WO2022063234A1 - 电池析锂状态检测方法、系统、汽车、设备及存储介质 - Google Patents

电池析锂状态检测方法、系统、汽车、设备及存储介质 Download PDF

Info

Publication number
WO2022063234A1
WO2022063234A1 PCT/CN2021/120358 CN2021120358W WO2022063234A1 WO 2022063234 A1 WO2022063234 A1 WO 2022063234A1 CN 2021120358 W CN2021120358 W CN 2021120358W WO 2022063234 A1 WO2022063234 A1 WO 2022063234A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
battery
voltage
area
evolution
Prior art date
Application number
PCT/CN2021/120358
Other languages
English (en)
French (fr)
Inventor
邓林旺
冯天宇
舒时伟
刘思佳
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to JP2023519183A priority Critical patent/JP2023543264A/ja
Priority to KR1020237013663A priority patent/KR20230070506A/ko
Priority to EP21871603.3A priority patent/EP4206711A4/en
Publication of WO2022063234A1 publication Critical patent/WO2022063234A1/zh
Priority to US18/188,788 priority patent/US20230221373A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/30Measuring the maximum or the minimum value of current or voltage reached in a time interval
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/371Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with remote indication, e.g. on external chargers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the technical field of batteries, and in particular, to a method, system, vehicle, equipment and storage medium for detecting a lithium deposition state of a battery.
  • lithium precipitation is considered to be one of the most critical factors affecting battery safety, and it is also the main reason for the performance degradation of lithium-ion batteries. It will lead to irreversible capacity loss and internal short circuit of the battery, and even bring about safety problems such as thermal runaway and burning fire. Therefore, the characterization of lithium evolution is an indispensable parameter when designing and evaluating battery performance.
  • the character of lithium evolution there are mainly two ways to obtain the character of lithium evolution.
  • the first is to observe the state of the battery's pole pieces to determine the character of lithium evolution after the battery is disassembled; the second is to determine the character of lithium evolution according to constant current discharge.
  • the voltage data of the curve is calculated, or, indirectly, based on the battery aging data, to quantitatively analyze the characteristics of lithium evolution.
  • the first method performs destructive operations on the battery and may cause contamination. At the same time, it can be observed and compared with the naked eye; the second method obtains a low accuracy of the lithium deposition characteristics.
  • the present disclosure proposes a method, system, vehicle, equipment and storage medium for detecting a lithium-evolution state of a battery, so as to solve the problem of low quantification accuracy of the obtained lithium-evolution character.
  • the present disclosure proposes a method for detecting a lithium deposition state of a battery, including:
  • the present disclosure proposes a battery lithium deposition state detection system, comprising: a data acquisition module configured to periodically collect the voltage of the battery according to a preset time interval after the battery after charging is in a static state, and store the collected voltage in association with the collection time as voltage data;
  • a curve building module for building a time differential voltage curve in a voltage-time coordinate system according to the voltage data
  • a characteristic peak voltage detection module for detecting whether there is a characteristic peak voltage in the time differential voltage curve
  • a lithium-evolution character quantification determination module used for prompting the battery to have a lithium-evolution phenomenon when it is detected that the characteristic peak voltage exists in the time differential voltage curve;
  • the information prompting module is used to prompt that the battery does not have lithium precipitation when it is detected that the characteristic peak voltage does not exist in the time differential voltage curve.
  • the present disclosure provides an automobile, including the above battery lithium deposition state detection system.
  • the present disclosure provides a computer device, comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, the processor implementing the above-mentioned computer program when the processor executes the computer program A method for detecting the lithium deposition state of a battery.
  • the present disclosure provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed by a processor, the foregoing method for detecting a lithium-evolution state of a battery is implemented.
  • the method, system, vehicle, device and storage medium for detecting the lithium deposition state of a battery proposed by the present disclosure, after the battery is in a static state after charging, periodically collects the voltage of the battery according to a preset time interval, and collects the voltage obtained from the collected battery.
  • the voltage and the acquisition time are associated and stored as voltage data; construct a time differential voltage curve in the voltage-time coordinate system according to the voltage data; detect whether there is a characteristic peak voltage in the time differential voltage curve; When the characteristic peak voltage exists in the time differential voltage curve, it indicates that the battery has a lithium deposition phenomenon; when it is detected that the characteristic peak voltage does not exist in the time differential voltage curve, it indicates that the battery has no lithium deposition phenomenon. .
  • the characteristic peak voltage appears in the time differential voltage curve it can be accurately and conveniently determined whether the battery has lithium precipitation during the charging process; and when the characteristic peak voltage appears in the time differential voltage curve, the battery is prompted Therefore, it is more accurate and reasonable to adjust the charging strategy and evaluate the aging state of the battery according to the lithium deposition phenomenon, thereby improving the safety of the battery.
  • FIG. 1 is a flowchart of a method for detecting a lithium-evolution state of a battery in an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a voltage-time coordinate system in a method for detecting a lithium deposition state of a battery according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of step S40 in the method for detecting the lithium deposition state of a battery according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of step S402 in the method for detecting a lithium deposition state of a battery according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of step S403 in the method for detecting the lithium deposition state of a battery according to an embodiment of the present disclosure
  • FIG. 6 is a schematic block diagram of a method for detecting a lithium deposition state of a battery in an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a computer device according to an embodiment of the present disclosure.
  • a method for detecting the lithium deposition state of a battery comprising the following steps:
  • S10 After the battery after charging is in a stationary state, periodically collect the voltage of the battery according to a preset time interval, and store the collected voltage in association with the collection time as voltage data.
  • the end of charging indicates that the charging has ended at present, for example, the charging is ended when the current SOC value of the battery reaches the preset charging requirement.
  • the battery in this step refers to a battery that is waiting for the lithium-evolution state detection; optionally, the battery may be a power battery or a 3C type battery. Among them, the occurrence of lithium precipitation during the charging process of the battery refers to the precipitation of a part of lithium metal at the negative electrode of the battery during the charging process of the battery.
  • the preset time interval may be determined according to actual detection requirements (such as the detected battery type, etc.), for example, the preset time interval may be every 5s. Or every 10s and so on.
  • the collection time refers to the time point corresponding to the voltage of the battery collected according to the preset time interval.
  • the voltage data includes each group of voltages and the corresponding acquisition time.
  • the battery is placed in a stationary state; after the battery is in a stationary state, the voltage of the battery is periodically collected according to a preset time interval, and the collected voltage is stored in association with the collection time as voltage data .
  • S20 Construct a time differential voltage curve in a voltage-time coordinate system according to the voltage data.
  • the time differential voltage curve represents the change curve of the first-order derivative relationship of the battery with the voltage, and the first-order derivative relationship is calculated according to the acquisition time and the voltage.
  • the voltage-time coordinate system is the coordinate system shown in FIG. 2 , the horizontal axis of the coordinate system represents the voltage of the acquisition battery, and the vertical axis represents the time corresponding to the voltage of the acquisition battery.
  • L1 characterizes the time differential voltage curve. Specifically, after regularly collecting the voltage of the battery according to a preset time interval, and storing the collected voltage in association with the voltage collection time as voltage data, according to the voltage data, the time differential voltage is used to obtain and voltage data After the corresponding first derivative relationship, the time differential voltage curve is determined.
  • step S20 that is, constructing a time differential voltage curve in the voltage-time coordinate system according to the voltage data, including:
  • the time differential voltage curve is generated according to the voltage data and a preset first-order derivative relationship.
  • the preset first-order derivative relationship is calculated according to the voltage of each group of collected batteries and the collection time, and the preset first-order derivative relationship is dt/dU.
  • the time differential voltage curve is determined.
  • whether there is a characteristic peak voltage in the time differential voltage curve can be detected by a peak-seeking identification algorithm, and the peak-seeking identification algorithm is used to find the characteristic peak voltage corresponding to the characteristic peak when the characteristic peak appears in the time differential voltage curve.
  • the mathematical meaning of the characteristic peak voltage refers to the maximum value of the time required for the voltage change in the time differential voltage curve; in the physical sense, it is used to characterize the lithium precipitation of the battery during the charging process, that is, the reaction on the negative electrode surface of the battery.
  • the generated “live lithium” (“live lithium” refers to lithium metal that has not lost electrical contact with the graphite) enters a chemical reaction that occurs in the graphite of the battery negative electrode in a static state after charging.
  • the preset stability standard means that the curve value of the time differential voltage curve meets the following requirements: in the range of -100 to - ⁇ , it tends to a stable and constant state.
  • the change of the time differential voltage curve with the voltage is particularly small for a long period of time (the curve is close to a straight line, and the curve value of the time differential voltage curve is close to a stable state at this time)
  • the voltage value corresponding to the differential voltage curve at the starting time of the state is recorded as the stable voltage.
  • the characteristic peak voltage in the time differential voltage curve is identified by a peak-seeking identification algorithm, which indicates that lithium precipitation occurs in the battery during the charging process, that is, it is determined that the battery is in the charging process. There is a state of lithium precipitation in the battery.
  • a peak-seeking identification algorithm which indicates that lithium precipitation occurs in the battery during the charging process, that is, it is determined that the battery is in the charging process.
  • the peak-seeking identification algorithm can set a search area in the above-mentioned voltage-time coordinate system (for example, it can be divided according to time), if the maximum value is searched in this area (that is, as shown in Figure 2 , the time differential voltage curve L1 has a point where the curve first rises and then falls, which is the characteristic peak phenomenon), then the point corresponding to the maximum value is determined as the characteristic peak point.
  • the electric field distribution inside the battery is high (+) near the separator and low (-) near the copper foil.
  • the lithium ion concentration outside the graphite presents a gradient distribution from the separator to the copper foil; for a single graphite particle, the lithium ion concentration outside the graphite is higher than the inner lithium ion concentration.
  • the lithium ion concentration outside the graphite is much higher than that of the copper foil near the diaphragm, the lithium Ions migrate and diffuse from the separator to the copper foil under the action of the electric field and concentration difference, and electrons migrate from the inside to the copper foil.
  • the lithium ion concentration gradually tends to balance from the separator to the copper foil, and the precipitated lithium metal is slowly and completely inserted into the graphite.
  • the characteristic peak voltage when the characteristic peak voltage appears in the time differential voltage curve, it indicates that most of the "live lithium” has been completely embedded in the graphite of the negative electrode of the battery, that is, when the characteristic peak voltage appears in the time differential voltage curve, not only It shows that the lithium-evolution phenomenon has occurred in the battery during the charging process, and it can also be shown that the lithium-evolution reaction of the battery is basically completed when the characteristic peak voltage occurs (because after the lithium-evolution reaction of the battery occurs, the "live lithium” in the battery is in a static state.
  • the voltage plateau When the voltage plateau is generated, it will enter the graphite layer and generate a voltage plateau; after the voltage plateau is generated, the time required for unit voltage change will become longer, therefore, there will be a peak value on the time differential voltage curve, that is, the characteristic peak voltage, and then it is considered that this When the lithium evolution reaction of the battery is basically completed).
  • the characteristic peak voltage appears in the time differential voltage curve
  • the present disclosure improves the accuracy and convenience of battery lithium deposition detection
  • the peak-seeking identification algorithm when the peak-seeking identification algorithm does not identify a characteristic peak voltage in the time differential voltage curve, prompt the battery to Lithium precipitation did not occur during charging.
  • the characteristic peak voltage in the present disclosure is used to characterize the lithium precipitation during the charging process of the battery in a physical sense
  • the time difference is not identified by the peak-seeking identification algorithm
  • the characteristic peak voltage in the voltage curve indicates that the battery did not undergo lithium precipitation during the charging process.
  • step S40 that is, when it is detected that the characteristic peak voltage exists in the time differential voltage curve, after the battery is prompted that the lithium precipitation phenomenon occurs, it also includes:
  • S402 Determine the area of the first region and the area of the second region in the voltage-time coordinate system according to the characteristic peak voltage, the stable voltage, and the time differential voltage curve.
  • the From the start point to the end point corresponding to the characteristic peak voltage calculate the area of the first region corresponding to the region enclosed by the time differential voltage curve and the horizontal axis corresponding to the start point. From the starting point corresponding to the characteristic peak voltage to the ending point corresponding to the stable voltage, the area of the second area corresponding to the area enclosed by the horizontal axis corresponding to the time differential voltage curve and the starting point is calculated.
  • step S402 that is, according to the characteristic peak voltage, the stable voltage and the time differential voltage curve, the first area area and the second area area are determined in the voltage-time coordinate system, including:
  • S4021 Determine a reference horizontal axis, a first reference vertical axis, and a second reference vertical axis in the voltage-time coordinate system, where the reference horizontal axis refers to a horizontal axis corresponding to a starting point of the time differential voltage curve
  • the first reference vertical axis refers to the vertical axis corresponding to the characteristic peak voltage
  • the second reference vertical axis refers to the vertical axis corresponding to the stable voltage.
  • S4022 Calculate a first region area corresponding to a region jointly enclosed by the reference horizontal axis, the first reference vertical axis, and the time differential voltage curve.
  • S4023 Calculate a second area area corresponding to a region jointly enclosed by the reference horizontal axis, the first reference vertical axis, the second reference vertical axis, and the time differential voltage curve.
  • the starting voltage refers to the voltage value at the end of battery charging
  • the starting point of the time differential voltage curve is the starting voltage at the end of battery charging.
  • U1 is the starting point in the time differential voltage curve (the starting point corresponds to the starting voltage at the end of battery charging);
  • U2 refers to the time differential voltage curve in the The point corresponding to the characteristic peak voltage;
  • U3 refers to the point corresponding to the stable voltage in the time differential voltage curve;
  • L3 is the reference horizontal axis;
  • L4 is the first reference vertical axis;
  • L5 is the second reference vertical axis.
  • the battery After identifying the characteristic peak voltage in the time differential voltage curve through a peak-seeking identification algorithm, and after determining the characteristic peak voltage, recording the stable voltage corresponding to when the time differential voltage curve reaches a preset stability standard, obtain the battery
  • the charging voltage at the end of charging the charging voltage is the starting point in the time differential voltage curve, and the horizontal axis corresponding to the starting point is taken as the reference horizontal axis; the vertical axis corresponding to the characteristic peak voltage in the time differential voltage curve is taken as The first reference vertical axis, it can be understood that the first reference vertical axis and the reference horizontal axis are in a vertical relationship, and then the first reference vertical axis, the first reference vertical axis and the area jointly enclosed by the time differential voltage curve are calculated.
  • Area area the first area area represents the time required for the "live lithium" precipitated by the battery to be embedded from the outside of the battery graphite into the interior during the charging process, that is, the lithium precipitation time in step S4031.
  • the battery After identifying the characteristic peak voltage in the time differential voltage curve through a peak-seeking identification algorithm, and recording the stable voltage corresponding to the time differential voltage curve reaching a preset stability standard after the characteristic peak voltage appears, obtain the battery
  • the charging voltage at the end of charging the charging voltage is the starting point in the time differential voltage curve, and the horizontal axis corresponding to the starting point is taken as the reference horizontal axis; the vertical axis corresponding to the characteristic peak voltage in the time differential voltage curve is taken as The first reference vertical axis; the vertical axis corresponding to the stable voltage in the time differential voltage curve is taken as the second reference vertical axis.
  • first reference vertical axis is parallel to the second reference vertical axis
  • first reference vertical axis and The second reference vertical axis is perpendicular to the reference horizontal axis, and then the area of the second region corresponding to the region enclosed by the reference horizontal axis, the first reference vertical axis, the second reference vertical axis and the time differential voltage curve is calculated.
  • the reciprocal of the area of the second region can be used to characterize the lithium intercalation rate of the battery graphite (that is, the lithium extraction rate in step S4031 ).
  • S403 According to the area of the first region and the area of the second region, determine the quantity of the lithium-evolution character of the battery.
  • the lithium-evolution indicator characterizes the degree of lithium-evolution of the battery during the charging process.
  • the stable voltage and the time difference voltage curve according to The area of the first area and the area of the second area are used to determine the characterizing quantity of lithium precipitation of the battery, and then the severity of lithium precipitation during the charging process of the battery can be determined by the lithium precipitation standard of the battery in the factory specification.
  • a preset current reduction strategy needs to be adopted to reduce the charging current when the battery is charged next time (generally, the charging current of the battery is stored in In the battery charging strategy table, reducing the charging current is also reducing the current charging current in the battery charging strategy table); for example, after the battery is charged, the amount of lithium evolution exceeds the lithium evolution standard, and the reduction ratio is preset. It is 1% of the current charging current. If the charging current in the battery charging strategy table is 1A, at this time, the charging current can be reduced by 1%, that is, the charging current can be reduced to 0.99A. In this way, the battery can be charged in the next time.
  • the preset current reduction strategy refers to: determining the reduction ratio of the charging current that needs to be reduced according to the lithium-evolution characteristics after the battery is charged and the lithium-evolution standard corresponding to the battery, and then updating the reduction ratio according to the reduction ratio. Smaller the charging current in the battery charging strategy table.
  • the amount of the lithium-evolution indicator seriously exceeds the lithium-evolution standard corresponding to the battery (for example, the excess amount is greater than or equal to the preset percentage of the lithium-evolution standard, for example, the preset percentage may be 40%; but The preset percentage can also be set to other percentages other than 40% according to requirements; understandably, when the excess amount is less than the preset percentage, the battery charging strategy table is reduced according to the preset current reduction strategy.
  • the current charging current is sufficient), it means that the battery should be returned to the factory for maintenance to avoid safety accidents caused by the excessive lithium deposition of the battery.
  • the time difference voltage curve is determined by placing the battery after charging in a static state, according to the voltage and the collection time collected at preset intervals; that is, it is determined whether the battery is not dependent on the discharge mode of the battery. Lithium precipitation occurs, and the voltage data obtained in the static state after charging is more accurate (in this scheme, the detection is performed when the battery is charged and in a static state, so there is no need to rely on the discharge mode of the battery, and the static state The voltage change in the state is controllable, and further, the obtained time differential voltage curve has high accuracy).
  • the characteristic peak voltage appears in the time differential voltage curve
  • the starting voltage, the characteristic peak voltage and the time differential voltage curve determine the first region area in the voltage-time coordinate system; according to the characteristic peak voltage, the stable voltage and the time differential voltage curve, in the Determine the area of the second area in the voltage-time coordinate system; according to the area of the first area and the area of the second area, determine the quantity of the lithium-evolution character of the battery, so that the charging strategy is adjusted according to the quantity of the lithium-evolution character It is more accurate and reasonable to evaluate the aging state of the battery, thereby improving the safety of the battery.
  • step S403 that is, according to the area of the first region and the area of the second region, the quantity of the lithium-evolution character of the battery is determined, including:
  • S4031 Record the area of the first region as the lithium-evolution time duration of the battery; at the same time, record the reciprocal of the area of the second region as the lithium-evolution rate.
  • the time point when the characteristic peak voltage appears in the time differential voltage curve is the time point when the active lithium is completely embedded in the graphite, that is, the physical meaning of the area of the first region refers to the "active lithium” precipitated during the charging process of the battery.
  • the second area corresponding to the characteristic peak voltage to the stable voltage indicates that the lithium ion concentration is basically balanced from the separator to the copper foil; therefore, lithium ions are more inclined to diffuse from the outside of the graphite particles to the inside of the particles, so that the lithium ions of the entire graphite particle are more likely to diffuse. evenly distributed.
  • the physical meaning of the area of the first region refers to the time required for the "live lithium” precipitated during the charging process to be embedded from the outside of the graphite into the inside. It is inaccurate to use the area of the first region to characterize the total lithium evolution of the battery, because the time elapsed is related to the lithium evolution and the lithium insertion rate of graphite, and the lithium insertion rate of graphite is related to temperature. , so at the same temperature, the time can be used to characterize the amount of lithium evolution.
  • the present disclosure adopts the inverse of the area of the second region to characterize the lithium deposition rate of the battery.
  • the time for some "active lithium” to be equilibrated in the negative electrode is different from that of the negative electrode.
  • the acquisition times of the areas of the first region coincide.
  • the concentration difference of lithium ions in the graphite particles of the negative electrode is the largest. All calculations are made from the complete insertion of "active lithium” into the negative electrode.
  • the reciprocal of the time at which the negative electrode graphite particles reach the final equilibrium ie the area of the second region
  • S4032 Record the product of the lithium-evolution time period and the lithium-evolution rate as the characteristic quantity of lithium-evolution of the battery.
  • the lithium-evolution time of the battery after determining the lithium-evolution time of the battery according to the area of the first region; at the same time, after determining the lithium-evolution rate of the battery according to the area of the second region, according to the lithium-evolution time and the The product of the lithium evolution rate is used to determine the lithium evolution characteristic of the battery.
  • the area of the first area can be recorded as the lithium-evolution time of the battery; the reciprocal of the area of the second area is recorded as the lithium-evolution rate of the battery; and the product of the reciprocal area of the second area and the area of the first area is recorded as Lithium-evolution characteristics of batteries. That is, the product of the lithium-evolution duration and the lithium-evolution rate is recorded as the lithium-evolution characteristic quantity of the battery.
  • a system for detecting the lithium deposition state of a battery including:
  • the data acquisition module 10 is configured to periodically collect the voltage of the battery according to a preset time interval after the battery is in a static state after charging, and store the collected voltage in association with the collection time as voltage data;
  • a curve building module 20 configured to build a time differential voltage curve in a voltage-time coordinate system according to the voltage data
  • a characteristic peak voltage detection module 30 configured to detect whether there is a characteristic peak voltage in the time differential voltage curve
  • Lithium-evolution indicator quantitative determination module 40 configured to prompt the battery to generate lithium-evolution phenomenon when detecting that the characteristic peak voltage exists in the time differential voltage curve;
  • the information prompting module 50 is used for prompting that no lithium precipitation has occurred in the battery when it is detected that the characteristic peak voltage does not exist in the time differential voltage curve.
  • the quantification determination module 40 of the lithium precipitation character includes the following units:
  • a stable voltage obtaining sub-module used for obtaining the stable voltage corresponding to the time differential voltage curve reaching the preset stability standard
  • an area area determination submodule configured to determine the first area area and the second area area in the voltage-time coordinate system according to the characteristic peak voltage, the stable voltage and the time differential voltage curve;
  • the sub-module for determining the quantity of the lithium-evolution character is configured to determine the quantity of the lithium-evolution character of the battery according to the area of the first area and the area of the second area.
  • the area area determination submodule includes:
  • a coordinate axis determination unit configured to determine a reference horizontal axis, a first reference vertical axis and a second reference vertical axis in the voltage-time coordinate system;
  • the reference horizontal axis refers to the starting point of the voltage curve with the time difference
  • the corresponding horizontal axis, the first reference vertical axis refers to the vertical axis corresponding to the characteristic peak voltage;
  • the second reference vertical axis refers to the vertical axis corresponding to the stable voltage;
  • a first area area calculation unit configured to calculate the first area area corresponding to the area jointly enclosed by the reference horizontal axis, the first reference vertical axis and the time differential voltage curve;
  • the second area area calculation unit is configured to calculate the second area area corresponding to the area jointly enclosed by the reference horizontal axis, the first reference vertical axis, the second reference vertical axis and the time differential voltage curve.
  • the sub-module for determining the quantity of the lithium-evolution indicator comprises:
  • Lithium-evolution data recording unit for recording the first area area as the lithium-evolution time length of the battery; recording the reciprocal of the second area area as the lithium-evolution rate;
  • a lithium-evolution indicator quantity determination unit configured to record the product of the lithium-evolution time period and the lithium-evolution rate as the lithium-evolution indicator of the battery.
  • the battery lithium deposition state detection system further includes:
  • the lithium-evolution standard acquisition submodule is used to obtain the preset lithium-evolution standard of the battery, and confirm whether the lithium-evolution characteristic of the battery is greater than the preset lithium-evolution standard;
  • the charging current reduction sub-module is configured to adopt a preset current reduction strategy to reduce the charging current of the battery when the quantity of the lithium evolution indicator is greater than the preset lithium evolution standard.
  • an automobile including the battery lithium deposition state detection system in the above embodiment.
  • a computer device is provided, and the computer device can be a server, and its internal structure diagram can be as shown in FIG. 7 .
  • the computer device includes a processor, memory, a network interface, and a database connected by a system bus. Among them, the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium, an internal memory.
  • the nonvolatile storage medium stores an operating system, a computer program, and a database.
  • the internal memory provides an environment for the execution of the operating system and computer programs in the non-volatile storage medium.
  • the database of the computer device is used to store the data used in the method for detecting the lithium evolution state of the battery in the above embodiment.
  • the network interface of the computer device is used to communicate with an external terminal through a network connection. When the computer program is executed by the processor, a method for detecting the lithium deposition state of a battery is realized.
  • a computer device including a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor executes the computer program, the lithium-emission state of the battery in the above-mentioned embodiment is realized. Detection method.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the method for detecting a lithium-evolution state of a battery in the foregoing embodiment is implemented.
  • Nonvolatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in various forms such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Road (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • SLDRAM synchronous chain Road (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

一种电池析锂状态检测方法,涉及电池技术领域。包括:在充电结束后的电池处于静置状态之后,根据预设时间间隔定时采集电池的电压,并将采集得到的电压与该电压的采集时间关联存储为电压数据(S10);根据电压数据在电压-时间坐标系中构建时间差分电压曲线(S20);检测时间差分电压曲线中是否存在特征峰电压(S30);在检测到时间差分电压曲线中存在特征峰电压时,提示电池发生析锂现象,根据特征峰电压以及时间差分电压曲线,确定电池的析锂表征量(S40);在检测到时间差分电压曲线中不存在特征峰电压时,提示电池未发生析锂(S50)。一种电池析锂状态检测系统、汽车、设备及存储介质。

Description

电池析锂状态检测方法、系统、汽车、设备及存储介质
相关申请的交叉引用
本公开要求于2020年09月27日提交的申请号为202011033185.8、名称为“电池析锂状态检测方法、系统、汽车、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电池技术领域,尤其涉及一种电池析锂状态检测方法、系统、汽车、设备及存储介质。
背景技术
随着科学技术的发展,新能源汽车发展也越来越迅速。电池作为新能源汽车的重要配件,其安全性非常重要。其中,析锂现象被认为是影响电池安全最关键的因素之一,也是导致锂离子电池性能衰减的主要原因。它会导致电池不可逆的容量损失与内部短路,甚至会带来热失控及燃烧起火等安全问题。因此,在设计与评估电池性能时,析锂表征量是一种不可或缺的参数。
相关技术中,析锂表征量的获取方式主要有两种,第一种是在将电池进行拆解之后,观察电池的极片状态确定电池的析锂表征量;第二种是根据恒流放电曲线的电压数据计算,或者,根据电池老化数据间接计算,以定量分析析锂表征量。然而,第一种方式对电池进行了破坏性操作,且可能会造成污染,同时通过肉眼观察,比较;第二种方式获取到的析锂表征量准确率低。
发明内容
本公开提出了一种电池析锂状态检测方法、系统、汽车、设备及存储介质,以解决获取到的析锂表征量准确率低的问题。
第一方面,本公开提出了一种电池析锂状态检测方法,包括:
在充电结束后的电池处于静置状态之后,根据预设时间间隔定时采集所述电池的电压,并将采集得到的所述电压与采集时间关联存储为电压数据;
根据所述电压数据在电压-时间坐标系中构建时间差分电压曲线;
检测所述时间差分电压曲线中是否存在特征峰电压;
在检测到所述时间差分电压曲线中存在所述特征峰电压时,提示所述电池发生析锂现 象;
在检测到所述时间差分电压曲线中不存在所述特征峰电压时,提示所述电池在充电过程中未发生析锂。
第二方面,本公开提出了一种电池析锂状态检测系统,包括:数据采集模块,用于在充电结束后的电池处于静置状态之后,根据预设时间间隔定时采集所述电池的电压,并将采集得到的所述电压与采集时间关联存储为电压数据;
曲线构建模块,用于根据所述电压数据在电压-时间坐标系中构建时间差分电压曲线;
特征峰电压检测模块,用于检测所述时间差分电压曲线中是否存在特征峰电压;
析锂表征量确定模块,用于在检测到所述时间差分电压曲线中存在所述特征峰电压时,提示所述电池发生析锂现象;
信息提示模块,用于在检测到所述时间差分电压曲线中不存在所述特征峰电压时,提示所述电池未发生析锂。
第三方面,本公开提出了一种汽车,包括上述电池析锂状态检测系统。
第四方面,本公开提出了一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述电池析锂状态检测方法。
第五方面,本公开提出了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述电池析锂状态检测方法。
本公开提出的电池析锂状态检测方法、系统、汽车、设备及存储介质,通过在充电结束后的电池处于静置状态之后,根据预设时间间隔定时采集所述电池的电压,并将采集得到的所述电压与采集时间关联存储为电压数据;根据所述电压数据在电压-时间坐标系中构建时间差分电压曲线;检测所述时间差分电压曲线中是否存在特征峰电压;在检测到所述时间差分电压曲线中存在所述特征峰电压时,提示所述电池发生析锂现象;在检测到所述时间差分电压曲线中不存在所述特征峰电压时,提示所述电池未出现析锂现象。
在本公开中,根据时间差分电压曲线中是否出现特征峰电压,可以准确且便捷地确定电池在充电过程中是否出现析锂现象;进而在时间差分电压曲线中出现特征峰电压时,提示电池出现析锂现象,从而使得根据该析锂现象调整之后的充电策略、评估电池老化状态等更为准确合理,进而提高电池的安全性。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例, 对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一实施例中电池析锂状态检测方法的一流程图;
图2是本公开一实施例中电池析锂状态检测方法中的电压-时间坐标系的示意图;
图3是本公开一实施例中电池析锂状态检测方法中步骤S40的一流程图;
图4是本公开一实施例中电池析锂状态检测方法中步骤S402的一流程图;
图5是本公开一实施例中电池析锂状态检测方法中步骤S403的一流程图;
图6是本公开一实施例中电池析锂状态检测方法的一原理框图;
图7是本公开一实施例中计算机设备的一示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在一实施例中,如图1所示,提供一种电池析锂状态检测方法,包括如下步骤:
S10:在充电结束后的电池处于静置状态之后,根据预设时间间隔定时采集所述电池的电压,并将采集得到的所述电压与采集时间关联存储为电压数据。
其中,充电结束表征当前已经结束充电,比如,电池当前SOC值达到预设充电要求时结束充电。该步骤中的电池是指等待进行析锂状态检测的电池;可选地,该电池可以为动力电池或者3C类电池。其中,电池在充电过程中发生析锂指的是电池在充电过程中,在电池的负极析出一部分锂金属。预设时间间隔可以根据实际检测需求(如检测的电池类别等)进行确定,示例性地,预设时间间隔可以为每隔5s。或者每隔10s等。采集时间指的是与根据预设时间间隔采集到电池的电压对应的时间点。电压数据中包含了每一组电压以及与其对应的采集时间。
具体地,在电池充电结束后,令电池处于静置状态;在该电池处于静置状态之后,根据预设时间间隔定时采集电池的电压,并将采集得到的电压与采集时间关联存储为电压数据。
S20:根据所述电压数据在电压-时间坐标系中构建时间差分电压曲线。
其中,时间差分电压曲线表征电池的一阶导数关系随电压的变化曲线,该一阶导数关系是根据采集时间以及电压计算得到的。电压-时间坐标系为如图2所示的坐标系,该坐标系的横轴表征采集电池的电压,纵轴表征采集电池的电压对应的时间。其中,L1表征时 间差分电压曲线。具体地,在根据预设时间间隔定时采集所述电池的电压,并将采集得到的所述电压与该电压的采集时间关联存储为电压数据之后,根据电压数据,采用时间差分电压得到与电压数据对应的一阶导数关系之后,确定时间差分电压曲线。
可选地,步骤S20中,也即根据所述电压数据在电压-时间坐标系中构建时间差分电压曲线,包括:
根据所述电压数据以及预设的一阶导数关系生成所述时间差分电压曲线。其中,预设的一阶导数关系是根据每组采集的电池的电压以及采集时间计算得到的,该预设的一阶导数关系为dt/dU。
具体地,在根据预设时间间隔定时采集所述电池的电压,并将采集得到的所述电压与该电压的采集时间关联存储为电压数据之后,根据电压数据中每一组电压以及对应的采集时间,得到预设的一阶导数关系;由于每一采集电压具有对应的一阶导数关系值进而确定时间差分电压曲线。
S30:检测所述时间差分电压曲线中是否存在特征峰电压。
S40:在检测到所述时间差分电压曲线中存在所述特征峰电压时,提示所述电池发生析锂现象。
S50:在检测到所述时间差分电压曲线中不存在所述特征峰电压时,提示所述电池未发生析锂。
其中,可以通过寻峰识别算法检测时间差分电压曲线中是否存在特征峰电压,该寻峰识别算法用于寻找时间差分电压曲线中出现特征峰时与该特征峰对应的特征峰电压。特征峰电压在数学上的含义指的是时间差分电压曲线中电压变化所需要的时间的极大值;在物理意义上用于表征电池在充电过程中发生析锂,也即反应在电池负极表面产生的“活锂”(“活锂”指的是与石墨没有失去电接触的锂金属)在充电结束后的静置状态下进入电池负极石墨内发生的化学反应。
预设稳定标准指的是时间差分电压曲线的曲线数值满足以下要求:在-100至-∞范围内,趋近于稳定不变的状态。在本实施例中,在一段较长时间内时间差分电压曲线随电压的变化特别小(曲线趋近于直线,此时时间差分电压曲线的曲线数值趋近于稳定不变的状态)时,则将该状态的开始时间差分电压曲线对应的电压值记录为稳定电压。
具体地,在根据所述电压数据确定时间差分电压曲线之后,通过寻峰识别算法识别出时间差分电压曲线中的特征峰电压,表征电池在充电过程中发生析锂,也即确定电池在充电过程中存在析锂状态,此时,需要在确定特征峰电压之后,根据特征峰电压以及时间差分电压曲线,确定电池的析锂表征量。在本实施例中,该寻峰识别算法可以在上述电压- 时间坐标系中设定一个搜索区域(例如可以根据时间划分),若在该区域中搜索到最大值(也即如图2所示,时间差分电压曲线L1出现曲线先上升再下滑的点,即为出现特征峰现象),则将该最大值对应的点确定为特征峰点。
在电池充电过程中,若电池的负极析出一部分锂金属;而电池的石墨受外加电场的影响,其内部的电场分布是靠近隔膜电势高(+),靠近铜箔电势低(-)。石墨外部锂离子浓度从隔膜到铜箔呈现梯度分布;就单个石墨颗粒而言,石墨外部锂离子浓度高于内部锂离子浓度。在电池充完电进入静置状态过程中,电池在充电过程中析出来的部分锂金属在颗粒外部被氧化成锂离子,由于石墨外部锂离子浓度在靠近隔膜处远高于铜箔处,锂离子在电场和浓度差的作用下从隔膜处迁移和扩散到铜箔处,电子则从内部迁移到铜箔。锂离子浓度从隔膜处到铜箔处逐渐趋于平衡,析出的锂金属慢慢完全插入至石墨内部。因此,本实施例中,时间差分电压曲线中出现特征峰电压的时刻,表征绝大多数“活锂”已经完全嵌入电池负极的石墨内,也即时间差分电压曲线中出现特征峰电压时,不仅表明电池在充电过程中已经出现析锂现象,还可以表明,在出现特征峰电压时电池析锂反应基本完成(由于在电池发生析锂反应后,其中的“活锂”在电池处于静置状态时会进入石墨层,进而产生电压平台;在产生电压平台后,单位电压变化所需要的时间会变长,因此,在时间差分电压曲线上会出现一个峰值,也即特征峰电压,进而认为此时电池析锂反应基本完成)。
在本实施例中,根据时间差分电压曲线中是否出现特征峰电压,可以准确且便捷地确定电池在充电过程中是否出现析锂现象;进而在时间差分电压曲线中出现特征峰电压时,提示电池发生析锂现象,从而使得根据该析锂现象调整之后的充电策略、评估电池老化状态等更为准确合理,进而提高电池的安全性。本公开提高了电池析锂检测的准确性以及便捷性
在另一实施例中,在根据所述电压数据确定时间差分电压曲线之后,通过所述寻峰识别算法未识别出所述时间差分电压曲线中的特征峰电压时,提示所述电池在上一次充电过程中未发生析锂。具体地,由于在本公开中特征峰电压在物理意义上用于表征电池在充电过程中发生析锂,因此在根据电压数据确定时间差分电压曲线之后,在通过寻峰识别算法未识别出时间差分电压曲线中的特征峰电压时,表征电池在充电过程中未发生析锂。
在一实施例中,如图3所示,步骤S40中,也即在检测到所述时间差分电压曲线中存在所述特征峰电压时,提示所述电池发生析锂现象之后,还包括:
S401:获取所述时间差分电压曲线达到预设稳定标准时对应的稳定电压;
S402:根据所述特征峰电压、稳定电压以及所述时间差分电压曲线,在所述电压-时间坐标系中确定第一区域面积和第二区域面积。
具体地,在通过寻峰识别算法识别出所述时间差分电压曲线中的特征峰电压,并在出 现特征峰电压之后记录所述时间差分电压曲线达到预设稳定标准时对应的稳定电压之后,自起始点至特征峰电压对应的末点,计算由时间差分电压曲线与起始点对应的横轴围成的区域对应的第一区域面积。自特征峰电压对应的起始点至稳定电压对应的末点,计算由时间差分电压曲线与起始点对应的横轴围成的区域对应的第二区域面积。
如图4所示,步骤S402中,也即根据所述特征峰电压、稳定电压以及所述时间差分电压曲线,在所述电压-时间坐标系中确定第一区域面积和第二区域面积,包括如下步骤:
S4021:在所述电压-时间坐标系中确定基准横轴、第一基准纵轴以及第二基准纵轴,其中,所述基准横轴是指与所述时间差分电压曲线的起始点对应的横轴,所述第一基准纵轴是指与所述特征峰电压对应的纵轴,所述第二基准纵轴是指与所述稳定电压对应的纵轴。
S4022:计算由所述基准横轴、第一基准纵轴以及所述时间差分电压曲线共同围成的区域对应的第一区域面积。
S4023:计算由所述基准横轴、第一基准纵轴、第二基准纵轴以及所述时间差分电压曲线共同围成的区域对应的第二区域面积。
其中,起始电压指的是电池充电结束时的电压值,时间差分电压曲线的起始点为电池充电结束时的起始电压。其中,在图2所示的电压-时间坐标系中,U1为时间差分电压曲线中的起始点(该起始点对应于电池充电结束时的起始电压);U2指的是时间差分电压曲线中与特征峰电压对应的点;U3指的是时间差分电压曲线中与稳定电压对应的点;L3为基准横轴;L4为第一基准纵轴;L5为第二基准纵轴。
具体地,在通过寻峰识别算法识别出所述时间差分电压曲线中的特征峰电压,并在确定特征峰电压之后记录所述时间差分电压曲线达到预设稳定标准时对应的稳定电压之后,获取电池充电结束时的充电电压,该充电电压为时间差分电压曲线中的起始点,将该起始点对应的横轴作为基准横轴;并将时间差分电压曲线中,与特征峰电压对应的纵轴作为第一基准纵轴,可以理解地,该第一基准纵轴与基准横轴为垂直关系,进而计算由基准横轴、第一基准纵轴以及时间差分电压曲线共同围成的区域对应的第一区域面积,该第一区域面积表征了电池在充电过程中析出的“活锂”从电池石墨外部嵌入内部所需要的时长,也即步骤S4031中的析锂时长。
具体地,在通过寻峰识别算法识别出所述时间差分电压曲线中的特征峰电压,并在出现特征峰电压之后记录所述时间差分电压曲线达到预设稳定标准时对应的稳定电压之后,获取电池充电结束时的充电电压,该充电电压为时间差分电压曲线中的起始点,将该起始点对应的横轴作为基准横轴;并将时间差分电压曲线中,与特征峰电压对应的纵轴作为第一基准纵轴;将时间差分电压曲线中,与稳定电压对应的纵轴作为第二基准纵轴,可以理解地,第一基准纵轴与第二基准纵轴平行,第一基准纵轴与第二基准纵轴均与基准横轴垂 直,进而计算由所述基准横轴、第一基准纵轴、第二基准纵轴以及所述时间差分电压曲线共同围成的区域对应的第二区域面积,该第二区域面积的倒数可以用来表征电池石墨嵌锂速率(也即步骤S4031中的析锂速率)。
S403:根据所述第一区域面积以及所述第二区域面积,确定所述电池的析锂表征量。
其中,析锂表征量表征电池在充电过程中的析锂程度。
具体地,在根据所述特征峰电压以及所述时间差分电压曲线,得到第一区域面积,以及根据所述特征峰电压、稳定电压以及所述时间差分电压曲线,得到第二区域面积之后,根据第一区域面积以及第二区域面积,确定电池的析锂表征量,进而可以通过该电池在出厂规格书中的析锂标准,确定此次电池在充电过程中发生析锂的严重程度。
作为一个示例,若该析锂表征量超过该电池的对应的析锂标准,则需采取预设电流减小策略减小下一次对电池进行充电时的充电电流(一般地,电池的充电电流存储在电池充电策略表中,因此减小充电电流也即减小电池充电策略表中当前的充电电流);比如,在电池充电完成后的析锂表征量超过析锂标准,且减小比例预先设置为当前充电电流的1%,若电池充电策略表中的充电电流为1A时,此时,可以令充电电流下调1%,也即将充电电流减小至0.99A,如此,可以使得电池在下一次充电时,采用减小后的充电电流对电池进行充电,从而降低电池的析锂表征量,进而达到保护电池的效果。其中,预设电流减小策略是指:根据电池充电完成后的析锂表征量以及与该电池对应的析锂标准,确定需要减小充电电流的减小比例,进而根据该减小比例更新减小所述电池充电策略表中的所述充电电流。
作为另一个示例,若该析锂表征量严重超过该电池对应的析锂标准(比如超过量大于或等于该析锂标准的预设百分比,示例性地,该预设百分比可以为40%;但该预设百分比亦可以根据需求设定为除40%之外的其他百分比;可理解地,在超过量小于该预设百分比时,则按照上述预设电流减小策略减小电池充电策略表中当前的充电电流即可),则表征该电池应该进行返厂检修,避免由于电池的析锂表征量过大导致的安全事故发生。
在本实施例中,通过将充电结束后的电池处于静置状态之后,根据预设间隔采集得到的电压与采集时间,确定时间差分电压曲线;也即不依赖于电池的放电模式来判定电池是否发生析锂,且在充电结束后的静置状态下获取的电压数据更加精确(在本方案中,在电池充电结束并处于静置状态下才进行检测,因此无需依赖电池的放电模式,且静止状态下的电压变化可控,进而,获取的时间差分电压曲线精准度高)。并且,在确定该时间差分电压曲线中出现特征峰电压时,可以准确且便捷地确定电池在充电过程中出现析锂现象;进而确定时间差分电压曲线中的稳定电压,以根据电池充电结束时的起始电压、所述特征峰电压以及所述时间差分电压曲线在所述电压-时间坐标系中确定第一区域面积;根据所 述特征峰电压、稳定电压以及所述时间差分电压曲线,在所述电压-时间坐标系中确定第二区域面积;根据所述第一区域面积以及所述第二区域面积,确定所述电池的析锂表征量,从而使得根据该析锂表征量调整之后充电策略、评估电池老化状态等更为准确合理,进而提高电池的安全性。
在一实施例中,如图5所示,步骤S403中,也即根据所述第一区域面积以及所述第二区域面积,确定所述电池的析锂表征量,包括:
S4031:将所述第一区域面积记录为所述电池的析锂时长;同时,将所述第二区域面积的倒数记录为所述析锂速率。
需要说明的是,时间差分电压曲线中出现特征峰电压的时间点为活锂完全嵌入石墨的时间点,也即第一区域面积的物理意义指的是电池在充电过程中析出的“活锂”从石墨外部嵌入内部所需要的时长。而特征峰电压至稳定电压对应的第二区域面积,表征锂离子浓度从隔膜处到铜箔处基本平衡;因此锂离子更倾向于从石墨颗粒外部扩散至颗粒内部,从而使得整个石墨颗粒锂离子分布均匀。
具体地,由于第一区域面积的物理意义指的是电池在充电过程中析出的“活锂”从石墨外部嵌入内部所需要的时长。如果单纯用第一区域面积来表征电池的总析锂表征量是不准确的,原因是经历的时长和析锂表征量以及石墨的嵌锂速率有关系,而石墨的嵌锂速率又和温度相关,所以在同一温度下,时长才可以用来表征析锂表征量。
因此,本公开采用了第二区域面积的倒数来表征电池的析锂速率。然而由于在第一区域面积的采集时间内,已经进入负极的部分“活锂”在其它“活锂”嵌入负极的过程中已经开始处于平衡,存在部分“活锂”在负极内平衡的时间与第一区域面积的采集时间重合。但是在达到特征峰电压之前,是以“活锂”进入负极为主,在达到特征峰电压之后,负极石墨颗粒中的锂离子的浓度差是最大的所有从“活锂”完全嵌入负极再计算负极石墨颗粒达到最终的平衡时间(也即第二区域面积)的倒数来表征石墨嵌锂的速率(也即析锂速率)。
S4032:将所述析锂时长与所述析锂速率的乘积记录为所述电池的析锂表征量。
具体地,在根据所述第一区域面积,确定所述电池的析锂时长;同时,根据所述第二区域面积,确定所述电池的析锂速率之后,根据所述析锂时长以及所述析锂速率的乘积,确定电池的析锂表征量。
根据上述说明指出,可以将第一区域面积记录为电池的析锂时长;第二区域面积的倒数记录为电池的析锂速率;进而将第二区域面积的倒数与第一区域面积的乘积记录为电池的析锂表征量。也即将所述析锂时长与所述析锂速率的乘积记录为所述电池的析锂表征量。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
在一实施例中,如图6所示,提供一种电池析锂状态检测系统,包括:
数据采集模块10,用于在充电结束后的电池处于静置状态之后,根据预设时间间隔定时采集所述电池的电压,并将采集得到的所述电压与采集时间关联存储为电压数据;
曲线构建模块20,用于根据所述电压数据在电压-时间坐标系中构建时间差分电压曲线;
特征峰电压检测模块30,用于检测所述时间差分电压曲线中是否存在特征峰电压;
析锂表征量确定模块40,用于在检测到所述时间差分电压曲线中存在所述特征峰电压时,提示所述电池发生析锂现象;
信息提示模块50,用于在检测到所述时间差分电压曲线中不存在所述特征峰电压时,提示所述电池未发生析锂。
在一实施例中,该析锂表征量确定模块40包括如下单元:
稳定电压获取子模块,用于获取所述时间差分电压曲线达到预设稳定标准时对应的稳定电压;
区域面积确定子模块,用于根据所述特征峰电压、稳定电压以及所述时间差分电压曲线,在所述电压-时间坐标系中确定第一区域面积和第二区域面积;
析锂表征量确定子模块,用于根据所述第一区域面积以及所述第二区域面积,确定所述电池的析锂表征量。
在一实施例中,区域面积确定子模块包括:
坐标轴确定单元,用于在所述电压-时间坐标系中确定基准横轴、第一基准纵轴以及第二基准纵轴;所述基准横轴是指与所述时间差分电压曲线的起始点对应的横轴,所述第一基准纵轴是指与所述特征峰电压对应的纵轴;所述第二基准纵轴是指与所述稳定电压对应的纵轴;
第一区域面积计算单元,用于计算由所述基准横轴、第一基准纵轴以及所述时间差分电压曲线共同围成的区域对应的第一区域面积;
第二区域面积计算单元,用于计算由所述基准横轴、第一基准纵轴、第二基准纵轴以及所述时间差分电压曲线共同围成的区域对应的第二区域面积。
在一实施例中,析锂表征量确定子模块包括:
析锂数据记录单元,用于将所述第一区域面积记录为所述电池的析锂时长;将所述第二区域面积的倒数记录为所述析锂速率;
析锂表征量确定单元,用于将所述析锂时长与所述析锂速率的乘积记录为所述电池的析锂表征量。
在一实施例中,电池析锂状态检测系统还包括:
析锂标准获取子模块,用于获取所述电池的预设析锂标准,并确认所述电池的析锂表征量是否大于所述预设析锂标准;
充电电流减小子模块,用于在所述析锂表征量大于所述预设析锂标准时,采用预设电流减小策略减小所述电池的充电电流。
在一实施例中,提供一种汽车,包括上述实施例中的电池析锂状态检测系统。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图7所示。该计算机设备包括通过系统总线连接的处理器、存储器、网络接口和数据库。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储上述实施例中电池析锂状态检测方法中使用到的数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种电池析锂状态检测方法。
在一个实施例中,提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述实施例中的电池析锂状态检测方法。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述实施例中的电池析锂状态检测方法。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上 描述的全部或者部分功能。
以上所述实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种电池析锂状态检测方法,其特征在于,包括:
    在充电结束后的电池处于静置状态之后,根据预设时间间隔定时采集所述电池的电压,并将采集得到的所述电压与采集时间关联存储为电压数据;
    根据所述电压数据在电压-时间坐标系中构建时间差分电压曲线;
    检测所述时间差分电压曲线中是否存在特征峰电压;
    在检测到所述时间差分电压曲线中存在所述特征峰电压时,提示所述电池发生析锂现象;
    在检测到所述时间差分电压曲线中不存在所述特征峰电压时,提示所述电池未发生析锂。
  2. 如权利要求1所述的电池析锂状态检测方法,其特征在于,所述检测到所述时间差分电压曲线中存在所述特征峰电压之后,还包括:
    获取所述时间差分电压曲线达到预设稳定标准时对应的稳定电压;
    根据所述特征峰电压、稳定电压以及所述时间差分电压曲线,在所述电压-时间坐标系中确定第一区域面积和第二区域面积;
    根据所述第一区域面积以及所述第二区域面积,确定所述电池的析锂表征量。
  3. 如权利要求2所述的电池析锂状态检测方法,其特征在于,所述根据所述特征峰电压、稳定电压以及所述时间差分电压曲线,在所述电压-时间坐标系中确定第一区域面积和第二区域面积,包括:
    在所述电压-时间坐标系中确定基准横轴、第一基准纵轴以及第二基准纵轴,其中,所述基准横轴是指与所述时间差分电压曲线的起始点对应的横轴,所述第一基准纵轴是指与所述特征峰电压对应的纵轴,所述第二基准纵轴是指与所述稳定电压对应的纵轴;
    计算由所述基准横轴、第一基准纵轴以及所述时间差分电压曲线共同围成的区域对应的第一区域面积;
    计算由所述基准横轴、第一基准纵轴、第二基准纵轴以及所述时间差分电压曲线共同围成的区域对应的第二区域面积。
  4. 如权利要求2或3所述的电池析锂状态检测方法,其特征在于,所述根据所述第一区域面积以及所述第二区域面积,确定所述电池的析锂表征量包括:
    将所述第一区域面积记录为所述电池的析锂时长;同时,将所述第二区域面积的倒数记录为所述析锂速率;
    将所述析锂时长与所述析锂速率的乘积记录为所述电池的析锂表征量。
  5. 如权利要求2-4中任一项所述的电池析锂状态检测方法,其特征在于,所述根据所述第一区域面积以及所述第二区域面积,确定所述电池的析锂表征量之后,还包括:
    获取所述电池的预设析锂标准,并确认所述电池的析锂表征量是否大于所述预设析锂标准;
    在所述析锂表征量大于所述预设析锂标准时,采用预设电流减小策略减小所述电池的充电电流。
  6. 一种电池析锂状态检测系统,其特征在于,包括:
    数据采集模块,用于在充电结束后的电池处于静置状态之后,根据预设时间间隔定时采集所述电池的电压,并将采集得到的所述电压与采集时间关联存储为电压数据;
    曲线构建模块,用于根据所述电压数据在电压-时间坐标系中构建时间差分电压曲线;
    特征峰电压检测模块,用于检测所述时间差分电压曲线中是否存在特征峰电压;
    析锂表征量确定模块,用于在检测到所述时间差分电压曲线中存在所述特征峰电压时,提示所述电池发生析锂现象;
    信息提示模块,用于在检测到所述时间差分电压曲线中不存在所述特征峰电压时,提示所述电池未发生析锂。
  7. 如权利要求6所述的电池析锂状态检测系统,其特征在于,所述析锂表征量确定模块包括:
    稳定电压获取子模块,用于获取所述时间差分电压曲线达到预设稳定标准时对应的稳定电压;
    区域面积确定子模块,用于根据所述特征峰电压、稳定电压以及所述时间差分电压曲线,在所述电压-时间坐标系中确定第一区域面积和第二区域面积;
    析锂表征量确定子模块,用于根据所述第一区域面积以及所述第二区域面积,确定所述电池的析锂表征量。
  8. 一种汽车,其特征在于,包括如权利要求6至7任一项所述的电池析锂状态检测系统。
  9. 一种计算机设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至5任一项所述电池析锂状态检测方法。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至5任一项所述电池析锂状态检测方法。
PCT/CN2021/120358 2020-09-27 2021-09-24 电池析锂状态检测方法、系统、汽车、设备及存储介质 WO2022063234A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023519183A JP2023543264A (ja) 2020-09-27 2021-09-24 電池のリチウム析出状態の検出方法、システム、自動車、機器及び記憶媒体
KR1020237013663A KR20230070506A (ko) 2020-09-27 2021-09-24 배터리 리튬 침전 상태 검출 방법 및 시스템, 차량, 디바이스, 및 저장 매체
EP21871603.3A EP4206711A4 (en) 2020-09-27 2021-09-24 METHOD AND SYSTEM FOR DETECTING BATTERY LITHIUM PRECIPITATION STATE, VEHICLE, DEVICE AND RECORDING MEDIUM
US18/188,788 US20230221373A1 (en) 2020-09-27 2023-03-23 Battery lithium precipitation state detection method and system, vehicle, device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011033185.8 2020-09-27
CN202011033185.8A CN114280488A (zh) 2020-09-27 2020-09-27 电池析锂状态检测方法、系统、汽车、设备及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/188,788 Continuation US20230221373A1 (en) 2020-09-27 2023-03-23 Battery lithium precipitation state detection method and system, vehicle, device, and storage medium

Publications (1)

Publication Number Publication Date
WO2022063234A1 true WO2022063234A1 (zh) 2022-03-31

Family

ID=80846253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/120358 WO2022063234A1 (zh) 2020-09-27 2021-09-24 电池析锂状态检测方法、系统、汽车、设备及存储介质

Country Status (6)

Country Link
US (1) US20230221373A1 (zh)
EP (1) EP4206711A4 (zh)
JP (1) JP2023543264A (zh)
KR (1) KR20230070506A (zh)
CN (1) CN114280488A (zh)
WO (1) WO2022063234A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114865117A (zh) * 2022-05-27 2022-08-05 上海玫克生储能科技有限公司 锂离子电池电极嵌锂量检测方法、装置及电池管理系统
CN115494400A (zh) * 2022-11-07 2022-12-20 河南科技学院 一种基于集成学习的锂电池析锂状态在线监控方法
CN115993541A (zh) * 2023-03-23 2023-04-21 深圳安培时代数字能源科技有限公司 磷酸铁锂电池的无损析锂检测方法及相关装置
WO2024053378A1 (ja) * 2022-09-09 2024-03-14 パナソニックIpマネジメント株式会社 充電制御システム、充電制御方法および充電制御プログラム、充電制御プログラムが記載された記録媒体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116125310B (zh) * 2023-01-30 2023-10-20 上海玫克生储能科技有限公司 电池电极的嵌锂量的拟合方法、系统、设备和介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110885A (ja) * 2011-11-22 2013-06-06 Toyota Motor Corp リチウムイオン二次電池システム及び充放電制御方法
CN108398649A (zh) * 2018-03-09 2018-08-14 宁德时代新能源科技股份有限公司 析锂检测方法及装置
US20180316195A1 (en) * 2017-04-28 2018-11-01 GM Global Technology Operations LLC Minimizing lithium plating in a lithium ion battery
WO2018209784A1 (zh) * 2017-05-16 2018-11-22 宁德时代新能源科技股份有限公司 电池析锂的检测方法、电池管理系统及电池系统
US20190031035A1 (en) * 2017-07-31 2019-01-31 GM Global Technology Operations LLC Methods for fast-charging and detecting lithium plating in lithium ion batteries
CN109916987A (zh) * 2018-12-29 2019-06-21 欣旺达惠州动力新能源有限公司 一种电化学析锂分析方法及其模块装置
US20190379090A1 (en) * 2018-06-12 2019-12-12 GM Global Technology Operations LLC On-vehicle algorithms to determine if lithium plating has occurred
CN111175662A (zh) * 2018-11-13 2020-05-19 清华大学 锂离子电池评价方法与锂离子电池检测系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111198328A (zh) * 2018-11-19 2020-05-26 微宏动力系统(湖州)有限公司 一种电池析锂检测方法及电池析锂检测系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110885A (ja) * 2011-11-22 2013-06-06 Toyota Motor Corp リチウムイオン二次電池システム及び充放電制御方法
US20180316195A1 (en) * 2017-04-28 2018-11-01 GM Global Technology Operations LLC Minimizing lithium plating in a lithium ion battery
WO2018209784A1 (zh) * 2017-05-16 2018-11-22 宁德时代新能源科技股份有限公司 电池析锂的检测方法、电池管理系统及电池系统
US20190031035A1 (en) * 2017-07-31 2019-01-31 GM Global Technology Operations LLC Methods for fast-charging and detecting lithium plating in lithium ion batteries
CN108398649A (zh) * 2018-03-09 2018-08-14 宁德时代新能源科技股份有限公司 析锂检测方法及装置
US20190379090A1 (en) * 2018-06-12 2019-12-12 GM Global Technology Operations LLC On-vehicle algorithms to determine if lithium plating has occurred
CN111175662A (zh) * 2018-11-13 2020-05-19 清华大学 锂离子电池评价方法与锂离子电池检测系统
CN109916987A (zh) * 2018-12-29 2019-06-21 欣旺达惠州动力新能源有限公司 一种电化学析锂分析方法及其模块装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4206711A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114865117A (zh) * 2022-05-27 2022-08-05 上海玫克生储能科技有限公司 锂离子电池电极嵌锂量检测方法、装置及电池管理系统
CN114865117B (zh) * 2022-05-27 2022-11-11 上海玫克生储能科技有限公司 锂离子电池电极嵌锂量检测方法、装置及电池管理系统
WO2024053378A1 (ja) * 2022-09-09 2024-03-14 パナソニックIpマネジメント株式会社 充電制御システム、充電制御方法および充電制御プログラム、充電制御プログラムが記載された記録媒体
CN115494400A (zh) * 2022-11-07 2022-12-20 河南科技学院 一种基于集成学习的锂电池析锂状态在线监控方法
CN115494400B (zh) * 2022-11-07 2023-03-28 河南科技学院 一种基于集成学习的锂电池析锂状态在线监控方法
CN115993541A (zh) * 2023-03-23 2023-04-21 深圳安培时代数字能源科技有限公司 磷酸铁锂电池的无损析锂检测方法及相关装置
CN115993541B (zh) * 2023-03-23 2023-06-06 深圳安培时代数字能源科技有限公司 磷酸铁锂电池的无损析锂检测方法及相关装置

Also Published As

Publication number Publication date
EP4206711A1 (en) 2023-07-05
CN114280488A (zh) 2022-04-05
JP2023543264A (ja) 2023-10-13
KR20230070506A (ko) 2023-05-23
US20230221373A1 (en) 2023-07-13
EP4206711A4 (en) 2024-03-13

Similar Documents

Publication Publication Date Title
WO2022063234A1 (zh) 电池析锂状态检测方法、系统、汽车、设备及存储介质
WO2022063236A1 (zh) 基于析锂检测的电池充电方法、系统、汽车及介质
CN111198328A (zh) 一种电池析锂检测方法及电池析锂检测系统
CN112883531B (zh) 锂离子电池数据处理方法、计算机设备和存储介质
CN110376536B (zh) 电池系统soh检测方法、装置、计算机设备和存储介质
CN111289910B (zh) 一种梯次电池的分级方法、装置、计算机设备及介质
CN116027199B (zh) 基于电化学模型参数辨识检测电芯全寿命内短路的方法
CN110137584B (zh) 充电电压阈值确定方法和充电策略确定方法
CN112098875A (zh) 锂离子电池析锂的检测方法
KR20230015979A (ko) 배터리 상태를 계산하는 방법 및 계산 디바이스, 및 저장 매체
CN108693473B (zh) 电池健康状态soh的检测方法及装置
CN114264969A (zh) 一种电芯自放电性能评估方法及装置
CN114523878A (zh) 一种锂离子电池析锂安全预警方法及装置
CN116559757B (zh) 电池析锂电位预测准确性的验证方法、装置和电子设备
WO2023184880A1 (zh) 电池容量确定方法和装置、以及存储介质
CN112448044A (zh) 电池组及其均衡方法和均衡装置
CN116125322A (zh) 一种无损检测电池健康度的方法、装置、设备及介质
CN112816880B (zh) 电池寿命预测的方法、装置及存储介质
CN113665436B (zh) 一种电池管理方法及装置
CN112964994A (zh) 一种电池最大电流测量方法及装置
CN115032551A (zh) 一种soc值的校准方法、装置和车辆
KR20220094905A (ko) 전기자동차 리튬이온전지의 리튬 석출을 방지하기 위한 급속 충전 방법
Yang et al. A battery capacity estimation method using surface temperature change under constant-current charge scenario
WO2023088037A1 (zh) 电化学装置管理方法、电子设备及电池系统
CN115656826A (zh) 开路电压的计算方法、装置、设备、介质和程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023519183

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021871603

Country of ref document: EP

Effective date: 20230329

ENP Entry into the national phase

Ref document number: 20237013663

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE