WO2020143350A1 - 用于涡旋压缩机的止推板和涡旋压缩机 - Google Patents

用于涡旋压缩机的止推板和涡旋压缩机 Download PDF

Info

Publication number
WO2020143350A1
WO2020143350A1 PCT/CN2019/121487 CN2019121487W WO2020143350A1 WO 2020143350 A1 WO2020143350 A1 WO 2020143350A1 CN 2019121487 W CN2019121487 W CN 2019121487W WO 2020143350 A1 WO2020143350 A1 WO 2020143350A1
Authority
WO
WIPO (PCT)
Prior art keywords
thrust plate
thrust
oil
oil supply
hole
Prior art date
Application number
PCT/CN2019/121487
Other languages
English (en)
French (fr)
Inventor
张跃
缪仲威
范忆文
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910019904.1A external-priority patent/CN111425402A/zh
Priority claimed from CN201920037058.1U external-priority patent/CN209340147U/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2020143350A1 publication Critical patent/WO2020143350A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present disclosure relates to a thrust plate for a scroll compressor and a scroll compressor including the thrust plate.
  • the compression of the fluid is achieved by the relative movement between the movable scroll member and the fixed scroll member.
  • a thrust plate is provided on the end plate side of the movable scroll member.
  • the contact surface (thrust surface) between the end plate of the movable scroll member and the thrust plate needs to be sufficiently lubricated to reduce friction and wear between the two.
  • most of the lubrication structures used between the end plate of the movable scroll component and the thrust surface of the thrust plate have the defects of complicated structure, insufficient lubrication or serious wear of the thrust surface.
  • the inventor of the present disclosure believes that there is a need for a more efficient oil supply for scroll compressors without damaging the thrust surface.
  • One or several embodiments of the present disclosure may provide a thrust plate capable of supplying lubricating oil to the thrust surface more efficiently without damaging the thrust surface, and a scroll compressor including the thrust plate.
  • a thrust plate for a scroll compressor including a thrust surface located on the first face of the thrust plate; An annular oil groove on a second surface opposite to the first surface; a plurality of oil supply through holes extending from the bottom of the annular oil groove through the thrust plate and reaching the thrust surface. Owing to the use of multiple oil supply through holes and the arrangement of the annular oil groove on the opposite side of the thrust surface, lubricating oil can be supplied more efficiently without damaging the thrust surface.
  • the thrust plate further includes a plurality of stop portions provided in the annular oil groove, the plurality of stop portions space the annular oil groove into a plurality of oil storage areas and each oil storage area includes One or more oil supply through holes to further force circumferentially rotating lubricating oil into the oil holes.
  • the stopper portion includes an upper surface that is perpendicular to the inner side surface and the outer side surface of the annular oil groove and is lower than the second surface of the thrust surface or flush with the second surface.
  • the oil storage area is composed of an inner side surface of the annular oil groove, an outer side surface of the annular oil groove, a bottom surface of the annular oil groove, and a stop surface of the stop portion facing the inner side of the oil storage area And an area enclosed by the guide surface between the upper surface of the adjacent stopper and the bottom surface.
  • the bottom surface is provided at the deepest part of the oil storage area and the oil supply through hole is provided at the bottom surface.
  • the stop surface extends from the upper surface of the stop portion in a direction perpendicular to the upper surface toward the bottom surface, thereby facilitating blocking lubricating oil entering the annular oil groove and forcing lubricating oil into the oil supply through hole .
  • the stop surface is an arc surface.
  • the guide surface smoothly transitions from the upper surface of the adjacent stop to the bottom surface, thereby facilitating the guide of the lubricating oil into the oil supply through hole.
  • the guide surface is an inclined surface or an arc surface.
  • the oil outlet of the oil supply through hole is located near the radial inner side of the thrust surface, so that the lubrication of the surface of the thrust surface near the radial inner side can be strengthened specifically to avoid it Wear.
  • the oil outlet of the oil supply through hole is located near the radial outer side of the thrust surface, so that the lubrication of the surface near the radial inner side of the thrust surface can be strengthened specifically to avoid it Wear.
  • each oil storage area includes two oil supply through holes, and the oil outlets of the oil supply through holes are respectively located near the radial inner side and the radial outer side of the thrust surface, so that the The lubrication of the surface of the thrust surface near the inside and outside and radially outside to avoid its wear.
  • the oil supply through-hole is inclined in the circumferential direction from the second surface of the thrust plate toward the first surface of the thrust plate, so that the lubricating oil accumulated in the annular oil groove can be rotated under dynamic pressure It easily flows to the thrust surface under the action.
  • the shape of the oil supply through hole is cylindrical or conical.
  • One or several embodiments of the present disclosure provide a scroll compressor including the above thrust plate.
  • the scroll compressor further includes a housing, a fixed scroll component and a movable scroll component disposed in the housing to compress refrigerant, and a bearing sleeve fixedly disposed on the housing, provided by the The bearing sleeve rotatably supports and drives the drive shaft of the movable scroll member, a counterweight fixed on the drive shaft and rotating with the drive shaft, wherein the thrust plate is fixed to the bearing sleeve and is The thrust surface abuts the end plate of the movable scroll member, the counterweight is located in a space formed between the thrust plate and the bearing sleeve, and the annular oil groove of the thrust plate faces the matching weight.
  • FIG. 1 is a perspective cross-sectional view of a movable scroll component according to a first comparative example of the present disclosure
  • FIG. 2 is a perspective cross-sectional view of a movable scroll member according to a second comparative example of the present disclosure
  • FIG. 3 is a cross-sectional view of the scroll compressor according to the first embodiment of the present disclosure
  • FIG. 4A is a front view of the thrust plate according to the first embodiment of the present disclosure
  • FIG. 4B is a rear view of the thrust plate
  • FIG. 4C is a perspective view of the thrust plate
  • FIG. 5A is a perspective view of a thrust plate according to a second embodiment of the present disclosure, where the oil outlet of the oil supply through-hole is located near the radial inner side of the thrust surface;
  • FIG. 5B is a cross-sectional view of FIG. 5A taken from the fuel supply passage;
  • FIG. 6 is a perspective view of a thrust plate according to a third embodiment of the present disclosure, in which the oil outlet hole of the oil supply through-hole is located near the radial outer side of the thrust surface;
  • FIG. 7A is a perspective view of a thrust plate according to a fourth embodiment of the present disclosure, in which the oil outlet of the oil supply through-hole is located near the radial inner side and near the radial outer side of the thrust surface;
  • FIG. 7B is a cross-sectional view of FIG. 7A taken from the oil supply through hole.
  • FIG 8 is an enlarged view of the vicinity of the thrust plate of the scroll compressor according to the first embodiment of the present disclosure.
  • FIG. 1 shows a first comparative example with respect to an embodiment of the present disclosure.
  • the first comparative example shown in FIG. 1 discloses a movable scroll component 1 for a scroll compressor.
  • the movable scroll component 1 includes an end plate 11 on which oil inlet holes 13 and horizontal The hole 15, the oil outlet hole 16 and the thrust surface 17 of the movable scroll member 1 are provided with an annular oil groove 18.
  • Lubricating oil enters from the oil inlet hole 13 and flows along the horizontal hole 15, then flows from the oil outlet hole 16 into the annular oil groove 18, and finally overflows from the annular oil groove 18 to lubricate the end plate 11 of the movable scroll component 1
  • the thrust surface 17 and the thrust surface (not shown) of the thrust plate that supports the thrust surface 17 of the end plate 11 when the scroll compressor operates.
  • the annular oil groove is provided on the thrust surface of the movable scroll component, the two edges of the annular oil groove are likely to cause stress concentration, and edge defects such as burrs may damage the movable scroll component
  • the thrust surface of the thrust plate is in close contact with the thrust surface of the thrust plate.
  • the arrangement of the oil path is long and indirect, which results in less oil supply, insufficient thrust surface lubrication, and severe wear.
  • FIG. 2 shows a second comparative example improved on the basis of the first comparative example.
  • an oil supply passage is added to supply double the lubricating oil to the annular oil groove 16.
  • this comparative example still has the defects that the edges of the annular oil groove easily damage the thrust surface of the thrust plate and the oil supply passage is long, and the oil supply is insufficient.
  • the annular oil groove and the oil supply passage are changed, that is, the annular oil groove is provided on the thrust surface of the thrust plate and the oil supply passage is provided in the middle of the thrust plate.
  • the comparative example also has similar defects as described above.
  • the inventor of the present disclosure believes that there is a need for a more efficient oil supply for scroll compressors without damaging the thrust surface.
  • the scroll compressor 10 includes a housing 12 that is generally cylindrical.
  • An intake joint (not shown) is provided on the casing 12 for sucking low-pressure gas refrigerant.
  • An end cover 14 is fixedly connected to one end of the casing 12.
  • the end cover 14 is equipped with a discharge joint for discharging the compressed refrigerant.
  • a partition 16 extending laterally with respect to the housing 12 is also provided between the housing 12 and the end cover 14 so as to divide the internal space of the compressor into a high-pressure side and a low-pressure side.
  • the space between the end cover 14 and the partition 16 constitutes a high-pressure side space
  • the space between the partition 16 and the housing 12 constitutes a low-pressure side space.
  • the casing 12 houses a movable scroll member 20 and a fixed scroll member 30 as a compression mechanism, and a motor 40 and a drive shaft 50 as a driving mechanism.
  • the compression mechanism can be driven by the driving mechanism and supported by the bearing sleeve 70.
  • the bearing sleeve 70 may be fixed to the housing 12 at multiple points in any desired manner, such as riveting.
  • the movable scroll member 20 includes an end plate 22, a scroll 24 is provided on one surface (the upper surface in FIG. 3) of the end plate 22, and a cylinder is provided on the other surface (the lower surface in FIG. 3). ⁇ 26 ⁇ Shaped hub 26.
  • the fixed scroll member 30 includes an end plate 32 and a scroll wrap 34. The orbiting scroll 24 of the orbiting scroll member 20 and the orbiting scroll 34 of the fixed scroll member 30 mesh and form a gradually decreasing volume from the outside to the center between the orbiting scroll member 20 and the fixed scroll member 30 when they move relatively. The fluid chamber thereby compresses the refrigerant in the fluid chamber.
  • the motor 40 includes a stator 42 and a rotor 44.
  • the stator 42 is fixedly connected to the housing 12.
  • the rotor 44 is fixedly connected to the drive shaft 50 and rotates in the stator 42.
  • the first end (upper end in FIG. 3) of the drive shaft 50 is provided with an eccentric crank pin 52 and a counterweight 62.
  • the counterweight 62 is fixedly provided on the drive shaft 50, and therefore can integrally rotate with the drive shaft 50 when the drive shaft 50 rotates.
  • the upper part of the drive shaft 50 is rotatably supported by the bearing in the bearing sleeve 70.
  • the counterweight 62 is located in the bearing sleeve 70.
  • the second end (lower end in FIG. 3) of the drive shaft 50 may include a concentric hole 54.
  • the concentric hole 54 leads to the eccentric crank pin 52 at the first end of the drive shaft 50 via the eccentric hole 56.
  • the eccentric crank pin 52 of the drive shaft 50 is inserted into the hub portion 26 of the movable scroll member 20 via a bush 58 to rotationally drive the movable scroll member 20.
  • the fluid chamber between the movable scroll member 20 and the fixed scroll member 30 moves from a radially outer position toward the movable scroll member 20 and the fixed scroll member 30.
  • the center position moves and is compressed.
  • the compressed fluid is discharged through the exhaust port 36 provided at the center of the end plate 32 of the fixed scroll member 30.
  • a thrust plate 100 is provided between the movable scroll member 20 and the bearing sleeve 70 so that the weight 62 is located between the thrust plate 100 and the bearing sleeve 70.
  • the thrust plate 100 may be fixed on the bearing sleeve 70.
  • the thrust plate 100 has a thrust surface 110 as a first surface and a second surface 130 opposite to the first surface, wherein the thrust surface 110 of the thrust plate 100 and the thrust plate 22 of the movable scroll member 20 are thrust The surface 28 contacts, thereby preventing the axial movement of the movable scroll member 20.
  • the end of the concentric hole 54 is submerged in the lubricating oil at the bottom of the compressor housing or is otherwise supplied with lubricating oil.
  • a lubricating oil supply device such as an oil pump or an oil fork, may be provided in or near the concentric hole 54.
  • one end of the concentric hole 54 is supplied with lubricating oil by the lubricating oil supply device, and the lubricating oil entering the concentric hole 54 is pumped or thrown to the eccentric hole by centrifugal force during the rotation of the drive shaft 50 56 and flows upward along the eccentric hole 56 all the way to the end of the eccentric crank pin 52, thereby lubricating the gap between the eccentric crank pin 52, the bush 58 and the hub 26 of the movable scroll member 20, and will be described below
  • the described lubricating oil passage provided in the thrust plate 100 is supplied to the thrust surface 28 and the thrust surface 110.
  • FIGS. 4A-4C are diagrams of a thrust plate according to a first embodiment of the present disclosure
  • FIG. 4A is a front view of the thrust plate
  • FIG. 4B is a rear view of the thrust plate
  • FIG. 4C is a perspective view of the thrust plate.
  • the thrust plate 100 includes a thrust surface 110 on the first surface of the thrust plate 100, an annular oil groove 102 on the second surface 130 of the thrust plate 100 opposite to the first surface, and A plurality of oil supply through holes 104 extending through the thrust plate 100 from the bottom of the annular oil groove 102 and reaching the thrust surface 110.
  • a plurality of oil supply through holes 104 extend from the lower portion of the annular oil groove 102 through the thrust plate 100 to the thrust surface 110, and a plurality of oil outlets 106 are formed on the thrust surface 110.
  • the plurality of oil outlets 106 may be arranged to be evenly distributed in the circumferential direction.
  • the oil supply through hole 104 is formed to be inclined in the circumferential direction from the back surface of the thrust plate 100 toward the front surface, so that the lubricating oil accumulated in the annular oil groove 102 can easily flow to the thrust under the action of the rotational dynamic pressure Surface 110.
  • the shape of the oil supply passage 104 may be cylindrical.
  • the shape of the oil supply passage 104 may also be conical, and the end with the smaller diameter is the oil outlet 106, so that the lubricating oil flows to the thrust surface 110 more easily along the tapered shape.
  • the annular oil groove 102 is located on the back of the thrust plate 100, and a plurality of stoppers 120 provided in the annular oil groove 102 space the annular oil groove 102 into a plurality of oil storage areas 108 and each oil storage area 108 includes One oil supply through hole 104.
  • the oil storage area 108 may further include a plurality of oil supply through holes 104 so that the lubricating oil of each oil storage area 108 flows more to the thrust surface 110.
  • the stopper 120 includes an upper surface 1201 that is perpendicular to the inner side 1021 and the outer side 1022 of the annular oil groove 102 and lower than the upper edge of the inner side 1021 and the outer side 1022 of the annular oil groove 102.
  • the oil storage area 108 is an area surrounded by the inner side surface 1021 of the annular oil groove 102, the outer side surface 1022 of the annular oil groove 102, the bottom surface 1081, the stopper portion 1202 facing the oil storage area, and the guide surface 1083 of the oil storage area .
  • the guide surface 1083 transitions smoothly and obliquely from the upper surface 1201 of the adjacent stopper 120 to the bottom surface 1081 located near the oil supply through hole, thereby facilitating the introduction of lubricating oil into the oil supply through hole 104.
  • the stop surface 1082 extends from the upper surface 1201 of the stop portion 120 toward the bottom surface 1081 in a direction perpendicular to the upper surface 1201, thereby facilitating blocking of the lubricant oil entering the annular oil groove 102 to force the lubricant oil into the oil supply through hole 104.
  • the stop surface 1082 is a circular arc surface partially surrounding the oil supply through hole.
  • the guide surface 1083 may be an inclined surface or an arc surface.
  • a chamfer or a rounded transition is used between the inner side 1021, the outer side 1022 of the annular oil groove 102, and the stop surface 1082 and the bottom surface 1081, and the chamfer or the chamfer is used between the upper surface of the stop 120 and the guide surface 1083 Round the transition.
  • the oil storage area 108 may be formed by milling a portion of the material from the back of the formed thrust plate using a milling tool.
  • the oil storage area 108 may also be directly formed on the thrust plate 100 during the forming process of the thrust plate 100.
  • the oil outlet 106 of the oil supply through-hole 104 may be provided near the radial inner side of the thrust surface 110 so that it can be targeted
  • the lubrication of the surface of the thrust surface 110 near the radial inner side is strengthened to avoid the wear of the surface of the thrust surface 110 near the radial inner side.
  • FIG. 5A and 5B the oil outlet 106 of the oil supply through-hole 104 may be provided near the radial inner side of the thrust surface 110 so that it can be targeted
  • the lubrication of the surface of the thrust surface 110 near the radial inner side is strengthened to avoid the wear of the surface of the thrust surface 110 near the radial inner side.
  • the oil outlet 106 of the oil supply through-hole 104 may be provided near the radial outer side of the thrust surface 110, so that the The lubrication of the surface of the thrust surface 110 near the radial outer side avoids the wear of the surface of the thrust surface 110 near the radial outer side.
  • the oil outlet 106 of the oil supply through-hole 104 may also be provided at the radial inner side of the thrust surface 110 and close to the radial direction At the outer side, it is possible to simultaneously enhance the lubrication of the surface of the thrust surface 110 near the radial inside and near the radial outside.
  • two oil supply through holes may branch from an opening at the bottom of the oil supply area into two channels, respectively leading to two oil discharge holes; or may be in the back annular oil groove of the thrust plate
  • a plurality of oil supply through holes that are not intersected are provided in an oil storage area.
  • the plurality of oil outlets 106 can also be set at positions where the user wants to enhance lubrication according to the failure condition, wear position and the position where the user intends to enhance lubrication.
  • the lubricating oil from the eccentric hole 56 of the drive shaft 50 first reaches the end of the eccentric crank pin 52 and then passes between the eccentric crank pin 52, the bush 58 and the hub 26 of the movable scroll member 20.
  • the gap enters the space S between the bearing sleeve 70 and the thrust plate 100 and accumulates in the space S.
  • the weight 62 is fixedly disposed at one end of the drive shaft 50 and is located between the thrust plate 100 and the bearing sleeve 70, that is, in the space S.
  • the counterweight 62 fixed at one end of the drive shaft also rotates.
  • the annular oil groove 102 on the back faces the counterweight 62, so when the counterweight 62 rotates, the lubricating oil accumulated in the space S, especially the bottom of the space S, is stirred by the counterweight 62 and The centrifugal force splashes and accumulates in a plurality of oil storage areas 108 (shown in FIG. 4C) spaced apart by the stopper 120 (shown in FIG. 4C) in the annular oil groove 102 on the back of the thrust plate 100 . Since the bottom surface of the oil storage area is provided with an inclined guide surface, the lubricating oil flows from one end of the oil storage area along the guide surface and collects at the deeper end of the oil storage area 108 where the oil supply through hole is provided.
  • the stopper 120 blocks, and under the action of the rotational dynamic pressure, it continuously accumulates upward in the oil storage area 108, and is forced to pass through the plurality of oil supply through holes 104 (as shown in FIG. 4C) while rotating in the circumferential direction.
  • the back of the thrust plate 100 flows onto the thrust surface 110 on the front of the thrust plate 100, and further flows out through a plurality of oil outlets 106 (as shown in FIG. 4C) on the thrust surface 110, thereby lubricating the entire thrust surface 110.
  • the movement route of the lubricating oil is schematically indicated by arrows.
  • the thrust plate of one or several embodiments of the present disclosure may have the following beneficial effects: (1) The centrifugal force of the counterweight and the rotational dynamic pressure of the lubricating oil are used, so the supply of lubricating oil is more simple and reliable, and will not Increase or decrease the load of the oil pump and other components; (2) Avoid damage to the thrust surface due to the annular oil groove provided on the thrust surface; (3) Use multiple oil supply holes to supply oil, so that the amount of oil supplied Larger, more uniform, and more efficient oil supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

一种用于涡旋压缩机(10)的止推板(100)和包括止推板的涡旋压缩机(10),其中止推板(100)包括位于止推板(100)的第一面的止推表面(110);位于止推板(100)的与第一面相反的第二面(130)的环形油槽(102);从环形油槽(102)的底部延伸穿过止推板(100)并且到达止推表面(110)的多个供油通孔(104)。该止推板能够更加高效供油且不损伤止推表面。

Description

用于涡旋压缩机的止推板和涡旋压缩机
本申请要求以下中国专利申请的优先权:于2019年1月9日提交中国专利局的申请号为201910019904.1、发明创造名称为“用于涡旋压缩机的止推板和涡旋压缩机”的中国专利申请;于2019年1月9日提交中国专利局的申请号为201920037058.1、发明创造名称为“用于涡旋压缩机的止推板和涡旋压缩机”的中国专利申请。这些专利申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及一种用于涡旋压缩机的止推板和包括该止推板的涡旋压缩机。
背景技术
在涡旋压缩机中,通过动涡旋部件和定涡旋部件之间的相对运动来实现流体的压缩。为了对动涡旋部件提供轴向支撑,在动涡旋部件的端板一侧设置有止推板。动涡旋部件的端板和止推板之间的接触表面(止推表面)之间需要充分润滑以减小二者之间的摩擦力和磨损。目前,在动涡旋部件的端板和止推板的止推表面之间采用的润滑结构,大都存在结构复杂、润滑不充分或止推表面磨损严重的缺陷。
因此,本公开的发明人认为需要一种用于涡旋压缩机的更加高效供油且不损伤止推表面的油路布置。
发明内容
本公开的一个或几个实施例的可提供一种能够向止推表面更加高效地供给润滑油并且不损伤止推表面的止推板以及包括该止推板的涡旋压缩机。
本公开的一个或几个实施例提供了一种用于涡旋压缩机的止推板,包括位于所述止推板的第一面的止推表面;位于所述止推板的与所述第一面相反的第二面的环形油槽;从所述环形油槽的底部延伸穿过所述止推板并且到达所述止推表面的多个供油通孔。由于采用多供油通孔和将环形油槽设置在止推表面的相反面的设置,能够更加高效地供给润滑油并且不损伤止推表面。
进一步地,所述止推板还包括设置在所述环形油槽中的多个止挡部,所述多个止挡部将所述环形油槽间隔成多个储油区域并且每个储油区域包括一个或多个供油通孔,从而进一步迫使周向旋转的润滑油进入油孔。
进一步地,所述止挡部包括上表面,所述上表面与所述环形油槽的内侧面、外侧面垂直并且低于所述止推表面的第二面或与所述第二面平齐。
进一步地,所述储油区域是由所述环形油槽的内侧面、所述环形油槽的外侧面、所述环形油槽的底面、所述止挡部的面向所述储油区域内侧的止挡面、以及位于相邻止挡部的上表面与所述底面之间的引导面围成的区域。
进一步地,所述底面设置于所述储油区域的最深处并且在所述底面处设置有所述供油通孔。
进一步地,所述止挡面从所述止挡部的上表面沿垂直于所述上表面的方向朝向所述底面延伸,从而便于阻挡进入环形油槽的润滑油,迫使润滑油进入供油通孔。
进一步地,所述止挡面是圆弧面。
进一步地,所述引导面从相邻止挡部的上表面平滑地过渡至所述底面,从而便于将润滑油引导至供油通孔中。
进一步地,所述引导面为斜面或圆弧面。
进一步地,所述供油通孔的出油口位于所述止推表面的靠近径向内侧处,从而可以有针对性地加强对止推表面的靠近径向内侧处的表面的润滑从而避免其磨损。
进一步地,所述供油通孔的出油口位于所述止推表面的靠近径向外侧处,从而可以有针对性地加强对止推表面的靠近径向内侧处的表面的润滑从而避免其磨损。
进一步地,每个储油区域包括两个供油通孔,所述供油通孔的出油口分别位于所述止推表面的靠近径向内侧处和径向外侧处,从而可以同时加强对止推表面的靠近内外侧处和径向外侧处的表面的润滑从而避免其磨损。
进一步地,所述供油通孔从所述止推板的第二面朝向所述止推板的第一面沿周向方向倾斜,使得聚集在环形油槽中的润滑油能够在旋转动压的作用下容 易地流到止推表面。
进一步地,所述供油通孔的形状为圆柱形或圆锥形。
本公开的一个或几个实施例提供了一种包括上述止推板的涡旋压缩机。
进一步地,所述涡旋压缩机进一步包括:外壳,设置在所述外壳中对制冷剂进行压缩的定涡旋部件和动涡旋部件,固定设置在所述外壳上的轴承套,由所述轴承套转动支撑并且驱动所述动涡旋部件的驱动轴,固定在所述驱动轴上并且随所述驱动轴一起转动的配重,其中所述止推板固定到所述轴承套上并且所述止推表面抵靠所述动涡旋部件的端板,所述配重位于所述止推板和所述轴承套之间形成的空间中,所述止推板的环形油槽面向所述配重。
附图说明
通过以下参照附图的描述,本公开的一个或几个实施例的特征和优点将变得更加容易理解,其中:
图1是根据本公开的第一对比示例的动涡旋部件的立体剖视图;
图2是根据本公开的第二对比示例的动涡旋部件的立体剖视图;
图3是根据本公开的第一实施方式的涡旋压缩机的截面图;
图4A是根据本公开的第一实施方式的止推板的正视图,图4B是止推板的后视图,图4C是止推板的立体图;
图5A是根据本公开的第二实施方式的是止推板的立体图,其中供油通孔的出油孔位于止推表面的靠近径向内侧处;
图5B是图5A从供油通处截取的截面图;
图6是根据本公开的第三实施方式的止推板的立体图,其中供油通孔的出油孔位于止推表面的靠近径向外侧处;
图7A是根据本公开的第四实施方式的止推板的立体图,其中供油通孔的出油孔位于止推表面的靠近径向内侧处和靠近径向外侧处;
图7B是图7A从供油通孔处截取的截面图;以及
图8是根据本公开的第一实施方式的涡旋压缩机的止推板附近的放大图。
具体实施方式
图1示出了相对于本公开实施方式的第一对比示例。图1所示的第一对比示例公开了一种用于涡旋压缩机的动涡旋部件1,该动涡旋部件1包括端板11,在端板11上设置有进油孔13、横孔15、出油孔16以及在动涡旋部件1的止推表面17上设置有环形油槽18。润滑油从进油孔13进入,并且沿着横孔15流动,然后从出油孔16流到环形油槽18中,最终从环形油槽18中溢出以润滑动涡旋部件1的端板11的止推表面17和在涡旋压缩机操作时支撑端板11的止推表面17的止推板的止推表面(未示出)。
在第一对比示例中,由于环形油槽设置于动涡旋部件的止推表面上,该环形油槽的两条棱边缘容易造成应力集中,并且其棱边缺陷如毛刺等会损伤与动涡旋部件的止推表面紧密接触的止推板的止推表面。另外,该油路布置供油道路较长、不直接,从而导致供油量少,止推表面得不到充分润滑,磨损严重。
图2示出了在第一对比示例基础上进行改进的第二对比示例。第二对比示例中,与第一对比示例相比,增加了一条供油通道以将双倍的润滑油供应到环形油槽16。然而,该对比示例仍然存在环形油槽的棱边容易破坏止推板的止推表面以及供油通道较长、供油不充分的缺陷。另外,与第一、第二对比示例相似,仅改变环形油槽和供油通道的位置,即相应地在止推板的止推表面上设置环形油槽和在止推板中间设置供油通路的另外的对比示例也具有上述相似的缺陷。
因此,本公开的发明人认为需要一种用于涡旋压缩机的更加高效供油且不损伤止推表面的油路布置。
下面是对根据本公开的优选实施方式的描述,对优选实施方式的描述仅仅是示范性的,而绝不是对本公开及其应用或用法的限制。
I.涡旋压缩机的基本构造
现在将参考图3描述根据本公开的一种实施方式的涡旋压缩机的基本构造。
涡旋压缩机(以下简称为“涡旋压缩机”或“压缩机”)10包括一般为圆柱形的外壳12。在外壳12上设置有进气接头(未示出)用于吸入低压的气态制冷剂。外壳12的一端固定连接有端盖14。端盖14装配有排放接头用于排出压缩后的制冷剂。在外壳12和端盖14之间还设置有相对于外壳12横向延伸的隔板16,从而将压缩机的内部空间分隔成高压侧和低压侧。端盖14和隔板16之间的空间构成高压侧空间,而隔板16与外壳12之间的空间构成低压侧空间。
外壳12内容置有作为压缩机构的动涡旋部件20和定涡旋部件30以及作为驱动机构的马达40和驱动轴50。压缩机构可由驱动机构驱动并由轴承套70支撑。轴承套70可以任何期望的方式,如铆接在多个点处固定到壳体12。
动涡旋构件20包括端板22,在所述端板22的一个表面(图3中为上表面)设置有涡旋卷24,在其另一个表面(图3中为下表面)设置有圆柱形毂部26。定涡旋部件30包括端板32和涡旋卷34。动涡旋构件20的涡旋卷24和定涡旋构件30的涡旋卷34啮合并且当动涡旋构件20和定涡旋构件30相对运动时在其间形成从外部向中心体积逐渐减小的流体腔从而对流体腔中的制冷剂进行压缩。
马达40包括定子42和转子44。定子42与外壳12固定连接。转子44与驱动轴50固定连接并且在定子42中旋转。
驱动轴50的第一端(图3中为上端)设置有偏心曲柄销52以及配重62。配重62固定地设置在驱动轴50上,因此在驱动轴50旋转时能够随驱动轴50一体旋转。驱动轴50的上侧部分由轴承套70中的轴承以可转动的方式支撑。配重62位于轴承套70中。驱动轴50的第二端(图3中为下端)可包括同心孔54。同心孔54经由偏心孔56通向驱动轴50第一端的偏心曲柄销52。
驱动轴50的偏心曲柄销52经由衬套58插入到动涡旋部件20的毂部26中以旋转驱动动涡旋部件20。在动涡旋部件20相对于定涡旋部件30运动时,动涡旋部件20和定涡旋部件30之间的流体腔从径向外部位置向动涡旋部件20和定涡旋部件30的中心位置移动并且被压缩。被压缩的流体经由设置在定涡旋部件30的端板32中心的排气口36排出。
为了防止动涡旋部件20的轴向移动,在动涡旋部件20和轴承套70之间设置有止推板100,从而使得配重62位于止推板100和轴承套70之间。止推 板100可以固定在轴承套70上。止推板100具有作为第一面的止推表面110和与第一面相反的第二面130,其中,止推板100的止推表面110与动涡旋部件20的端板22的止推表面28接触,从而阻止动涡旋部件20的轴向移动。在驱动轴50旋转的过程中,动涡旋部件20的端板22的止推表面28与止推板100的止推表面110之间会产生相对运动,因此这两个止推表面28和110之间需要充分润滑以减小其间的摩擦力从而防止二者咬死或过度磨损。止推板100的详细构造将在下文描述。
同心孔54的端部浸没在压缩机壳体底部的润滑油中或者以其他方式被供给有润滑油。在一种示例中,可以在该同心孔54中或其附近设置润滑油供给装置,例如油泵或油叉等。在压缩机的运转过程中,同心孔54的一端被润滑油供给装置供给有润滑油,进入同心孔54的润滑油在驱动轴50旋转过程中受到离心力的作用而被泵送或甩到偏心孔56中并且沿着偏心孔56向上流动一直到达偏心曲柄销52的端部,从而润滑了偏心曲柄销52、衬套58和动涡旋部件20的毂部26之间的间隙,并且通过下文将要说明的设置在止推板100中的润滑油路供给到止推表面28和止推表面110。
III.止推板的构造
下面参考图4A-图4C详细说明根据本公开的第一实施方式的止推板。图4A-图4C是根据本公开的第一实施方式的止推板的图,图4A是止推板的正视图,图4B是止推板的后视图,图4C是止推板的立体图。
如图4A-图4C所示,止推板100包括位于止推板100的第一面的止推表面110、位于止推板100的与第一面相反的第二面130的环形油槽102以及从环形油槽102的底部延伸穿过止推板100并且到达止推表面110的多个供油通孔104。
多个供油通孔104从环形油槽102的下部延伸穿过止推板100到达止推表面110,并在止推表面110上形成多个出油口106。该多个出油口106可以设置为在周向方向均匀分布。优选地,供油通孔104形成为从止推板100的背面朝向正面沿周向方向倾斜,以使得聚集在环形油槽102中的润滑油能够在旋转动压的作用下容易地流到止推表面110。供油通道104的形状可以为圆柱形。优选地,供油通道104的形状也可为圆锥形,其直径小的一端为出油口106,从而使润滑油沿着渐缩形状更容易地流到止推表面110。
如图4C所示,环形油槽102位于止推板100的背面,在环形油槽102中设置的多个止挡部120将环形油槽102间隔成多个储油区域108并且每个储油区域108包括一个供油通孔104。优选地,储油区域108还可以包括多个供油通孔104以使每个储油区域108的润滑油更多地流到止推表面110。止挡部120包括上表面1201,该上表面1201与环形油槽102的内侧面1021、外侧面1022垂直并且低于环形油槽102的内侧面1021、外侧面1022的上侧边缘。储油区域108是由环形油槽102的内侧面1021、环形油槽102的外侧面1022、底面1081、止挡部120朝向储油区域的止挡面1082以及储油区域的引导面1083围成的区域。引导面1083从相邻止挡部120的上表面1201平滑且倾斜地过渡至位于供油通孔附近的底面1081,从而便于将润滑油引导至供油通孔104中。止挡面1082从止挡部120的上表面1201沿垂直于上表面1201的方向朝向底面1081延伸,从而便于阻挡进入环形油槽102的润滑油,以迫使润滑油进入供油通孔104。优选地,为取得较好的聚拢润滑油的效果,止挡面1082为部分围绕供油通孔的圆弧面。优选地,引导面1083可以是斜面或圆弧面。优选地,环形油槽102的内侧面1021、外侧面1022以及止挡面1082与底面1081之间采用倒角或倒圆过渡,以及止挡部120的上表面与引导面1083之间采用倒角或倒圆过渡。为了加工方便,储油区域108可通过使用铣削工具从成型的止推板背面铣削下部分材料而形成。优选地,储油区域108也可以在止推板100的成型过程中直接形成在止推板100上。
优选地,如图5A和图5B所示的根据本公开的第二实施方式,供油通孔104的出油口106可以设置在止推表面110的靠近径向内侧处,从而可以有针对性地加强对止推表面110的靠近径向内侧处的表面的润滑从而避免止推表面110的靠近径向内侧处的表面的磨损。优选地,如图6所示的根据本公开的第三实施方式,供油通孔104的出油口106可以设置在止推表面110的靠近径向外侧处,从而可以有针对性地加强对止推表面110的靠近径向外侧处的表面的润滑从而避免止推表面110的靠近径向外侧处的表面的磨损。优选地,如图7A和图7B所示的根据本公开的第四实施方式,供油通孔104的出油口106也可以同时设置在止推表面110的靠近径向内侧处和靠近径向外侧处,从而可以同时加强对止推表面110的靠近径向内侧处和靠近径向外侧处的表面的润滑。在此实施方式中,可以两个供油通孔从供油区域的底部的一个开口分支为两个通道,分别通向两个出油孔;也可以是在止推板的背面环形油槽中的一个储油区域中设置有多个并不交汇的供油通孔。优选地,该多个出油口106也可 以根据失效工况、磨损位置以及用户旨在加强润滑的位置较多地设置于用户想要加强润滑的位置。
II.止推表面的润滑过程
下面参见图8描述根据本公开的一种实施方式的涡旋压缩机的止推表面的润滑过程。
如图8所示,来自驱动轴50的偏心孔56的润滑油首先到达偏心曲柄销52的端部,然后经由偏心曲柄销52、衬套58和动涡旋部件20的毂部26之间的间隙进入轴承套70和止推板100之间的空间S并且在所述空间S中聚集。如上所述,配重62固定设置在驱动轴50的一端并且位于止推板100和轴承套70之间,即位于所述空间S中。随着驱动轴50旋转,固定设置在驱动轴一端的配重62也旋转。由于止推板100在安装好时其背面的环形油槽102面对配重62,所以当配重62旋转时,聚集在空间S特别是聚集在空间S底部的润滑油被配重62搅动并在离心力的作用下飞溅在止推板100背面的环形油槽102中的被止挡部120(如图4C所示)间隔开的多个储油区域108(如图4C所示)中并且在其中聚集。由于储油区域的底面设置有倾斜的引导面,润滑油从储油区域的一端沿引导面流动聚集在储油区域108中设置有供油通孔的较深的一端,同时,润滑油由于被止挡部120阻挡,在旋转动压的作用下,在储油区域108中不断向上堆积,被迫使在周向旋转的同时穿过多个供油通孔104(如图4C所示)从止推板100的背面流动到止推板100正面的止推表面110上,并且进一步通过止推表面110上的多个出油口106(如图4C所示)流出,从而润滑了整个止推表面110。为了便于理解,在图8中,用箭头示意性地表示润滑油的运动路线。
本公开的一种或几种实施方式的止推板,可具有如下有益效果:(1)利用了配重的离心力和润滑油的旋转动压,因此润滑油的供给更加简单和可靠,不会增加或较少增加油泵等构件的负荷;(2)避免由于在止推表面上设置环形油槽而对止推表面的损伤;(3)利用多个供油通孔供油,从而使供油量更大,更均匀,供油更高效。
尽管在此已详细描述本公开的各种实施方式,但要理解的是本公开并不局限于这里详细描述和示出的具体实施方式,在不偏离本公开的实质和范围的情况下可由本领域的技术人员实现其它的变型和变体。所有这些变型和变体都落 入本公开的范围内。而且,所有在此描述的构件都可以由其他技术性上等同的构件来代替。

Claims (16)

  1. 一种用于涡旋压缩机(10)的止推板(100),包括:
    位于所述止推板(100)的第一面的止推表面(110);
    位于所述止推板(100)的与所述第一面相反的第二面(130)的环形油槽(102);以及
    从所述环形油槽(102)的底部延伸穿过所述止推板(100)并且到达所述止推表面(110)的多个供油通孔(104)。
  2. 根据权利要求1所述的止推板(100),其中,所述止推板(100)还包括设置在所述环形油槽(102)中的多个止挡部(120),所述多个止挡部(120)将所述环形油槽(102)间隔成多个储油区域(108)并且每个储油区域(108)包括一个或多个供油通孔(104)。
  3. 根据权利要求2所述的止推板(100),其中,所述止挡部(120)包括上表面(1201),所述上表面(1201)与所述环形油槽(102)的内侧面(1021)、外侧面(1022)垂直并且低于所述止推表面(110)的第二面(130)或与所述第二面(130)的一侧边缘平齐。
  4. 根据权利要求3所述的止推板(100),其中,所述储油区域(108)是由所述环形油槽(102)的内侧面(1021)、所述环形油槽(102)的外侧面(1021)、所述环形油槽(102)的底面(1081)、所述止挡部(120)的面向所述储油区域(108)内侧的止挡面(1082)、以及位于相邻止挡部的上表面与所述底面(1081)之间的引导面(1083)围成的区域。
  5. 根据权利要求4所述的止推板(100),其中,在所述底面(1081)处设置有所述供油通孔(104)。
  6. 根据权利要求4所述的止推板(100),其中,所述止挡面(1082)从 所述止挡部(120)的上表面(1201)沿垂直于所述上表面(1201)的方向朝向所述底面(1081)延伸。
  7. 根据权利要求6所述的止推板(100),其中,所述止挡面(1082)是部分围绕所述供油通孔(104)的圆弧面。
  8. 根据权利要求4所述的止推板(100),其中,所述引导面(1083)从相邻止挡部(120)的上表面(1201)平滑地过渡至所述底面(1081)。
  9. 根据权利要求8所述的止推板(100),其中,所述引导面(1083)为斜面或圆弧面。
  10. 根据权利要求1-9中任一项所述的止推板(100),其中,所述供油通孔(104)的出油口(106)位于所述止推表面(110)的靠近径向内侧处。
  11. 根据权利要求1-9中任一项所述的止推板(100),其中,所述供油通孔(104)的出油口(106)位于所述止推表面(110)的靠近径向外侧处。
  12. 根据权利要求2-9中任一项所述的止推板(100),其中,每个所述储油区域(108)包括两个所述供油通孔(104),所述供油通孔(104)的出油口(106)分别位于所述止推表面(110)的靠近径向内侧处和靠近径向外侧。
  13. 根据权利要求1-9中任一项所述的止推板(100),其中,所述供油通孔(104)从所述止推板(100)的第二面(130)朝向所述止推板(100)的第一面沿周向方向倾斜。
  14. 根据权利要求1-9中任一项所述的止推板(100),其中,所述供油通孔(104)的形状为圆柱形或圆锥形。
  15. 一种涡旋压缩机(10),其中,包括根据权利要求1-14中任一项所述的止推板(100)。
  16. 根据权利要求15所述的涡旋压缩机(10),其中,所述涡旋压缩机(10)进一步包括:
    外壳(12);
    设置在所述外壳(12)中对制冷剂进行压缩的定涡旋部件(30)和动涡旋部件(20);
    固定设置在所述外壳(12)中的轴承套(70);
    由所述轴承套(70)转动支撑并且驱动所述动涡旋部件(20)的驱动轴(50);以及
    固定在所述驱动轴(50)上并且随所述驱动轴(50)一起转动的配重(62),
    其中,所述止推板(100)固定到所述轴承套(70)上并且所述止推表面(110)抵靠所述动涡旋部件(20)的端板(22),所述配重(62)位于所述止推板(100)和所述轴承套(70)之间形成的空间(S)中,所述止推板(100)的环形油槽(102)面向所述配重(62)。
PCT/CN2019/121487 2019-01-09 2019-11-28 用于涡旋压缩机的止推板和涡旋压缩机 WO2020143350A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201920037058.1 2019-01-09
CN201910019904.1A CN111425402A (zh) 2019-01-09 2019-01-09 用于涡旋压缩机的止推板和涡旋压缩机
CN201920037058.1U CN209340147U (zh) 2019-01-09 2019-01-09 用于涡旋压缩机的止推板和涡旋压缩机
CN201910019904.1 2019-01-09

Publications (1)

Publication Number Publication Date
WO2020143350A1 true WO2020143350A1 (zh) 2020-07-16

Family

ID=71521392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121487 WO2020143350A1 (zh) 2019-01-09 2019-11-28 用于涡旋压缩机的止推板和涡旋压缩机

Country Status (1)

Country Link
WO (1) WO2020143350A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230060653A1 (en) * 2021-09-02 2023-03-02 Bitzer Kuehlmaschinenbau Gmbh Scroll compressor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205478326U (zh) * 2016-03-17 2016-08-17 艾默生环境优化技术(苏州)有限公司 用于卧式涡旋压缩机的止推板和卧式涡旋压缩机
KR20160109879A (ko) * 2015-03-13 2016-09-21 한온시스템 주식회사 압축기의 유분리 장치 및 이의 가공 방법
CN108361193A (zh) * 2017-01-27 2018-08-03 丹佛斯商用压缩机公司 涡旋压缩机
CN209340147U (zh) * 2019-01-09 2019-09-03 艾默生环境优化技术(苏州)有限公司 用于涡旋压缩机的止推板和涡旋压缩机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160109879A (ko) * 2015-03-13 2016-09-21 한온시스템 주식회사 압축기의 유분리 장치 및 이의 가공 방법
CN205478326U (zh) * 2016-03-17 2016-08-17 艾默生环境优化技术(苏州)有限公司 用于卧式涡旋压缩机的止推板和卧式涡旋压缩机
CN108361193A (zh) * 2017-01-27 2018-08-03 丹佛斯商用压缩机公司 涡旋压缩机
CN209340147U (zh) * 2019-01-09 2019-09-03 艾默生环境优化技术(苏州)有限公司 用于涡旋压缩机的止推板和涡旋压缩机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230060653A1 (en) * 2021-09-02 2023-03-02 Bitzer Kuehlmaschinenbau Gmbh Scroll compressor
US11933304B2 (en) * 2021-09-02 2024-03-19 Bitzer Kuehlmaschinenbau Gmbh Scroll compressor including hub lubricant passage

Similar Documents

Publication Publication Date Title
CN208138137U (zh) 压缩机
CN205578273U (zh) 泵油机构及具有该泵油机构的卧式压缩机
US20130089451A1 (en) Scroll compressor with supporting member in axial direction
JP3242528U (ja) 回転機構
CN112555158A (zh) 排气油分结构、压缩机和空调器
JP6554926B2 (ja) スクロール圧縮機
WO2019044867A1 (ja) スクロール型圧縮機
JP2016223351A (ja) スクロール圧縮機
CN209340147U (zh) 用于涡旋压缩机的止推板和涡旋压缩机
WO2020143350A1 (zh) 用于涡旋压缩机的止推板和涡旋压缩机
JPS61261694A (ja) スクロ−ル流体機械
US20150361980A1 (en) Scroll compressor
WO2022021644A1 (zh) 涡旋压缩机
CN113530827A (zh) 涡旋压缩机
WO2021212772A1 (zh) 涡旋压缩机
CN204663894U (zh) 涡旋压缩机
CN212155162U (zh) 涡旋压缩机
US20060233654A1 (en) Compressor with radial compliance mechanism
CN111425402A (zh) 用于涡旋压缩机的止推板和涡旋压缩机
JPH0861277A (ja) コンプレッサのクランクシャフト内給油機構
CN214533547U (zh) 排气油分结构、压缩机和空调器
JPH05312172A (ja) ローリングピストン型圧縮機
US11885335B2 (en) Oil supply mechanism of rotating machinery and rotating machinery having oil supply mechanism
JP2018112130A (ja) 圧縮機
JPS6339797B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909511

Country of ref document: EP

Kind code of ref document: A1