WO2021212772A1 - 涡旋压缩机 - Google Patents

涡旋压缩机 Download PDF

Info

Publication number
WO2021212772A1
WO2021212772A1 PCT/CN2020/121072 CN2020121072W WO2021212772A1 WO 2021212772 A1 WO2021212772 A1 WO 2021212772A1 CN 2020121072 W CN2020121072 W CN 2020121072W WO 2021212772 A1 WO2021212772 A1 WO 2021212772A1
Authority
WO
WIPO (PCT)
Prior art keywords
thrust
thrust plate
plate
annular groove
scroll compressor
Prior art date
Application number
PCT/CN2020/121072
Other languages
English (en)
French (fr)
Inventor
徐榜
张跃
Original Assignee
艾默生环境优化技术(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020598750.4U external-priority patent/CN212155162U/zh
Priority claimed from CN202010311423.0A external-priority patent/CN113530827A/zh
Application filed by 艾默生环境优化技术(苏州)有限公司 filed Critical 艾默生环境优化技术(苏州)有限公司
Publication of WO2021212772A1 publication Critical patent/WO2021212772A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present disclosure relates to a thrust plate for a scroll compressor and a scroll compressor including the thrust plate
  • the compression of the fluid is achieved by the relative movement between the movable scroll component and the fixed scroll component.
  • a thrust plate is provided on the side of the end plate of the movable scroll component.
  • the thrust plate is fixed to the scroll compressor housing.
  • the end plate of the movable scroll component and the contact surface (thrust surface) of the thrust plate need to be sufficiently lubricated to reduce the friction and wear between the two.
  • most of the lubrication structures adopted between the end plate of the movable scroll component and the thrust surface of the thrust plate have the defects of complex structure, insufficient lubrication or serious wear of the thrust surface.
  • One or several embodiments of the present disclosure provide a scroll compressor capable of supplying lubricant to a thrust surface more efficiently without damaging the thrust surface.
  • One or more embodiments of the present disclosure provide a scroll compressor, including: a movable scroll member having an end plate; and a thrust plate configured to align The movable scroll member is axially supported, wherein the end plate has a first thrust surface that contacts the thrust plate and slides relative to the thrust plate, and the thrust plate has a contact surface for contacting the thrust plate.
  • annular groove in the radially inner side adjacent to the first thrust surface, the outer diameter of the annular groove R a relation to satisfy the following parameters: R b -R or ⁇ R a ⁇ R b +R or , where R b is the inner diameter of the second thrust surface of the thrust plate, and R or is the movable scroll member relative to the thrust plate The radius of gyration for translational rotation.
  • This parameter setting can be realized: in the area where the contact stress between the movable scroll part and the thrust plate is small or there is no contact stress, the annular groove is in contact with the radial inner side of the thrust surface of the thrust plate to make the annular groove The lubricant in it is brought to the thrust surface of the thrust plate along with the translational rotation of the movable scroll component.
  • the annular oil groove is in a region with less stress, it is possible to reduce the damage to the thrust surface of the thrust plate caused by defects of the edge of the annular groove, such as burrs.
  • cross-sectional shape of the annular groove is V-shaped or U-shaped.
  • annular groove is a plurality of annular grooves arranged concentrically.
  • a plurality of radial channels for fluidly communicating the plurality of annular grooves are provided on the annular groove at intervals along the circumferential direction.
  • the radial channel facilitates the flow of lubricant in the plurality of annular grooves, and further guides the lubricant to the thrust surface of the movable scroll component.
  • the plurality of radial channels are arranged at equal intervals along the circumferential direction.
  • the plurality of annular grooves are arranged at equal intervals in the radial direction.
  • a hub portion is provided on the radially inner side of the first thrust surface of the movable scroll component, and a plurality of the radial passages extend in a radially inward direction to the hub portion and the first thrust surface.
  • the junction of the thrust surface is convenient to guide the lubricant transported along the outer side of the hub into the annular groove.
  • it further includes a bearing sleeve for supporting the thrust plate, and the thrust plate is fixed to the bearing sleeve or formed as an integral piece with the bearing sleeve.
  • a radially inner side of the thrust plate adjacent to the second thrust surface has a rounded corner.
  • Fig. 1 is a cross-sectional view of a scroll compressor according to a first embodiment of the present disclosure
  • Fig. 2 is an enlarged view of the vicinity of the movable scroll member of the scroll compressor according to the first embodiment of the present disclosure
  • FIG. 3A is a perspective view of the movable scroll component according to the first embodiment of the present disclosure
  • FIG. 3B is a cross-sectional view of the movable scroll component according to the first embodiment of the present disclosure
  • FIG. 3C is a portion of the annular groove in FIG. 3B Enlarged cross-sectional view
  • Figure 3D is an enlarged cross-sectional view of a modification of the annular groove in Figure 3B.
  • FIG 4 is a view of the relationship between the mutual movement of the thrust plate and the movable scroll member according to the first embodiment of the present disclosure.
  • Fig. 5A is a perspective view of an example of a thrust plate
  • Fig. 5B is a perspective view of another example of a thrust plate.
  • FIG. 6A is a perspective view of a movable scroll component according to the second embodiment of the present disclosure
  • FIG. 6B is a cross-sectional view of the movable scroll component according to the second embodiment of the present disclosure
  • Fig. 7 is a cross-sectional view of the scroll compressor according to the first embodiment of the present disclosure.
  • Fig. 8 is an enlarged view of the vicinity of the movable scroll member of the scroll compressor according to the first embodiment of the present disclosure.
  • the scroll compressor 10 includes a housing 12 that is generally cylindrical.
  • An air inlet connector (not shown) is provided on the housing 12 for sucking in low-pressure gaseous refrigerant.
  • An end cover 14 is fixedly connected to one end of the housing 12, and a bottom cover is fixedly connected to the other end.
  • the end cover 14 is equipped with a discharge joint for discharging the compressed refrigerant.
  • a partition plate 16 extending transversely with respect to the housing 12 is also provided between the casing 12 and the end cover 14, so as to divide the internal space of the compressor into a high-pressure side and a low-pressure side.
  • the space between the end cover 14 and the partition 16 constitutes a high-pressure side space
  • the space between the partition 16, the housing 12 and the bottom cover constitutes a low-pressure side space.
  • the housing 12 contains a movable scroll member 20 and a fixed scroll member 30 as a compression mechanism, and a motor 40 and a drive shaft 50 as a driving mechanism.
  • the compression mechanism can be driven by the driving mechanism and supported by the bearing sleeve 70.
  • the bearing sleeve 70 may be fixed to the housing 12 in any desired manner, such as riveting at multiple points.
  • the orbiting scroll member 20 includes an orbiting scroll end plate 22, a spiral blade 24 is provided on one surface of the orbiting scroll end plate 22, and a cylindrical hub 26 is provided on the other surface.
  • the fixed scroll component 30 includes a fixed scroll end plate 32 and a spiral blade 34. The spiral blades 24 of the movable scroll member 20 and the spiral blades 34 of the fixed scroll member 30 are meshed, and when the movable scroll member 20 and the fixed scroll member 30 move relative to each other, a fluid cavity whose volume gradually decreases from the outside to the center is formed therebetween. Thus, the refrigerant in the fluid cavity is compressed.
  • the motor 40 includes a stator 42 and a rotor 44.
  • the stator 42 is fixedly connected to the housing 12.
  • the rotor 44 is fixedly connected to the drive shaft 50 and rotates in the stator 42.
  • An eccentric crank pin 52 and a counterweight 60 are provided at one end of the drive shaft 50.
  • the counterweight 60 is fixedly arranged on the drive shaft 50, and therefore can rotate integrally with the drive shaft 50 when the drive shaft 50 rotates.
  • the upper part of the drive shaft 50 is rotatably supported by the bearing in the bearing sleeve 70.
  • the counterweight 60 is located in the bearing sleeve 70.
  • the drive shaft 50 has an eccentric crank pin 52 at one end.
  • the eccentric crank pin 52 of the drive shaft 50 is inserted into the hub 26 of the movable scroll member 20 via a bush 58 to rotationally drive the movable scroll member 20.
  • the fluid cavity between the movable scroll member 20 and the fixed scroll member 30 moves from a radially outer position toward the movable scroll member 20 and the fixed scroll member 30.
  • the center position is moved and compressed.
  • the compressed fluid is discharged through the exhaust port 36 provided in the center of the fixed scroll end plate 32 of the fixed scroll member 30.
  • the other end of the drive shaft 50 may include a concentric hole 54.
  • the concentric hole 54 leads to the eccentric crank pin 52 via the eccentric hole 56 so as to supply the lubricant in the oil pool at the bottom of the compressor to the movable parts of the compressor for lubrication.
  • a thrust plate 80 is provided between the movable scroll component 20 and the bearing sleeve 70, and the thrust plate 80 may be fixed on the bearing sleeve 70 or formed as an integral piece with the bearing sleeve 70.
  • the thrust plate 80 is used to axially support the movable scroll member 20.
  • the end plate 22 of the movable scroll member 20 has a thrust surface 21 that is in contact with the thrust plate 80 and slides relative to the thrust plate 80, and the thrust plate 80 also has a thrust surface 81 for contacting and sliding
  • the thrust surface 21 of the movable scroll member 20 is supported.
  • the two thrust surfaces need to be fully lubricated to reduce the friction between them to prevent them from seizing or excessive wear.
  • lubricant is stored at the bottom of the housing 12.
  • the end of the concentric hole 54 is immersed in the lubricant at the bottom of the housing 12 or is otherwise supplied with lubricant.
  • a lubricant supply device such as an oil pump or an oil fork, may be provided in or near the concentric hole 54.
  • one end of the concentric hole 54 is supplied with lubricant by the lubricant supply device.
  • the lubricant entering the concentric hole 54 is pumped or thrown to the eccentric hole due to the centrifugal force during the rotation of the drive shaft 50 56 and flow upward along the eccentric hole 56 until it reaches the end surface of the eccentric crank pin 52.
  • the lubricant discharged from the end surface of the eccentric crank pin 52 enters the space between the bearing sleeve 70 and the thrust plate 80 along the gap between the eccentric crank pin 52 and the bush 58 and the gap between the bush 58 and the hub 26 90 and gather in the space 90.
  • the counterweight 60 is fixedly arranged at one end of the drive shaft 50 and is located between the thrust plate 80 and the bearing sleeve 70, that is, in the space 90.
  • the counterweight 60 fixedly provided at one end of the drive shaft also rotates. As shown by the arrow in FIG. 2, a part of the lubricant accumulated in the space 90 is stirred by the counterweight 60 and moves upward along the outer side of the hub 26 to reach the annular shape located on the lower side of the movable scroll end plate 22 of the movable scroll member 20
  • the groove 23 is distributed between the thrust surface 21 of the orbiting scroll member 20 and the thrust surface 81 of the thrust plate 80 along with the translational rotation of the orbiting scroll member 20.
  • the movable scroll component 20 includes a movable scroll end plate 22, a hub 26 formed on one side of the movable scroll end plate 22, and a spiral blade 24 formed on the other side of the movable scroll end plate 22.
  • a thrust surface 21 that contacts a thrust plate (not shown) and slides relative to the thrust plate is formed on the surface of the movable scroll end plate 22 on the side of the hub 26.
  • An annular groove 23 is formed on the radially inner side adjacent to the thrust surface 21. As shown in FIG. 3C, the cross-sectional shape of the annular groove 23 is U-shaped. Optionally, as shown in FIG. 3D, the cross-sectional shape of the annular groove 23 is V-shaped. Optionally, the cross-sectional shape of the annular groove 23 may be any shape that is convenient for storing and guiding lubricant.
  • FIG. 4 is a view of the relationship between the mutual movement of the thrust plate and the movable scroll member according to the first embodiment of the present disclosure.
  • the inner diameter of the thrust surface 81 of the thrust plate 80 is R b (FIGS. 5A and 5B respectively show the thrust plate 80 with and without rounded corners at the radial inner side.
  • the inner diameter R b of the thrust surface 81 assuming that the radius of gyration of the movable scroll member 20 relative to the thrust plate 80 (or the fixed scroll member, not shown) in translational rotation is R or (see the dotted line in FIG. 4 circle), assuming that the outer diameter of the annular groove 23 is R a.
  • the outer diameter of the annular groove 23 is designed so that the R a may be the above parameters satisfies the formula: R b -R or ⁇ R a ⁇ R b + R or.
  • the annular groove 23 partially extends into the thrust surface 81 of the thrust plate 80 ,
  • the lubricant in the annular groove 23 is brought to the thrust surface 81 of the thrust plate 80 along with the translational rotation of the movable scroll component 20.
  • a contact stress is generated between the movable scroll member 20 and the thrust plate 80.
  • the distribution of the contact stress has the following characteristics: in the area where the thrust plate 80 is closest to the hub and farthest from the hub 62, the contact stress between the thrust plate 80 and the movable scroll component 20 is the smallest or no contact stress, while In the area perpendicular to the line between the area closest to the hub 62 and the area farthest from the hub 62 of the thrust plate 80, the contact stress between the thrust plate 80 and the movable scroll member 20 is the largest and runs along The circumferential direction gradually decreases toward the area closest to the hub 62 and the area farthest from the hub 62.
  • the annular groove 23 is arranged concentrically with the hub 62, the area where the thrust plate 80 is closest to the hub 62 (that is, the area where the contact stress between the thrust plate 80 and the movable scroll member 20 is the smallest or no contact stress is ), the annular groove 23 partially extends into the thrust surface 81 of the thrust plate 80 to bring the lubricant in the annular groove 23 to the thrust surface 81 of the thrust plate 80. And since the contact stress between the thrust plate 80 and the movable scroll member 20 is the smallest or no contact stress in this area, it is possible to reduce the stop of the thrust plate 80 by the part of the edge of the annular groove 23 that enters the thrust plate 80. Push the damage of the surface 81. However, the other parts of the edge of the annular groove 23 are not in contact with the thrust surface 81 of the thrust plate 80, so the thrust surface 81 of the thrust plate 80 will not be damaged.
  • an outer diameter of the annular groove 23 is smaller R a, an annular groove 23 extending into the small part of the thrust plate 80, from the annular
  • R a R b -0.5R or .
  • FIG. 7 shows a first comparative example with respect to the embodiment of the present disclosure.
  • the first comparative example shown in FIG. 7 discloses a movable scroll member 20' for a scroll compressor.
  • the movable scroll member 20' includes a movable scroll end plate 22' on the side of the end plate 22' An extended spiral blade 24' and a hub 26' extending on the other side of the end plate 22'.
  • the end plate 22' is supported by a thrust plate (not shown). With the translational rotation of the orbiting scroll component 20', relative motion and contact stress will occur between the orbiting scroll component 20' and the thrust plate, resulting in a certain amount of wear between the orbiting scroll component 20' and the thrust plate. .
  • the orbiting scroll end plate 22' is provided with an oil inlet 27', a transverse hole 28', and an oil outlet 29', and an annular thrust surface 21' is provided on the orbiting scroll member 20' Oil tank 23'.
  • the lubricant enters from the oil inlet 27', flows along the transverse hole 28', and then flows from the oil outlet 29' to the annular oil groove 23'.
  • the lubricant enters between the orbiting scroll member 20' and the thrust plate from the annular oil groove 23' to reduce the difference between the orbiting scroll member 20' and the thrust plate.
  • the annular oil groove is provided in the middle position of the thrust surface 21' of the movable scroll member 20', the defects on the two edges of the annular oil groove 23', such as burrs, will be in the movable scroll member 20. Damage to the thrust surface of the thrust plate when moving relative to the thrust surface.
  • the oil path is arranged with a long oil supply path, which results in a small oil supply, insufficient lubrication of the thrust surface, and serious wear.
  • Fig. 8 shows a second comparative example improved on the basis of the first comparative example.
  • an oil supply passage that is the same as the first comparative example is symmetrically added to supply double lubricant into the annular oil groove 23'.
  • the second comparative example increases the amount of lubricant supplied, but the second comparative example still has defects on the edge of the annular oil groove 23', such as burrs, which can easily damage the thrust surface of the thrust plate. Defects.
  • the movable scroll component 20 includes a movable scroll end plate 22, a hub 26 formed on one side of the movable scroll end plate 22, and a spiral blade 24 formed on the other side of the movable scroll end plate 22.
  • a thrust surface 21 that contacts a thrust plate (not shown) and slides relative to the thrust plate is formed on the surface of the movable scroll end plate 22 on the side of the hub 26.
  • An annular groove 23 is formed on the radially inner side adjacent to the thrust surface 21.
  • the annular groove 23 is two annular grooves arranged concentrically, and a plurality of radial channels 25 for fluid communication between the two annular grooves 23 are arranged on the annular groove 23 at intervals along the circumferential direction.
  • the radial passage 25 extends in a radially inward direction to the junction of the hub 26 of the movable scroll component 20 and the thrust surface 21, thereby facilitating guiding the lubricant delivered along the outside of the hub 26 into the annular groove 23 , And further lead to the thrust surface 21 of the movable scroll member 20.
  • the number of annular grooves 23 may be three or more.
  • the outer diameter of the annular groove 23 is the outer diameter of the outermost annular groove.
  • a plurality of annular grooves 23 are arranged at equal intervals in the radial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

一种涡旋压缩机,包括:动涡旋部件(20),动涡旋部件(20)具有端板(22);以及止推板(80),止推板(80)构造成用于对动涡旋部件(20)进行轴向支撑,其中端板(22)具有与止推板(80)接触并相对于止推板(80)滑动的第一止推表面(21),止推板(80)具有用于接触并支撑第一止推表面(21)的第二止推表面(81),在邻近第一止推表面(21)的径向内侧形成有环形凹槽(23),环形凹槽(23)的外径Ra满足以下参数关系:Rb-Ror<Ra<Rb+Ror,其中,Rb为止推板(80)的内径,Ror为动涡旋部件(20)相对于止推板(80)平动转动的回转半径。该涡旋压缩机能够减少止推板的止推表面的损伤。

Description

涡旋压缩机
本申请要求以下中国专利申请的优先权:于2020年4月20日提交中国专利局的申请号为CN202010311423.0、发明创造名称为“涡旋压缩机”的中国专利申请,以及于2020年4月20日提交中国专利局的申请号为CN202020598750.4、发明创造名称为“涡旋压缩机”的中国专利申请。上述专利申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及一种用于涡旋压缩机的止推板和包括该止推板的涡旋压
背景技术
在涡旋压缩机中,通过动涡旋部件和定涡旋部件之间的相对运动来实现流体的压缩。为了对动涡旋部件提供轴向支撑,在动涡旋部件的端板一侧设置有止推板。止推板固定至涡旋压缩机壳体。当涡旋压缩机运行时,动涡旋部件相对于止推板运动。动涡旋部件的端板和止推板的接触表面(止推表面)之间需要充分润滑以减小二者之间的摩擦力和磨损。目前,在动涡旋部件的端板和止推板的止推表面之间采用的润滑结构,大都存在结构复杂、润滑不充分或止推表面磨损严重的缺陷。
因此,本领域中需要一种用于涡旋压缩机的更加高效供油且不损伤止推表面的油路布置或设计。
发明内容
本公开的一个或几个实施例提供一种能够向止推表面更加高效地供给润滑剂并且不损伤止推表面的涡旋压缩机。
本公开的一个或几个实施例提供了一种涡旋压缩机,包括:动涡旋部件,所述动涡旋部件具有端板;以及止推板,所述止推板构造成用于对所述动涡旋部件进行轴向支承,其中,所述端板具有与所述止推板接触并相对于所述止推板滑动的第一止推表面,所述止推板具有用于接触并支承所述第一止推表面的第二止推表面,在邻近所述第一止推表面的径向内侧形成有环形凹槽,所述环 形凹槽的外径R a满足以下参数关系:R b-R or<R a<R b+R or,其中,R b为所述止推板的第二止推表面的内径,R or为所述动涡旋部件相对于所述止推板平动转动的回转半径。该参数设置可以实现:在动涡旋部件和止推板之间的接触应力较小或没有接触应力的区域,环形凹槽与止推板的止推表面的径向内侧接触,使环形凹槽中的润滑剂随着动涡旋部件的平动转动被带至止推板的止推表面上。此外,由于环形油槽处于应力较小区域,因而可以减少环形凹槽的棱边的缺陷如毛刺等对止推板的止推表面的损伤。
进一步地,所述环形凹槽的外径R a满足以下参数关系:R a=R b-0.5R or。在该参数条件下,可以实现从环形凹槽至止推板的止推表面的润滑剂的供给和减少环形凹槽的棱边的缺陷如毛刺等对止推板的止推表面的损伤的最佳平衡。
进一步地,所述环形凹槽的截面形状为V型或U型。
进一步地,所述环形凹槽为同心设置的多个环形凹槽。
进一步地,在所述环形凹槽上沿周向方向间隔设置有使所述多个环形凹槽流体连通的多个径向通道。径向通道便于润滑剂在多个环形凹槽中流动,并进一步将润滑剂引导至动涡旋部件的止推表面上。
进一步地,所述多个径向通道沿周向方向等间距设置。
进一步地,所述多个环形凹槽在径向上等间距设置。
进一步地,在所述动涡旋部件的第一止推表面的径向内侧设置有毂部,多个所述径向通道沿径向向内的方向延伸至所述毂部与所述第一止推表面的交界处,从而便于将沿毂部外侧输送的润滑剂引导至环形凹槽中。
进一步地,还包括用于支撑所述止推板的轴承套,所述止推板固定至轴承套或者与所述轴承套形成为一体件。
进一步地,所述止推板的邻近所述第二止推表面的径向内侧处具有倒圆角。
附图说明
通过以下参照附图的描述,本公开的一个或几个实施例的特征和优点将变得更加容易理解,其中:
图1是根据本公开的第一实施方式的涡旋压缩机的截面图;
图2是根据本公开的第一实施方式的涡旋压缩机的动涡旋部件附近的放 大图;
图3A是根据本公开的第一实施方式的动涡旋部件的立体图,图3B是根据本公开的第一实施方式的动涡旋部件的截面图;图3C是图3B中环形凹槽部分的放大截面图;图3D是图3B中环形凹槽的改型的放大截面图。
图4是根据本公开的第一实施方式的止推板和动涡旋部件的相互运动的关系视图。
图5A是止推板的一个示例的立体图;图5B是止推板的另一示例的立体图。
图6A是根据本公开的第二实施方式的动涡旋部件的立体图,图6B是根据本公开的第二实施方式的动涡旋部件的截面图;
图7是根据本公开的第一实施方式的涡旋压缩机的截面图;
图8是根据本公开的第一实施方式的涡旋压缩机的动涡旋部件附近的放大图。
具体实施方式
下面对本公开各种实施方式的描述仅仅是示范性的,而绝不是对本公开及其应用或用法的限制。在各个附图中采用相同的附图标记来表示相同的部件,因此相同部件的构造将不再重复描述。
现在将参考图1描述根据本公开的第一实施方式的涡旋压缩机的基本构造和运行原理。涡旋压缩机10包括一般为圆柱形的外壳12。在外壳12上设置有进气接头(未示出)用于吸入低压的气态制冷剂。外壳12的一端固定连接有端盖14,另一端固定连接有底盖。端盖14装配有排放接头用于排出压缩后的制冷剂。在外壳12和端盖14之间还设置有相对于外壳12横向延伸的隔板16,从而将压缩机的内部空间分隔成高压侧和低压侧。端盖14和隔板16之间的空间构成高压侧空间,而隔板16、外壳12和底盖之间的空间构成低压侧空间。
外壳12内容置有作为压缩机构的动涡旋部件20和定涡旋部件30以及作为驱动机构的马达40和驱动轴50。压缩机构可由驱动机构驱动并由轴承套70支撑。轴承套70可以任何期望的方式,如铆接在多个点处固定到壳体12。
动涡旋构件20包括动涡旋端板22,在所述动涡旋端板22的一个表面设 置有螺旋叶片24,在其另一个表面设置有圆柱形毂部26。定涡旋部件30包括定涡旋端板32和螺旋叶片34。动涡旋构件20的螺旋叶片24和定涡旋构件30的螺旋叶片34啮合并且当动涡旋构件20和定涡旋构件30相对运动时在其间形成从外部向中心体积逐渐减小的流体腔从而对流体腔中的制冷剂进行压缩。
马达40包括定子42和转子44。定子42与外壳12固定连接。转子44与驱动轴50固定连接并且在定子42中旋转。驱动轴50的一端设置有偏心曲柄销52以及配重60。配重60固定地设置在驱动轴50上,因此在驱动轴50旋转时能够随驱动轴50一体旋转。驱动轴50的上侧部分由轴承套70中的轴承以可转动的方式支撑。配重60位于轴承套70中。
驱动轴50的一端具有偏心曲柄销52。驱动轴50的偏心曲柄销52经由衬套58插入到动涡旋部件20的毂部26中以旋转驱动动涡旋部件20。在动涡旋部件20相对于定涡旋部件30运动时,动涡旋部件20和定涡旋部件30之间的流体腔从径向外部位置向动涡旋部件20和定涡旋部件30的中心位置移动并且被压缩。被压缩的流体经由设置在定涡旋部件30的定涡旋端板32中心的排气口36排出。驱动轴50的另一端可包括同心孔54。同心孔54经由偏心孔56通向偏心曲柄销52,以便将压缩机底部油池中的润滑剂供给至压缩机的可动部件以进行润滑。
在动涡旋部件20和轴承套70之间设置有止推板80,并且止推板80可以固定在轴承套70上或者与轴承套70形成为一体件。止推板80用于对动涡旋部件20进行轴向支撑。动涡旋部件20的端板22具有与止推板80接触并相对于止推板80滑动的止推表面21,止推板80也具有止推表面81,该止推表面81用于接触并支承动涡旋部件20的止推表面21。随着驱动轴50旋转,动涡旋部件20的止推表面21与止推板80的止推表面81之间会产生相对运动和接触应力。因此这两个止推表面间需要充分润滑以减小其间的摩擦力从而防止二者咬死或过度磨损。
下面将参考图1和图2描述动涡旋部件20的止推表面21与止推板80的止推表面81之间的润滑过程。在图1所示的涡旋压缩机的示例中,在壳体12的底部存储有润滑剂。同心孔54的端部浸没在壳体12的底部的润滑剂中或者以其他方式被供给有润滑剂。在一种示例中,可以在该同心孔54中或其附近设置润滑剂供给装置,例如油泵或油叉等。在压缩机的运转过程中,同心孔 54的一端被润滑剂供给装置供给有润滑剂,进入同心孔54的润滑剂在驱动轴50旋转过程中受到离心力的作用而被泵送或甩到偏心孔56中并且沿着偏心孔56向上流动一直到达偏心曲柄销52的端面。从偏心曲柄销52的端面排出的润滑剂沿着偏心曲柄销52与衬套58之间的间隙以及衬套58与毂部26之间的间隙进入轴承套70和止推板80之间的空间90并且在所述空间90中聚集。配重60固定设置在驱动轴50的一端并且位于止推板80和轴承套70之间,即位于所述空间90中。随着驱动轴50旋转,固定设置在驱动轴一端的配重60也旋转。如图2中的箭头所示,聚集在空间90中的一部分润滑剂被配重60搅动而沿毂部26的外侧向上运动到达位于动涡旋部件20的动涡旋端板22下侧的环形凹槽23中,并随着动涡旋部件20的平动转动而遍布动涡旋部件20的止推表面21与止推板80的止推表面81之间。可选地,涡旋压缩机中无需设置配重60,聚集在空间90中的一部分润滑剂被毂部26搅动而向上运动到达位于动涡旋部件20的动涡旋端板22下侧的环形凹槽23中,继而对动涡旋部件20和止推板80之间的止推表面进行润滑。
下面参考图3A-3D详细说明根据本公开的第一实施方式的动涡旋部件20的结构。动涡旋部件20包括动涡旋端板22,形成在动涡旋端板22一侧的毂部26和形成在动涡旋端板22另一侧的螺旋叶片24。在动涡旋端板22的毂部26一侧的表面上形成有与止推板(未示出)接触并相对于止推板滑动的止推表面21。在邻近止推表面21的径向内侧形成有环形凹槽23。如图3C所示,环形凹槽23的截面形状为U型。可选地,如图3D所示,环形凹槽23的截面形状为V型。可选地,环形凹槽23的截面形状可以为任何便于储存润滑剂和引导润滑剂的形状。
图4是根据本公开的第一实施方式的止推板和动涡旋部件的相互运动的关系视图。在图4中,假设止推板80的止推表面81的内径为R b(图5A、5B分别示出了在径向内侧处带倒圆角和不带倒圆角的止推板80的止推表面81的内径R b),假设动涡旋部件20相对于止推板80(或定涡旋部件,未示出)平动转动的回转半径为R or(参见图4中虚线形成的圆),假设环形凹槽23的外径为R a。则当R a<R b-R or时,环形凹槽23由于其外径过小,无法与止推板80的止推表面81接触,从而难以将环形凹槽23中的润滑剂带到止推板80的止推表面81上。另外,当R a>R b+R or时,环形凹槽23由于其外径过大,在动 涡旋部件20相对于止推板80平动转动期间,环形凹槽23的外径所在的整个棱边都与止推板80的止推表面81相接触,从而导致在动涡旋部件20和止推板80之间的接触应力的作用下,环形凹槽23的棱边的缺陷如毛刺等容易损伤止推板80的止推表面81。因此,为了兼顾从环形凹槽23至止推板80的止推表面81的润滑剂的供给和减少环形凹槽23的棱边的缺陷如毛刺等对止推板80的止推表面81的损伤,环形凹槽23的外径为R a可以设计成使得上述参数满足公式:R b-R or<R a<R b+R or。在这种情况下,可以实现:在动涡旋部件20和止推板80之间的接触应力较小或没有接触应力的区域,环形凹槽23部分伸入止推板80的止推表面81,使环形凹槽23中的润滑剂随着动涡旋部件20的平动转动被带至止推板80的止推表面81上。具体而言,由于动涡旋部件2O的平动转动,在动涡旋部件20和止推板80之间会产生接触应力。该接触应力的分布具有以下特点:在止推板80最靠近毂部和最远离毂部62的区域,止推板80和动涡旋部件20之间的接触应力最小或者没有接触应力,而在与止推板80的最靠近毂部62的区域和最远离毂部62的区域之间的连线垂直的区域,止推板80和动涡旋部件20之间的接触应力最大,并沿着周向方向朝最靠近毂部62的区域和最远离毂部62的区域逐渐减小。因此,由于环形凹槽23与毂部62同心设置,在止推板80最靠近毂部62的区域(即止推板80和动涡旋部件20之间的接触应力最小或者没有接触应力的区域),环形凹槽23部分伸入止推板80的止推表面81,将环形凹槽23中的润滑剂带到止推板80的止推表面81上。并且由于在该区域止推板80和动涡旋部件20之间的接触应力最小或者没有接触应力,可以减少环形凹槽23的棱边的进入止推板80的部分对止推板80的止推表面81的损伤。而环形凹槽23的棱边的其他部分并未与止推板80的止推表面81相接触,因此也不会对止推板80的止推表面81产生损伤。
在R b-R or<R a<R b+R or的参数范围内,环形凹槽23的外径R a越小,环形凹槽23伸入止推板80的部分越少,则从环形凹槽23中带出的润滑剂越少,而对止推板80的止推表面81的损伤越小;而R a越大,环形凹槽23伸入止推板80的部分越多,则从环形凹槽23中带出的润滑剂越多,而对止推板80的止推表面81的损伤越大。因此,可以根据压缩机运行环境来判定供油情况,从而根据供油情况来设定环形凹槽23的内径大小。
在一个示例中R a满足公式:R a=R b-0.5R or。在该参数条件下,可以实现从 环形凹槽23至止推板80的止推表面81的润滑剂的供给和减少环形凹槽23的棱边的缺陷如毛刺等对止推板80的止推表面81的损伤的最佳平衡。这特别适用于变频压缩机或者运行条件不恒定的压缩机。
图7示出了相对于本公开实施方式的第一对比示例。图7所示的第一对比示例公开了一种用于涡旋压缩机的动涡旋部件20’,该动涡旋部件20’包括动涡旋端板22’,在端板22’一侧延伸的螺旋叶片24’以及在端板22’另一侧延伸的毂部26’。端板22’由止推板(未示出)支撑。随着动涡旋部件20’的平动转动,动涡旋部件20’与止推板之间会产生相对运动和接触应力,从而在动涡旋部件20’与止推板之间产生一定磨损。为了解决磨损问题,在动涡旋端板22’上设置有进油孔27’、横孔28’、出油孔29’以及在动涡旋部件20’的止推表面21’上设置有环形油槽23’。当压缩机运行时,润滑剂从进油孔27’进入,并且沿着横孔28’流动,然后从出油孔29’流到环形油槽23’中。最终,随着动涡旋部件20’相对于止推板运动,润滑剂从环形油槽23’进入动涡旋部件20’和止推板之间以降低动涡旋部件20’和止推板之间的磨损。
在第一对比示例中,由于环形油槽设置于动涡旋部件20’的止推表面21’的中间位置,该环形油槽23’的两条棱边的缺陷如毛刺等会在动涡旋部件20和止推表面相对运动时损伤止推板的止推表面。另外,该油路布置供油道路较长,从而导致供油量少,止推表面得不到充分润滑,磨损严重。
图8示出了在第一对比示例基础上进行改进的第二对比示例。在第二对比示例中,与第一对比示例相比,对称增加了一条与第一对比示例相同的供油通道以将双倍的润滑剂供应到环形油槽23’中。虽然与第一对比示例相比,第二对比示例提高了润滑剂的供油量,然而第二对比示例仍然存在环形油槽23’的棱边的缺陷如毛刺等容易损伤止推板的止推表面的缺陷。
与图7、图8所示的对比示例相比,在根据本实用新型第一实施方式的涡旋压缩机中,在临近动涡旋部件20的止推表面21的径向内侧处(即与止推板80的止推表面81之间的接触应力较小或没有接触应力的区域)设置有环形凹槽23,从而能够有效地减少环形凹槽23的棱边的缺陷如毛刺等对止推板80的止推表面81的损伤。
下面参考图6A和图6B详细说明根据本公开的第二实施方式的动涡旋部 件20的结构。动涡旋部件20包括动涡旋端板22,形成在动涡旋端板22一侧的毂部26和形成在动涡旋端板22另一侧的螺旋叶片24。在动涡旋端板22的毂部26一侧的表面上形成有与止推板(未示出)接触并相对于止推板滑动的止推表面21。在邻近止推表面21的径向内侧形成有环形凹槽23。该环形凹槽23为同心设置的两个环形凹槽,并且在环形凹槽23上沿周向方向间隔设置有多个使两个环形凹槽23流体连通的径向通道25。径向通道25沿径向向内的方向延伸至动涡旋部件20的毂部26与止推表面21的交界处,从而便于将沿毂部26外侧输送的润滑剂引导至环形凹槽23中,并进一步引导至动涡旋部件20的止推表面21上。可选地,径向通道25可以为一个或多个,径向通道25可以在环形凹槽23的周向方向上等间距设置或不等间距设置。可选地,环形凹槽23可以为三个或三个以上。在环形凹槽23为多个的情况下,环形凹槽23的外径为最靠外侧的环形凹槽的外径。可选地,多个环形凹槽23在径向上等间距设置。
尽管在此已详细描述本公开的各种实施方式,但要理解的是本公开并不局限于这里详细描述和示出的具体实施方式,在不偏离本公开的实质和范围的情况下可由本领域的技术人员实现其它的变型和变体。所有这些变型和变体都落入本公开的范围内。而且,所有在此描述的构件都可以由其他技术性上等同的构件来代替。

Claims (10)

  1. 一种涡旋压缩机,包括:
    动涡旋部件(20),所述动涡旋部件(20)具有端板(22);以及
    止推板(80),所述止推板(80)构造成用于对所述动涡旋部件(20)进行轴向支承,
    其中,所述端板(22)具有与所述止推板(80)接触并相对于所述止推板(80)滑动的第一止推表面(21),所述止推板(80)具有用于接触并支承所述第一止推表面(21)的第二止推表面(81),
    其特征在于,在邻近所述第一止推表面(21)的径向内侧形成有环形凹槽(23),所述环形凹槽(23)的外径R a满足以下参数关系:R b-R or<R a<R b+R or,其中,R b为所述止推板(80)的第二止推表面(81)的内径,R or为所述动涡旋部件(20)相对于所述止推板(80)平动转动的回转半径。
  2. 根据权利要求1所述的涡旋压缩机,其特征在于,所述环形凹槽(23)的外径R a满足以下参数关系:R a=R b-0.5R or
  3. 根据权利要求1或2所述的涡旋压缩机,其特征在于,所述环形凹槽(23)的截面形状为V型或U型。
  4. 根据权利要求1或2所述的涡旋压缩机,其特征在于,所述环形凹槽(23)为同心设置的多个环形凹槽(23)。
  5. 根据权利要求4所述的涡旋压缩机,其特征在于,多个所述环形凹槽(23)在径向上等间距设置。
  6. 根据权利要求4所述的涡旋压缩机,其特征在于,在多个所述环形凹槽(23)沿周向方向上间隔设置有使多个所述环形凹槽(23)流体连通的多个径向通道(25)。
  7. 根据权利要求6所述的涡旋压缩机,其特征在于,多个所述径向通道(25)沿周向方向等间距设置。
  8. 根据权利要求6或7所述的涡旋压缩机,其特征在于,在所述动涡旋部件(20)的第一止推表面(21)的径向内侧设置有毂部(26),多个所述径向通道(25)沿径向向内的方向延伸至所述毂部(26)与所述第一止推表面(21)的交界处。
  9. 根据权利要求1所述的涡旋压缩机,其特征在于,还包括用于支撑所述止推板(80)的轴承套(70),所述止推板(80)固定至轴承套(70)或者与所述轴承套(70)形成为一体件。
  10. 根据权利要求1所述的涡旋压缩机,其特征在于,所述止推板(80)的邻近所述第二止推表面(81)的径向内侧处具有倒圆角。
PCT/CN2020/121072 2020-04-20 2020-10-15 涡旋压缩机 WO2021212772A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010311423.0 2020-04-20
CN202020598750.4 2020-04-20
CN202020598750.4U CN212155162U (zh) 2020-04-20 2020-04-20 涡旋压缩机
CN202010311423.0A CN113530827A (zh) 2020-04-20 2020-04-20 涡旋压缩机

Publications (1)

Publication Number Publication Date
WO2021212772A1 true WO2021212772A1 (zh) 2021-10-28

Family

ID=78271104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121072 WO2021212772A1 (zh) 2020-04-20 2020-10-15 涡旋压缩机

Country Status (1)

Country Link
WO (1) WO2021212772A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261178A (ja) * 1995-03-22 1996-10-08 Daikin Ind Ltd スクロール形流体機械
US5745992A (en) * 1986-08-22 1998-05-05 Copeland Corporation Method of making a scroll-type machine
CN201972927U (zh) * 2010-12-22 2011-09-14 艾默生环境优化技术有限公司 用于卧式涡旋压缩机的止推板和卧式涡旋压缩机
CN105508252A (zh) * 2014-09-22 2016-04-20 珠海格力节能环保制冷技术研究中心有限公司 压缩机
CN110878751A (zh) * 2018-09-06 2020-03-13 艾默生环境优化技术(苏州)有限公司 涡旋压缩机
CN110925194A (zh) * 2018-09-20 2020-03-27 艾默生环境优化技术(苏州)有限公司 止推板、动涡旋部件和涡旋压缩机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5745992A (en) * 1986-08-22 1998-05-05 Copeland Corporation Method of making a scroll-type machine
JPH08261178A (ja) * 1995-03-22 1996-10-08 Daikin Ind Ltd スクロール形流体機械
CN201972927U (zh) * 2010-12-22 2011-09-14 艾默生环境优化技术有限公司 用于卧式涡旋压缩机的止推板和卧式涡旋压缩机
CN105508252A (zh) * 2014-09-22 2016-04-20 珠海格力节能环保制冷技术研究中心有限公司 压缩机
CN110878751A (zh) * 2018-09-06 2020-03-13 艾默生环境优化技术(苏州)有限公司 涡旋压缩机
CN110925194A (zh) * 2018-09-20 2020-03-27 艾默生环境优化技术(苏州)有限公司 止推板、动涡旋部件和涡旋压缩机

Similar Documents

Publication Publication Date Title
KR100749040B1 (ko) 스크롤 압축기
KR101364025B1 (ko) 축방향 지지부재를 갖는 스크롤 압축기
EP3246570A1 (en) Variable speed cooling compressor including lubricating oil pumping system
WO2016173319A1 (zh) 涡旋压缩机
WO2019044867A1 (ja) スクロール型圧縮機
US9562530B2 (en) Rotor pump and rotary machinery comprising the same, the rotor pump including a pump body forming an accommodation cavity, a pump wheel rotating in the accommodation cavity and a sealing plate having an eccentric hole that is eccentric relative to a rotation axis of the pump wheel, where a shaft portion of the pump wheel is rotatably fitted in the eccentric hole
CN209340147U (zh) 用于涡旋压缩机的止推板和涡旋压缩机
JP2009162078A (ja) スクロール型圧縮機
US9115715B2 (en) Compressor with pressure reduction groove formed in eccentric part
EP3670918A1 (en) Rotary mechanism
WO2021212772A1 (zh) 涡旋压缩机
JP5459376B1 (ja) スクロール圧縮機
CN113530827A (zh) 涡旋压缩机
WO2020143350A1 (zh) 用于涡旋压缩机的止推板和涡旋压缩机
CN109196227B (zh) 涡旋压缩机
CN212389528U (zh) 涡旋压缩机的配重组件及涡旋压缩机
CN212155162U (zh) 涡旋压缩机
JP2005201171A (ja) 圧縮機の潤滑機構
CN110552886B (zh) 压缩机
WO2021114718A1 (zh) 主轴承座和涡旋压缩机
WO2021203638A1 (zh) 涡旋压缩机的配重组件及涡旋压缩机
US11885327B2 (en) Flow control valve, oil pump assembly having the flow control valve, and scroll compressor
CN217029311U (zh) 用于涡旋压缩机的主轴承座及涡旋压缩机
WO2021203636A1 (zh) 涡旋压缩机
WO2021184723A1 (zh) 压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932357

Country of ref document: EP

Kind code of ref document: A1