JP2020068577A - 電池制御システム - Google Patents

電池制御システム Download PDF

Info

Publication number
JP2020068577A
JP2020068577A JP2018199357A JP2018199357A JP2020068577A JP 2020068577 A JP2020068577 A JP 2020068577A JP 2018199357 A JP2018199357 A JP 2018199357A JP 2018199357 A JP2018199357 A JP 2018199357A JP 2020068577 A JP2020068577 A JP 2020068577A
Authority
JP
Japan
Prior art keywords
battery
inclination
value
voltage
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018199357A
Other languages
English (en)
Inventor
光洋 ▲葛▼葉
光洋 ▲葛▼葉
Mitsuhiro Kuzuha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018199357A priority Critical patent/JP2020068577A/ja
Publication of JP2020068577A publication Critical patent/JP2020068577A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】電池の傾きが考慮されて充電電流の上限値が決定される電池制御システムを提供する。【解決手段】電池制御システム10において、電流制御部14は、温度検知部11で検知された電池40の温度と、電圧検知部12で検知された電池40の電圧とに基づいて、電池40のガス発生量の積算値K1を得る第1処理部14aと、電池40のガス発生量の積算値K1が予め定められた基準値T1よりも大きくなったとき(K1>T1)に、さらに電池40の傾きに基づいて、充電電流の上限値を決定する第2処理部14bとを有する。【選択図】図1

Description

本発明は、電池制御システムに関する。
特開2014−143138号公報には、電池内部への水分透過を要因とする電池劣化を考慮し、非水二次電池を適切に保護する電池システムに関する発明が開示されている。
この公報で提案される電池システムは、非水二次電池の入力を許容する最大の電流値である許容入力電流値を、非水二次電池の劣化状態に応じて低下させながら非水二次電池の入力を制御するコントローラを有している。
特開2015−141790号公報では、電池内圧および時間量の割合が内圧ダメージ量として算出されている。そして、算出した内圧ダメージ量を積算して得られた積算ダメージ量が規定値以上である場合に、電池が劣化していると判断されている。
特開2018−137099号公報には、検知された電池の温度と電圧とに基づいて、電池のガス発生量の積算値を求め、当該積算値が予め定められた閾値以上である場合に、電池ケースを押す力を繰り返し増減させることが提案されている。
特開2014−143138号公報 特開2015−141790号公報 特開2018−137099号公報
ところで、リチウムイオン二次電池などでは、充放電において、電池ケース内でガスが発生しうる。電池ケース内で発生するガスは、電池ケース内の電極体に滞留する場合がある。ガスが電極体に滞留していると、充電時にリチウムが析出しやすくなる事象がある。充電電流を小さく抑えることで、リチウムの析出を少なく抑えることができる。しかし、電池の使用効率を考慮すると、充電電流は、必要以上に小さく抑えられるべきでない。
ここで提案される電池制御システムは、電池の温度を検知する温度検知部と、電池の電圧を検知する電圧検知部と、直方向に対する電池の傾きを検知する傾斜検知部と、電流制御部とを備えている。
電流制御部は、以下の処理1,2が実行されるように構成されているとよい。
1.温度検知部で検知された電池の温度と、電圧検知部で検知された電池の電圧とに基づいて、当該電池のガス発生量の積算値を得る処理
2.電池のガス発生量の積算値が予め定められた基準値よりも大きくなったときに、さらに傾斜検知部で検知された電池の傾きに基づいて、充電電流の上限値を決定する処理
かかる電池制御システムによれば、電池の傾きが考慮されて充電電流の上限値が決定される。
図1は、ここで提案される電池制御システム10を模式的に示す模式図である。 図2は、電池制御システム10のフローチャートの一例である。
以下、ここで提案される電池制御システムの一実施形態を説明する。ここで説明される実施形態は、当然ながら特に本発明を限定することを意図したものではない。本発明は、特に言及されない限りにおいて、ここで説明される実施形態に限定されない。
図1は、ここで提案される電池制御システム10を模式的に示す模式図である。図1に示す例では、電池制御システム10が採用される電池40は、例えば、複数の電池40(単電池)が組み合わされた組電池でありうる。電池40の電池ケース41内には、電極体42および電解質(電解液)が収容されている。ここで、電極体42は、正極シートと、負極シートとを、樹脂製の多孔質膜からなるセパレータを介在させて積層し、かつ、捲回した捲回電極体でありうる。
ここで、正極シートは、例えば、集電箔に正極活物質を含む正極活物質層が形成されたシートである。負極シートは、例えば、集電箔に負極活物質を含む負極活物質層が形成されたシートである。セパレータは、例えば、所要の耐熱性を有する電解質が通過しうる多孔質の樹脂シートである。電解質には、例えば、有機溶媒に電荷担体としてのイオンが溶解した電解液が用いられる。
リチウムイオン二次電池では、電荷担体は、リチウムイオンである。
正極活物質は、リチウム遷移金属複合材料のように、充電時にリチウムイオンを放出し、放電時にリチウムイオンを吸収しうる材料である。正極活物質は、リチウム遷移金属複合材料以外にも種々提案されており、特に限定されない。
負極活物質は、天然黒鉛のように、充電時にリチウムイオンを吸蔵し、充電時に吸蔵したリチウムイオンを放電時に放出しうる材料である。負極活物質は、天然黒鉛以外にも種々提案されており、特に限定されない。
電解液には、例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)との混合溶媒にLiPFを含有させた非水電解液などが挙げられる。
電池ケース41には、例えば、上面が開放された扁平な角型のケース本体と、当該ケース本体の上面を塞ぐ蓋体とで構成された、いわゆる角型の電池ケースが採用される。ここでは、電池40の一例を示しているが、ここで提案される電池制御システム10では、特に言及されない限りにおいて電池の構造は、特に限定されない。
例えば、リチウムイオン二次電池では、充電の条件によっては、電極表面にリチウムが析出する場合がある。電極上にリチウムが析出すると、電池反応に寄与するリチウムイオンが減少するため、電池容量が劣化する原因となりうる。また、リチウムが析出するのを抑制するためには、充電時の電流値を低く抑えるとよい。しかし、充電時の電流値を低く抑えると、例えば、ハイブリッド車両などの車両用の電池として用いられている場合には、車両の燃費性能が低下する要因となる。
電池40は、充電が進むと電圧が高くなる傾向がある。充電が進み電圧が所定の電圧よりも高くなると、いわゆる過充電の状態となる。過充電状態になると、電解液が分解されてガスが発生するなどの事象が生じうる。本発明者の観察によれば、リチウムイオン二次電池は使用される際に、温度が高ければ高いほど、また、電圧が高ければ高いほど、電解液が分解されやすい状態となり、電極体内でガスが発生しやすい状況になる。例えば、比較的高い温度環境で、予め定められた上限電圧を超えて充電される場合などでは、電極体内にガスが発生しやすい。発生したガスの一部は、電極体内(正極と負極の間)に滞留する。電池は、充電時に電圧が高くなるが、本発明者の知見では、温度が同じであれば、かかる充電時の最大電圧が高ければ高いほど、ガス発生量が多くなる傾向がある。
電極表面にリチウムが析出する事象について、電極体内にガスが滞留している場合にリチウムが析出しやすい。つまり、電極体内にガスが滞留している状況では、例えば、正極と負極の間隔が広くなる傾向がある。そして、正極と負極の間隔が広くなると、電極表面などにリチウムが析出しやすくなる。
本発明者は、このような事象を勘案し、検知された電池温度と電圧に基づいて、電極体内のガス発生量を予測し、ガス発生量が予め定められた量よりも多くなると、充電電流を小さく制限することを考えた。しかしながら、不必要に充電電流を制限することは、電池の使用効率を低下させる。例えば、電動車両の駆動用電源として搭載される電池では、充電電流が小さく制限されると、回生エネルギーの回収が制限されるため、ハイブリッド車両では燃費低下を生じさせ、電気自動車では、一回の充電による航続距離の低下を招く要因となる。また、本発明者は、ガスが電極体に滞留する程度は、電池の姿勢などによって異なるとの知見を得た。例えば、電池に組み込まれた電極体に捲回電極体が用いられている場合、捲回電極体の捲回軸が水平に対して傾いていると、電極体からガスが抜けやすい。このように、傾きの程度によっては、充電電流を大きく制限しなくてもよい場合がある。
本発明者は、このような知見を基に、図1に示す電池制御システム10を提案する。図2は、電池制御システム10のフローチャートの一例である。
電池制御システム10は、温度検知部11と、電圧検知部12と、傾斜検知部13と、電流制御部14とを備えている。ここで、電池制御システム10は、各種センサと処理装置10aとで構成されうる。
ここで、処理装置10aは、このシステムの種々の処理を行う装置である。処理装置10aは、予め定められたプログラムに沿って駆動するコンピュータによって具現化されうる。処理装置10aの各機能は、処理装置10aを構成する各コンピュータの演算装置(プロセッサ、CPU(Central Processing Unit)、MPU(Micro-processing unit)とも称される)や記憶装置(メモリーやハードディスクなど)によって処理される。例えば、処理装置10aの各構成は、コンピュータによって具現化されるデータを予め定められた形式で記憶するデータベース、データ構造、予め定められたプログラムに従って所定の演算処理を行う処理モジュールなどとして、または、それらの一部として具現化されうる。温度検知部11と電圧検知部12と傾斜検知部13と電流制御部14とは、各種センサと処理装置10aとの協働によって具現化されうる。
温度検知部11は、電池40の温度を検知するように構成されている。例えば、電池40の所定箇所に取り付けられた温度センサに基づいて電池40の温度を取得するように構成されているとよい。ここで検知された電池40の温度は、予め定められた単位時間毎に処理装置10aにおいて記憶されるとよい。ここでは、ガス発生に起因する温度が検知されることが望ましい。かかる観点において、電池40の温度は、例えば、電池ケース41のうち電極体42の反応面の近く(例えば、正極活物質層が積層された部位の近く)に、温度センサが取り付けられているとよい。
電圧検知部12は、電池40の電圧を検知するように構成されている。例えば、電池40に取り付けられた電圧センサに基づいて電池40の電圧を取得するように構成されているとよい。ここで検知された電池40の電圧は、予め定められた単位時間毎に処理装置10aにおいて記憶されるとよい。
傾斜検知部13は、鉛直方向に対する電池40の傾きを検知するように構成されている。例えば、電池40に取り付けられたジャイロセンサに基づいて電池40の傾きが取得されるように構成されているとよい。ジャイロセンサは、電池ケース41の予め定められた位置に取り付けられているとよい。ここで、電池ケース41の傾きが検知される電極体42は、電池ケース41に取り付けられた端子43,44を通じて、電池ケース41に固定されている。このため、電池の傾きとして検知される電池ケース41の傾きは、実質的に電極体42の傾きと同義である。ここで検知された電池40の傾きは、予め定められた単位時間毎に処理装置10aにおいて記憶されるとよい。
電流制御部14は、第1処理部14aと、第2処理部14bとを有している。
第1処理部14aは、温度検知部11で検知された電池40の温度と、電圧検知部12で検知された電池40の電圧とに基づいて、電池40のガス発生量の積算値K1が得られるように構成されているとよい。
第2処理部14bは、電池40のガス発生量の積算値K1が予め定められた基準値T1よりも大きくなったとき(K1>T1)に、さらに電池40の傾きに基づいて、充電電流の上限値が決定されるように構成されているとよい。
かかる電流制御部14によれば、電池40のガス発生量の積算値K1が予め定められた基準値T1よりも大きくなったとき(K1>T1)には、電池40の傾きが考慮されて充電電流の上限値が決定されるので、充電電流が適当に抑制される。
ここで、第1処理部14aでは、電池40の温度と電池40の電圧とに基づいて、電池40のガス発生量の積算値K1が得られる。例えば、第1処理部14aでは、図2のフローチャートに示されているように、電池40の温度と電圧を取得する処理S11と、ガス発生量を取得する処理S12と、ガス発生量の積算値K1を算出する処理S13とが実行される。電池40のガス発生量は、電池40の温度と電池40の電圧とに基づいて経験則により予測されうる。ガス発生量の積算値K1を算出する処理S13では、温度と電圧とガス発生量との関係とが予め記憶された制御マップ(第1制御マップ)が用いられるとよい。
例えば、制御対象となる電池40に関し、温度と電圧とで規定される使用環境において、単位時間の使用で発生するガスの量との関係を調べ、単位時間における温度と電圧とガス発生量との相関関係を得る。かかる相関関係は、予め行った試験やシュミュレーションによって得られる。そして、当該相関関係に基づいて、温度と電圧とガス発生量との関係が記録された第1制御マップが用意されているとよい。表1は、ここで用意される第1制御マップのフォーマット例が示されている。表1に示された第1制御マップでは、縦軸に温度、横軸に電圧を取った行列に、温度と電圧とガス発生量との関係が記録されている。
Figure 2020068577
電池40の温度および電圧は、上述のように予め定められた単位時間毎に処理装置10aにおいて記憶される。第1処理部14aでは、ガス発生量の積算値K1の算出において経時的に記録された電池40の温度の履歴および電圧の履歴が利用される(S11)。そして、表1に示されているような第1制御マップを基に、単位時間毎のガス発生量が推定される(S12)。さらに、使用期間における単位時間毎のガス発生量が積算されることによって、ガス発生量の積算値K1が算出される(S13)。第1処理部14aは、例えば、単位時間毎に取得された電池40の温度と電圧から第1制御マップに基づいてガス発生量が得られ、得られたガス発生量が刻々と加算され、ガス発生量の積算値K1が更新されていくように構成されていてもよい。
第1処理部14aでは、単に電池40の温度と電圧の履歴に基づいてガス発生量の積算値K1が算出されている。つまり、電池40の傾きは考慮されていない。電池40が傾いていると、電池40の傾きに応じて電極体42からガスが抜ける。電極体42からガスが抜けていると、リチウムの析出が抑えられるため、必要以上に充電電流を制限する必要はない。第2処理部14bでは、ガス発生量の積算値K1が予め定められた基準値T1よりも大きくなったとき(K1>T1)に、さらに電池40の傾きに基づいて、充電電流の上限値が決定される。
例えば、第2処理部14bでは、先ず、図2に示されているように、ガス発生量の積算値K1が予め定められた基準値T1よりも大きいか否か(K1>T1)を判定する処理S14が実行される。
積算値K1が予め定められた基準値T1よりも大きくない場合(No)には、第1処理部14aの処理が再度行われるとよい。従って、積算値K1が予め定められた基準値T1よりも大きくなるまで、第1処理部14aが繰り返される。積算値K1が予め定められた基準値T1よりも大きい場合(Yes)には、電池40の傾きの履歴に基づいて充電電流の上限値を決定する処理S15が実行される。電池40の傾きは、上述のように予め定められた単位時間毎に処理装置10aにおいて記憶されている。第2処理部14bでは、かかる経時的に記録された電池40の傾きの履歴が利用されるとよい。
処理S15では、先ず、ガス発生量の積算値K1に応じて、充電電流を制限するための上限値が設定されるように構成されているとよい。この場合、電池40が傾いていない状態において、ガス発生量の積算値K1に相当するガスが電極体42に溜まっていると仮定する。当該仮定において、リチウムが析出しない程度に充電電流を制限するための充電電流の上限値が設定されるとよい。
例えば、電極体42にガスが滞留していないと状態でリチウムが析出しない程度に充電電流を制限するための充電電流の上限値を100とする。かかる基準となる充電電流の上限値は、例えば、電池40に対して、温度と電圧とに基づいて規定されうる。この場合、温度と電圧と、基準となる充電電流の上限値との関係は、予め試験などで得られるデータを基に定められて制御マップが用意されているとよい。そして、温度と電圧とに基づいて基準となる充電電流の上限値が得られるように構成されているとよい。
次に、電極体42にガスが溜まっている場合には、リチウムが析出しやすいので当該基準となる充電電流の上限値を低くする必要がある。この場合、リチウムが析出しない程度に充電電流を制限するための充電電流の上限値は、例えば、基準となる充電電流の上限値を制限する割合で設定されうる。上限値を制限する割合は、例えば、電極体42に溜まっているガスの量に応じて、基準となる充電電流の上限値の90%に相当する電流値を上限値とするというように規定されうる。この場合、電極体42に溜まっているガスの量と、基準となる充電電流の上限値を制限する割合との関係が、予め試験などで得られるデータを基に定められて制御マップが用意されているとよい。そして、ガス発生量の積算値K1に相当する量のガスが電極体42に溜まっていると仮定して基準となる充電電流の上限値を制限する割合が取得され、充電電流の上限値を得るとよい。
次に、電池40の傾きの履歴に基づいて、電極体42からどの程度ガスが抜けているかが予測される。電極体42に滞留しているガスが、第1処理部14aで算出されたガス発生量の積算値K1よりも少ない場合には、充電電流は大きく制限される必要がない。また、車両に搭載されている場合、走行中には、車両の振動が電極体42にも伝わる。ガスが滞留した電極体42が傾いている状態で振動すると、電極体42からよりガスが抜けやすい。かかる観点において、この実施形態では、停車中および走行中のそれぞれにおいて電池40の傾きと上限電流の制限を緩和する緩和値とが記録された第2制御マップが用意されている。例えば、緩和値は、例えば、0.01mA、0.02mAなどの電流値としてもよい。この場合、単位時間毎に緩和値を算出し、使用期間の緩和値を積算して、その積算値に相当する電流値に基づいて、制限された上限電流を緩和してもよい。つまり制限された上限電流に積算値に相当する電流値を加算して、上限電流値を大きくしてもよい。
表2は、ここで用意される第2制御マップのフォーマット例が示されている。表2に示された第2制御マップでは、電池40の傾きと、充電電流の上限値の制限を緩和する割合との関係が、停車中および走行中について、それぞれ記録されている。
Figure 2020068577
なお、緩和値を積算した値が予め定められた閾値以上になったときに、制限された上限電流を緩和してもよい。これにより、緩和値を積算した値に応じて充電電流の上限電流値が、細かく変更されることが防止される。また、上述した例では、上限値緩和する緩和値は、例えば、上限電流の制限を緩和する割合で規定されてもよい。
なお、電池40の振動を検知するセンサを有する場合には、第2制御マップは、電池40の振動の程度に応じて、電池40の傾きと上限電流を緩和する緩和値が得られるように、第2制御マップが構成されていてもよい。例えば、電池40の振動の程度を何段階かに分け、上限電流を緩和する緩和値がそれぞれ記録された第2制御マップが用意されていてもよい。電池40の振動は、例えば、電池40の傾きを取得するジャイロセンサから検知されるように構成してもよい。ここで検知された電池40の振動は、予め定められた単位時間毎に処理装置10aにおいて記憶されているとよい。そして、第2処理部14bでは、電池40の振動の経時的な履歴が適宜に利用されるとよい。
この電池制御システム10によれば、上述のように、充電電流を制限するための上限値が、電池40のガス発生量の積算値K1および電池40の傾きの履歴に応じて適当に設定される。つまり、電極体42にガスが滞留していないと仮定した状態で、リチウムが析出しない程度に充電電流を制限するための充電電流の上限値(基準となる充電電流の上限値)を得る。次に、ガス発生量の積算値K1に応じて、基準となる充電電流の上限値を制限する。さらに、傾きの履歴(停車中/走行中)を考慮して、充電電流の上限値の制限が緩和される。このため、ガス発生量の積算値K1と電池40の傾きとも考慮して、充電電流の上限値の決定することができる。
充電電流の上限値が適切に決定されると、リチウムの析出を適切に防止することができ、電池の長寿命化が図られうる。さらに、充電電流の上限値の制限が適切に緩和されるので、電池の使用効率を高めることができる。例えば、電池40が、ハイブリッド車両の駆動用電源として用いられている場合には、車両の燃費性能を向上させることができる。また、電気自動車のような電動車両では、回生エネルギーを効率良く回収できるので、航続距離を向上させることができる。
なお、電池制御システム10の処理装置10aは、1つの装置で構成されていてもよい。また、これに限らず、電池制御システム10の処理装置10aは、複数の装置で構成されていてもよい。例えば、電池制御システム10の処理装置10aの少なくとも一部の処理は、例えば、電池40を制御するマイコンと、当該マイコンと双方向通信によりネットワークで繋がれた外部の装置との協働で実行されるように構成されていてもよい。例えば、車載される場合には、電池制御システム10は、外部に置かれたサーバーと通信可能に構成されているとよい。この場合、電池40の温度履歴や傾きの履歴などが、適宜に外部サーバーに記憶され、適宜に外部サーバーから車載コンピュータに取得されるように構成されてもよい。これにより、車載コンピュータのメモリが小さく抑えられうる。
以上、ここで提案される電池制御システムについて、種々説明した。特に言及されない限りにおいて、ここで挙げられた電池制御システムの実施形態などは、本発明を限定しない。
10 電池制御システム
10a 処理装置
11 温度検知部
12 電圧検知部
13 傾斜検知部
14 電流制御部
14a 第1処理部
14b 第2処理部
40 電池
41 電池ケース
42 電極体
43,44 端子

Claims (1)

  1. 電池の温度を検知する温度検知部と、
    前記電池の電圧を検知する電圧検知部と、
    鉛直方向に対する前記電池の傾きを検知する傾斜検知部と、
    電流制御部と
    を備え、
    前記電流制御部は、
    前記温度検知部で検知された電池の温度と、前記電圧検知部で検知された電池の電圧とに基づいて、当該電池のガス発生量の積算値を得る処理と、
    前記電池のガス発生量の積算値が予め定められた基準値よりも大きくなったときに、さらに前記傾斜検知部で検知された前記電池の傾きに基づいて、充電電流の上限値を決定する処理と
    が実行されるように構成された、
    電池制御システム。
JP2018199357A 2018-10-23 2018-10-23 電池制御システム Pending JP2020068577A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018199357A JP2020068577A (ja) 2018-10-23 2018-10-23 電池制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018199357A JP2020068577A (ja) 2018-10-23 2018-10-23 電池制御システム

Publications (1)

Publication Number Publication Date
JP2020068577A true JP2020068577A (ja) 2020-04-30

Family

ID=70390622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018199357A Pending JP2020068577A (ja) 2018-10-23 2018-10-23 電池制御システム

Country Status (1)

Country Link
JP (1) JP2020068577A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115668580A (zh) * 2022-01-11 2023-01-31 东莞新能安科技有限公司 电化学装置管理方法、充电装置、电池系统及电子设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115668580A (zh) * 2022-01-11 2023-01-31 东莞新能安科技有限公司 电化学装置管理方法、充电装置、电池系统及电子设备

Similar Documents

Publication Publication Date Title
US8305085B2 (en) Lithium-ion battery controlling apparatus and electric vehicle
US8040106B2 (en) Method of controlling battery charging
JP2010218900A (ja) 電池システム、及び、ハイブリッド自動車
JP2018137099A (ja) 電池制御システム
JP2015187938A (ja) 容量回復方法および容量回復システム
JP5510553B2 (ja) 電池制御装置
KR101776519B1 (ko) 재이용 가능한 비수 전해액 2차 전지의 선별 방법
JP2016143546A (ja) リチウムイオン二次電池の充放電制御システム
KR101811952B1 (ko) 재이용 가능한 비수 전해액 이차 전지의 선별 방법
JP2020068577A (ja) 電池制御システム
JP6731159B2 (ja) 電池制御装置
JPH1140194A (ja) 非水電解液二次電池
JP6624035B2 (ja) 電池システム
US11772511B2 (en) Vehicle-use energy storage apparatus, vehicle-use discharge system, discharge control method, and vehicle-use energy storage device
JP6699533B2 (ja) 電池システム
JP6951666B2 (ja) リチウムイオンキャパシタの劣化推定装置
JP7099002B2 (ja) 充電制御装置、蓄電装置、蓄電素子の充電制御方法、及びコンピュータプログラム
JP6696460B2 (ja) 電池システム
JP6323719B2 (ja) 電源装置の制御システム
JP6975388B2 (ja) 再利用可能な非水電解液二次電池の選別方法
JP2016144367A (ja) 組電池の制御装置
JP7240610B2 (ja) リチウムイオン二次電池の制御システム
JP6951665B2 (ja) リチウムイオンキャパシタの制御装置
US20240105396A1 (en) Current Separation Method, Doping Method, and Doping Apparatus of Nonaqueous Lithium Power Storage Element
JP2018206628A (ja) 非水電解質二次電池