方案中,所述基于所述析锂SOC和所述参考内阻,确定目标析锂SOC和目标内阻,包括:将所述析锂SOC作为所述目标析锂SOC;以及将所述参考内阻作为所述目标内阻。由此,以简单的方式计算目标析锂SOC和目标内阻,从而简化电化学装置的EOL状态的计算过程。
在本申请的另一种实现方案中,所述方法还包括:获取电化学装置的至少一个历史析锂SOC和电化学装置的至少一个历史参考内阻。所述基于所述析锂SOC和所述参考内阻,确定目标析锂SOC和目标内阻,包括:将所述析锂SOC与所述至少一个历史析锂SOC的加权平均值,作为所述目标析锂SOC;以及将所述参考内阻与所述至少一个历史参考内阻的加权平均值,作为所述目标内阻。由于在确定目标析锂SOC和目标内阻时,还考虑到先前获取电化学装置的至少一个析锂SOC和至少一个参考内阻,因此可以防止后续对电化学装置进入EOL状态的误判,提高判断的准确度。
在本申请的另一种实现方案中,与电化学装置相关的数据包括电化学装置的SOC和电化学装置的内阻,所述间歇式充电操作包括多个充电期间和多个间断期间,所述基于所述与电化学装置相关的数据确定电化学装置的析锂SOC和参考内阻的步骤包括:获取在所述间断期间所述样本电化学装置的内阻和SOC;基于各间断期间的所述SOC和所述内阻,得到第一曲线,所述第一曲线表示所述内阻随所述SOC的变化;基于所述第一曲线,确定所述析锂SOC,并且基于所述第一曲线,确定所述参考内阻。
在本申请的另一种实现方案中,所述基于所述第一曲线,确定所述析锂SOC,包括方式A1和方式A2中的至少一个。其中,所述方式A1包括:对所述第一曲线进行微分,得到第一微分曲线;确定所述第一微分曲线是否具有极大值和极小值;如果所述极大值和所述极小 值都存在,确定所述极大值对应的SOC为所述析锂SOC。所述方式A2包括:对所述第一曲线进行微分,得到第一微分曲线;对所述第一微分曲线进行微分,得到第二微分曲线;确定第二微分曲线首次出现纵坐标小于零的点对应的SOC为析锂SOC。
根据本申请实施例的再一方面,提供了一种电池系统,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器执行所述机器可执行指令时,实现前述方法实施例中任一项所述的方法。
根据本申请实施例的再一方面,提供了一种电子设备,其中,所述电子设备包括前述实施例所述的电池系统。
根据本申请实施例的再一方面,提供了一种电子设备,其中,所述电子设备包括:数据分析装置、目标数据确定装置和保护装置。所述数据分析装置,用于对电化学装置进行间歇式充电操作,在所述间歇式充电操作中获取与电化学装置相关的数据,基于所述与电化学装置相关的数据确定电化学装置的析锂SOC和参考内阻,所述参考内阻用于指示所述电化学装置被充电至第一SOC时的内阻。所述目标数据确定装置,用于基于所述析锂SOC和所述参考内阻,确定目标析锂SOC和目标内阻。所述保护装置,用于响应于所述目标析锂SOC和所述目标内阻的取值处于电化学装置发生析锂的取值区域或电化学装置发生老化的取值区域,确定所述电化学装置的寿命末期EOL状态。由于在确定电化学装置的寿命末期EOL状态时,考虑由电化学装置的目标析锂SOC和目标内阻是否处于电化学装置发生析锂的取值区域或电化学装置发生老化的取值区域,即同时考虑电化学装置的析锂SOC、内阻以及二者之间的关系,对电化学装置的EOL状态进行综合判断,减少了误判的可能性,提高了判断的准确率。
在本申请的一种实施方案中,所述电化学装置发生析锂的取值区域包括第一取值区域和第二取值区域。其中,所述第一取值区域用于指示电化学装置处于第一析锂程度时析锂SOC和参考内阻的取值范围;所述第二取值区域用于指示电化学装置处于所述第一析锂程度之前的第二析锂程度时析锂SOC和参考内阻的取值范围。所述保护装置具体用于:响应于所述目标析锂SOC和所述目标内阻的取值处于所述第一取值区域,将所述电化学装置的充电电流降低第一电流降幅,和/或将所述电化学装置的充电截止电压降低第一电压降幅;或者响应于所述目标析锂SOC和所述目标内阻的取值处于所述第二取值区域,将所述电化学装置的充电电流降低第二电流降幅,和/或将所述电化学装置的充电截止电压降低第二电压降幅,所述第二电流降幅小于所述第一电流降幅,所述第二电压降幅小于所述第一电压降幅;或者响应于所述目标析锂SOC和所述目标内阻的取值处于电化学装置发生老化的取值区域,将所述电化学装置的充电电流降低第三电流降幅,和/或将所述电化学装置的充电截止电压降低第三电压降幅,所述第三电流降幅小于所述第一电流降幅,所述第三电压降幅小于所述第一电压降幅。由于降低了电化学装置的充电电流和充电截止电压,因此可以避免继续使用过程中引发安全性问题。
在本申请的一种实施方案中,所述第一取值区域包括参考内阻和析锂SOC满足第一取值条件的区域。其中,所述第一取值条件包括:参考内阻小于或等于第一内阻阈值,且析锂SOC小于或等于析锂SOC阈值与第一函数的函数值二者中的较小一个。所述第一函数包括以参考内阻为自变量、以析锂SOC为因变量,且具有负的第一斜率的直线函数,所述第一斜率表征在所述电化学装置处于第一析锂程度时析锂SOC随参考内阻的最大减小速率。
在本申请的一种实施方案中,所述第二取值区域包括参考内阻和析锂SOC满足第二取值条件的区域。其中,所述第二取值条件包括:参考内阻大于第二内阻阈值且小于或等于所述 第一内阻阈值,且析锂SOC大于第一函数的函数值、小于所述析锂SOC阈值与第二函数的函数值二者中的较小一个;或者,参考内阻大于所述第一内阻阈值且小于或等于第三内阻阈值,且析锂SOC小于所述第二函数的函数值。所述第二函数包括以参考内阻为自变量、以析锂SOC为因变量,且具有负的第二斜率的直线函数,所述第二斜率表征在电化学装置处于第二析锂程度时析锂SOC随参考内阻的最小减小速率,所述第一内阻阈值大于所述第二内阻阈值且小于所述第三内阻阈值。
在本申请的一种实施方案中,所述电化学装置发生老化的取值区域包括参考内阻和析锂SOC满足第三取值条件的区域;其中,所述第三取值条件包括参考内阻大于所述第三内阻阈值,且析锂SOC小于所述析锂SOC阈值。
在本申请的一种实施方案中,所述目标数据确定装置,具体用于:将所述析锂SOC作为所述目标析锂SOC;以及将所述参考内阻作为所述目标内阻。由此,以简单的方式计算目标析锂SOC和目标内阻,从而简化电化学装置的EOL状态的计算过程。
在本申请的一种实施方案中,所述电子设备还包括历史析锂数据获取装置,用于获取电化学装置的至少一个历史析锂SOC和电化学装置的至少一个历史参考内阻。所述目标数据确定装置,具体用于:将所述析锂SOC与所述至少一个历史析锂SOC的加权平均值,作为所述目标析锂SOC;以及将所述参考内阻与所述至少一个历史参考内阻的加权平均值,作为所述目标内阻。由于在确定目标析锂SOC和目标内阻时,还考虑到先前获取电化学装置的至少一个析锂SOC和至少一个参考内阻,因此可以防止后续对电化学装置进入EOL状态的误判,提高判断的准确度。
在本申请的一种实施方案中,与电化学装置相关的数据包括电化学装置的SOC和电化学装置的内阻,所述间歇式充电操作包括多个充电期间和多个间断期间。所述数据分析装置具体用于:获取在所述间断期间所述电化学装置的内阻和SOC;基于各间断期间的所述SOC和所述内阻,得到第一曲线,所述第一曲线表示所述内阻随所述SOC的变化;基于所述第一曲线,确定所述析锂SOC,并且基于所述第一曲线,确定所述参考内阻。
在本申请的一种实施方案中,所述数据分析装置具体用于:执行方式A1和方式A2中的至少一个。其中,所述方式A1包括:对所述第一曲线进行微分,得到第一微分曲线;确定所述第一微分曲线是否具有极大值和极小值;如果所述极大值和所述极小值都存在,确定所述极大值对应的SOC为所述析锂SOC。所述方式A2包括:对所述第一曲线进行微分,得到第一微分曲线;对所述第一微分曲线进行微分,得到第二微分曲线;确定第二微分曲线首次出现纵坐标小于零的点对应的SOC为析锂SOC。
根据本申请实施例提供了一种电化学装置管理方法、电子设备及电池系统,通过获取电化学装置的析锂SOC和参考内阻,并基于电化学装置的析锂SOC和参考内阻确定电化学装置的目标析锂SOC和电化学装置的目标内阻,进而通过响应于电化学装置的目标析锂SOC和电化学装置的目标内阻的取值处于电化学装置发生析锂的取值区域或电化学装置发生老化的取值区域,来确定电化学装置的EOL状态。由于在确定电化学装置是否进入寿命末期EOL状态时,考虑到由电化学装置的目标析锂SOC和目标内阻是否处于电化学装置发生析锂的取值区域或电化学装置发生老化的取值区域,即同时考虑电化学装置的析锂SOC、内阻以及二者之间的关系,对电化学装置的EOL状态进行综合判断,减少了误判的可能性,提高了判断的准确率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为根据本申请实施例的一种电化学装置管理方法的步骤流程图;
图2为根据本申请实施例的步骤110的示例性流程图;
图3为根据本申请实施例的另一种电化学装置管理方法的步骤流程图;
图4为根据本申请实施例的另一种电化学装置管理方法的步骤流程图;
图5为根据本申请实施例的电化学装置发生析锂的取值区域和电化学装置发生老化的取值区域的示意图;
图6为本申请实施例的另一种电化学装置管理方法的步骤流程图;
图7为另一种电化学装置管理方法的步骤流程图。
图8为本申请实施例的第一取值区域和第二取值区域的划分的示意图;
图9为根据本申请实施例的电子设备的结构框图;
图10为根据本申请实施例的充电装置的结构框图;以及
图11为根据本申请实施例的电池系统的结构框图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图和实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他技术方案,都属于本申请保护的范围。
下面先结合附图说明本申请实施例具体实现。
需要说明的是,本申请实施例的内容中,以锂离子电池作为电化学装置的例子来示例本申请,但是本公开的电化学装置并不仅限于锂离子电池。
本申请实施例提供了一种电化学装置管理方法,该方法的执行主体可以是电池管理系统(Battery Management System,BMS)。如图1所示,该方法包括以下步骤:
步骤110:对电化学装置进行间歇式充电操作,在所述间歇式充电操作中获取与电化学装置相关的数据,基于所述与电化学装置相关的数据确定电化学装置的析锂荷电状态(State of Charge,SOC)和参考内阻。
其中,参考内阻用于指示在间歇式充电过程中电化学装置被充电至第一SOC时对应的一个内阻值。例如,第一SOC可以是50%。应理解,第一SOC可以是40%-70%之间的任一值作为第一SOC,本实施例对此不做限定。
本申请实施例中,析锂SOC可以是指与电化学装置的析锂状态相关的SOC。析锂SOC越小,析锂状态越严重。
本申请实施例中,间歇式充电操作可以是指对电化学装置进行间歇式充电操作的过程。具体地,在一种实现方式中,间歇式充电操作包括多个充电期间和多个间断期间。示例性地,在第一个充电期间对电化学装置进行充电,然后停止充电,间隔第一个间断期间后,继续在第二个充电期间对电化学装置进行充电,如此重复,直至电化学装置的 SOC达到第一临界值。可以理解的是,随着间歇式充电的进行,电化学装置的SOC随之升高,本申请实施例可以在电化学装置的SOC达到第一临界值时停止间歇式充电,完成间歇式充电操作。本申请实施例对第一临界值没有特别限制,只要能实现本申请目的即可,例如,第一临界值可以为60%、70%、80%、90%或100%。本申请实施例对间歇式充电操作中的充电方式没有特别限制,只要能实现本申请实施例目的即可,可以是恒压充电,也可以是恒流充电,还可以是恒流和恒压充电,或者分段恒流式充电。
本申请实施例中,与电化学装置相关的数据可以是指能够反映电化学装置状态的数据,包括但不限于电化学装置的充电电压、充电电流、内阻、SOC等数据。
参照图2,在一种实现方式中,步骤110,包括:
步骤1101、获取在间断期间电化学装置的内阻和SOC。
本申请实施例中,在间歇式充电操作中,可以基于各间断期间检测到的电化学装置的端电压和充电电流,确定电化学装置的内阻。
以在当前间断期间,确定电化学装置的内阻为例进行说明。具体地,获取电化学装置在该间断期间的开始时间点的第一端电压和在该间断期间的结束时间点的第二端电压(例如,通过BMS的模拟前端(Analog Front End,AFE)获取),确定第一端电压和所述第二端电压的电压差,基于电压差和在充电期间检测到的电化学装置的充电电流,确定电化学装置的内阻。
本申请实施例中,在间歇式充电操作中,可以基于预先保存的电压-SOC关系表,确定电化学装置的SOC。例如,BMS中可以预先保存一个电压-SOC关系表,电压-SOC关系表中记录有不同端电压对应的电化学装置的SOC,例如,4.2V对应85%SOC,4.3V对应90%SOC。由此,在获取到电化学装置在当前间断期间的结束时间点的端电压之后,基于该端电压和电压-SOC关系表,便可以确定电化学装置的SOC。应理解,也可以基于电化学装置在当前间断期间的开始时间点的端电压和电压-SOC关系表,确定电化学装置的SOC,本实施例对此不做限定。
步骤1102、基于各间断期间的SOC和内阻,得到第一曲线。
本申请实施例中,获取电化学装置的各间断期间的SOC和内阻后,可以得到多个SOC和内阻组成的数据对,可以以电化学装置的SOC为横坐标,以电化学装置的内阻为纵坐标,将这些数据对所代表的点填充在坐标系中,经拟合后得到第一曲线,第一曲线表示第一曲线表示电化学装置的内阻随SOC的变化。
可以理解的是,电化学装置的SOC和内阻数据采集的越密集,则得到的数据对越多,可以得到更加细致的第一曲线。利用数据进行曲线拟合的过程为本领域技术人员所熟知的,本申请实施例对比不做具体限定。
步骤1103、基于第一曲线,确定析锂SOC,并且基于第一曲线,确定参考内阻。
本申请实施例中,由于第一曲线表示内阻随SOC的变化,因此,基于第一曲线确定参考内阻可以包括:在第一曲线上确定SOC为第一SOC时的目标点,将目标点的内阻取值作为参考内阻,由此可以以较为简单的方法准确地确定参考内阻。应理解,也可以采用其他任何适当的方式确定参考内阻,本实施例对此不做限定。
在本申请实施例中,基于第一曲线确定析锂SOC可以通过多种方式实现。下面通过两个具体实现方式进行举例说明。
在一种具体实现方式中,基于第一曲线确定析锂SOC的过程可以为方式A1。方式 A1包括:
步骤A11、对所述第一曲线进行微分,得到第一微分曲线。
由于第一曲线表示电化学装置的内阻R随电化学装置的SOC的变化,因此对第一曲线进行微分获得的第一微分曲线,也即第一微分曲线为第一曲线的一阶微分曲线,其实际上表示电化学装置的内阻随SOC的变化率。
步骤A12、确定第一微分曲线是否具有极大值和极小值。
从数学意义上而言,当第一微分曲线同时具有极大值和极小值,则说明第一微分曲线上的原本的平坦区域出现了较明显的起伏变化,即出现了异常降低。本申请实施例中,第一微分曲线表示电化学装置的内阻随SOC的变化率。当变化率在曲线平坦区域未出现异常降低时,表示电化学装置无活性锂析出。当变化率在曲线平坦区域出现异常降低时,由于活性锂在负极表面析出并与负极接触,相当于负极石墨部分并联一个锂金属器件,使整个负极部分的阻抗降低,从而使电化学装置的内阻在活性锂析出时出现异常降低,对应的,使得第一微分曲线的平坦区域出现异常降低。
步骤A13、如果极大值和极小值都存在,确定极大值对应的SOC为析锂SOC。
在极大值和极小值都存在时,表明该电化学装置在该极大值处出现析锂倾向或已经出现析锂,将极大值对应的SOC确定为析锂SOC,以合理地确定电化学装置的析锂SOC,有助于后续根据析锂SOC确定电化学装置进入EOL状态,提高电化学装置的使用安全性。
在本另一种具体实现方式中,基于第一曲线确定析锂SOC的过程可以为方式A2。方式A2包括:
步骤A21、对第一曲线进行微分,得到第一微分曲线。
其中,该步骤A21与步骤A11相同,可参照步骤A11进行理解,此处不再进行赘述。
步骤A22、对第一微分曲线进行微分,得到第二微分曲线。
其中,第二微分曲线可以理解为第一曲线的二阶微分曲线
步骤A23、确定第二微分曲线首次出现纵坐标小于零的点对应的SOC为析锂SOC。
如果第二微分曲线的纵坐标出现了小于零的情况,则将第二微分曲线首次出现纵坐标小于零的点对应的SOC确定为析锂SOC。
应理解,以上确定析锂SOC的两种具体实现方式仅作为可选实施方式,而非对本申请实施例的限制。
在本申请实施例中,步骤110可以由数据分析装置执行。本申请实施例对数据分析装置1010没有特别限制,只要能实现间歇式充电操作即可。例如,数据分析装置1010可以是电池管理系统(Battery Management System,BMS)中的控制器单元(Microcontroller Unit,MCU)。以上所示过程的操作仅出于说明的目的。
步骤112、基于析锂SOC和参考内阻,确定电化学装置的目标析锂SOC和电化学装置的目标内阻。
其中,目标析锂SOC和目标内阻可以分别是用于判断电化学装置是否进EOL状态时使用的析锂SOC和参考内阻。
为了简化计算过程,在一种实现方式中,步骤112可以包括:将电化学装置的析锂SOC作为目标析锂SOC;将电化学装置的参考内阻作为电化学装置的目标内阻。也即,在后续步骤中,直接使用电化学装置的析锂SOC和参考内阻的取值情况判断电化学装置 是否进入EOL状态。
然而,为了防止对电化学装置进入EOL状态的误判,提高判断的准确度,在判断电化学装置是否进入EOL状态时,也可以考虑先前获取电化学装置的至少一个析锂SOC和至少一个参考内阻,也即,考虑至少一个历史析锂SOC和至少一个历史参考内阻。
具体地,在另一种实现方式中,电化学装置管理方法还可以包括:获取电化学装置的至少一个历史析锂SOC和电化学装置的至少一个历史参考内阻。相应地,如图3所示,步骤112可以包括:
112A、将电化学装置的析锂SOC与电化学装置的至少一个历史析锂SOC的加权平均值,作为电化学装置的目标析锂SOC;以及
112B、将电化学装置的参考内阻与电化学装置的至少一个历史参考内阻的加权平均值,作为电化学装置的目标内阻。
以此方式,在后续步骤中,在判断电化学装置是否进入EOL状态时,不仅考虑到当前获取的电化学装置的析锂SOC和参考内阻,还考虑到先前获取的电化学装置的至少一个历史析锂SOC和至少一个历史参考内阻,避免当前获取的电化学装置的析锂SOC和参考内阻出现误差而导致对电化学装置进入EOL状态的误判,提高了判断的准确度。
应理解,在考虑先前获取的电化学装置的析锂SOC和参考内阻时,还可以根据当前获取的电化学装置的析锂SOC和参考内阻组成的数据对、以及先前获取的至少一个电化学装置的历史析锂SOC和至少一个参考内阻组成的至少一个数据对,绘制析锂SOC-内阻的二维图。也即,以参考内阻为横坐标,以电化学装置的析锂SOC为纵坐标,将这些数据对所代表的点填充在坐标系中绘制二维图。在后续步骤中,根据二维图中各个点的取值情况来判断电化学装置是否进入EOL状态。
步骤114、响应于目标析锂SOC和目标内阻的取值处于电化学装置发生析锂的取值区域或电化学装置发生老化的取值区域,确定电化学装置的EOL状态。
本申请实施例中,电化学装置发生析锂的取值区域可以是指在电化学装置发生一定程度的析锂时,析锂SOC和参考内阻组成的数据点在以参考内阻为横坐标、以析锂SOC为纵坐标的二维坐标系中的分布区域。电化学装置发生老化的取值区域可以是指在电化学装置发生一定程度的老化时,析锂SOC和参考内阻组成的数据点在以参考内阻为横坐标、以析锂SOC为纵坐标的二维坐标系中的分布区域。在电化学装置的充电过程中,当出现异常情况时,电化学装置的部分锂离子会析出在电化学装置的负极表面,无法嵌入电化学装置的负极,即电化学装置发生析锂。在电化学装置发生析锂时,由于有部分锂离子无法嵌入电化学装置的负极,导致锂离子数量减少,进而会导致电化学装置的容量衰减,即导致电化学装置老化。此外,沉积在电化学装置的负极表面的锂离子可能会刺穿电化学装置的阴极与阳极之间的隔膜,导致电化学装置发生内短路,使得电化学装置存在较大的安全风险。因此,在确定电化学装置发生一定程度的析锂时,可以认为电化学装置进入EOL状态,应当对电化学装置的使用有所限制。
由于当电化学装置发生一定程度的析锂时,析锂SOC和内阻的取值呈以下分布规律:析锂SOC较小,内阻较小,其中,析锂SOC越小,则析锂越严重。此外,当电化学装置发生一定程度的析锂时,析锂SOC相对于内阻变化速度较快,也即内阻缓慢增加,而析锂SOC快速减小。因此,可以基于电化学装置的目标析锂SOC和电化学装置的目标内阻的取值是否处于电化学装置发生析锂的取值区域,确定电化学装置的EOL状态。电化学装置发生析锂的 取值区域可以通过在电化学装置容易发生析锂的至少一个运行工况下,对电化学装置样品进行循环测试得到。
例如,电化学装置在10℃以下的环境温度下运行,容易发生析锂,且在20℃以上的环境温度下运行,不容易发生析锂。在获取电化学装置发生析锂的取值区域时,可以分别在20℃以上的多个环境温度下以及在10℃以下的多个环境温度下对多个电化学装置样品进行充放电循环操作,其中一个电化学装置样品对应一个环境温度。针对每个电化学装置样品,当充放电循环操作的次数达到预设次数(例如,100次)时,通过析锂检测分析获取该电化学装置样品的析锂SOC和参考内阻,重复上述过程,直到电化学装置的容量保持率小于预设值(例如,70%)。
根据针对每个电化学装置样品获取的多个析锂SOC和多个参考内阻进行曲线拟合,得到该电化学装置的析锂SOC随参考内阻变化的曲线。根据在20℃以上的多个环境温度下针对多个电化学装置样品得到的多个曲线的斜率,以及在10℃以下的多个环境温度下针对多个电化学装置样品得到的多个曲线的斜率,通过已知的二分类算法确定前者多条曲线与后者多条曲线的第一分界线。根据该第一分界线,以及电化学装置的析锂SOC和内阻的分布情况确定电化学装置发生析锂的取值区域。其中,曲线的斜率,也可以称为曲线的变化率,表示析锂SOC随参考内阻的变化率,可以通过对曲线进行微分得到。
应理解,充电倍率、充电深度等也是影响电化学装置发生析锂的主要因素。因此,也可以分别以容易导致电化学装置发生析锂的充电倍率和/或充电深度以及不容易导致电化学装置发生析锂的充电倍率和/或充电深度对电化学装置样品进行测试,基于测试得到的多条曲线的斜率,以与在不同环境温度下进行测试类似的方式确定电化学装置发生析锂的取值区域。
此外,在电化学装置的使用过程中,电化学装置负极的固体电解质界面(solid electrolyte interphase,SEI)膜会逐渐生长,电化学装置的正极与负极之间的隔膜变厚,导致锂离子的扩散受阻,使得电化学装置充电变慢且容量衰减,即电化学装置衰老。当电化学装置发生一定程度的老化时,析锂SOC变化较小,而内阻变化较大。即析锂SOC和内阻的取值存在如下分布规律:析锂SOC较大,内阻较大。其中,析锂SOC越大,则析锂越不严重。此外,析锂SOC相对于内阻变化较缓慢,即内阻快速增加,而析锂SOC缓慢减小。由此,可以基于电化学装置的目标析锂SOC和的目标内阻的取值是否处于电化学装置发生老化的取值区域,确定电化学装置的EOL状态。电化学装置发生老化的取值区域可以通过试验,根据电化学装置样品的容量下降至预设值时,对应的内阻以及电化学装置样品发生析锂时SOC的分布情况进行确定。
电化学装置发生析锂的取值区域和/或电化学装置发生老化的取值区域可以被预先存储在电化学装置的BMS的内部存储装置中,或者存储在BMS可以访问的其他存储装置中。
本申请实施例中,通过获取电化学装置的析锂SOC和参考内阻,并基于电化学装置的析锂SOC和参考内阻确定电化学装置的目标析锂SOC和电化学装置的目标内阻,进而通过响应于电化学装置的目标析锂SOC和电化学装置的目标内阻的取值处于电化学装置发生析锂的取值区域或电化学装置发生老化的取值区域,来确定电化学装置进入EOL状态。由于在确定电化学装置是否进入寿命末期EOL状态时,考虑到由电化学装置的目标析锂SOC和目标内阻是否处于电化学装置发生析锂的取值区域或电化学装置发生老化的取值区域,即同时考虑电化学装置的析锂SOC、内阻以及二者之间的关系,对电化学装置的EOL状态进行综合判断,减少了误判的可能性,提高了判断的准确率。
如图4所示,在本申请的一种实施例中,电化学装置发生析锂的取值区域包括第一取值区域,第一取值区域用于指示电化学装置处于第一析锂程度时析锂SOC和参考内阻的取值范围。相应地,响应于目标析锂SOC和目标内阻的取值处于电化学装置发生析锂的取值区域或电化学装置发生老化的取值区域,确定电化学装置进入寿命末期EOL状态,包括:步骤114A、响应于目标析锂SOC和目标内阻的取值处于第一取值区域,将电化学装置的充电电流降低第一电流降幅,并且将电化学装置的充电截止电压降低第一电压降幅。
在本申请实施例中,第一析锂程度可以表示严重析锂,也即第一取值区域为电化学装置发生严重析锂时,析锂SOC和参考内阻的取值范围。
第一取值范围可以根据在电化学装置容易发生严重析锂的至少一个运行工况下,以及在电化学装置容易发生轻微析锂的至少一个运行工况下,对至少一个电化学装置样品进行循环测试得到,其中,一个电化学装置对应一个运行工况。例如,电化学装置在-10℃以下的环境温度下运行,容易发生严重析锂,且在10℃以下且在-5℃以上的环境温度下运行,容易发生轻微析锂。在获取第一取值区域时,可以分别在-10℃至-15℃中的多个环境温度下以及在10℃以下且在-5℃以上的多个环境温度下,分别对多个电化学装置样品进行充放电循环操作。针对每个电化学装置样品,当充放电循环操作的次数达到预设次数(例如,100次)时,通过析锂检测分析获取电化学装置样品的析锂SOC和参考内阻,重复上述过程,直到电化学装置的容量保持率小于预设值(例如,70%)。根据针对每个电化学装置获取的电化学装置样品的多个析锂SOC和多个参考内阻进行曲线拟合,得到该电化学装置的析锂SOC随参考内阻变化的曲线(即析锂SOC-内阻曲线)。
根据在-10℃至-15℃中的多个环境温度下针对多个电化学装置样品得到的多个曲线的斜率,以及在-5℃至10℃中的多个环境温度下针对多个电化学装置样品得到的多个曲线的斜率,通过已知的二分类算法确定前者多条曲线与后者多条曲线的第二分界线。根据该第二分界线以及电化学装置的析锂SOC和内阻的分布情况确定第一取值范围。应理解,充电倍率、充电深度等也是影响电化学装置发生析锂的主要因素。因此,也可以以容易导致电化学装置发生严重析锂的充电倍率和/或充电深度对电化学装置样品进行循环测试,得到第一取值范围。
具体地,在一种实现方式中,第一取值区域包括参考内阻和析锂SOC满足第一取值条件的区域,第一取值条件包括:参考内阻小于或等于第一内阻阈值,析锂SOC小于或等于析锂SOC阈值与第一函数的函数值二者中的较小一个。
其中,第一函数包括以参考内阻为自变量、以析锂SOC为因变量,且具有负的第一斜率的直线函数,第一斜率表征在电化学装置处于第一析锂程度时析锂SOC随参考内阻的最小减小速率。
具体地,第一函数为上述第二分界线的函数表示形式,第一函数的斜率为第二分界线的坡度。第一函数的函数值为在参考内阻已知时,与该参考内阻对应的析锂SOC的取值。如图8所示,实线810为在-10℃下获取的析锂SOC-内阻曲线,实线830为在10℃下获取的析锂SOC-内阻曲线,分别位于第一函数(即第二分界线)的两侧,第一函数由虚线820表示。
第一内阻阈值为第一函数的函数值为0时,参考内阻的取值。也即,第一内阻阈值由第一函数确定。
析锂SOC阈值是在电化学装置发生析锂时的最小SOC。析锂SOC阈值可以根据发生析锂时SOC的分布情况进行设定。例如,在对电化学装置样品实验过程中,发现电化学装置样品发生析锂时,电化学装置样品的SOC绝大多数为50%,则可以将析锂SOC阈值确定得稍 高,以留出一定的裕度,例如将析锂SOC确定为60%。
在本申请实施例中,如图5所示,在以参考内阻作为横坐标,以析锂SOC作为纵坐标的二维坐标系下,第一取值区域由虚线501、虚线502以及二维坐标系的横轴和纵轴围成的区域A表示。其中,虚线501表示第一函数,虚线502表示析锂SOC阈值。
在本申请实施例中,当电化学装置的目标析锂SOC和目标内阻处于该第一取值区域,确定电化学装置发生严重析锂。为了避免继续使用过程中引发安全性问题,可以较大幅度地降低电化学装置的充电电流和充电截止电压。例如,将电化学装置的充电电流降低第一电流降幅,并且将电化学装置的充电截止电压降低第一电压降幅。充电电流可以是指在电化学装置的充电期间使用的电流。充电截止电压可以是指在电化学装置的充电期间,电化学装置达到完全充电状态时的电压。
在本申请实施例中,第一电流降幅可以为标称充电电流的10%。例如,电化学装置的标称充电电流为3A,则第一电流降幅可以为0.3A。应理解,第一电流降幅也可以为标称充电电流的8%~12%范围内的任一值,本申请实施例对此不做限定。
在本申请实施例中,第一电压降幅可以为标称充电截止电压的4%。例如,电化学装置的标称充电电压为4.2V,则第一电压降幅为0.168V。应理解,第一电压降幅也可以为标称充电电压的2%~6%范围内的任一值,本申请实施例对此不做限定。
如图6所示,在本申请的另一实施例中,电化学装置发生析锂的取值区域还包括第二取值区域,第二取值区域用于指示电化学装置处于在第一析锂程度之前的第二析锂程度时析锂SOC和参考内阻的取值范围。即,第二析锂程度小于第一析锂程度。
相应地,响应于目标析锂SOC和目标内阻的取值处于电化学装置发生析锂的取值区域或电化学装置发生老化的取值区域,确定电化学装置的寿命末期EOL状态,包括:步骤114B、响应于电化学装置的目标析锂SOC和目标内阻处于第二取值区域,将电化学装置的充电电流降低第二电流降幅,并且将电化学装置的充电截止电压降低第二电压降幅,第二电流降幅小于第一电流降幅,第二电压降幅小于第一电压降幅。
其中,第二析锂程度小于第一析锂程度,可以表明第一电化学装置发生轻微析锂,也即,第二取值区域为电化学装置发生轻微析锂时析锂SOC和参考内阻的取值范围。第二取值区域采用与第一取值区域基本类似的方式,在电化学装置容易发生轻微析锂的至少一个运行工况、电化学装置容易发生严重析锂的至少一个运行工况、以及电化学装置不容易发生析锂的至少一个运行工况下循环测试得到。
具体地,基于在电化学装置容易发生轻微析锂的至少一个运行工况、电化学装置不容易发生析锂的至少一个运行工况下进行测试得到的曲线,确定第一分界线。第一分界线可以由第二函数表示,其在图8中表示为虚线840。此外,如前面提到的,基于在电化学装置容易发生轻微析锂的至少一个运行工况、电化学装置容易发生严重析锂的至少一个运行工况下进行测试得到的曲线,确定第二分界线,第二分界线由第一函数表示,其在图8中表示为虚线820。基于第一分界线和第二分界线之间的区域,确定第二取值区域。如图8所示,实线810为在-10℃下获取的析锂SOC-内阻曲线,代表电化学装置发生严重析锂的情况。实线850为在25℃下获取的析锂SOC-内阻曲线,代表电化学装置不容易发生析锂或未发生析锂的情况。实线830为在10℃下获取的析锂SOC-内阻曲线,代表电化学装置发生轻微析锂的情况。该实线830位于第一分界线840与第二分界线820之间。
具体地,在一种实现方式中,第二取值区域包括参考内阻和析锂SOC满足第二取值条件 的区域,第二取值条件包括:参考内阻大于第二内阻阈值且小于或等于第一内阻阈值,析锂SOC大于第一函数的函数值,小于析锂SOC阈值与第二函数的函数值二者中的较小一个。其中,第二函数包括以参考内阻为自变量、以析锂SOC为因变量,且具有负的第二斜率的直线函数,第二斜率表征在电化学装置处于第二析锂程度时析锂SOC随参考内阻的最小减小速率,第一内阻阈值大于第二内阻阈值且小于第三内阻阈值。
其中,第二内阻阈值为第一函数的函数值为第一SOC阈值时的参考内阻,也即,第二内阻阈值根据第一SOC阈值和第一函数进行设定。
在电化学装置发生轻微析锂,而非严重析锂时,电化学装置的析锂SOC大于第一函数的函数值,并且小于析锂SOC阈值与第二函数的函数值二者中的较小一个。同时,在电化学装置发生轻微析锂时,即使参考内阻与在电化学装置发生严重析锂时存在重叠,但析锂SOC相对较大。通过确定电化学装置的目标内阻和参考内阻的取值是否满足这些条件,可以确定电化学装置发生轻微析锂。
此外,第二取值条件还可以包括:参考内阻大于第一内阻阈值且小于或等于第三内阻阈值,析锂SOC小于第二函数的函数值。
其中,第三内阻阈值用于指示电化学装置发生严重老化时的最小内阻。第三内阻阈值可以根据电化学装置的容量下降至一定程度(例如,80%)时对应的内阻进行设定。具体地,在电化学装置的使用过程中,随着充放电循环次数的增加,电化学装置的容量减少。同时随着充放电循环次数的增加,电化学装置的内阻会也会增加,因此电化学装置的容量与电化学装置的内阻之间存在着一定的对应关系。因此,当电化学装置的容量下降至一定程度时认为电化学装置发生老化,可以根据电化学装置的容量下降至一定程度时对应的内阻设定第三内阻阈值,使得当电化学装置的内阻大于第三内阻阈值时,确定电化学装置的容量发生严重老化。
在电化学装置发生轻微析锂,而非严重老化时,电化学装置的析锂SOC小于预设SOC阈值或第二函数的函数值,但参考内阻尚未达到第三内阻阈值。通过确定电化学装置的目标内阻和参考内阻的取值是否满足这些条件,可以确定电化学装置发生轻微析锂。
继续参照图5,在以参考内阻作为横坐标,以析锂SOC作为纵坐标的二维坐标系下,第二取值区域由虚线501、虚线502、虚线503、虚线504以及坐标系的横轴围成的区域B表示。其中,虚线503表示第二函数,虚线504对应横轴上的值表示第三内阻阈值。
在本申请实施例中,当电化学装置的目标析锂SOC和电化学装置的目标内阻处于该第二取值区域,确定电化学装置发生轻微析锂。考虑到电化学装置发生轻微析锂,造成安全性问题的可能性相对较小,可以相对较小幅度地降低充电电流和充电电压。例如,将所述电化学装置的充电电流降低第二电流降幅,并且将所述电化学装置的充电截止电压降低第二电压降幅,所述第二电流降幅小于所述第一电流降幅,所述第二电压降幅小于所述第一电压降幅。由此在提高电化学装置的安全性的同时,保证充电速度。
在本申请实施例中,第二电流降幅可以为标称充电电流的5%。例如,电化学装置的标称充电电流为3A,则第一电流降幅可以为0.15A。应理解,第二电流降幅也可以为标称充电电流的3%~6%之间的任一值,本申请实施例对此不做限定。
在本申请实施例中,第二电压降幅可以为标称充电截止电压的2%。例如,电化学装置的标称截止充电电压为4.2V,则第一电压降幅为0.084V。应理解,第二电压降幅也可以为标称充电电压的1%~3%之间的任一值,本申请实施例对此不做限定。
如图7所示,在本申请的另一实施例中,电化学装置发生老化的取值区域包括参考内阻和析锂SOC满足第三取值条件的区域,第三取值条件包括参考内阻大于第三内阻阈值,且析锂SOC小于析锂SOC阈值。
如前面提到的,第三内阻阈值用于指示电化学装置发生严重老化时的最小内阻。第三内阻阈值可以根据电化学装置的容量下降至一定程度(例如,80%)时对应的内阻进行设定。在电化学装置发生严重老化时,析锂SOC小于析锂SOC阈值,且参考内阻大于第三内阻阈值,即参考内阻较大。通过确定电化学装置的目标内阻和参考内阻的取值是否满足这些条件,可以确定电化学装置发生严重老化。
继续参照图5,在以参考内阻作为横坐标,以析锂SOC作为纵坐标的二维坐标系下,电化学装置发生老化的区域由虚线502、虚线504以及坐标系的横轴围成的区域C表示。
在本申请实施例中,当电化学装置的目标析锂SOC和电化学装置的目标内阻处于电化学装置发生老化的取值区域时,确定电化学装置发生严重老化。考虑到电化学装置发生严重老化,仅是充电速度变慢和电化学装置的容量较小,而造成安全性问题的可能性相对较小,可以相对较小幅度地降低充电电流和充电电压。相应地,响应于目标析锂SOC和目标内阻的取值处于电化学装置发生析锂的取值区域或电化学装置发生老化的取值区域,确定电化学装置的寿命末期EOL状态,可以包括:步骤114C、将所述电化学装置的充电电流降低第三电流降幅,并且将所述电化学装置的充电截止电压降低第三电压降幅,所述第三电流降幅小于所述第一电流降幅,所述第三电压降幅小于所述第一电压降幅。由此在提高电化学装置的安全性的同时,保证充电速度。
在本申请的一种实现方式中,第三电压降幅可以等于第二电压降幅。第三电流降幅可以等于第二电流降幅。
具体地,第三电流降幅可以为标称充电电流的5%。例如,电化学装置的标称充电电流为3A,则第一电流降幅可以为0.15A。应理解,第三电流降幅也可以为标称充电电流的3%~6%之间的任一值,本申请实施例对此不做限定。
具体地,第三电压降幅可以为标称充电截止电压的2%。例如,电化学装置的标称充电电压为4.2V,则第一电压降幅为0.084V。应理解,第三电压降幅也可以为标称充电电压的1%~3%之间的任一值,本申请实施例对此不做限定。
本申请实施例还提供了一种电子设备,如图9所示,该电子设备900包括数据分析装置910、目标数据确定装置912和保护装置914。
数据分析装置910用于对电化学装置进行间歇式充电操作,在间歇式充电操作中获取与电化学装置相关的数据,基于与电化学装置相关的数据确定电化学装置的析锂SOC和参考内阻。参考内阻用于指示电化学装置被充电至第一SOC时的内阻。
目标数据确定装置912用于基于析锂SOC和参考内阻,确定目标析锂SOC和目标内阻。
保护装置914用于响应于目标析锂SOC和目标内阻的取值处于电化学装置发生析锂的取值区域或处于电化学装置发生老化的取值区域,确定电化学装置的寿命末期EOL状态。
本申请实施例的电子设备中可以包括电化学装置。示例性地,该电子设备可以是新能源车辆、移动电话、平板电脑等内置锂离子电池、具有数据处理能力的设备。本申请实施例对数据分析装置910、目标数据确定装置912和保护装置914的结构没有特别限制,只要能够实现相应功能即可。
在本申请的一种实现方式中,电化学装置发生析锂的取值区域包括第一取值区域和第二 取值区域;其中,第一取值区域用于指示电化学装置处于第一析锂程度时析锂SOC和参考内阻的取值范围;第二取值区域用于指示电化学装置处于第一析锂程度之前的第二析锂程度时析锂SOC和参考内阻的取值范围。
保护装置914具体用于:响应于目标析锂SOC和目标内阻的取值处于第一取值区域,将电化学装置的充电电流降低第一电流降幅,和/或将电化学装置的充电截止电压降低第一电压降幅;或者响应于目标析锂SOC和目标内阻的取值处于第二取值区域,将电化学装置的充电电流降低第二电流降幅,和/或将电化学装置的充电截止电压降低第二电压降幅,第二电流降幅小于第一电流降幅,第二电压降幅小于第一电压降幅;或者响应于目标析锂SOC和目标内阻的取值处于电化学装置发生老化的取值区域,将电化学装置的充电电流降低第三电流降幅,和/或将电化学装置的充电截止电压降低第三电压降幅,第三电流降幅小于第一电流降幅,第三电压降幅小于第一电压降幅。
在本申请的一种实现方式中,第一取值区域包括参考内阻和析锂SOC满足第一取值条件的区域。第一取值条件包括:参考内阻小于或等于第一内阻阈值,且析锂SOC小于或等于析锂SOC阈值与第一函数的函数值二者中的较小一个。第一函数包括以参考内阻为自变量、以析锂SOC为因变量,且具有负的第一斜率的直线函数,第一斜率表征在电化学装置处于第一析锂程度时析锂SOC随参考内阻的最大减小速率。
在本申请的一种实现方式中,第二取值区域包括参考内阻和析锂SOC满足第二取值条件的区域。第二取值条件包括:参考内阻大于第二内阻阈值且小于或等于第一内阻阈值,析锂SOC大于第一函数的函数值,小于析锂SOC阈值与第二函数的函数值二者中的较小一个;或者参考内阻大于第一内阻阈值且小于或等于第三内阻阈值,析锂SOC小于第二函数的函数值。第二函数包括以参考内阻为自变量、以析锂SOC为因变量,且具有负的第二斜率的直线函数,第二斜率表征在电化学装置处于第二析锂程度时析锂SOC随参考内阻的最小变化率,第一内阻阈值大于第二内阻阈值且小于第三内阻阈值。
在本申请的一种实现方式中,电化学装置发生老化的取值区域包括参考内阻和析锂SOC满足第三取值条件的区域,第三取值条件包括参考内阻大于第三内阻阈值,且析锂SOC小于析锂SOC阈值。
在本申请的一种实现方式中,目标数据确定装置912,具体用于:将析锂SOC作为目标析锂SOC;以及将参考内阻作为目标内阻。
在本申请的一种实现方式中,电子设备还包括历史析锂数据获取装置,用于获取电化学装置的至少一个历史析锂SOC和电化学装置的至少一个历史参考内阻。相应地,目标数据确定装置912,具体用于:将析锂SOC与至少一个历史析锂SOC的加权平均值,作为目标析锂SOC;以及将参考内阻与至少一个历史参考内阻的加权平均值,作为目标内阻。
在本申请的一种实现方式中,与电化学装置相关的数据包括电化学装置的SOC和电化学装置的内阻,间歇式充电操作包括多个充电期间和多个间断期间,数据分析装置910具体用于:获取在间断期间电化学装置的内阻和SOC;基于各间断期间的SOC和内阻,得到第一曲线,第一曲线表示内阻随SOC的变化;基于第一曲线,确定析锂SOC,并且基于第一曲线,确定参考内阻。
在本申请的一种实现方式中,数据分析装置910具体用于:执行方式A1和方式A2中的至少一个。其中,方式A1包括:对第一曲线进行微分,得到第一微分曲线;确定第一微分曲线是否具有极大值和极小值;如果极大值和极小值都存在,确定极大值对应的SOC为析锂SOC。 方式A2包括:对第一曲线进行微分,得到第一微分曲线;对第一微分曲线进行微分,得到第二微分曲线;确定第二微分曲线首次出现纵坐标小于零的点对应的SOC为析锂SOC。
本申请实施例中的电子设备可用于实现前述多个方法实施例中相应的析锂检测方法,并具有相应的方法实施例的有益效果,在此不再赘述。此外,本实施例的电子设备中的各个装置的功能实现均可参照前述方法实施例中的相应部分的描述,在此亦不再赘述。
本申请实施例还提供了一种充电装置,如图10所示,该充电装置1000包括处理器1001和处理器1002,该充电装置1010还可以包括充电电路模块1003、接口1004、电源接口1005、整流电路1006。其中,充电电路模块1003用于对锂离子电池(也即电化学装置)进行间歇式充电操作;充电电路模块1003还可以用于采集锂离子电池的端电压和充电电流等参数,并将这些参数发送至处理器;接口1004用于与电化学装置2000电连接;电源接口1005用于与外部电源连接;整流电路1006用于对输入电流进行整流;处理器1002存储有能够被处理器执行的机器可执行指令,处理器1001执行机器可执行指令时,实现上述任一方法实施例所述的方法步骤。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质内存储有计算机程序,计算机程序被处理器执行时,实现上述任一方法实施例所述的方法步骤。
本申请实施例还提供了一种电池系统,如图11所示,该电池系统1100包括第二处理器1101和第二机器可读存储介质1102,该电池系统1100还可以包括充电电路模块1103、锂离子电池1104以及第二接口1105。其中,充电电路模块1103用于对锂离子电池进行间歇式充电操作;充电电路模块1103还可以用于采集锂离子电池的端电压和充电电流等参数,并将这些参数发送至第二处理器。第二接口1105用于与外部充电器1200的接口连接;外部充电器1200用于提供电力;第二机器可读存储介质1102存储有能够被处理器执行的机器可执行指令,第二处理器1101执行机器可执行指令时,实现上述任一方法实施例所述的方法步骤。外部充电器1200可以包括第一处理器1201、第一机器可读存储介质1202、第一接口1203及相应的整流电路,该外部充电器可以是市售充电器,本申请实施例对其结构不做具体限定。
本申请实施例还提供了一种电子设备,包括上述实施例所述的电池系统。
上述的机器可读存储介质可以包括随机存取存储器(Random Access Memory,简称RAM),也可以包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。可选的,存储器还可以是至少一个位于远离前述处理器的存储装置。
上述的处理器可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processing,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
对于电子设备/充电装置/存储介质/电池系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。

Claims (20)

  1. 一种电化学装置管理方法,其中,所述方法包括:
    对电化学装置进行间歇式充电操作,在所述间歇式充电操作中获取与电化学装置相关的数据,基于所述与电化学装置相关的数据确定电化学装置的析锂SOC和参考内阻,所述参考内阻用于指示所述电化学装置被充电至第一SOC时的内阻;
    基于所述析锂SOC和所述参考内阻,确定目标析锂SOC和目标内阻;
    响应于所述目标析锂SOC和所述目标内阻的取值处于电化学装置发生析锂的取值区域或电化学装置发生老化的取值区域,确定所述电化学装置的寿命末期EOL状态。
  2. 根据权利要求1所述的电化学装置管理方法,其中,所述电化学装置发生析锂的取值区域包括第一取值区域和第二取值区域;
    其中,所述第一取值区域用于指示电化学装置处于第一析锂程度时析锂SOC和参考内阻的取值范围;所述第二取值区域用于指示电化学装置处于所述第一析锂程度之前的第二析锂程度时析锂SOC和参考内阻的取值范围;
    所述响应于所述目标析锂SOC和所述目标内阻的取值处于电化学装置发生析锂的取值区域或电化学装置发生老化的取值区域,确定所述电化学装置的寿命末期EOL状态,包括:
    响应于所述目标析锂SOC和所述目标内阻的取值处于所述第一取值区域,将所述电化学装置的充电电流降低第一电流降幅,和/或将所述电化学装置的充电截止电压降低第一电压降幅;或者
    响应于所述目标析锂SOC和所述目标内阻的取值处于所述第二取值区域,将所述电化学装置的充电电流降低第二电流降幅,和/或将所述电化学装置的充电截止电压降低第二电压降幅,所述第二电流降幅小于所述第一电流降幅,所述第二电压降幅小于所述第一电压降幅;或者
    响应于所述目标析锂SOC和所述目标内阻的取值处于电化学装置发生老化的取值区域,将所述电化学装置的充电电流降低第三电流降幅,和/或将所述电化学装置的充电截止电压降低第三电压降幅,所述第三电流降幅小于所述第一电流降幅,所述第三电压降幅小于所述第一电压降幅。
  3. 根据权利要求2所述的电化学装置管理方法,其中,所述第一取值区域包括参考内阻和析锂SOC满足第一取值条件的区域;
    其中,所述第一取值条件包括:参考内阻小于或等于第一内阻阈值,且析锂SOC小于或等于析锂SOC阈值与第一函数的函数值二者中的较小一个;
    所述第一函数包括以参考内阻为自变量、以析锂SOC为因变量,且具有负的第一斜率的直线函数,所述第一斜率表征在所述电化学装置处于第一析锂程度时析锂SOC随参考内阻的最小减小速率。
  4. 根据权利要求3所述的电化学装置管理方法,其中,所述第二取值区域包括参考内阻和析锂SOC满足第二取值条件的区域;
    其中,所述第二取值条件包括:参考内阻大于第二内阻阈值且小于或等于所述第一内阻阈值,且析锂SOC大于第一函数的函数值、小于所述析锂SOC阈值与第二函数的函数值二者中的较小一个;或者,参考内阻大于所述第一内阻阈值且小于或等于第三内阻阈值,且析锂SOC小于所述第二函数的函数值;
    所述第二函数包括以参考内阻为自变量、以析锂SOC为因变量,且具有负的第二斜率的直线函数,所述第二斜率表征在电化学装置处于第二析锂程度时析锂SOC随参考内阻的最小减小速率,所述第一内阻阈值大于所述第二内阻阈值且小于所述第三内阻阈值。
  5. 根据权利要求4所述的电化学装置管理方法,其中,所述电化学装置发生老化的取值区域包括参考内阻和析锂SOC满足第三取值条件的区域;
    其中,所述第三取值条件包括参考内阻大于所述第三内阻阈值,且析锂SOC小于所述析锂SOC阈值。
  6. 根据权利要求1所述的电化学装置管理方法,其中,所述基于所述析锂SOC和所述参考内阻,确定目标析锂SOC和目标内阻,包括:
    将所述析锂SOC作为所述目标析锂SOC;以及
    将所述参考内阻作为所述目标内阻。
  7. 根据权利要求1所述的电化学装置管理方法,其中,所述方法还包括:获取电化学装置的至少一个历史析锂SOC和电化学装置的至少一个历史参考内阻;
    所述基于所述析锂SOC和所述参考内阻,确定目标析锂SOC和目标内阻,包括:
    将所述析锂SOC与所述至少一个历史析锂SOC的加权平均值,作为所述目标析锂SOC;以及
    将所述参考内阻与所述至少一个历史参考内阻的加权平均值,作为所述目标内阻。
  8. 根据权利要求1所述的电化学装置管理方法,其中,与电化学装置相关的数据包括电化学装置的SOC和电化学装置的内阻,所述间歇式充电操作包括多个充电期间和多个间断期间,所述基于所述与电化学装置相关的数据确定电化学装置的析锂SOC和参考内阻的步骤包括:
    获取在所述间断期间所述样本电化学装置的内阻和SOC;
    基于各间断期间的所述SOC和所述内阻,得到第一曲线,所述第一曲线表示所述内阻随所述SOC的变化;
    基于所述第一曲线,确定所述析锂SOC,并且基于所述第一曲线,确定所述参考内阻。
  9. 根据权利要求8所述的电化学装置管理方法,其中,所述基于所述第一曲线,确定所述析锂SOC,包括方式A1和方式A2中的至少一个,其中,
    所述方式A1包括:
    对所述第一曲线进行微分,得到第一微分曲线;
    确定所述第一微分曲线是否具有极大值和极小值;
    如果所述极大值和所述极小值都存在,确定所述极大值对应的SOC为所述析锂SOC;
    所述方式A2包括:
    对所述第一曲线进行微分,得到第一微分曲线;
    对所述第一微分曲线进行微分,得到第二微分曲线;
    确定第二微分曲线首次出现纵坐标小于零的点对应的SOC为析锂SOC。
  10. 一种电池系统,其中,包括处理器和机器可读存储介质,所述机器可读存储介质存储有能够被所述处理器执行的机器可执行指令,所述处理器执行所述机器可执行指令时,实现权利要求1-9任一项所述的方法。
  11. 一种电子设备,其中,所述电子设备包括如权利要求10所述的电池系统。
  12. 一种电子设备,其中,所述电子设备包括:数据分析装置、目标数据确定装置和保 护装置;
    所述数据分析装置,用于对电化学装置进行间歇式充电操作,在所述间歇式充电操作中获取与电化学装置相关的数据,基于所述与电化学装置相关的数据确定电化学装置的析锂SOC和参考内阻,所述参考内阻用于指示所述电化学装置被充电至第一SOC时的内阻;
    所述目标数据确定装置,用于基于所述析锂SOC和所述参考内阻,确定目标析锂SOC和目标内阻;
    所述保护装置,用于响应于所述目标析锂SOC和所述目标内阻的取值处于电化学装置发生析锂的取值区域或电化学装置发生老化的取值区域,确定所述电化学装置的寿命末期EOL状态。
  13. 根据权利要求12所述的电子设备,其中,所述电化学装置发生析锂的取值区域包括第一取值区域和第二取值区域;
    其中,所述第一取值区域用于指示电化学装置处于第一析锂程度时析锂SOC和参考内阻的取值范围;所述第二取值区域用于指示电化学装置处于所述第一析锂程度之前的第二析锂程度时析锂SOC和参考内阻的取值范围;
    所述保护装置具体用于:
    响应于所述目标析锂SOC和所述目标内阻的取值处于所述第一取值区域,将所述电化学装置的充电电流降低第一电流降幅,和/或将所述电化学装置的充电截止电压降低第一电压降幅;或者
    响应于所述目标析锂SOC和所述目标内阻的取值处于所述第二取值区域,将所述电化学装置的充电电流降低第二电流降幅,和/或将所述电化学装置的充电截止电压降低第二电压降幅,所述第二电流降幅小于所述第一电流降幅,所述第二电压降幅小于所述第一电压降幅;或者
    响应于所述目标析锂SOC和所述目标内阻的取值处于电化学装置发生老化的取值区域,将所述电化学装置的充电电流降低第三电流降幅,和/或将所述电化学装置的充电截止电压降低第三电压降幅,所述第三电流降幅小于所述第一电流降幅,所述第三电压降幅小于所述第一电压降幅。
  14. 根据权利要求13所述的电子设备,其中,所述第一取值区域包括参考内阻和析锂SOC满足第一取值条件的区域;
    其中,所述第一取值条件包括:参考内阻小于或等于第一内阻阈值,且析锂SOC小于或等于析锂SOC阈值与第一函数的函数值二者中的较小一个;
    所述第一函数包括以参考内阻为自变量、以析锂SOC为因变量,且具有负的第一斜率的直线函数,所述第一斜率表征在所述电化学装置处于第一析锂程度时析锂SOC随参考内阻的最大减小速率。
  15. 根据权利要求14所述的电子设备,其中,所述第二取值区域包括参考内阻和析锂SOC满足第二取值条件的区域;
    其中,所述第二取值条件包括:参考内阻大于第二内阻阈值且小于或等于所述第一内阻阈值,且析锂SOC大于第一函数的函数值、小于所述析锂SOC阈值与第二函数的函数值二者中的较小一个;或者,参考内阻大于所述第一内阻阈值且小于或等于第三内阻阈值,且析锂SOC小于所述第二函数的函数值;
    所述第二函数包括以参考内阻为自变量、以析锂SOC为因变量,且具有负的第二斜率的 直线函数,所述第二斜率表征在电化学装置处于第二析锂程度时析锂SOC随参考内阻的最小减小速率,所述第一内阻阈值大于所述第二内阻阈值且小于所述第三内阻阈值。
  16. 根据权利要求15所述的电子设备,其中,所述电化学装置发生老化的取值区域包括参考内阻和析锂SOC满足第三取值条件的区域;
    其中,所述第三取值条件包括参考内阻大于所述第三内阻阈值,且析锂SOC小于所述析锂SOC阈值。
  17. 根据权利要求12所述的电子设备,其中,所述目标数据确定装置,具体用于:
    将所述析锂SOC作为所述目标析锂SOC;以及
    将所述参考内阻作为所述目标内阻。
  18. 根据权利要求12所述的电子设备,其中,所述电子设备还包括历史析锂数据获取装置,用于获取电化学装置的至少一个历史析锂SOC和电化学装置的至少一个历史参考内阻;
    所述目标数据确定装置,具体用于:
    将所述析锂SOC与所述至少一个历史析锂SOC的加权平均值,作为所述目标析锂SOC;以及
    将所述参考内阻与所述至少一个历史参考内阻的加权平均值,作为所述目标内阻。
  19. 根据权利要求12所述的电子设备,其中,与电化学装置相关的数据包括电化学装置的SOC和电化学装置的内阻,所述间歇式充电操作包括多个充电期间和多个间断期间,所述数据分析装置具体用于:
    获取在所述间断期间所述电化学装置的内阻和SOC;
    基于各间断期间的所述SOC和所述内阻,得到第一曲线,所述第一曲线表示所述内阻随所述SOC的变化;
    基于所述第一曲线,确定所述析锂SOC,并且基于所述第一曲线,确定所述参考内阻。
  20. 根据权利要求19所述的电子设备,其中,所述数据分析装置具体用于:
    执行方式A1和方式A2中的至少一个,其中,
    所述方式A1包括:
    对所述第一曲线进行微分,得到第一微分曲线;
    确定所述第一微分曲线是否具有极大值和极小值;
    如果所述极大值和所述极小值都存在,确定所述极大值对应的SOC为所述析锂SOC;
    所述方式A2包括:
    对所述第一曲线进行微分,得到第一微分曲线;
    对所述第一微分曲线进行微分,得到第二微分曲线;
    确定第二微分曲线首次出现纵坐标小于零的点对应的SOC为析锂SOC。
PCT/CN2022/126986 2021-11-22 2022-10-24 电化学装置管理方法、电子设备及电池系统 WO2023088037A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111389709.1A CN114069077B (zh) 2021-11-22 2021-11-22 电化学装置管理方法、电子设备及电池系统
CN202111389709.1 2021-11-22

Publications (1)

Publication Number Publication Date
WO2023088037A1 true WO2023088037A1 (zh) 2023-05-25

Family

ID=80278968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126986 WO2023088037A1 (zh) 2021-11-22 2022-10-24 电化学装置管理方法、电子设备及电池系统

Country Status (2)

Country Link
CN (1) CN114069077B (zh)
WO (1) WO2023088037A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114069077B (zh) * 2021-11-22 2024-06-04 东莞新能安科技有限公司 电化学装置管理方法、电子设备及电池系统
CN116472633A (zh) * 2022-04-12 2023-07-21 东莞新能安科技有限公司 电化学装置管理方法、装置、充电装置、电池系统及介质
CN118160185A (zh) * 2022-12-06 2024-06-07 厦门新能安科技有限公司 电池状态检测方法、装置、设备、存储介质及程序产品
CN117220389B (zh) * 2023-11-09 2024-04-02 宁德时代新能源科技股份有限公司 充电方法、装置、计算机设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100121591A1 (en) * 2008-11-13 2010-05-13 Lockheed Martin Corporation Method and apparatus that detects state of charge (soc) of a battery
CN107533105A (zh) * 2015-02-28 2018-01-02 北京交通大学 锂离子电池荷电状态估算方法和装置
CN112710957A (zh) * 2020-12-26 2021-04-27 清华大学 电池充电析锂检测方法、装置及计算机设备
CN113258151A (zh) * 2021-04-25 2021-08-13 同济大学 一种避免析锂的锂离子电池充电方法
CN114069077A (zh) * 2021-11-22 2022-02-18 东莞新能安科技有限公司 电化学装置管理方法、电子设备及电池系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013002340A1 (de) * 2013-02-09 2014-08-14 Volkswagen Aktiengesellschaft Vorrichtung und Verfahren zur Prüfung eines Alterungszustandes eines elektrochemischen Energiespeichers
CN104678316B (zh) * 2015-02-28 2017-08-01 北京交通大学 锂离子电池荷电状态估算方法和装置
CN111638461A (zh) * 2020-06-27 2020-09-08 天能帅福得能源股份有限公司 一种锂离子电池充电析锂实时检测方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100121591A1 (en) * 2008-11-13 2010-05-13 Lockheed Martin Corporation Method and apparatus that detects state of charge (soc) of a battery
CN107533105A (zh) * 2015-02-28 2018-01-02 北京交通大学 锂离子电池荷电状态估算方法和装置
CN112710957A (zh) * 2020-12-26 2021-04-27 清华大学 电池充电析锂检测方法、装置及计算机设备
CN113258151A (zh) * 2021-04-25 2021-08-13 同济大学 一种避免析锂的锂离子电池充电方法
CN114069077A (zh) * 2021-11-22 2022-02-18 东莞新能安科技有限公司 电化学装置管理方法、电子设备及电池系统

Also Published As

Publication number Publication date
CN114069077A (zh) 2022-02-18
CN114069077B (zh) 2024-06-04

Similar Documents

Publication Publication Date Title
WO2023088037A1 (zh) 电化学装置管理方法、电子设备及电池系统
CN109613436B (zh) 电池管理系统、电池系统及电池析锂的检测方法、装置
US20170366015A1 (en) Method and apparatus of battery charging
WO2021143592A1 (zh) 电池等效电路模型的建立方法、健康状态估算方法及装置
EP3018753A1 (en) Battery control method based on ageing-adaptive operation window
CN113533981B (zh) 锂离子电池自放电检测方法、设备及计算机可读存储介质
WO2024131558A1 (zh) 一种锂离子电池析锂电位的确定方法、装置及电子设备
WO2023109088A1 (zh) 电池总容量计算方法、装置、系统和存储介质
CN114035096B (zh) 电化学装置soh评估方法、电子设备及电池系统
CN112098875A (zh) 锂离子电池析锂的检测方法
CN114252792A (zh) 电池包的内短路检测方法、装置、电子设备及存储介质
CN114200310A (zh) 电化学装置析锂检测方法及电子设备
CN114523878A (zh) 一种锂离子电池析锂安全预警方法及装置
CN116559757B (zh) 电池析锂电位预测准确性的验证方法、装置和电子设备
CN113341329A (zh) 一种电压弛豫判定电芯析锂的方法及系统
CN114397582B (zh) 析锂检测方法、电子设备、充电装置及存储介质
CN116184241A (zh) 锂电池析锂检测方法、装置及系统
CN114264961B (zh) 一种电芯内短路的检测方法、装置和电子设备
CN115993541A (zh) 磷酸铁锂电池的无损析锂检测方法及相关装置
CN114284586B (zh) 一种电池快充方法和装置
CN114207909B (zh) 电化学装置管理方法、系统、电化学装置及电子设备
CN113125974B (zh) 一种电池析锂检测方法及装置
CN113740754A (zh) 一种检测电池组不一致性的方法与系统
CN112964994A (zh) 一种电池最大电流测量方法及装置
US11245137B2 (en) Control apparatus, control method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894574

Country of ref document: EP

Kind code of ref document: A1