WO2023126740A1 - 光学機器および電子機器 - Google Patents

光学機器および電子機器 Download PDF

Info

Publication number
WO2023126740A1
WO2023126740A1 PCT/IB2022/062262 IB2022062262W WO2023126740A1 WO 2023126740 A1 WO2023126740 A1 WO 2023126740A1 IB 2022062262 W IB2022062262 W IB 2022062262W WO 2023126740 A1 WO2023126740 A1 WO 2023126740A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
emitting
lens
optical
Prior art date
Application number
PCT/IB2022/062262
Other languages
English (en)
French (fr)
Inventor
初見亮
池田寿雄
中村太紀
廣瀬丈也
塚本洋介
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Publication of WO2023126740A1 publication Critical patent/WO2023126740A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • One aspect of the present invention relates to an optical device and an electronic device.
  • one embodiment of the present invention is not limited to the above technical field.
  • a technical field of one embodiment of the invention disclosed in this specification and the like relates to a product, a method, or a manufacturing method.
  • one aspect of the invention relates to a process, machine, manufacture, or composition of matter. Therefore, the technical field of one embodiment of the present invention disclosed in this specification more specifically includes semiconductor devices, display devices, liquid crystal display devices, light-emitting devices, lighting devices, power storage devices, storage devices, imaging devices, and the like. Methods of operation or methods of their manufacture may be mentioned as an example.
  • a semiconductor device in this specification and the like refers to all devices that can function by utilizing semiconductor characteristics.
  • a transistor and a semiconductor circuit are modes of a semiconductor device.
  • Storage devices, display devices, imaging devices, and electronic devices may include semiconductor devices.
  • Goggle-type devices and glasses-type devices have been developed as electronic devices for virtual reality (VR) or augmented reality (AR).
  • VR virtual reality
  • AR augmented reality
  • Display devices that can be applied to the display panel typically include a display device that includes a liquid crystal element, a display device that includes an organic EL (Electro Luminescence) element, a light emitting diode (LED), or the like. .
  • a display device that includes a liquid crystal element
  • a display device that includes an organic EL (Electro Luminescence) element
  • a light emitting diode LED
  • Patent Document 1 describes an example of a display device using an organic EL element.
  • Electronic devices such as goggle-type devices and eyeglass-type devices are a type of wearable device, and are desired to be small and thin in order to improve portability and wearability. Therefore, such electronic devices use thin optical devices designed to have a short focal length.
  • the optical device uses a half mirror with low light utilization efficiency, and it is necessary to increase the luminance of the display device.
  • Increasing the luminance of a display device causes an increase in power consumption and a decrease in reliability of the display device. Therefore, an optical device that is thin and has high light utilization efficiency is desired.
  • an object of one embodiment of the present invention is to provide a thin optical device with high light utilization efficiency. Another object is to provide a small electronic device including the optical device. Another object is to provide an electronic device with low power consumption. Another object is to provide a novel electronic device.
  • One embodiment of the present invention relates to an optical device that is thin and has high light utilization efficiency, and an electronic device that includes the optical device.
  • One aspect of the present invention includes a first reflective polarizer, a first lens, an optical rotator, a second reflective polarizer, and a second lens, wherein the first reflective polarizer, The first lens, the optical rotator, the second reflective polarizer and the second lens are arranged in that order so that each has an overlapping area, and the first lens and the optical rotator are separated.
  • Equipment
  • the first surface of the first reflective polarizer can be laminated with the first surface of the first lens.
  • the first surface of the optical rotator can be laminated with the first surface of the second reflective polarizer. Also, the second surface opposite to the first surface of the second reflective polarizer can be bonded to the first surface of the second lens.
  • the first reflective polarizer transmits the first linearly polarized light and reflects a second linearly polarized light orthogonal to the first linearly polarized light
  • the second reflective polarizer has a plane of polarization of the first linearly polarized light. can reflect a third linearly polarized light rotated by 45° and transmit a fourth linearly polarized light orthogonal to the third linearly polarized light.
  • the optical rotator can have an optical rotation of 45°.
  • the first lens and the second lens can be convex lenses.
  • a polarizer may be provided facing a second surface opposite the first surface of the first reflective polarizer.
  • Another aspect of the present invention includes a display panel, a polarizer, a first reflective polarizer, a first lens, an optical rotator, a second reflective polarizer, and a second lens.
  • the display panel, the polarizer, the first reflective polarizer, the first lens, the optical rotator, the second reflective polarizer and the second lens are arranged in that order so that they each have an overlapping region.
  • the polarizing plate and the first reflective polarizing plate are arranged separately, and the first lens and the optical rotator are arranged separately.
  • the display surface of the display panel can be attached to the first surface of the polarizing plate.
  • the first surface of the first reflective polarizer can be laminated with the first surface of the first lens.
  • the first surface of the optical rotator is bonded to the first surface of the second reflective polarizer, and the second surface of the second reflective polarizer opposite the first surface is bonded to the second lens. It can be laminated with the first surface.
  • the polarizer can transmit a first linearly polarized light
  • the first reflective polarizer can transmit the first linearly polarized light and reflect a second linearly polarized light orthogonal to the first linearly polarized light.
  • the second reflective polarizing plate reflects the third linearly polarized light in which the plane of polarization of the first linearly polarized light is rotated by 45°, and transmits the fourth linearly polarized light orthogonal to the third linearly polarized light. can be done.
  • the optical rotator may have an optical rotation of 45°.
  • the first lens and the second lens can be convex lenses.
  • an optical device that is thin and has high light utilization efficiency can be provided.
  • a small electronic device including the optical device can be provided.
  • an electronic device with low power consumption can be provided.
  • a novel electronic device can be provided.
  • FIG. 1 is a diagram illustrating a display device and an optical device.
  • 2A and 2B are diagrams illustrating an optical instrument.
  • 3A and 3B are diagrams illustrating an optical instrument.
  • 4A to 4G are diagrams for explaining optical instruments.
  • 5A to 5C are diagrams for explaining electronic equipment.
  • 6A and 6B are diagrams illustrating a spectacles-type device.
  • 7A to 7C are diagrams illustrating configuration examples of the display panel.
  • 8A and 8B are diagrams for explaining a configuration example of a display panel.
  • 9A to 9F are diagrams illustrating configuration examples of pixels.
  • 10A and 10B are diagrams for explaining a configuration example of a display panel.
  • FIG. 11 is a diagram illustrating a configuration example of a display panel.
  • FIG. 12 is a diagram illustrating a configuration example of a display panel.
  • FIG. 13 is a diagram illustrating a configuration example of a display panel.
  • FIG. 14 is a diagram illustrating a configuration example of a display panel.
  • FIG. 15 is a diagram illustrating a configuration example of a display panel.
  • FIG. 16 is a diagram illustrating a configuration example of a display panel.
  • FIG. 17 is a diagram illustrating a configuration example of a display panel.
  • 18A to 18F are diagrams illustrating configuration examples of light-emitting devices.
  • 19A to 19C are diagrams illustrating configuration examples of light-emitting devices.
  • the element may be composed of a plurality of elements as long as there is no functional problem.
  • multiple transistors operating as switches may be connected in series or in parallel.
  • the capacitor may be divided and arranged at a plurality of positions.
  • one conductor may have multiple functions such as wiring, electrode, and terminal, and in this specification, multiple names may be used for the same element. Also, even if the circuit diagram shows that the elements are directly connected, the elements may actually be connected via one or more conductors. In this specification, such a configuration is also included in the category of direct connection.
  • One aspect of the invention is a low profile optic having a reflective polarizer, a lens, and an optical rotator.
  • this optical device the rotation of the plane of polarization of linearly polarized light by the optical rotator and the light transmission and reflection characteristics of the reflective polarizing plate can be used to make the optical device short in overall length and thin. Further, since the optical device of one embodiment of the present invention does not use a half mirror, it has high light utilization efficiency.
  • An electronic device such as a goggle-type device or an eyeglass-type device has a configuration in which a display device and an optical device are combined in order to widen a viewing angle.
  • the optical device of one embodiment of the present invention for the electronic device, the electronic device can be small and thin, consumes low power, and has high reliability.
  • an optical device of one embodiment of the present invention has a structure in which a plurality of optical components are combined.
  • a case in which the configuration is housed is simply called a lens.
  • it is sometimes called a pancake lens because of its thin shape.
  • FIG. 1 is a perspective view illustrating a display device and an optical device that can be used for electronic devices of one embodiment of the present invention.
  • the display device 30 and the optics 40 are spaced apart so that they have overlapping areas.
  • the user can see the image displayed on the display device 30 by bringing the eye 10 closer to the vicinity of the optical device 40 . Since the user visually recognizes the image with the viewing angle widened by the optical device 40, the user can obtain a sense of immersion and realism.
  • the display device 30 has a configuration in which a display panel 31 and a polarizing plate 32 are arranged so as to have regions that overlap each other.
  • a configuration in which a polarizing plate 32 is attached to the display surface of a display panel 31 can be employed.
  • the polarizing plate 32 may not be an element of the display device 30 and may be provided between the display device 30 (display panel 31) and the optical device 40. FIG. Alternatively, it may be arranged as an element of the optical device 40 on the side of the light incident surface of the optical device 40 .
  • the optical device 40 has a region where a reflective polarizer 41, a lens 42, an optical rotator 43, a reflective polarizer 44, and a lens 45 overlap each other.
  • the first surface means one surface of each element
  • the second surface means the opposite surface to the first surface.
  • the first surface of the reflective polarizing plate 41 may be attached to the first surface of the lens 42 .
  • the first surface of the reflective polarizing plate 44 may be attached to the first surface of the optical rotator 43, and the first surface of the lens 45 may be attached to the second surface of the reflective polarizing plate 44.
  • the lens 42 and the reflective polarizing plate 44 are disposed apart from each other. Therefore, when the optical rotator 43 and the reflective polarizer 44 are attached together as described above, it is preferable to separate the second surface of the lens 42 from the second surface of the optical rotator 43 .
  • one element in the bonding of one element and the other element described above, it is necessary to have a high transmittance with respect to the wavelength of light to be used (for example, the wavelength range of visible light), and the absorption and optical rotation of specific polarized light.
  • No optical adhesive can be used.
  • one element may be formed in contact with the other element by using a method such as coating instead of bonding.
  • FIG. 2A is a diagram illustrating optical paths of part of the optical device of one embodiment of the present invention, and the optical paths are indicated by dashed lines. Also, for clarity, some elements shown in contact in FIG. 1 are shown separated. Note that the effect of one embodiment of the present invention can also be obtained by arranging the elements as shown in FIG. 2A.
  • Part of the light emitted from the display panel 31 passes through the polarizing plate 32 , the reflective polarizing plate 41 , the lens 42 and the optical rotator 43 and is reflected by the reflective polarizing plate 44 .
  • the light reflected by the reflective polarizer 44 passes through the optical rotator 43 and the lens 42 and is reflected again by the reflective polarizer 41 .
  • the light reflected by the reflective polarizing plate 41 passes through the lens 42 , optical rotator 43 , reflective polarizing plate 44 and lens 45 and enters the eye 10 .
  • optical path length can be ensured by repeating reflection in this way, an optical system with a short focal length can be achieved.
  • a liquid crystal panel having liquid crystal elements As the display panel 31, a liquid crystal panel having liquid crystal elements, an organic EL panel having organic EL elements, an LED panel having micro LEDs, or the like can be used. In particular, it is preferable to use an organic EL panel that is self-luminous and can easily form a high-definition display portion.
  • the polarizing plate 32 can extract one linearly polarized light from light vibrating in all directions of 360°.
  • the transmission axis of the polarizing plate 32 is assumed to be 0°, but 0° is not an absolute value but a reference value. That is, the plane of polarization of the linearly polarized light taken out by the polarizing plate 32 is treated as 0°. Therefore, for example, 45° linearly polarized light means linearly polarized light in which the plane of polarization of the linearly polarized light taken out by the polarizing plate 32 is rotated by 45°.
  • the reflective polarizers 41 and 44 can transmit linearly polarized light aligned with the transmission axis and reflect linearly polarized light orthogonal to the transmission axis.
  • the reflective polarizer for example, a wire grid polarizer, a dielectric multilayer film, or the like can be used.
  • a convex lens can be used for the lenses 42 and 45 .
  • FIG. 2A shows an example in which a biconvex lens is used as the lens 42 and a plano-convex lens is used as the lens 45
  • the present invention is not limited to this.
  • the lens 42 may be composed of a plurality of plano-convex lenses.
  • a biconvex lens may be used as the lens 45 .
  • the lenses 42 and 45 may be configured by combining lenses selected from biconvex lenses, plano-convex lenses, convex meniscus lenses, and concave meniscus lenses.
  • lenses other than the lenses 42 and 45 may be provided.
  • the optical rotator 43 can rotate the polarization plane of the incident linearly polarized light and emit it.
  • an optical rotator with an optical rotation of 45° can be used as the optical rotator 43 .
  • a film-type cell filled with twisted nematic liquid crystal, a polymer liquid crystal film filled with twisted nematic liquid crystal, a Faraday rotator, or the like can be used as the optical rotator 43 .
  • FIG. 2B is an enlarged view of the display device 30 and the optical device 40 shown in FIG. 2A.
  • the upper optical path shows the polarization state
  • the lower optical path shows the efficiency of light transmission or reflection in each element. ing.
  • the transmission axis of the polarizing plate 32 is 0°, and 0° linearly polarized light is emitted from the polarizing plate 32 .
  • the 0° linearly polarized light emitted from the polarizing plate 32 is transmitted through the reflective polarizing plate 41 with a transmission axis of 0° and the lens 42 and is incident on the optical rotator 43 .
  • the optical rotator 43 the plane of polarization of the 0° linearly polarized light is rotated by 45° and emitted as 45° linearly polarized light.
  • the 45° linearly polarized light emitted from the optical rotator 43 is reflected by the reflective polarizing plate 44 with the reflection axis of 45° and enters the optical rotator 43 again.
  • the plane of polarization of the 45° linearly polarized light is rotated by 45° and emitted as 90° linearly polarized light.
  • the 90° linearly polarized light emitted from the optical rotator 43 is reflected by the reflective polarizing plate 41 having a reflection axis of 90° and enters the optical rotator 43 again.
  • the plane of polarization of the 90° linearly polarized light is rotated by 45° and emitted as 135° linearly polarized light.
  • the 135° linearly polarized light emitted from the optical rotator 43 is transmitted through the reflective polarizing plate 44 and the lens 45 having a transmission axis of 135°.
  • the optical path length can be secured in a limited space, and the focal length of the optical equipment can be shortened.
  • the reflectance and transmittance of each element are general values or ideal values.
  • the polarizing plate 32 absorbs light other than the 0° linearly polarized light, so the light emitted from the polarizing plate 32 is generally about 40% ( ⁇ 0 .4).
  • the optical device of one embodiment of the present invention ideally has no light loss other than the polarizing plate 32, and thus can be said to be an optical device with high light utilization efficiency.
  • FIG. 3A For comparison, an example of a conventional optical instrument is shown in FIG. 3A. Elements common to those in FIG. 2A are given the same reference numerals.
  • the optical apparatus shown in FIG. 3A also repeats reflection to secure the optical path length in a limited space, as in FIG. 2A.
  • the optical device shown in FIG. 3A differs from one embodiment of the present invention in that a retardation plate 51, a half mirror 52, a retardation plate 53, and a reflective polarizing plate 54 are used.
  • the reflective polarizing plate 54 differs from the reflective polarizing plate 44 in reflection axis and transmission axis.
  • a ⁇ /4 plate (1/4 wavelength plate) is used for the retardation plates 51 and 53 .
  • the delay axis of the ⁇ /4 plate is set at 45° with respect to the transmission axis of the polarizing plate 32 at 0°, the light is circularly polarized light with right rotation.
  • the reflective polarizer 54 has a reflection axis of 0° and a transmission axis of 90°.
  • 3B is an enlarged view of the display device 30 and the optical device 40 shown in FIG. 3A.
  • the upper optical path shows the polarization state
  • the lower optical path shows the efficiency of light transmission or reflection in each element. ing.
  • the transmission axis of the polarizing plate 32 is 0°, and 0° linearly polarized light is emitted from the polarizing plate 32 .
  • the 0° linearly polarized light emitted from the polarizing plate 32 is incident on the retardation plate 51 and emitted from the retardation plate 51 as clockwise circularly polarized light.
  • the clockwise circularly polarized light emitted from the retardation plate 51 passes through the half mirror 52 and the lens 42 and enters the retardation plate 53 .
  • the right-handed circularly polarized light incident on the retardation plate 53 is emitted from the retardation plate 53 as 0° linearly polarized light.
  • the 0° linearly polarized light emitted from the retardation plate 53 is reflected by the reflective polarizing plate 54 with the reflection axis of 0°, and enters the retardation plate 53 again.
  • the 0° linearly polarized light incident on the retardation plate 53 is emitted from the retardation plate 53 as clockwise circularly polarized light.
  • the right-handed circularly polarized light emitted from the retardation plate 53 is reflected by the half mirror 52 and enters the retardation plate 53 as left-handed circularly polarized light.
  • the counterclockwise circularly polarized light incident on the retardation plate 53 becomes 90° linearly polarized light and passes through the reflective polarizing plate 54 with the transmission axis of 90° and the lens 45 .
  • the polarizing plate 32 absorbs light other than 0° linearly polarized light, so the light emitted from the polarizing plate 32 is approximately 40% ( ⁇ 0.4). becomes.
  • the transmittance of the retardation plate 51 is ideally 100% ( ⁇ 1), the light emitted from the retardation plate 51 is about 40% (40% ⁇ 1).
  • the light emitted from the retardation plate 51 passes through the half mirror 52. Since the transmittance is about 50%, the amount of light after passing through the half mirror 52 is about 20% (40% ⁇ 0.5 ).
  • the light transmitted through the half mirror 52 passes through the lens 42 and the retardation plate 53, is reflected by the reflective polarizing plate 54, passes through the retardation plate 53 and the lens 42, reaches the half mirror 52 again, and is reflected.
  • the transmittance of the lens 42 and the retardation plate 53 and the reflectance of the reflective polarizer 54 are ideally 100% ( ⁇ 1), and the reflectance of the half mirror 52 is approximately 50%, half mirror reflection
  • the amount of light after that is about 10% (20% ⁇ 0.5).
  • the light is transmitted through each element arranged in the optical path, but since the transmittance of each element is ideally 100% ( ⁇ 1), the light finally emitted from the lens 45 is approximately 10%.
  • the light utilization efficiency of the optical device of one embodiment of the present invention is about 40%, which can be said to be about four times that of the conventional optical device.
  • An optical device of one embodiment of the present invention uses a reflective polarizing plate instead of a half mirror.
  • a reflective polarizer can have an ideal reflectance or transmittance of 100% for linearly polarized light, and thus can reduce light loss.
  • the optical device of one embodiment of the present invention uses only linearly polarized light instead of circularly polarized light, a retardation plate can be eliminated. Therefore, it is possible to reduce the number of optical parts constituting the optical device compared to the conventional one, and to manufacture the optical device and the electronic device at low cost.
  • FIG. 4A to 4D are diagrams showing modifications of the arrangement or form of the polarizing plate 32, the reflective polarizing plate 41, and the lens 42.
  • FIG. 4A to 4D are diagrams showing modifications of the arrangement or form of the polarizing plate 32, the reflective polarizing plate 41, and the lens 42.
  • FIG. 4A is a diagram showing a modification of the arrangement of the reflective polarizing plate 41.
  • the reflective polarizer 41 may be spaced apart from the lens 42 and positioned between the polarizer 32 and the lens 42 .
  • the polarizing plate 32 and the reflective polarizing plate 41 may be bonded together and placed between the display panel 31 and the lens 42 .
  • FIG. 4C is a diagram showing a configuration in which the lens 42, which is a biconvex lens, is replaced with two single convex lenses (lenses 42a and 42b).
  • the reflective polarizing plate 41 can be sandwiched between the lenses 42a and 42b.
  • the polarizing plate 32 and the reflective polarizing plate 41 may be bonded together and sandwiched between lenses 42a and 42b.
  • a configuration in which the polarizing plate 32 is not provided is also possible. Since both the polarizing plate 32 and the reflective polarizing plate 41 transmit 0° polarized light, the polarizing plate 32 may be omitted.
  • the polarizing plate 32 In the absence of the polarizing plate 32, the light reflected by the reflective polarizing plate 41 returns to the display panel 31 and travels toward the reflective polarizing plate 41 again. It may pass through. Such light becomes stray light and may degrade display quality.
  • the polarizing plate 32 When the polarizing plate 32 is provided, the light transmitted through the polarizing plate 32 is not reflected by the reflective polarizing plate 41, so stray light can be suppressed.
  • FIG. 5A illustrates the display panel 31 included in the electronic device of one embodiment of the present invention.
  • the display panel 31 has a pixel array 74 , a circuit 75 and a circuit 76 .
  • the pixel array 74 has pixels 70 arranged in columns and rows.
  • a pixel 70 can have multiple sub-pixels 71 .
  • the sub-pixel 71 has a function of emitting display light.
  • sub-pixel the minimum unit in which an independent operation is performed in one "pixel" is defined as a “sub-pixel” for convenience. "Sub-pixel” may be replaced with “pixel”.
  • Sub-pixel 71 has a light-emitting device that emits visible light.
  • an EL element such as an OLED (Organic Light Emitting Diode) or a QLED (Quantum-dot Light Emitting Diode).
  • the light-emitting substance of the EL element include a substance that emits fluorescence (fluorescent material), a substance that emits phosphorescence (phosphorescent material), and a substance that exhibits thermally activated delayed fluorescence (thermally activated delayed fluorescence: TADF) material. ), inorganic compounds (such as quantum dot materials), and the like.
  • LEDs such as micro LED (Light Emitting Diode), can also be used as a light emitting device.
  • Circuits 75 and 76 are driver circuits for driving the sub-pixels 71 .
  • the circuit 75 can function as a source driver circuit, and the circuit 76 can function as a gate driver circuit.
  • a shift register circuit or the like can be used for the circuits 75 and 76, for example.
  • the circuit 75 and the circuit 76 may be provided in the layer 81, the pixel array 74 may be provided in the layer 82, and the layers 81 and 82 may overlap each other. With such a structure, a display device with a narrow frame can be formed.
  • the display panel can operate at high speed with low power consumption.
  • the pixel array 74 can be partially driven. For example, partial rewriting of image data in the pixel array 74 can be performed. Also, the pixel array 74 can be partially operated at different operating frequencies.
  • circuits 75 and 76 shown in FIG. 5B are examples, and can be changed as appropriate. Also, part of the circuits 75 and 76 can be formed in the same layer as the pixel array 74 .
  • Layer 82 may also include circuits such as memory circuits, arithmetic circuits, and communication circuits.
  • the circuits 75 and 76 are formed of transistors (hereinafter referred to as Si transistors) having silicon in the channel formation region, and pixel circuits included in the pixel array 74 provided in the layer 82 are provided.
  • Si transistors transistors
  • pixel circuits included in the pixel array 74 provided in the layer 82 are provided.
  • An OS transistor can be formed using a thin film and can be stacked over a Si transistor.
  • a layer 83 provided with an OS transistor may be provided between the layers 81 and 82 as illustrated in FIG. 5C.
  • Part of the pixel circuits included in the pixel array 74 can be provided in the layer 83 using OS transistors.
  • part of the circuits 75 and 76 can be provided with OS transistors.
  • part of circuits such as memory circuits, arithmetic circuits, and communication circuits that can be provided in the layer 82 can be provided with OS transistors.
  • FIGS. 6A and 6B are diagrams showing an example of a spectacles-type device having the display device 30 and the optical device 40 shown in FIG.
  • a combination of the display device 30 and the optical device 40 is indicated as a display unit 35 by a dashed line.
  • a glasses-type device has two sets of display units 35 and is sometimes called VR glasses or the like depending on the application.
  • the two sets of display units 35 are incorporated in the housing 60 so that the surfaces of the lenses 45 are exposed inside.
  • One display unit 35 is for the right eye and the other display unit 35 is for the left eye.
  • the housing 60 or the band 61 may be provided with an input terminal and an output terminal.
  • a video signal from a video output device or the like, or a cable for supplying power for charging a battery provided in the housing 60 can be connected to the input terminal.
  • As an output terminal for example, it functions as an audio output terminal, and earphones, headphones, or the like can be connected. Note that the audio output terminal does not need to be provided when the configuration is such that audio data can be output by wireless communication, or when audio is output from an external video output device.
  • a wireless communication module may be provided inside the housing 60 or the band 61 .
  • the wireless communication module performs wireless communication, downloads content to be viewed, and can be stored in the storage module. This allows users to watch downloaded content offline whenever they want.
  • a line-of-sight sensor may be provided in the housing 60 .
  • display operation buttons such as power on, power off, sleep, volume adjustment, channel change, menu display, selection, decision, return, etc.
  • operation buttons such as video playback, stop, pause, fast forward, fast rewind Each operation can be performed by recognizing the operation button.
  • the electronic device can be small and thin, consumes low power, and has high reliability.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • Embodiment 2 In this embodiment, structural examples of a display panel that can be applied to an electronic device of one embodiment of the present invention will be described. A display panel exemplified below can be applied to the display panel 31 of the first embodiment.
  • One embodiment of the present invention is a display panel including a light-emitting element (also referred to as a light-emitting device).
  • the display panel has two or more pixels with different emission colors.
  • Each pixel has a light emitting element.
  • Each light-emitting element has a pair of electrodes and an EL layer therebetween.
  • the light-emitting element is preferably an organic EL element (organic electroluminescence element).
  • Two or more light-emitting elements with different emission colors have EL layers containing different light-emitting materials.
  • a full-color display panel can be realized by having three types of light-emitting elements that respectively emit red (R), green (G), and blue (B) light.
  • a layer containing a light-emitting material (light-emitting layer) must be formed in an island shape.
  • a method of forming an island-shaped organic film by a vapor deposition method using a shadow mask such as a metal mask is known.
  • various influences such as the precision of the metal mask, the misalignment between the metal mask and the substrate, the bending of the metal mask, and the broadening of the contour of the film to be deposited due to the scattering of vapor, etc. cause island-shaped organic films.
  • the layer profile may be blurred and the edge thickness may be reduced.
  • the thickness of the island-shaped light-emitting layer may vary depending on the location.
  • countermeasures have been taken to artificially increase the definition (also called pixel density) by adopting a special pixel arrangement method such as a pentile arrangement.
  • an island-shaped light-emitting layer means that the light-emitting layer is physically separated from an adjacent light-emitting layer.
  • an EL layer is processed into a fine pattern by photolithography without using a shadow mask such as a fine metal mask (FMM).
  • a shadow mask such as a fine metal mask (FMM).
  • FMM fine metal mask
  • a display panel having high definition and a large aperture ratio, which has been difficult to achieve, can be realized.
  • the EL layers can be separately formed, a display panel with extremely vivid, high contrast, and high display quality can be realized.
  • the EL layer may be processed into a fine pattern using both a metal mask and photolithography.
  • part or all of the EL layer can be physically separated. Accordingly, leakage current between light-emitting elements can be suppressed through a layer (also referred to as a common layer) used in common between adjacent light-emitting elements. As a result, crosstalk due to unintended light emission can be prevented, and a display panel with extremely high contrast can be realized. In particular, a display panel with high current efficiency at low luminance can be realized.
  • One embodiment of the present invention can also be a display panel in which a light-emitting element that emits white light and a color filter are combined.
  • light-emitting elements having the same structure can be applied to light-emitting elements provided in pixels (sub-pixels) that emit light of different colors, and all layers can be common layers. Further, part or all of each EL layer may be separated by a process using photolithography. As a result, leakage current through the common layer is suppressed, and a high-contrast display panel can be realized.
  • an insulating layer that covers at least the side surface of the island-shaped light-emitting layer.
  • the insulating layer may cover part of the top surface of the island-shaped EL layer.
  • a material having barrier properties against water and oxygen is preferably used for the insulating layer.
  • an inorganic insulating film that hardly diffuses water or oxygen can be used. Accordingly, deterioration of the EL layer can be suppressed, and a highly reliable display panel can be realized.
  • a phenomenon in which the common electrode is divided by a step at the end of the EL layer (also referred to as step disconnection) occurs. may insulate. Therefore, it is preferable to adopt a structure in which a local step located between two adjacent light emitting elements is filled with a resin layer functioning as a planarization film (also called LFP: Local Filling Planarization).
  • the resin layer has a function as a planarizing film.
  • FIG. 7A shows a schematic top view of a display panel 100 of one embodiment of the present invention.
  • the display panel 100 has a plurality of red light emitting elements 110R, green light emitting elements 110G, and blue light emitting elements 110B on a substrate 101, respectively.
  • the light emitting region of each light emitting element is labeled with R, G, and B.
  • FIG. 7A in order to easily distinguish each light emitting element, the light emitting region of each light emitting element is labeled with R, G, and B.
  • the light emitting elements 110R, 110G, and 110B are arranged in a matrix.
  • FIG. 7A shows a so-called stripe arrangement in which light emitting elements of the same color are arranged in one direction.
  • the arrangement method of the light-emitting elements is not limited to this, and an arrangement method such as an S-stripe arrangement, a delta arrangement, a Bayer arrangement, or a zigzag arrangement may be applied, or a pentile arrangement, a diamond arrangement, or the like may be used.
  • the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B it is preferable to use OLED or QLED, for example.
  • Examples of light-emitting substances included in EL devices include substances that emit fluorescence (fluorescent materials), substances that emit phosphorescence (phosphorescent materials), and substances that exhibit thermally activated delayed fluorescence (TADF materials). be done.
  • As a light-emitting substance included in an EL element not only an organic compound but also an inorganic compound (such as a quantum dot material) can be used.
  • FIG. 7A also shows a connection electrode 111C electrically connected to the common electrode 113.
  • connection electrodes are given the electric potential (for example, anode electric potential or cathode electric potential) for supplying to the common electrode 113.
  • the connection electrode 111C is provided outside the display area where the light emitting elements 110R and the like are arranged.
  • connection electrodes can be provided along the outer periphery of a display area.
  • it may be provided along one side of the periphery of the display area, or may be provided over two or more sides of the periphery of the display area. That is, when the top surface shape of the display area is rectangular, the top surface shape of the connection electrode 111C can be strip-shaped (rectangular), L-shaped, U-shaped (square bracket-shaped), square, or the like. .
  • FIG. 7B and 7C are schematic cross-sectional views corresponding to dashed-dotted lines A1-A2 and dashed-dotted lines A3-A4 in FIG. 7A, respectively.
  • FIG. 7B shows a schematic cross-sectional view of the light emitting elements 110R, 110G, and 110B
  • FIG. 7C shows a schematic cross-sectional view of the connection portion 140 where the connection electrode 111C and the common electrode 113 are connected. ing.
  • the light emitting element 110R has a pixel electrode 111R, an organic layer 112R, a common layer 114, and a common electrode 113.
  • the light emitting element 110G has a pixel electrode 111G, an organic layer 112G, a common layer 114, and a common electrode 113.
  • the light emitting element 110B has a pixel electrode 111B, an organic layer 112B, a common layer 114, and a common electrode 113.
  • FIG. Common layer 114 and common electrode 113 are provided in common for light emitting element 110R, light emitting element 110G, and light emitting element 110B.
  • the organic layer 112R included in the light-emitting element 110R has at least a light-emitting organic compound that emits red light.
  • the organic layer 112G included in the light-emitting element 110G contains at least a light-emitting organic compound that emits green light.
  • the organic layer 112B included in the light-emitting element 110B contains at least a light-emitting organic compound that emits blue light.
  • Each of the organic layer 112R, the organic layer 112G, and the organic layer 112B can also be called an EL layer and has at least a layer containing a light-emitting substance (light-emitting layer).
  • the light-emitting element 110R, the light-emitting element 110G, and the light-emitting element 110B may be referred to as the light-emitting element 110 when describing matters common to them.
  • the symbols omitting the letters may be used. be.
  • Organic layer 112 and common layer 114 can each independently comprise one or more of an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer.
  • the organic layer 112 may have a layered structure of a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer from the pixel electrode 111 side
  • the common layer 114 may have an electron injection layer.
  • a pixel electrode 111R, a pixel electrode 111G, and a pixel electrode 111B are provided for each light emitting element. Further, the common electrode 113 and the common layer 114 are provided as a continuous layer common to each light emitting element.
  • a conductive film having a property of transmitting visible light is used for one of the pixel electrodes and the common electrode 113, and a conductive film having a reflective property is used for the other.
  • a protective layer 121 is provided on the common electrode 113 to cover the light emitting elements 110R, 110G, and 110B.
  • the protective layer 121 has a function of preventing impurities such as water from diffusing into each light emitting element from above.
  • the end of the pixel electrode 111 preferably has a tapered shape.
  • the organic layer 112 provided along the edge of the pixel electrode 111 can also have a tapered shape.
  • the coverage of the organic layer 112 provided over the end portion of the pixel electrode 111 can be improved.
  • the side surface of the pixel electrode 111 is tapered because foreign matter (eg, dust or particles) in the manufacturing process can be easily removed by cleaning or the like.
  • a tapered shape refers to a shape in which at least a part of the side surface of the structure is inclined with respect to the substrate surface.
  • the organic layer 112 is processed into an island shape using photolithography. Therefore, the organic layer 112 has a shape in which the angle formed by the top surface and the side surface is close to 90 degrees at the end.
  • an organic film formed using FMM (Fine Metal Mask) or the like tends to gradually decrease in thickness closer to the edge. Since it is formed, it becomes a shape in which it is difficult to distinguish between the upper surface and the side surface.
  • An insulating layer 125, a resin layer 126 and a layer 128 are provided between two adjacent light emitting elements.
  • the side surfaces of the organic layers 112 are provided to face each other with the resin layer 126 interposed therebetween.
  • the resin layer 126 is positioned between two adjacent light emitting elements and is provided so as to fill the end portions of the respective organic layers 112 and the region between the two organic layers 112 .
  • the resin layer 126 has a smooth convex upper surface, and the common layer 114 and the common electrode 113 are provided to cover the upper surface of the resin layer 126 .
  • the resin layer 126 functions as a planarizing film that fills the steps located between the two adjacent light emitting elements.
  • a phenomenon in which the common electrode 113 is divided by a step at the end of the organic layer 112 (also referred to as step disconnection) occurs, and the common electrode on the organic layer 112 is prevented from being insulated. be able to.
  • the resin layer 126 can also be called LFP (Local Filling Planarization).
  • an insulating layer containing an organic material can be preferably used.
  • acrylic resin, polyimide resin, epoxy resin, imide resin, polyamide resin, polyimideamide resin, silicone resin, siloxane resin, benzocyclobutene-based resin, phenolic resin, and precursors of these resins are applied as the resin layer 126. can do.
  • an organic material such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin may be used.
  • a photosensitive resin can be used as the resin layer 126 .
  • a photoresist may be used as the photosensitive resin.
  • a positive material or a negative material can be used for the photosensitive resin.
  • the resin layer 126 may contain a material that absorbs visible light.
  • the resin layer 126 itself may be made of a material that absorbs visible light, or the resin layer 126 may contain a pigment that absorbs visible light.
  • a resin that transmits red, blue, or green light and can be used as a color filter that absorbs other light, or a resin that contains carbon black as a pigment and functions as a black matrix, or the like. can be used.
  • the insulating layer 125 is provided in contact with the side surface of the organic layer 112 . Also, the insulating layer 125 is provided to cover the upper end portion of the organic layer 112 . A part of the insulating layer 125 is provided in contact with the upper surface of the substrate 101 .
  • the insulating layer 125 is positioned between the resin layer 126 and the organic layer 112 and functions as a protective film to prevent the resin layer 126 from contacting the organic layer 112 .
  • the organic layer 112 may be dissolved by an organic solvent or the like used when forming the resin layer 126 . Therefore, by providing the insulating layer 125 between the organic layer 112 and the resin layer 126, the side surface of the organic layer 112 can be protected.
  • the insulating layer 125 can be an insulating layer containing an inorganic material.
  • an inorganic insulating film such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, or a nitride oxide insulating film can be used, for example.
  • the insulating layer 125 may have a single-layer structure or a laminated structure.
  • the oxide insulating film includes a silicon oxide film, an aluminum oxide film, a magnesium oxide film, an indium gallium zinc oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, and an oxide film.
  • a hafnium film, a tantalum oxide film, and the like are included.
  • the nitride insulating film include a silicon nitride film and an aluminum nitride film.
  • As the oxynitride insulating film a silicon oxynitride film, an aluminum oxynitride film, or the like can be given.
  • nitride oxide insulating film a silicon nitride oxide film, an aluminum nitride oxide film, or the like can be given.
  • a metal oxide film such as a hafnium oxide film, or an inorganic insulating film such as a silicon oxide film to the insulating layer 125, pinholes are reduced and the EL layer can be protected.
  • a superior insulating layer 125 can be formed.
  • oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • nitride oxide refers to a material whose composition contains more nitrogen than oxygen. point to the material.
  • silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • silicon nitride oxide refers to a material whose composition contains more nitrogen than oxygen. indicates
  • a sputtering method, a CVD method, a PLD method, an ALD method, or the like can be used to form the insulating layer 125 .
  • the insulating layer 125 is preferably formed by an ALD method with good coverage.
  • a reflective film for example, a metal film containing one or more selected from silver, palladium, copper, titanium, and aluminum
  • a reflective film is provided between the insulating layer 125 and the resin layer 126 so that A configuration may be adopted in which emitted light is reflected by the reflecting film.
  • the light extraction efficiency can be improved.
  • the layer 128 is part of a protective layer (also referred to as a mask layer or a sacrificial layer) for protecting the organic layer 112 when the organic layer 112 is etched.
  • a protective layer also referred to as a mask layer or a sacrificial layer
  • any of the materials that can be used for the insulating layer 125 can be used.
  • an aluminum oxide film, a metal oxide film such as a hafnium oxide film, or an inorganic insulating film such as a silicon oxide film formed by an ALD method has few pinholes, it has an excellent function of protecting the EL layer. It can be suitably used for
  • the protective layer 121 can have, for example, a single-layer structure or a laminated structure including at least an inorganic insulating film.
  • inorganic insulating films include oxide films and nitride films such as silicon oxide films, silicon oxynitride films, silicon nitride oxide films, silicon nitride films, aluminum oxide films, aluminum oxynitride films, and hafnium oxide films.
  • a semiconductor material or a conductive material such as indium gallium oxide, indium zinc oxide, indium tin oxide, or indium gallium zinc oxide may be used for the protective layer 121 .
  • a laminated film of an inorganic insulating film and an organic insulating film can also be used as the protective layer 121 .
  • a structure in which an organic insulating film is sandwiched between a pair of inorganic insulating films is preferable.
  • the organic insulating film functions as a planarizing film.
  • the upper surface of the organic insulating film can be flattened, so that the coverage of the inorganic insulating film thereon can be improved, and the barrier property can be enhanced.
  • the upper surface of the protective layer 121 is flat, when a structure (for example, a color filter, an electrode of a touch sensor, or a lens array) is provided above the protective layer 121, an uneven shape due to the structure below may be formed. This is preferable because it can reduce the impact.
  • a structure for example, a color filter, an electrode of a touch sensor, or a lens array
  • FIG. 7C shows a connection portion 140 where the connection electrode 111C and the common electrode 113 are electrically connected.
  • connection portion 140 an opening is provided in insulating layer 125 and resin layer 126 above connection electrode 111C.
  • the connection electrode 111C and the common electrode 113 are electrically connected through the opening.
  • FIG. 7C shows the connection portion 140 where the connection electrode 111C and the common electrode 113 are electrically connected. good.
  • the common layer 114 is located at the connection portion 140 because the electrical resistivity of the material used for the common layer 114 is sufficiently low and the thickness can be made thin. Often times there are no problems. As a result, the common electrode 113 and the common layer 114 can be formed using the same shielding mask, so the manufacturing cost can be reduced.
  • Configuration example 2 A display panel having a configuration partially different from that of Configuration Example 1 will be described below. It should be noted that the parts common to the above configuration example 1 may be referred to and the description thereof may be omitted.
  • FIG. 8A shows a schematic cross-sectional view of the display panel 100a.
  • the display panel 100a differs from the display panel 100 mainly in that the configuration of the light-emitting elements is different and that the display panel 100a has a colored layer.
  • the display panel 100a has a light emitting element 110W that emits white light.
  • the light emitting element 110W has a pixel electrode 111, an organic layer 112W, a common layer 114, and a common electrode 113.
  • the organic layer 112W exhibits white light emission.
  • the organic layer 112W can be configured to contain two or more kinds of light-emitting materials whose emission colors are complementary.
  • the organic layer 112W may include a luminescent organic compound that emits red light, a luminescent organic compound that emits green light, and a luminescent organic compound that emits blue light. can.
  • a structure including a light-emitting organic compound that emits blue light and a light-emitting organic compound that emits yellow light may be employed.
  • Each organic layer 112W is separated between two adjacent light emitting elements 110W. As a result, leakage current flowing between the adjacent light emitting elements 110W via the organic layer 112W can be suppressed, and crosstalk caused by the leakage current can be suppressed. Therefore, a display panel with high contrast and high color reproducibility can be realized.
  • An insulating layer 122 functioning as a planarization film is provided over the protective layer 121, and a colored layer 116R, a colored layer 116G, and a colored layer 116B are provided over the insulating layer 122.
  • FIG. 1 An insulating layer 122 functioning as a planarization film is provided over the protective layer 121, and a colored layer 116R, a colored layer 116G, and a colored layer 116B are provided over the insulating layer 122.
  • the insulating layer 122 an organic resin film or an inorganic insulating film having a planarized top surface can be used.
  • the insulating layer 122 forms a surface on which the colored layer 116R, the colored layer 116G, and the colored layer 116B are formed. Color purity can be improved. Note that if the thickness of the colored layer 116R or the like is non-uniform, the amount of light absorbed varies depending on the location of the colored layer 116R, which may reduce the color purity.
  • FIG. 8B shows a schematic cross-sectional view of the display panel 100b.
  • the light emitting element 110R has a pixel electrode 111, a conductive layer 115R, an organic layer 112W, and a common electrode 113.
  • the light emitting element 110G has a pixel electrode 111, a conductive layer 115G, an organic layer 112W, and a common electrode 113.
  • the light emitting element 110B has a pixel electrode 111, a conductive layer 115B, an organic layer 112W, and a common electrode 113.
  • Each of the conductive layer 115R, the conductive layer 115G, and the conductive layer 115B has translucency and functions as an optical adjustment layer.
  • a microresonator (microcavity) structure is realized by using a film that reflects visible light for the pixel electrode 111 and using a film that reflects and transmits visible light for the common electrode 113. be able to.
  • the thicknesses of the conductive layer 115R, the conductive layer 115G, and the conductive layer 115B so as to obtain the optimum optical path length, even when the organic layer 112 that emits white light is used, From the light-emitting element 110R, the light-emitting element 110G, and the light-emitting element 110B, light with different wavelengths can be obtained.
  • the colored layers 116R, 116G, and 116B are provided on the optical paths of the light emitting elements 110R, 110G, and 110B, respectively, so that light with high color purity can be obtained.
  • an insulating layer 123 is provided to cover the end portions of the pixel electrode 111 and the optical adjustment layer 115 .
  • the insulating layer 123 preferably has tapered ends.
  • the organic layer 112W and the common electrode 113 are each provided in common to each light emitting element as a continuous film. Such a structure is preferable because the manufacturing process of the display panel can be greatly simplified.
  • the pixel electrode 111 preferably has a nearly vertical shape at its end.
  • a steep slope can be formed on the surface of the insulating layer 123, and a thin portion can be formed in a part of the organic layer 112W covering this portion, or a part of the organic layer 112W can be formed. can be divided. Therefore, it is possible to suppress leakage current through the organic layer 112W generated between adjacent light emitting elements without processing the organic layer 112W using a photolithography method or the like.
  • FIG. 7A A pixel layout different from that in FIG. 7A will be mainly described below.
  • the arrangement of the light emitting elements (sub-pixels) is not particularly limited, and various methods can be applied.
  • top surface shapes of sub-pixels include triangles, quadrilaterals (including rectangles and squares), polygons such as pentagons, shapes with rounded corners, ellipses, and circles.
  • the top surface shape of the sub-pixel corresponds to the top surface shape of the light emitting region of the light emitting element.
  • the S-stripe arrangement is applied to the pixel 150 shown in FIG. 9A.
  • the pixel 150 shown in FIG. 9A is composed of three sub-pixels, light emitting elements 110a, 110b and 110c.
  • the light emitting element 110a may be a blue light emitting element
  • the light emitting element 110b may be a red light emitting element
  • the light emitting element 110c may be a green light emitting element.
  • the pixel 150 shown in FIG. 9B includes a light emitting element 110a having a substantially trapezoidal or substantially triangular top shape with rounded corners, a light emitting element 110b having a substantially trapezoidal or substantially triangular top shape with rounded corners, and a substantially quadrangular or substantially rectangular shape with rounded corners. and a light emitting element 110c having a substantially hexagonal top surface shape. Further, the light emitting element 110a has a larger light emitting area than the light emitting element 110b. Thus, the shape and size of each light emitting element can be determined independently. For example, a more reliable light-emitting element can be made smaller.
  • the light emitting element 110a may be a green light emitting element
  • the light emitting element 110b may be a red light emitting element
  • the light emitting element 110c may be a blue light emitting element.
  • FIG. 9C shows an example in which pixels 124a having light emitting elements 110a and 110b and pixels 124b having light emitting elements 110b and 110c are alternately arranged.
  • the light emitting element 110a may be a red light emitting element
  • the light emitting element 110b may be a green light emitting element
  • the light emitting element 110c may be a blue light emitting element.
  • the pixels 124a, 124b shown in Figures 9D and 9E have a delta arrangement applied.
  • the pixel 124a has two light emitting elements (light emitting elements 110a and 110b) in the upper row (first row) and one light emitting element (light emitting element 110c) in the lower row (second row).
  • the pixel 124b has one light emitting element (light emitting element 110c) in the upper row (first row) and two light emitting elements (light emitting elements 110a and 110b) in the lower row (second row).
  • the light emitting element 110a may be a red light emitting element
  • the light emitting element 110b may be a green light emitting element
  • the light emitting element 110c may be a blue light emitting element.
  • FIG. 9D is an example in which each light emitting element has a substantially square top surface shape with rounded corners
  • FIG. 9E is an example in which each light emitting element has a circular top surface shape.
  • FIG. 9F is an example in which light emitting elements of each color are arranged in a zigzag pattern. Specifically, when viewed from above, the upper sides of two light emitting elements (for example, light emitting elements 110a and 110b, or light emitting elements 110b and 110c) aligned in the column direction are displaced.
  • the light emitting element 110a may be a red light emitting element
  • the light emitting element 110b may be a green light emitting element
  • the light emitting element 110c may be a blue light emitting element.
  • the top surface shape of the light emitting element may be a polygonal shape with rounded corners, an elliptical shape, a circular shape, or the like.
  • the EL layer is processed into an island shape using a resist mask.
  • the resist film formed on the EL layer needs to be cured at a temperature lower than the heat resistance temperature of the EL layer. Therefore, curing of the resist film may be insufficient depending on the heat resistance temperature of the EL layer material and the curing temperature of the resist material.
  • a resist film that is insufficiently hardened may take a shape away from the desired shape during processing.
  • the top surface shape of the EL layer may be a polygon with rounded corners, an ellipse, or a circle. For example, when a resist mask having a square top surface is formed, a resist mask having a circular top surface is formed, and the EL layer may have a circular top surface.
  • a technique for correcting the mask pattern in advance so that the design pattern and the transfer pattern match.
  • OPC Optical Proximity Correction
  • a pattern for correction is added to a corner portion of a figure on a mask pattern.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • the display panel of the present embodiment is a high-definition display panel, and is particularly used for the display unit of VR devices such as head-mounted displays and wearable devices such as glasses-type AR devices that can be worn on the head. is suitable.
  • Display module A perspective view of the display module 280 is shown in FIG. 10A.
  • the display module 280 has a display panel 200A and an FPC 290 .
  • the display panel included in the display module 280 is not limited to the display panel 200A, and may be any one of the display panels 200B to 200F described later.
  • Display module 280 has a substrate 291 and a substrate 292 .
  • the display module 280 has a display section 281 .
  • the display unit 281 is an area for displaying images.
  • FIG. 10B shows a perspective view schematically showing the configuration on the substrate 291 side.
  • a circuit section 282 , a pixel circuit section 283 on the circuit section 282 , and a pixel section 284 on the pixel circuit section 283 are stacked on the substrate 291 .
  • a terminal portion 285 for connecting to the FPC 290 is provided on a portion of the substrate 291 that does not overlap with the pixel portion 284 .
  • the terminal portion 285 and the circuit portion 282 are electrically connected by a wiring portion 286 composed of a plurality of wirings.
  • the pixel section 284 has a plurality of periodically arranged pixels 284a. An enlarged view of one pixel 284a is shown on the right side of FIG. 10B.
  • the pixel 284a has a light emitting element 110R that emits red light, a light emitting element 110G that emits green light, and a light emitting element 110B that emits blue light.
  • the pixel circuit section 283 has a plurality of pixel circuits 283a arranged periodically.
  • One pixel circuit 283a is a circuit that controls light emission of three light emitting devices included in one pixel 284a.
  • One pixel circuit 283a may be provided with three circuits for controlling light emission of one light-emitting device.
  • the pixel circuit 283a can have at least one selection transistor, one current control transistor (driving transistor), and a capacitive element for each light emitting device. At this time, a gate signal is inputted to the gate of the selection transistor, and a source signal is inputted to the source thereof. This realizes an active matrix display panel.
  • the circuit section 282 has a circuit that drives each pixel circuit 283 a of the pixel circuit section 283 .
  • a circuit that drives each pixel circuit 283 a of the pixel circuit section 283 For example, it is preferable to have one or both of a gate line driver circuit and a source line driver circuit.
  • at least one of an arithmetic circuit, a memory circuit, a power supply circuit, and the like may be provided.
  • the transistor provided in the circuit portion 282 may form part of the pixel circuit 283a. That is, the pixel circuit 283a may be configured with the transistor included in the pixel circuit portion 283 and the transistor included in the circuit portion 282.
  • the FPC 290 functions as wiring for externally supplying a video signal, a power supply potential, and the like to the circuit section 282 . Also, an IC may be mounted on the FPC 290 .
  • the aperture ratio (effective display area ratio) of the display portion 281 is can be very high.
  • the aperture ratio of the display section 281 can be 40% or more and less than 100%, preferably 50% or more and 95% or less, more preferably 60% or more and 95% or less.
  • the pixels 284a can be arranged at an extremely high density, and the definition of the display portion 281 can be extremely high.
  • the pixels 284a may be arranged with a resolution of 2000 ppi or more, preferably 3000 ppi or more, more preferably 5000 ppi or more, and still more preferably 6000 ppi or more, and 20000 ppi or less, or 30000 ppi or less. preferable.
  • a display module 280 Since such a display module 280 has extremely high definition, it can be suitably used for equipment for VR such as a head-mounted display, or equipment for glasses-type AR. For example, even in the case of a configuration in which the display portion of the display module 280 is viewed through a lens, the display module 280 has an extremely high-definition display portion 281, so pixels cannot be viewed even if the display portion is enlarged with the lens. , a highly immersive display can be performed. Moreover, the display module 280 is not limited to this, and can be suitably used for electronic equipment having a relatively small display unit. For example, it can be suitably used for a display part of a wearable electronic device such as a wristwatch.
  • Display panel 200A A display panel 200A shown in FIG.
  • Substrate 301 corresponds to substrate 291 in FIGS. 10A and 10B.
  • a transistor 310 has a channel formation region in the substrate 301 .
  • the substrate 301 for example, a semiconductor substrate such as a single crystal silicon substrate can be used.
  • Transistor 310 includes a portion of substrate 301 , conductive layer 311 , low resistance region 312 , insulating layer 313 and insulating layer 314 .
  • the conductive layer 311 functions as a gate electrode.
  • An insulating layer 313 is located between the substrate 301 and the conductive layer 311 and functions as a gate insulating layer.
  • the low-resistance region 312 is a region in which the substrate 301 is doped with impurities and functions as either a source or a drain.
  • the insulating layer 314 is provided to cover the side surface of the conductive layer 311 .
  • a device isolation layer 315 is provided between two adjacent transistors 310 so as to be embedded in the substrate 301 .
  • An insulating layer 261 is provided to cover the transistor 310 and a capacitor 240 is provided over the insulating layer 261 .
  • the capacitor 240 has a conductive layer 241, a conductive layer 245, and an insulating layer 243 positioned therebetween.
  • the conductive layer 241 functions as one electrode of the capacitor 240
  • the conductive layer 245 functions as the other electrode of the capacitor 240
  • the insulating layer 243 functions as the dielectric of the capacitor 240 .
  • the conductive layer 241 is provided over the insulating layer 261 and embedded in the insulating layer 254 .
  • Conductive layer 241 is electrically connected to one of the source or drain of transistor 310 by plug 271 embedded in insulating layer 261 .
  • An insulating layer 243 is provided over the conductive layer 241 .
  • the conductive layer 245 is provided in a region overlapping with the conductive layer 241 with the insulating layer 243 provided therebetween.
  • An insulating layer 255a is provided to cover the capacitor 240, an insulating layer 255b is provided over the insulating layer 255a, and an insulating layer 255c is provided over the insulating layer 255b.
  • An inorganic insulating film can be preferably used for each of the insulating layer 255a, the insulating layer 255b, and the insulating layer 255c.
  • a silicon oxide film is preferably used for the insulating layers 255a and 255c
  • a silicon nitride film is preferably used for the insulating layer 255b.
  • the insulating layer 255b can function as an etching protection film.
  • an example in which the insulating layer 255c is partly etched to form a recess is shown; however, the insulating layer 255c does not have to be provided with the recess.
  • a light-emitting element 110R, a light-emitting element 110G, and a light-emitting element 110B are provided over the insulating layer 255c.
  • Embodiment 1 can be referred to for the configurations of the light emitting element 110R, the light emitting element 110G, and the light emitting element 110B.
  • the light-emitting device is separately manufactured for each emission color, so the change in chromaticity is small between low-luminance light emission and high-luminance light emission.
  • the organic layers 112R, 112G, and 112B are separated from each other, crosstalk between adjacent sub-pixels can be suppressed even in a high-definition display panel. Therefore, a display panel with high definition and high display quality can be realized.
  • An insulating layer 125, a resin layer 126, and a layer 128 are provided in a region between adjacent light emitting elements.
  • the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B of the light emitting element are composed of the insulating layer 255a, the insulating layer 255b, and the plug 256 embedded in the insulating layer 255c, the conductive layer 241 embedded in the insulating layer 254, and the pixel electrode 111B. , is electrically connected to one of the source or drain of the transistor 310 by a plug 271 embedded in the insulating layer 261 .
  • the height of the upper surface of the insulating layer 255c and the height of the upper surface of the plug 256 match or substantially match.
  • Various conductive materials can be used for the plug.
  • a protective layer 121 is provided on the light emitting elements 110R, 110G, and 110B.
  • a substrate 170 is bonded onto the protective layer 121 with an adhesive layer 171 .
  • No insulating layer is provided between two adjacent pixel electrodes 111 to cover the edge of the upper surface of the pixel electrode 111 . Therefore, the interval between adjacent light emitting elements can be extremely narrowed. Therefore, a high-definition or high-resolution display panel can be obtained.
  • a display panel 200B shown in FIG. 12 has a structure in which a transistor 310A and a transistor 310B each having a channel formed in a semiconductor substrate are stacked.
  • the description of the same parts as those of the previously described display panel may be omitted.
  • the display panel 200B has a structure in which a substrate 301B provided with a transistor 310B, a capacitor 240, and a light emitting device and a substrate 301A provided with a transistor 310A are bonded together.
  • an insulating layer 345 is provided on the lower surface of the substrate 301B, and an insulating layer 346 is provided on the insulating layer 261 provided on the substrate 301A.
  • the insulating layers 345 and 346 are insulating layers that function as protective layers, and can suppress diffusion of impurities into the substrates 301B and 301A.
  • an inorganic insulating film that can be used for the protective layer 121 can be used.
  • Substrate 301B is provided with a plug 343 penetrating through substrate 301B and insulating layer 345 .
  • an insulating layer 344 functioning as a protective layer to cover the side surface of the plug 343 .
  • the substrate 301B is provided with a conductive layer 342 under the insulating layer 345 .
  • the conductive layer 342 is embedded in the insulating layer 335, and the lower surfaces of the conductive layer 342 and the insulating layer 335 are planarized. Also, the conductive layer 342 is electrically connected to the plug 343 .
  • the conductive layer 341 is provided on the insulating layer 346 on the substrate 301A.
  • the conductive layer 341 is embedded in the insulating layer 336, and the top surfaces of the conductive layer 341 and the insulating layer 336 are planarized.
  • the same conductive material is preferably used for the conductive layers 341 and 342 .
  • a metal film containing an element selected from Al, Cr, Cu, Ta, Ti, Mo, and W, or a metal nitride film (titanium nitride film, molybdenum nitride film, tungsten nitride film) containing the above elements as components etc. can be used.
  • a Cu—Cu (copper-copper) direct bonding technique (a technique for achieving electrical continuity by connecting Cu (copper) pads) can be applied.
  • a display panel 200 ⁇ /b>C shown in FIG. 13 has a configuration in which a conductive layer 341 and a conductive layer 342 are bonded via bumps 347 .
  • the conductive layers 341 and 342 can be electrically connected.
  • the bumps 347 can be formed using a conductive material containing, for example, gold (Au), nickel (Ni), indium (In), tin (Sn), or the like. Also, for example, solder may be used as the bumps 347 . Further, an adhesive layer 348 may be provided between the insulating layer 345 and the insulating layer 346 . Further, when the bump 347 is provided, the insulating layer 335 and the insulating layer 336 may not be provided.
  • Display panel 200D A display panel 200D shown in FIG. 14 is mainly different from the display panel 200A in that the configuration of transistors is different.
  • the transistor 320 is a transistor (OS transistor) in which a metal oxide (also referred to as an oxide semiconductor) is applied to a semiconductor layer in which a channel is formed.
  • OS transistor a transistor in which a metal oxide (also referred to as an oxide semiconductor) is applied to a semiconductor layer in which a channel is formed.
  • the transistor 320 has a semiconductor layer 321 , an insulating layer 323 , a conductive layer 324 , a pair of conductive layers 325 , an insulating layer 326 , and a conductive layer 327 .
  • Substrate 331 corresponds to substrate 291 in FIGS. 10A and 10B.
  • An insulating layer 332 is provided over the substrate 331 .
  • the insulating layer 332 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing from the substrate 331 into the transistor 320 and oxygen from the semiconductor layer 321 toward the insulating layer 332 side.
  • a film into which hydrogen or oxygen is less likely to diffuse than a silicon oxide film such as an aluminum oxide film, a hafnium oxide film, or a silicon nitride film, can be used.
  • a conductive layer 327 is provided over the insulating layer 332 and an insulating layer 326 is provided to cover the conductive layer 327 .
  • the conductive layer 327 functions as a first gate electrode of the transistor 320, and part of the insulating layer 326 functions as a first gate insulating layer.
  • An oxide insulating film such as a silicon oxide film is preferably used for at least a portion of the insulating layer 326 that is in contact with the semiconductor layer 321 .
  • the upper surface of the insulating layer 326 is preferably planarized.
  • the semiconductor layer 321 is provided over the insulating layer 326 .
  • the semiconductor layer 321 preferably includes a metal oxide (also referred to as an oxide semiconductor) film exhibiting semiconductor characteristics.
  • a pair of conductive layers 325 is provided on and in contact with the semiconductor layer 321 and functions as a source electrode and a drain electrode.
  • An insulating layer 328 is provided to cover the top and side surfaces of the pair of conductive layers 325 , the side surface of the semiconductor layer 321 , and the like, and the insulating layer 264 is provided over the insulating layer 328 .
  • the insulating layer 328 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing into the semiconductor layer 321 from the insulating layer 264 or the like and oxygen from leaving the semiconductor layer 321 .
  • an insulating film similar to the insulating layer 332 can be used as the insulating layer 328.
  • An opening reaching the semiconductor layer 321 is provided in the insulating layer 328 and the insulating layer 264 .
  • An insulating layer 323 in contact with the upper surface of the semiconductor layer 321 and a conductive layer 324 are embedded in the opening.
  • the conductive layer 324 functions as a second gate electrode, and the insulating layer 323 functions as a second gate insulating layer.
  • the top surface of the conductive layer 324, the top surface of the insulating layer 323, and the top surface of the insulating layer 264 are planarized so that their heights are the same or substantially the same, and an insulating layer 329 and an insulating layer 265 are provided to cover them. ing.
  • the insulating layers 264 and 265 function as interlayer insulating layers.
  • the insulating layer 329 functions as a barrier layer that prevents impurities such as water or hydrogen from diffusing into the transistor 320 from the insulating layer 265 or the like.
  • an insulating film similar to the insulating layers 328 and 332 can be used.
  • a plug 274 electrically connected to one of the pair of conductive layers 325 is provided so as to be embedded in the insulating layers 265 , 329 and 264 .
  • the plug 274 includes a conductive layer 274a covering the side surfaces of the openings of the insulating layers 265, the insulating layers 329, the insulating layers 264, and the insulating layers 328 and part of the upper surface of the conductive layer 325, and the conductive layer 274a. It is preferable to have a conductive layer 274b in contact with the top surface. At this time, a conductive material into which hydrogen and oxygen are difficult to diffuse is preferably used for the conductive layer 274a.
  • the structure of the transistor included in the display panel of this embodiment there is no particular limitation on the structure of the transistor included in the display panel of this embodiment.
  • a planar transistor, a staggered transistor, an inverted staggered transistor, or the like can be used.
  • the transistor structure may be either a top-gate type or a bottom-gate type.
  • gates may be provided above and below a semiconductor layer in which a channel is formed.
  • a structure in which a semiconductor layer in which a channel is formed is sandwiched between two gates is applied to the transistor 320 .
  • a transistor may be driven by connecting two gates and applying the same signal to them.
  • the threshold voltage of the transistor may be controlled by applying a potential for controlling the threshold voltage to one of the two gates and applying a potential for driving to the other.
  • the crystallinity of the semiconductor material used for the semiconductor layer of the transistor is not particularly limited, either.
  • a semiconductor having a crystalline region in the semiconductor) may be used.
  • a single crystal semiconductor or a crystalline semiconductor is preferably used because deterioration in transistor characteristics can be suppressed.
  • the bandgap of the metal oxide used for the semiconductor layer of the transistor is preferably 2 eV or more, more preferably 2.5 eV or more.
  • the metal oxide preferably comprises at least indium or zinc, more preferably indium and zinc.
  • metal oxides include indium and M (where M is gallium, aluminum, yttrium, tin, silicon, boron, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium). , hafnium, tantalum, tungsten, magnesium, and cobalt) and zinc.
  • the semiconductor layer of the transistor may comprise silicon.
  • silicon examples include amorphous silicon and crystalline silicon (low-temperature polysilicon, monocrystalline silicon, etc.).
  • Metal oxides that can be used in the semiconductor layer include, for example, indium oxide, gallium oxide, and zinc oxide. Also, the metal oxide preferably contains two or three elements selected from indium, the element M, and zinc. Element M includes gallium, aluminum, silicon, boron, yttrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, and magnesium. One or more selected from In particular, the element M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • an oxide containing indium, gallium, and zinc is preferably used as the metal oxide used for the semiconductor layer.
  • an oxide containing indium, tin, and zinc also referred to as ITZO (registered trademark)
  • ITZO oxide containing indium, gallium, tin, and zinc
  • oxides containing indium, gallium, tin, and zinc are preferably used.
  • an oxide containing indium, aluminum, and zinc also referred to as IAZO
  • an oxide containing indium, aluminum, gallium, and zinc is preferably used.
  • the atomic ratio of In in the In-M-Zn oxide is preferably equal to or higher than the atomic ratio of M.
  • the semiconductor layer may have two or more metal oxide layers with different compositions.
  • gallium or aluminum it is particularly preferable to use gallium or aluminum as the element M.
  • a stacked structure of one selected from indium oxide, indium gallium oxide, and IGZO and one selected from IAZO, IAGZO, and ITZO (registered trademark) is used.
  • crystalline oxide semiconductors examples include CAAC (c-axis-aligned crystalline)-OS, nc (nanocrystalline)-OS, and the like.
  • OS transistors have much higher field-effect mobility than transistors using amorphous silicon.
  • an OS transistor has extremely low source-drain leakage current (hereinafter also referred to as an off-state current) in an off state, and can retain charge accumulated in a capacitor connected in series with the transistor for a long time. is possible. Further, by using the OS transistor, power consumption of the display panel can be reduced.
  • the amount of current flowing through the light emitting device it is necessary to increase the amount of current flowing through the light emitting device.
  • the OS transistor when the transistor operates in the saturation region, the OS transistor has a smaller change in the source-drain current with respect to the change in the gate-source voltage than the Si transistor. Therefore, by applying an OS transistor as a drive transistor included in a pixel circuit, the current flowing between the source and the drain can be finely determined according to the change in the voltage between the gate and the source. can be controlled. Therefore, it is possible to increase the gradation in the pixel circuit.
  • the OS transistor flows a more stable current (saturation current) than the Si transistor even when the source-drain voltage gradually increases. be able to. Therefore, by using the OS transistor as the driving transistor, a stable current can be supplied to the light-emitting device even when the current-voltage characteristics of the EL device vary, for example. That is, when the OS transistor operates in the saturation region, even if the source-drain voltage is increased, the source-drain current hardly changes, so that the light emission luminance of the light-emitting device can be stabilized.
  • an OS transistor as a driving transistor included in a pixel circuit, it is possible to suppress black floating, increase emission luminance, provide multiple gradations, and suppress variations in light emitting devices. can be planned.
  • a display panel 200E illustrated in FIG. 15 has a structure in which a transistor 320A and a transistor 320B each including an oxide semiconductor as a semiconductor in which a channel is formed are stacked.
  • the display panel 200D can be referred to for the configuration of the transistor 320A, the transistor 320B, and their peripherals.
  • transistors each including an oxide semiconductor are stacked here, the structure is not limited to this.
  • a structure in which three or more transistors are stacked may be employed.
  • a display panel 200F illustrated in FIG. 16 has a structure in which a transistor 310 in which a channel is formed over a substrate 301 and a transistor 320 including a metal oxide in a semiconductor layer in which the channel is formed are stacked.
  • An insulating layer 261 is provided to cover the transistor 310 , and a conductive layer 251 is provided over the insulating layer 261 .
  • An insulating layer 262 is provided to cover the conductive layer 251 , and the conductive layer 252 is provided over the insulating layer 262 .
  • the conductive layers 251 and 252 each function as wiring.
  • An insulating layer 263 and an insulating layer 332 are provided to cover the conductive layer 252 , and the transistor 320 is provided over the insulating layer 332 .
  • An insulating layer 265 is provided to cover the transistor 320 and a capacitor 240 is provided over the insulating layer 265 . Capacitor 240 and transistor 320 are electrically connected by plug 274 .
  • the transistor 320 can be used as a transistor forming a pixel circuit. Further, the transistor 310 can be used as a transistor forming a pixel circuit or a transistor forming a driver circuit (a gate line driver circuit or a source line driver circuit) for driving the pixel circuit. Further, the transistors 310 and 320 can be used as transistors included in various circuits such as an arithmetic circuit and a memory circuit.
  • a display panel 200G illustrated in FIG. 17 has a structure in which a transistor 310 in which a channel is formed over a substrate 301, a transistor 320A including a metal oxide in a semiconductor layer in which the channel is formed, and a transistor 320B are stacked.
  • the transistor 320A can be used as a transistor forming a pixel circuit.
  • the transistor 310 can be used as a transistor that forms a pixel circuit or a transistor that forms a driver circuit (a gate line driver circuit or a source line driver circuit) for driving the pixel circuit.
  • the transistor 320B may be used as a transistor forming a pixel circuit, or may be used as a transistor forming the driver circuit. Further, the transistor 310, the transistor 320A, and the transistor 320B can be used as transistors included in various circuits such as an arithmetic circuit or a memory circuit.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • a device manufactured using a metal mask or FMM may be referred to as a device with an MM (metal mask) structure.
  • a device manufactured without using a metal mask or FMM may be referred to as a device with an MML (metal maskless) structure.
  • a structure in which at least light-emitting layers are separately formed in light-emitting devices with different emission wavelengths is sometimes referred to as an SBS (side-by-side) structure.
  • SBS side-by-side
  • the material and configuration can be optimized for each light-emitting device, which increases the degree of freedom in selecting the material and configuration, and facilitates improvement in brightness and reliability.
  • holes or electrons are sometimes referred to as “carriers”.
  • the hole injection layer or electron injection layer is referred to as a "carrier injection layer”
  • the hole transport layer or electron transport layer is referred to as a “carrier transport layer”
  • the hole blocking layer or electron blocking layer is referred to as a "carrier It is sometimes called a block layer.
  • the carrier injection layer, the carrier transport layer, and the carrier block layer described above may not be clearly distinguished from each other due to their cross-sectional shape, characteristics, or the like.
  • one layer may function as two or three of the carrier injection layer, the carrier transport layer, and the carrier block layer.
  • a light-emitting device (also referred to as a light-emitting element) includes an EL layer between a pair of electrodes.
  • the EL layer has at least a light-emitting layer.
  • the layers (also referred to as functional layers) included in the EL layer include a light-emitting layer, a carrier-injection layer (hole-injection layer and electron-injection layer), a carrier-transport layer (hole-transport layer and electron-transport layer), and A carrier block layer (a hole block layer and an electron block layer) and the like are included.
  • the light emitting device it is preferable to use, for example, OLED or QLED.
  • the light-emitting substance included in the light-emitting device include a substance that emits fluorescence (fluorescent material), a substance that emits phosphorescence (phosphorescent material), a substance that exhibits thermally activated delayed fluorescence (thermally activated delayed fluorescence (TADF) material), and , inorganic compounds (quantum dot materials, etc.).
  • LEDs such as micro LED, can also be used as a light emitting device.
  • the emission color of the light emitting device can be infrared, red, green, blue, cyan, magenta, yellow, white, or the like.
  • color purity can be enhanced by providing a light-emitting device with a microcavity structure.
  • the light emitting device has an EL layer 763 between a pair of electrodes (lower electrode 761 and upper electrode 762).
  • EL layer 763 can be composed of multiple layers, such as layer 780 , light-emitting layer 771 , and layer 790 .
  • the light-emitting layer 771 includes at least a light-emitting substance (also referred to as a light-emitting material).
  • the layer 780 includes a layer containing a substance with high hole injection property (hole injection layer), a layer containing a substance with high hole transport property (positive hole-transporting layer) and a layer containing a highly electron-blocking substance (electron-blocking layer).
  • the layer 790 includes a layer containing a substance with high electron injection properties (electron injection layer), a layer containing a substance with high electron transport properties (electron transport layer), and a layer containing a substance with high hole blocking properties (positive layer). pore blocking layer).
  • a configuration having layer 780, light-emitting layer 771, and layer 790 provided between a pair of electrodes can function as a single light-emitting unit, and the configuration of FIG. 18A is referred to herein as a single structure.
  • FIG. 18B is a modification of the EL layer 763 included in the light emitting device shown in FIG. 18A. Specifically, the light-emitting device shown in FIG. It has a top layer 792 and a top electrode 762 on layer 792 .
  • layer 781 is a hole injection layer
  • layer 782 is a hole transport layer
  • layer 791 is an electron transport layer
  • layer 792 is an electron injection layer.
  • the layer 781 is an electron injection layer
  • the layer 782 is an electron transport layer
  • the layer 791 is a hole transport layer
  • the layer 792 is a hole injection layer.
  • FIGS. 18C and 18D a configuration in which a plurality of light-emitting layers (light-emitting layers 771, 772, and 773) are provided between layers 780 and 790 is also a variation of the single structure.
  • FIGS. 18C and 18D show an example having three light-emitting layers, the number of light-emitting layers in a single-structure light-emitting device may be two or four or more.
  • the single structure light emitting device may have a buffer layer between the two light emitting layers.
  • a structure in which a plurality of light-emitting units (light-emitting unit 763a and light-emitting unit 763b) are connected in series via a charge generation layer 785 (also referred to as an intermediate layer) is used herein.
  • This is called a tandem structure.
  • the tandem structure may also be called a stack structure.
  • FIGS. 18D and 18F are examples in which the display panel has a layer 764 that overlaps the light emitting device.
  • Figure 18D is an example of layer 764 overlapping the light emitting device shown in Figure 18C
  • Figure 18F is an example of layer 764 overlapping the light emitting device shown in Figure 18E.
  • the layer 764 one or both of a color conversion layer and a color filter (colored layer) can be used.
  • the light-emitting layers 771, 772, and 773 may use light-emitting materials that emit light of the same color, or even the same light-emitting materials.
  • the light-emitting layers 771, 772, and 773 may be formed using a light-emitting substance that emits blue light.
  • blue light emitted by the light-emitting device can be extracted.
  • a color conversion layer is provided as layer 764 shown in FIG. and can extract red or green light.
  • the light-emitting layers 771, 772, and 773 may be formed using light-emitting substances with different emission colors.
  • the light emitted from the light-emitting layer 771, the light-emitting layer 772, and the light-emitting layer 773 are complementary colors, white light emission is obtained.
  • a single-structure light-emitting device preferably has a light-emitting layer containing a light-emitting substance that emits blue light and a light-emitting layer containing a light-emitting substance that emits visible light with a longer wavelength than blue.
  • a single-structure light-emitting device has three light-emitting layers, a light-emitting layer having a light-emitting substance that emits red (R) light, a light-emitting layer having a light-emitting substance that emits green (G) light, and a light-emitting layer that emits blue light. It is preferable to have a light-emitting layer having a light-emitting substance (B) that emits light.
  • the stacking order of the light-emitting layers can be R, G, B from the anode side, or R, B, G, etc. from the anode side.
  • a buffer layer may be provided between R and G or B.
  • a light-emitting layer containing a light-emitting substance that emits blue (B) light and a light-emitting layer containing a light-emitting substance that emits yellow light are required.
  • This configuration is sometimes called BY single.
  • a color filter may be provided as layer 764 shown in FIG. 18D.
  • a desired color of light can be obtained by passing the white light through the color filter.
  • a light-emitting device that emits white light preferably contains two or more types of light-emitting substances.
  • two or more light-emitting substances may be selected so that the light emission of each light-emitting substance has a complementary color relationship.
  • the emission color of the first light-emitting layer and the emission color of the second light-emitting layer have a complementary color relationship, it is possible to obtain a light-emitting device that emits white light as a whole. The same applies to light-emitting devices having three or more light-emitting layers.
  • the light-emitting layer 771 and the light-emitting layer 772 may be made of a light-emitting material that emits light of the same color, or may be the same light-emitting material.
  • a light-emitting substance that emits blue light may be used for each of the light-emitting layers 771 and 772 .
  • blue light emitted by the light-emitting device can be extracted.
  • a color conversion layer is provided as layer 764 shown in FIG. and can extract red or green light.
  • the light-emitting device having the configuration shown in FIG. 18E or 18F is used for the sub-pixel that emits light of each color
  • different light-emitting substances may be used depending on the sub-pixel.
  • a light-emitting substance that emits red light may be used for each of the light-emitting layers 771 and 772 .
  • a light-emitting substance that emits green light may be used for each of the light-emitting layers 771 and 772 .
  • a light-emitting substance that emits blue light may be used for each of the light-emitting layers 771 and 772 . It can be said that the display panel having such a configuration employs a tandem structure light emitting device and has an SBS structure. Therefore, it is possible to have both the merit of the tandem structure and the merit of the SBS structure. As a result, a highly reliable light-emitting device capable of emitting light with high brightness can be realized.
  • light-emitting substances with different emission colors may be used for the light-emitting layer 771 and the light-emitting layer 772 .
  • the light emitted from the light-emitting layer 771 and the light emitted from the light-emitting layer 772 are complementary colors, white light emission is obtained.
  • a color filter may be provided as layer 764 shown in FIG. 18F. A desired color of light can be obtained by passing the white light through the color filter.
  • 18E and 18F show an example in which the light-emitting unit 763a has one light-emitting layer 771 and the light-emitting unit 763b has one light-emitting layer 772, but the present invention is not limited to this.
  • Each of the light-emitting unit 763a and the light-emitting unit 763b may have two or more light-emitting layers.
  • FIG. 18E and FIG. 18F exemplify a light-emitting device having two light-emitting units
  • the present invention is not limited to this.
  • the light emitting device may have three or more light emitting units.
  • FIGS. 19A to 19C the configuration of the light-emitting device shown in FIGS. 19A to 19C can be mentioned.
  • FIG. 19A shows a configuration having three light emitting units.
  • a structure having two light-emitting units may be called a two-stage tandem structure, and a structure having three light-emitting units may be called a three-stage tandem structure.
  • a plurality of light emitting units are connected in series with the charge generation layer 785 interposed therebetween.
  • Light-emitting unit 763a includes layer 780a, light-emitting layer 771, and layer 790a
  • light-emitting unit 763b includes layer 780b, light-emitting layer 772, and layer 790b
  • light-emitting unit 763c includes , a layer 780c, a light-emitting layer 773, and a layer 790c.
  • the light-emitting layer 771, the light-emitting layer 772, and the light-emitting layer 773 preferably contain light-emitting substances that emit light of the same color.
  • the light-emitting layer 771, the light-emitting layer 772, and the light-emitting layer 773 each include a red (R) light-emitting substance (so-called three-stage tandem structure of R ⁇ R ⁇ R), the light-emitting layer 771, the light-emitting layer 772 and 773 each include a green (G) light-emitting substance (a so-called G ⁇ G ⁇ G three-stage tandem structure), or the light-emitting layers 771, 772, and 773 each include a blue light-emitting substance.
  • a structure (B) including a light-emitting substance (a so-called three-stage tandem structure of B ⁇ B ⁇ B) can be employed.
  • FIG. 19B shows a configuration in which a plurality of light-emitting units (light-emitting unit 763a and light-emitting unit 763b) are connected in series with charge generation layers 785 interposed therebetween.
  • Light-emitting unit 763a includes layer 780a, light-emitting layers 771a, 771b, and 771c, and layer 790a.
  • Light-emitting unit 763b includes layer 780b, light-emitting layers 772a, 772b, and layer 790a. and a light-emitting layer 772c and a layer 790b.
  • the light-emitting layer 771a, the light-emitting layer 771b, and the light-emitting layer 771c are configured to emit white light (W) by selecting light-emitting substances having complementary colors.
  • the light-emitting layers 772a, 772b, and 772c light-emitting substances having complementary colors are selected so that white light emission (W) is possible. That is, the configuration shown in FIG. 19C has a two-stage tandem structure of W ⁇ W. Note that there is no particular limitation on the stacking order of the light-emitting substances that are complementary colors of the light-emitting layer 771a, the light-emitting layer 771b, and the light-emitting layer 771c. A practitioner can appropriately select the optimum stacking order. Although not shown, a three-stage tandem structure of W ⁇ W ⁇ W or a tandem structure of four or more stages may be employed.
  • a tandem structure light-emitting device When a tandem structure light-emitting device is used, a two-stage tandem structure of B ⁇ Y having a light-emitting unit that emits yellow (Y) light and a light-emitting unit that emits blue (B) light, red (R) and A two-stage tandem structure of R G ⁇ B having a light emitting unit that emits green (G) light and a light emitting unit that emits blue (B) light, a light emitting unit that emits blue (B) light, and a light emitting unit that emits yellow (B) light.
  • a light-emitting unit having one light-emitting substance and a light-emitting unit having a plurality of light-emitting substances may be combined.
  • a plurality of light emitting units (light emitting unit 763a, light emitting unit 763b, and light emitting unit 763c) are connected in series with the charge generation layer 785 interposed therebetween.
  • Light-emitting unit 763a includes layer 780a, light-emitting layer 771, and layer 790a
  • light-emitting unit 763b includes layer 780b, light-emitting layer 772a, light-emitting layer 772b, light-emitting layer 772c, and layer 790b.
  • the light-emitting unit 763c includes a layer 780c, a light-emitting layer 773, and a layer 790c.
  • the light-emitting unit 763a is a light-emitting unit that emits blue (B) light
  • the light-emitting unit 763b emits red (R), green (G), and yellow-green (YG) light.
  • a three-stage tandem structure of B ⁇ R, G, and YG ⁇ B, in which the light-emitting unit 763c is a light-emitting unit that emits blue (B) light, or the like can be applied.
  • the order of the number of stacked light-emitting units and the colors is as follows: from the anode side, a two-stage structure of B and Y; a two-stage structure of B and light-emitting unit X; a three-stage structure of B, Y, and B; , B, and the order of the number of layers of light-emitting layers and the colors in the light-emitting unit X is, from the anode side, a two-layer structure of R and Y, a two-layer structure of R and G, and a two-layer structure of G and R.
  • a two-layer structure, a three-layer structure of G, R, and G, or a three-layer structure of R, G, and R can be used.
  • another layer may be provided between the two light-emitting layers.
  • the layer 780 and the layer 790 may each independently have a laminated structure composed of two or more layers.
  • light emitting unit 763a has layer 780a, light emitting layer 771 and layer 790a, and light emitting unit 763b has layer 780b, light emitting layer 772 and layer 790b.
  • layers 780a and 780b each comprise one or more of a hole injection layer, a hole transport layer, and an electron blocking layer.
  • layers 790a and 790b each include one or more of an electron injection layer, an electron transport layer, and a hole blocking layer. If the bottom electrode 761 is the cathode and the top electrode 762 is the anode, then layers 780a and 790a would have the opposite arrangement, and layers 780b and 790b would also have the opposite arrangement.
  • layer 780a has a hole-injection layer and a hole-transport layer over the hole-injection layer, and further includes a hole-transport layer. It may have an electron blocking layer on the layer.
  • Layer 790a also has an electron-transporting layer and may also have a hole-blocking layer between the light-emitting layer 771 and the electron-transporting layer.
  • Layer 780b also has a hole transport layer and may also have an electron blocking layer on the hole transport layer.
  • Layer 790b also has an electron-transporting layer, an electron-injecting layer on the electron-transporting layer, and may also have a hole-blocking layer between the light-emitting layer 772 and the electron-transporting layer. If the bottom electrode 761 is the cathode and the top electrode 762 is the anode, for example, layer 780a has an electron injection layer, an electron transport layer on the electron injection layer, and a positive electrode on the electron transport layer. It may have a pore blocking layer. Layer 790a also has a hole-transporting layer and may also have an electron-blocking layer between the light-emitting layer 771 and the hole-transporting layer.
  • Layer 780b also has an electron-transporting layer and may also have a hole-blocking layer on the electron-transporting layer.
  • Layer 790b also has a hole-transporting layer, a hole-injecting layer on the hole-transporting layer, and an electron-blocking layer between the light-emitting layer 772 and the hole-transporting layer. good too.
  • two light-emitting units are stacked with the charge generation layer 785 interposed therebetween.
  • Charge generation layer 785 has at least a charge generation region.
  • the charge-generating layer 785 has a function of injecting electrons into one of the two light-emitting units and holes into the other when a voltage is applied between the pair of electrodes.
  • a conductive film that transmits visible light is used for the electrode on the light extraction side of the lower electrode 761 and the upper electrode 762 .
  • a conductive film that reflects visible light is preferably used for the electrode on the side from which light is not extracted.
  • the display panel has a light-emitting device that emits infrared light
  • a conductive film that transmits visible light and infrared light is used for the electrode on the side from which light is extracted
  • a conductive film is used for the electrode on the side that does not extract light. It is preferable to use a conductive film that reflects visible light and infrared light.
  • a conductive film that transmits visible light may also be used for the electrode on the side from which light is not extracted.
  • the electrode is preferably placed between the reflective layer and the EL layer 763 . That is, the light emitted from the EL layer 763 may be reflected by the reflective layer and extracted from the display panel.
  • metals, alloys, electrically conductive compounds, mixtures thereof, and the like can be appropriately used.
  • specific examples of such materials include aluminum, titanium, chromium, manganese, iron, cobalt, nickel, copper, gallium, zinc, indium, tin, molybdenum, tantalum, tungsten, palladium, gold, platinum, silver, yttrium, Metals such as neodymium, and alloys containing appropriate combinations of these are included.
  • Examples of such materials include indium tin oxide (In—Sn oxide, also referred to as ITO), In—Si—Sn oxide (also referred to as ITSO), indium zinc oxide (In—Zn oxide), and In -W-Zn oxide and the like can be mentioned.
  • Examples of such materials include aluminum-containing alloys (aluminum alloys) such as alloys of aluminum, nickel, and lanthanum (Al-Ni-La), and alloys of silver, palladium and copper (Ag-Pd-Cu, APC Also referred to as).
  • elements belonging to Group 1 or Group 2 of the periodic table of elements not exemplified above e.g., lithium, cesium, calcium, strontium
  • europium e.g., europium
  • rare earth metals such as ytterbium
  • appropriate combinations of these alloy containing, graphene, and the like e.g., graphene, graphene, and the like.
  • the light-emitting device preferably employs a micro-optical resonator (microcavity) structure. Therefore, one of the pair of electrodes included in the light-emitting device is preferably an electrode (semi-transmissive/semi-reflective electrode) that is transparent and reflective to visible light, and the other is an electrode that is reflective to visible light ( reflective electrode). Since the light-emitting device has a microcavity structure, the light emitted from the light-emitting layer can be resonated between both electrodes, and the light emitted from the light-emitting device can be enhanced.
  • microcavity micro-optical resonator
  • the semi-transmissive/semi-reflective electrode has a laminated structure of a conductive layer that can be used as a reflective electrode and a conductive layer that can be used as an electrode that transmits visible light (also referred to as a transparent electrode). can be done.
  • the light transmittance of the transparent electrode is set to 40% or more.
  • an electrode having a transmittance of 40% or more for visible light (light having a wavelength of 400 nm or more and less than 750 nm) as the transparent electrode of the light emitting device.
  • the visible light reflectance of the semi-transmissive/semi-reflective electrode is 10% or more and 95% or less, preferably 30% or more and 80% or less.
  • the visible light reflectance of the reflective electrode is 40% or more and 100% or less, preferably 70% or more and 100% or less.
  • the resistivity of these electrodes is preferably 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • a light-emitting device has at least a light-emitting layer. Further, in the light-emitting device, layers other than the light-emitting layer include a substance with high hole-injection property, a substance with high hole-transport property, a hole-blocking material, a substance with high electron-transport property, an electron-blocking material, and a layer with high electron-injection property. A layer containing a substance, a bipolar substance (a substance with high electron-transport properties and high hole-transport properties), or the like may be further included.
  • the light-emitting device has, in addition to the light-emitting layer, one or more of a hole injection layer, a hole transport layer, a hole blocking layer, a charge generation layer, an electron blocking layer, an electron transport layer, and an electron injection layer. can be configured.
  • Either a low-molecular-weight compound or a high-molecular-weight compound can be used in the light-emitting device, and an inorganic compound may be included.
  • Each of the layers constituting the light-emitting device can be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • the emissive layer has one or more emissive materials.
  • a substance emitting light of blue, purple, blue-violet, green, yellow-green, yellow, orange, red, or the like is used as appropriate.
  • a substance that emits near-infrared light can be used as the light-emitting substance.
  • Luminescent materials include fluorescent materials, phosphorescent materials, TADF materials, quantum dot materials, and the like.
  • fluorescent materials include pyrene derivatives, anthracene derivatives, triphenylene derivatives, fluorene derivatives, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, dibenzoquinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, and naphthalene derivatives. mentioned.
  • Examples of phosphorescent materials include organometallic complexes (especially iridium complexes) having a 4H-triazole skeleton, 1H-triazole skeleton, imidazole skeleton, pyrimidine skeleton, pyrazine skeleton, or pyridine skeleton, and phenylpyridine derivatives having an electron-withdrawing group.
  • organometallic complexes especially iridium complexes
  • platinum complexes, rare earth metal complexes, and the like, which serve as ligands, can be mentioned.
  • the light-emitting layer may contain one or more organic compounds (host material, assist material, etc.) in addition to the light-emitting substance (guest material).
  • One or both of a highly hole-transporting substance (hole-transporting material) and a highly electron-transporting substance (electron-transporting material) can be used as the one or more organic compounds.
  • a highly hole-transporting substance hole-transporting material
  • a highly electron-transporting substance electron-transporting material
  • electron-transporting material a material having a high electron-transporting property that can be used for the electron-transporting layer, which will be described later, can be used.
  • Bipolar materials or TADF materials may also be used as one or more organic compounds.
  • the light-emitting layer preferably includes, for example, a phosphorescent material and a combination of a hole-transporting material and an electron-transporting material that easily form an exciplex.
  • ExTET Exciplex-Triplet Energy Transfer
  • a combination that forms an exciplex that emits light that overlaps with the wavelength of the absorption band on the lowest energy side of the light-emitting substance energy transfer becomes smooth and light emission can be efficiently obtained. With this configuration, high efficiency, low-voltage driving, and long life of the light-emitting device can be realized at the same time.
  • the hole-injecting layer is a layer that injects holes from the anode to the hole-transporting layer, and contains a material with high hole-injecting properties.
  • highly hole-injecting materials include aromatic amine compounds and composite materials containing a hole-transporting material and an acceptor material (electron-accepting material).
  • hole-transporting material a material having a high hole-transporting property that can be used for the hole-transporting layer, which will be described later, can be used.
  • oxides of metals belonging to groups 4 to 8 in the periodic table can be used.
  • Specific examples include molybdenum oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, tungsten oxide, manganese oxide, and rhenium oxide.
  • molybdenum oxide is particularly preferred because it is stable even in the atmosphere, has low hygroscopicity, and is easy to handle.
  • An organic acceptor material containing fluorine can also be used.
  • Organic acceptor materials such as quinodimethane derivatives, chloranil derivatives, and hexaazatriphenylene derivatives can also be used.
  • a material with a high hole-injection property a material containing a hole-transporting material and an oxide of a metal belonging to Groups 4 to 8 in the above-described periodic table (typically molybdenum oxide) is used. may be used.
  • the hole-transporting layer is a layer that transports holes injected from the anode to the light-emitting layer by means of the hole-injecting layer.
  • a hole-transporting layer is a layer containing a hole-transporting material.
  • the hole-transporting material a substance having a hole mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that substances other than these can be used as long as they have a higher hole-transport property than electron-transport property.
  • hole-transporting materials include ⁇ -electron-rich heteroaromatic compounds (e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.), aromatic amines (compounds having an aromatic amine skeleton), and other highly hole-transporting materials. is preferred.
  • ⁇ -electron-rich heteroaromatic compounds e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.
  • aromatic amines compounds having an aromatic amine skeleton
  • other highly hole-transporting materials is preferred.
  • the electron blocking layer is provided in contact with the light emitting layer.
  • the electron blocking layer is a layer containing a material capable of transporting holes and blocking electrons.
  • a material having an electron blocking property can be used among the above hole-transporting materials.
  • the electron blocking layer has hole-transporting properties, it can also be called a hole-transporting layer. Moreover, the layer which has electron blocking property can also be called an electron blocking layer among hole transport layers.
  • the electron-transporting layer is a layer that transports electrons injected from the cathode to the light-emitting layer by the electron-injecting layer.
  • the electron-transporting layer is a layer containing an electron-transporting material.
  • an electron-transporting material a substance having an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that substances other than these substances can be used as long as they have a higher electron-transport property than hole-transport property.
  • electron-transporting materials include metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, metal complexes having a thiazole skeleton, oxadiazole derivatives, triazole derivatives, imidazole derivatives, ⁇ electron deficient including oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives with quinoline ligands, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, and other nitrogen-containing heteroaromatic compounds
  • a material having a high electron transport property such as a type heteroaromatic compound can be used.
  • the hole blocking layer is provided in contact with the light emitting layer.
  • the hole-blocking layer is a layer containing a material that has electron-transport properties and can block holes. Among the above electron-transporting materials, materials having hole-blocking properties can be used for the hole-blocking layer.
  • the hole blocking layer has electron transport properties, it can also be called an electron transport layer. Moreover, among the electron transport layers, a layer having hole blocking properties can also be referred to as a hole blocking layer.
  • the electron injection layer is a layer that injects electrons from the cathode into the electron transport layer, and is a layer containing a material with high electron injection properties.
  • Alkali metals, alkaline earth metals, or compounds thereof can be used as materials with high electron injection properties.
  • a composite material containing an electron-transporting material and a donor material (electron-donating material) can also be used as a material with high electron-injecting properties.
  • the LUMO level of the material with high electron injection properties has a small difference (specifically, 0.5 eV or less) from the value of the work function of the material used for the cathode.
  • the electron injection layer includes, for example, lithium, cesium, ytterbium, lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF x , x is an arbitrary number), 8-(quinolinolato)lithium (abbreviation: Liq), 2-(2-pyridyl)phenoratritium (abbreviation: LiPP), 2-(2-pyridyl)-3-pyridinolatritium (abbreviation: LiPPy), 4-phenyl-2-(2-pyridyl)pheno Alkali metals such as latolithium (abbreviation: LiPPP), lithium oxide (LiO x ), cesium carbonate, alkaline earth metals, or compounds thereof can be used.
  • the electron injection layer may have a laminated structure of two or more layers. Examples of the laminated structure include a structure in which lithium fluoride is used for the first layer and ytterbium is provided for the second layer.
  • the electron injection layer may have an electron-transporting material.
  • a compound having a lone pair of electrons and an electron-deficient heteroaromatic ring can be used as the electron-transporting material.
  • a compound having at least one of a pyridine ring, diazine ring (pyrimidine ring, pyrazine ring, pyridazine ring), and triazine ring can be used.
  • the lowest unoccupied molecular orbital (LUMO) level of an organic compound having an unshared electron pair is preferably ⁇ 3.6 eV or more and ⁇ 2.3 eV or less.
  • CV cyclic voltammetry
  • photoelectron spectroscopy optical absorption spectroscopy
  • inverse photoemission spectroscopy etc. are used to measure the highest occupied molecular orbital (HOMO) level and LUMO level of an organic compound. can be estimated.
  • NBPhen 2,9-di(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline
  • NBPhen 2,9-di(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline
  • mPPhen2P 2 ,2′-(1,3-phenylene)bis(9-phenyl-1,10-phenanthroline)
  • HATNA diquinoxalino[2,3-a:2′,3′-c]phenazine
  • TmPPPyTz 2,4,6-tris[3′-(pyridin-3-yl)biphenyl-3-yl]-1,3,5-triazine
  • TmPPPyTz organic compounds having a lone pair of electrons
  • NBPhen has a higher glass transition point (Tg) than BPhen and has excellent heat resistance.
  • the charge generation layer has at least a charge generation region, as described above.
  • the charge generation region preferably contains an acceptor material, for example, preferably contains a hole transport material and an acceptor material applicable to the hole injection layer described above.
  • the charge generation layer preferably has a layer containing a material with high electron injection properties.
  • This layer can also be called an electron injection buffer layer.
  • the electron injection buffer layer is preferably provided between the charge generation region and the electron transport layer. Since the injection barrier between the charge generation region and the electron transport layer can be relaxed by providing the electron injection buffer layer, electrons generated in the charge generation region can be easily injected into the electron transport layer.
  • the electron injection buffer layer preferably contains an alkali metal or an alkaline earth metal, and can be configured to contain, for example, an alkali metal compound or an alkaline earth metal compound.
  • the electron injection buffer layer preferably has an inorganic compound containing an alkali metal and oxygen, or an inorganic compound containing an alkaline earth metal and oxygen. Lithium (Li 2 O), etc.) is more preferred.
  • the above materials applicable to the electron injection layer can be preferably used.
  • the charge generation layer preferably has a layer containing a material with high electron transport properties. Such layers may also be referred to as electron relay layers.
  • the electron relay layer is preferably provided between the charge generation region and the electron injection buffer layer. If the charge generation layer does not have an electron injection buffer layer, the electron relay layer is preferably provided between the charge generation region and the electron transport layer.
  • the electron relay layer has a function of smoothly transferring electrons by preventing interaction between the charge generation region and the electron injection buffer layer (or electron transport layer).
  • a phthalocyanine-based material such as copper (II) phthalocyanine (abbreviation: CuPc), or a metal complex having a metal-oxygen bond and an aromatic ligand.
  • charge generation region the electron injection buffer layer, and the electron relay layer described above may not be clearly distinguishable depending on their cross-sectional shape, characteristics, or the like.
  • the charge generation layer may contain a donor material instead of the acceptor material.
  • the charge-generating layer may have a layer containing an electron-transporting material and a donor material, which are applicable to the electron-injecting layer described above.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Polarising Elements (AREA)
  • Optical Head (AREA)

Abstract

薄型かつ光の利用効率の高い光学機器、および当該光学機器を有する小型の電子機器を提供する。 反射偏光板、レンズ、および旋光子を有する薄型の光学機器であり、当該光学機器では、旋光子による直線偏光の偏光面の回転と、反射偏光板の光の透過および反射特性と、を利用することで、全長が短く薄型の光学機器とすることができる。また、当該光学機器はハーフミラーを用いないため、光の利用効率が高い特性を有し、電子機器の消費電力を低減し、信頼性を向上させることができる。

Description

光学機器および電子機器
本発明の一態様は、光学機器および電子機器に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、撮像装置、それらの動作方法、または、それらの製造方法、を一例として挙げることができる。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタ、半導体回路は半導体装置の一態様である。また、記憶装置、表示装置、撮像装置、電子機器は、半導体装置を有する場合がある。
仮想現実(VR:Virtual Reality)、または拡張現実(AR:Augmented Reality)向けなどの電子機器として、ゴーグル型デバイスおよび眼鏡型デバイスが開発されている。
また、ディスプレイパネルに適用可能な表示装置としては、代表的には液晶素子を備える表示装置、有機EL(Electro Luminescence)素子または発光ダイオード(LED:Light Emitting Diode)等を備える表示装置などが挙げられる。
有機EL素子が備えられた表示装置は、液晶表示装置で必要であったバックライトが不要なため、薄型、軽量、高コントラストで且つ低消費電力な表示装置を実現できる。例えば、有機EL素子を用いた表示装置の一例が、特許文献1に記載されている。
特開2002−324673号公報
ゴーグル型デバイスおよび眼鏡型デバイスなどの電子機器はウェアラブルデバイスの一種であり、携帯性および装着性を向上させるために、小型かつ薄型にすることが望まれる。そのため、このような電子機器には、焦点距離が短くなるように設計された薄型の光学機器が用いられている。
しかしながら、当該光学機器には光の利用効率が低いハーフミラーが用いられており、表示装置の輝度を高めて使用する必要があった。表示装置の輝度を高めることは、消費電力の増加および表示デバイスの信頼性の低下の要因となる。そのため、薄型かつ光の利用効率の高い光学機器が望まれている。
したがって、本発明の一態様は、薄型かつ光の利用効率の高い光学機器を提供することを目的の一つとする。または、当該光学機器を有する小型の電子機器を提供することを目的の一つとする。または、低消費電力の電子機器を提供することを目的の一つとする。または、新規な電子機器を提供することを目的の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、薄型かつ光の利用効率の高い光学機器、および当該光学機器を有する電子機器に関する。
本発明の一態様は、第1の反射偏光板と、第1のレンズと、旋光子と、第2の反射偏光板と、第2のレンズと、を有し、第1の反射偏光板、第1のレンズ、旋光子、第2の反射偏光板および第2のレンズは、それぞれが互いに重なる領域を有するように当該順序で配置され、第1のレンズと旋光子とは離隔している光学機器である。
第1の反射偏光板の第1の面は、第1のレンズの第1の面と貼り合わすことができる。
旋光子の第1の面は、第2の反射偏光板の第1の面と貼り合わすことができる。また、第2の反射偏光板の第1の面の反対側の第2の面は、第2のレンズの第1の面と貼り合わすことができる。
第1の反射偏光板は、第1の直線偏光を透過し、第1の直線偏光と直交する第2の直線偏光を反射し、第2の反射偏光板は、第1の直線偏光の偏光面が45°回転した第3の直線偏光を反射し、第3の直線偏光と直交する第4の直線偏光を透過することができる。
旋光子は、旋光度を45°とすることができる。
第1のレンズおよび第2のレンズは、凸レンズとすることができる。
第1の反射偏光板の第1の面の反対側の第2の面と対向して、偏光板を設けてもよい。
本発明の他の一態様は、表示パネルと、偏光板と、第1の反射偏光板と、第1のレンズと、旋光子と、第2の反射偏光板と、第2のレンズと、を筐体内に有し、表示パネル、偏光板、第1の反射偏光板、第1のレンズ、旋光子、第2の反射偏光板および第2のレンズはそれぞれが互いに重なる領域を有するように当該順序で配置され、偏光板と第1の反射偏光板とは離隔して配置され、第1のレンズと旋光子とは離隔して配置された電子機器である。
表示パネルの表示面は、偏光板の第1面と貼り合わすことができる。
第1の反射偏光板の第1の面は、第1のレンズの第1の面と貼り合わすことができる。
旋光子の第1の面は、第2の反射偏光板の第1の面と貼り合わされ、第2の反射偏光板の第1の面の反対側の第2の面は、第2のレンズの第1の面と貼り合わすことができる。
偏光板は、第1の直線偏光を透過することができ、第1の反射偏光板は、第1の直線偏光を透過し、第1の直線偏光と直交する第2の直線偏光を反射することができ、第2の反射偏光板は、第1の直線偏光の偏光面が45°回転した第3の直線偏光を反射し、第3の直線偏光と直交する第4の直線偏光を透過することができる。
旋光子は、旋光度が45°とすることができる。
第1のレンズおよび第2のレンズは、凸レンズとすることができる。
本発明の一態様により、薄型かつ光の利用効率の高い光学機器を提供することができる。または、当該光学機器を有する小型の電子機器を提供することができる。または、低消費電力の電子機器を提供することができる。または、新規な電子機器を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
図1は、表示装置および光学機器を説明する図である。
図2Aおよび図2Bは、光学機器を説明する図である。
図3Aおよび図3Bは、光学機器を説明する図である。
図4A乃至図4Gは、光学機器を説明する図である。
図5A乃至図5Cは、電子機器を説明する図である。
図6Aおよび図6Bは、眼鏡型デバイスを説明する図である。
図7A乃至図7Cは、表示パネルの構成例を説明する図である。
図8Aおよび図8Bは、表示パネルの構成例を説明する図である。
図9A乃至図9Fは、画素の構成例を説明する図である。
図10Aおよび図10Bは、表示パネルの構成例を説明する図である。
図11は、表示パネルの構成例を説明する図である。
図12は、表示パネルの構成例を説明する図である。
図13は、表示パネルの構成例を説明する図である。
図14は、表示パネルの構成例を説明する図である。
図15は、表示パネルの構成例を説明する図である。
図16は、表示パネルの構成例を説明する図である。
図17は、表示パネルの構成例を説明する図である。
図18A乃至図18Fは、発光デバイスの構成例を説明する図である。
図19A乃至図19Cは、発光デバイスの構成例を説明する図である。
実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略することがある。なお、図を構成する同じ要素のハッチングを異なる図面間で適宜省略または変更する場合もある。
また、回路図上では単一の要素として図示されている場合であっても、機能的に不都合がなければ、当該要素が複数で構成されてもよい。例えば、スイッチとして動作するトランジスタは、複数が直列または並列に接続されてもよい場合がある。また、キャパシタを分割して複数の位置に配置する場合もある。
また、一つの導電体が、配線、電極および端子などの複数の機能を併せ持っている場合があり、本明細書においては、同一の要素に対して複数の呼称を用いる場合がある。また、回路図上で要素間が直接接続されているように図示されている場合であっても、実際には当該要素間が一つ以上の導電体を介して接続されている場合があり、本明細書ではこのような構成でも直接接続の範疇に含める。
(実施の形態1)
本実施の形態では、本発明の一態様の光学機器および電子機器について説明する。
本発明の一態様は、反射偏光板、レンズ、および旋光子を有する薄型の光学機器である。当該光学機器では、旋光子による直線偏光の偏光面の回転と、反射偏光板の光の透過および反射特性を利用することで、全長が短く薄型の光学機器とすることができる。また、本発明の一態様の光学機器は、ハーフミラーを用いないため、光の利用効率が高い特性を有する。
ゴーグル型デバイスまたは眼鏡型デバイスなどの電子機器では、視野角を広げるために表示装置と光学機器を組み合わせた構成を有する。当該電子機器に本発明の一態様の光学機器を用いることで、小型かつ薄型で消費電力が低く、信頼性の高い電子機器とすることができる。
なお、本発明の一態様の光学機器は、複数の光学部品が組み合わされた構成を有する。当該構成が筐体に収められたものは、単にレンズとも呼ばれる。または、薄型である形状からパンケーキレンズと呼ばれることもある。
図1は、本発明の一態様の電子機器に用いることができる表示装置および光学機器を説明する斜視図である。表示装置30および光学機器40が互いに重なる領域を有するように、離隔して配置される。
使用者は、光学機器40近傍に眼10を近づけることで、表示装置30で表示される画像を見ることができる。使用者は、光学機器40によって視野角が広げられた状態で当該画像を視認することから、没入感、臨場感を得ることができる。
表示装置30は、表示パネル31および偏光板32が互いに重なる領域を有するように配置された構成を有する。例えば、図1に示すように、表示パネル31の表示面に偏光板32を貼り合わせた構成とすることができる。
なお、偏光板32は表示装置30の要素でなくてもよく、表示装置30(表示パネル31)と光学機器40との間に設けられていてもよい。または、光学機器40の要素として、光学機器40の光の入射面側に配置されていてもよい。
光学機器40は、反射偏光板41と、レンズ42と、旋光子43と、反射偏光板44と、レンズ45が互いに重なる領域を有する。なお、以下の説明における第1面とは各要素が有する一つの面であり、第2の面とは第1の面とは反対側の面を意味する。
例えば、図1に示すように、反射偏光板41の第1の面がレンズ42の第1の面に貼り合わされた構成とすることができる。また、旋光子43の第1の面に反射偏光板44の第1の面が貼り合わされ、反射偏光板44の第2の面にレンズ45の第1の面が貼り合わされた構成とすることができる。なお、これらの要素が貼り合わされずに独立して配置された構成とすることもできる。
なお、必要な光路長を確保するため、レンズ42と反射偏光板44とは離隔して配置することが好ましい。したがって、上述のように旋光子43と反射偏光板44を貼り合わせた場合は、レンズ42の第2の面と旋光子43の第2の面とを離隔して配置することが好ましい。
なお、上述した一方の要素と他方の要素との貼り合わせには、利用する光の波長(例えば、可視光の波長範囲)に対して透過率が高く、かつ特定の偏光の吸収および旋光性のない光学接着剤を用いることができる。または、貼り合わせではなく、塗布などの方法を用いて、一方の要素上に他方の要素を接して形成してもよい。
図2Aは、本発明の一態様の光学機器の一部の光路を説明する図であり、光路を破線で示している。また、明瞭化のため、図1では接して図示しているいくつかの要素を離隔して図示している。なお、図2Aのように各要素を配置することでも、本発明の一態様の効果を得ることができる。
表示パネル31から射出された一部の光は、偏光板32、反射偏光板41、レンズ42および旋光子43を透過し、反射偏光板44で反射される。反射偏光板44で反射された光は、旋光子43およびレンズ42を透過し、反射偏光板41で再び反射される。反射偏光板41で反射された光は、レンズ42、旋光子43、反射偏光板44およびレンズ45を透過し、眼10に入射される。
このように反射を繰り返すことで光路長を確保することができるため、焦点距離の短い光学系とすることができる。
表示パネル31としては、液晶素子を有する液晶パネル、有機EL素子を有する有機ELパネル、またはマイクロLEDを有するLEDパネルなどを用いることができる。特に、自発光型で高精細な表示部を形成しやすい有機ELパネルを用いることが好ましい。
偏光板32は、360°全方向に振動する光から1つの直線偏光を取り出すことができる。なお、本実施の形態では、偏光板32の透過軸を0°として説明を行うが、0°とは絶対的な値ではなく、基準となる値を意味する。つまり、偏光板32で取り出される直線偏光の偏光面を0°として取り扱う。したがって、例えば、45°直線偏光とは偏光板32で取り出される直線偏光の偏光面が45°回転した直線偏光を意味する。
反射偏光板41、44は、透過軸と一致する直線偏光を透過し、透過軸と直交する直線偏光を反射することができる。反射偏光板としては、例えば、ワイヤグリッド偏光板、または誘電多層膜などを使用することができる。
レンズ42、45には、凸レンズを用いることができる。図2Aではレンズ42に両凸レンズを用い、レンズ45に平凸レンズを用いる例を示しているが、これに限らない。例えば、レンズ42を複数の平凸レンズで構成してもよい。また、レンズ45に両凸レンズを用いてもよい。または、レンズ42、45を両凸レンズ、平凸レンズ、凸メニスカスレンズ、凹メニスカスレンズから選ばれたレンズを組み合わせた構成とすることもできる。また、レンズ42、45以外のレンズが設けられていてもよい。
旋光子43は、入射された直線偏光の偏光面を回転させて射出させることができる。本発明の一態様では、旋光子43に旋光度が45°の旋光子を用いることができる。旋光子43としては、ねじれネマチック液晶を封入したフィルム型セル、ねじれネマチック液晶を充填した高分子液晶フィルム、またはファラデーローテーターなどを用いることができる。
図2Bを用いて、本発明の一態様の光学機器の光路における偏光状態の詳細を説明する。なお、図2Bは図2Aに示す表示装置30および光学機器40の拡大図であり、上側の光路には偏光状態を示し、下側の光路には各要素における光の透過または反射の効率を示している。
表示パネル31から発せられた360°全方向に振動する光は、偏光板32に入射される。偏光板32の透過軸は0°であり、偏光板32からは0°直線偏光が射出される。
偏光板32から射出された0°直線偏光は、透過軸0°の反射偏光板41およびレンズ42を透過し、旋光子43に入射される。旋光子43では、0°直線偏光の偏光面が45°回転され、45°直線偏光となって射出される。
旋光子43から射出された45°直線偏光は、反射軸45°の反射偏光板44で反射され、再び旋光子43に入射される。旋光子43では、45°直線偏光の偏光面が45°回転され、90°直線偏光となって射出される。
旋光子43から射出された90°直線偏光は、反射軸90°の反射偏光板41で反射され、再び旋光子43に入射される。旋光子43では、90°直線偏光の偏光面が45°回転され、135°直線偏光となって射出される。
旋光子43から射出された135°直線偏光は、透過軸135°の反射偏光板44およびレンズ45を透過する。このように、直線偏光および旋光子を利用することで、光路上に配置された反射偏光板で反射および透過を選択的に行うことができる。したがって、限られた空間内で光路長を確保することができ、光学機器の焦点距離を短くすることができる。
次に光の利用効率について説明する。なお、各要素の反射率および透過率は、一般的な値または理想的な値とする。
表示パネル31から発せられた光量を100%としたとき、偏光板32では0°直線偏光以外の光が吸収されるため、偏光板32から射出される光は一般的に約40%(×0.4)となる。
その後、光路に配置された各要素において、透過と反射が繰り返されるが、それぞれの透過率および反射率は理想的には100%(×1)であるため、最終的にレンズ45から射出される光は約40%となる。つまり、本発明の一態様の光学機器では、偏光板32以外での光の損失は理想的には0であり、光の利用効率の高い光学機器であるということができる。
比較として、従来の光学機器の一例を図3Aに示す。なお、図2Aと共通の要素には同じ符号を付してある。図3Aに示す光学機器も反射を繰り返すことで、限られた空間内で光路長を確保する点は図2Aと同様である。図3Aに示す光学機器は、位相差板51、ハーフミラー52、位相差板53および反射偏光板54を用いている点が本発明の一態様と異なる。なお、反射偏光板54は、反射偏光板44と反射軸および透過軸が異なる。
ここで、位相差板51、53には、λ/4板(1/4波長板)が用いられる。偏光板32の透過軸0°に対してλ/4板の遅延軸を45°にして重ねると右回転の円偏光となる。また、反射偏光板54の反射軸は0°であって、透過軸は90°である。
図3Bを用いて、従来の光学機器の光路における偏光状態の詳細を説明する。なお、図3Bは図3Aに示す表示装置30および光学機器40の拡大図であり、上側の光路には偏光状態を示し、下側の光路には各要素における光の透過または反射の効率を示している。
表示パネル31から発せられた360°全方向に振動する光は、偏光板32に入射される。偏光板32の透過軸は0°であり、偏光板32からは0°直線偏光が射出される。
偏光板32から射出された0°直線偏光は位相差板51に入射され、右回転の円偏光となって位相差板51から射出される。
位相差板51から射出された右回転の円偏光は、ハーフミラー52およびレンズ42を透過し、位相差板53に入射される。位相差板53に入射された右回転の円偏光は、0°直線偏光となって位相差板53から射出される。
位相差板53から射出された0°直線偏光は、反射軸0°の反射偏光板54で反射され、再び位相差板53に入射する。位相差板53に入射した0°直線偏光は、右回転の円偏光となって位相差板53から射出される。
位相差板53から射出された右回転の円偏光は、ハーフミラー52で反射され、左回転の円偏光となって位相差板53に入射される。位相差板53に入射した左回転の円偏光は、90°直線偏光となって透過軸90°の反射偏光板54、およびレンズ45を透過する。
次に光の利用効率について説明する。表示パネル31から発せられた光量を100%としたとき、偏光板32では0°直線偏光以外の光が吸収されるため、偏光板32から射出される光は約40%(×0.4)となる。
また、位相差板51の透過率は理想的には100%(×1)であるため、位相差板51から射出される光は約40%(40%×1)となる。
次に、位相差板51から射出される光はハーフミラー52を透過するが、その透過率は約50%であるため、ハーフミラー52透過後の光量は約20%(40%×0.5)となる。
ハーフミラー52を透過した光は、レンズ42および位相差板53を透過、反射偏光板54で反射、位相差板53およびレンズ42を透過して、再びハーフミラー52に到達して反射する。ここで、レンズ42および位相差板53の透過率、ならびに反射偏光板54の反射率を理想的に100%(×1)とし、ハーフミラー52の反射率を約50%とすると、ハーフミラー反射後の光量は約10%(20%×0.5)となる。
その後、光路に配置された各要素を透過するが、それぞれの透過率は理想的には100%(×1)であるため、最終的にレンズ45から射出される光は約10%となる。前述したように、本発明の一態様の光学機器の光の利用効率は約40%であり、従来の光学機器の約4倍ということができる。
従来の光学機器ではハーフミラーによる光の損失が特に大きい。本発明の一態様の光学機器では、ハーフミラーの代わりに反射偏光板を用いる。反射偏光板は、直線偏光に対する理想的な反射率または透過率を100%にすることができるため、光の損失を小さくすることができる。
また、本発明の一態様の光学機器では、円偏光を用いず直線偏光のみを用いるため、位相差板を不要にすることができる。したがって、従来よりも光学機器を構成する光学部品の点数を減らすことができ、光学機器および電子機器を安価に製造することができる。
図4A乃至図4Dは、偏光板32、反射偏光板41、レンズ42の配置または形態の変形例を示す図である。
図4Aは、反射偏光板41の配置の変形例を示す図である。反射偏光板41は、レンズ42と離隔し、偏光板32とレンズ42との間に配置してもよい。また、図4Bに示すように、偏光板32と反射偏光板41を貼り合わせ、両者を表示パネル31とレンズ42との間に配置してもよい。
図4Cは、両凸レンズであるレンズ42を二つの片凸レンズ(レンズ42a、42b)に置き換えた構成を示す図である。この場合、反射偏光板41をレンズ42a、42bで挟む構成とすることができる。また、図4Dに示すように、偏光板32と反射偏光板41を貼り合わせ、両者をレンズ42a、42bで挟む構成としてもよい。
なお、図4E乃至図4Gに示すように、偏光板32を設けない構成とすることもできる。偏光板32および反射偏光板41は、ともに0°偏光を透過するため、偏光板32を省いてもよい。
ただし、偏光板32がない場合は、反射偏光板41を反射した光が表示パネル31に戻り、再び反射偏光板41に向かう際に、一部の光の偏光状態が崩れて反射偏光板41を透過してしまうことがある。このような光は迷光となり、表示品質を低下させることがある。偏光板32がある場合は、偏光板32を透過した光が反射偏光板41で反射することがないため、迷光を抑制することができる。
図5Aは、本発明の一態様の電子機器が有する表示パネル31を説明する図である。表示パネル31は、画素アレイ74と、回路75と、回路76を有する。画素アレイ74は、列方向および行方向に配置された画素70を有する。
画素70は、複数の副画素71を有することができる。副画素71は、表示用の光を発する機能を有する。
なお、本明細書では、一つの「画素」の中で独立した動作が行われる最小単位を便宜的に「副画素」と定義して説明を行うが、「画素」を「領域」と置き換え、「副画素」を「画素」と置き換えてもよい。
副画素71は、可視光を発する発光デバイスを有する。発光デバイスとしては、OLED(Organic Light Emitting Diode)またはQLED(Quantum−dot Light Emitting Diode)などのEL素子を用いることが好ましい。EL素子が有する発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料)、無機化合物(量子ドット材料など)などが挙げられる。また、発光デバイスとして、マイクロLED(Light Emitting Diode)などのLEDを用いることもできる。
回路75および回路76は、副画素71を駆動するためのドライバ回路である。回路75はソースドライバ回路、回路76はゲートドライバ回路としての機能を有することができる。回路75および回路76には、例えば、シフトレジスタ回路などを用いることができる。
なお、図5Bに示すように、回路75および回路76を層81に設け、画素アレイ74を層82に設け、層81と層82が重なる構成としてもよい。当該構成とすることで、狭額縁の表示装置を形成することができる。
また、ドライバ回路を画素アレイ74の下層に設けることで配線長を短く、配線容量を小さくすることができる。したがって、高速動作ができ、かつ低消費電力で動作する表示パネルとすることができる。
また、図5Bに示すように、回路75および回路76を分割配置することで、画素アレイ74を部分的に駆動することができる。例えば、画素アレイ74の部分的な画像データの書き換えを行うことができる。また、画素アレイ74を部分的に異なる動作周波数で動作させることができる。
なお、図5Bに示す回路75および回路76の配置、面積は一例であり、適宜変更することができる。また、回路75および回路76の一部は、画素アレイ74と同一の層に形成することもできる。また、層82には、記憶回路、演算回路、および通信回路などの回路が設けられていてもよい。
当該構成は、例えば、層81に単結晶シリコン基板とし、回路75および回路76をチャネル形成領域にシリコンを有するトランジスタ(以下、Siトランジスタ)で形成し、層82に設ける画素アレイ74が有する画素回路をチャネル形成領域に金属酸化物を有するトランジスタ(以下、OSトランジスタ)で形成することができる。OSトランジスタは薄膜で形成することができ、Siトランジスタ上に積層して形成することができる。
なお、図5Cに示すように、層81と層82との間にOSトランジスタが設けられる層83を有する構成としてもよい。層83には、画素アレイ74が有する画素回路の一部をOSトランジスタで設けることができる。または、回路75および回路76の一部をOSトランジスタで設けることができる。または、層82に設けることができる記憶回路、演算回路、および通信回路などの回路の一部をOSトランジスタで設けることができる。
図6A、図6Bは、図1に示す表示装置30および光学機器40を有する眼鏡型のデバイスの例を示す図である。ここでは、表示装置30および光学機器40の組み合わせを表示ユニット35として、破線で示している。眼鏡型のデバイスは表示ユニット35を2組有し、用途によってはVRグラスなどと呼ばれる場合もある。
2組の表示ユニット35は、レンズ45の表面が内側に露出するように筐体60に組み込まれる。一方の表示ユニット35は右眼用、他方の表示ユニット35は左眼用になり、それぞれの表示ユニット35でそれぞれの眼に対応した画像を表示することで、画像の立体感を感じることができる。
また、筐体60またはバンド61に入力端子および出力端子が設けられていてもよい。入力端子には映像出力機器等からの映像信号、または筐体60内に設けられるバッテリーを充電するための電力等を供給するケーブルを接続することができる。出力端子としては、例えば音声出力端子として機能し、イヤフォン、ヘッドフォン等を接続することができる。なお、無線通信により音声データを出力可能な構成とする場合、または外部の映像出力機器から音声を出力する場合には、当該音声出力端子を設けなくてもよい。
また、筐体60またはバンド61の内部に無線通信モジュールおよび記憶モジュールなどが設けられていてもよい。無線通信モジュールにより無線通信を行い、視聴するコンテンツをダウンロードして記憶モジュールに保存しておくことができる。これにより、ユーザーは好きなときにダウンロードしたコンテンツをオフラインで視聴することができる。
また、筐体60内に視線検知センサが設けられていてもよい。例えば、電源オン、電源オフ、スリープ、音量調整、チャンネル変更、メニュー表示、選択、決定、戻る、などの操作ボタン、および動画の再生、停止、一時停止、早送り、早戻しなどの操作ボタンを表示させ、当該操作ボタンを視認することで、それぞれの操作を行うことができる。
眼鏡型デバイスに本発明の一態様の光学機器40を用いることにより、小型かつ薄型で消費電力が低く、信頼性の高い電子機器とすることができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
本実施の形態では、本発明の一態様の電子機器に適用することのできる表示パネルの構成例について説明する。以下で例示する表示パネルは、上記実施の形態1の表示パネル31に適用することができる。
本発明の一態様は、発光素子(発光デバイスともいう)を有する表示パネルである。表示パネルは、発光色の異なる2つ以上の画素を有する。画素は、それぞれ発光素子を有する。発光素子は、それぞれ一対の電極と、その間にEL層を有する。発光素子は、有機EL素子(有機電界発光素子)であることが好ましい。発光色の異なる2つ以上の発光素子は、それぞれ異なる発光材料を含むEL層を有する。例えば、それぞれ赤色(R)、緑色(G)、または青色(B)の光を発する3種類の発光素子を有することで、フルカラーの表示パネルを実現できる。
発光色がそれぞれ異なる複数の発光素子を有する表示パネルを作製する場合、少なくとも発光材料を含む層(発光層)をそれぞれ島状に形成する必要がある。EL層の一部または全部を作り分ける場合、メタルマスクなどのシャドーマスクを用いた蒸着法により島状の有機膜を形成する方法が知られている。しかしながらこの方法では、メタルマスクの精度、メタルマスクと基板との位置ずれ、メタルマスクのたわみ、および蒸気の散乱などによる成膜される膜の輪郭の広がりなど、様々な影響により、島状の有機膜の形状および位置に設計からのずれが生じるため、表示パネルの高精細化、および高開口率化が困難である。また、蒸着の際に、層の輪郭がぼやけて、端部の厚さが薄くなることがある。つまり、島状の発光層は場所によって厚さにばらつきが生じることがある。また、大型、高解像度、または高精細な表示パネルを作製する場合、メタルマスクの寸法精度の低さ、および熱などによる変形により、製造歩留まりが低くなる懸念がある。そのため、ペンタイル配列などの特殊な画素配列方式を採用することなどにより、疑似的に精細度(画素密度ともいう)を高める対策が取られていた。
なお、本明細書等において、島状とは、同一工程で形成された同一材料を用いた2以上の層が物理的に分離されている状態であることを示す。例えば、島状の発光層とは、当該発光層と、隣接する発光層とが、物理的に分離されている状態であることを示す。
本発明の一態様は、EL層をファインメタルマスク(FMM)などのシャドーマスクを用いることなく、フォトリソグラフィにより、微細なパターンに加工する。これにより、これまで実現が困難であった高い精細度と、大きな開口率を有する表示パネルを実現できる。さらに、EL層を作り分けることができるため、極めて鮮やかで、コントラストが高く、表示品位の高い表示パネルを実現できる。なお、例えば、EL層をメタルマスクと、フォトリソグラフィと、の双方を用いて微細なパターンに加工してもよい。
また、EL層の一部または全部を物理的に分断することができる。これにより、隣接する発光素子間で共通に用いる層(共通層ともいう)を介した、発光素子間のリーク電流を抑制することができる。これにより、意図しない発光に起因したクロストークを防ぐことができ、コントラストの極めて高い表示パネルを実現できる。特に、低輝度における電流効率の高い表示パネルを実現できる。
本発明の一態様は、白色発光の発光素子と、カラーフィルタとを組み合わせた表示パネルとすることもできる。この場合、異なる色の光を呈する画素(副画素)に設けられる発光素子に、それぞれ同じ構成の発光素子を適用することができ、全ての層を共通層とすることができる。さらに、それぞれのEL層の一部または全部を、フォトリソグラフィを用いた工程で分断してもよい。これにより、共通層を介したリーク電流が抑制され、コントラストの高い表示パネルを実現できる。特に、導電性の高い中間層を介して、複数の発光層を積層したタンデム構造を有する素子では、当該中間層を介したリーク電流を効果的に防ぐことができるため、高い輝度、高い精細度、および高いコントラストを兼ね備えた表示パネルを実現できる。
EL層をフォトリソグラフィ法を用いて加工する場合、発光層の一部が露出し、劣化の要因となる場合がある。そのため、少なくとも島状の発光層の側面を覆う絶縁層を設けることが好ましい。当該絶縁層は、島状のEL層の上面の一部を覆う構成としてもよい。当該絶縁層としては、水および酸素に対してバリア性を有する材料を用いることが好ましい。例えば、水または酸素を拡散しにくい、無機絶縁膜を用いることができる。これにより、EL層の劣化を抑制し、信頼性の高い表示パネルを実現できる。
さらに、隣接する2つの発光素子間には、いずれの発光素子のEL層も設けられない領域(凹部)を有する。当該凹部を覆って共通電極、または共通電極および共通層を形成する場合、共通電極がEL層の端部の段差により分断されてしまう現象(段切れともいう)が生じ、EL層上の共通電極が絶縁してしまう場合がある。そこで、隣接する2つの発光素子間に位置する局所的な段差を、平坦化膜として機能する樹脂層により埋める構成(LFP:Local Filling Planarizationともいう)とすることが好ましい。当該樹脂層は、平坦化膜としての機能を有する。これにより、共通層または共通電極の段切れを抑制し、信頼性の高い表示パネルを実現できる。
以下では、本発明の一態様の表示パネルの、より具体的な構成例について、図面を参照して説明する。
[構成例1]
図7Aに、本発明の一態様の表示パネル100の上面概略図を示す。表示パネル100は、基板101上に、赤色を呈する発光素子110R、緑色を呈する発光素子110G、および青色を呈する発光素子110Bをそれぞれ複数有する。図7Aでは、各発光素子の区別を簡単にするため、各発光素子の発光領域内にR、G、Bの符号を付している。
発光素子110R、発光素子110G、および発光素子110Bは、それぞれマトリクス状に配列している。図7Aは、一方向に同一の色の発光素子が配列する、いわゆるストライプ配列を示している。なお、発光素子の配列方法はこれに限られず、Sストライプ配列、デルタ配列、ベイヤー配列、ジグザグ配列などの配列方法を適用してもよいし、ペンタイル配列、ダイヤモンド配列などを用いることもできる。
発光素子110R、発光素子110G、および発光素子110Bとしては、例えばOLED、またはQLEDを用いることが好ましい。EL素子が有する発光物質としては、例えば蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、および熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(TADF)材料)が挙げられる。EL素子が有する発光物質としては、有機化合物だけでなく、無機化合物(量子ドット材料など)を用いることができる。
また、図7Aには、共通電極113と電気的に接続する接続電極111Cを示している。接続電極111Cは、共通電極113に供給するための電位(例えばアノード電位、またはカソード電位)が与えられる。接続電極111Cは、発光素子110Rなどが配列する表示領域の外に設けられる。
接続電極111Cは、表示領域の外周に沿って設けることができる。例えば、表示領域の外周の一辺に沿って設けられていてもよいし、表示領域の外周の2辺以上にわたって設けられていてもよい。すなわち、表示領域の上面形状が長方形である場合には、接続電極111Cの上面形状は、帯状(長方形)、L字状、コの字状(角括弧状)、または四角形などとすることができる。
図7B、図7Cはそれぞれ、図7A中の一点鎖線A1−A2、一点鎖線A3−A4に対応する断面概略図である。図7Bには、発光素子110R、発光素子110G、および発光素子110Bの断面概略図を示し、図7Cには、接続電極111Cと共通電極113とが接続される接続部140の断面概略図を示している。
発光素子110Rは、画素電極111R、有機層112R、共通層114、および共通電極113を有する。発光素子110Gは、画素電極111G、有機層112G、共通層114、および共通電極113を有する。発光素子110Bは、画素電極111B、有機層112B、共通層114、および共通電極113を有する。共通層114と共通電極113は、発光素子110R、発光素子110G、および発光素子110Bに共通に設けられる。
発光素子110Rが有する有機層112Rは、少なくとも赤色の光を発する発光性の有機化合物を有する。発光素子110Gが有する有機層112Gは、少なくとも緑色の光を発する発光性の有機化合物を有する。発光素子110Bが有する有機層112Bは、少なくとも青色の光を発する発光性の有機化合物を有する。有機層112R、有機層112G、および有機層112Bは、それぞれEL層とも呼ぶことができ、少なくとも発光性の物質を含む層(発光層)を有する。
以下では、発光素子110R、発光素子110G、および発光素子110Bに共通する事項を説明する場合には、発光素子110と呼称して説明する場合がある。同様に、有機層112R、有機層112G、および有機層112Bなど、アルファベットで区別する構成要素についても、これらに共通する事項を説明する場合には、アルファベットを省略した符号を用いて説明する場合がある。
有機層112、および共通層114は、それぞれ独立に電子注入層、電子輸送層、正孔注入層、および正孔輸送層のうち、一以上を有することができる。例えば、有機層112が、画素電極111側から正孔注入層、正孔輸送層、発光層、電子輸送層の積層構造を有し、共通層114が電子注入層を有する構成とすることができる。
画素電極111R、画素電極111G、および画素電極111Bは、それぞれ発光素子毎に設けられている。また、共通電極113および共通層114は、各発光素子に共通な一続きの層として設けられている。各画素電極と共通電極113のいずれか一方に可視光に対して透光性を有する導電膜を用い、他方に反射性を有する導電膜を用いる。各画素電極を透光性、共通電極113を反射性とすることで、下面射出型(ボトムエミッション型)の表示パネルとすることができ、反対に各画素電極を反射性、共通電極113を透光性とすることで、上面射出型(トップエミッション型)の表示パネルとすることができる。なお、各画素電極と共通電極113の双方を透光性とすることで、両面射出型(デュアルエミッション型)の表示パネルとすることもできる。
共通電極113上には、発光素子110R、発光素子110G、および発光素子110Bを覆って、保護層121が設けられている。保護層121は、上方から各発光素子に水などの不純物が拡散することを防ぐ機能を有する。
画素電極111の端部はテーパ形状を有することが好ましい。画素電極111の端部がテーパ形状を有する場合、画素電極111の端部に沿って設けられる有機層112も、テーパ形状とすることができる。画素電極111の端部をテーパ形状とすることで、画素電極111の端部を乗り越えて設けられる有機層112の被覆性を高めることができる。また、画素電極111の側面をテーパ形状とすることで、作製工程中の異物(例えば、ゴミ、またはパーティクルなどともいう)を、洗浄などの処理により除去することが容易となり好ましい。
なお、本明細書等において、テーパ形状とは、構造の側面の少なくとも一部が、基板面に対して傾斜して設けられている形状のことを指す。例えば、傾斜した側面と基板面とがなす角(テーパ角ともいう)が90°未満である領域を有すると好ましい。
有機層112は、フォトリソグラフィ法を用いて島状に加工されている。そのため、有機層112は、その端部において、上面と側面との成す角が90度に近い形状となる。一方、FMM(Fine Metal Mask)などを用いて形成された有機膜は、その厚さが端部に近いほど徐々に薄くなる傾向があり、例えば1μm以上10μm以下の範囲にわたって、上面がスロープ状に形成されるため、上面と側面の区別が困難な形状となる。
隣接する2つの発光素子間には、絶縁層125、樹脂層126および層128を有する。
隣接する2つの発光素子間において、互いの有機層112の側面が樹脂層126を挟んで対向して設けられている。樹脂層126は、隣接する2つの発光素子の間に位置し、それぞれの有機層112の端部、および2つの有機層112の間の領域を埋めるように設けられている。樹脂層126は、滑らかな凸状の上面形状を有しており、樹脂層126の上面を覆って、共通層114および共通電極113が設けられている。
樹脂層126は、隣接する2つの発光素子間に位置する段差を埋める平坦化膜として機能する。樹脂層126を設けることにより、共通電極113が有機層112の端部の段差により分断されてしまう現象(段切れともいう)が生じ、有機層112上の共通電極が絶縁してしまうことを防ぐことができる。樹脂層126は、LFP(Local Filling Planarization)ともいうことができる。
樹脂層126としては、有機材料を有する絶縁層を好適に用いることができる。例えば、樹脂層126として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、イミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シリコーン樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、およびこれら樹脂の前駆体等を適用することができる。また、樹脂層126として、ポリビニルアルコール(PVA)、ポリビニルブチラール、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、またはアルコール可溶性のポリアミド樹脂などの有機材料を用いてもよい。
また、樹脂層126として、感光性の樹脂を用いることができる。感光性の樹脂としてはフォトレジストを用いてもよい。感光性の樹脂は、ポジ型の材料、またはネガ型の材料を用いることができる。
樹脂層126は、可視光を吸収する材料を含んでいてもよい。例えば、樹脂層126自体が可視光を吸収する材料により構成されていてもよいし、樹脂層126が、可視光を吸収する顔料を含んでいてもよい。樹脂層126としては、例えば、赤色、青色、または緑色の光を透過し、他の光を吸収するカラーフィルタとして用いることのできる樹脂、またはカーボンブラックを顔料として含み、ブラックマトリクスとして機能する樹脂などを用いることができる。
絶縁層125は、有機層112の側面に接して設けられている。また絶縁層125は、有機層112の上端部を覆って設けられている。また絶縁層125の一部は、基板101の上面に接して設けられている。
絶縁層125は、樹脂層126と有機層112との間に位置し、樹脂層126が有機層112に接することを防ぐための保護膜として機能する。有機層112と樹脂層126とが接すると、樹脂層126の形成時に用いられる有機溶媒などにより有機層112が溶解する可能性がある。そのため、有機層112と樹脂層126との間に絶縁層125を設ける構成とすることで、有機層112の側面を保護することが可能となる。
絶縁層125としては、無機材料を有する絶縁層とすることができる。絶縁層125には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、および窒化酸化絶縁膜などの無機絶縁膜を用いることができる。絶縁層125は単層構造であってもよく積層構造であってもよい。酸化絶縁膜としては、酸化シリコン膜、酸化アルミニウム膜、酸化マグネシウム膜、インジウムガリウム亜鉛酸化物膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、および酸化タンタル膜などが挙げられる。窒化絶縁膜としては、窒化シリコン膜および窒化アルミニウム膜などが挙げられる。酸化窒化絶縁膜としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜などが挙げられる。窒化酸化絶縁膜としては、窒化酸化シリコン膜、窒化酸化アルミニウム膜などが挙げられる。特にALD法により形成した酸化アルミニウム膜、酸化ハフニウム膜などの酸化金属膜、または酸化シリコン膜などの無機絶縁膜を絶縁層125に適用することで、ピンホールが少なく、EL層を保護する機能に優れた絶縁層125を形成することができる。
なお、本明細書などにおいて、酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多い材料を指し、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多い材料を指す。例えば、酸化窒化シリコンと記載した場合は、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンと記載した場合は、その組成として、酸素よりも窒素の含有量が多い材料を示す。
絶縁層125の形成は、スパッタリング法、CVD法、PLD法、ALD法などを用いることができる。絶縁層125は、被覆性が良好なALD法を用いて形成することが好ましい。
また、絶縁層125と、樹脂層126との間に、反射膜(例えば、銀、パラジウム、銅、チタン、およびアルミニウムなどの中から選ばれる一または複数を含む金属膜)を設け、発光層から射出される光を上記反射膜により反射させる構成としてもよい。これにより、光取り出し効率を向上させることができる。
層128は、有機層112のエッチング時に、有機層112を保護するための保護層(マスク層、犠牲層ともいう)の一部が残存したものである。層128には、上記絶縁層125に用いることのできる材料を用いることができる。特に、層128と絶縁層125とに同じ材料を用いると、加工のための装置等を共通に用いることができるため、好ましい。
特にALD法により形成した酸化アルミニウム膜、酸化ハフニウム膜などの酸化金属膜、または酸化シリコン膜などの無機絶縁膜はピンホールが少ないため、EL層を保護する機能に優れ、絶縁層125および層128に好適に用いることができる。
保護層121としては、例えば、少なくとも無機絶縁膜を含む単層構造または積層構造とすることができる。無機絶縁膜としては、例えば、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜などの酸化物膜または窒化物膜が挙げられる。または、保護層121としてインジウムガリウム酸化物、インジウム亜鉛酸化物、インジウムスズ酸化物、インジウムガリウム亜鉛酸化物などの半導体材料または導電性材料を用いてもよい。
保護層121としては、無機絶縁膜と、有機絶縁膜の積層膜を用いることもできる。例えば、一対の無機絶縁膜の間に、有機絶縁膜を挟んだ構成とすることが好ましい。さらに有機絶縁膜が平坦化膜として機能することが好ましい。これにより、有機絶縁膜の上面を平坦なものとすることができるため、その上の無機絶縁膜の被覆性が向上し、バリア性を高めることができる。また、保護層121の上面が平坦となるため、保護層121の上方に構造物(例えばカラーフィルタ、タッチセンサの電極、またはレンズアレイなど)を設ける場合に、下方の構造に起因する凹凸形状の影響を軽減できるため好ましい。
図7Cには、接続電極111Cと共通電極113とが電気的に接続する接続部140を示している。接続部140では、接続電極111C上において、絶縁層125および樹脂層126に開口部が設けられる。当該開口部において、接続電極111Cと共通電極113とが電気的に接続されている。
なお、図7Cには、接続電極111Cと共通電極113とが電気的に接続する接続部140を示しているが、接続電極111C上に共通層114を介して共通電極113が設けられていてもよい。特に共通層114にキャリア注入層を用いた場合などでは、当該共通層114に用いる材料の電気抵抗率が十分に低く、且つ厚さも薄く形成できるため、共通層114が接続部140に位置していても問題は生じない場合が多い。これにより、共通電極113と共通層114とを同じ遮蔽マスクを用いて形成することができるため、製造コストを低減できる。
[構成例2]
以下では、上記構成例1とは一部の構成が異なる表示パネルについて説明する。なお、上記構成例1と共通する部分はこれを参照し、説明を省略する場合がある。
図8Aに、表示パネル100aの断面概略図を示す。表示パネル100aは、発光素子の構成が異なる点、および着色層を有する点で、表示パネル100と主に相違している。
表示パネル100aは、白色光を呈する発光素子110Wを有する。発光素子110Wは、画素電極111、有機層112W、共通層114、および共通電極113を有する。有機層112Wは、白色発光を呈する。例えば、有機層112Wは、発光色が補色の関係となる2種類以上の発光材料を含む構成とすることができる。例えば、有機層112Wは、赤色の光を発する発光性の有機化合物と、緑色の光を発する発光性の有機化合物と、青色の光を発する発光性の有機化合物と、を有する構成とすることができる。また、青色の光を発する発光性の有機化合物と、黄色の光を発する発光性の有機化合物と、を有する構成としてもよい。
隣接する2つの発光素子110W間において、それぞれの有機層112Wは分断されている。これにより、有機層112Wを介して隣接する発光素子110W間に流れるリーク電流を抑制することができ、当該リーク電流に起因したクロストークを抑制できる。そのため、コントラスト、および色再現性の高い表示パネルを実現できる。
保護層121上には、平坦化膜として機能する絶縁層122が設けられ、絶縁層122上には着色層116R、着色層116G、および着色層116Bが設けられている。
絶縁層122としては、有機樹脂膜、または上面が平坦化された無機絶縁膜を用いることができる。絶縁層122は、着色層116R、着色層116G、および着色層116Bの被形成面を成すため、絶縁層122の上面が平坦であることで、着色層116R等の厚さを均一にできるため、色純度を高めることができる。なお、着色層116R等の厚さが不均一であると、光の吸収量が着色層116Rの場所によって変わるため、色純度が低下してしまう恐れがある。
[構成例3]
図8Bに、表示パネル100bの断面概略図を示す。
発光素子110Rは、画素電極111、導電層115R、有機層112W、および共通電極113を有する。発光素子110Gは、画素電極111、導電層115G、有機層112W、および共通電極113を有する。発光素子110Bは、画素電極111、導電層115B、有機層112W、および共通電極113を有する。導電層115R、導電層115G、および導電層115Bはそれぞれ透光性を有し、光学調整層として機能する。
画素電極111に、可視光を反射する膜を用い、共通電極113に、可視光に対して反射性と透過性の両方を有する膜を用いることにより、微小共振器(マイクロキャビティ)構造を実現することができる。このとき、導電層115R、導電層115G、および導電層115Bの厚さをそれぞれ、最適な光路長となるように調整することで、白色発光を呈する有機層112を用いた場合であっても、発光素子110R、発光素子110G、および発光素子110Bからは、それぞれ異なる波長の光が強められた光を得ることができる。
さらに、発光素子110R、発光素子110G、および発光素子110Bの光路上には、それぞれ着色層116R、着色層116G、着色層116Bが設けられることで、色純度の高い光を得ることができる。
また、画素電極111および光学調整層115の端部を覆う絶縁層123が設けられている。絶縁層123は、端部がテーパ形状を有していることが好ましい。絶縁層123を設けることで、その上に形成される有機層112W、共通電極113、および保護層121などによる被覆性を高めることができる。
有機層112Wおよび共通電極113は、それぞれ一続きの膜として、各発光素子に共通して設けられている。このような構成とすることで、表示パネルの作製工程を大幅に簡略化できるため好ましい。
ここで、画素電極111は、その端部が垂直に近い形状であることが好ましい。これにより、絶縁層123の表面に傾斜が急峻な部分を形成することができ、この部分を被覆する有機層112Wの一部に厚さの薄い部分を形成すること、または有機層112Wの一部を分断することができる。そのため、フォトリソグラフィ法などを用いた有機層112Wの加工を行うことなく、隣接する発光素子間に生じる有機層112Wを介したリーク電流を抑制することができる。
以上が、表示パネルの構成例についての説明である。
[画素のレイアウト]
以下では、主に、図7Aとは異なる画素レイアウトについて説明する。発光素子(副画素)の配列に特に限定はなく、様々な方法を適用することができる。
また、副画素の上面形状としては、例えば、三角形、四角形(長方形、正方形を含む)、五角形などの多角形、これら多角形の角が丸い形状、楕円形、または円形などが挙げられる。ここで、副画素の上面形状は、発光素子の発光領域の上面形状に相当する。
図9Aに示す画素150には、Sストライプ配列が適用されている。図9Aに示す画素150は、発光素子110a、110b、110cの、3つの副画素から構成される。例えば、発光素子110aを青色の発光素子とし、発光素子110bを赤色の発光素子とし、発光素子110cを緑色の発光素子としてもよい。
図9Bに示す画素150は、角が丸い略台形または略三角形の上面形状を有する発光素子110aと、角が丸い略台形または略三角形の上面形状を有する発光素子110bと、角が丸い略四角形または略六角形の上面形状を有する発光素子110cと、を有する。また、発光素子110aは、発光素子110bよりも発光面積が広い。このように、各発光素子の形状およびサイズはそれぞれ独立に決定することができる。例えば、信頼性の高い発光素子ほど、サイズを小さくすることができる。例えば、発光素子110aを緑色の発光素子とし、発光素子110bを赤色の発光素子とし、発光素子110cを青色の発光素子としてもよい。
図9Cに示す画素124a、124bには、ペンタイル配列が適用されている。図9Cでは、発光素子110aおよび発光素子110bを有する画素124aと、発光素子110bおよび発光素子110cを有する画素124bと、が交互に配置されている例を示す。例えば、発光素子110aを赤色の発光素子とし、発光素子110bを緑色の発光素子とし、発光素子110cを青色の発光素子としてもよい。
図9Dおよび図9Eに示す画素124a、124bは、デルタ配列が適用されている。画素124aは上の行(1行目)に、2つの発光素子(発光素子110a、110b)を有し、下の行(2行目)に、1つの発光素子(発光素子110c)を有する。画素124bは上の行(1行目)に、1つの発光素子(発光素子110c)を有し、下の行(2行目)に、2つの発光素子(発光素子110a、110b)を有する。例えば、発光素子110aを赤色の発光素子とし、発光素子110bを緑色の発光素子とし、発光素子110cを青色の発光素子としてもよい。
図9Dは、各発光素子が、角が丸い略四角形の上面形状を有する例であり、図9Eは、各発光素子が、円形の上面形状を有する例である。
図9Fは、各色の発光素子がジグザグに配置されている例である。具体的には、上面視において、列方向に並ぶ2つの発光素子(例えば、発光素子110aと発光素子110b、または、発光素子110bと発光素子110c)の上辺の位置がずれている。例えば、発光素子110aを赤色の発光素子とし、発光素子110bを緑色の発光素子とし、発光素子110cを青色の発光素子としてもよい。
フォトリソグラフィ法では、加工するパターンが微細になるほど、光の回折の影響を無視できなくなるため、露光によりフォトマスクのパターンを転写する際に忠実性が損なわれ、レジストマスクを所望の形状に加工することが困難になる。そのため、フォトマスクのパターンが矩形であっても、角が丸まったパターンが形成されやすい。したがって、発光素子の上面形状が、多角形の角が丸い形状、楕円形、または円形などになることがある。
さらに、本発明の一態様の表示パネルの作製方法では、レジストマスクを用いてEL層を島状に加工する。EL層上に形成したレジスト膜は、EL層の耐熱温度よりも低い温度で硬化する必要がある。そのため、EL層の材料の耐熱温度およびレジスト材料の硬化温度によっては、レジスト膜の硬化が不十分になる場合がある。硬化が不十分なレジスト膜は、加工時に所望の形状から離れた形状をとることがある。その結果、EL層の上面形状が、多角形の角が丸い形状、楕円形、または円形などになることがある。例えば、上面形状が正方形のレジストマスクを形成しようとした場合に、円形の上面形状のレジストマスクが形成され、EL層の上面形状が円形になることがある。
なお、EL層の上面形状を所望の形状とするために、設計パターンと、転写パターンとが、一致するように、あらかじめマスクパターンを補正する技術(OPC(Optical Proximity Correction:光近接効果補正)技術)を用いてもよい。具体的には、OPC技術では、マスクパターン上の図形コーナー部などに補正用のパターンを追加する。
以上が、画素のレイアウトに関する説明である。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態3)
本実施の形態では、本発明の一態様の電子機器に適用することのできる表示パネルの他の構成例について説明する。
本実施の形態の表示パネルは、高精細な表示パネルであり、特にヘッドマウントディスプレイなどのVR向け機器、および、メガネ型のAR向け機器などの頭部に装着可能なウェアラブル機器の表示部に用いることが適している。
[表示モジュール]
図10Aに、表示モジュール280の斜視図を示す。表示モジュール280は、表示パネル200Aと、FPC290と、を有する。なお、表示モジュール280が有する表示パネルは表示パネル200Aに限られず、後述する表示パネル200B乃至表示パネル200Fのいずれかであってもよい。
表示モジュール280は、基板291および基板292を有する。表示モジュール280は、表示部281を有する。表示部281は、画像を表示する領域である。
図10Bに、基板291側の構成を模式的に示した斜視図を示している。基板291上には、回路部282と、回路部282上の画素回路部283と、画素回路部283上の画素部284と、が積層されている。また、基板291上の画素部284と重ならない部分に、FPC290と接続するための端子部285が設けられている。端子部285と回路部282とは、複数の配線により構成される配線部286により電気的に接続されている。
画素部284は、周期的に配列した複数の画素284aを有する。図10Bの右側に、1つの画素284aの拡大図を示している。画素284aは、赤色の光を発する発光素子110R、緑色の光を発する発光素子110G、および、青色の光を発する発光素子110Bを有する。
画素回路部283は、周期的に配列した複数の画素回路283aを有する。1つの画素回路283aは、1つの画素284aが有する3つの発光デバイスの発光を制御する回路である。1つの画素回路283aには、1つの発光デバイスの発光を制御する回路が3つ設けられる構成としてもよい。例えば、画素回路283aは、1つの発光デバイスにつき、1つの選択トランジスタと、1つの電流制御用トランジスタ(駆動トランジスタ)と、容量素子と、を少なくとも有する構成とすることができる。このとき、選択トランジスタのゲートにはゲート信号が、ソースにはソース信号が、それぞれ入力される。これにより、アクティブマトリクス型の表示パネルが実現されている。
回路部282は、画素回路部283の各画素回路283aを駆動する回路を有する。例えば、ゲート線駆動回路、および、ソース線駆動回路の一方または双方を有することが好ましい。このほか、演算回路、メモリ回路、および電源回路等の少なくとも一つを有していてもよい。また、回路部282に設けられるトランジスタが画素回路283aの一部を構成してもよい。すなわち、画素回路283aが、画素回路部283が有するトランジスタと、回路部282が有するトランジスタと、により構成されていてもよい。
FPC290は、外部から回路部282にビデオ信号および電源電位等を供給するための配線として機能する。また、FPC290上にICが実装されていてもよい。
表示モジュール280は、画素部284の下側に画素回路部283および回路部282の一方または双方が重ねて設けられた構成とすることができるため、表示部281の開口率(有効表示面積比)を極めて高くすることができる。例えば表示部281の開口率は、40%以上100%未満、好ましくは50%以上95%以下、より好ましくは60%以上95%以下とすることができる。また、画素284aを極めて高密度に配置することが可能で、表示部281の精細度を極めて高くすることができる。例えば、表示部281には、2000ppi以上、好ましくは3000ppi以上、より好ましくは5000ppi以上、さらに好ましくは6000ppi以上であって、20000ppi以下、または30000ppi以下の精細度で、画素284aが配置されることが好ましい。
このような表示モジュール280は、極めて高精細であることから、ヘッドマウントディスプレイなどのVR向け機器、またはメガネ型のAR向け機器に好適に用いることができる。例えば、レンズを通して表示モジュール280の表示部を視認する構成の場合であっても、表示モジュール280は極めて高精細な表示部281を有するためにレンズで表示部を拡大しても画素が視認されず、没入感の高い表示を行うことができる。また、表示モジュール280はこれに限られず、比較的小型の表示部を有する電子機器に好適に用いることができる。例えば腕時計などの装着型の電子機器の表示部に好適に用いることができる。
[表示パネル200A]
図11に示す表示パネル200Aは、基板301、発光素子110R、110G、110B、容量240、および、トランジスタ310を有する。
基板301は、図10Aおよび図10Bにおける基板291に相当する。
トランジスタ310は、基板301にチャネル形成領域を有するトランジスタである。基板301としては、例えば単結晶シリコン基板などの半導体基板を用いることができる。トランジスタ310は、基板301の一部、導電層311、低抵抗領域312、絶縁層313、および、絶縁層314を有する。導電層311は、ゲート電極として機能する。絶縁層313は、基板301と導電層311の間に位置し、ゲート絶縁層として機能する。低抵抗領域312は、基板301に不純物がドープされた領域であり、ソースまたはドレインの一方として機能する。絶縁層314は、導電層311の側面を覆って設けられる。
また、基板301に埋め込まれるように、隣接する2つのトランジスタ310の間に素子分離層315が設けられている。
また、トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に容量240が設けられている。
容量240は、導電層241と、導電層245と、これらの間に位置する絶縁層243を有する。導電層241は、容量240の一方の電極として機能し、導電層245は、容量240の他方の電極として機能し、絶縁層243は、容量240の誘電体として機能する。
導電層241は絶縁層261上に設けられ、絶縁層254に埋め込まれている。導電層241は、絶縁層261に埋め込まれたプラグ271によってトランジスタ310のソースまたはドレインの一方と電気的に接続されている。絶縁層243は導電層241を覆って設けられる。導電層245は、絶縁層243を介して導電層241と重なる領域に設けられている。
容量240を覆って、絶縁層255aが設けられ、絶縁層255a上に絶縁層255bが設けられ、絶縁層255b上に絶縁層255cが設けられている。
絶縁層255a、絶縁層255b、および絶縁層255cには、それぞれ無機絶縁膜を好適に用いることができる。例えば、絶縁層255aおよび絶縁層255cに酸化シリコン膜を用い、絶縁層255bに窒化シリコン膜を用いることが好ましい。これにより、絶縁層255bは、エッチング保護膜として機能させることができる。本実施の形態では、絶縁層255cの一部がエッチングされ、凹部が形成されている例を示すが、絶縁層255cに凹部が設けられていなくてもよい。
絶縁層255c上に発光素子110R、発光素子110G、および、発光素子110Bが設けられている。発光素子110R、発光素子110G、および、発光素子110Bの構成は、実施の形態1を参照できる。
表示パネル200Aは、発光色ごとに、発光デバイスを作り分けているため、低輝度での発光と高輝度での発光で色度の変化が小さい。また、有機層112R、112G、112Bがそれぞれ離隔しているため、高精細な表示パネルであっても、隣接する副画素間におけるクロストークの発生を抑制することができる。したがって、高精細であり、かつ、表示品位の高い表示パネルを実現することができる。
隣り合う発光素子の間の領域には、絶縁層125、樹脂層126、および層128が設けられる。
発光素子の画素電極111R、画素電極111G、および、画素電極111Bは、絶縁層255a、絶縁層255b、および、絶縁層255cに埋め込まれたプラグ256、絶縁層254に埋め込まれた導電層241、および、絶縁層261に埋め込まれたプラグ271によってトランジスタ310のソースまたはドレインの一方と電気的に接続されている。絶縁層255cの上面の高さと、プラグ256の上面の高さは、一致または概略一致している。プラグには各種導電材料を用いることができる。
また、発光素子110R、110G、および110B上には保護層121が設けられている。保護層121上には、接着層171によって基板170が貼り合わされている。
隣接する2つの画素電極111間には、画素電極111の上面端部を覆う絶縁層が設けられていない。そのため、隣り合う発光素子の間隔を極めて狭くすることができる。したがって、高精細、または、高解像度の表示パネルとすることができる。
[表示パネル200B]
図12に示す表示パネル200Bは、それぞれ半導体基板にチャネルが形成されるトランジスタ310Aと、トランジスタ310Bとが積層された構成を有する。なお、以降の表示パネルの説明では、先に説明した表示パネルと同様の部分については説明を省略することがある。
表示パネル200Bは、トランジスタ310B、容量240、発光デバイスが設けられた基板301Bと、トランジスタ310Aが設けられた基板301Aとが、貼り合された構成を有する。
ここで、基板301Bの下面に絶縁層345が設けられ、基板301A上に設けられた絶縁層261の上には絶縁層346が設けられている。絶縁層345、346は、保護層として機能する絶縁層であり、基板301Bおよび基板301Aに不純物が拡散することを抑制することができる。絶縁層345、346としては、保護層121に用いることができる無機絶縁膜を用いることができる。
基板301Bには、基板301Bおよび絶縁層345を貫通するプラグ343が設けられる。ここで、プラグ343の側面を覆って、保護層として機能する絶縁層344を設けることが好ましい。
また、基板301Bは、絶縁層345の下側に、導電層342が設けられる。導電層342は、絶縁層335に埋め込まれており、導電層342と絶縁層335の下面は平坦化されている。また、導電層342はプラグ343と電気的に接続されている。
一方、基板301Aには、絶縁層346上に導電層341が設けられている。導電層341は、絶縁層336に埋め込まれており、導電層341と絶縁層336の上面は平坦化されている。
導電層341および導電層342としては、同じ導電材料を用いることが好ましい。例えば、Al、Cr、Cu、Ta、Ti、Mo、Wから選ばれた元素を含む金属膜、または上述した元素を成分とする金属窒化物膜(窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)等を用いることができる。特に、導電層341および導電層342に、銅を用いることが好ましい。これにより、Cu−Cu(カッパー・カッパー)直接接合技術(Cu(銅)のパッド同士を接続することで電気的導通を図る技術)を適用することができる。
[表示パネル200C]
図13に示す表示パネル200Cは、導電層341と導電層342を、バンプ347を介して接合する構成を有する。
図13に示すように、導電層341と導電層342の間にバンプ347を設けることで、導電層341と導電層342を電気的に接続することができる。バンプ347は、例えば、金(Au)、ニッケル(Ni)、インジウム(In)、錫(Sn)などを含む導電材料を用いて形成することができる。また例えば、バンプ347として半田を用いる場合がある。また、絶縁層345と絶縁層346の間に、接着層348を設けてもよい。また、バンプ347を設ける場合、絶縁層335および絶縁層336を設けない構成にしてもよい。
[表示パネル200D]
図14に示す表示パネル200Dは、トランジスタの構成が異なる点で、表示パネル200Aと主に相違する。
トランジスタ320は、チャネルが形成される半導体層に、金属酸化物(酸化物半導体ともいう)が適用されたトランジスタ(OSトランジスタ)である。
トランジスタ320は、半導体層321、絶縁層323、導電層324、一対の導電層325、絶縁層326、および、導電層327を有する。
基板331は、図10Aおよび図10Bにおける基板291に相当する。
基板331上に、絶縁層332が設けられている。絶縁層332は、基板331から水または水素などの不純物がトランジスタ320に拡散すること、および半導体層321から絶縁層332側に酸素が脱離することを防ぐバリア層として機能する。絶縁層332としては、例えば酸化アルミニウム膜、酸化ハフニウム膜、窒化シリコン膜などの、酸化シリコン膜よりも水素または酸素が拡散しにくい膜を用いることができる。
絶縁層332上に導電層327が設けられ、導電層327を覆って絶縁層326が設けられている。導電層327は、トランジスタ320の第1のゲート電極として機能し、絶縁層326の一部は、第1のゲート絶縁層として機能する。絶縁層326の少なくとも半導体層321と接する部分には、酸化シリコン膜等の酸化物絶縁膜を用いることが好ましい。絶縁層326の上面は、平坦化されていることが好ましい。
半導体層321は、絶縁層326上に設けられる。半導体層321は、半導体特性を示す金属酸化物(酸化物半導体ともいう)膜を有することが好ましい。一対の導電層325は、半導体層321上に接して設けられ、ソース電極およびドレイン電極として機能する。
一対の導電層325の上面および側面、並びに半導体層321の側面等を覆って絶縁層328が設けられ、絶縁層328上に絶縁層264が設けられている。絶縁層328は、半導体層321に絶縁層264等から水または水素などの不純物が拡散すること、および半導体層321から酸素が脱離することを防ぐバリア層として機能する。絶縁層328としては、上記絶縁層332と同様の絶縁膜を用いることができる。
絶縁層328および絶縁層264に、半導体層321に達する開口が設けられている。当該開口の内部に、半導体層321の上面に接する絶縁層323と、導電層324とが埋め込まれている。導電層324は、第2のゲート電極として機能し、絶縁層323は第2のゲート絶縁層として機能する。
導電層324の上面、絶縁層323の上面、および絶縁層264の上面は、それぞれ高さが一致または概略一致するように平坦化処理され、これらを覆って絶縁層329および絶縁層265が設けられている。
絶縁層264および絶縁層265は、層間絶縁層として機能する。絶縁層329は、トランジスタ320に絶縁層265等から水または水素などの不純物が拡散することを防ぐバリア層として機能する。絶縁層329としては、上記絶縁層328および絶縁層332と同様の絶縁膜を用いることができる。
一対の導電層325の一方と電気的に接続するプラグ274は、絶縁層265、絶縁層329、および絶縁層264に埋め込まれるように設けられている。ここで、プラグ274は、絶縁層265、絶縁層329、絶縁層264、および絶縁層328のそれぞれの開口の側面、および導電層325の上面の一部を覆う導電層274aと、導電層274aの上面に接する導電層274bとを有することが好ましい。このとき、導電層274aとして、水素および酸素が拡散しにくい導電材料を用いることが好ましい。
なお、本実施の形態の表示パネルが有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
トランジスタ320には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御してもよい。
トランジスタの半導体層に用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、単結晶半導体、または単結晶以外の結晶性を有する半導体、(微結晶半導体、多結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。単結晶半導体または結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
トランジスタの半導体層に用いる金属酸化物のバンドギャップは、2eV以上が好ましく、2.5eV以上がより好ましい。バンドギャップの大きい金属酸化物を用いることで、OSトランジスタのオフ電流を低減することができる。
金属酸化物は、少なくともインジウムまたは亜鉛を有することが好ましく、インジウムおよび亜鉛を有することがより好ましい。例えば、金属酸化物は、インジウムと、M(Mは、ガリウム、アルミニウム、イットリウム、スズ、シリコン、ホウ素、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、およびコバルトから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。
または、トランジスタの半導体層は、シリコンを有していてもよい。シリコンとしては、アモルファスシリコン、結晶性のシリコン(低温ポリシリコン、単結晶シリコンなど)などが挙げられる。
半導体層に用いることのできる金属酸化物としては、例えば、インジウム酸化物、ガリウム酸化物、および亜鉛酸化物が挙げられる。また、金属酸化物は、インジウムと、元素Mと、亜鉛と、の中から選ばれる二種または三種を有することが好ましい。なお、元素Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、およびマグネシウムから選ばれた一種または複数種である。特に、元素Mは、アルミニウム、ガリウム、イットリウム、およびスズから選ばれた一種または複数種であることが好ましい。
特に、半導体層に用いる金属酸化物として、インジウム、ガリウム、および亜鉛を含む酸化物(IGZOとも記す)を用いることが好ましい。または、インジウム、スズ、および亜鉛を含む酸化物(ITZO(登録商標)とも記す)を用いることが好ましい。または、インジウム、ガリウム、スズ、および亜鉛を含む酸化物を用いることが好ましい。または、インジウム、アルミニウム、および亜鉛を含む酸化物(IAZOとも記す)を用いることが好ましい。または、インジウム、アルミニウム、ガリウム、および亜鉛を含む酸化物(IAGZOとも記す)を用いることが好ましい。
半導体層に用いる金属酸化物がIn−M−Zn酸化物の場合、当該In−M−Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。このようなIn−M−Zn酸化物の金属元素の原子数比として、例えば、In:M:Zn=1:1:1またはその近傍の組成、In:M:Zn=1:1:1.2またはその近傍の組成、In:M:Zn=1:3:2またはその近傍の組成、In:M:Zn=1:3:4またはその近傍の組成、In:M:Zn=2:1:3またはその近傍の組成、In:M:Zn=3:1:2またはその近傍の組成、In:M:Zn=4:2:3またはその近傍の組成、In:M:Zn=4:2:4.1またはその近傍の組成、In:M:Zn=5:1:3またはその近傍の組成、In:M:Zn=5:1:6またはその近傍の組成、In:M:Zn=5:1:7またはその近傍の組成、In:M:Zn=5:1:8またはその近傍の組成、In:M:Zn=6:1:6またはその近傍の組成、および、In:M:Zn=5:2:5またはその近傍の組成が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。
例えば、原子数比がIn:Ga:Zn=4:2:3またはその近傍の組成と記載する場合、Inを4としたとき、Gaが1以上3以下であり、Znが2以上4以下である場合を含む。また、原子数比がIn:Ga:Zn=5:1:6またはその近傍の組成と記載する場合、Inを5としたときに、Gaが0.1より大きく2以下であり、Znが5以上7以下である場合を含む。また、原子数比がIn:Ga:Zn=1:1:1またはその近傍の組成と記載する場合、Inを1としたときに、Gaが0.1より大きく2以下であり、Znが0.1より大きく2以下である場合を含む。
また、半導体層は、組成が異なる2層以上の金属酸化物層を有していてもよい。例えば、In:M:Zn=1:3:4[原子数比]もしくはその近傍の組成の第1の金属酸化物層と、当該第1の金属酸化物層上に設けられるIn:M:Zn=1:1:1[原子数比]もしくはその近傍の組成の第2の金属酸化物層と、の積層構造を好適に用いることができる。また、元素Mとして、ガリウムまたはアルミニウムを用いることが特に好ましい。
また、例えばインジウム酸化物、インジウムガリウム酸化物、およびIGZOの中から選ばれるいずれか一と、IAZO、IAGZO、およびITZO(登録商標)の中から選ばれるいずれか一と、の積層構造などを用いてもよい。
結晶性を有する酸化物半導体としては、CAAC(c−axis−aligned crystalline)−OS、nc(nanocrystalline)−OS等が挙げられる。
OSトランジスタは、非晶質シリコンを用いたトランジスタと比較して電界効果移動度が極めて高い。また、OSトランジスタは、オフ状態におけるソース−ドレイン間のリーク電流(以下、オフ電流ともいう)が著しく小さく、当該トランジスタと直列に接続された容量に蓄積した電荷を長期間に亘って保持することが可能である。また、OSトランジスタを適用することで、表示パネルの消費電力を低減することができる。
また、画素回路に含まれる発光デバイスの発光輝度を高くする場合、発光デバイスに流す電流量を大きくする必要がある。そのためには、画素回路に含まれている駆動トランジスタのソース−ドレイン間電圧を高くする必要がある。OSトランジスタは、Siトランジスタと比較して、ソース−ドレイン間において耐圧が高いため、OSトランジスタのソース−ドレイン間には高い電圧を印加することができる。したがって、画素回路に含まれる駆動トランジスタをOSトランジスタとすることで、発光デバイスに流れる電流量を大きくし、発光デバイスの発光輝度を高くすることができる。
また、トランジスタが飽和領域で動作する場合において、OSトランジスタは、Siトランジスタよりも、ゲート−ソース間電圧の変化に対して、ソース−ドレイン間電流の変化が小さい。このため、画素回路に含まれる駆動トランジスタとしてOSトランジスタを適用することによって、ゲート−ソース間電圧の変化によって、ソース−ドレイン間に流れる電流を細かく定めることができるため、発光デバイスに流れる電流量を制御することができる。このため、画素回路における階調を大きくすることができる。
また、トランジスタが飽和領域で動作するときに流れる電流の飽和特性において、OSトランジスタは、ソース−ドレイン間電圧が徐々に高くなった場合においても、Siトランジスタよりも安定した電流(飽和電流)を流すことができる。そのため、OSトランジスタを駆動トランジスタとして用いることで、例えば、ELデバイスの電流−電圧特性にばらつきが生じた場合においても、発光デバイスに安定した電流を流すことができる。つまり、OSトランジスタは、飽和領域で動作する場合において、ソース−ドレイン間電圧を高くしても、ソース−ドレイン間電流がほぼ変化しないため、発光デバイスの発光輝度を安定させることができる。
上記のとおり、画素回路に含まれる駆動トランジスタにOSトランジスタを用いることで、「黒浮きの抑制」、「発光輝度の上昇」、「多階調化」、「発光デバイスのばらつきの抑制」などを図ることができる。
[表示パネル200E]
図15に示す表示パネル200Eは、それぞれチャネルが形成される半導体に酸化物半導体を有するトランジスタ320Aと、トランジスタ320Bとが積層された構成を有する。
トランジスタ320A、トランジスタ320B、およびその周辺の構成については、上記表示パネル200Dを参照することができる。
なお、ここでは、酸化物半導体を有するトランジスタを2つ積層する構成としたが、これに限られない。例えば3つ以上のトランジスタを積層する構成としてもよい。
[表示パネル200F]
図16に示す表示パネル200Fは、基板301にチャネルが形成されるトランジスタ310と、チャネルが形成される半導体層に金属酸化物を含むトランジスタ320とが積層された構成を有する。
トランジスタ310を覆って絶縁層261が設けられ、絶縁層261上に導電層251が設けられている。また導電層251を覆って絶縁層262が設けられ、絶縁層262上に導電層252が設けられている。導電層251および導電層252は、それぞれ配線として機能する。また、導電層252を覆って絶縁層263および絶縁層332が設けられ、絶縁層332上にトランジスタ320が設けられている。また、トランジスタ320を覆って絶縁層265が設けられ、絶縁層265上に容量240が設けられている。容量240とトランジスタ320とは、プラグ274により電気的に接続されている。
トランジスタ320は、画素回路を構成するトランジスタとして用いることができる。また、トランジスタ310は、画素回路を構成するトランジスタ、または当該画素回路を駆動するための駆動回路(ゲート線駆動回路、ソース線駆動回路)を構成するトランジスタとして用いることができる。また、トランジスタ310およびトランジスタ320は、演算回路または記憶回路などの各種回路を構成するトランジスタとして用いることができる。
このような構成とすることで、発光デバイスの直下に画素回路だけでなく駆動回路等を形成することができるため、表示領域の周辺に駆動回路を設ける場合に比べて、表示パネルを小型化することが可能となる。
[表示パネル200G]
図17に示す表示パネル200Gは、基板301にチャネルが形成されるトランジスタ310と、チャネルが形成される半導体層に金属酸化物を含むトランジスタ320Aと、トランジスタ320Bとが積層された構成を有する。
トランジスタ320Aは、画素回路を構成するトランジスタとして用いることができる。トランジスタ310は、画素回路を構成するトランジスタ、または当該画素回路を駆動するための駆動回路(ゲート線駆動回路、ソース線駆動回路)を構成するトランジスタとして用いることができる。トランジスタ320Bは、画素回路を構成するトランジスタとして用いてもよいし、上記駆動回路を構成するトランジスタとして用いてもよい。また、トランジスタ310、トランジスタ320A、およびトランジスタ320Bは、演算回路または記憶回路などの各種回路を構成するトランジスタとして用いることができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態4)
本実施の形態では、本発明の一態様の表示パネルに用いることができる発光デバイス(発光素子)について説明する。
本明細書等において、メタルマスク、またはFMM(ファインメタルマスク、高精細なメタルマスク)を用いて作製されるデバイスをMM(メタルマスク)構造のデバイスと呼称する場合がある。また、本明細書等において、メタルマスク、またはFMMを用いることなく作製されるデバイスをMML(メタルマスクレス)構造のデバイスと呼称する場合がある。
本明細書等では、発光波長が異なる発光デバイスで少なくとも発光層を作り分ける構造をSBS(Side By Side)構造と呼ぶ場合がある。SBS構造は、発光デバイスごとに材料および構成を最適化することができるため、材料および構成の選択の自由度が高まり、輝度の向上および信頼性の向上を図ることが容易となる。
本明細書等において、正孔または電子を、「キャリア」といって示す場合がある。具体的には、正孔注入層または電子注入層を「キャリア注入層」といい、正孔輸送層または電子輸送層を「キャリア輸送層」といい、正孔ブロック層または電子ブロック層を「キャリアブロック層」という場合がある。なお、上述のキャリア注入層、キャリア輸送層、およびキャリアブロック層は、それぞれ、断面形状、または特性などによって明確に区別できない場合がある。また、1つの層が、キャリア注入層、キャリア輸送層、およびキャリアブロック層のうち2つまたは3つの機能を兼ねる場合がある。
本明細書等において、発光デバイス(発光素子ともいう)は、一対の電極間にEL層を有する。EL層は、少なくとも発光層を有する。ここで、EL層が有する層(機能層ともいう)としては、発光層、キャリア注入層(正孔注入層および電子注入層)、キャリア輸送層(正孔輸送層および電子輸送層)、および、キャリアブロック層(正孔ブロック層および電子ブロック層)などが挙げられる。
発光デバイスとしては、例えば、OLED、またはQLEDを用いることが好ましい。発光デバイスが有する発光物質としては、例えば、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(TADF)材料)、および、無機化合物(量子ドット材料等)が挙げられる。また、発光デバイスとして、マイクロLEDなどのLEDを用いることもできる。
発光デバイスの発光色は、赤外、赤、緑、青、シアン、マゼンタ、黄、または白などとすることができる。また、発光デバイスにマイクロキャビティ構造を付与することにより色純度を高めることができる。
図18Aに示すように、発光デバイスは、一対の電極(下部電極761および上部電極762)の間に、EL層763を有する。EL層763は、層780、発光層771、および、層790などの複数の層で構成することができる。
発光層771は、少なくとも発光物質(発光材料ともいう)を有する。
下部電極761が陽極であり、上部電極762が陰極である場合、層780は、正孔注入性の高い物質を含む層(正孔注入層)、正孔輸送性の高い物質を含む層(正孔輸送層)、および、電子ブロック性の高い物質を含む層(電子ブロック層)のうち一つまたは複数を有する。また、層790は、電子注入性の高い物質を含む層(電子注入層)、電子輸送性の高い物質を含む層(電子輸送層)、および、正孔ブロック性の高い物質を含む層(正孔ブロック層)のうち一つまたは複数を有する。下部電極761が陰極であり、上部電極762が陽極である場合、層780と層790は互いに上記と逆の構成になる。
一対の電極間に設けられた層780、発光層771、および層790を有する構成は単一の発光ユニットとして機能することができ、本明細書では図18Aの構成をシングル構造と呼ぶ。
また、図18Bは、図18Aに示す発光デバイスが有するEL層763の変形例である。具体的には、図18Bに示す発光デバイスは、下部電極761上の層781と、層781上の層782と、層782上の発光層771と、発光層771上の層791と、層791上の層792と、層792上の上部電極762と、を有する。
下部電極761が陽極であり、上部電極762が陰極である場合、例えば、層781を正孔注入層、層782を正孔輸送層、層791を電子輸送層、層792を電子注入層とすることができる。また、下部電極761が陰極であり、上部電極762が陽極である場合、層781を電子注入層、層782を電子輸送層、層791を正孔輸送層、層792を正孔注入層とすることができる。このような層構造とすることで、発光層771に効率よくキャリアを注入し、発光層771内におけるキャリアの再結合の効率を高めることができる。
なお、図18Cおよび図18Dに示すように、層780と層790との間に複数の発光層(発光層771、772、773)が設けられる構成もシングル構造のバリエーションである。なお、図18Cおよび図18Dでは、発光層を3層有する例を示すが、シングル構造の発光デバイスにおける発光層は、2層であってもよく、4層以上であってもよい。また、シングル構造の発光デバイスは、2つの発光層の間に、バッファ層を有していてもよい。
また、図18Eおよび図18Fに示すように、複数の発光ユニット(発光ユニット763aおよび発光ユニット763b)が電荷発生層785(中間層ともいう)を介して直列に接続された構成を本明細書ではタンデム構造と呼ぶ。なお、タンデム構造をスタック構造と呼んでもよい。タンデム構造とすることで、高輝度発光が可能な発光デバイスとすることができる。また、タンデム構造は、シングル構造と比べて、同じ輝度を得るために必要な電流を低減できるため、信頼性を高めることができる。
なお、図18Dおよび図18Fは、表示パネルが、発光デバイスと重なる層764を有する例である。図18Dは、層764が、図18Cに示す発光デバイスと重なる例であり、図18Fは、層764が、図18Eに示す発光デバイスと重なる例である。
層764としては、色変換層およびカラーフィルタ(着色層)の一方または双方を用いることができる。
図18Cおよび図18Dにおいて、発光層771、発光層772、および発光層773に、同じ色の光を発する発光物質、さらには、同じ発光物質を用いてもよい。例えば、発光層771、発光層772、および発光層773に、青色の光を発する発光物質を用いてもよい。青色の光を呈する副画素においては、発光デバイスが発する青色の光を取り出すことができる。また、赤色の光を呈する副画素および緑色の光を呈する副画素においては、図18Dに示す層764として色変換層を設けることで、発光デバイスが発する青色の光をより長波長の光に変換し、赤色または緑色の光を取り出すことができる。
また、発光層771、発光層772、および発光層773に、それぞれ発光色の異なる発光物質を用いてもよい。発光層771、発光層772、および発光層773がそれぞれ発する光が補色の関係である場合、白色発光が得られる。例えば、シングル構造の発光デバイスは、青色の光を発する発光物質を有する発光層、および、青色よりも長波長の可視光を発する発光物質を有する発光層を有することが好ましい。
例えば、シングル構造の発光デバイスが3層の発光層を有する場合、赤色(R)の光を発する発光物質を有する発光層、緑色(G)の光を発する発光物質を有する発光層、および、青色(B)の光を発する発光物質を有する発光層を有することが好ましい。発光層の積層順としては、陽極側から、R、G、B、または、陽極側からR、B、Gなどとすることができる。このとき、RとGまたはBとの間にバッファ層が設けられていてもよい。
また、例えば、シングル構造の発光デバイスが2層の発光層を有する場合、青色(B)の光を発する発光物質を有する発光層、および、黄色の光を発する発光物質を有する発光層を有することが好ましい。当該構成をBYシングルと呼称する場合がある。
図18Dに示す層764として、カラーフィルタを設けてもよい。白色光がカラーフィルタを透過することで、所望の色の光を得ることができる。
白色の光を発する発光デバイスは、2種類以上の発光物質を含むことが好ましい。白色発光を得るには、2以上の発光物質の各々の発光が補色の関係となるような発光物質を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光デバイス全体として白色発光する発光デバイスを得ることができる。また、発光層を3つ以上有する発光デバイスの場合も同様である。
また、図18Eおよび図18Fにおいて、発光層771と、発光層772とに、同じ色の光を発する発光物質、さらには、同じ発光物質を用いてもよい。
例えば、各色の光を呈する副画素が有する発光デバイスにおいて、発光層771と、発光層772に、それぞれ青色の光を発する発光物質を用いてもよい。青色の光を呈する副画素においては、発光デバイスが発する青色の光を取り出すことができる。また、赤色の光を呈する副画素および緑色の光を呈する副画素においては、図18Fに示す層764として色変換層を設けることで、発光デバイスが発する青色の光をより長波長の光に変換し、赤色または緑色の光を取り出すことができる。
また、各色の光を呈する副画素に、図18Eまたは図18Fに示す構成の発光デバイスを用いる場合、副画素によって、異なる発光物質を用いてもよい。具体的には、赤色の光を呈する副画素が有する発光デバイスにおいて、発光層771と、発光層772に、それぞれ赤色の光を発する発光物質を用いてもよい。同様に、緑色の光を呈する副画素が有する発光デバイスにおいて、発光層771と、発光層772に、それぞれ緑色の光を発する発光物質を用いてもよい。青色の光を呈する副画素が有する発光デバイスにおいて、発光層771と、発光層772に、それぞれ青色の光を発する発光物質を用いてもよい。このような構成の表示パネルは、タンデム構造の発光デバイスが適用されており、かつ、SBS構造であるといえる。そのため、タンデム構造のメリットと、SBS構造のメリットの両方を併せ持つことができる。これにより、高輝度発光が可能であり、信頼性の高い発光デバイスを実現することができる。
また、図18Eおよび図18Fにおいて、発光層771と、発光層772とに、発光色の異なる発光物質を用いてもよい。発光層771が発する光と、発光層772が発する光が補色の関係である場合、白色発光が得られる。図18Fに示す層764として、カラーフィルタを設けてもよい。白色光がカラーフィルタを透過することで、所望の色の光を得ることができる。
なお、図18Eおよび図18Fにおいて、発光ユニット763aが1層の発光層771を有し、発光ユニット763bが1層の発光層772を有する例を示すが、これに限られない。発光ユニット763aおよび発光ユニット763bは、それぞれ、2層以上の発光層を有していてもよい。
また、図18Eおよび図18Fでは、発光ユニットを2つ有する発光デバイスを例示したが、これに限られない。発光デバイスは、発光ユニットを3つ以上有していてもよい。
具体的には、図19A乃至図19Cに示す発光デバイスの構成が挙げられる。
図19Aは、発光ユニットを3つ有する構成である。なお、発光ユニットを2つ有する構成を2段タンデム構造と、発光ユニットを3つ有する構成を3段タンデム構造と、それぞれ呼称してもよい。
また、図19Aに示すように、複数の発光ユニット(発光ユニット763a、発光ユニット763b、および発光ユニット763c)が電荷発生層785を介して、それぞれ直列に接続された構成である。また、発光ユニット763aは、層780aと、発光層771と、層790aと、を有し、発光ユニット763bは、層780bと、発光層772と、層790bと、を有し、発光ユニット763cは、層780cと、発光層773と、層790cと、を有する。
なお、図19Aに示す構成においては、発光層771、発光層772、および発光層773は、それぞれ同じ色の光を発する発光物質を有すると好ましい。具体的には、発光層771、発光層772、および発光層773が、それぞれ赤色(R)の発光物質を有する構成(いわゆるR\R\Rの3段タンデム構造)、発光層771、発光層772、および発光層773が、それぞれ緑色(G)の発光物質を有する構成(いわゆるG\G\Gの3段タンデム構造)、または発光層771、発光層772、および発光層773が、それぞれ青色(B)の発光物質を有する構成(いわゆるB\B\Bの3段タンデム構造)とすることができる。
なお、それぞれ同じ色の光を発する発光物質としては、上記の構成に限定されない。例えば、図19Bに示すように、複数の発光物質を有する発光ユニットを積層したタンデム型の発光デバイスとしてもよい。図19Bは、複数の発光ユニット(発光ユニット763a、および発光ユニット763b)が電荷発生層785を介して、それぞれ直列に接続された構成である。また、発光ユニット763aは、層780aと、発光層771a、発光層771b、および発光層771cと、層790aと、を有し、発光ユニット763bは、層780bと、発光層772a、発光層772b、および発光層772cと、層790bと、を有する。
図19Bに示す構成においては、発光層771a、発光層771b、および発光層771cを、補色の関係となる発光物質を選択し白色発光(W)が可能な構成とする。また、発光層772a、発光層772b、および発光層772cを、補色の関係となる発光物質を選択し白色発光(W)が可能な構成とする。すなわち、図19Cに示す構成においては、W\Wの2段タンデム構造である。なお、発光層771a、発光層771b、および発光層771cの補色の関係となる発光物質の積層順については、特に限定はない。実施者が適宜最適な積層順を選択することができる。また、図示しないが、W\W\Wの3段タンデム構造、または4段以上のタンデム構造としてもよい。
また、タンデム構造の発光デバイスを用いる場合、黄色(Y)の光を発する発光ユニットと、青色(B)の光を発する発光ユニットとを有するB\Yの2段タンデム構造、赤色(R)と緑色(G)の光を発する発光ユニットと、青色(B)の光を発する発光ユニットとを有するR・G\Bの2段タンデム構造、青色(B)の光を発する発光ユニットと、黄色(Y)の光を発する発光ユニットと、青色(B)の光を発する発光ユニットとをこの順で有するB\Y\Bの3段タンデム構造、青色(B)の光を発する発光ユニットと、黄緑色(YG)の光を発する発光ユニットと、青色(B)の光を発する発光ユニットとをこの順で有するB\YG\Bの3段タンデム構造、青色(B)の光を発する発光ユニットと、緑色(G)の光を発する発光ユニットと、青色(B)の光を発する発光ユニットとをこの順で有するB\G\Bの3段タンデム構造などが挙げられる。
また、図19Cに示すように、1つの発光物質を有する発光ユニットと、複数の発光物質を有する発光ユニットと、を組み合わせてもよい。
具体的には、図19Cに示す構成においては、複数の発光ユニット(発光ユニット763a、発光ユニット763b、および発光ユニット763c)が電荷発生層785を介して、それぞれ直列に接続された構成である。また、発光ユニット763aは、層780aと、発光層771と、層790aと、を有し、発光ユニット763bは、層780bと、発光層772a、発光層772b、および発光層772cと、層790bと、を有し、発光ユニット763cは、層780cと、発光層773と、層790cと、を有する。
例えば、図19Cに示す構成において、発光ユニット763aが青色(B)の光を発する発光ユニットであり、発光ユニット763bが赤色(R)、緑色(G)、および黄緑色(YG)の光を発する発光ユニットであり、発光ユニット763cが青色(B)の光を発する発光ユニットである、B\R・G・YG\Bの3段タンデム構造などを適用することができる。
例えば、発光ユニットの積層数と色の順番としては、陽極側から、B、Yの2段構造、Bと発光ユニットXとの2段構造、B、Y、Bの3段構造、B、X、Bの3段構造が挙げられ、発光ユニットXにおける発光層の積層数と色の順番としては、陽極側から、R、Yの2層構造、R、Gの2層構造、G、Rの2層構造、G、R、Gの3層構造、または、R、G、Rの3層構造などとすることができる。また、2つの発光層の間に他の層が設けられていてもよい。
なお、図18C、図18Dにおいても、図18Bに示すように、層780と、層790とを、それぞれ独立に、2層以上の層からなる積層構造としてもよい。
また、図18Eおよび図18Fにおいて、発光ユニット763aは、層780a、発光層771、および、層790aを有し、発光ユニット763bは、層780b、発光層772、および、層790bを有する。
下部電極761が陽極であり、上部電極762が陰極である場合、層780aおよび層780bは、それぞれ、正孔注入層、正孔輸送層、および、電子ブロック層のうち一つまたは複数を有する。また、層790aおよび層790bは、それぞれ、電子注入層、電子輸送層、および、正孔ブロック層のうち一つまたは複数を有する。下部電極761が陰極であり、上部電極762が陽極である場合、層780aと層790aは互いに上記と逆の構成になり、層780bと層790bも互いに上記と逆の構成になる。
下部電極761が陽極であり、上部電極762が陰極である場合、例えば、層780aは、正孔注入層と、正孔注入層上の正孔輸送層と、を有し、さらに、正孔輸送層上の電子ブロック層を有していてもよい。また、層790aは、電子輸送層を有し、さらに、発光層771と電子輸送層との間の正孔ブロック層を有していてもよい。また、層780bは、正孔輸送層を有し、さらに、正孔輸送層上の電子ブロック層を有していてもよい。また、層790bは、電子輸送層と、電子輸送層上の電子注入層と、を有し、さらに、発光層772と電子輸送層との間の正孔ブロック層を有していてもよい。下部電極761が陰極であり、上部電極762が陽極である場合、例えば、層780aは、電子注入層と、電子注入層上の電子輸送層と、を有し、さらに、電子輸送層上の正孔ブロック層を有していてもよい。また、層790aは、正孔輸送層を有し、さらに、発光層771と正孔輸送層との間の電子ブロック層を有していてもよい。また、層780bは、電子輸送層を有し、さらに、電子輸送層上の正孔ブロック層を有していてもよい。また、層790bは、正孔輸送層と、正孔輸送層上の正孔注入層と、を有し、さらに、発光層772と正孔輸送層との間の電子ブロック層を有していてもよい。
また、タンデム構造の発光デバイスを作製する場合、2つの発光ユニットは、電荷発生層785を介して積層される。電荷発生層785は、少なくとも電荷発生領域を有する。電荷発生層785は、一対の電極間に電圧を印加したときに、2つの発光ユニットの一方に電子を注入し、他方に正孔を注入する機能を有する。
次に、発光デバイスに用いることができる材料について説明する。
下部電極761と上部電極762のうち、光を取り出す側の電極には、可視光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。また、表示パネルが赤外光を発する発光デバイスを有する場合には、光を取り出す側の電極には、可視光および赤外光を透過する導電膜を用い、光を取り出さない側の電極には、可視光および赤外光を反射する導電膜を用いることが好ましい。
また、光を取り出さない側の電極にも可視光を透過する導電膜を用いてもよい。この場合、反射層と、EL層763との間に当該電極を配置することが好ましい。つまり、EL層763の発光は、当該反射層によって反射されて、表示パネルから取り出されてもよい。
発光デバイスの一対の電極を形成する材料としては、金属、合金、電気伝導性化合物、およびこれらの混合物などを適宜用いることができる。当該材料としては、具体的には、アルミニウム、チタン、クロム、マンガン、鉄、コバルト、ニッケル、銅、ガリウム、亜鉛、インジウム、スズ、モリブデン、タンタル、タングステン、パラジウム、金、白金、銀、イットリウム、ネオジムなどの金属、およびこれらを適宜組み合わせて含む合金が挙げられる。また、当該材料としては、インジウムスズ酸化物(In−Sn酸化物、ITOともいう)、In−Si−Sn酸化物(ITSOともいう)、インジウム亜鉛酸化物(In−Zn酸化物)、およびIn−W−Zn酸化物などを挙げることができる。また、当該材料としては、アルミニウム、ニッケル、およびランタンの合金(Al−Ni−La)等のアルミニウムを含む合金(アルミニウム合金)、および、銀とパラジウムと銅の合金(Ag−Pd−Cu、APCとも記す)が挙げられる。その他、当該材料としては、上記例示のない元素周期表の第1族または第2族に属する元素(例えば、リチウム、セシウム、カルシウム、ストロンチウム)、ユウロピウム、イッテルビウムなどの希土類金属およびこれらを適宜組み合わせて含む合金、グラフェン等が挙げられる。
発光デバイスには、微小光共振器(マイクロキャビティ)構造が適用されていることが好ましい。したがって、発光デバイスが有する一対の電極の一方は、可視光に対する透過性および反射性を有する電極(半透過・半反射電極)であることが好ましく、他方は、可視光に対する反射性を有する電極(反射電極)であることが好ましい。発光デバイスがマイクロキャビティ構造を有することで、発光層から得られる発光を両電極間で共振させ、発光デバイスから射出される光を強めることができる。
なお、半透過・半反射電極は、反射電極として用いることができる導電層と、可視光に対する透過性を有する電極(透明電極ともいう)として用いることができる導電層と、の積層構造とすることができる。
透明電極の光の透過率は、40%以上とする。例えば、発光デバイスの透明電極には、可視光(波長400nm以上750nm未満の光)の透過率が40%以上である電極を用いることが好ましい。半透過・半反射電極の可視光の反射率は、10%以上95%以下、好ましくは30%以上80%以下とする。反射電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、これらの電極の抵抗率は、1×10−2Ωcm以下が好ましい。
発光デバイスは少なくとも発光層を有する。また、発光デバイスは、発光層以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子ブロック材料、電子注入性の高い物質、またはバイポーラ性の物質(電子輸送性および正孔輸送性が高い物質)等を含む層をさらに有していてもよい。例えば、発光デバイスは、発光層の他に、正孔注入層、正孔輸送層、正孔ブロック層、電荷発生層、電子ブロック層、電子輸送層、および電子注入層のうち1層以上を有する構成とすることができる。
発光デバイスには低分子化合物および高分子化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。発光デバイスを構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
発光層は、1種または複数種の発光物質を有する。発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、または赤色などの発光色を呈する物質を適宜用いる。また、発光物質として、近赤外光を発する物質を用いることもできる。
発光物質としては、蛍光材料、燐光材料、TADF材料、および量子ドット材料などが挙げられる。
蛍光材料としては、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、およびナフタレン誘導体などが挙げられる。
燐光材料としては、例えば、4H−トリアゾール骨格、1H−トリアゾール骨格、イミダゾール骨格、ピリミジン骨格、ピラジン骨格、またはピリジン骨格を有する有機金属錯体(特にイリジウム錯体)、電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体(特にイリジウム錯体)、白金錯体、および希土類金属錯体等が挙げられる。
発光層は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料等)を有していてもよい。1種または複数種の有機化合物としては、正孔輸送性の高い物質(正孔輸送性材料)および電子輸送性の高い物質(電子輸送性材料)の一方または双方を用いることができる。正孔輸送性材料としては、後述の、正孔輸送層に用いることができる正孔輸送性の高い材料を用いることができる。電子輸送性材料としては、後述の、電子輸送層に用いることができる電子輸送性の高い材料を用いることができる。また、1種または複数種の有機化合物として、バイポーラ性材料、またはTADF材料を用いてもよい。
発光層は、例えば、燐光材料と、励起錯体を形成しやすい組み合わせである正孔輸送性材料および電子輸送性材料と、を有することが好ましい。このような構成とすることにより、励起錯体から発光物質(燐光材料)へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を効率よく得ることができる。発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光を得ることができる。この構成により、発光デバイスの高効率、低電圧駆動、長寿命を同時に実現できる。
正孔注入層は、陽極から正孔輸送層に正孔を注入する層であり、正孔注入性の高い材料を含む層である。正孔注入性の高い材料としては、芳香族アミン化合物、および、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む複合材料などが挙げられる。
正孔輸送性材料としては、後述の、正孔輸送層に用いることができる正孔輸送性の高い材料を用いることができる。
アクセプター性材料としては、例えば、元素周期表における第4族乃至第8族に属する金属の酸化物を用いることができる。具体的には、酸化モリブデン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化タングステン、酸化マンガン、および、酸化レニウムが挙げられる。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。また、フッ素を含む有機アクセプター性材料を用いることもできる。また、キノジメタン誘導体、クロラニル誘導体、および、ヘキサアザトリフェニレン誘導体などの有機アクセプター性材料を用いることもできる。
例えば、正孔注入性の高い材料として、正孔輸送性材料と、上述の元素周期表における第4族乃至第8族に属する金属の酸化物(代表的には酸化モリブデン)とを含む材料を用いてもよい。
正孔輸送層は、正孔注入層によって、陽極から注入された正孔を発光層に輸送する層である。正孔輸送層は、正孔輸送性材料を含む層である。正孔輸送性材料としては、1×10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものも用いることができる。正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、チオフェン誘導体、フラン誘導体など)、芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い材料が好ましい。
電子ブロック層は、発光層に接して設けられる。電子ブロック層は、正孔輸送性を有し、かつ、電子をブロックすることが可能な材料を含む層である。電子ブロック層には、上記正孔輸送性材料のうち、電子ブロック性を有する材料を用いることができる。
電子ブロック層は、正孔輸送性を有するため、正孔輸送層と呼ぶこともできる。また、正孔輸送層のうち、電子ブロック性を有する層を、電子ブロック層と呼ぶこともできる。
電子輸送層は、電子注入層によって、陰極から注入された電子を発光層に輸送する層である。電子輸送層は、電子輸送性材料を含む層である。電子輸送性材料としては、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものも用いることができる。電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い材料を用いることができる。
正孔ブロック層は、発光層に接して設けられる。正孔ブロック層は、電子輸送性を有し、かつ、正孔をブロックすることが可能な材料を含む層である。正孔ブロック層には、上記電子輸送性材料のうち、正孔ブロック性を有する材料を用いることができる。
正孔ブロック層は、電子輸送性を有するため、電子輸送層と呼ぶこともできる。また、電子輸送層のうち、正孔ブロック性を有する層を、正孔ブロック層と呼ぶこともできる。
電子注入層は、陰極から電子輸送層に電子を注入する層であり、電子注入性の高い材料を含む層である。電子注入性の高い材料としては、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。電子注入性の高い材料としては、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いることもできる。
また、電子注入性の高い材料のLUMO準位は、陰極に用いる材料の仕事関数の値との差が小さい(具体的には0.5eV以下)ことが好ましい。
電子注入層には、例えば、リチウム、セシウム、イッテルビウム、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF、xは任意数)、8−(キノリノラト)リチウム(略称:Liq)、2−(2−ピリジル)フェノラトリチウム(略称:LiPP)、2−(2−ピリジル)−3−ピリジノラトリチウム(略称:LiPPy)、4−フェニル−2−(2−ピリジル)フェノラトリチウム(略称:LiPPP)、リチウム酸化物(LiO)、炭酸セシウム等のようなアルカリ金属、アルカリ土類金属、またはこれらの化合物を用いることができる。また、電子注入層は、2以上の積層構造としてもよい。当該積層構造としては、例えば、1層目にフッ化リチウムを用い、2層目にイッテルビウムを設ける構成が挙げられる。
電子注入層は、電子輸送性材料を有していてもよい。例えば、非共有電子対を備え、電子不足型複素芳香環を有する化合物を、電子輸送性材料に用いることができる。具体的には、ピリジン環、ジアジン環(ピリミジン環、ピラジン環、ピリダジン環)、トリアジン環の少なくとも1つを有する化合物を用いることができる。
なお、非共有電子対を備える有機化合物の最低空軌道(LUMO:Lowest Unoccupied Molecular Orbital)準位は、−3.6eV以上−2.3eV以下であると好ましい。また、一般にCV(サイクリックボルタンメトリ)、光電子分光法、光吸収分光法、逆光電子分光法等により、有機化合物の最高被占有軌道(HOMO:Highest Occupied Molecular Orbital)準位およびLUMO準位を見積もることができる。
例えば、4,7−ジフェニル−1,10−フェナントロリン(略称:BPhen)、2,9−ジ(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)、2,2’−(1,3−フェニレン)ビス(9−フェニル−1,10−フェナントロリン)(略称:mPPhen2P)、ジキノキサリノ[2,3−a:2’,3’−c]フェナジン(略称:HATNA)、2,4,6−トリス[3’−(ピリジン−3−イル)ビフェニル−3−イル]−1,3,5−トリアジン(略称:TmPPPyTz)等を、非共有電子対を備える有機化合物に用いることができる。なお、NBPhenはBPhenと比較して、高いガラス転移点(Tg)を備え、耐熱性に優れる。
電荷発生層は、上述の通り、少なくとも電荷発生領域を有する。電荷発生領域は、アクセプター性材料を含むことが好ましく、例えば、上述の正孔注入層に適用可能な、正孔輸送性材料とアクセプター性材料とを含むことが好ましい。
また、電荷発生層は、電子注入性の高い材料を含む層を有することが好ましい。当該層は、電子注入バッファ層と呼ぶこともできる。電子注入バッファ層は、電荷発生領域と電子輸送層との間に設けられることが好ましい。電子注入バッファ層を設けることで、電荷発生領域と電子輸送層との間の注入障壁を緩和することができるため、電荷発生領域で生じた電子を電子輸送層に容易に注入することができる。
電子注入バッファ層は、アルカリ金属またはアルカリ土類金属を含むことが好ましく、例えば、アルカリ金属の化合物またはアルカリ土類金属の化合物を含む構成とすることができる。具体的には、電子注入バッファ層は、アルカリ金属と酸素とを含む無機化合物、または、アルカリ土類金属と酸素とを含む無機化合物を有することが好ましく、リチウムと酸素とを含む無機化合物(酸化リチウム(LiO)など)を有することがより好ましい。その他、電子注入バッファ層には、上述の電子注入層に適用可能な材料を好適に用いることができる。
電荷発生層は、電子輸送性の高い材料を含む層を有することが好ましい。当該層は、電子リレー層と呼ぶこともできる。電子リレー層は、電荷発生領域と電子注入バッファ層との間に設けられることが好ましい。電荷発生層が電子注入バッファ層を有さない場合、電子リレー層は、電荷発生領域と電子輸送層との間に設けられることが好ましい。電子リレー層は、電荷発生領域と電子注入バッファ層(または電子輸送層)との相互作用を防いで、電子をスムーズに受け渡す機能を有する。
電子リレー層としては、銅(II)フタロシアニン(略称:CuPc)などのフタロシアニン系の材料、または、金属−酸素結合と芳香族配位子を有する金属錯体を用いることが好ましい。
なお、上述の電荷発生領域、電子注入バッファ層、および電子リレー層は、断面形状、または特性などによって明確に区別できない場合がある。
なお、電荷発生層は、アクセプター性材料の代わりに、ドナー性材料を有していてもよい。例えば、電荷発生層としては、上述の電子注入層に適用可能な、電子輸送性材料とドナー性材料とを含む層を有していてもよい。
発光ユニットを積層する際、2つの発光ユニットの間に電荷発生層を設けることで、駆動電圧の上昇を抑制することができる。
本実施の形態で例示した構成例、およびそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
10:眼、30:表示装置、31:表示パネル、32:偏光板、35:表示ユニット、40:光学機器、41:反射偏光板、42a:レンズ、42b:レンズ、42:レンズ、43:旋光子、44:反射偏光板、45:レンズ、51:位相差板、52:ハーフミラー、53:位相差板、54:反射偏光板、60:筐体、61:バンド、70:画素、71:副画素、74:画素アレイ、75:回路、76:回路、81:層、82:層、83:層、100a:表示パネル、100b:表示パネル、100W:発光素子、100:表示パネル、101:基板、110a:発光素子、110B:発光素子、110b:発光素子、110c:発光素子、110G:発光素子、110R:発光素子、110:発光素子、111B:画素電極、111C:接続電極、111G:画素電極、111R:画素電極、111:画素電極、112B:有機層、112G:有機層、112R:有機層、112W:有機層、112:有機層、113:共通電極、114:共通層、115B:導電層、115G:導電層、115R:導電層、115:光学調整層、116B:着色層、116G:着色層、116R:着色層、121:保護層、122:絶縁層、123:絶縁層、124a:画素、124b:画素、125:絶縁層、126:樹脂層、128:層、140:接続部、150:画素、170:基板、171:接着層、200A:表示パネル、200B:表示パネル、200C:表示パネル、200D:表示パネル、200E:表示パネル、200F:表示パネル、200G:表示パネル、240:容量、241:導電層、243:絶縁層、245:導電層、251:導電層、252:導電層、254:絶縁層、255a:絶縁層、255b:絶縁層、255c:絶縁層、256:プラグ、261:絶縁層、262:絶縁層、263:絶縁層、264:絶縁層、265:絶縁層、271:プラグ、274a:導電層、274b:導電層、274:プラグ、280:表示モジュール、281:表示部、282:回路部、283a:画素回路、283:画素回路部、284a:画素、284:画素部、285:端子部、286:配線部、290:FPC、291:基板、292:基板、301A:基板、301B:基板、301:基板、310A:トランジスタ、310B:トランジスタ、310:トランジスタ、311:導電層、312:低抵抗領域、313:絶縁層、314:絶縁層、315:素子分離層、320A:トランジスタ、320B:トランジスタ、320:トランジスタ、321:半導体層、323:絶縁層、324:導電層、325:導電層、326:絶縁層、327:導電層、328:絶縁層、329:絶縁層、331:基板、332:絶縁層、335:絶縁層、336:絶縁層、341:導電層、342:導電層、343:プラグ、344:絶縁層、345:絶縁層、346:絶縁層、347:バンプ、348:接着層、761:下部電極、762:上部電極、763a:発光ユニット、763b:発光ユニット、763c:発光ユニット、763:EL層、764:層、771a:発光層、771b:発光層、771c:発光層、771:発光層、772a:発光層、772b:発光層、772c:発光層、772:発光層、773:発光層、780a:層、780b:層、780c:層、780:層、781:層、782:層、785:電荷発生層、790a:層、790b:層、790c:層、790:層、791:層、792:層

Claims (14)

  1.  第1の反射偏光板と、第1のレンズと、旋光子と、第2の反射偏光板と、第2のレンズと、を有し、
     前記第1の反射偏光板、前記第1のレンズ、前記旋光子、前記第2の反射偏光板および前記第2のレンズは、それぞれが互いに重なる領域を有するように当該順序で配置され、
     前記第1のレンズと前記旋光子とは離隔している光学機器。
  2.  請求項1において、
     前記第1の反射偏光板の第1の面は、前記第1のレンズの第1の面と貼り合わされている光学機器。
  3.  請求項1または2において、
     前記旋光子の第1の面は、前記第2の反射偏光板の第1の面と貼り合わされ、
     前記第2の反射偏光板の第1の面の反対側の第2の面は、前記第2のレンズの第1の面と貼り合わされている光学機器。
  4.  請求項1乃至3のいずれか一項において、
     前記第1の反射偏光板は、第1の直線偏光を透過し、前記第1の直線偏光と直交する第2の直線偏光を反射し、
     前記第2の反射偏光板は、前記第1の直線偏光の偏光面が45°回転した第3の直線偏光を反射し、前記第3の直線偏光と直交する第4の直線偏光を透過する光学機器。
  5.  請求項1乃至4のいずれか一項において、
     前記旋光子は、旋光度が45°である光学機器。
  6.  請求項1乃至5のいずれか一項において、
     前記第1のレンズおよび前記第2のレンズは、凸レンズである光学機器。
  7.  請求項1乃至6のいずれか一項において、
     前記第1の反射偏光板の第1の面の反対側の第2の面と対向して、偏光板が設けられている光学機器。
  8.  表示パネルと、偏光板と、第1の反射偏光板と、第1のレンズと、旋光子と、第2の反射偏光板と、第2のレンズと、を筐体内に有し、
     前記表示パネル、前記偏光板、前記第1の反射偏光板、前記第1のレンズ、前記旋光子、前記第2の反射偏光板および前記第2のレンズは、それぞれが互いに重なる領域を有するように当該順序で配置され、
     前記偏光板と前記第1の反射偏光板とは離隔して配置され、
     前記第1のレンズと前記旋光子とは離隔して配置された電子機器。
  9.  請求項8において、
     前記表示パネルの表示面は、前記偏光板の第1面と貼り合わされている電子機器。
  10.  請求項8または9において、
     前記第1の反射偏光板の第1の面は、前記第1のレンズの第1の面と貼り合わされている電子機器。
  11.  請求項8乃至10のいずれか一項において、
     前記旋光子の第1の面は、前記第2の反射偏光板の第1の面と貼り合わされ、
     前記第2の反射偏光板の第1の面の反対側の第2の面は、前記第2のレンズの第1の面と貼り合わされている電子機器。
  12.  請求項8乃至11のいずれか一項において、
     前記偏光板は、第1の直線偏光を透過し、
     前記第1の反射偏光板は、前記第1の直線偏光を透過し、前記第1の直線偏光と直交する第2の直線偏光を反射し、
     前記第2の反射偏光板は、前記第1の直線偏光の偏光面が45°回転した第3の直線偏光を反射し、前記第3の直線偏光と直交する第4の直線偏光を透過する電子機器。
  13.  請求項8乃至12のいずれか一項において、
     前記旋光子は、旋光度が45°である電子機器。
  14.  請求項8乃至13のいずれか一項において、
     前記第1のレンズおよび前記第2のレンズは、凸レンズである電子機器。
PCT/IB2022/062262 2021-12-28 2022-12-15 光学機器および電子機器 WO2023126740A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-214138 2021-12-28
JP2021214138 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023126740A1 true WO2023126740A1 (ja) 2023-07-06

Family

ID=86998281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/062262 WO2023126740A1 (ja) 2021-12-28 2022-12-15 光学機器および電子機器

Country Status (1)

Country Link
WO (1) WO2023126740A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327940A (ja) * 1994-12-19 1996-12-13 Sharp Corp 光学装置および該光学装置を用いた頭部搭載型ディスプレイ
JP2012508392A (ja) * 2008-11-28 2012-04-05 シャープ株式会社 光学システムおよびディスプレイ
CN211826725U (zh) * 2020-03-12 2020-10-30 双莹科技股份有限公司 微型头戴显示器的光学系统
US10901217B1 (en) * 2019-01-04 2021-01-26 Facebook Technologies, Llc Compact wide field of view display assembly for artificial reality headsets

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327940A (ja) * 1994-12-19 1996-12-13 Sharp Corp 光学装置および該光学装置を用いた頭部搭載型ディスプレイ
JP2012508392A (ja) * 2008-11-28 2012-04-05 シャープ株式会社 光学システムおよびディスプレイ
US10901217B1 (en) * 2019-01-04 2021-01-26 Facebook Technologies, Llc Compact wide field of view display assembly for artificial reality headsets
CN211826725U (zh) * 2020-03-12 2020-10-30 双莹科技股份有限公司 微型头戴显示器的光学系统

Similar Documents

Publication Publication Date Title
JP6430696B2 (ja) 発光パネル、表示装置
US20210367008A1 (en) Display substrate and manufacturing method thereof, and display panel
JP4393249B2 (ja) 有機発光素子,画像表示装置、及びその製造方法
JP5094477B2 (ja) 有機発光表示装置及びその製造方法
JP2016164855A (ja) 発光装置並びにこれを備えた表示装置、照明装置および電子機器
CN110085631A (zh) 显示装置
US20240057432A1 (en) Organic light emitting display apparatus
WO2023126740A1 (ja) 光学機器および電子機器
KR102113609B1 (ko) 유기 발광 표시 장치 및 그의 제조 방법
WO2023161759A1 (ja) 光学機器および電子機器
CN116806446A (zh) 显示装置和显示装置制造方法
WO2023233231A1 (ja) 電子機器
US20230296910A1 (en) Optical device and electronic device
WO2023119041A1 (ja) 電子機器
WO2023073473A1 (ja) 表示装置、及び表示装置の作製方法
WO2023148573A1 (ja) 電子機器
WO2023152587A1 (ja) 電子機器
WO2023126739A1 (ja) 電子機器
WO2023139445A1 (ja) 電子機器
WO2023073472A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023073478A1 (ja) 表示装置
WO2023073477A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023126749A1 (ja) 表示装置、表示モジュール、及び、電子機器
US20230228970A1 (en) Electronic Device and Method For Operating The Electronic Device
WO2023052906A1 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023570482

Country of ref document: JP

Kind code of ref document: A