WO2023125820A1 - 涡旋压缩机 - Google Patents

涡旋压缩机 Download PDF

Info

Publication number
WO2023125820A1
WO2023125820A1 PCT/CN2022/143437 CN2022143437W WO2023125820A1 WO 2023125820 A1 WO2023125820 A1 WO 2023125820A1 CN 2022143437 W CN2022143437 W CN 2022143437W WO 2023125820 A1 WO2023125820 A1 WO 2023125820A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
wedge
driving member
scroll compressor
annular
Prior art date
Application number
PCT/CN2022/143437
Other languages
English (en)
French (fr)
Inventor
孙玉松
Original Assignee
丹佛斯(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丹佛斯(天津)有限公司 filed Critical 丹佛斯(天津)有限公司
Publication of WO2023125820A1 publication Critical patent/WO2023125820A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00

Definitions

  • Embodiments of the present invention relate to a scroll compressor.
  • a traditional scroll compressor includes a fixed scroll and an orbiting scroll.
  • the fixed scroll has an end plate and a fixed scroll protruding from the end plate.
  • the orbiting scroll has an end plate and an orbiting scroll wrap protruding from the end plate.
  • the movable scroll and the fixed scroll cooperate to form a compression chamber for compressing the medium.
  • the motor drives the movable scroll to rotate through the drive shaft to compress the medium in the compression chamber.
  • An embodiment of the present invention provides a scroll compressor, the scroll compressor includes: a first scroll, the first scroll includes a first end plate and protrudes from the first end plate in a first direction The first scroll; the second scroll, the second scroll includes a second end plate and a second scroll extending from the second end plate in a second direction opposite to the first direction, the second scroll
  • the second scroll wrap cooperates with the first scroll wrap to form a compression chamber for compressing the medium;
  • the bracket is located on the side of the second scroll away from the first scroll; the motor; and the drive, the drive can Rotatably supported on the bracket and located on the side of the second scroll away from the first scroll, the motor drives the first scroll to rotate through the driver, and the first scroll drives the second scroll to rotate, and the drive
  • the member includes: a hub having an inner hole, the hub including opposite first and second ends; and a flange protruding radially outward from the first end of the hub of the driver, the second The second end plate of the scroll is rotatably supported
  • the surface of the second end plate of the second scroll has a first oil groove on the annular contact area between the second end plate of the second scroll and the flange portion of the driving member, and the first oil groove Extending laterally across a portion of the annular contact area from a radially inner side of the annular contact area towards a radially outer side of the annular contact area, the first oil groove is radially spaced from a radially outer edge of the annular contact area.
  • the first oil groove extends in a radial direction.
  • annular recess is formed on the surface of the second end plate of the second scroll, and the annular recess is on the radial inner side of the annular contact area, and the first oil groove extends from the radially outer edge of the annular recess toward the annular contact area.
  • the radially outer side of the region extends laterally and communicates with the annular recess.
  • the scroll compressor further includes: a first thrust bearing disposed between the second end plate of the second scroll and the flange portion of the driving member.
  • the scroll compressor further includes: an annular protrusion protruding from one of the surface of the second end plate of the second scroll and the surface of the flange portion of the driving member, the annular protrusion
  • the annular protrusion There is an annular wedge-shaped convex portion, the wedge-shaped convex portion has a wedge-shaped cross-section in the radial direction, the wedge-shaped convex portion has an axially outward wedge-shaped convex surface, and in the cross-section in the radial direction , the axial distance between the first wedge-shaped convex point of the wedge-shaped convex surface in the radial direction and a surface is the largest, and the axial distance between the second wedge-shaped convex point in the radial direction and a surface is zero, at least the wedge-shaped convex A portion of the raised surface corresponding to the first wedge-shaped raised point is in an annular region of the surface of the flange portion of the driver for supporting the surface of the second end plate of the second scroll.
  • At least a portion of the wedge-shaped raised surface corresponding to the first wedge-shaped raised point is in an annular contact area of the second end plate of the second scroll with the flange portion of the driving member.
  • the axial distance between the wedge-shaped protrusion surface and one surface is in the range of 0.1 ⁇ m to 1 mm.
  • the axial distance between the wedge-shaped protrusion surface and one surface is in the range of 20 microns to 40 microns.
  • the first wedge-shaped protrusion point is radially outside the second wedge-shaped protrusion point, or the first wedge-shaped protrusion point is radially inside the second wedge-shaped protrusion point.
  • the annular protrusion is on the surface of the flange portion of the driving member, or the annular protrusion is on the surface of the second end plate of the second scroll.
  • the annular protrusion also has an annular transition protrusion portion, the transition protrusion portion has an axially outward transition protrusion surface, and in a cross-section in the radial direction, the transition protrusion surface Extending from a point of the wedge-shaped raised surface corresponding to the first wedge-shaped raised point to one surface away from the second wedge-shaped raised point and toward the one surface.
  • the cross-section of the transition raised portion in the radial direction has a wedge shape.
  • the size of the transition raised portion in the radial direction is smaller than the size of the wedge-shaped raised portion in the radial direction.
  • the scroll compressor further includes: a fixed shaft fixed to the bracket, and the hub of the driver is rotatably mounted on the fixed shaft so that the driver is rotatably supported on the bracket.
  • the bracket includes: a cylindrical portion, and a flange portion radially protruding from the cylindrical portion of the bracket, and the second end portion of the hub portion of the driver is supported on the flange portion of the bracket.
  • one of the end surface of the second end portion of the hub portion of the driver and the surface of the flange portion of the bracket is in annular contact between the second end portion of the hub portion of the driver and the flange portion of the bracket.
  • There is a second oil groove on the area and the second oil groove extends laterally from the radially inner side of the annular contact area toward the radially outer side of the annular contact area and crosses a part of the annular contact area, and the second oil groove is radially connected to the radial direction of the annular contact area.
  • the outer edges are spaced apart.
  • the second oil groove extends in a radial direction.
  • the second oil groove is formed on the end surface of the second end portion of the hub portion of the driver.
  • the second oil groove is spaced apart from the outer periphery of the end face of the second end portion of the hub of the driver.
  • the scroll compressor further includes: a second thrust bearing disposed between the second end portion of the hub portion of the driver and the flange portion of the bracket.
  • the scroll compressor according to the embodiment of the present invention can improve the performance of the scroll compressor.
  • FIG. 1 is a schematic cross-sectional view of a scroll compressor according to an embodiment of the present invention
  • FIG. 2 is a schematic perspective view of a first scroll of the scroll compressor shown in FIG. 1;
  • FIG. 3 is a schematic perspective view of a second scroll of the scroll compressor shown in FIG. 1;
  • FIG. 4 is a schematic perspective view of a second scroll of a scroll compressor according to a modification of the embodiment of the present invention.
  • Fig. 5 is a schematic bottom view of the second scroll of the scroll compressor shown in Fig. 4;
  • FIG. 6 is a schematic cross-sectional view of the second scroll of the scroll compressor shown in FIG. 4 along the line FF in FIG. 5;
  • FIG. 7 is a schematic perspective view of a drive member of the scroll compressor shown in FIG. 1;
  • FIG. 8 is a schematic perspective view of a driving member of a scroll compressor according to a modification of the embodiment of the present invention.
  • Figure 9 is a schematic perspective view of the drive of the scroll compressor shown in Figure 7, showing one form of fluid passage;
  • Fig. 10 is a schematic top view of the driving member of the scroll compressor shown in Fig. 7;
  • Figure 11 is a schematic perspective view of the drive of the scroll compressor shown in Figure 1, showing another form of fluid passage;
  • Fig. 12 is a schematic sectional view of the driving member, the first scroll, the second scroll, the fixed shaft, etc. of the scroll compressor shown in Fig. 1;
  • FIG. 13 is a schematic exploded perspective view of a driving member, a first scroll, a second scroll, a fixed shaft, etc. of the scroll compressor shown in FIG. 1;
  • Fig. 14 is a schematic cross-sectional view of the scroll compressor shown in Fig. 1 in the assembled state of the driving member, the second scroll, the fixed shaft, and the oiling bolt;
  • Fig. 15 is a schematic perspective view of a bracket of the scroll compressor shown in Fig. 1;
  • Fig. 16 is a schematic cross-sectional view of the bracket of the scroll compressor shown in Fig. 15;
  • Fig. 17 is a schematic cross-sectional view of a drive member and a bracket of a scroll compressor according to a modified example of the embodiment of the present invention in an assembled state;
  • Fig. 18 is a schematic perspective view of the bracket of the scroll compressor shown in Fig. 17;
  • Fig. 19 is a schematic cross-sectional view of a scroll compressor according to a modified example of an embodiment of the present invention in an assembled state of a bracket, a fixed shaft, a driving member, and a second scroll;
  • Fig. 20 is a schematic sectional perspective view of the scroll compressor shown in Fig. 19 in an assembled state of the bracket, the fixed shaft, the driving member, and the second scroll;
  • Fig. 21 is a schematic cross-sectional view of a driving member and a second scroll of a scroll compressor according to a modified example of an embodiment of the present invention
  • Fig. 22 is a partially enlarged schematic cross-sectional view of the part related to the annular protrusion in Fig. 21;
  • Fig. 23 is a schematic cross-sectional view of a driving member and a second scroll of a scroll compressor according to another modified example of the embodiment of the present invention.
  • Fig. 24 is a partially enlarged schematic cross-sectional view of the part related to the annular protrusion in Fig. 23;
  • Fig. 25 is a schematic cross-sectional view of a driving member and a second scroll of a scroll compressor according to yet another modified example of the embodiment of the present invention.
  • Fig. 26 is a partially enlarged schematic cross-sectional view of the part related to the annular protrusion in Fig. 25;
  • Fig. 27 is a schematic cross-sectional view of a driving member and a second scroll of a scroll compressor according to yet another modified example of the embodiment of the present invention.
  • Fig. 28 is a partially enlarged schematic cross-sectional view of the part related to the annular protrusion in Fig. 27;
  • Fig. 29 is a schematic cross-sectional perspective view of a bracket, a fixed shaft, and a driving member of a scroll compressor according to a modified example of an embodiment of the present invention
  • Fig. 30 is a schematic cross-sectional view of a bracket, a fixed shaft, and a driving member of a scroll compressor according to a modified example of an embodiment of the present invention
  • Fig. 31 is a schematic exploded perspective view of a driving member, a thrust bearing and a second scroll of a scroll compressor according to a modified example of an embodiment of the present invention
  • Fig. 32 is a schematic perspective view of the driving member, the thrust bearing and the second scroll of the scroll compressor shown in Fig. 31 in an assembled state;
  • Figure 33 is a schematic cutaway perspective view of the drive, thrust bearing and second scroll of the scroll compressor shown in Figure 32;
  • Fig. 34 is a schematic cross-sectional view of the drive member, thrust bearing and second scroll of the scroll compressor shown in Fig. 32;
  • Fig. 35 is a schematic exploded perspective view of a driving member, a thrust bearing and a second scroll of a scroll compressor according to another modification of the embodiment of the present invention.
  • Figure 36 is a schematic perspective view of the drive member, thrust bearing and second scroll of the scroll compressor shown in Figure 35 in an assembled state;
  • FIG. 37 is a schematic cutaway perspective view of the drive, thrust bearing, and second scroll of the scroll compressor shown in FIG. 36;
  • Fig. 38 is a schematic cross-sectional view of the drive member, thrust bearing and second scroll of the scroll compressor shown in Fig. 36 .
  • a scroll compressor 100 includes: a first scroll 11 , a second scroll 12 , a bracket 4 , a motor 7 and a driving member 3 .
  • the first scroll 11 includes a first end plate 112 and a first scroll wrap 113 protruding from the first end plate 112 along a first direction D1.
  • the second scroll 12 includes a second end plate 123 and a second scroll wrap 124 protruding from the second end plate 123 in a second direction D2 opposite to the first direction D1, the second scroll wrap 124 and the first scroll wrap 124.
  • the scroll wraps 113 cooperate to form compression pockets for compressing media.
  • the bracket 4 is located on a side of the second scroll 12 away from the first scroll 11 .
  • the driving member 3 is rotatably supported on the bracket 4 and is located on the side of the second scroll 12 away from the first scroll 11.
  • the motor 7 drives the first scroll 11 around the rotation axis 91 through the driving member 3 ( FIG. 13 ) to rotate, and the first scroll 11 drives the second scroll 12 to rotate around the rotation axis 92 ( FIG. 13 ).
  • the axis of rotation 91 is the axis of rotation of the drive 3 ( FIGS. 7 , 9 , 11 ).
  • the axis of rotation 91 and the axis of rotation 92 are parallel to each other and spaced apart.
  • the rotation speed and rotation direction of the second scroll 12 may be the same as those of the driving member 3, but the rotation axis is different. Referring to Fig. 1, Fig. 7 to Fig.
  • the driver 3 includes: a hub portion 31 having an inner hole 30, the hub portion 31 includes opposite first end portions 311 and the second end portion 312 ; and the flange portion 32 protruding radially outward from the first end portion 311 of the hub portion 31 of the driving member 3 , the driving member 3 is connected to the first scroll 11 through the flange portion 32 .
  • the second end plate 123 of the second scroll 12 is rotatably supported on the driving member 3 on the flange portion 32.
  • all bearings of the scroll compressor 100 may be disposed on a side of the second end plate 123 of the second scroll 12 facing the first direction D1.
  • the side of the first end plate 112 of the first scroll 11 of the scroll compressor 100 facing the second direction D2 may not be provided with any bearing.
  • the scroll compressor 100 further includes a casing 101 , and the casing 101 may include a first casing 1011 , a second casing 1012 and a third casing 1013 .
  • the first casing 1011 and the second casing 1012 form a sealed space, and the first scroll 11 , the second scroll 12 , the support 4 , the motor 7 and the driving member 3 are arranged in the casing 101 .
  • the second housing 1012 and the third housing 1013 define an exhaust chamber.
  • the bracket 4 can be fixed to the first housing 1011, for example, the bracket 4 is welded to the first housing 1011, the bracket 4 is fixed to the first housing 1011 through an interference fit with the first housing 1011, or the bracket 4 is fixed to the first housing 1011 by bolts.
  • the first casing 1011 One end of the bracket 4 can be fixed to the bottom of the housing 101 or the bottom of the first housing 1011 .
  • the scroll compressor 100 further includes a connecting piece 130 ( FIG. 12 , FIG. 13 ), and the connecting piece 130 can connect the first scroll 11 with the driving member 3 .
  • the connecting part 130 may be integrated with one of the first scroll 11 and the driving part 3, or may be a separate connecting part.
  • the first scroll 11 further includes an outer wall 111 protruding from the first end plate 112 along the first direction D1, the outer wall 111 is located between the first scroll wrap 113 and On the radially outer side of the second scroll 12 , the outer wall 111 may be provided with a connecting piece 130 ( FIG. 12 , FIG. 13 ), and the driving member 3 is connected to the first scroll 11 through the connecting piece 130 ( FIG. 12 , FIG. 13 ).
  • the outer wall 111 may have a ring shape.
  • the scroll compressor 100 further includes: a fixed shaft 5 fixed to the bracket 4 .
  • the driving member 3 is rotatably mounted on the fixed shaft 5 through the hub portion 31 so that the driving member 3 is rotatably supported on the bracket 4 .
  • the outer wall 111 of the first scroll 11 has a scroll pin hole 114 (Fig. 2), and the flange part 32 of the driver 3 has a driver pin hole 322 ( Figure 7).
  • the outer wall 111 of the first scroll 11 has a scroll connecting hole 116 (Fig. 12, Fig.
  • the connecting piece 130 may include: a pin 131 and a bolt 132 , and the pin 131 is inserted into the scroll pin hole 114 ( FIG. 2 ) of the outer wall 111 of the first scroll 11 and the flange part of the driving member 3 32 driver pin holes 322 (Fig. 7) to determine the relative position of the first scroll 11 and the driver 3; the connector 130 (Fig. 12, Fig.
  • the threaded portion 324 can be set in the connecting hole 323 of the driving member, the scroll connecting hole 116 can be a through hole, and the bolt 132 is inserted from one end of the scroll connecting hole 116 into the A threaded part 324 is incorporated into the connecting hole 323 of the driving part to cooperate with, so as to securely connect the first scroll 11 to the driving part 3 .
  • the scroll compressor 100 further includes: a first bearing 51 and a second bearing 52 .
  • the first bearing 51 is located in the space between the radially inner surface of the first end portion 311 of the hub portion 31 and the radially outer surface of the fixed shaft 5, and the first end portion 311 of the hub portion 31 can be mounted on the first end portion 31 through the first bearing 51. on the fixed shaft 5 , and the second end 312 of the hub 31 is mounted on the fixed shaft 5 through the second bearing 52 .
  • the second scroll 12 further includes a hub 121 protruding from the second end plate 123 along the first direction D1, Referring to FIG.
  • the fixed shaft 5 has an axial inner hole 50 .
  • the scroll compressor 100 also includes a third bearing 53, which can be located in the space between the radially outer side of the hub portion 121 of the second scroll 12 and the radially inner side of the axial inner hole 50 of the fixed shaft 5, the second scroll
  • the hub portion 121 of the turntable 12 is mounted in the axial inner hole 50 of the fixed shaft 5 through a third bearing 53 .
  • the first bearing 51 is installed in the central hole of the first end portion 311 of the hub portion 31, the first bearing 51 may also be a bearing comprising a bushing and an axle sleeve, and the bushing is installed in the center hole of the first end portion 311 of the hub portion 31.
  • the axle sleeve is assembled with the outer surface of the fixed shaft 5 .
  • the second bearing 52 is installed in the bore of the second end 312 of the hub 31 .
  • the third bearing 53 may also be a bearing including a bush and a bush.
  • the hole wall 301 of the inner hole 30 of the hub portion 31 of the driver 3 has The stepped portion 302, the stepped portion 302 of the hub portion 31 of the driver 3 has a stepped surface 303 facing the second direction D2, the fixed shaft 5 has a stepped portion 501, and the stepped portion 501 of the fixed shaft 5 has a stepped surface facing the first direction D1 502, the scroll compressor 100 further includes a first thrust bearing 54, the first thrust bearing 54 is arranged on the stepped surface 303 of the stepped portion 302 of the hub portion 31 of the driving member 3 and the stepped surface of the stepped portion 501 of the fixed shaft 5 Between 502.
  • the first thrust bearing 54 may be any suitable known thrust bearing.
  • the first thrust bearing 54 may be an annular thrust washer made of wear-resistant metal or non-metallic material, or the first thrust bearing 54 may be a ball thrust bearing, a roller thrust bearing, or the like.
  • the first thrust bearing 54 may also be a thrust surface.
  • the bracket 4 includes: a cylindrical portion 41, and radially protruding from the cylindrical portion 41 of the bracket 4
  • the flange portion 42 , the second end portion 312 of the hub portion 31 of the driver 3 is supported on the flange portion 42 of the bracket 4 .
  • a part of the fixed shaft 5 is inserted into and fixed to the cylindrical portion 41 of the bracket 4 , and the fixed shaft 5 has a cylindrical shape.
  • the fixed shaft 5 has a matching shaft portion 59
  • the cylindrical portion 41 of the bracket 4 has a matching hole portion 49
  • the matching shaft portion 59 of the fixed shaft 5 and the bracket 4 The matching hole portion 49 of the cylindrical portion 41 is fixedly connected to fix the fixed shaft 5 to the bracket 4 . 1, FIG. 4 to FIG.
  • the surface 1230 of the second end plate 123 of the second scroll 12 is between the second end plate 123 of the second scroll 12 and the driving member 3
  • the first oil groove 55 may extend in a radial direction.
  • An annular recess 122 is formed on the surface 1230 of the second end plate 123 of the second scroll 12.
  • the annular recess 122 is radially inward of the annular contact area.
  • the first oil groove 55 extends from the radially outer edge 1220 of the annular recess 122 toward the The radially outer side of the contact area extends laterally and communicates with the annular recess 122 .
  • the scroll compressor 100 further includes: Second thrust bearing 55'.
  • the surface 320 of the flange portion 32 of the driver 3 has an annular groove 3201 .
  • the groove 3201 is deeper, while in the embodiment shown in Figures 35-38, the groove 3201 is shallower.
  • the second thrust bearing 55' is disposed in the groove 3201 and is in contact with the surface 1230 of the second end plate 123 of the second scroll 12.
  • the groove 3201 is provided inside the eccentric ring hole 326 in the flange portion 32 in the radial direction.
  • the end surface 3120 of the second end portion 312 of the hub portion 31 of the driver 3 and the surface 420 of the flange portion 42 of the bracket 4 One has a second oil groove 56 on the annular contact area of the second end portion 312 of the hub portion 31 of the driver 3 and the flange portion 42 of the bracket 4, the second oil groove 56 is directed from the radial inner side of the annular contact area towards the annular contact area Extending laterally across a portion of the annular contact area radially outward of the second oil groove 56 is radially spaced from the radially outer edge of the annular contact area.
  • the second oil groove 56 may extend in a radial direction.
  • the second oil groove 56 may be formed on the end surface 3120 of the second end portion 312 of the hub portion 31 of the driving member 3 .
  • the second oil groove 56 is spaced apart from the outer periphery 3121 of the end surface 3120 of the second end portion 312 of the hub portion 31 of the driving member 3 .
  • the second oil groove 56 may also be formed on the surface 420 of the flange portion 42 of the bracket 4 .
  • the second oil groove 56 may be at least one oil groove, or two or more oil grooves distributed according to a certain interval (such as an equal interval).
  • the scroll compressor 100 further includes: a third stopper disposed between the second end portion 312 of the hub portion 31 of the driving member 3 and the flange portion 42 of the bracket 4 Push bearing 57.
  • the third thrust bearing 57 may be any suitable known thrust bearing.
  • the third thrust bearing 57 may be an annular thrust washer made of a wear-resistant metallic or non-metallic material, or the third thrust bearing 57 may be a ball thrust bearing (as shown in FIG. Column thrust bearings, etc.
  • the motor 7 may be an axial flux motor or a radial flux motor.
  • the motor 7 includes a rotor 71 and a stator 72 fixed to the frame 4 , and the rotor 71 of the motor 7 drives the first scroll 11 to rotate by driving the driving member 3 to rotate.
  • the rotor 71 of the motor 7 is disposed on one side of the stator 72 facing the first direction D1 or the second direction D2.
  • the flange portion 32 of the driving member 3 is sealingly connected with the outer wall 111 of the first scroll 11 to form a scroll compressor 100
  • the suction chamber 88, the fluid enters the compression chamber through the suction chamber 88.
  • the driver 3 includes at least one fluid channel 6 formed in the flange portion 32 of the driver 3, and the fluid channel 6 has a direction toward the first direction formed in the flange portion 32 of the driver 3.
  • the driver 3 may comprise two fluid channels 6 , which are opposite each other in the radial direction of the driver 3 .
  • the fluid channel 6 of the driver 3 can have a circular, oval or curved cross section. According to an example of the present invention, as shown in FIG. 7, FIG. 9 to FIG.
  • the fluid channel 6 extends obliquely relative to the axial direction of the drive member 3, and the fluid outlet 62 of the fluid channel 6 is farther away from the drive member 3 than the fluid inlet 61.
  • Axis of rotation 91 assuming that the first plane passes through the point at the fluid inlet 61 of the axis 93 of the fluid channel 6 and the axis of rotation 91 of the driver 3, while the second plane is perpendicular to the first plane and parallel to the axis of rotation 91 of the driver 3, Then the included angle between the axis 93 of the fluid channel 6 and the first plane is 0 to 60 degrees, and the included angle between the axis 93 of the fluid channel 6 and the second plane is 5 to 60 degrees.
  • the fluid channel 6 extends along the axial direction of the driver 3 , that is, the axis 93 of the fluid channel 6 is parallel to the rotation axis 91 of the driver 3 , and the axis 93 of the fluid channel 6
  • the included angle with the first plane is 0 degrees
  • the included angle with the axis 93 of the fluid channel 6 and the second plane is also 0 degrees.
  • the outer wall 111 has a recess 1110 at a position corresponding to the position of the fluid outlet 62 of the fluid passage 6, and the recess 1110 is formed on the outer wall 111 toward the first scroll 11 on the surface 1111 of the rotation axis of the first scroll 11, and the wall surface 11101 of the recess 1110 facing the rotation axis of the first scroll 11 gradually faces the first scroll in the direction of the first end plate 112 of the first scroll 11
  • the axis of rotation of 11 is inclined or bent.
  • the scroll compressor 100 further includes: an oiling bolt 81 , the oiling bolt 81 is accommodated in the inner hole 50 of the fixed shaft 5 , and one end is located at the bottom of the housing 101 . In the pool, the other end is connected to the hub portion 121 of the second scroll 12 .
  • Scroll compressor 100 may also include any other suitable pump.
  • the driver 3 further includes: an eccentric ring hole 326 formed in the flange portion 32, an eccentric ring 341 (See Figure 13, Figure 19, Figure 20) is set in the eccentric ring hole 326, the coupling pin 342 is inserted into the coupling pin hole 126 ( Figure 3) formed in the second end plate 123 of the second scroll 12 and the eccentric ring 341 in the hole 3410.
  • the driver 3 may have three eccentric ring holes 326 .
  • the scroll compressor 100 further includes the surface 1230 of the second end plate 123 of the second scroll 12 and the surface 320 of the flange portion 32 of the driving member 3
  • the annular protrusion 73 has an annular wedge-shaped convex portion 731
  • the cross-section of the wedge-shaped convex portion 731 in the radial direction has a wedge shape
  • the wedge-shaped convex portion 731 has Axially outwardly facing wedge-shaped raised surface 7310.
  • An annular protrusion is provided on the surface 1230 of the second end plate 123 or the surface 320 of the flange portion 32 to improve wear of the thrust surface.
  • the first wedge-shaped protrusion point P1 of the wedge-shaped protrusion surface 7310 in the radial direction is in the same direction as the surface 320 (the embodiment shown in FIGS. 21 to 24 ) or the surface 1230 ( FIGS. 28) has the largest axial distance
  • the second wedge-shaped protrusion point P2 in the radial direction is in contact with surface 320 (the embodiment shown in FIGS. 21 to 24) or surface 1230 (Fig.
  • the axial distance of the shown embodiment) is zero, at least the portion of the wedge-shaped convex surface 7310 corresponding to the first wedge-shaped convex point P1 is on the surface 320 of the flange portion 32 of the driving member 3 for supporting the second scroll In the annular region of the surface 1230 of the second end plate 123 of the disc 12 .
  • at least a portion of the wedge-shaped convex surface 7310 corresponding to the first wedge-shaped convex point P1 is in the annular contact area of the second end plate 123 of the second scroll 12 and the flange portion 32 of the driving member 3 .
  • most or all of the portion of the wedge-shaped protrusion surface 7310 corresponding to the first wedge-shaped protrusion point P1 and the rest of the wedge-shaped protrusion surface 7310 are located on the surface 320 of the flange portion 32 of the driving member 3 for supporting the second wedge-shaped protrusion surface 7310.
  • the portion of the wedge-shaped convex surface 7310 corresponding to the first wedge-shaped convex point P1 and the rest of the wedge-shaped convex surface 7310 are located between the second end plate 123 of the second scroll 12 and the driving member 3 .
  • the annular contact area of the flange portion 32 In the annular contact area of the flange portion 32 .
  • the distance between the wedge-shaped protrusion surface 7310 and the surface 320 (the embodiment shown in FIGS. 21 to 24 ) or the surface 1230 (the embodiment shown in FIGS. 25 to 28 ) The axial distance is in the range of 0.1 micron to 1 mm.
  • the first wedge-shaped protrusion point P1 may be radially outside the second wedge-shaped protrusion point P2, or the first wedge-shaped protrusion point P1 may be radially inside the second wedge-shaped protrusion point P2.
  • the annular protrusion 73 may be on the surface 320 of the flange portion 32 of the driving member 3 (the embodiment shown in FIGS. 21 to 24 ), or the annular protrusion 73 may be on the second end of the second scroll 12 on the surface 1230 of the plate 123 (the embodiment shown in FIGS. 25-28 ).
  • the annular protrusion 73 also has an annular transition protrusion portion 732, and the transition protrusion portion 732 has an axially outward transition protrusion surface 7320.
  • the transition convex surface 7320 is from the point corresponding to the first wedge-shaped convex point P1 of the wedge-shaped convex surface 7310 to away from the second wedge-shaped convex point P2 and toward the surface 320 (shown in FIGS. 21 to 24 ). embodiment) or surface 1230 (the embodiment shown in FIGS. 25-28 ) to surface 320 (the embodiment shown in FIGS. example).
  • a cross section of the transition convex portion 732 in the radial direction may have a wedge shape. The dimension of the transition convex portion 732 in the radial direction may be smaller than the dimension of the wedge-shaped convex portion 731 in the radial direction.
  • the motor 7 drives the first scroll 11 to rotate through the driving member 3
  • the first scroll 11 drives the second scroll 12 to rotate.
  • the refrigerant enters the sealed space formed by the first housing 1011 and the second housing 1012 of the housing 101 through the inlet 82, and a part of the refrigerant flows upwards, bypasses the upper end of the cylindrical baffle 83, and then flows downwards through the fluid channel
  • the fluid inlet 61 of 6 enters the fluid channel 6 (see Fig. 7, Fig. 9 to Fig.
  • the second scroll 12 drives the oiling bolt 81 arranged in the axial inner hole 50 of the fixed shaft 5 to rotate, and the lubricating oil contained in the oil groove at the bottom of the first housing 1011 of the housing 101 is sucked into the In the axial inner hole 50 of the fixed shaft 5, the first part of lubricating oil flows through the transverse through hole 85 (such as a radial through hole) on the fixed shaft 5 to the second bearing 52 and the second part of the hub portion 31 of the driving member 3. Between the end portion 312 and the flange portion 42 of the bracket 4 (see FIG. 1 ).
  • the second part of lubricating oil enters the gap between the hub 121 of the second scroll 12 and the third bearing 53 to lubricate the third bearing 53, and then enters the hub 121 of the second scroll 12 and the third bearing 53 Part of the lubricating oil in the gap between them enters the gap between the second end plate 123 of the second scroll 12 and the flange portion 32 of the driver 3, and finally enters the first scroll 11 and the second scroll through the fluid passage 6.
  • the space formed by the scroll 12 is used to lubricate the first scroll 11 and the second scroll 12 .
  • Another part of lubricating oil entering the gap between the hub portion 121 of the second scroll 12 and the third bearing 53 bypasses the upper end portion of the third bearing 53 and enters the first bearing 51, and partly enters the groove formed in the fixed shaft 5.
  • the oil return channel 862 then enters the oil return channel 861 formed in the fixed shaft 5 through the communication hole 89 , and finally returns to the oil groove at the bottom of the first housing 1011 of the housing 101 .
  • the lubricating oil entering the first bearing 51 enters the oil return passage 862 through the transverse through hole 87 (such as a radial through hole), then enters the oil return passage 861 through the communication hole 89, and finally returns to the first housing 1011 of the housing 101 in the oil tank at the bottom.
  • the scroll compressor of the embodiment of the present invention since each of the first scroll and the second scroll jointly rotates around its own rotation axis, the compression efficiency is improved.
  • an axial flux motor can be used, which can make the axial size of the motor smaller, thereby making the compressor more compact.
  • the first scroll can be driven to rotate by the driving member, and the first scroll can drive the second scroll to rotate, so that all bearings can be further arranged on the same side of the compressor , such as the same side of the second scroll in the first direction D1, so that the compressor can be further compacted.
  • the design of the first or second oil groove can improve the lubrication function of the internal parts of the compressor (especially the bearing), and further ensure the performance of the compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

一种涡旋压缩机(100),该涡旋压缩机(100)包括:第一涡旋盘(11),该第一涡旋盘(11)包括第一端板(112)和第一涡旋卷(113);第二涡旋盘(12),该第二涡旋盘(12)包括第二端板(123)和第二涡旋卷(124);支架(4),支架(4)位于第二涡旋盘(12)的远离第一涡旋盘(11)的一侧;电机(7);以及驱动件(3),驱动件(3)可转动地支撑于支架(4)并且位于第二涡旋盘(12)的远离第一涡旋盘(11)的一侧,电机(7)通过驱动件(3)驱动第一涡旋盘(11)旋转,且第一涡旋盘(11)驱动第二涡旋盘(12)旋转。驱动件(3)包括:具有内孔的毂部(31),毂部(31)包括相对的第一端部(311)和第二端部(312);以及从驱动件(3)的毂部(31)的第一端部(311)径向向外伸出的凸缘部(32),第二涡旋盘(12)的第二端板(123)被可转动地支撑在驱动件(3)的凸缘部(32)上。该涡旋压缩机结构紧凑、体积小、重量轻,并且可以实现更高的转速。

Description

涡旋压缩机 技术领域
本发明的实施例涉及一种涡旋压缩机。
背景技术
传统的涡旋压缩机包括静涡旋盘和动涡旋盘。静涡旋盘具有端板和从端板伸出的固定涡旋卷。动涡旋盘具有端板和从其端板伸出的动涡旋卷。动涡旋卷和固定涡旋卷配合形成用于压缩介质的压缩腔。电机通过驱动轴驱动动涡旋盘旋转,以在压缩腔中压缩介质。
发明内容
本发明的实施例的目的是提供一种涡旋压缩机,由此例如可以改善涡旋压缩机的性能。
本发明的实施例提供了一种涡旋压缩机,该涡旋压缩机包括:第一涡旋盘,该第一涡旋盘包括第一端板和从第一端板沿第一方向伸出的第一涡旋卷;第二涡旋盘,该第二涡旋盘包括第二端板和从第二端板沿与第一方向相反的第二方向伸出的第二涡旋卷,第二涡旋卷和第一涡旋卷配合以形成用于压缩介质的压缩腔;支架,支架位于第二涡旋盘的远离第一涡旋盘的一侧;电机;以及驱动件,驱动件可转动地支撑于支架并且位于第二涡旋盘的远离第一涡旋盘的一侧,电机通过驱动件驱动第一涡旋盘旋转,且第一涡旋盘驱动第二涡旋盘旋转,驱动件包括:具有内孔的毂部,毂部包括相对的第一端部和第二端部;以及从驱动件的毂部的第一端部径向向外伸出的凸缘部,第二涡旋盘的第二端板被可转动地支撑在驱动件的凸缘部上。
根据本发明的实施例,第二涡旋盘的第二端板的表面在第二涡旋盘的第二端板与驱动件的凸缘部的环形接触区域上具有第一油槽,第一油槽从环形接触区域的径向内侧朝向环形接触区域的径向外侧横向延伸而横穿环形接触区域的一部分,第一油槽在径向上与环形接触区域的径向外边缘间隔开。
根据本发明的实施例,第一油槽沿径向方向延伸。
根据本发明的实施例,第二涡旋盘的第二端板的表面上形成有环形凹部,环形凹部在环形接触区域的径向内侧,第一油槽从环形凹部的径向外边缘朝向环形接触区域的径向外侧横向延伸,并与环形凹部连通。
根据本发明的实施例,涡旋压缩机还包括:设置在第二涡旋盘的第二端板与驱动件的凸缘部之间的第一止推轴承。
根据本发明的实施例,涡旋压缩机还包括:从第二涡旋盘的第二端板的表面和驱动件的凸缘部的表面中的一个表面突起的环状凸起,环状凸起具有环状的楔形凸起部分,楔形凸起部分在径向方向上的横截面具有楔形形状,楔形凸起部分具有轴向朝外的楔形凸起表面,在径向方向上的横截面中,楔形凸起表面在径向方向上的第一楔形凸起点与一个表面的轴向距离最大,并且在径向方向上的第二楔形凸起点与一个表面的轴向距离为零,至少楔形凸起表面的与第一楔形凸起点对应的部分在驱动件的凸缘部的表面的用于支撑第二涡旋盘的第二端板的表面的环形区域中。
根据本发明的实施例,至少楔形凸起表面的与第一楔形凸起点对应的部分在第二涡旋盘的第二端板与驱动件的凸缘部的环形接触区域中。
根据本发明的实施例,在第一楔形凸起点,楔形凸起表面与一个表面的轴向距离在0.1微米至1毫米的范围内。
根据本发明的实施例,在第一楔形凸起点,楔形凸起表面与一个表面的轴向距离在20微米至40微米的范围内。
根据本发明的实施例,第一楔形凸起点在第二楔形凸起点的径向外侧,或者第一楔形凸起点在第二楔形凸起点的径向内侧。
根据本发明的实施例,环状凸起在驱动件的凸缘部的表面上,或者环状凸起在第二涡旋盘的第二端板的表面上。
根据本发明的实施例,环状凸起还具有环状的过渡凸起部分,过渡凸起部分具有轴向朝外的过渡凸起表面,在径向方向上的横截面中,过渡凸起表面从楔形凸起表面的与第一楔形凸起点对应的点以远 离第二楔形凸起点并朝向一个表面的方式延伸到一个表面。
根据本发明的实施例,过渡凸起部分在径向方向上的横截面具有楔形形状。
根据本发明的实施例,过渡凸起部分在径向方向上的尺寸小于楔形凸起部分在径向方向上的尺寸。
根据本发明的实施例,涡旋压缩机还包括:固定轴,固定轴固定于支架,通过驱动件的毂部可转动地安装在固定轴上使驱动件可转动地支撑于支架。
根据本发明的实施例,支架包括:筒状部,以及从支架的筒状部径向伸出的凸缘部,驱动件的毂部的第二端部支撑在支架的凸缘部上。
根据本发明的实施例,驱动件的毂部的第二端部的端面和支架的凸缘部的表面中的一个在驱动件的毂部的第二端部和支架的凸缘部的环形接触区域上具有第二油槽,第二油槽从环形接触区域的径向内侧朝向环形接触区域的径向外侧横向延伸而横穿环形接触区域的一部分,第二油槽在径向上与环形接触区域的径向外边缘间隔开。
根据本发明的实施例,第二油槽沿径向方向延伸。
根据本发明的实施例,第二油槽形成在驱动件的毂部的第二端部的端面上。
根据本发明的实施例,第二油槽与驱动件的毂部的第二端部的端面的外周边间隔开。
根据本发明的实施例,涡旋压缩机还包括:设置在驱动件的毂部的第二端部与支架的凸缘部之间的第二止推轴承。
例如,根据本发明的实施例的涡旋压缩机,例如可以改善涡旋压缩机的性能。
附图说明
图1为根据本发明的实施例的涡旋压缩机的示意剖视图;
图2为图1中所示的涡旋压缩机的第一涡旋盘的示意透视图;
图3为图1中所示的涡旋压缩机的第二涡旋盘的示意透视图;
图4为根据本发明的实施例的变形例的涡旋压缩机的第二涡旋盘的示意透视图;
图5为图4中所示的涡旋压缩机的第二涡旋盘的示意仰视图;
图6为图4中所示的涡旋压缩机的第二涡旋盘的沿图5中的线FF的示意剖视图;
图7为图1中所示的涡旋压缩机的驱动件的示意透视图;
图8为根据本发明的实施例的变形例的涡旋压缩机的驱动件的示意透视图;
图9为图7中所示的涡旋压缩机的驱动件的示意透视图,其中示出了一种形式的流体通道;
图10为图7中所示的涡旋压缩机的驱动件的示意俯视图;
图11为图1中所示的涡旋压缩机的驱动件的示意透视图,其中示出了另一种形式的流体通道;
图12为图1中所示的涡旋压缩机的驱动件、第一涡旋盘、第二涡旋盘、固定轴等的示意剖视图;
图13为图1中所示的涡旋压缩机的驱动件、第一涡旋盘、第二涡旋盘、固定轴等的示意分解透视图;
图14为图1中所示的涡旋压缩机的驱动件、第二涡旋盘、固定轴、上油螺栓等的组装状态下的示意剖视图;
图15为图1中所示的涡旋压缩机的支架的示意透视图;
图16为图15中所示的涡旋压缩机的支架的示意剖视图;
图17为根据本发明的实施例的变形例的涡旋压缩机的驱动件、支架的组装状态下的示意剖视图;
图18为图17中所示的涡旋压缩机的支架的示意透视图;
图19为根据本发明的实施例的变形例的涡旋压缩机的支架、固定轴、驱动件、第二涡旋盘的组装状态下的示意剖视图;
图20为图19中所示的涡旋压缩机的支架、固定轴、驱动件、第二涡旋盘的组装状态下的示意剖视透视图;
图21为根据本发明的实施例的一个变形例的涡旋压缩机的驱动件、第二涡旋盘的示意剖视图;
图22为图21中的与环状凸起相关的部分的局部放大示意剖视图;
图23为根据本发明的实施例的另一个变形例的涡旋压缩机的驱动件、第二涡旋盘的示意剖视图;
图24为图23中的与环状凸起相关的部分的局部放大示意剖视图;
图25为根据本发明的实施例的又一个变形例的涡旋压缩机的驱动件、第二涡旋盘的示意剖视图;
图26为图25中的与环状凸起相关的部分的局部放大示意剖视图;
图27为根据本发明的实施例的再一个变形例的涡旋压缩机的驱动件、第二涡旋盘的示意剖视图;
图28为图27中的与环状凸起相关的部分的局部放大示意剖视图;
图29为根据本发明的实施例的变形例的涡旋压缩机的支架、固定轴、驱动件的示意剖视透视图;
图30为根据本发明的实施例的变形例的涡旋压缩机的支架、固定轴、驱动件的示意剖视图;
图31为根据本发明的实施例的一个变形例的涡旋压缩机的驱动件、止推轴承和第二涡旋盘的示意分解透视图;
图32为图31中所示的涡旋压缩机的驱动件、止推轴承和第二涡旋盘在组装状态下的示意透视图;
图33为图32中所示的涡旋压缩机的驱动件、止推轴承和第二涡旋盘的示意剖视透视图;
图34为图32中所示的涡旋压缩机的驱动件、止推轴承和第二涡旋盘的示意剖视图;
图35为根据本发明的实施例的另一个变形例的涡旋压缩机的驱动件、止推轴承和第二涡旋盘的示意分解透视图;
图36为图35中所示的涡旋压缩机的驱动件、止推轴承和第二涡旋盘在组装状态下的示意透视图;
图37为图36中所示的涡旋压缩机的驱动件、止推轴承和第二涡旋盘的示意剖视透视图;以及
图38为图36中所示的涡旋压缩机的驱动件、止推轴承和第二涡旋盘的示意剖视图。
具体实施方式
下面结合附图描述本发明的实施例。
参见图1,根据本发明的实施例的涡旋压缩机100包括:第一涡旋盘11、第二涡旋盘12、支架4,电机7以及驱动件3。第一涡旋盘11包括第一端板112和从第一端板112沿第一方向D1伸出的第一涡旋卷113。第二涡旋盘12包括第二端板123和从第二端板123沿与第一方向D1相反的第二方向D2伸出的第二涡旋卷124,第二涡旋卷124和第一涡旋卷113配合以形成用于压缩介质的压缩腔。支架4位于第二涡旋盘12的远离第一涡旋盘11的一侧。驱动件3可转动地支撑于支架4并且位于第二涡旋盘12的远离第一涡旋盘11的一侧,电机7通过驱动件3驱动第一涡旋盘11围绕旋转轴线91(图13)旋转,且第一涡旋盘11驱动第二涡旋盘12围绕旋转轴线92(图13)旋转。旋转轴线91为驱动件3的旋转轴线(图7、图9、图11)。旋转轴线91和转轴线92相互平行,并且间隔开。第二涡旋盘12的旋转速度和旋转方向可以与驱动件3的一样,而旋转轴线不同。参见图1、图7至图14、图19至图20,在本发明的实施例中,驱动件3包括:具有内孔30的毂部31,毂部31包括相对的第一端部311和第二端部312;以及从驱动件3的毂部31的第一端部311径向向外伸出的凸缘部32,驱动件3通过凸缘部32与第一涡旋盘11连接。参见图1、图12至图14、图19至图20、图23至图40,在本发明的实施例中,第二涡旋盘12的第二端板123被可转动地支撑在驱动件3的凸缘部32上。
根据本发明的实施例,涡旋压缩机100的所有轴承可以都设置在第二涡旋盘12的第二端板123的朝向第一方向D1的一侧。涡旋压缩机100的第一涡旋盘11的第一端板112的朝向第二方向D2的 一侧可以不设置任何轴承。
参见图1,在本发明的实施例中,涡旋压缩机100还包括壳体101,壳体101可以包括第一壳体1011、第二壳体1012和第三壳体1013。第一壳体1011和第二壳体1012形成密封空间,第一涡旋盘11、第二涡旋盘12、支架4,电机7以及驱动件3等设置在壳体101中。第二壳体1012和第三壳体1013限定排气腔。支架4可以固定于第一壳体1011,例如支架4焊接于第一壳体1011,支架4通过与第一壳体1011过盈配合而固定于第一壳体1011,或者支架4通过螺栓固定于第一壳体1011。支架4的一端可以固定于壳体101的底部或第一壳体1011的底部。
参见图1,在本发明的实施例中,涡旋压缩机100还包括连接件130(图12、图13),连接件130可以将第一涡旋盘11与驱动件3连接。连接件130可以与第一涡旋盘11和驱动件3中的一个形成一体,或者也可以是单独的连接件。
参见图1和图2,在本发明的实施例中,第一涡旋盘11还包括从第一端板112沿第一方向D1伸出的外壁111,外壁111在第一涡旋卷113以及第二涡旋盘12的径向外侧,外壁111可以设有连接件130(图12、图13),驱动件3通过连接件130(图12、图13)与第一涡旋盘11连接。外壁111可以具有环状形状。
参见图1、图12至图14、图19至图22,在本发明的实施例中,涡旋压缩机100还包括:固定轴5,固定轴5固定于支架4。驱动件3通过毂部31可转动地安装在固定轴5上使驱动件3可转动地支撑于支架4。根据本发明的一个示例,参见图2、图7,第一涡旋盘11的外壁111具有涡旋盘销孔114(图2),驱动件3的凸缘部32具有驱动件销孔322(图7)。第一涡旋盘11的外壁111具有涡旋盘连接孔116(图12、图13),驱动件3的凸缘部32具有驱动件连接孔323,驱动件3的凸缘部32的驱动件连接孔323和第一涡旋盘11的外壁111的涡旋盘连接孔116中的一个具有螺纹部324。连接件130(图12、图13)可以包括:销131以及螺栓132,销131插入第一涡旋盘11的外壁111的涡旋盘销孔114(图2)和驱动件3的凸缘部32的 驱动件销孔322(图7),以确定第一涡旋盘11和驱动件3的相对位置;连接件130(图12、图13)还可以包括螺栓132,可以通过涡旋盘连接孔116(图12、图13)和驱动件连接孔323将第一涡旋盘11与驱动件3固定连接。在一实施方式中,参见图12、图13,螺纹部324可以设置在驱动件连接孔323中,涡旋盘连接孔116可以是通孔,螺栓132从涡旋盘连接孔116的一端插入到驱动件连接孔323中,并入螺纹部324配合,以将第一涡旋盘11与驱动件3固定连接。
参见图1、图12、图14,在本发明的实施例中,涡旋压缩机100还包括:第一轴承51以及第二轴承52。第一轴承51位于毂部31的第一端部311的径向内侧表面和固定轴5的径向外侧表面之间的空间,毂部31的第一端部311可以通过第一轴承51安装在固定轴5上,而毂部31的第二端部312通过第二轴承52安装在固定轴5上。参见图1、图3、图4、图6、图14,在本发明的实施例中,第二涡旋盘12还包括从第二端板123沿第一方向D1伸出的毂部121,参见图1、图12、图14,固定轴5具有轴向内孔50。涡旋压缩机100还包括第三轴承53,可以位于第二涡旋盘12的毂部121的径向外侧和固定轴5的轴向内孔50的径向内侧之间的空间,第二涡旋盘12的毂部121通过第三轴承53安装在固定轴5的轴向内孔50中。第一轴承51安装在毂部31的第一端部311的中心孔中,第一轴承51也可以是包括衬套和轴套的轴承,衬套安装在毂部31的第一端部311的中心孔中,轴套与固定轴5的外表面装配在一起。第二轴承52安装在毂部31的第二端部312的内孔中。第三轴承53也可以是包括衬套和轴套的轴承。
参见图1、图7、图9、图11、图14、图19、图20、图25,在本发明的实施例中,驱动件3的毂部31的内孔30的孔壁301上具有台阶部302,驱动件3的毂部31的台阶部302具有朝向第二方向D2的台阶面303,固定轴5具有台阶部501,固定轴5的台阶部501具有朝向第一方向D1的台阶面502,涡旋压缩机100还包括第一止推轴承54,第一止推轴承54设置在驱动件3的毂部31的台阶部302的台阶面303与固定轴5的台阶部501的台阶面502之间。第一止推 轴承54可以是任何合适的现有的止推轴承。例如,第一止推轴承54可以是由耐磨金属或非金属材料制成的环形止推垫片,或者第一止推轴承54可以是滚珠止推轴承、滚柱止推轴承等。第一止推轴承54也可以是止推面。
参见图1、图15、图16、图18、图19至图22,在本发明的实施例中,支架4包括:筒状部41,以及从支架4的筒状部41径向伸出的凸缘部42,驱动件3的毂部31的第二端部312支撑在支架4的凸缘部42上。根据本发明的一个示例,固定轴5的一部分插入支架4的筒状部41中并固定于支架4的筒状部41,并且固定轴5具有筒状形状。
参见图19至图22,在本发明的实施例的示例中,固定轴5具有配合轴部59,支架4的筒状部41具有配合孔部49,固定轴5的配合轴部59与支架4的筒状部41的配合孔部49固定连接,将固定轴5固定于支架4。参见图1、图4至图6,在本发明的实施例中,第二涡旋盘12的第二端板123的表面1230在第二涡旋盘12的第二端板123与驱动件3的凸缘部32的环形接触区域上具有第一油槽55,第一油槽55从环形接触区域的径向内侧朝向环形接触区域的径向外侧横向延伸而横穿环形接触区域的一部分,第一油槽55在径向上与环形接触区域的径向外边缘间隔开。第一油槽55可以沿径向方向延伸。第二涡旋盘12的第二端板123的表面1230上形成有环形凹部122,环形凹部122在环形接触区域的径向内侧,第一油槽55从环形凹部122的径向外边缘1220朝向环形接触区域的径向外侧横向延伸,并与环形凹部122连通。
参见图31至图38,在本发明的替代实施例中,涡旋压缩机100还包括:设置在第二涡旋盘12的第二端板123与驱动件3的凸缘部32之间的第二止推轴承55’。具体而言,驱动件3的凸缘部32的表面320具有环状的凹槽3201。在图31至图34中所示的实施例中,凹槽3201较深,而在图35至图38中所示的实施例中,凹槽3201较浅。第二止推轴承55’设置在凹槽3201中,并且与第二涡旋盘12的第二端板123的表面1230接触。凹槽3201在径向方向上设置在凸缘 部32中的偏心环孔326的内侧。
参见图1、图8、图17、图18,在本发明的实施例中,驱动件3的毂部31的第二端部312的端面3120和支架4的凸缘部42的表面420中的一个在驱动件3的毂部31的第二端部312和支架4的凸缘部42的环形接触区域上具有第二油槽56,第二油槽56从环形接触区域的径向内侧朝向环形接触区域的径向外侧横向延伸而横穿环形接触区域的一部分,第二油槽56在径向上与环形接触区域的径向外边缘间隔开。第二油槽56可以沿径向方向延伸。根据本发明的示例,如图8所示,第二油槽56可以形成在驱动件3的毂部31的第二端部312的端面3120上。第二油槽56与驱动件3的毂部31的第二端部312的端面3120的外周边3121间隔开。如图18所示,第二油槽56也可以形成在支架4的凸缘部42的表面420上。第二油槽56可以是至少一个油槽,或者按照一定间距(比如等间距)间隔分布的两个或更多个油槽。
参见图30,在本发明的替代实施例中,涡旋压缩机100还包括:设置在驱动件3的毂部31的第二端部312与支架4的凸缘部42之间的第三止推轴承57。第三止推轴承57可以是任何合适的现有的止推轴承。例如,第三止推轴承57可以是由耐磨金属或非金属材料制成的环形止推垫片,或者第三止推轴承57可以是滚珠止推轴承(如图30中所示)、滚柱止推轴承等。
参见图1,在本发明的实施例中,电机7可以是轴向磁通电机或径向磁通电机。在一实施例中,电机7包括转子71和固定于支架4的定子72,并且电机7的转子71通过驱动驱动件3旋转而驱动第一涡旋盘11旋转。电机7的转子71设置在定子72的朝向第一方向D1或第二方向D2的一侧。
参见图1、图2、图7至图14,在本发明的实施例中,驱动件3的凸缘部32与第一涡旋盘11的外壁111密封地连接,以形成涡旋压缩机100的吸入腔88,流体通过吸入腔88进入压缩腔。参见图7、图9至图11,驱动件3包括形成在驱动件3的凸缘部32中的至少一条流体通道6,流体通道6具有形成在驱动件3的凸缘部32的朝向 第一方向D1的表面321中的流体入口61,以及形成在驱动件3的凸缘部32的朝向第二方向D2的表面320中的流体出口62,使得流体通过流体通道6的流体入口61,进入流体通道6,并从流体出口62进入吸入腔88。驱动件3可以包括两条流体通道6,两条流体通道6在驱动件3的径向方向上彼此相对。驱动件3的流体通道6可以具有圆形的、椭圆形或曲面形的横截面。根据本发明的一个示例,如图7、图9至图10所示,流体通道6相对于驱动件3的轴向方向倾斜延伸,流体通道6的流体出口62比流体入口61远离驱动件3的旋转轴线91。例如,假设第一平面通过流体通道6的轴线93的在流体入口61处的点和驱动件3的旋转轴线91,而第二平面与第一平面垂直并且与驱动件3的旋转轴线91平行,则流体通道6的轴线93与第一平面的夹角为0至60度,并且流体通道6的轴线93与第二平面的夹角为5至60度。根据本发明的另一个实例,如图11所示,流体通道6沿驱动件3的轴向方向延伸,即流体通道6的轴线93与驱动件3的旋转轴线91平行,流体通道6的轴线93与第一平面的夹角为0度,并且流体通道6的轴线93与第二平面的夹角也为0度。
参见图1、图2,在本发明的实施例中,外壁111具有在与流体通道6的流体出口62的位置对应的位置处的凹部1110,凹部1110形成在外壁111的朝向第一涡旋盘11的旋转轴线的表面1111上,并且凹部1110的朝向第一涡旋盘11的旋转轴线的壁面11101在朝向第一涡旋盘11的第一端板112的方向上逐渐朝向第一涡旋盘11的旋转轴线倾斜或弯曲。
参见图1,在本发明的实施例中,涡旋压缩机100还包括:上油螺栓81,上油螺栓81容纳于固定轴5的内孔50中,且一端位于壳体101的底部的油池中,另一端与第二涡旋盘12的毂部121连接。涡旋压缩机100也可以包括其它任何合适的泵。
参见图7、9、10、图11、图13、图19、图20,在本发明的实施例中,驱动件3还包括:形成在凸缘部32中的偏心环孔326,偏心环341(参见图13、图19、图20)设置在偏心环孔326中,联接销342插入第二涡旋盘12的第二端板123中形成的联接销孔126(图 3)以及偏心环341的孔3410中。驱动件3可以具有三个偏心环孔326。
参见图21至图28,在本发明的实施例中,涡旋压缩机100还包括从第二涡旋盘12的第二端板123的表面1230和驱动件3的凸缘部32的表面320中的一个表面突起的环状凸起73,环状凸起73具有环状的楔形凸起部分731,楔形凸起部分731在径向方向上的横截面具有楔形形状,楔形凸起部分731具有轴向朝外的楔形凸起表面7310。第二端板123的表面1230或凸缘部32的表面320上设置环状凸起可以改善止推面的磨损。在径向方向上的横截面中,楔形凸起表面7310在径向方向上的第一楔形凸起点P1与表面320(图21至图24所示的实施例)或表面1230(图25至图28所示的实施例)的轴向距离最大,并且在径向方向上的第二楔形凸起点P2与表面320(图21至图24所示的实施例)或表面1230(图25至图28所示的实施例)的轴向距离为零,至少楔形凸起表面7310的与第一楔形凸起点P1对应的部分在驱动件3的凸缘部32的表面320的用于支撑第二涡旋盘12的第二端板123的表面1230的环形区域中。例如,至少楔形凸起表面7310的与第一楔形凸起点P1对应的部分在第二涡旋盘12的第二端板123与驱动件3的凸缘部32的环形接触区域中。例如,楔形凸起表面7310的与第一楔形凸起点P1对应的部分以及楔形凸起表面7310的其余部分的大部分或全部位于驱动件3的凸缘部32的表面320的用于支撑第二涡旋盘12的第二端板123的表面1230的环形区域中。例如,楔形凸起表面7310的与第一楔形凸起点P1对应的部分以及楔形凸起表面7310的其余部分的大部分或全部位于第二涡旋盘12的第二端板123与驱动件3的凸缘部32的环形接触区域中。根据本发明的示例,在第一楔形凸起点P1,楔形凸起表面7310与表面320(图21至图24所示的实施例)或表面1230(图25至图28所示的实施例)的轴向距离在0.1微米至1毫米的范围内。根据本发明的进一步的示例,在第一楔形凸起点P1,楔形凸起表面7310与表面320(图21至图24所示的实施例)或表面1230(图25至图28所示的实施例)的轴向距离在20微米至40微米的范围内。第一楔形凸起点 P1可以在第二楔形凸起点P2的径向外侧,或者第一楔形凸起点P1可以在第二楔形凸起点P2的径向内侧。环状凸起73可以在驱动件3的凸缘部32的表面320上(图21至图24所示的实施例),或者环状凸起73可以在第二涡旋盘12的第二端板123的表面1230上(图25至图28所示的实施例)。
参见图21至图28,在本发明的实施例中,环状凸起73还具有环状的过渡凸起部分732,过渡凸起部分732具有轴向朝外的过渡凸起表面7320,在径向方向上的横截面中,过渡凸起表面7320从楔形凸起表面7310的与第一楔形凸起点P1对应的点以远离第二楔形凸起点P2并且朝向表面320(图21至图24所示的实施例)或表面1230(图25至图28所示的实施例)的方式延伸到表面320(图21至图24所示的实施例)或表面1230(图25至图28所示的实施例)。过渡凸起部分732在径向方向上的横截面可以具有楔形形状。过渡凸起部分732在径向方向上的尺寸可以小于楔形凸起部分731在径向方向上的尺寸。
当压缩机100运行时,参见图1,电机7通过驱动件3驱动第一涡旋盘11旋转,且第一涡旋盘11驱动第二涡旋盘12旋转。制冷剂通过入口82进入壳体101的第一壳体1011和第二壳体1012形成的密封空间,一部分制冷剂向上流动,绕过筒形挡板83的上端,然后向下流动,通过流体通道6的流体入口61进入流体通道6(参见图7、图9至图11),另一部分制冷剂向下流动,在筒形挡板83的下端的下方,进入电机7,以冷却电机,然后向上流动,通过流体通道6的流体入口61进入流体通道6(参见图7、图9至图11)。全部制冷剂经由吸入腔88,进入第二涡旋卷124和第一涡旋卷113形成的压缩腔,压缩后的制冷剂通过出口84排出。参见图7、图9至图10,如果流体通道6相对于驱动件3的轴向方向倾斜延伸,则通过流体通道6的流体入口61进入流体通道6的制冷剂由于离心力而经受一级压缩,然后经由吸入腔88,进入第二涡旋卷124和第一涡旋卷113形成的压缩腔而经受二级压缩。通过两级压缩,可以提高压缩机的压缩功率。同时,第二涡旋盘12带动设置在固定轴5的轴向内孔50中 的上油螺栓81旋转,将容纳在壳体101的第一壳体1011底部的油槽中的润滑油抽吸到固定轴5的轴向内孔50中,第一部分润滑油,通过固定轴5上的横向通孔85(例如径向通孔)流到第二轴承52以及驱动件3的毂部31的第二端部312和支架4的凸缘部42(参见图1)之间。第二部分润滑油进入第二涡旋盘12的毂部121与第三轴承53之间的间隙以对第三轴承53进行润滑,进入第二涡旋盘12的毂部121与第三轴承53之间的间隙的一部分润滑油进入第二涡旋盘12的第二端板123与驱动件3的凸缘部32之间的间隙,最后通过流体通道6进入第一涡旋盘11与第二涡旋盘12形成的空间,以对第一涡旋盘11与第二涡旋盘12进行润滑。进入第二涡旋盘12的毂部121与第三轴承53之间的间隙的另一部分润滑油绕过第三轴承53的上端部分进入第一轴承51,并且部分进入形成在固定轴5中的回油通道862,然后通过连通孔89进入形成在固定轴5中的回油通道861,最后回到在壳体101的第一壳体1011底部的油槽中。进入第一轴承51的润滑油通过横向通孔87(例如径向通孔)进入回油通道862,然后通过连通孔89进入回油通道861,最后回到在壳体101的第一壳体1011底部的油槽中。
根据本发明的实施例的涡旋压缩机,由于第一涡旋盘和第二涡旋盘各自围绕自己的旋转轴共同旋转,提高了压缩效率。另外,可以采用轴向磁通电动机,可以使电机轴向尺寸更小,由此使压缩机结构更紧凑。此外,由于驱动件的结构设计,可以由驱动件驱动第一涡旋盘旋转,而第一涡旋盘驱动第二涡旋盘旋转,从而可以进一步地将所有轴承都设置在压缩机的同一侧,比如第二涡旋盘的在第一方向D1上的同一侧,从而可以进一步使压缩机结构紧凑。另外,第一或第二油槽的设计,可以提高压缩机内部零件(尤其是轴承)的润滑功能,进一步保证压缩机的性能。
尽管描述了上述实施例,但是上述实施例中的一些特征可以进行组合形成新的实施例。

Claims (21)

  1. 一种涡旋压缩机,包括:
    第一涡旋盘(11),该第一涡旋盘包括第一端板和从第一端板沿第一方向(D1)伸出的第一涡旋卷;
    第二涡旋盘(12),该第二涡旋盘包括第二端板和从第二端板沿与第一方向相反的第二方向(D2)伸出的第二涡旋卷,第二涡旋卷和第一涡旋卷配合以形成用于压缩介质的压缩腔;
    支架(4),所述支架位于所述第二涡旋盘的远离第一涡旋盘的一侧;
    电机;以及
    驱动件(3),所述驱动件可转动地支撑于所述支架并且位于第二涡旋盘的远离第一涡旋盘的一侧,所述电机通过所述驱动件驱动第一涡旋盘旋转,且第一涡旋盘驱动第二涡旋盘旋转,
    所述驱动件(3)包括:具有内孔的毂部(31),所述毂部包括相对的第一端部和第二端部;以及从所述驱动件的所述毂部的第一端部径向向外伸出的凸缘部(32),所述第二涡旋盘(12)的第二端板被可转动地支撑在所述驱动件的凸缘部(32)上。
  2. 根据权利要求1所述的涡旋压缩机,其中:
    所述第二涡旋盘(12)的第二端板的表面在所述第二涡旋盘的第二端板与所述驱动件的凸缘部的环形接触区域上具有第一油槽(55),所述第一油槽从环形接触区域的径向内侧朝向环形接触区域的径向外侧横向延伸而横穿所述环形接触区域的一部分,所述第一油槽(55)在径向上与环形接触区域的径向外边缘间隔开。
  3. 根据权利要求2所述的涡旋压缩机,其中:
    所述第一油槽(55)沿径向方向延伸。
  4. 根据权利要求2所述的涡旋压缩机,其中:
    所述第二涡旋盘(12)的第二端板的所述表面上形成有环形凹部(122),所述环形凹部在所述环形接触区域的径向内侧,所述第一油槽(55)从所述环形凹部的径向外边缘朝向环形接触区域的径向 外侧横向延伸,并与所述环形凹部连通。
  5. 根据权利要求1所述的涡旋压缩机,还包括:
    设置在所述第二涡旋盘(12)的第二端板与所述驱动件的凸缘部(32)之间的第一止推轴承(55’)。
  6. 根据权利要求1所述的涡旋压缩机,还包括:
    从所述第二涡旋盘(12)的第二端板的表面和所述驱动件的凸缘部(32)的表面中的一个表面突起的环状凸起(73),所述环状凸起具有环状的楔形凸起部分(731),所述楔形凸起部分在径向方向上的横截面具有楔形形状,所述楔形凸起部分具有轴向朝外的楔形凸起表面,在径向方向上的横截面中,所述楔形凸起表面在径向方向上的第一楔形凸起点与所述一个表面的轴向距离最大,并且在径向方向上的第二楔形凸起点与所述一个表面的轴向距离为零,至少所述楔形凸起表面的与所述第一楔形凸起点对应的部分在所述驱动件的所述凸缘部的所述表面的用于支撑所述第二涡旋盘的第二端板的所述表面的环形区域中。
  7. 根据权利要求6所述的涡旋压缩机,其中:
    至少所述楔形凸起表面的与所述第一楔形凸起点对应的所述部分在所述第二涡旋盘的第二端板与所述驱动件的凸缘部的环形接触区域中。
  8. 根据权利要求6所述的涡旋压缩机,其中:
    在第一楔形凸起点,所述楔形凸起表面与所述一个表面的轴向距离在0.1微米至1毫米的范围内。
  9. 根据权利要求6所述的涡旋压缩机,其中:
    在第一楔形凸起点,所述楔形凸起表面与所述一个表面的轴向距离在20微米至40微米的范围内。
  10. 根据权利要求6所述的涡旋压缩机,其中:
    所述第一楔形凸起点在第二楔形凸起点的径向外侧,或者
    所述第一楔形凸起点在第二楔形凸起点的径向内侧。
  11. 根据权利要求6所述的涡旋压缩机,其中:
    所述环状凸起在所述驱动件的凸缘部(32)的表面上,或者
    所述环状凸起在所述第二涡旋盘(12)的第二端板的表面上。
  12. 根据权利要求6所述的涡旋压缩机,其中:
    所述环状凸起还具有环状的过渡凸起部分,所述过渡凸起部分具有轴向朝外的过渡凸起表面,在径向方向上的横截面中,所述过渡凸起表面从所述楔形凸起表面的与所述第一楔形凸起点对应的点以远离所述第二楔形凸起点并朝向所述一个表面的方式延伸到所述一个表面。
  13. 根据权利要求12所述的涡旋压缩机,其中:
    所述过渡凸起部分在径向方向上的横截面具有楔形形状。
  14. 根据权利要求12所述的涡旋压缩机,其中:
    所述过渡凸起部分在径向方向上的尺寸小于所述楔形凸起部分在径向方向上的尺寸。
  15. 根据权利要求1所述的涡旋压缩机,还包括:
    固定轴(5),所述固定轴固定于所述支架,
    通过所述驱动件的所述毂部可转动地安装在所述固定轴上使所述驱动件可转动地支撑于所述支架。
  16. 根据权利要求1或15所述的涡旋压缩机,其中:
    所述支架(4)包括:筒状部(41),以及从所述支架的所述筒状部径向伸出的凸缘部(42),所述驱动件的毂部(31)的第二端部支撑在所述支架的所述凸缘部上。
  17. 根据权利要求16所述的涡旋压缩机,其中:
    所述驱动件(3)的毂部(31)的第二端部的端面和所述支架的所述凸缘部(42)的表面中的一个在所述驱动件的毂部的第二端部和所述支架的所述凸缘部的环形接触区域上具有第二油槽(56),所述第二油槽从环形接触区域的径向内侧朝向环形接触区域的径向外侧横向延伸而横穿所述环形接触区域的一部分,所述第二油槽在径向上与环形接触区域的径向外边缘间隔开。
  18. 根据权利要求17所述的涡旋压缩机,其中:
    所述第二油槽沿径向方向延伸。
  19. 根据权利要求17所述的涡旋压缩机,其中:
    所述第二油槽(56)形成在所述驱动件(3)的毂部的第二端部的所述端面上。
  20. 根据权利要求19所述的涡旋压缩机,其中:
    所述第二油槽(56)与所述驱动件(3)的毂部(31)的第二端部的所述端面的外周边间隔开。
  21. 根据权利要求16所述的涡旋压缩机,还包括:
    设置在所述驱动件(3)的毂部(31)的第二端部与所述支架的所述凸缘部(42)之间的第二止推轴承(57)。
PCT/CN2022/143437 2021-12-31 2022-12-29 涡旋压缩机 WO2023125820A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202123449503.1 2021-12-31
CN202123449503.1U CN217327669U (zh) 2021-12-31 2021-12-31 涡旋压缩机

Publications (1)

Publication Number Publication Date
WO2023125820A1 true WO2023125820A1 (zh) 2023-07-06

Family

ID=82990806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143437 WO2023125820A1 (zh) 2021-12-31 2022-12-29 涡旋压缩机

Country Status (2)

Country Link
CN (1) CN217327669U (zh)
WO (1) WO2023125820A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217327669U (zh) * 2021-12-31 2022-08-30 丹佛斯(天津)有限公司 涡旋压缩机
WO2023125811A1 (zh) * 2021-12-31 2023-07-06 丹佛斯(天津)有限公司 涡旋压缩机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090876A (en) * 1989-02-28 1992-02-25 Seiko Epson Corporation Scroll type fluid handling machine
US20040126261A1 (en) * 2002-10-15 2004-07-01 Bitzer Kuehlmaschinenbau Gmbh Compressor
JP2014211095A (ja) * 2013-04-17 2014-11-13 三浦工業株式会社 スクロール流体機械
CN108397382A (zh) * 2017-02-06 2018-08-14 艾默生环境优化技术有限公司 共旋转式压缩机
CN110360101A (zh) * 2018-04-11 2019-10-22 艾默生环境优化技术有限公司 具有衬套的压缩机
CN211422902U (zh) * 2017-03-06 2020-09-04 Lg电子株式会社 互相旋转型涡旋压缩机
CN111684159A (zh) * 2018-02-05 2020-09-18 三菱重工业株式会社 双旋转涡旋型压缩机及其组装方法
CN217327669U (zh) * 2021-12-31 2022-08-30 丹佛斯(天津)有限公司 涡旋压缩机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090876A (en) * 1989-02-28 1992-02-25 Seiko Epson Corporation Scroll type fluid handling machine
US20040126261A1 (en) * 2002-10-15 2004-07-01 Bitzer Kuehlmaschinenbau Gmbh Compressor
JP2014211095A (ja) * 2013-04-17 2014-11-13 三浦工業株式会社 スクロール流体機械
CN108397382A (zh) * 2017-02-06 2018-08-14 艾默生环境优化技术有限公司 共旋转式压缩机
CN211422902U (zh) * 2017-03-06 2020-09-04 Lg电子株式会社 互相旋转型涡旋压缩机
CN111684159A (zh) * 2018-02-05 2020-09-18 三菱重工业株式会社 双旋转涡旋型压缩机及其组装方法
CN110360101A (zh) * 2018-04-11 2019-10-22 艾默生环境优化技术有限公司 具有衬套的压缩机
CN217327669U (zh) * 2021-12-31 2022-08-30 丹佛斯(天津)有限公司 涡旋压缩机

Also Published As

Publication number Publication date
CN217327669U (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2023125820A1 (zh) 涡旋压缩机
US7070401B2 (en) Scroll machine with stepped sleeve guide
USRE33236E (en) Bearing device of sealed type scroll compressor
CN217582486U (zh) 涡旋压缩机
CN217682264U (zh) 用于涡旋压缩机的驱动件以及涡旋压缩机
KR101795506B1 (ko) 밀폐형 압축기
CN217898551U (zh) 用于涡旋压缩机的套筒以及涡旋压缩机
JP6903826B2 (ja) スクロール圧縮機における動的半径方向コンプライアンス
CN212003608U (zh) 一种小流量高扬程多级离心泵
WO2023125783A1 (zh) 涡旋压缩机
KR20010051341A (ko) 스크롤기계용 원뿔형 허브 베어링
WO2023125816A1 (zh) 用于涡旋压缩机的驱动件以及涡旋压缩机
CN218493796U (zh) 用于涡旋压缩机的驱动件以及涡旋压缩机
WO2023125782A1 (zh) 涡旋压缩机和用于涡旋压缩机的套筒
US20110123324A1 (en) Scroll fluid machine
KR20190139058A (ko) 스크롤 압축기
CN112412792B (zh) 压缩机及具有该压缩机的冷冻循环装置
WO2024022504A1 (zh) 用于涡旋压缩机的驱动件以及涡旋压缩机
CN113530827A (zh) 涡旋压缩机
WO2020143350A1 (zh) 用于涡旋压缩机的止推板和涡旋压缩机
CN116412129A (zh) 用于涡旋压缩机的驱动件以及涡旋压缩机
CN116412130A (zh) 涡旋压缩机
WO2023125780A1 (zh) 涡旋压缩机
WO2023125791A1 (zh) 涡旋压缩机
CN116412133A (zh) 涡旋压缩机和用于涡旋压缩机的套筒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915069

Country of ref document: EP

Kind code of ref document: A1