WO2023127495A1 - 有機化合物及び有機発光素子 - Google Patents

有機化合物及び有機発光素子 Download PDF

Info

Publication number
WO2023127495A1
WO2023127495A1 PCT/JP2022/046015 JP2022046015W WO2023127495A1 WO 2023127495 A1 WO2023127495 A1 WO 2023127495A1 JP 2022046015 W JP2022046015 W JP 2022046015W WO 2023127495 A1 WO2023127495 A1 WO 2023127495A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
light
unsubstituted
atom
Prior art date
Application number
PCT/JP2022/046015
Other languages
English (en)
French (fr)
Inventor
博揮 大類
淳 鎌谷
洋伸 岩脇
洋祐 西出
直樹 山田
広和 宮下
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2023127495A1 publication Critical patent/WO2023127495A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to an organic compound and an organic light-emitting device using the same.
  • An organic light-emitting device (hereinafter sometimes referred to as an "organic electroluminescence device” or “organic EL device”) is an electronic device having a pair of electrodes and an organic compound layer disposed between the electrodes. By injecting electrons and holes from the pair of electrodes, excitons of the light-emitting organic compound in the organic compound layer are generated, and the organic light-emitting device emits light when the excitons return to the ground state. .
  • sRGB and AdobeRGB standards are used as the color reproduction range used in displays, and materials that reproduce them have been sought, but recently, BT-2020 has been cited as a standard that further expands the color reproduction range.
  • Patent Document 1 describes the following compound 1-a.
  • Patent Document 1 discloses a synthesis example of compound 1-a, there is no suggestion regarding luminous efficiency and luminous color. Considering the blue color reproduction range corresponding to the sRGB, AdobeRGB, and BT2020 standards, further improvement in the color purity of blue light emission is desired. Further improvement in color purity or durability is desired for organic light-emitting devices using these compounds.
  • the present invention has been made in view of the above problems, and its object is to provide a blue light-emitting material that is excellent in luminous efficiency and durability and has good color purity.
  • the organic compound of the present invention is characterized by being represented by either of the following general formulas [1-1] and [1-2].
  • R 1 to R 8 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or It is selected from an unsubstituted amino group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted heteroaryl group, a cyano group, a silyl group and a deuterium atom.
  • R4 may combine with Ar1 to form a ring.
  • Ar 1 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.
  • Ar 2 represents a divalent linking group derived from a substituted or unsubstituted divalent arylene group or a substituted or unsubstituted heterocyclic group.
  • X 1 and X 2 are each independently selected from an oxygen atom, a sulfur atom, a selenium atom, a tellurium atom, and a nitrogen atom having a substituent Z, wherein the substituent Z is a hydrogen atom, a substituted or unsubstituted alkyl group, It is selected from substituted or unsubstituted aryl groups, substituted or unsubstituted heteroaryl groups, and deuterium.
  • the organic compound of the present invention is a blue light-emitting material with good color purity and high luminous efficiency due to high oscillator strength. Therefore, it is possible to provide an organic light-emitting device that is excellent in color purity, luminous efficiency, and durability when used in an organic light-emitting device, particularly in a light-emitting layer in the organic light-emitting device.
  • FIG. 1 is a schematic cross-sectional view showing an example of a pixel of a display device according to one embodiment of the invention
  • FIG. 1 is a schematic cross-sectional view of an example of a display device using an organic light-emitting element according to an embodiment of the invention
  • FIG. 1 is a schematic diagram of an image forming apparatus according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing a configuration in which a plurality of light emitting units of an exposure light source are arranged on a long substrate.
  • FIG. 4 is a schematic diagram showing a configuration in which a plurality of light emitting units of an exposure light source are arranged on a long substrate.
  • 1 is a schematic diagram showing an example of a display device according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram showing an example of an imaging device according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram showing an example of an electronic device according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram showing an example of a display device according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram showing an example of a foldable display device
  • FIG. It is a mimetic diagram showing an example of a lighting installation concerning one embodiment of the present invention.
  • 1 is a schematic diagram showing an example of a vehicle having a vehicle lamp according to an embodiment of the present invention
  • FIG. 1 is a schematic diagram showing an example of a wearable device according to one embodiment of the present invention
  • FIG. It is an example of the wearable device which concerns on one Embodiment of this invention, and is a schematic diagram which shows the form which has an imaging device.
  • the organic compound of the present invention is an organic compound represented by any one of the following general formulas [1-1] and [1-2].
  • R 1 to R 8 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or It is selected from an unsubstituted amino group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted heteroaryl group, a cyano group, a silyl group and a deuterium atom.
  • R4 may combine with Ar1 to form a ring.
  • Ar 1 represents a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group.
  • Ar 2 represents a divalent linking group derived from a substituted or unsubstituted divalent arylene group or a substituted or unsubstituted heterocyclic group.
  • X 1 and X 2 are each independently selected from an oxygen atom, a sulfur atom, a selenium atom, a tellurium atom, and a nitrogen atom having a substituent Z, wherein the substituent Z is a hydrogen atom, a substituted or unsubstituted alkyl group, It is selected from substituted or unsubstituted aryl groups, substituted or unsubstituted heteroaryl groups, and deuterium.
  • Halogen atoms, alkyl groups, alkoxy groups, amino groups, aryl groups, heteroaryl groups, aryloxy groups, and silyl groups represented by R 1 to R 8 are specifically described.
  • halogen atoms include, but are not limited to, fluorine, chlorine, bromine, and iodine.
  • alkyl group examples include methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, tertiary butyl group, secondary butyl group, octyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group and the like.
  • An alkyl group having 1 or more and 10 or less carbon atoms is preferred.
  • alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy, 2-ethyl-octyloxy, and benzyloxy groups. Among these, an alkoxy group having 1 or more and 6 or less carbon atoms is preferable.
  • amino groups include N-methylamino group, N-ethylamino group, N,N-dimethylamino group, N,N-diethylamino group, N-methyl-N-ethylamino group, N-benzylamino group, N-methyl-N-benzylamino group, N,N-dibenzylamino group, anilino group, N,N-diphenylamino group, N,N-dinaphthylamino group, N,N-difluorenylamino group, N -phenyl-N-tolylamino group, N,N-ditolylamino group, N-methyl-N-phenylamino group, N,N-dianisolylamino group, N-mesityl-N-phenylamino group, N,N-dimesitylamino group, N-phenyl-N-(4-tertiarybutylphenyl)amino group, N-
  • aryl group for example, an aryl group having 6 or more and 18 or less carbon atoms such as a phenyl group, a naphthyl group, an indenyl group, a biphenyl group, a terphenyl group, a fluorenyl group, a phenanthryl group, and a triphenylenyl group is preferable.
  • the heteroaryl group is preferably a heteroaryl group having 3 or more and 15 or less carbon atoms, such as pyridyl, pyrazinyl, pyrimidinyl, triazinyl, quinolyl, isoquinolyl, oxazolyl, thiazolyl, imidazolyl. , benzoxazolyl group, benzothiazolyl group, benzimidazolyl group, thienyl group, furanyl group, pyrrolyl group, benzothienyl group, benzofuranyl group, indonyl group, dibenzothiophenyl group, dibenzofuranyl group, etc., but are limited to these. not to be
  • the aryloxy group is preferably an aryloxy group having 6 to 18 carbon atoms, such as a phenoxy group and a thienyloxy group, but is not limited thereto.
  • the silyl group includes, but is not limited to, a trimethylsilyl group, a triphenylsilyl group, and the like.
  • Ar 1 is an aryl group or a heterocyclic group, and the heterocyclic group is preferably a heteroaryl group. Ar 1 may be unsubstituted or substituted. Ar 1 is preferably an aryl group having 10 to 14 carbon atoms or a heteroaryl group having 5 to 12 carbon atoms.
  • Aryl groups include phenyl, naphthyl, indenyl, biphenyl, terphenyl, fluorenyl, phenanthryl and triphenylenyl groups.
  • aryl groups a naphthyl group, a biphenyl group, or a phenanthryl group is particularly preferred.
  • Heteroaryl groups include pyridyl, pyrazinyl, pyrimidinyl, triazinyl, quinolyl, isoquinolyl, oxazolyl, thiazolyl, imidazolyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, thienyl and furanyl groups. , pyronyl group, benzothienyl group, benzofuranyl group, indonyl group, dibenzothiophenyl group, dibenzofuranyl group and the like.
  • a dibenzothienyl group, a pyridyl group, or an isoquinolyl group is preferred.
  • R 4 may combine with Ar 1 to form a ring as a divalent linking group.
  • Ar 2 is a divalent linking group derived from a divalent arylene group or a heterocyclic group, and the heterocyclic group is preferably a heteroarylene group. Ar 2 may be unsubstituted or substituted. Ar 2 is preferably an arylene group having 6 to 12 carbon atoms or a heteroarylene group having 5 carbon atoms.
  • Arylene groups include, for example, divalent linking groups derived from phenyl, naphthyl, indenyl, biphenyl, terphenyl, fluorenyl, phenanthryl, and triphenylenyl groups.
  • arylene groups a divalent linking group derived from a phenyl group, a naphthyl group, or a biphenyl group is preferred.
  • heteroarylene groups include pyridyl, pyrazinyl, pyrimidinyl, triazinyl, quinolyl, isoquinolyl, oxazolyl, thiazolyl, imidazolyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, thienyl, Examples include divalent linking groups derived from furanyl, pyrrolyl, benzothienyl, benzofuranyl, indonyl, dibenzothiophenyl, dibenzofuranyl groups and the like. Among heteroarylene groups, a divalent linking group derived from a pyridyl group is preferred.
  • X 1 and X 2 are nitrogen atoms having a substituent Z and Z is an alkyl group, an aryl group, or a heteroaryl group will be specifically described.
  • alkyl group examples include methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, tertiary butyl group, secondary butyl group, octyl group, cyclohexyl group, 1-adamantyl group, 2-adamantyl group and the like.
  • An alkyl group having 1 or more and 10 or less carbon atoms is preferred.
  • aryl group for example, an aryl group having 6 or more and 18 or less carbon atoms such as a phenyl group, a naphthyl group, an indenyl group, a biphenyl group, a terphenyl group, a fluorenyl group, a phenanthryl group, and a triphenylenyl group is preferable.
  • the heteroaryl group is preferably a heteroaryl group having 3 or more and 15 or less carbon atoms, such as a pyridyl group, a pyrazinyl group, a pyrimidinyl group, a triazinyl group, a quinolyl group, and an isoquinolyl group.
  • an alkyl group, an alkoxy group, an amino group, an aryl group, a heteroaryl group, and an aryloxy group may further have Examples of substituents include alkyl groups such as methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group and tertiary butyl group; aralkyl groups such as benzyl group; aryl groups such as phenyl group and biphenyl group; Amino groups such as dimethylamino group, diethylamino group, dibenzylamino group, diphenylamino group and ditolylamino group, alkoxy groups such as methoxy group, ethoxy group and propoxy group, aryloxy groups such as phenoxy group, fluorine, chlorine, bromine, Halogen atoms such as iodine, thi
  • the organic compound according to the present embodiment is, for example, a compound represented by the general formula [1-1] according to the synthetic route 1 shown below, and a compound represented by the general formula [1-2] according to the synthetic route 2, respectively. synthesized.
  • the organic compound according to the present embodiment since the organic compound according to the present embodiment has the following characteristics, it has high luminous efficiency, high color purity, and a deep HOMO (highest occupied molecular orbital) level and LUMO (lowest unoccupied molecular orbital) level. (Far from the vacuum level) it becomes a stable compound against oxidation. Furthermore, by using the organic compound according to the present embodiment, it is possible to provide an organic light-emitting device that is excellent in color purity, luminous efficiency, and device durability. (1) The emission wavelength of the basic skeleton itself is in the blue region, the oscillator strength is high, and the emission efficiency is high. (2) Since it has a low LUMO level, it has high stability against oxygen and high durability.
  • comparative compounds include 1-b, which is the basic skeleton of comparative compound 1-a described in Patent Document 1, and exemplary compounds A1 and B1 of the present embodiment, respectively.
  • the basic skeleton itself must be in the blue region with high color purity.
  • the desired emission wavelength region is a blue region with high color purity. Specifically, when the emission intensity at the maximum emission wavelength in a dilute solution is 1.0, the intensity ratio at 460 nm is 0.3 or more.
  • the basic skeleton of this embodiment is a skeleton suitable for desired blue light emission.
  • Table 1 shows the wavelength of S1 (lowest singlet excited state) obtained by molecular orbital calculation using the exemplary compounds A1 and B1 according to the present embodiment and the comparative compounds 1-a and 1-b, and A comparison of the emission spectra of Specifically, after measuring the emission spectrum, the emission intensity at 460 nm was compared when the maximum emission intensity was set to 1.0. The emission wavelength was measured by photoluminescence measurement of a dilute toluene solution at an excitation wavelength of 350 nm at room temperature using F-4500 manufactured by Hitachi.
  • the S1 wavelength of the condensed ring-containing diazaborol derivative of the present embodiment is longer than that of the comparative compounds 1-a and 1-b.
  • the emission wavelength of Comparative Compounds 1-a and 1-b is shorter than ⁇ 0.1.
  • the condensed ring-containing diazaborol derivative of the present embodiment was confirmed to have a value of 0.3 or more. That is, the compound of the present embodiment has a longer emission wavelength, and emits light with high efficiency in the blue region with high color purity.
  • the electron orbital distributions of the HOMO and LUMO, and the S1 and T11 energies were visualized using molecular orbital calculations.
  • the calculation method of the molecular orbital calculation method the currently widely used density functional theory (DFT) was used.
  • B3LYP was used as the functional, and 6-31G * was used as the basis function.
  • the molecular orbital calculation method is Gaussian 09 (Gaussian 09, Revision C.01, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, M.A.), which is currently widely used.
  • Robb JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M.
  • Table 2 compares the LUMO levels by molecular orbital calculation using the exemplary compounds A1 and B1 according to this embodiment and the comparative compounds 1-a and 1-b.
  • the condensed ring-containing diazaborol derivative of the present embodiment has a LUMO orbital distribution not only in the longitudinal direction of the molecule but also in the entire molecule. It has been found that the length is elongated and the LUMO level is lowered (further from the vacuum level). That is, the present inventors have found that, as a unique effect of diazaborol derivatives having a condensed ring structure, they have a low LUMO level, which enhances stability against oxygen and enhances device durability.
  • the LUMO level is greatly affected by electron-withdrawing boron atoms.
  • the more electron withdrawing has a lower LUMO level. Therefore, the diazaborol derivative of the present invention, in which the electron-withdrawing influence of the boron atom in the basic skeleton is conjugated to the orbital of the entire molecule, has a lower LUMO level than Comparative Compounds 1-a and 1-b.
  • the organic compound according to the present embodiment is a compound having the above properties (1) and (2), it exhibits blue light emission with high color purity and high efficiency compared to the comparative compound, and the reduction potential is It becomes a large chemically stable compound. Therefore, by using the organic compound according to this embodiment, an organic light-emitting device having excellent color purity, luminous efficiency, and device durability can be obtained.
  • Y 1 to Y 9 each independently represents a hydrogen atom or a carbon atom or a nitrogen atom having a substituent W 1 and constituting a ring, and when the adjacent elements are carbon atoms, these carbon atoms further represent a ring may form
  • Substituent W 1 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted amino group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted It is selected from substituted heteroaryl groups, cyano groups, silyl groups and deuterium.
  • Y 2 to Y 9 each independently represents a hydrogen atom or a carbon atom or a nitrogen atom having a substituent W 2 and constituting a ring, and when the adjacent elements are carbon atoms, these carbon atoms further represent a ring may form
  • Substituent W2 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted amino group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted independently selected from substituted heteroaryl groups, cyano groups, silyl groups and deuterium;
  • Y6 to Y9 each independently represent a hydrogen atom or a carbon atom or a nitrogen atom having a substituent W3 and constituting a ring.
  • Y 10 to Y 13 each represent a hydrogen atom or a carbon atom, a nitrogen atom, an oxygen atom, or a sulfur atom having a substituent Q 1 and constituting a ring, and one of Y 10 to Y 13 is It is either a nitrogen atom, an oxygen atom, or a sulfur atom.
  • the substituents W 3 and Q 1 are each independently a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted amino group, a substituted or unsubstituted aryl group, a substituted or unsubstituted It is selected from an aryloxy group, a substituted or unsubstituted heteroaryl group, a cyano group, a silyl group and deuterium.
  • Y 10 to Y 16 each independently represent a hydrogen atom or a carbon atom, a nitrogen atom, an oxygen atom, or a sulfur atom having a substituent Q 2 and constituting a ring, and one of Y 10 to Y 13 ; , Y 14 to Y 16 is a nitrogen atom, an oxygen atom, or a sulfur atom.
  • Each of the substituents Q2 is independently a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted amino group, a substituted or unsubstituted aryl group, and a substituted or unsubstituted aryloxy group. , a substituted or unsubstituted heteroaryl group, a cyano group, a silyl group, and deuterium.
  • Substituent Z1 is selected from a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, and a deuterium atom.
  • Substituent Z2 is selected from hydrogen atom, substituted or unsubstituted alkyl group, substituted or unsubstituted aryl group, substituted or unsubstituted heteroaryl group and deuterium.
  • the substituents W 1 , W 2 , W 3 , Q 1 , Q 2 , Z 1 and Z 2 are alkyl groups, alkoxy groups, amino groups, aryl groups.
  • substituents that the aryloxy group and heteroaryl group may further have include alkyl groups such as methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group and tertiary butyl group, and benzyl group.
  • aralkyl group phenyl group, aryl group such as biphenyl group, amino group such as dimethylamino group, diethylamino group, dibenzylamino group, diphenylamino group, ditolylamino group, alkoxy group such as methoxy group, ethoxy group, propoxy group, Examples include, but are not limited to, aryloxy groups such as phenoxy groups, halogen atoms such as fluorine, chlorine, bromine, and iodine, thienyl groups, and thiol groups.
  • the compounds belonging to Group A are those in which the substituents Ar 1 and Ar 2 substituted on the basic skeleton are phenyl group, biphenyl group, naphthyl group, etc. in formulas [1-1] and [1-2]. and a divalent linking group derived from these substituents.
  • compounds belonging to Group A exhibit blue light emission with a shorter wavelength and higher emission intensity. That is, the compounds belonging to Group A exhibit blue light emission with higher color purity and high luminous efficiency when used in the light-emitting layer.
  • the compounds belonging to Group B are represented by formulas [1-1] and [1-2], wherein the substituents Ar 1 and Ar 2 substituted on the basic skeleton are phenyl group, biphenyl group, naphthyl group, etc. and a divalent linking group derived from these substituents, and Ar 1 forms a ring with R 4 of formulas [1-1] and [1-2] as a single bond. It is a group of compounds that Group B is a group of compounds that have increased thermal stability and high reducibility due to the increased number of condensed ring structures, and that allow fine adjustment of blue emission and reduction potential.
  • the compounds belonging to Group C are represented by the formulas [1-1] and [1-2], wherein the substituents Ar 1 and Ar 2 substituted on the basic skeleton are a pyridyl group, a pyrimidyl group, a quinolyl group, etc. and a divalent linking group derived from these substituents. Since these heteroaryl groups have properties of electron-withdrawing groups, they can have both higher electron-accepting properties and blue light emission with high color purity.
  • those belonging to Group D are those in which the substituents Ar 1 and Ar 2 substituted on the basic skeleton are heteroaryl groups such as benzofuranyl group, dibenzofuranyl group, benzothienyl and dibenzothiophenyl, and substituents thereof. It is a compound having a divalent linking group derived from While the electron-accepting property is more moderate than that of the C group substituents, the Tg is improved as the molecular weight is increased, and both high heat resistance and blue light emission with good color purity can be achieved.
  • the organic compound according to the present embodiment is a compound that emits light that is highly efficient and suitable for blue light emission and that has high chemical stability. Therefore, by using the organic compound according to this embodiment as a constituent material of an organic light-emitting device, an organic light-emitting device having good light-emitting properties and excellent durability can be obtained.
  • the organic light-emitting device of this embodiment has at least an anode and a cathode, which are a pair of electrodes, and an organic compound layer disposed between these electrodes.
  • the organic compound layer may be a single layer or a multi-layer laminate as long as it has a light-emitting layer.
  • the organic compound layer includes, in addition to the light emitting layer, a hole injection layer, a hole transport layer, an electron blocking layer, a hole/exciton blocking layer, an electron transport layer, an electron It may have an injection layer or the like.
  • the light-emitting layer may be a single layer, or may be a laminate composed of a plurality of layers.
  • At least one layer of the organic compound layers contains the organic compound of the present embodiment.
  • the organic compound according to the present embodiment is included in any of the light-emitting layer, the hole injection layer, the hole transport layer, the electron blocking layer, the hole/exciton blocking layer, the electron transport layer, the electron injection layer, and the like. is
  • the organic compound according to this embodiment is preferably contained in the light-emitting layer.
  • the light-emitting layer when the organic compound according to this embodiment is contained in the light-emitting layer, the light-emitting layer may be a layer composed only of the organic compound according to this embodiment. A layer composed of such an organic compound and another compound may also be used.
  • the organic compound according to the present embodiment when the light emitting layer is a layer composed of the organic compound according to the present embodiment and another compound, the organic compound according to the present embodiment is the first compound (hereinafter referred to as "host" or "host It may be used as a "material”) or as a guest.
  • the light-emitting layer may have the first compound.
  • the host is a compound having the largest mass ratio among the compounds constituting the light-emitting layer.
  • a guest is a compound having a mass ratio smaller than that of a host among the compounds constituting the light-emitting layer, and is a compound responsible for main light emission.
  • the assist material is a compound that has a lower mass ratio than that of the host among the compounds that constitute the light-emitting layer and that assists the light emission of the guest.
  • the assist material is also called a second host.
  • the concentration of the guest is preferably 0.01% by mass or more and 20% by mass or less with respect to the entire light-emitting layer, and is preferably 0.1% by mass or more. , 5% by mass or less.
  • a material having a higher LUMO level (a material having a LUMO level closer to the vacuum level) than the organic compound according to this embodiment is used as a host. is preferred. This is because, by using a material having a higher LUMO level than the organic compound according to this embodiment as a host, the organic compound according to this embodiment can receive more electrons supplied to the host of the light-emitting layer.
  • organic compounds represented by general formulas [1-1] and [1-2] have high electron-accepting properties, that is, have low LUMO levels. Therefore, by using a material having a higher LUMO level than the organic compounds represented by general formulas [1-1] and [1-2] as a host, electrons supplied to the host in the light-emitting layer organic compounds are more acceptable.
  • This luminescent layer may be a single layer or multiple layers, and by including a luminescent material having another luminescent color, it is possible to mix the luminescent color with blue, which is the luminescent color of the present embodiment.
  • a multi-layer means a state in which the first light-emitting layer and the second light-emitting layer are laminated. In this case, the emission color of the organic light-emitting element is not limited to blue.
  • the second light-emitting layer may be white or a neutral color.
  • the second light-emitting layer emits colors other than blue, ie, red and green.
  • the film formation method is vapor deposition or coating film formation. The details of this will be described in detail in the examples that will be described later.
  • the organic compound according to this embodiment can be used as a constituent material of an organic compound layer other than the light-emitting layer that constitutes the organic light-emitting device of this embodiment. Specifically, it may be used as a constituent material for an electron transport layer, an electron injection layer, a hole transport layer, a hole injection layer, a hole blocking layer, and the like.
  • the emission color of the organic light-emitting element is not limited to blue. More specifically, it may be white or a neutral color.
  • organic compound according to the present embodiment conventionally known low-molecular-weight and high-molecular-weight hole-injecting compounds or hole-transporting compounds, host compounds, light-emitting compounds, and electron-injecting compounds can be used as necessary.
  • a chemical compound or an electron-transporting compound or the like can be used together. Examples of these compounds are given below.
  • the hole-injecting and transporting material a material having high hole mobility is preferable so that holes can be easily injected from the anode and the injected holes can be transported to the light-emitting layer.
  • a material having a high glass transition temperature is preferred.
  • Low-molecular-weight and high-molecular-weight materials with hole injection and transport properties include triarylamine derivatives, arylcarbazole derivatives, phenylenediamine derivatives, stilbene derivatives, phthalocyanine derivatives, porphyrin derivatives, poly(vinylcarbazole), poly(thiophene), and others.
  • a conductive polymer can be mentioned.
  • the above hole injection transport materials are also suitably used for the electron blocking layer. Specific examples of the compound used as the hole-injecting and transporting material are shown below, but are of course not limited to these.
  • Light-emitting materials mainly involved in the light-emitting function include organic compounds represented by general formulas [1-1] and [1-2], condensed ring compounds (for example, fluorene derivatives, naphthalene derivatives, pyrene derivatives, perylene derivatives, tetracene derivatives, anthracene derivatives, rubrene, etc.), quinacridone derivatives, coumarin derivatives, stilbene derivatives, organoaluminum complexes such as tris(8-quinolinolato)aluminum, iridium complexes, platinum complexes, rhenium complexes, copper complexes, europium complexes, ruthenium complexes, and polymer derivatives such as poly(phenylene vinylene) derivatives, poly(fluorene) derivatives, and poly(phenylene) derivatives. Specific examples of the compound used as the light-emitting material are shown below, but are of course not limited to these.
  • Examples of the light-emitting layer host or light-emitting assist material contained in the light-emitting layer include aromatic hydrocarbon compounds or derivatives thereof, carbazole derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, organoaluminum complexes such as tris(8-quinolinolato)aluminum, organic beryllium complexes, and the like.
  • aromatic hydrocarbon compounds or derivatives thereof include aromatic hydrocarbon compounds or derivatives thereof, carbazole derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, organoaluminum complexes such as tris(8-quinolinolato)aluminum, organic beryllium complexes, and the like.
  • Specific examples of the compound used as the light-emitting layer host or the light-emitting assisting material contained in the light-emitting layer are shown below, but the compounds are of course not limited to these.
  • the host material is preferably a hydrocarbon compound, more preferably a hydrocarbon compound having a condensed polycyclic group with three or more rings, and an anthracene skeleton, a fluoranthene skeleton, and a triphenylene skeleton. Hydrocarbon compounds having at least one of are particularly preferred.
  • the electron-transporting material can be arbitrarily selected from materials capable of transporting electrons injected from the cathode to the light-emitting layer, and is selected in consideration of the balance with the hole mobility of the hole-transporting material.
  • Materials having electron transport properties include oxadiazole derivatives, oxazole derivatives, pyrazine derivatives, triazole derivatives, triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, organoaluminum complexes, condensed ring compounds (e.g., fluorene derivatives, naphthalene derivatives, chrysene derivatives, anthracene derivatives, etc.).
  • the above electron-transporting materials are also suitably used for the hole blocking layer. Specific examples of the compound used as the electron-transporting material are shown below, but are of course not limited to these.
  • An organic light-emitting device is provided by forming an insulating layer, a first electrode, an organic compound layer, and a second electrode on a substrate.
  • Protective layers, color filters, microlenses, etc. may be provided over the cathode.
  • a planarization layer may be provided between it and the protective layer.
  • the planarizing layer can be made of acrylic resin or the like. The same applies to the case where a flattening layer is provided between the color filter and the microlens.
  • substrates examples include quartz, glass, silicon wafers, resins, and metals.
  • a switching element such as a transistor and wiring may be provided on the substrate, and an insulating layer may be provided thereon. Any material can be used for the insulating layer as long as a contact hole can be formed between the insulating layer and the first electrode, and insulation from unconnected wiring can be ensured.
  • a resin such as polyimide, silicon oxide, silicon nitride, or the like can be used.
  • a pair of electrodes can be used as the electrodes.
  • the pair of electrodes may be an anode and a cathode.
  • the electrode with the higher potential is the anode, and the other is the cathode.
  • the electrode that supplies holes to the light-emitting layer is the anode, and the electrode that supplies electrons is the cathode.
  • a material with a work function that is as large as possible is good for the constituent material of the anode.
  • simple metals such as gold, platinum, silver, copper, nickel, palladium, cobalt, selenium, vanadium, tungsten, mixtures containing these, or alloys combining these, tin oxide, zinc oxide, indium oxide, tin oxide Metal oxides such as indium (ITO) and zinc indium oxide can be used.
  • Conductive polymers such as polyaniline, polypyrrole and polythiophene can also be used.
  • the anode may be composed of a single layer, or may be composed of a plurality of layers.
  • chromium, aluminum, silver, titanium, tungsten, molybdenum, or alloys or laminates thereof can be used.
  • the above material can also function as a reflective film that does not have a role as an electrode.
  • a transparent conductive layer of an oxide such as indium tin oxide (ITO) or indium zinc oxide can be used, but is not limited to these.
  • Photolithography technology can be used to form the electrodes.
  • a material with a small work function is preferable as a constituent material for the cathode.
  • alkali metals such as lithium, alkaline earth metals such as calcium, simple metals such as aluminum, titanium, manganese, silver, lead, and chromium, or mixtures thereof may be used.
  • simple metals such as aluminum, titanium, manganese, silver, lead, and chromium, or mixtures thereof
  • an alloy obtained by combining these simple metals can also be used.
  • magnesium-silver, aluminum-lithium, aluminum-magnesium, silver-copper, zinc-silver and the like can be used.
  • Metal oxides such as indium tin oxide (ITO) can also be used. These electrode materials may be used singly or in combination of two or more.
  • the cathode may be of a single-layer structure or a multi-layer structure.
  • it is preferable to use silver and in order to reduce aggregation of silver, it is more preferable to use a silver alloy. Any alloy ratio is acceptable as long as aggregation of silver can be reduced.
  • silver:other metal may be 1:1, 3:1, and the like.
  • the cathode may be a top emission element using an oxide conductive layer such as ITO, or may be a bottom emission element using a reflective electrode such as aluminum (Al), and is not particularly limited.
  • the method for forming the cathode is not particularly limited, but it is more preferable to use a direct current or alternating current sputtering method or the like because the film coverage is good and the resistance can be easily lowered.
  • the organic compound layer may be formed with a single layer or with multiple layers. When it has multiple layers, it may be called a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, or an electron injection layer, depending on its function.
  • the organic compound layer is mainly composed of organic compounds, but may contain inorganic atoms and inorganic compounds. For example, it may have copper, lithium, magnesium, aluminum, iridium, platinum, molybdenum, zinc, and the like.
  • the organic compound layer may be arranged between the first electrode and the second electrode, and may be arranged in contact with the first electrode and the second electrode.
  • a protective layer may be provided over the cathode.
  • a protective layer may be provided over the cathode.
  • a passivation film such as silicon nitride may be provided on the cathode to reduce penetration of water or the like into the organic compound layer.
  • a silicon nitride film having a thickness of 2 ⁇ m may be formed by a CVD method as a protective layer.
  • a protective layer may be provided using an atomic deposition method (ALD method) after film formation by the CVD method.
  • the material of the film formed by the ALD method is not limited, but may be silicon nitride, silicon oxide, aluminum oxide, or the like. Silicon nitride may be further formed by CVD on the film formed by ALD.
  • a film formed by the ALD method may have a smaller film thickness than a film formed by the CVD method. Specifically, it may be 50% or less, further 10% or less.
  • a color filter may be provided on the protective layer.
  • a color filter considering the size of the organic light-emitting element may be provided on another substrate and then bonded to the substrate provided with the organic light-emitting element.
  • a color filter may be patterned.
  • the color filters may be composed of polymers.
  • a planarization layer may be provided between the color filter and the protective layer.
  • the planarization layer is provided for the purpose of reducing unevenness of the underlying layer. Without limiting its purpose, it may also be referred to as a material resin layer.
  • the planarization layer may be composed of an organic compound, and may be a low-molecular or high-molecular compound, preferably a high-molecular compound.
  • the planarization layer may be provided above and below the color filter, and the constituent materials thereof may be the same or different. Specific examples include polyvinyl carbazole resin, polycarbonate resin, polyester resin, ABS resin, acrylic resin, polyimide resin, phenol resin, epoxy resin, silicone resin, and urea resin.
  • the organic light-emitting device may have an optical member such as a microlens on its light exit side.
  • the microlenses may be made of acrylic resin, epoxy resin, or the like.
  • the purpose of the microlens may be to increase the amount of light extracted from the organic light-emitting device and to control the direction of the extracted light.
  • the microlenses may have a hemispherical shape. When it has a hemispherical shape, among the tangents that are in contact with the hemisphere, there is a tangent that is parallel to the insulating layer, and the point of contact between the tangent and the hemisphere is the apex of the microlens.
  • the apex of the microlens can be similarly determined in any cross-sectional view. That is, among the tangent lines that are tangent to the semicircle of the microlens in the sectional view, there is a tangent line that is parallel to the insulating layer, and the point of contact between the tangent line and the semicircle is the vertex of the microlens.
  • a line segment from the end point of the arc shape to the end point of another arc shape is assumed, and the midpoint of the line segment can be called the midpoint of the microlens.
  • a cross section that determines the vertex and the midpoint may be a cross section perpendicular to the insulating layer.
  • a counter substrate may be provided over the planarization layer.
  • the counter substrate is called the counter substrate because it is provided at a position corresponding to the substrate described above.
  • the constituent material of the counter substrate may be the same as that of the aforementioned substrate.
  • the opposing substrate may be the second substrate when the substrate described above is the first substrate.
  • Organic compound layer The organic compound layers (hole injection layer, hole transport layer, electron blocking layer, light emitting layer, hole blocking layer, electron transport layer, electron injection layer, etc.) constituting the organic light emitting device according to the present embodiment are described below. It is formed by the method shown.
  • Dry processes such as vacuum deposition, ionization deposition, sputtering, and plasma can be used for the organic compound layer.
  • a wet process in which a layer is formed by dissolving in an appropriate solvent and using a known coating method (for example, spin coating, dipping, casting method, LB method, inkjet method, etc.) can be used.
  • a layer is formed by a vacuum vapor deposition method, a solution coating method, or the like, crystallization or the like hardly occurs and the stability over time is excellent.
  • the film when forming a film by a coating method, the film can be formed by combining with an appropriate binder resin.
  • binder resin examples include, but are not limited to, polyvinylcarbazole resin, polycarbonate resin, polyester resin, ABS resin, acrylic resin, polyimide resin, phenol resin, epoxy resin, silicone resin, and urea resin. . These binder resins may be used singly as homopolymers or copolymers, or two or more of them may be used in combination. Furthermore, if necessary, additives such as known plasticizers, antioxidants, and ultraviolet absorbers may be used in combination.
  • a light emitting device may have a pixel circuit connected to a light emitting element.
  • the pixel circuit may be of an active matrix type that independently controls light emission of the first light emitting element and the second light emitting element. Active matrix circuits may be voltage programmed or current programmed.
  • the drive circuit has a pixel circuit for each pixel.
  • the pixel circuit includes a light emitting element, a transistor that controls the light emission luminance of the light emitting element, a transistor that controls the light emission timing, a capacitor that holds the gate voltage of the transistor that controls the light emission luminance, and a capacitor for connecting to GND without passing through the light emitting element. It may have a transistor.
  • a light-emitting device has a display area and a peripheral area arranged around the display area.
  • the display area has a pixel circuit
  • the peripheral area has a display control circuit.
  • the mobility of the transistors forming the pixel circuit may be lower than the mobility of the transistors forming the display control circuit.
  • the gradient of the current-voltage characteristics of the transistors forming the pixel circuit may be smaller than the gradient of the current-voltage characteristics of the transistors forming the display control circuit.
  • the slope of the current-voltage characteristic can be measured by the so-called Vg-Ig characteristic.
  • a transistor forming a pixel circuit is a transistor connected to a light emitting element such as a first light emitting element.
  • An organic light-emitting device having an organic light-emitting element may have a plurality of pixels.
  • a pixel has sub-pixels that emit different colors from each other.
  • the sub-pixels may each have, for example, RGB emission colors.
  • a pixel emits light in a region called a pixel aperture. This area is the same as the first area.
  • the pixel aperture may be 15 ⁇ m or less and may be 5 ⁇ m or more. More specifically, it may be 11 ⁇ m, 9.5 ⁇ m, 7.4 ⁇ m, 6.4 ⁇ m, or the like.
  • the distance between sub-pixels may be 10 ⁇ m or less, specifically 8 ⁇ m, 7.4 ⁇ m, or 6.4 ⁇ m.
  • the pixels can take a known arrangement form in a plan view.
  • it may be a stripe arrangement, a delta arrangement, a pentile arrangement, or a Bayer arrangement.
  • the shape of the sub-pixel in plan view may take any known shape.
  • a rectangle, a square such as a rhombus, a hexagon, and the like Of course, if it is not an exact figure but has a shape close to a rectangle, it is included in the rectangle.
  • a combination of sub-pixel shapes and pixel arrays can be used.
  • the organic light-emitting device according to this embodiment can be used as a constituent member of a display device or a lighting device.
  • Other applications include exposure light sources for electrophotographic image forming apparatuses, backlights for liquid crystal display devices, and light emitting devices having color filters as white light sources.
  • the display device has an image input unit for inputting image information from an area CCD, a linear CCD, a memory card, etc., has an information processing unit for processing the input information, and displays the input image on the display unit. It may be an image information processing apparatus that The display device may have a plurality of pixels, and at least one of the plurality of pixels may have the organic light emitting device of this embodiment and a transistor connected to the organic light emitting device.
  • the display unit of the imaging device or inkjet printer may have a touch panel function.
  • the driving method of this touch panel function may be an infrared method, a capacitive method, a resistive film method, or an electromagnetic induction method, and is not particularly limited.
  • the display device may also be used as a display section of a multi-function printer.
  • FIGS. 1A and 1B are cross-sectional schematic diagrams showing examples of a display device having an organic light-emitting element and a transistor connected to the organic light-emitting element.
  • a transistor is an example of an active device.
  • the transistors may be thin film transistors (TFTs).
  • FIG. 1A is an example of a pixel that is a component of the display device according to this embodiment.
  • the pixel has sub-pixels 10 .
  • the sub-pixels are divided into 10R, 10G, and 10B according to their light emission.
  • the emission color may be distinguished by the wavelength of light emitted from the light-emitting layer, or the light emitted from the sub-pixel may be selectively transmitted or color-converted by a color filter or the like.
  • Each sub-pixel 10 has a reflective electrode as a first electrode 2 on the interlayer insulating layer 1, an insulating layer 3 covering the edge of the first electrode 2, and an organic compound layer 4 covering the first electrode 2 and the insulating layer 3. , a transparent electrode as a second electrode 5 , a protective layer 6 and a color filter 7 .
  • the interlayer insulating layer 1 may have transistors and capacitive elements arranged under or inside it.
  • the transistor and the first electrode may be electrically connected through a contact hole (not shown) or the like.
  • the insulating layer 3 is also called a bank or a pixel separation film. It covers the edge of the first electrode 2 and surrounds the first electrode 2 . A portion where the insulating layer 3 is not arranged is in contact with the organic compound layer 4 and becomes a light emitting region.
  • the organic compound layer 4 has a hole injection layer 41 , a hole transport layer 42 , a first light emitting layer 43 , a second light emitting layer 44 and an electron transport layer 45 .
  • the second electrode 5 may be a transparent electrode, a reflective electrode, or a transflective electrode.
  • the protective layer 6 reduces penetration of moisture into the organic compound layer 4 .
  • the protective layer 6 is shown as one layer, it may be multiple layers. Each layer may have an inorganic compound layer and an organic compound layer.
  • the color filter 7 is divided into 7R, 7G, and 7B according to its color.
  • the color filters 7 may be formed on a flattening film (not shown). Also, a resin protective layer (not shown) may be provided on the color filter 7 . Also, the color filter 7 may be formed on the protective layer 6 . Alternatively, after being provided on a counter substrate such as a glass substrate, they may be attached together.
  • the display device 100 of FIG. 1B has an organic light emitting element 26 and a TFT 18 as an example of a transistor.
  • a substrate 11 made of glass, silicon or the like and an insulating layer 12 are provided thereon.
  • Active elements such as TFTs 18 are arranged on the insulating layer 12, and a gate electrode 13, a gate insulating film 14, and a semiconductor layer 15 of the active elements are arranged.
  • the TFT 18 is also composed of a drain electrode 16 and a source electrode 17 .
  • An insulating film 19 is provided on the TFT 18 .
  • An anode 21 and a source electrode 17 forming an organic light-emitting element 26 are connected through a contact hole 20 provided in the insulating film 19 .
  • the method of electrical connection between the electrodes (anode 21, cathode 23) included in the organic light-emitting element 26 and the electrodes (source electrode 17, drain electrode 16) included in the TFT 18 is limited to the mode shown in FIG. 1B. isn't it. That is, it is sufficient that either one of the anode 21 or the cathode 23 is electrically connected to either the source electrode 17 or the drain electrode 16 of the TFT 18 .
  • TFT refers to a thin film transistor.
  • the organic compound layer 22 is illustrated as one layer, but the organic compound layer 22 may be multiple layers.
  • a first protective layer 24 and a second protective layer 25 are provided on the cathode 23 to reduce deterioration of the organic light-emitting element 26 .
  • transistors are used as switching elements in the display device 100 of FIG. 1B, other switching elements may be used instead.
  • the transistors used in the display device 100 of FIG. 1B are not limited to transistors using a single crystal silicon wafer, and may be thin film transistors having an active layer on the insulating surface of the substrate.
  • active layers include non-single-crystal silicon such as single-crystal silicon, amorphous silicon, and microcrystalline silicon, and non-single-crystal oxide semiconductors such as indium zinc oxide and indium gallium zinc oxide.
  • a thin film transistor is also called a TFT element.
  • a transistor included in the display device 100 of FIG. 1B may be formed in a substrate such as a Si substrate.
  • a substrate such as a Si substrate.
  • formed in a substrate means that a substrate itself such as a Si substrate is processed to fabricate a transistor.
  • having a transistor in a substrate can be regarded as forming the substrate and the transistor integrally.
  • the organic light-emitting element according to the present embodiment is controlled in emission luminance by a TFT, which is an example of a switching element, and by providing the organic light-emitting elements in a plurality of planes, an image can be displayed with each emission luminance.
  • the switching elements according to this embodiment are not limited to TFTs, and may be transistors made of low-temperature polysilicon or active matrix drivers formed on a substrate such as a Si substrate. On the substrate can also mean inside the substrate. Whether the transistor is provided in the substrate or the TFT is used is selected depending on the size of the display portion. For example, if the size is about 0.5 inch, it is preferable to provide the organic light emitting element on the Si substrate.
  • FIG. 2A is a schematic diagram showing an example of an image forming apparatus according to one embodiment of the present invention.
  • the image forming apparatus 40 is an electrophotographic image forming apparatus, and includes a photoreceptor 27 , an exposure light source 28 , a charging section 30 , a developing section 31 , a transfer device 32 , a conveying roller 33 and a fixing device 35 .
  • Light 29 is emitted from an exposure light source 28 to form an electrostatic latent image on the surface of the photoreceptor 27 .
  • This exposure light source 28 has the organic light emitting device according to this embodiment.
  • the development unit 31 has toner and the like.
  • the charging section 30 charges the photoreceptor 27 .
  • a transfer device 32 transfers the developed image to a recording medium 34 .
  • a transport roller 33 transports the recording medium 34 .
  • the recording medium 34 is, for example, paper.
  • a fixing device 35 fixes the image formed on the recording medium 34 .
  • FIGS. 2B and 2C are diagrams showing the exposure light source 28, and are schematic diagrams showing how the light-emitting units 36 are organic light-emitting elements according to the present embodiment, and are arranged in plurality on a long substrate.
  • An arrow 37 indicates a direction parallel to the axis of the photoreceptor 27 and indicates the column direction in which the light emitting portions 36 are arranged.
  • the row direction is the same as the direction of the axis around which the photoreceptor 27 rotates. This direction can also be called the longitudinal direction of the photoreceptor 27 .
  • FIG. 2B shows a form in which the light emitting section 36 is arranged along the longitudinal direction of the photoreceptor 27 .
  • FIG. 2C shows a configuration different from that of FIG. 2B, in which the light emitting units 36 are alternately arranged in the column direction in each of the first and second columns.
  • the first and second columns are arranged at different positions in the row direction.
  • a plurality of light-emitting portions 36 are arranged at intervals.
  • the second row has light-emitting portions 36 at positions corresponding to the intervals between the light-emitting portions 36 of the first row.
  • a plurality of light-emitting portions 36 are arranged at intervals also in the row direction.
  • the arrangement of FIG. 2C can also be rephrased as, for example, a grid arrangement, a houndstooth arrangement, or a checkered pattern.
  • FIG. 3 is a schematic diagram showing an example of the display device according to this embodiment.
  • Display device 1000 may have touch panel 1003 , display panel 1005 , frame 1006 , circuit board 1007 , and battery 1008 between upper cover 1001 and lower cover 1009 .
  • the touch panel 1003 and the display panel 1005 are connected to flexible printed circuits FPCs 1002 and 1004 .
  • Transistors are printed on the circuit board 1007 .
  • the battery 1008 may not be provided if the display device is not a portable device, or may be provided at another position even if the display device is a portable device.
  • the display device may have color filters having red, green, and blue.
  • the color filters may be arranged in a delta arrangement of said red, green and blue.
  • the display device may be used in the display section of a mobile terminal. In that case, it may have both a display function and an operation function.
  • Mobile terminals include mobile phones such as smart phones, tablets, head-mounted displays, and the like.
  • the display device may be used in the display section of an imaging device having an optical section having a plurality of lenses and an imaging device that receives light that has passed through the optical section.
  • the imaging device may have a display unit that displays information acquired by the imaging element.
  • the display section may be a display section exposed to the outside of the imaging device, or may be a display section arranged within the viewfinder.
  • the imaging device may be a digital camera or a digital video camera.
  • FIG. 4A is a schematic diagram showing an example of an imaging device according to this embodiment.
  • the imaging device 1100 may have a viewfinder 1101 , a rear display 1102 , an operation unit 1103 and a housing 1104 .
  • the viewfinder 1101 may have a display device according to this embodiment.
  • the display device may display not only the image to be captured, but also environmental information, imaging instructions, and the like.
  • the environmental information may include the intensity of outside light, the direction of outside light, the moving speed of the subject, the possibility of the subject being blocked by a shield, and the like.
  • a display device using the organic light-emitting device of this embodiment Since the best time to take an image is a short amount of time, it is better to display the information as soon as possible. Therefore, it is preferable to use a display device using the organic light-emitting device of this embodiment. This is because the organic light emitting device has a high response speed.
  • a display device using an organic light-emitting element can be used more preferably than these devices and a liquid crystal display device, which require a high display speed.
  • the imaging device 1100 has an optical unit (not shown).
  • the optical unit has a plurality of lenses and forms an image on the imaging device housed in the housing 1104 .
  • the multiple lenses can be focused by adjusting their relative positions. This operation can also be performed automatically.
  • An imaging device may be called a photoelectric conversion device.
  • the photoelectric conversion device can include, as an imaging method, a method of detecting a difference from a previous image, a method of extracting from an image that is always recorded, and the like, instead of sequentially imaging.
  • FIG. 4B is a schematic diagram showing an example of the electronic device according to this embodiment.
  • Electronic device 1200 includes display portion 1201 , operation portion 1202 , and housing 1203 .
  • the housing 1203 may include a circuit, a printed board including the circuit, a battery, and a communication portion.
  • the operation unit 1202 may be a button or a touch panel type reaction unit.
  • the operation unit 1202 may be a biometric recognition unit that recognizes a fingerprint and performs unlocking or the like.
  • An electronic device having a communication unit can also be called a communication device.
  • Electronic device 1200 may further have a camera function by being provided with a lens and an imaging device. An image captured by the camera function is displayed on the display portion 1201 . Examples of the electronic device 1200 include a smart phone, a notebook computer, and the like.
  • FIG. 5A and 5B are schematic diagrams showing an example of the display device according to this embodiment.
  • FIG. 5A shows a display device such as a television monitor or a PC monitor.
  • a display device 1300 has a frame 1301 and a display portion 1302 .
  • the light-emitting element according to this embodiment may be used for the display portion 1302 .
  • It has a frame 1301 and a base 1303 that supports the display portion 1302 .
  • the base 1303 is not limited to the form of FIG. 5A.
  • the lower side of the frame 1301 may also serve as the base.
  • the frame 1301 and the display portion 1302 may be curved. Its radius of curvature may be between 5000 mm and 6000 mm.
  • FIG. 5B is a schematic diagram showing another example of the display device according to this embodiment.
  • a display device 1310 in FIG. 5B is configured to be foldable, and is a so-called foldable display device.
  • the display device 1310 has a first display portion 1311 , a second display portion 1312 , a housing 1313 and a bending point 1314 .
  • the first display portion 1311 and the second display portion 1312 may have the light emitting element according to this embodiment.
  • the first display portion 1311 and the second display portion 1312 may be a seamless display device.
  • the first display portion 1311 and the second display portion 1312 can be separated at a bending point.
  • the first display unit 1311 and the second display unit 1312 may display different images, or the first and second display units may display one image.
  • FIG. 6A is a schematic diagram showing an example of the lighting device according to this embodiment.
  • the lighting device 1400 may have a housing 1401 , a light source 1402 , a circuit board 1403 , an optical filter 1404 that transmits light emitted by the light source 1402 , and a light diffusion section 1405 .
  • the light source 1402 may comprise an organic light emitting device according to this embodiment.
  • Optical filter 1404 may be a filter that enhances the color rendering of the light source.
  • the light diffusing portion 1405 can effectively diffuse light from a light source such as light-up and deliver the light over a wide range.
  • the optical filter 1404 and the light diffusion section 1405 may be provided on the light emission side of the illumination. If necessary, a cover may be provided on the outermost part.
  • a lighting device is, for example, a device that illuminates a room.
  • the lighting device may emit white, neutral white, or any other color from blue to red. It may have a dimming circuit to dim them.
  • the lighting device may have the organic light-emitting element of this embodiment and a power supply circuit connected thereto.
  • a power supply circuit is a circuit that converts an AC voltage into a DC voltage. Further, white has a color temperature of 4200K, and neutral white has a color temperature of 5000K.
  • the lighting device may have color filters.
  • the lighting device according to the present embodiment may have a heat dissipation section.
  • the heat radiating part is for radiating the heat inside the device to the outside of the device, and may be made of metal, liquid silicon, or the like, which has a high specific heat.
  • FIG. 6B is a schematic diagram of an automobile, which is an example of a moving object according to this embodiment.
  • the automobile has a tail lamp, which is an example of a lamp.
  • the automobile 1500 may have a tail lamp 1501, and may be configured to turn on the tail lamp when a brake operation or the like is performed.
  • the tail lamp 1501 may have the organic light emitting device according to this embodiment.
  • the tail lamp 1501 may have a protective member that protects the organic light emitting elements.
  • the protective member may be made of any material as long as it has a certain degree of strength and is transparent, but is preferably made of polycarbonate or the like. A furandicarboxylic acid derivative, an acrylonitrile derivative, or the like may be mixed with the polycarbonate.
  • a car 1500 may have a body 1503 and a window 1502 attached thereto.
  • the window 1502 may be a transparent display if it is not a window for checking the front and rear of the automobile.
  • the transparent display may comprise an organic light emitting device according to the present embodiments.
  • the constituent materials such as the electrodes of the organic light-emitting element are made of transparent members.
  • a mobile object may be a ship, an aircraft, a drone, or the like.
  • the moving body may have a body and a lamp provided on the body.
  • the lighting device may emit light to indicate the position of the aircraft.
  • the lamp has the organic light-emitting element according to this embodiment.
  • the display device can be applied to systems that can be worn as wearable devices such as smart glasses, HMDs, and smart contacts.
  • An imaging display device used in such an application includes an imaging device capable of photoelectrically converting visible light and a display device capable of emitting visible light.
  • FIG. 7A is a schematic diagram showing an example of a wearable device according to one embodiment of the present invention. Glasses 1600 (smart glasses) according to one application example will be described with reference to FIG. 7A.
  • An imaging device 1602 such as a CMOS sensor or SPAD is provided on the surface side of lenses 1601 of spectacles 1600 . Further, the display device of each embodiment described above is provided on the rear surface side of the lens 1601 .
  • the spectacles 1600 further include a control device 1603 .
  • the control device 1603 functions as a power source that supplies power to the imaging device 1602 and the display device. Also, the control device 1603 controls operations of the imaging device 1602 and the display device.
  • the lens 1601 is formed with an optical system for condensing light onto the imaging device 1602 .
  • FIG. 7B is a schematic diagram showing another example of the wearable device according to one embodiment of the present invention.
  • Glasses 1610 (smart glasses) according to one application example will be described with reference to FIG. 7B.
  • the glasses 1610 have a control device 1612, and the control device 1612 is equipped with an imaging device corresponding to the imaging device 1602 in FIG. 7A and a display device.
  • An imaging device in the control device 1612 and an optical system for projecting light emitted from the display device are formed in the lens 1611 , and an image is projected onto the lens 1611 .
  • the control device 1612 functions as a power source that supplies power to the imaging device and the display device, and controls the operation of the imaging device and the display device.
  • the control device 1612 may have a line-of-sight detection unit that detects the line of sight of the wearer. Infrared rays may be used for line-of-sight detection.
  • the infrared light emitting section emits infrared light to the eyeballs of the user who is gazing at the display image.
  • a captured image of the eyeball is obtained by detecting reflected light of the emitted infrared light from the eyeball by an imaging unit having a light receiving element.
  • a reduction means for reducing light from the infrared light emitting section to the display section in plan view deterioration in image quality is reduced.
  • the line of sight of the user with respect to the display image is detected from the captured image of the eye obtained by imaging the infrared light.
  • any known method can be applied to line-of-sight detection using captured images of eyeballs.
  • a line-of-sight detection method based on a Purkinje image obtained by reflection of irradiation light on the cornea.
  • line-of-sight detection processing based on the pupillary corneal reflection method is performed.
  • the user's line of sight is detected by calculating a line of sight vector representing the orientation (rotational angle) of the eyeball based on the pupil image and the Purkinje image included in the captured image of the eyeball using the pupillary corneal reflection method.
  • a display device may have an imaging device having a light-receiving element, and may control a display image of the display device based on user's line-of-sight information from the imaging device. Specifically, the display device determines, based on the line-of-sight information, a first visual field area that the user gazes at, and a second visual field area other than the first visual field area. The first viewing area and the second viewing area may be determined by the control device of the display device, or may be determined by an external control device. In the display area of the display device, the display resolution of the first viewing area may be controlled to be higher than the display resolution of the second viewing area. That is, the resolution of the second viewing area may be lower than that of the first viewing area.
  • the display area has a first display area and a second display area different from the first display area. is determined.
  • the first viewing area and the second viewing area may be determined by the control device of the display device, or may be determined by an external control device.
  • the resolution of areas with high priority may be controlled to be higher than the resolution of areas other than areas with high priority. In other words, the resolution of areas with relatively low priority may be lowered.
  • AI may be used to determine the first field of view area and areas with high priority.
  • the AI is a model configured to estimate the angle of the line of sight from the eyeball image and the distance to the object ahead of the line of sight, using the image of the eyeball and the direction in which the eyeball of the image was actually viewed as training data. It's okay.
  • the AI program may be possessed by the display device, the imaging device, or the external device. If the external device has it, it is communicated to the display device via communication.
  • display control When display control is performed based on visual recognition detection, it can be preferably applied to smart glasses that further have an imaging device that captures an image of the outside. Smart glasses can display captured external information in real time.
  • Example 1 (synthesis of exemplary compound A1)
  • Illustrative compound A1 was synthesized according to the synthetic route shown below.
  • reaction solution was heated to 90°C under a nitrogen stream and stirred at this temperature (90°C) for 5 hours.
  • reaction solution was stirred at ⁇ 78° C. for 30 minutes, then slowly warmed to room temperature over about 1 hour, stirred at room temperature for 1 hour, and after completion of the reaction, cooled to 0° C. and mixed with 2M. 50 ml of hydrochloric acid was added and stirred at 0° C. for 30 minutes. Thereafter, 200 mL of water was added, followed by filtration and washing with water and methanol to obtain 3.11 g of white compound H5 (yield: 70%).
  • reaction solution was heated to 120°C under a nitrogen stream and stirred for 5 hours under heating and reflux. After completion of the reaction, the mixture was concentrated, heptane was added, followed by filtration, followed by dispersion and washing with heptane to obtain 2.82 g of white compound H7 (yield: 65%).
  • reaction solution was heated to 145°C under a nitrogen stream and stirred for 5 hours under heating and reflux. After completion of the reaction, it was filtered. This was purified by silica gel column chromatography (chlorobenzene) and then recrystallized from toluene to obtain 0.84 g of white exemplary compound A1 (yield: 70%).
  • Exemplary Compound A1 obtained in the above step was subjected to mass spectrometry using MALDI-TOF-MS ("Autoflex LRF" manufactured by Bruker). As a result, the calculated value obtained from C 28 H 17 BN 2 S 2 was 456, and the measured value (m/z) was 456, which coincided.
  • Examples 2 to 25 (synthesis of exemplary compounds)] As shown in Tables 3 to 7, for the exemplary compounds shown in Examples 2 to 25, the compound H1 of Example 1 was used as the starting material 1, the compound H2 as the starting material 2, the compound H6 as the starting material 3, and the compound H9 as the starting material. Exemplary compounds were synthesized in the same manner as in Example 1, except that 4 was used. Measured values (m/z) of the results of mass spectrometry measured in the same manner as in Example 1 are also shown.
  • reaction solution was heated to 145°C under a nitrogen stream and stirred for 5 hours under heating and reflux. After completion of the reaction, it was filtered. This was purified by silica gel column chromatography (chlorobenzene) and then recrystallized from toluene to obtain 1.76 g (yield: 50%) of white exemplary compound H11.
  • Exemplary Compound B1 obtained in the above step was subjected to mass spectrometry using MALDI-TOF-MS (“Autoflex LRF” manufactured by Bruker). As a result, the calculated value obtained from C 28 H 15 BN 2 S 2 was 454, and the actual measured value (m/z) was 454, which coincided.
  • Example 27 to 34 (synthesis of exemplary compounds)
  • Tables 8 and 9 the exemplary compounds shown in Examples 27 to 34 were prepared in the same manner as in Example 26 except that compound H8 of Example 26 was changed to starting material 5 and compound H10 was changed to starting material 6.
  • Example compounds were synthesized. Measured values (m/z) of the results of mass spectrometry measured in the same manner as in Example 1 are also shown.
  • Example 35 In this embodiment, a bottom emission type in which an anode, a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer, and a cathode are sequentially formed on a substrate. An organic light-emitting device with the structure was fabricated.
  • an ITO electrode (anode) was formed by forming a film of ITO on a glass substrate and subjecting it to desired patterning. At this time, the film thickness of the ITO electrode was set to 100 nm. The substrate on which the ITO electrodes were formed in this manner was used as an ITO substrate in the following steps. Next, vacuum deposition was performed by resistance heating in a vacuum chamber at 1.33 ⁇ 10 ⁇ 4 Pa (1 ⁇ 10 ⁇ 6 Torr) to form the organic EL layers and electrode layers shown in Table 10 on the ITO substrate. A continuous film was formed.
  • the electrode area of the facing electrodes (metal electrode layer, cathode) was set to 3 mm 2 .
  • the characteristics of the obtained device were measured and evaluated. Blue light emission with a maximum current efficiency of 12.5 cd/A was obtained. Specifically, the current-voltage characteristics were measured with a Hewlett-Packard Micro Ammeter 4140B, and the luminance was measured with a Topcon BM7. Further, a continuous driving test was conducted at a current density of 20 mA/cm 2 , and the time (LT95) when the luminance deterioration rate reached 5% was measured and found to be 120 hours. Table 11 shows the measurement results.
  • Examples 36 to 53, Comparative Example 1 An organic light-emitting device was produced in the same manner as in Example 35, except that the compounds shown in Table 11 were changed as appropriate. The characteristics of the obtained light-emitting device were measured and evaluated in the same manner as in Example 35. Table 11 shows the measurement results.
  • the current efficiency of Comparative Example 1 using Comparative Compound 1-a described in Patent Document 1 is 7.5 cd/A or less, and the 5% deterioration life (LT95) is 70 hours or less. It is inferior to the current efficiency and durability characteristics of a blue light emitting device.
  • the light-emitting devices of Examples using the organic compound of the present embodiment exhibited good durability characteristics. This is because the organic compound according to the present embodiment has a condensed ring-containing diazaborol skeleton, so that the emission wavelength is a wavelength suitable for blue light emission, the condensed ring structure makes the molecular structure stable, and the LUMO level is This is because it is low and highly stable against oxygen.
  • Example 54 An organic light-emitting device was produced in the same manner as in Example 35, except that the compounds shown in Table 12 were changed as appropriate.
  • Examples 55 to 62, Comparative Example 2, Comparative Example 3 An organic light-emitting device was produced in the same manner as in Example 35, except that the compounds shown in Table 13 were changed as appropriate. LT95 of the obtained light-emitting device was measured in the same manner as in Example 54. Table 13 shows the measurement results. In Examples 60 and 62, only the first host was used as the host, and the guest content in the light-emitting layer was made equal to the guest content in Examples 55 and 59.
  • Comparative Examples 2 and 3 are 500 hours or less and the durability characteristics are poor. It can be seen that it has a long life beyond time.
  • the light-emitting device using the organic compound according to this embodiment exhibits excellent durability.
  • an anode, a hole injection layer, a hole transport layer, an electron blocking layer, a first light emitting layer, a second light emitting layer, a hole blocking layer, an electron transport layer, an electron injection layer and a cathode are sequentially formed on the substrate.
  • An organic light emitting device having a top emission type structure was produced.
  • a laminated film of Al and Ti was formed on a glass substrate to a thickness of 40 nm by sputtering, and patterned by photolithography to form an anode.
  • the electrode area of the facing electrodes (metal electrode layer, cathode) was set to 3 mm 2 .
  • the substrate and the material on which the cleaned electrodes have been formed are attached to a vacuum deposition apparatus (manufactured by ULVAC, Inc.), and after exhausting to 1.3 ⁇ 10 ⁇ 4 Pa (1 ⁇ 10 ⁇ 6 Torr), UV/ozone is applied. washed. After that, each layer was formed with the layer structure shown in Table 14, and finally, sealing was performed in a nitrogen atmosphere.
  • the resulting light-emitting device exhibited excellent white light emission. Further, a continuous driving test was performed at an initial luminance of 1000 cd/m 2 , and the luminance deterioration rate after 100 hours was measured in the same manner as in Example 35. The results are shown in Table 15.
  • Examples 64 to 71, Comparative Example 4 An organic light-emitting device was produced in the same manner as in Example 63, except that the compounds shown in Table 15 were changed as appropriate. The characteristics of the obtained light-emitting device were measured and evaluated in the same manner as in Example 63. Table 15 shows the measurement results.
  • the luminance deterioration rate was 55% in the light-emitting element using the comparative compound 1-a. This is because when the comparative compound is used as a guest, the LUMO level is high and the stability against oxygen is poor.
  • the light-emitting devices of Examples using the organic compound of this embodiment exhibited good durability characteristics. This is because the compound according to the present embodiment has a condensed ring-containing diazaborol skeleton, has a low LUMO level, and is highly stable to oxygen.
  • the organic compound according to the present embodiment is capable of emitting blue light with high luminous efficiency, high color purity, and a deep LUMO level (far from the vacuum level). Therefore, by using the organic compound according to the present embodiment, an organic light-emitting device having excellent color purity, luminous efficiency and durability can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本開示は、下記一般式[1-1]及び[1-2]のいずれかで表される有機化合物を提供する。 R乃至Rは、水素原子、ハロゲン原子、重水素原子、置換或いは無置換の、アルキル基、アルコキシ基、アミノ基、アリール基、アリールオキシ基、ヘテロアリール基、シアノ基、シリル基、から選ばれ、RはArと結合して環を形成していてもよい。Arは置換或いは無置換の、アリール基或いは複素環基。Arは置換或いは無置換の、2価のアリーレン基、複素環基から誘導される2価の連結基。X及びXは、酸素原子、硫黄原子、セレン原子、テルル原子、及び置換基Zを有する窒素原子から選ばれ、置換基Zは水素原子、重水素、置換或いは無置換の、アルキル基、アリール基、ヘテロアリール基。

Description

有機化合物及び有機発光素子
 本発明は、有機化合物及びそれを用いた有機発光素子に関する。
 有機発光素子(以下、「有機エレクトロルミネッセンス素子」或いは「有機EL素子」と称する場合がある)は、一対の電極とこれら電極間に配置される有機化合物層とを有する電子素子である。これら一対の電極から電子及び正孔を注入することにより、有機化合物層中の発光性有機化合物の励起子を生成し、該励起子が基底状態に戻る際に、有機発光素子は光を放出する。
 有機発光素子の最近の進歩は著しく、低駆動電圧、多様な発光波長、高速応答性、発光デバイスの薄型化・軽量化が可能であることが挙げられる。
 また、ディスプレイに用いられる色再現範囲として、sRGBやAdobeRGBの規格が用いられ、それを再現する材料が求められてきたが最近ではさらに色再現範囲を広げる規格としてBT-2020が挙げられている。
 ところで、現在までに発光性の有機化合物の創出が盛んに行われている。高性能の有機発光素子を提供するにあたり、発光特性の優れた化合物の創出が重要であるからである。特許文献1には下記化合物1-aが記載されている。
Figure JPOXMLDOC01-appb-C000013
米国特許出願公開第2016/0351811号明細書
 特許文献1には、化合物1-aの合成例が開示されているが、発光効率、発光色に関する示唆はない。また、sRGBやAdobeRGBさらにはBT2020の規格に対応する青の色再現範囲を考慮すると青色発光の色純度の更なる向上が望まれる。これらの化合物を用いた有機発光素子は色純度或いは耐久特性の更なる向上が望まれる。
 本発明は、上記課題に鑑みてなされるものであり、その目的は、発光効率及び耐久性に優れ、色純度が良い青色発光材料を提供することである。
 本発明の有機化合物は、下記一般式[1-1]及び[1-2]のいずれかで表されることを特徴とする。
Figure JPOXMLDOC01-appb-C000014
 上記式[1-1]及び[1-2]において、R乃至Rは、それぞれ独立に、水素原子、ハロゲン原子、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアミノ基、置換或いは無置換のアリール基、置換或いは無置換のアリールオキシ基、置換或いは無置換のヘテロアリール基、シアノ基、シリル基、重水素原子から選ばれる。但し、RはArと結合して環を形成していてもよい。
 Arは置換或いは無置換のアリール基、置換或いは無置換の複素環基を表す。
 Arは置換或いは無置換の2価のアリーレン基、置換或いは無置換の複素環基から誘導される2価の連結基を表す。
 X及びXは、それぞれ独立に、酸素原子、硫黄原子、セレン原子、テルル原子、及び置換基Zを有する窒素原子から選ばれ、置換基Zは水素原子、置換或いは無置換のアルキル基、置換或いは無置換のアリール基、置換或いは無置換のヘテロアリール基、重水素から選ばれる。
 本発明の有機化合物は、色純度が良く、振動子強度が高いため発光効率が高い青色発光材料である。よって、有機発光素子、特に有機発光素子中の発光層に用いた場合に、色純度及び発光効率、耐久性に優れる有機発光素子を提供することが可能である。
本発明の一実施形態に係る表示装置の画素の一例を表す概略断面図である。 本発明の一実施形態に係る有機発光素子を用いた表示装置の一例の概略断面図である。 本発明の一実施形態に係る画像形成装置の模式図である。 露光光源の発光部が長尺状の基板に複数配置されている形態を示す模式図である。 露光光源の発光部が長尺状の基板に複数配置されている形態を示す模式図である。 本発明の一実施形態に係る表示装置の一例を表す模式図である。 本発明の一実施形態に係る撮像装置の一例を表す模式図である。 本発明の一実施形態に係る電子機器の一例を表す模式図である。 本発明の一実施形態に係る表示装置の一例を表す模式図である。 折り曲げ可能な表示装置の一例を表す模式図である。 本発明の一実施形態に係る照明装置の一例を示す模式図である。 本発明の一実施形態に係る車両用灯具を有する自動車の一例を示す模式図である。 本発明の一実施形態に係るウェアラブルデバイスの一例を示す模式図である。 本発明の一実施形態に係るウェアラブルデバイスの一例で、撮像装置を有する形態を示す模式図である。
 ≪有機化合物≫
 まず本発明の有機化合物について説明する。本発明の有機化合物は、下記一般式[1-1]及び[1-2]のいずれかで表される有機化合物である。
Figure JPOXMLDOC01-appb-C000015
 上記式[1-1]及び[1-2]において、R乃至Rは、それぞれ独立に、水素原子、ハロゲン原子、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアミノ基、置換或いは無置換のアリール基、置換或いは無置換のアリールオキシ基、置換或いは無置換のヘテロアリール基、シアノ基、シリル基、重水素原子から選ばれる。但し、RはArと結合して環を形成していてもよい。
 Arは置換或いは無置換のアリール基、置換或いは無置換の複素環基を表す。
 Arは置換或いは無置換の2価のアリーレン基、置換或いは無置換の複素環基から誘導される2価の連結基を表す。
 X及びXは、それぞれ独立に、酸素原子、硫黄原子、セレン原子、テルル原子、及び置換基Zを有する窒素原子から選ばれ、置換基Zは水素原子、置換或いは無置換のアルキル基、置換或いは無置換のアリール基、置換或いは無置換のヘテロアリール基、重水素から選ばれる。
 R乃至Rで表されるハロゲン原子、アルキル基、アルコキシ基、アミノ基、アリール基、ヘテロアリール基、アリールオキシ基、シリル基について具体的に説明する。
 ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素等が挙げられるが、これらに限定されるものではない。
 アルキル基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、ターシャリーブチル基、セカンダリーブチル基、オクチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基等の炭素原子数が1以上、10以下のアルキル基が好ましい。
 アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、2-エチル-オクチルオキシ基、ベンジルオキシ基等が挙げられるが、これらに限定されるものではない。これらのうちでも、炭素原子数が1以上、6以下のアルコキシ基が好ましい。
 アミノ基としては、例えば、N-メチルアミノ基、N-エチルアミノ基、N,N-ジメチルアミノ基、N,N-ジエチルアミノ基、N-メチル-N-エチルアミノ基、N-ベンジルアミノ基、N-メチル-N-ベンジルアミノ基、N,N-ジベンジルアミノ基、アニリノ基、N,N-ジフェニルアミノ基、N,N-ジナフチルアミノ基、N,N-ジフルオレニルアミノ基、N-フェニル-N-トリルアミノ基、N,N-ジトリルアミノ基、N-メチル-N-フェニルアミノ基、N,N-ジアニソリルアミノ基、N-メシチル-N-フェニルアミノ基、N,N-ジメシチルアミノ基、N-フェニル-N-(4-ターシャリブチルフェニル)アミノ基、N-フェニル-N-(4-トリフルオロメチルフェニル)アミノ基、N-ピペリジル基等が挙げられるが、これらに限定されるものではない。
 アリール基としては、例えば、フェニル基、ナフチル基、インデニル基、ビフェニル基、ターフェニル基、フルオレニル基、フェナントリル基、トリフェニレニル基等の炭素原子数が6以上、18以下のアリール基が好ましい。
 ヘテロアリール基としては、炭素原子数が3以上、15以下のヘテロアリール基が好ましく、例えば、ピリジル基、ピラジニル基、ピリミジニル基、トリアジニル基、キノリル基、イソキノリル基、オキサゾリル基、チアゾリル基、イミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイミダゾリル基、チエニル基、フラニル基、ピロリル基、ベンゾチエニル基、ベンゾフラニル基、インドニル基、ジベンゾチオフェニル基、ジベンゾフラニル基等が挙げられるが、これらに限定されるものではない。
 アリールオキシ基としては、炭素原子数6乃至18のアリールオキシ基が好ましく、例えば、フェノキシ基、チエニルオキシ基等が挙げられるが、これらに限定されるものではない。
 シリル基としては、トリメチルシリル基、トリフェニルシリル基等が挙げられるが、これらに限定されるものではない。
 次に、Ar、Arについて具体的に説明する。
 Arはアリール基或いは複素環基であり、複素環基としては、ヘテロアリール基が好ましい。Arは、無置換でも置換されていてもよい。Arは炭素数10乃至14のアリール基或いは炭素数5乃至12のヘテロアリール基であることが好ましい。
 アリール基としては、フェニル基、ナフチル基、インデニル基、ビフェニル基、ターフェニル基、フルオレニル基、フェナントリル基、トリフェニレニル基が挙げられる。アリール基の中でも、特に、ナフチル基、ビフェニル基、またはフェナントリル基であることが好ましい。
 ヘテロアリール基としては、ピリジル基、ピラジニル基、ピリミジニル基、トリアジニル基、キノリル基、イソキノリル基、オキサゾリル基、チアゾリル基、イミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイミダゾリル基、チエニル基、フラニル基、ピロニル基、ベンゾチエニル基、ベンゾフラニル基、インドニル基、ジベンゾチオフェニル基、ジベンゾフラニル基等が挙げられる。ヘテロアリール基の中でも、ジベンゾチエニル基、ピリジル基、またはイソキノリル基であることが好ましい。
 尚、式[1-1]、[1-2]において、RがArと結合して、2価の連結基として環を形成していてもよい。
 Arは、2価のアリーレン基或いは複素環基から誘導される2価の連結基であり、複素環基としては、ヘテロアリーレン基が好ましい。Arは、無置換でも置換されていてもよい。Arは炭素数6乃至12のアリーレン基或いは炭素数5のヘテロアリーレン基であることが好ましい。
 アリーレン基としては、例えば、フェニル基、ナフチル基、インデニル基、ビフェニル基、ターフェニル基、フルオレニル基、フェナントリル基、トリフェニレニル基等から誘導される2価の連結基が挙げられる。アリーレン基の中でも、フェニル基、ナフチル基、またはビフェニル基から誘導される2価の連結基であることが好ましい。
 ヘテロアリーレン基としては、例えば、ピリジル基、ピラジニル基、ピリミジニル基、トリアジニル基、キノリル基、イソキノリル基、オキサゾリル基、チアゾリル基、イミダゾリル基、ベンゾオキサゾリル基、ベンゾチアゾリル基、ベンゾイミダゾリル基、チエニル基、フラニル基、ピロリル基、ベンゾチエニル基、ベンゾフラニル基、インドニル基、ジベンゾチオフェニル基、ジベンゾフラニル基等から誘導される2価の連結基が挙げられる。ヘテロアリーレン基の中でも、ピリジル基から誘導される2価の連結基であることが好ましい。
 次に、X、Xが置換基Zを有する窒素原子の場合の、Zがアルキル基、アリール基、ヘテロアリール基の場合について具体的に説明する。
 アルキル基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、ターシャリーブチル基、セカンダリーブチル基、オクチル基、シクロヘキシル基、1-アダマンチル基、2-アダマンチル基等の炭素原子数が1以上、10以下のアルキル基が好ましい。
 アリール基としては、例えば、フェニル基、ナフチル基、インデニル基、ビフェニル基、ターフェニル基、フルオレニル基、フェナントリル基、トリフェニレニル基等の炭素原子数が6以上、18以下のアリール基が好ましい。
 ヘテロアリール基としては、炭素原子数が3以上、15以下のヘテロアリール基が好ましく、例えば、ピリジル基、ピラジニル基、ピリミジニル基、トリアジニル基、キノリル基、イソキノリル基等が挙げられる。
 上記R乃至R、Ar、Ar、X及びXの置換基Zにおいて、アルキル基、アルコキシ基、アミノ基、アリール基、ヘテロアリール基、アリールオキシ基がさらに有してもよい置換基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、ターシャリーブチル基等のアルキル基、ベンジル基等のアラルキル基、フェニル基、ビフェニル基等のアリール基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基、ジトリルアミノ基等のアミノ基、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フッ素、塩素、臭素、ヨウ素等のハロゲン原子、チエニル基、チオール基等が挙げられるが、これらに限定されるものではない。
 次に、本実施形態に係る有機化合物の合成方法を説明する。本実施形態に係る有機化合物は、例えば、下記に示す合成ルート1に従って一般式[1-1]で表される化合物が、合成ルート2に従って一般式[1-2]で表わされる化合物が、それぞれ合成される。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 ここで、上記G1乃至G6を適宜変更することにより、一般式[1-1]、[1-2]で表される化合物を得ることができる。尚、合成法の詳細については実施例にて説明する。
 次に、本実施形態に係る有機化合物は、以下のような特徴を有するため、高発光効率、高色純度、及びHOMO(最高被占軌道)準位、LUMO(最低空軌道)準位が深く(真空順位から遠く)酸化に対して安定な化合物となる。さらに、本実施形態に係る有機化合物を用いることで、色純度、発光効率及び素子耐久に優れる有機発光素子を提供することもできる。
(1)基本骨格自体の発光波長が青色領域にあり、振動子強度も高く、発光効率が高い。
(2)低いLUMO準位を有するため、酸素に対する安定性が高くなり、耐久性が高い。
 以下、これらの特徴について、本実施形態の有機化合物に類似する構造を有する比較化合物を比較対照して挙げながら、本実施形態に係る有機化合物の基本骨格の性質を説明する。具体的には、比較化合物として、特許文献1に記載の比較化合物1-aの基本骨格である1-bと、本実施形態の例示化合物A1及びB1をそれぞれ挙げる。
Figure JPOXMLDOC01-appb-C000018
 (1)基本骨格として、含縮環構造ジアザボロール誘導体を有することで、高効率青色発光を有する。
 本発明者らは、一般式[1-1]、[1-2]で表される有機化合物を発明するにあたり、基本骨格それ自体に注目した。
 先ず、色純度が良い青色発光を呈するためには、基本骨格自体が色純度の高い青色領域にある必要がある。本実施形態において、所望の発光波長領域とは色純度の高い青色領域のことであり、具体的には希薄溶液中で最大発光波長の発光強度を1.0とした場合に、460nmにおける強度比が0.3以上有することである。本実施形態の基本骨格は所望の青発光をすることに適した骨格である。
 表1に、本実施形態に係る例示化合物A1及びB1と、比較化合物1-a及び1-bを用いて、分子軌道計算によるS1(最低一重項励起状態)の波長と、希薄トルエン溶液中での発光スペクトルの比較をした。具体的には、発光スペクトルを測定後、最大発光強度を1.0とした場合の460nmでの発光強度を比較した。発光波長の測定は、日立製F-4500を用い、室温下、励起波長350nmにおける希釈トルエン溶液のフォトルミネッセンス測定により行った。
Figure JPOXMLDOC01-appb-T000019
 表1より、比較化合物1-a及び1-bに対して本実施形態の含縮環構造ジアザボロール誘導体は、S1波長が長波長化していることがわかる。また、色純度の高い青色発光波長に必要な波長である460nmの発光(PL)強度を比較したところ、比較化合物1-a及び1-bは発光波長が短波長であるため<0.1であったのに対して、本実施形態の含縮環構造ジアザボロール誘導体は0.3以上を確認できた。つまり、本実施形態の化合物は、発光波長が長波長化しており、色純度の高い青色領域で高効率の発光を有する。
 このように、含縮環構造ジアザボロール誘導体の特有の効果として、高い色純度で高効率の青色発光を示すことを見出した。
 尚、上記のHOMOとLUMOの電子軌道分布、及びS1、T1エネルギーは、分子軌道計算を用いて可視化した。分子軌道計算法の計算手法は、現在広く用いられている密度汎関数法(Density Functional Theory,DFT)を用いた。汎関数はB3LYP、基底関数は6-31Gを用いた。尚、分子軌道計算法は、現在広く用いられているGaussian09(Gaussian09,RevisionC.01,M.J.Frisch,G.W.Trucks,H.B.Schlegel,G.E.Scuseria,M.A.Robb,J.R.Cheeseman,G.Scalmani,V.Barone,B.Mennucci,G.A.Petersson,H.Nakatsuji,M.Caricato,X.Li,H.P.Hratchian,A.F.Izmaylov,J.Bloino,G.Zheng,J.L.Sonnenberg,M.Hada,M.Ehara,K.Toyota,R.Fukuda,J.Hasegawa,M.Ishida,T.Nakajima,Y.Honda,O.Kitao,H.Nakai,T.Vreven,J.A.Montgomery,Jr.,J.E.Peralta,F.Ogliaro,M.Bearpark,J.J.Heyd,E.Brothers,K.N.Kudin,V.N.Staroverov,T.Keith,R.Kobayashi,J.Normand,K.Raghavachari,A.Rendell,J.C.Burant,S.S.Iyengar,J.Tomasi,M.Cossi,N.Rega,J.M.Millam,M.Klene,J.E.Knox,J.B.Cross,V.Bakken,C.Adamo,J.Jaramillo,R.Gomperts,R.E.Stratmann,O.Yazyev,A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,R.L.Martin,K.Morokuma,V.G.Zakrzewski,G.A.Voth,P.Salvador,J.J.Dannenberg,S.Dapprich,A.D.Daniels,O.Farkas,J.B.Foresman,J.V.Ortiz,J.Cioslowski,and D.J.Fox,Gaussian,Inc.,Wallingford CT,2010.)により実施した。
 以降、本明細書における分子軌道計算は同じ手法を用いる。
 (2)低いLUMOを有するため、酸素に対する安定性が高くなり、耐久性が高い。
 有機半導体において、似たようなバンドギャップを有する化合物の場合、HOMO-LUMOの準位が低い(真空準位から遠い)方が、酸素に対する安定性が高くなる。従って、LUMOのエネルギーレベルを低くすることで、酸素に対する安定性が高くなり、化合物そのものの耐久性及び有機発光素子の耐久性が向上する。
 そこで、発明者らはLUMOに着目した。表2に、本実施形態に係る例示化合物A1及びB1と、比較化合物1-a及び1-bとを用いて、分子軌道計算によるLUMO準位の比較をした。
Figure JPOXMLDOC01-appb-T000020
 表2より、比較化合物1-b及び1-aと比較して、本実施形態の含縮環構造ジアザボロール誘導体は、LUMOの軌道分布が分子の長軸方向のみならず分子全体に及ぶため、共役長が伸長しLUMO準位が低くなる(真空準位から遠い)特徴があることを見出した。即ち、含縮環構造ジアザボロール誘導体の特有の効果として、低いLUMO準位を有するため、酸素に対する安定性が高くなり、素子耐久性が高くなることを見出した。
 LUMO準位は、電子吸引性を示すホウ素原子の影響を大きく受ける。電子吸引性が高い方が、より低いLUMO準位を有する。従って、基本骨格の中に有するホウ素原子の電子吸引性の影響が分子全体の軌道と共役する本発明のジアザボロール誘導体は、比較化合物1-a及び1-bよりも低いLUMO準位を有する。
 このように、含縮環構造ジアザボロール誘導体の特有の効果として、低いLUMO準位を有するため、酸素に対する安定性が高くなり、素子耐久性が高くなることを見出した。
 以上より、本実施形態に係る有機化合物は、上記(1)及び(2)の性質を有する化合物であるため、比較化合物と比較して、色純度の高い高効率青色発光を呈し、還元電位が大きく化学的に安定な化合物となる。従って、本実施形態に係る有機化合物を用いることで、色純度、発光効率及び素子耐久に優れる有機発光素子を得ることができる。
 一般式[1-1]、[1-2]で表される有機化合物の好ましい構造を以下〔1〕乃至〔11〕に示す。
 〔1〕下記一般式[2-1]及び[2-2]のいずれかで表される有機化合物であり、一般式[1-1]、[1-2]において、RとArとが結合した構造である。
Figure JPOXMLDOC01-appb-C000021
 〔2〕下記一般式[3-1]及び[3-2]のいずれかで表され、一般式[1-1]、[1-2]において、Ar、Arがいずれも6員環の有機化合物である。
Figure JPOXMLDOC01-appb-C000022
 Y乃至Yはそれぞれ独立に、環を構成する、水素原子或いは置換基Wを有する、炭素原子又は窒素原子を示し、隣り合った元素が炭素原子の場合、これらの炭素原子は更に環を形成していてもよい。
 置換基Wは、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアミノ基、置換或いは無置換のアリール基、置換或いは無置換のアリールオキシ基、置換或いは無置換のヘテロアリール基、シアノ基、シリル基、重水素から選ばれる。
 〔3〕下記一般式[4-1]及び[4-2]のいずれかで表され、上記〔1〕の一般式[2-1]、[2-2]において、Ar、Arが6員環の有機化合物である。
Figure JPOXMLDOC01-appb-C000023
 Y乃至Yはそれぞれ独立に、水素原子或いは置換基Wを有し環を構成する、炭素原子又は窒素原子を示し、隣り合った元素が炭素原子の場合、これらの炭素原子は更に環を形成していてもよい。
 置換基Wは、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアミノ基、置換或いは無置換のアリール基、置換或いは無置換のアリールオキシ基、置換或いは無置換のヘテロアリール基、シアノ基、シリル基、重水素のいずれかから独立に選ばれる。
 (4)下記一般式[5-1]及び[5-2]のいずれかで表され、一般式[1-1]、[1-2]において、Arが5員環、Arが6員環の有機化合物である。
Figure JPOXMLDOC01-appb-C000024
 Y乃至Yはそれぞれ独立に、水素原子或いは置換基Wを有し環を構成する、炭素原子又は窒素原子を表す。
 Y10乃至Y13はそれぞれ、水素原子或いは置換基Qを有し環を構成する、炭素原子、窒素原子、酸素原子、硫黄原子のいずれかを示し、Y10乃至Y13のうち一つは窒素原子、酸素原子、硫黄原子のいずれかである。
 Y乃至Y13の隣り合った元素が炭素原子の場合、これらの炭素原子は更に環を形成していてもよい。
 前記置換基W、Qはそれぞれ独立に、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアミノ基、置換或いは無置換のアリール基、置換或いは無置換のアリールオキシ基、置換或いは無置換のヘテロアリール基、シアノ基、シリル基、重水素から選ばれる。
 〔5〕下記一般式[6-1]及び[6-2]のいずれかで表され、一般式[1-1]、[1-2]において、Ar、Arがいずれも5員環の有機化合物である。
Figure JPOXMLDOC01-appb-C000025
 Y10乃至Y16はそれぞれ独立に、水素原子或いは置換基Qを有し環を構成する、炭素原子、窒素原子、酸素原子、硫黄原子を表し、Y10乃至Y13のうち一つ、及び、Y14乃至Y16のうち一つは窒素原子、酸素原子、硫黄原子のいずれかである。
 Y10乃至Y16の隣り合った元素が炭素原子の場合、これらの炭素原子は更に環を形成していてもよい。
 前記置換基Qはそれぞれ独立に、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアミノ基、置換或いは無置換のアリール基、置換或いは無置換のアリールオキシ基、置換或いは無置換のヘテロアリール基、シアノ基、シリル基、重水素から選ばれる。
 〔6〕下記一般式[7]で表され、上記〔2〕の一般式[3-1]のX、Xがいずれも硫黄原子の有機化合物である。
Figure JPOXMLDOC01-appb-C000026
 〔7〕下記一般式[8]で表され、上記〔2〕の一般式[3-1]のX、Xがいずれも酸素原子の有機化合物である。
Figure JPOXMLDOC01-appb-C000027
 〔8〕下記一般式[9]で表され、上記〔2〕の一般式[3-1]のXが酸素原子、Xが置換基Zを有する窒素原子である有機化合物である。
Figure JPOXMLDOC01-appb-C000028
 置換基Zは水素原子、置換或いは無置換のアルキル基、置換或いは無置換のアリール基、置換或いは、無置換のヘテロアリール基、重水素原子から選ばれる。
 〔9〕下記一般式[10]で表され、上記〔2〕の一般式[3-2]のXが硫黄原子である有機化合物である。
Figure JPOXMLDOC01-appb-C000029
 〔10〕下記一般式[11]で表され、上記〔2〕の一般式[3-2]のXが酸素原子である有機化合物である。
Figure JPOXMLDOC01-appb-C000030
 〔11〕下記一般式[12]で表され、上記〔2〕の一般式[3-2]のXが置換基Zを有する窒素原子である有機化合物である。
Figure JPOXMLDOC01-appb-C000031
 置換基Zは水素原子、置換或いは無置換のアルキル基、置換或いは無置換のアリール基、置換或いは無置換のヘテロアリール基、重水素から選ばれる。
 上記〔1〕乃至〔11〕の好ましい有機化合物において、置換基W、W、W、Q、Q、Z、Zにおいて、アルキル基、アルコキシ基、アミノ基、アリール基、アリールオキシ基、ヘテロアリール基がさらに有してもよい置換基としては、例えば、メチル基、エチル基、ノルマルプロピル基、イソプロピル基、ノルマルブチル基、ターシャリーブチル基等のアルキル基、ベンジル基等のアラルキル基、フェニル基、ビフェニル基等のアリール基、ジメチルアミノ基、ジエチルアミノ基、ジベンジルアミノ基、ジフェニルアミノ基、ジトリルアミノ基等のアミノ基、メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基、フェノキシ基等のアリールオキシ基、フッ素、塩素、臭素、ヨウ素等のハロゲン原子、チエニル基、チオール基等が挙げられるが、これらに限定されるものではない。
 本実施形態に係る有機化合物の具体例を以下に示す。しかし、本実施形態はこれらに限られるものではない。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 上記例示化合物のうち、A群に属する化合物は、式[1-1]及び式[1-2]において、基本骨格に置換する置換基Ar及びArがフェニル基、ビフェニル基、ナフチル基等のアリール基及びこれらの置換基から誘導される2価の連結基を有する化合物である。
 A群に属する化合物は、本実施形態に係る化合物の中でも、より短波長の青色発光を示し、かつ、より高い発光強度を示す。即ち、A群に属する化合物は、発光層に用いた場合により色純度の高い青色発光を示し高い発光効率は示す。
 上記例示化合物のうち、B群に属する化合物は、式[1-1]及び式[1-2]において、基本骨格に置換する置換基Ar及びArがフェニル基、ビフェニル基、ナフチル基等のアリール基及びこれらの置換基から誘導される2価の連結基を有する化合物であり、更にArが式[1-1]、[1-2]のRを単結合として環を形成している化合物群である。B群は、縮環構造が増えたことにより、熱的安定性が増えると同時に高い還元性を有する、青色発光及び還元電位を微調整することが可能である化合物群である。
 上記例示化合物のうち、C群に属する化合物は、式[1-1]及び式[1-2]において、基本骨格に置換する置換基Ar及びArがピリジル基、ピリミジル基、キノリル基等のヘテロアリール基及びこれらの置換基から誘導される2価の連結基を有する化合物である。これらのヘテロアリール基は電子吸引性基の性質を有するため、より高い電子受容性を有すると同時に色純度の高い青色発光を兼ね備えることができる。
 上記例示化合物のうち、D群に属するものは、基本骨格に置換する置換基Ar及びArがベンゾフラニル基、ジベンゾフラニル基、ベンゾチエニル、ジベンゾチオフェニル等のヘテロアリール基及びこれらの置換基から誘導される2価の連結基を有する化合物である。C群の置換基よりも電子受容性が緩和されつつも、分子量の増加に伴いTgが向上し、高い耐熱性と、色純度が良い青色発光を兼ね備えることができる。
 本実施形態に係る有機化合物は、高効率で青色発光に適した発光を呈し、化学的安定性が高い化合物である。このため本実施形態に係る有機化合物を有機発光素子の構成材料として用いることで、良好な発光特性と優れた耐久特性を有する有機発光素子を得ることができる。
 ≪有機発光素子≫
 次に、本実施形態の有機発光素子について説明する。本実施形態の有機発光素子は、一対の電極である陽極と陰極と、これら電極間に配置される有機化合物層と、を少なくとも有する。本実施形態の有機発光素子において、有機化合物層は発光層を有していれば単層であってもよいし複数層からなる積層体であってもよい。ここで有機化合物層が複数層からなる積層体である場合、有機化合物層は、発光層の他に、ホール注入層、ホール輸送層、電子ブロッキング層、ホール・エキシトンブロッキング層、電子輸送層、電子注入層等を有してもよい。また発光層は、単層であってもよいし、複数の層からなる積層体であってもよい。
 本実施形態の有機発光素子において、有機化合物層の少なくとも一層が本実施形態に係る有機化合物を含有する。具体的には、本実施形態に係る有機化合物は、上述した発光層、ホール注入層、ホール輸送層、電子ブロッキング層、ホール・エキシトンブロッキング層、電子輸送層、電子注入層等のいずれかに含まれている。本実施形態に係る有機化合物は、好ましくは、発光層に含まれる。
 本実施形態の有機発光素子において、本実施形態に係る有機化合物が発光層に含まれる場合、発光層は、本実施形態に係る有機化合物のみからなる層であってもよいし、本実施形態に係る有機化合物と他の化合物とからなる層であってもよい。ここで、発光層が本実施形態に係る有機化合物と他の化合物とからなる層である場合、本実施形態に係る有機化合物は、発光層の第一の化合物(以下、「ホスト」或いは「ホスト材料」と称する場合がある)として使用してもよいし、ゲストとして使用してもよい。本発明に係る有機化合物をゲストとして使用するとき、発光層は第一の化合物を有していてもよい。また発光層に含まれ得る第二の化合物(以下、「アシスト」或いは「アシスト材料」と称する場合がある)として使用してもよい。ここでホストとは、発光層を構成する化合物の中で質量比が最も大きい化合物である。またゲストとは、発光層を構成する化合物の中で質量比がホストよりも小さい化合物であって、主たる発光を担う化合物である。またアシスト材料とは、発光層を構成する化合物の中で質量比がホストよりも小さく、ゲストの発光を補助する化合物である。尚、アシスト材料は、第2のホストとも呼ばれている。
 本実施形態に係る有機化合物を発光層のゲストとして用いる場合、ゲストの濃度は、発光層全体に対して0.01質量%以上、20質量%以下であることが好ましく、0.1質量%以上、5質量%以下であることがより好ましい。
 また本実施形態に係る有機化合物を発光層のゲストとして用いる際には、本実施形態に係る有機化合物よりもLUMO準位が高い材料(LUMO準位が真空準位により近い材料)をホストとして用いることが好ましい。本実施形態に係る有機化合物よりもLUMO準位が高い材料をホストにすることで、発光層のホストに供給される電子を本実施形態に係る有機化合物がより受容できるからである。特に、一般式[1-1]及び式[1-2]で表される有機化合物は電子受容性が高い、即ちLUMO準位が低い。よって、一般式[1-1]及び式[1-2]で表される有機化合物よりもLUMO準位が高い材料をホストにすることで、発光層のホストに供給される電子を本実施形態に係る有機化合物がより受容できるからである。
 本発明者らは種々の検討を行い、本実施形態に係る有機化合物を、発光層のホスト又はゲストとして、特に、発光層のゲストとして用いると、高効率で高輝度な光出力を呈し、且つ極めて耐久性が高い素子が得られることを見出した。この発光層は単層でも複層でもよいし、他の発光色を有する発光材料を含むことで本実施形態の発光色である青の発光と混色させることも可能である。複層とは第一の発光層と第二の発光層とが積層している状態を意味する。この場合、有機発光素子の発光色は青に限られない。より具体的には白色でもよいし、中間色でもよい。白色の場合、第二の発光層が青以外の色、即ち赤色や緑色を発光する。また、製膜方法も蒸着もしくは塗布製膜で製膜を行う。この詳細については、後述する実施例で詳しく説明する。
 本実施形態に係る有機化合物は、本実施形態の有機発光素子を構成する発光層以外の有機化合物層の構成材料として使用することができる。具体的には、電子輸送層、電子注入層、ホール輸送層、ホール注入層、ホールブロッキング層等の構成材料として用いてもよい。この場合、有機発光素子の発光色は青に限られない。より具体的には白色でもよいし、中間色でもよい。
 ここで、本実施形態に係る有機化合物以外にも、必要に応じて従来公知の低分子系及び高分子系のホール注入性化合物或いはホール輸送性化合物、ホストとなる化合物、発光性化合物、電子注入性化合物或いは電子輸送性化合物等を一緒に使用することができる。以下にこれらの化合物例を挙げる。
 ホール注入輸送性材料としては、陽極からのホールの注入を容易にして、且つ注入されたホールを発光層へ輸送できるようにホール移動度が高い材料が好ましい。また有機発光素子中において結晶化等の膜質の劣化を低減するために、ガラス転移点温度が高い材料が好ましい。ホール注入輸送性能を有する低分子及び高分子系材料としては、トリアリールアミン誘導体、アリールカルバゾール誘導体、フェニレンジアミン誘導体、スチルベン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、ポリ(ビニルカルバゾール)、ポリ(チオフェン)、その他導電性高分子が挙げられる。さらに上記のホール注入輸送性材料は、電子ブロッキング層にも好適に使用される。以下に、ホール注入輸送性材料として用いられる化合物の具体例を示すが、もちろんこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000039
 主に発光機能に関わる発光材料としては、一般式[1-1]、[1-2]で表わされる有機化合物の他に、縮環化合物(例えばフルオレン誘導体、ナフタレン誘導体、ピレン誘導体、ペリレン誘導体、テトラセン誘導体、アントラセン誘導体、ルブレン等)、キナクリドン誘導体、クマリン誘導体、スチルベン誘導体、トリス(8-キノリノラート)アルミニウム等の有機アルミニウム錯体、イリジウム錯体、白金錯体、レニウム錯体、銅錯体、ユーロピウム錯体、ルテニウム錯体、及びポリ(フェニレンビニレン)誘導体、ポリ(フルオレン)誘導体、ポリ(フェニレン)誘導体等の高分子誘導体が挙げられる。以下に、発光材料として用いられる化合物の具体例を示すが、もちろんこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000040
 発光層に含まれる発光層ホスト或いは発光アシスト材料としては、芳香族炭化水素化合物もしくはその誘導体の他、カルバゾール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、トリス(8-キノリノラート)アルミニウム等の有機アルミニウム錯体、有機ベリリウム錯体等が挙げられる。以下に、発光層に含まれる発光層ホスト或いは発光アシスト材料として用いられる化合物の具体例を示すが、もちろんこれらに限定されるものではない。本発明に係る有機発光素子において、ホスト材料は、炭化水素化合物であることが好ましく、3環以上の縮合多環基を有する炭化水素化合物であることが更に好ましく、アントラセン骨格、フルオランテン骨格、トリフェニレン骨格のうち少なくとも1つを有する炭化水素化合物であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000041
 電子輸送性材料としては、陰極から注入された電子を発光層へ輸送することができるものから任意に選ぶことができ、ホール輸送性材料のホール移動度とのバランス等を考慮して選択される。電子輸送性能を有する材料としては、オキサジアゾール誘導体、オキサゾール誘導体、ピラジン誘導体、トリアゾール誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、有機アルミニウム錯体、縮環化合物(例えばフルオレン誘導体、ナフタレン誘導体、クリセン誘導体、アントラセン誘導体等)が挙げられる。さらに上記の電子輸送性材料は、ホールブロッキング層にも好適に使用される。以下に、電子輸送性材料として用いられる化合物の具体例を示すが、もちろんこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000042
 [有機発光素子の構成]
 有機発光素子は、基板の上に、絶縁層、第一電極、有機化合物層、第二電極を形成して設けられる。陰極の上には、保護層、カラーフィルタ、マイクロレンズ等を設けてよい。カラーフィルタを設ける場合は、保護層との間に平坦化層を設けてよい。平坦化層はアクリル樹脂等で構成することができる。カラーフィルタとマイクロレンズとの間において、平坦化層を設ける場合も同様である。
 [基板]
 基板は、石英、ガラス、シリコンウエハ、樹脂、金属等が挙げられる。また、基板上には、トランジスタなどのスイッチング素子や配線を備え、その上に絶縁層を備えてもよい。絶縁層としては、第一電極との間に配線が形成可能なように、コンタクトホールを形成可能で、且つ接続しない配線との絶縁を確保できれば、材料は問わない。例えば、ポリイミド等の樹脂、酸化シリコン、窒化シリコンなどを用いることができる。
 [電極]
 電極は、一対の電極を用いることができる。一対の電極は、陽極と陰極であってよい。有機発光素子が発光する方向に電界を印加する場合に、電位が高い電極が陽極であり、他方が陰極である。また、発光層にホールを供給する電極が陽極であり、電子を供給する電極が陰極であるということもできる。
 陽極の構成材料としては仕事関数がなるべく大きいものがよい。例えば、金、白金、銀、銅、ニッケル、パラジウム、コバルト、セレン、バナジウム、タングステン、等の金属単体やこれらを含む混合物、或いはこれらを組み合わせた合金、酸化錫、酸化亜鉛、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム等の金属酸化物が使用できる。またポリアニリン、ポリピロール、ポリチオフェン等の導電性ポリマーも使用できる。
 これらの電極物質は一種類を単独で使用してもよいし、二種類以上を併用して使用してもよい。また、陽極は一層で構成されていてもよく、複数の層で構成されていてもよい。
 反射電極として用いる場合には、例えばクロム、アルミニウム、銀、チタン、タングステン、モリブデン、又はこれらの合金、積層したものなどを用いることができる。上記の材料にて、電極としての役割を有さない、反射膜として機能することも可能である。また、透明電極として用いる場合には、酸化インジウム錫(ITO)、酸化インジウム亜鉛などの酸化物透明導電層などを用いることができるが、これらに限定されるものではない。
 電極の形成には、フォトリソグラフィ技術を用いることができる。
 一方、陰極の構成材料としては仕事関数の小さなものがよい。例えばリチウム等のアルカリ金属、カルシウム等のアルカリ土類金属、アルミニウム、チタニウム、マンガン、銀、鉛、クロム等の金属単体又はこれらを含む混合物が挙げられる。或いはこれら金属単体を組み合わせた合金も使用することができる。例えばマグネシウム-銀、アルミニウム-リチウム、アルミニウム-マグネシウム、銀-銅、亜鉛-銀等が使用できる。酸化錫インジウム(ITO)等の金属酸化物の利用も可能である。これらの電極物質は一種類を単独で使用してもよいし、二種類以上を併用して使用してもよい。また陰極は一層構成でもよく、多層構成でもよい。中でも銀を用いることが好ましく、銀の凝集を低減するため、銀合金とすることがさらに好ましい。銀の凝集が低減できれば、合金の比率は問わない。例えば、銀:他の金属が、1:1、3:1等であってよい。
 陰極は、ITOなどの酸化物導電層を使用してトップエミッション素子としてもよいし、アルミニウム(Al)などの反射電極を使用してボトムエミッション素子としてもよいし、特に限定されない。陰極の形成方法としては、特に限定されないが、直流及び交流スパッタリング法などを用いると、膜のカバレッジがよく、抵抗を下げやすいためより好ましい。
 [有機化合物層]
 有機化合物層は、単層で形成されても、複数層で形成されてもよい。複数層を有する場合には、その機能によって、ホール注入層、ホール輸送層、電子ブロッキング層、発光層、ホールブロッキング層、電子輸送層、電子注入層、と呼ばれてよい。有機化合物層は、主に有機化合物で構成されるが、無機原子、無機化合物を含んでいてもよい。例えば、銅、リチウム、マグネシウム、アルミニウム、イリジウム、白金、モリブデン、亜鉛等を有してよい。有機化合物層は、第一電極と第二電極との間に配置されてよく、第一電極及び第二電極に接して配されてよい。
 [保護層]
 陰極の上に、保護層を設けてもよい。例えば、陰極上に吸湿剤を設けたガラスを接着することで、有機化合物層に対する水等の浸入を低減し、表示不良の発生を低減することができる。また、別の実施形態としては、陰極上に窒化ケイ素等のパッシベーション膜を設け、有機化合物層に対する水等の浸入を低減してもよい。例えば、陰極を形成後に真空を破らずに別のチャンバーに搬送し、CVD法で厚さ2μmの窒化ケイ素膜を形成することで、保護層としてもよい。CVD法の成膜の後で原子堆積法(ALD法)を用いた保護層を設けてもよい。ALD法による膜の材料は限定されないが、窒化ケイ素、酸化ケイ素、酸化アルミニウム等であってよい。ALD法で形成した膜の上に、さらにCVD法で窒化ケイ素を形成してよい。ALD法による膜は、CVD法で形成した膜よりも小さい膜厚であってよい。具体的には、50%以下、さらには、10%以下であってよい。
 [カラーフィルタ]
 保護層の上にカラーフィルタを設けてもよい。例えば、有機発光素子のサイズを考慮したカラーフィルタを別の基板上に設け、それと有機発光素子を設けた基板と貼り合わせてもよいし、上記で示した保護層上にフォトリソグラフィ技術を用いて、カラーフィルタをパターニングしてもよい。カラーフィルタは、高分子で構成されてよい。
 [平坦化層]
 カラーフィルタと保護層との間に平坦化層を有してもよい。平坦化層は、下の層の凹凸を低減する目的で設けられる。目的を制限せずに、材質樹脂層と呼ばれる場合もある。平坦化層は有機化合物で構成されてよく、低分子であっても、高分子であってもよいが、高分子であることが好ましい。平坦化層は、カラーフィルタの上下に設けられてもよく、その構成材料は同じであっても異なってもよい。具体的には、ポリビニルカルバゾール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ABS樹脂、アクリル樹脂、ポリイミド樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、尿素樹脂等が挙げられる。
 [マイクロレンズ]
 有機発光装置は、その光出射側にマイクロレンズ等の光学部材を有してよい。マイクロレンズは、アクリル樹脂、エポキシ樹脂等で構成されうる。マイクロレンズは、有機発光装置から取り出す光量の増加、取り出す光の方向の制御を目的としてよい。マイクロレンズは、半球の形状を有してよい。半球の形状を有する場合、当該半球に接する接線のうち、絶縁層と平行になる接線があり、その接線と半球との接点がマイクロレンズの頂点である。マイクロレンズの頂点は、任意の断面図においても同様に決定することができる。つまり、断面図におけるマイクロレンズの半円に接する接線のうち、絶縁層と平行になる接線があり、その接線と半円との接点がマイクロレンズの頂点である。
 また、マイクロレンズの中点を定義することもできる。マイクロレンズの断面において、円弧の形状が終了する点から別の円弧の形状が終了する点までの線分を仮想し、当該線分の中点がマイクロレンズの中点と呼ぶことができる。頂点、中点を判別する断面は、絶縁層に垂直な断面であってよい。
 [対向基板]
 平坦化層の上には、対向基板を有してよい。対向基板は、前述の基板と対応する位置に設けられるため、対向基板と呼ばれる。対向基板の構成材料は、前述の基板と同じであってよい。対向基板は、前述の基板を第一基板とした場合、第二基板であってよい。
 [有機化合物層]
 本実施形態に係る有機発光素子を構成する有機化合物層(正孔注入層、正孔輸送層、電子ブロッキング層、発光層、正孔ブロッキング層、電子輸送層、電子注入層等)は、以下に示す方法により形成される。
 有機化合物層は、真空蒸着法、イオン化蒸着法、スパッタリング、プラズマ等のドライプロセスを用いることができる。またドライプロセスに代えて、適当な溶媒に溶解させて公知の塗布法(例えば、スピンコーティング、ディッピング、キャスト法、LB法、インクジェット法等)により層を形成するウェットプロセスを用いることもできる。ここで真空蒸着法や溶液塗布法等によって層を形成すると、結晶化等が起こりにくく経時安定性に優れる。また塗布法で成膜する場合は、適当なバインダー樹脂と組み合わせて膜を形成することもできる。
 上記バインダー樹脂としては、ポリビニルカルバゾール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ABS樹脂、アクリル樹脂、ポリイミド樹脂、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、尿素樹脂等が挙げられるが、これらに限定されるものではない。また、これらバインダー樹脂は、ホモポリマー又は共重合体として一種類を単独で使用してもよいし、二種類以上を混合して使用してもよい。さらに必要に応じて、公知の可塑剤、酸化防止剤、紫外線吸収剤等の添加剤を併用してもよい。
 [画素回路]
 発光装置は、発光素子に接続されている画素回路を有してよい。画素回路は、第一の発光素子、第二の発光素子をそれぞれ独立に発光制御するアクティブマトリックス型であってよい。アクティブマトリックス型の回路は電圧プログラミングであっても、電流プログラミングであってもよい。駆動回路は、画素毎に画素回路を有する。画素回路は、発光素子、発光素子の発光輝度を制御するトランジスタ、発光タイミングを制御するトランジスタ、発光輝度を制御するトランジスタのゲート電圧を保持する容量、発光素子を介さずにGNDに接続するためのトランジスタを有してよい。
 発光装置は、表示領域と、表示領域の周囲に配されている周辺領域とを有する。表示領域には画素回路を有し、周辺領域には表示制御回路を有する。画素回路を構成するトランジスタの移動度は、表示制御回路を構成するトランジスタの移動度よりも小さくてよい。画素回路を構成するトランジスタの電流電圧特性の傾きは、表示制御回路を構成するトランジスタの電流電圧特性の傾きよりも小さくてよい。電流電圧特性の傾きは、いわゆるVg-Ig特性により測定できる。画素回路を構成するトランジスタは、第一の発光素子など、発光素子に接続されているトランジスタである。
 [画素]
 有機発光素子を有する有機発光装置は、複数の画素を有してよい。画素は互いに他と異なる色を発光する副画素を有する。副画素は、例えば、それぞれRGBの発光色を有してよい。
 画素は、画素開口とも呼ばれる領域が、発光する。この領域は第一領域と同じである。画素開口は15μm以下であってよく、5μm以上であってよい。より具体的には、11μm、9.5μm、7.4μm、6.4μm等であってよい。副画素間は、10μm以下であってよく、具体的には、8μm、7.4μm、6.4μmであってよい。
 画素は、平面図において、公知の配置形態をとりうる。例えば、ストライプ配置、デルタ配置、ペンタイル配置、ベイヤー配置であってよい。副画素の平面図における形状は、公知のいずれの形状をとってもよい。例えば、長方形、ひし形等の四角形、六角形、等である。もちろん、正確な図形ではなく、長方形に近い形をしていれば、長方形に含まれる。副画素の形状と、画素配列と、を組み合わせて用いることができる。
 <有機発光素子の用途>
 本実施形態に係る有機発光素子は、表示装置や照明装置の構成部材として用いることができる。他にも、電子写真方式の画像形成装置の露光光源や液晶表示装置のバックライト、白色光源にカラーフィルタを有する発光装置等の用途がある。
 表示装置は、エリアCCD、リニアCCD、メモリーカード等からの画像情報を入力する画像入力部を有し、入力された情報を処理する情報処理部を有し、入力された画像を表示部に表示する画像情報処理装置でもよい。表示装置は、複数の画素を有し、複数の画素の少なくとも一つが、本実施形態の有機発光素子と、有機発光素子に接続されたトランジスタと、を有してよい。
 また、撮像装置やインクジェットプリンタが有する表示部は、タッチパネル機能を有していてもよい。このタッチパネル機能の駆動方式は、赤外線方式でも、静電容量方式でも、抵抗膜方式であっても、電磁誘導方式であってもよく、特に限定されない。また表示装置はマルチファンクションプリンタの表示部に用いられてもよい。
 次に、図面を参照しながら本実施形態に係る表示装置について説明する。図1A、図1Bは、有機発光素子とこの有機発光素子に接続されるトランジスタとを有する表示装置の例を示す断面模式図である。トランジスタは、能動素子の一例である。トランジスタは薄膜トランジスタ(TFT)であってもよい。
 図1Aは、本実施形態に係る表示装置の構成要素である画素の一例である。画素は、副画素10を有している。副画素はその発光により、10R、10G、10Bに分けられている。発光色は、発光層から発光される波長で区別されても、副画素から出射する光がカラーフィルタ等により、選択的透過又は色変換が行われてもよい。それぞれの副画素10は、層間絶縁層1の上に第一電極2である反射電極、第一電極2の端を覆う絶縁層3、第一電極2と絶縁層3とを覆う有機化合物層4、第二電極5である透明電極、保護層6、カラーフィルタ7を有している。
 層間絶縁層1は、その下層又は内部にトランジスタ、容量素子を配されていてよい。トランジスタと第一電極は不図示のコンタクトホール等を介して電気的に接続されていてよい。
 絶縁層3は、バンク、画素分離膜とも呼ばれる。第一電極2の端を覆っており、第一電極2を囲って配されている。絶縁層3の配されていない部分が、有機化合物層4と接し、発光領域となる。
 有機化合物層4は、正孔注入層41、正孔輸送層42、第一発光層43、第二発光層44、電子輸送層45を有する。
 第二電極5は、透明電極であっても、反射電極であっても、半透過電極であってもよい。
 保護層6は、有機化合物層4に水分が浸透することを低減する。保護層6は、一層のように図示されているが、複数層であってよい。層ごとに無機化合物層、有機化合物層があってよい。
 カラーフィルタ7は、その色により7R、7G、7Bに分けられる。カラーフィルタ7は、不図示の平坦化膜上に形成されてよい。また、カラーフィルタ7上に不図示の樹脂保護層を有してよい。また、カラーフィルタ7は、保護層6上に形成されてよい。又はガラス基板等の対向基板上に設けられた後に、貼り合わせられてよい。
 図1Bの表示装置100は、有機発光素子26とトランジスタの一例としてTFT18を有する。ガラス、シリコン等の基板11とその上部に絶縁層12が設けられている。絶縁層12の上には、TFT18等の能動素子が配されており、能動素子のゲート電極13、ゲート絶縁膜14、半導体層15が配置されている。TFT18は、他にもドレイン電極16とソース電極17とで構成されている。TFT18の上部には絶縁膜19が設けられている。絶縁膜19に設けられたコンタクトホール20を介して有機発光素子26を構成する陽極21とソース電極17とが接続されている。
 尚、有機発光素子26に含まれる電極(陽極21、陰極23)とTFT18に含まれる電極(ソース電極17、ドレイン電極16)との電気接続の方式は、図1Bに示される態様に限られるものではない。つまり陽極21又は陰極23のうちいずれか一方とTFT18のソース電極17又はドレイン電極16のいずれか一方とが電気接続されていればよい。TFTは、薄膜トランジスタを指す。
 図1Bの表示装置100では有機化合物層22を1つの層の如く図示をしているが、有機化合物層22は、複数層であってもよい。陰極23の上には有機発光素子26の劣化を低減するための第一の保護層24や第二の保護層25が設けられている。
 図1Bの表示装置100ではスイッチング素子としてトランジスタを使用しているが、これに代えて他のスイッチング素子として用いてもよい。
 また図1Bの表示装置100に使用されるトランジスタは、単結晶シリコンウエハを用いたトランジスタに限らず、基板の絶縁性表面上に活性層を有する薄膜トランジスタでもよい。活性層として、単結晶シリコン、アモルファスシリコン、微結晶シリコンなどの非単結晶シリコン、インジウム亜鉛酸化物、インジウムガリウム亜鉛酸化物等の非単結晶酸化物半導体が挙げられる。尚、薄膜トランジスタはTFT素子とも呼ばれる。
 図1Bの表示装置100に含まれるトランジスタは、Si基板等の基板内に形成されていてもよい。ここで基板内に形成されるとは、Si基板等の基板自体を加工してトランジスタを作製することを意味する。つまり、基板内にトランジスタを有することは、基板とトランジスタとが一体に形成されていると見ることもできる。
 本実施形態に係る有機発光素子はスイッチング素子の一例であるTFTにより発光輝度が制御され、有機発光素子を複数面内に設けることでそれぞれの発光輝度により画像を表示することができる。尚、本実施形態に係るスイッチング素子は、TFTに限られず、低温ポリシリコンで形成されているトランジスタ、Si基板等の基板上に形成されたアクティブマトリクスドライバーであってもよい。基板上とは、その基板内ということもできる。基板内にトランジスタを設けるか、TFTを用いるかは、表示部の大きさによって選択され、例えば0.5インチ程度の大きさであれば、Si基板上に有機発光素子を設けることが好ましい。
 図2Aは、本発明の一実施形態に係る画像形成装置の一例を示す模式図である。画像形成装置40は電子写真方式の画像形成装置であり、感光体27、露光光源28、帯電部30、現像部31、転写器32、搬送ローラー33、定着器35を有する。露光光源28から光29が照射され、感光体27の表面に静電潜像が形成される。この露光光源28が本実施形態に係る有機発光素子を有する。現像部31はトナー等を有する。帯電部30は感光体27を帯電させる。転写器32は現像された画像を記録媒体34に転写する。搬送ローラー33は記録媒体34を搬送する。記録媒体34は例えば紙である。定着器35は記録媒体34に形成された画像を定着させる。
 図2B及び図2Cは、露光光源28を示す図であり、発光部36が本実施形態に係る有機発光素子であり、長尺状の基板に複数配置されている様子を示す模式図である。矢印37は、感光体27の軸に平行な方向であり、発光部36が配列されている列方向を表す。この列方向は、感光体27が回転する軸の方向と同じである。この方向は感光体27の長軸方向と呼ぶこともできる。図2Bは発光部36を感光体27の長軸方向に沿って配置した形態である。図2Cは、図2Bとは異なる形態であり、第一の列と第二の列のそれぞれにおいて発光部36が列方向に交互に配置されている形態である。
 第一の列と第二の列は行方向に異なる位置に配置されている。第一の列は、複数の発光部36が間隔をあけて配置されている。第二の列は、第一の列の発光部36同士の間隔に対応する位置に発光部36を有する。即ち、行方向にも、複数の発光部36が間隔をあけて配置されている。図2Cの配置は、例えば格子状に配置されている状態、千鳥格子に配置されている状態、或いは市松模様と言い換えることもできる。
 図3は、本実施形態に係る表示装置の一例を表す模式図である。表示装置1000は、上部カバー1001と、下部カバー1009と、の間に、タッチパネル1003、表示パネル1005、フレーム1006、回路基板1007、バッテリー1008、を有してよい。タッチパネル1003及び表示パネル1005は、フレキシブルプリント回路FPC1002、1004が接続されている。回路基板1007には、トランジスタがプリントされている。バッテリー1008は、表示装置が携帯機器でなければ、設けなくてもよいし、携帯機器であっても、別の位置に設けてもよい。
 本実施形態に係る表示装置は、赤色、緑色、青色を有するカラーフィルタを有してよい。カラーフィルタは、当該赤色、緑色、青色がデルタ配列で配置されてよい。
 本実施形態に係る表示装置は、携帯端末の表示部に用いられてもよい。その際には、表示機能と操作機能との双方を有してもよい。携帯端末としては、スマートフォン等の携帯電話、タブレット、ヘッドマウントディスプレイ等が挙げられる。
 本実施形態に係る表示装置は、複数のレンズを有する光学部と、当該光学部を通過した光を受光する撮像素子とを有する撮像装置の表示部に用いられてよい。撮像装置は、撮像素子が取得した情報を表示する表示部を有してよい。また、表示部は、撮像装置の外部に露出した表示部であっても、ファインダ内に配置された表示部であってもよい。撮像装置は、デジタルカメラ、デジタルビデオカメラであってよい。
 図4Aは、本実施形態に係る撮像装置の一例を表す模式図である。撮像装置1100は、ビューファインダ1101、背面ディスプレイ1102、操作部1103、筐体1104を有してよい。ビューファインダ1101は、本実施形態に係る表示装置を有してよい。その場合、表示装置は、撮像する画像のみならず、環境情報、撮像指示等を表示してよい。環境情報には、外光の強度、外光の向き、被写体の動く速度、被写体が遮蔽物に遮蔽される可能性等であってよい。
 撮像に好適なタイミングはわずかな時間なので、少しでも早く情報を表示した方がよい。従って、本実施形態の有機発光素子を用いた表示装置を用いるのが好ましい。有機発光素子は応答速度が速いからである。有機発光素子を用いた表示装置は、表示速度が求められる、これらの装置、液晶表示装置よりも好適に用いることができる。
 撮像装置1100は、不図示の光学部を有する。光学部は複数のレンズを有し、筐体1104内に収容されている撮像素子に結像する。複数のレンズは、その相対位置を調整することで、焦点を調整することができる。この操作を自動で行うこともできる。撮像装置は光電変換装置と呼ばれてもよい。光電変換装置は逐次撮像するのではなく、前画像からの差分を検出する方法、常に記録されている画像から切り出す方法等を撮像の方法として含むことができる。
 図4Bは、本実施形態に係る電子機器の一例を表す模式図である。電子機器1200は、表示部1201と、操作部1202と、筐体1203を有する。筐体1203には、回路、当該回路を有するプリント基板、バッテリー、通信部、を有してよい。操作部1202は、ボタンであってもよいし、タッチパネル方式の反応部であってもよい。操作部1202は、指紋を認識してロックの解除等を行う、生体認識部であってもよい。通信部を有する電子機器は通信機器ということもできる。電子機器1200は、レンズと、撮像素子とを備えることでカメラ機能をさらに有してよい。カメラ機能により撮像された画像が表示部1201に映される。電子機器1200としては、スマートフォン、ノートパソコン等が挙げられる。
 図5A、図5Bは、本実施形態に係る表示装置の一例を表す模式図である。図5Aは、テレビモニタやPCモニタ等の表示装置である。表示装置1300は、額縁1301を有し表示部1302を有する。表示部1302には、本実施形態に係る発光素子が用いられてよい。額縁1301と、表示部1302を支える土台1303を有している。土台1303は、図5Aの形態に限られない。額縁1301の下辺が土台を兼ねてもよい。また、額縁1301及び表示部1302は、曲がっていてもよい。その曲率半径は、5000mm以上6000mm以下であってよい。
 図5Bは本実施形態に係る表示装置の他の例を表す模式図である。図5Bの表示装置1310は、折り曲げ可能に構成されており、いわゆるフォルダブルな表示装置である。表示装置1310は、第一表示部1311、第二表示部1312、筐体1313、屈曲点1314を有する。第一表示部1311と第二表示部1312とは、本実施形態に係る発光素子を有してよい。第一表示部1311と第二表示部1312とは、つなぎ目のない1枚の表示装置であってよい。第一表示部1311と第二表示部1312とは、屈曲点で分けることができる。第一表示部1311、第二表示部1312は、それぞれ異なる画像を表示してもよいし、第一及び第二表示部とで一つの画像を表示してもよい。
 図6Aは、本実施形態に係る照明装置の一例を表す模式図である。照明装置1400は、筐体1401と、光源1402と、回路基板1403と、光源1402が発する光を透過する光学フィルタ1404と光拡散部1405と、を有してよい。光源1402は、本実施形態に係る有機発光素子を有してよい。光学フィルタ1404は光源の演色性を向上させるフィルタであってよい。光拡散部1405は、ライトアップ等、光源の光を効果的に拡散し、広い範囲に光を届けることができる。光学フィルタ1404、光拡散部1405は、照明の光出射側に設けられてよい。必要に応じて、最外部にカバーを設けてもよい。
 照明装置は例えば室内を照明する装置である。照明装置は白色、昼白色、その他青から赤のいずれの色を発光するものであってよい。それらを調光する調光回路を有してよい。照明装置は本実施形態の有機発光素子とそれに接続される電源回路を有してよい。電源回路は、交流電圧を直流電圧に変換する回路である。また、白とは色温度が4200Kで昼白色とは色温度が5000Kである。照明装置はカラーフィルタを有してもよい。
 また、本実施形態に係る照明装置は、放熱部を有していてもよい。放熱部は装置内の熱を装置外へ放出するものであり、比熱の高い金属、液体シリコン等が挙げられる。
 図6Bは、本実施形態に係る移動体の一例である自動車の模式図である。当該自動車は灯具の一例であるテールランプを有する。自動車1500は、テールランプ1501を有し、ブレーキ操作等を行った際に、テールランプを点灯する形態であってよい。
 テールランプ1501は、本実施形態に係る有機発光素子を有してよい。テールランプ1501は、有機発光素子を保護する保護部材を有してよい。保護部材はある程度高い強度を有し、透明であれば材料は問わないが、ポリカーボネート等で構成されることが好ましい。ポリカーボネートにフランジカルボン酸誘導体、アクリロニトリル誘導体等を混ぜてよい。
 自動車1500は、車体1503、それに取り付けられている窓1502を有してよい。窓1502は、自動車の前後を確認するための窓でなければ、透明なディスプレイであってもよい。当該透明なディスプレイは、本実施形態に係る有機発光素子を有してよい。
 この場合、有機発光素子が有する電極等の構成材料は透明な部材で構成される。
 本実施形態に係る移動体は、船舶、航空機、ドローン等であってよい。移動体は、機体と当該機体に設けられた灯具を有してよい。灯具は、機体の位置を知らせるための発光をしてよい。灯具は本実施形態に係る有機発光素子を有する。
 図7A、図7Bを参照して、上述の各実施形態の表示装置の適用例について説明する。表示装置は、例えばスマートグラス、HMD、スマートコンタクトのようなウェアラブルデバイスとして装着可能なシステムに適用できる。このような適用例に使用される撮像表示装置は、可視光を光電変換可能な撮像装置と、可視光を発光可能な表示装置とを有する。
 図7Aは、本発明の一実施形態に係るウェアラブルデバイスの一例を示す模式図である。図7Aを用いて、1つの適用例に係る眼鏡1600(スマートグラス)を説明する。眼鏡1600のレンズ1601の表面側に、CMOSセンサやSPADのような撮像装置1602が設けられている。また、レンズ1601の裏面側には、上述した各実施形態の表示装置が設けられている。
 眼鏡1600は、制御装置1603をさらに備える。制御装置1603は、撮像装置1602と表示装置に電力を供給する電源として機能する。また、制御装置1603は、撮像装置1602と表示装置の動作を制御する。レンズ1601には、撮像装置1602に光を集光するための光学系が形成されている。
 図7Bは、本発明の一実施形態に係るウェアラブルデバイスの他の例を示す模式図である。図7Bを用いて、1つの適用例に係る眼鏡1610(スマートグラス)を説明する。眼鏡1610は、制御装置1612を有しており、制御装置1612に、図7Aの撮像装置1602に相当する撮像装置と、表示装置が搭載される。レンズ1611には、制御装置1612内の撮像装置と、表示装置からの発光を投影するための光学系が形成されており、レンズ1611には画像が投影される。制御装置1612は、撮像装置及び表示装置に電力を供給する電源として機能するとともに、撮像装置及び表示装置の動作を制御する。
 制御装置1612は、装着者の視線を検知する視線検知部を有してもよい。視線の検知は赤外線を用いてよい。赤外発光部は、表示画像を注視しているユーザーの眼球に対して、赤外光を発する。発せられた赤外光の眼球からの反射光を、受光素子を有する撮像部が検出することで眼球の撮像画像が得られる。平面視における赤外発光部から表示部への光を低減する低減手段を有することで、画像品位の低下を低減する。赤外光の撮像により得られた眼球の撮像画像から表示画像に対するユーザーの視線を検出する。眼球の撮像画像を用いた視線検出には任意の公知の手法が適用できる。一例として、角膜での照射光の反射によるプルキニエ像に基づく視線検出方法を用いることができる。より具体的には、瞳孔角膜反射法に基づく視線検出処理が行われる。瞳孔角膜反射法を用いて、眼球の撮像画像に含まれる瞳孔の像とプルキニエ像とに基づいて、眼球の向き(回転角度)を表す視線ベクトルが算出されることにより、ユーザーの視線が検出される。
 本発明の一実施形態に係る表示装置は、受光素子を有する撮像装置を有し、撮像装置からのユーザーの視線情報に基づいて表示装置の表示画像を制御してよい。具体的には、表示装置は、視線情報に基づいて、ユーザーが注視する第一の視界領域と、第一の視界領域以外の第二の視界領域とを決定する。第一の視界領域、第二の視界領域は、表示装置の制御装置が決定してもよいし、外部の制御装置が決定したものを受信してもよい。表示装置の表示領域において、第一の視界領域の表示解像度を第二の視界領域の表示解像度よりも高く制御してよい。つまり、第二の視界領域の解像度を第一の視界領域よりも低くしてよい。
 また、表示領域は、第一の表示領域、第一の表示領域とは異なる第二の表示領域とを有し、視線情報に基づいて、第一の表示領域及び第二の表示領域から優先度が高い領域が決定される。第一の視界領域、第二の視界領域は、表示装置の制御装置が決定してもよいし、外部の制御装置が決定したものを受信してもよい。優先度の高い領域の解像度を、優先度が高い領域以外の領域の解像度よりも高く制御してよい。つまり優先度が相対的に低い領域の解像度を低くしてよい。
 尚、第一の視界領域や優先度が高い領域の決定には、AIを用いてもよい。AIは、眼球の画像と当該画像の眼球が実際に視ていた方向とを教師データとして、眼球の画像から視線の角度、視線の先の目的物までの距離を推定するよう構成されたモデルであってよい。AIプログラムは、表示装置が有しても、撮像装置が有しても、外部装置が有してもよい。外部装置が有する場合は、通信を介して、表示装置に伝えられる。
 視認検知に基づいて表示制御する場合、外部を撮像する撮像装置を更に有するスマートグラスに好ましく適用できる。スマートグラスは、撮像した外部情報をリアルタイムで表示することができる。
 以上説明した通り、本実施形態に係る有機発光素子を用いた装置を用いることにより、良好な画質で、長時間表示にも安定な表示が可能になる。
 以下、実施例により本発明を説明する。但し、本発明はこれらに限定されるものではない。
 [実施例1(例示化合物A1の合成)]
 下記に示される合成ルートで例示化合物A1を合成した。
Figure JPOXMLDOC01-appb-C000043
 (1)化合物H3の合成
 1Lのナスフラスコに、以下に示す化合物、試薬、溶媒を仕込んだ。
化合物H1:10.00g(46.7mmol)
化合物H2:10.94g(70.1mmol)
Pd(PPh(テトラキス(トリフェニルホスフィン)パラジウム):2.70g(2.34mmol)
NaCO:9.90g(93.4mmol)
トルエン:500ml
エタノール:100ml
水:100ml
 次に、反応溶液を、窒素気流下で90℃に加熱し、この温度(90℃)で5時間攪拌を行った。反応終了後、トルエンと水で抽出を行った後、濃縮し、これをシリカゲルカラムクロマトグラフィー(ヘプタン:トルエン=1:10)にて精製後、メタノールで分散洗浄を行うことにより、白色の化合物H3を9.71g(収率:85%)得た。
 (2)化合物H4の合成
 1Lのナスフラスコに、以下に示す化合物、試薬、溶媒を仕込んだ。
化合物H3:9.50g(38.8mmol)
N-ブロモスクシンイミド:7.25g(40.7mmol)
アセトニトリル:500ml
 次に、反応溶液を、窒素気流下で、2時間攪拌した。反応終了後、水を添加しろ過を行い、得られたろ物をシクロヘキサンで再結晶を行うことで白色の化合物H4を10.30g(収率:82%)得た。
 (3)化合物H5の合成
 500mlのナスフラスコに、以下に示す化合物、試薬、溶媒を仕込んだ。
化合物H4:5.00g(15.4mmol)
ボロン酸トリメチルエステル2.40g(23.1mmol)
テトラヒドロフラン:250ml
 次に、反応溶液を、窒素気流下で-78℃に冷却し、以下に示す試薬を滴下投入した。n-ブチルリチウム(1.6Mヘキサン溶液)10.56ml(16.9mmol)
 次に、反応溶液を-78℃で30分攪拌を行った後、1時間程度かけて室温までゆっくりと昇温させ、室温にて1時間攪拌し反応終了後、0℃に冷却し、2Mの塩酸50mlを投入し0℃で30分撹拌した。その後、200mLの水を添加した後、ろ過を行い、水とメタノールで洗浄することにより、白色の化合物H5を3.11g(収率:70%)得た。
 (4)化合物H7の合成
 300mlのナスフラスコに、以下に示す化合物、試薬、溶媒を仕込んだ。
化合物H5:3.00g(10.4mmol)
化合物H6:1.71g(10.4mmol)
トルエン:120ml
 次に、反応溶液を、窒素気流下で120℃に加熱し、加熱還流下で5時間攪拌を行った。反応終了後、濃縮し、ヘプタンを加えた後ろ過を行い、続いてヘプタンで分散洗浄を行うことにより、白色の化合物H7を2.82g(収率:65%)得た。
 (5)化合物H8の合成
 300mlのナスフラスコに、以下に示す化合物、試薬、溶媒を仕込んだ。
化合物H7:2.8g(6.72mmol)
Pd(OAc)(酢酸パラジウム):75mg(0.34mmol)
XPhos(2-ジシクロヘキスルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル):320mg(0.68mmol)
tBuOK(カリウムtert-ブトキシド):1.13g(10.8mmol)
キシレン:140ml
 次に、反応溶液を、窒素気流下で145℃に加熱し、加熱還流下で7時間攪拌を行った。反応終了後、ろ過した。これをシリカゲルカラムクロマトグラフィー(トルエン/酢酸エチル=10/1)にて精製後、トルエンで分散洗浄を行うことにより、白色の化合物H8を1.28g(収率:50%)得た。
 (6)例示化合物A1の合成
 200mlのナスフラスコに、以下に示す化合物、試薬、溶媒を仕込んだ。
化合物H8:1.20g(2.63mmol)
化合物H9:229mg(3.95mmol)
Pd(OAc)2:29mg(0.13mmol)
トリ-o-トリルフォスフィン:79mg(0.26mmol)
tBuOK:0.59g(5.26mmol)
キシレン:120ml
 次に、反応溶液を、窒素気流下で145℃に加熱し、加熱還流下で5時間攪拌を行った。反応終了後、ろ過した。これをシリカゲルカラムクロマトグラフィー(クロロベンゼン)にて精製後、トルエンで再結晶を行うことにより、白色の例示化合物A1を0.84g(収率:70%)得た。
 上記工程で得られた例示化合物A1について、MALDI-TOF-MS(Bruker社製「Autoflex LRF」)を用いて質量分析を行った。その結果、C2817BNより求めた計算値が456であるのに対して、実測値(m/z)は456で一致した。
 [実施例2至及25(例示化合物の合成)]
 表3乃至表7に示す様に、実施例2乃至25に示す例示化合物について、実施例1の化合物H1を原料1に、化合物H2を原料2に、化合物H6を原料3に、化合物H9を原料4に変えた他は実施例1と同様にして例示化合物を合成した。また、実施例1と同様にして測定した質量分析結果の実測値(m/z)を示す。
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
 [実施例26(例示化合物B1の合成)]
 下記に示される合成ルートで例示化合物B1を合成した。
Figure JPOXMLDOC01-appb-C000049
 (1)化合物H8の合成
 実施例1に示した方法によりH1より5工程を経てH8を合成した。
 (2)化合物H11の合成
 200mlのナスフラスコに、以下に示す化合物、試薬、溶媒を仕込んだ。
化合物H8:2.50g(6.57mmol)
化合物H10:2.79g(9.87mmol)
Pd(OAc)2:73mg(0.33mmol)
トリ-o-トリルフォスフィン:200mg(0.66mmol)
tBuOK:1.11g(9.86mmol)
キシレン:120ml
 次に、反応溶液を、窒素気流下で145℃に加熱し、加熱還流下で5時間攪拌を行った。反応終了後、ろ過した。これをシリカゲルカラムクロマトグラフィー(クロロベンゼン)にて精製後、トルエンで再結晶を行うことにより、白色の例示化合物H11を1.76g(収率:50%)得た。
 (3)例示化合物B1の合成
 500mlのナスフラスコに、以下に示す化合物、試薬、溶媒を仕込んだ。
化合物H11:1.50g(2.80mmol)
塩化アルミニウム:1.12g(8.40mmol)
テトラリン:150ml
 次に、反応溶液を、窒素気流下で180℃に加熱し、この温度(180℃)で8時間攪拌を行った。反応終了後、室温でメタノール300mlを投入し30分撹拌し、ろ過した。得られたろ物を、クロロベンゼンで再結晶を行うことにより、淡黄色の例示化合物B1を254mg(収率:20%)得た。
 上記工程で得られた例示化合物B1について、MALDI-TOF-MS(Bruker社製「Autoflex LRF」)を用いて質量分析を行った。その結果、C2815BNより求めた計算値が454であるのに対して、実測値(m/z)は454で一致した。
 [実施例27至及34(例示化合物の合成)]
 表8、表9に示す様に、実施例27至及34に示す例示化合物について、実施例26の化合物H8を原料5に、化合物H10を原料6に変えた他は実施例26と同様にして例示化合物を合成した。また、実施例1と同様にして測定した質量分析結果の実測値(m/z)を示す。
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
 [実施例35]
 本実施例では、基板上に、陽極、正孔注入層、正孔輸送層、電子ブロッキング層、発光層、正孔ブロッキング層、電子輸送層、電子注入層、陰極が順次形成されたボトムエミッション型構造の有機発光素子を作製した。
 先ずガラス基板上にITOを成膜し、所望のパターニング加工を施すことによりITO電極(陽極)を形成した。この時、ITO電極の膜厚を100nmとした。このようにITO電極が形成された基板をITO基板として、以下の工程で使用した。次に、1.33×10-4Pa(1×10-6Torr)の真空チャンバー内における抵抗加熱による真空蒸着を行って、上記ITO基板上に、表10に示す有機EL層及び電極層を連続成膜した。
 尚、この時、対向する電極(金属電極層、陰極)の電極面積が3mmとなるようにした。
Figure JPOXMLDOC01-appb-T000052
 得られた素子について、素子の特性を測定・評価した。発光素子の最大電流効率が12.5cd/Aの青色発光を得られた。測定装置は、具体的には電流電圧特性をヒューレッドパッカード社製・微小電流計4140Bで測定し、発光輝度は、トプコン社製BM7で測定した。さらに、電流密度20mA/cmでの連続駆動試験を行い、輝度劣化率が5%に達した時の時間(LT95)を測定したところ、120時間であった。測定の結果を表11に示す。
 [実施例36乃至53、比較例1]
 表11に示される化合物に適宜変更する以外は、実施例35と同様の方法により有機発光素子を作製した。得られた発光素子について実施例35と同様に特性を測定・評価した。測定の結果を表11に示す。
Figure JPOXMLDOC01-appb-T000053
 表11より、特許文献1に記載の比較化合物1-aを用いた比較例1の電流効率は7.5cd/A以下で、5%劣化寿命(LT95)は70時間以下であり、実施例の青色発光素子の電流効率、耐久特性と比較して悪い。一方、本実施形態の有機化合物を用いた実施例の発光素子は、良好な耐久特性を示した。これは、本実施形態に係る有機化合物は、含縮環構造ジアザボロール骨格を有することで、発光波長が青色発光に適した波長であり、縮環構造により分子構造として安定であり、LUMO準位が低く酸素に対する安定性が高いためである。
 [実施例54]
 表12に示される化合物に適宜変更する以外は、実施例35と同様の方法により有機発光素子を作製した。
Figure JPOXMLDOC01-appb-T000054
 得られた発光素子から良好な緑色発光が得られた。また、実施例35と同様にして、電流密度100mA/cmでの連続駆動試験を行って、輝度劣化率が5%に達した時の時間(LT95)を測定したところ、500時間を超えた。測定の結果を表13に示す。
 [実施例55乃至62、比較例2、比較例3]
 表13に示される化合物に適宜変更する以外は、実施例35と同様の方法により有機発光素子を作製した。得られた発光素子について実施例54と同様にLT95を測定した。測定の結果を表13に示す。尚、実施例60乃至62については、ホストとして第一ホストのみを使用しており、発光層におけるゲストの含有量は、実施例55乃至59におけるゲストの含有量と等しくなるようにした。
Figure JPOXMLDOC01-appb-T000055
 表13より、比較例2及び比較例3の5%劣化寿命は500時間以下で耐久特性が悪いが、本実施形態に係る有機化合物を用いた実施例の発光素子では、5%劣化寿命は500時間を超え、長寿命であることがわかる。本実施形態に係る有機化合物を用いた発光素子は、良好な耐久特性を示している。
 [実施例63]
 本実施例では、基板上に陽極、正孔注入層、正孔輸送層、電子ブロッキング層、第一発光層、第二発光層、正孔ブロッキング層、電子輸送層、電子注入層、陰極が順次形成されたトップエミッション型構造の有機発光素子を作製した。
 ガラス基板上に、スパッタリング法でAlとTiとの積層膜を40nm成膜し、フォトリソグラフィ技術を用いてパターニングし、陽極を形成した。尚、この時、対向する電極(金属電極層、陰極)の電極面積が3mmとなるようにした。続いて、真空蒸着装置(アルバック社製)に洗浄済みの電極までを形成した基板と材料を取り付け、1.3×10-4Pa(1×10-6Torr)まで排気した後、UV/オゾン洗浄を施した。その後、表14に示される層構成で各層の製膜を行い、最後に、窒素雰囲気下において封止を行った。
Figure JPOXMLDOC01-appb-T000056
 得られた発光素子は、良好な白色発光を示した。さらに、初期輝度1000cd/mでの連続駆動試験を行い、実施例35と同様にして、100時間後の輝度劣化率を測定した。結果を表15に示す。
 [実施例64乃至71、比較例4]
 表15に示される化合物に適宜変更する以外は、実施例63と同様の方法により有機発光素子を作製した。得られた発光素子について実施例63と同様に特性を測定・評価した。測定の結果を表15に示す。
Figure JPOXMLDOC01-appb-T000057
 表15より比較化合物1-aを用いた発光素子では輝度劣化率が55%であった。これは比較化合物をゲストとして用いた場合、LUMO準位が高く酸素に対する安定性が劣っていることに起因する。
 一方、本実施形態の有機化合物を用いた実施例の発光素子は、良好な耐久特性を示した。これは、本実施形態に係る化合物は、含縮環構造ジアザボロール骨格を有し、LUMO準位が低く酸素に対する安定性が高いためである。
 以上より、本実施形態に係る有機化合物は、高発光効率、高色純度、及びLUMO準位が深い(真空順位から遠い)、青色発光が可能であることがわかった。従って、本実施形態に係る有機化合物を用いることで、色純度、発光効率及び耐久特性が優れる有機発光素子を提供できる。
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。
 本願は、2021年12月27日提出の日本国特許出願特願2021-212264を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。
 2 第一電極
 4,22 有機化合物層
 5 第二電極
 21 陽極
 23 陰極
 26 有機発光素子
 28 露光光源
 40 画像形成装置
 100 表示装置
 1201,1302,1311,1312 表示部
 1404 光学フィルタ
 1045 光拡散部
 1601 レンズ

Claims (28)

  1.  下記一般式[1-1]及び[1-2]のいずれかで表されることを特徴とする有機化合物。
    Figure JPOXMLDOC01-appb-C000001

     上記式[1-1]及び[1-2]において、R乃至Rは、それぞれ独立に、水素原子、ハロゲン原子、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアミノ基、置換或いは無置換のアリール基、置換或いは無置換のアリールオキシ基、置換或いは無置換のヘテロアリール基、シアノ基、シリル基、重水素原子から選ばれる。但し、RはArと結合して環を形成していてもよい。
     Arは置換或いは無置換のアリール基、置換或いは無置換の複素環基を表す。
     Arは置換或いは無置換の2価のアリーレン基、置換或いは無置換の複素環基から誘導される2価の連結基を表す。
     X及びXは、それぞれ独立に、酸素原子、硫黄原子、セレン原子、テルル原子、及び置換基Zを有する窒素原子から選ばれ、置換基Zは水素原子、置換或いは無置換のアルキル基、置換或いは無置換のアリール基、置換或いは無置換のヘテロアリール基、重水素から選ばれる。
  2.  下記一般式[2-1]及び[2-2]のいずれかで表されることを特徴とする請求項1に記載の有機化合物。
    Figure JPOXMLDOC01-appb-C000002
  3.  下記一般式[3-1]及び[3-2]のいずれかで表されることを特徴とする請求項1に記載の有機化合物。
    Figure JPOXMLDOC01-appb-C000003

     上記式[3-1]及び[3-2]において、Y乃至Yはそれぞれ独立に、水素原子或いは置換基Wを有し環を構成する、炭素原子又は窒素原子を示し、隣り合った元素が炭素原子の場合、これらの炭素原子は更に環を形成していてもよい。
     前記置換基Wは、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアミノ基、置換或いは無置換のアリール基、置換或いは無置換のアリールオキシ基、置換或いは無置換のヘテロアリール基、シアノ基、シリル基、重水素から選ばれる。
  4.  下記一般式[4-1]及び[4-2]のいずれかで表されることを特徴とする請求項2に記載の有機化合物。
    Figure JPOXMLDOC01-appb-C000004

     上記式[4-1]及び[4-2]において、Y乃至Yはそれぞれ独立に、水素原子或いは置換基Wを有し環を構成する、炭素原子又は窒素原子を示し、隣り合った元素が炭素原子の場合、これらの炭素原子は更に環を形成していてもよい。
     前記置換基Wは、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアミノ基、置換或いは無置換のアリール基、置換或いは無置換のアリールオキシ基、置換或いは無置換のヘテロアリール基、シアノ基、シリル基、重水素のいずれかから独立に選ばれる。
  5.  下記一般式[5-1]及び[5-2]のいずれかで表されることを特徴とする請求項1に記載の有機化合物。
    Figure JPOXMLDOC01-appb-C000005

     上記式[5-1]及び[5-2]において、Y乃至Yはそれぞれ独立に、水素原子或いは置換基Wを有し環を構成する、炭素原子又は窒素原子を表す。
     Y10乃至Y13はそれぞれ、水素原子或いは置換基Qを有し環を構成する、炭素原子、
     窒素原子、酸素原子、硫黄原子のいずれかを示し、Y10乃至Y13のうち一つは窒素原子、
     酸素原子、硫黄原子のいずれかである。
     Y乃至Y13の隣り合った元素が炭素原子の場合、これらの炭素原子は更に環を形成していてもよい。
     前記置換基W、Qはそれぞれ独立に、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアミノ基、置換或いは無置換のアリール基、置換或いは無置換のアリールオキシ基、置換或いは無置換のヘテロアリール基、シアノ基、
     シリル基、重水素から選ばれる。
  6.  下記一般式[6-1]及び[6-2]のいずれかで表されることを特徴とする請求項1に記載の有機化合物。
    Figure JPOXMLDOC01-appb-C000006

     上記式[6-1]及び[6-2]において、Y10乃至Y16はそれぞれ独立に、水素原子或いは置換基Qを有し環を構成する、炭素原子、窒素原子、酸素原子、硫黄原子を表し、Y10乃至Y13のうち一つ、及び、Y14乃至Y16のうち一つは窒素原子、酸素原子、硫黄原子のいずれかである。
     Y10乃至Y16の隣り合った元素が炭素原子の場合、これらの炭素原子は更に環を形成していてもよい。
     前記置換基Qはそれぞれ独立に、置換或いは無置換のアルキル基、置換或いは無置換のアルコキシ基、置換或いは無置換のアミノ基、置換或いは無置換のアリール基、置換或いは無置換のアリールオキシ基、置換或いは無置換のヘテロアリール基、シアノ基、シリル基、重水素から選ばれる。
  7.  下記一般式[7]で表されることを特徴とする請求項3に記載の有機化合物。
    Figure JPOXMLDOC01-appb-C000007
  8.  下記一般式[8]で表されることを特徴とする請求項3に記載の有機化合物。
    Figure JPOXMLDOC01-appb-C000008
  9.  下記一般式[9]で表されることを特徴とする請求項3に記載の有機化合物。
    Figure JPOXMLDOC01-appb-C000009

     上記式[9]において、置換基Zは水素原子、置換或いは無置換のアルキル基、置換或いは無置換のアリール基、置換或いは、無置換のヘテロアリール基、重水素原子から選ばれる。
  10.  下記一般式[10]で表されることを特徴とする請求項3に記載の有機化合物。
    Figure JPOXMLDOC01-appb-C000010
  11.  下記一般式[11]で表されることを特徴とする請求項3に記載の有機化合物。
    Figure JPOXMLDOC01-appb-C000011
  12.  下記一般式[12]で表されることを特徴とする請求項3に記載の有機化合物。
    Figure JPOXMLDOC01-appb-C000012

     上記式[12]において、置換基Zは水素原子、置換或いは無置換のアルキル基、置換或いは無置換のアリール基、置換或いは無置換のヘテロアリール基、重水素から選ばれる。
  13.  前記一般式[1-1]および[1-2]において、Arが炭素数10乃至14のアリール基或いは炭素数5乃至12のヘテロアリール基であり、Arが炭素数6乃至12のアリーレン基或いは炭素数5のヘテロアリーレン基であることを特徴とする請求項1に記載の有機化合物。
  14.  前記一般式[1-1]および[1-2]において、Arがナフチル基、ビフェニル基、フェナントリル基、ジベンゾチエニル基、ピリジル基、またはイソキノリル基であり、Arがフェニル基、ナフチル基、ビフェニル基、またはピリジル基から誘導される2価の連結基であることを特徴とする請求項13に記載の有機化合物。
  15.  一対の電極と、
     前記一対の電極の間に配置される有機化合物層と、を有する有機発光素子において、
     前記有機化合物層の少なくとも一層は、請求項1乃至14のいずれか一項に記載の有機化合物を有することを特徴とする有機発光素子。
  16.  前記有機化合物を有する層は、発光層であることを特徴とする請求項15に記載の有機発光素子。
  17.  前記発光層は、第一の化合物を有し、
     前記第一の化合物は、炭化水素化合物であることを特徴とする請求項16に記載の有機発光素子。
  18.  前記第一の化合物は、3環以上の縮合多環基を有することを特徴とする請求項17に記載の有機発光素子。
  19.  前記第一の化合物は、アントラセン骨格、フルオランテン骨格、トリフェニレン骨格のうち少なくとも1つを有することを特徴とする請求項18に記載の有機発光素子。
  20.  青色発光することを特徴とする請求項15乃至19のいずれか一項に記載の有機発光素子。
  21.  前記発光層を第一の発光層として、前記第一の発光層と積層して配置される第二の発光層を更に有し、前記第二の発光層は前記第一の発光層が発する発光色とは異なる色を発光することを特徴とする請求項16乃至20のいずれか一項に記載の有機発光素子。
  22.  白色発光することを特徴とする請求項21に記載の有機発光素子。
  23.  複数の画素を有し、前記複数の画素の少なくとも一つが、請求項15乃至22のいずれか一項に記載の有機発光素子と、前記有機発光素子に接続されたトランジスタと、を有することを特徴とする表示装置。
  24.  複数のレンズを有する光学部と、前記光学部を通過した光を受光する撮像素子と、前記撮像素子が撮像した画像を表示する表示部と、を有し、
     前記表示部は請求項15乃至22のいずれか一項に記載の有機発光素子を有することを特徴とする光電変換装置。
  25.  請求項15乃至22のいずれか一項に記載の有機発光素子を有する表示部と、前記表示部が設けられた筐体と、前記筐体に設けられ、外部と通信する通信部と、を有することを特徴とする電子機器。
  26.  請求項15乃至22のいずれか一項に記載の有機発光素子を有する光源と、前記光源が発する光を透過する光拡散部または光学フィルタと、を有することを特徴とする照明装置。
  27.  請求項15乃至22のいずれか一項に記載の有機発光素子を有する灯具と、前記灯具が設けられた機体と、を有することを特徴とする移動体。
  28.  請求項15乃至22のいずれか一項に記載の有機発光素子を有することを特徴とする電子写真方式の画像形成装置の露光光源。
PCT/JP2022/046015 2021-12-27 2022-12-14 有機化合物及び有機発光素子 WO2023127495A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021212264A JP2023096466A (ja) 2021-12-27 2021-12-27 有機化合物及び有機発光素子
JP2021-212264 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127495A1 true WO2023127495A1 (ja) 2023-07-06

Family

ID=86998725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046015 WO2023127495A1 (ja) 2021-12-27 2022-12-14 有機化合物及び有機発光素子

Country Status (2)

Country Link
JP (1) JP2023096466A (ja)
WO (1) WO2023127495A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160351811A1 (en) * 2015-06-01 2016-12-01 Universal Display Corporation Organic electroluminescent materials and devices
CN111471064A (zh) * 2019-01-07 2020-07-31 江苏三月科技股份有限公司 一种含硼有机电致发光化合物及其在有机电致发光器件上的应用
JP2021054808A (ja) * 2019-09-30 2021-04-08 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 発光素子及び発光素子用多環化合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160351811A1 (en) * 2015-06-01 2016-12-01 Universal Display Corporation Organic electroluminescent materials and devices
CN111471064A (zh) * 2019-01-07 2020-07-31 江苏三月科技股份有限公司 一种含硼有机电致发光化合物及其在有机电致发光器件上的应用
JP2021054808A (ja) * 2019-09-30 2021-04-08 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 発光素子及び発光素子用多環化合物

Also Published As

Publication number Publication date
JP2023096466A (ja) 2023-07-07

Similar Documents

Publication Publication Date Title
JP2022145607A (ja) 有機金属錯体、それを含む有機発光素子、表示装置、撮像装置、電子機器、照明装置及び移動体
EP4219514A1 (en) Organic compound and organic light emitting element
WO2023127495A1 (ja) 有機化合物及び有機発光素子
WO2023095543A1 (ja) 有機化合物及び有機発光素子
WO2023112832A1 (ja) 有機化合物及び有機発光素子
WO2023153169A1 (ja) 有機化合物及び有機発光素子
WO2023085046A1 (ja) 有機化合物、有機発光素子、表示装置、光電変換装置、電子機器、照明装置、移動体、および、露光光源
CN114671888B (zh) 有机化合物、有机发光元件、显示设备、光电转换设备、电子设备、照明设备和曝光光源
CN114456188B (zh) 有机化合物和有机发光器件
WO2024043210A1 (ja) 有機発光素子およびそれを有する表示装置、撮像装置、照明装置、移動体
WO2023171231A1 (ja) 有機化合物および有機発光素子
EP4332096A1 (en) Organic compound and organic light-emitting element
US20230192719A1 (en) Organic compound and organic light-emitting element
WO2023085123A1 (ja) 有機化合物及び有機発光素子
WO2023120218A1 (ja) 有機発光素子
WO2023120315A1 (ja) 有機化合物及び有機発光素子
JP2023118486A (ja) 有機化合物及び有機発光素子
WO2023063112A1 (ja) 有機化合物及び有機発光素子
JP2023115897A (ja) 有機化合物及び有機発光素子
WO2023238629A1 (ja) 有機化合物および有機発光素子
JP2022121005A (ja) 有機化合物及び有機発光素子
JP2023074214A (ja) 有機化合物及び有機発光素子
JP2022112591A (ja) 有機発光素子、表示装置、撮像装置、電子機器、照明装置及び移動体
JP2022121805A (ja) 有機化合物及び有機発光素子
JP2023172187A (ja) 有機化合物および有機発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915719

Country of ref document: EP

Kind code of ref document: A1