WO2023125816A1 - 用于涡旋压缩机的驱动件以及涡旋压缩机 - Google Patents

用于涡旋压缩机的驱动件以及涡旋压缩机 Download PDF

Info

Publication number
WO2023125816A1
WO2023125816A1 PCT/CN2022/143419 CN2022143419W WO2023125816A1 WO 2023125816 A1 WO2023125816 A1 WO 2023125816A1 CN 2022143419 W CN2022143419 W CN 2022143419W WO 2023125816 A1 WO2023125816 A1 WO 2023125816A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
wedge
driver
fluid
driving member
Prior art date
Application number
PCT/CN2022/143419
Other languages
English (en)
French (fr)
Inventor
孙玉松
姚丽
王柳
刘三祥
Original Assignee
丹佛斯(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202123441551.6U external-priority patent/CN217682264U/zh
Priority claimed from CN202111681234.3A external-priority patent/CN116412129A/zh
Application filed by 丹佛斯(天津)有限公司 filed Critical 丹佛斯(天津)有限公司
Publication of WO2023125816A1 publication Critical patent/WO2023125816A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with or adaptation to specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • Embodiments of the present invention relate to a driver for a scroll compressor and a scroll compressor including the same.
  • a traditional scroll compressor includes a fixed scroll and an orbiting scroll.
  • the fixed scroll has an end plate and a fixed scroll protruding from the end plate.
  • the movable scroll has an end plate and a movable scroll protruding from the end plate, and the movable scroll and the fixed scroll cooperate to form a compression chamber for compressing the medium.
  • the motor drives the movable scroll to rotate through the drive shaft to compress the medium in the compression chamber.
  • An object of embodiments of the present invention is to provide a drive for a scroll compressor and a scroll compressor including the same, whereby for example the performance of the scroll compressor can be improved.
  • An embodiment of the present invention provides a driving member for a scroll compressor, the scroll compressor includes: a first scroll and a second scroll, the driving member includes: a hub having an inner hole a hub comprising opposing first and second ends; and a flange protruding radially outward from the first end of the hub of the driver, wherein the boss The rim connects the driving member with the first scroll of the scroll compressor, thereby driving the first scroll to rotate, wherein the first scroll drives the second scroll to rotate.
  • the flange portion includes a connecting member for connecting the driving member with the first scroll of the scroll compressor.
  • the end surface of the second end portion of the hub portion of the driving member has an oil groove.
  • the oil groove is spaced apart from the outer periphery of the end face of the second end portion of the hub of the driving member.
  • the oil groove extends in a radial direction.
  • a wall of the inner hole of the hub has a stepped portion, and the stepped portion of the hub has a stepped surface.
  • the driving member further includes: at least one fluid channel formed in the flange portion, the flange portion having a first direction toward the direction from the first end to the second end. surface; and a second surface facing the direction from the second end to the first end, the fluid channel has a fluid inlet formed in the first surface, and a fluid outlet formed in the second surface, so that the fluid passes through The fluid inlet of the fluid channel enters the fluid channel and flows out of the fluid outlet.
  • the fluid channel extends in the axial direction of the drive member.
  • the fluid channel extends obliquely with respect to the axial direction of the driving member, and the fluid outlet of the fluid channel is farther from the axis of the driving member than the fluid inlet.
  • the fluid passes through the axis of the fluid channel at the point at the fluid inlet and the axis of rotation of the driver, and the second plane is perpendicular to the first plane and parallel to the axis of rotation of the driver, the fluid
  • the included angle between the axis of the channel and the first plane is 0 to 60 degrees, and the included angle between the axis of the fluid channel and the second plane is 5 to 60 degrees.
  • the drive member comprises two fluid channels, which are opposite to each other in the radial direction of the drive member.
  • the fluid channel of the driver has a circular or oval or curved cross-section.
  • the flange part has a connecting hole of the driving part, and the connecting hole of the driving part has a threaded part for fixedly connecting the driving part with the first scroll through bolts.
  • the driving member further includes: a counterweight hole formed in the flange portion, and the counterweight hole is used to dynamically balance the driving member.
  • the flange portion has a first surface facing in a direction from the first end to the second end; and a second surface facing in a direction from the second end to the first end,
  • the counterweight holes are blind holes extending from the second surface of the flange portion toward the first surface of the flange portion.
  • the driving member further includes: an annular protrusion protruding from the surface of the flange portion, the annular protrusion has an annular wedge-shaped protrusion portion, and the wedge-shaped protrusion portion
  • the cross-section in the radial direction has a wedge shape
  • the wedge-shaped convex portion has an axially outward wedge-shaped convex surface
  • in the cross-section in the radial direction, the wedge-shaped convex surface is The axial distance of the first wedge-shaped protrusion point from the surface of the flange portion is the largest, and the axial distance of the second wedge-shaped protrusion point in the radial direction from the surface of the flange portion is zero , at least a portion of the wedge-shaped convex surface corresponding to the first wedge-shaped convex point is at the second end of the surface of the flange portion of the driving member for supporting the second scroll In the annular region of said surface of the plate.
  • the axial distance between the wedge-shaped convex surface and the surface of the flange part is in the range of 20 microns to 40 microns or 0.1 microns to 1 mm In the range.
  • the first wedge-shaped protrusion point is radially outside the second wedge-shaped protrusion point, or the first wedge-shaped protrusion point is radially inside the second wedge-shaped protrusion point.
  • the annular protrusion further has an annular transitional protrusion portion, the transitional protrusion portion has an axially outward transitional protrusion surface, and in a cross section in the radial direction, The transition convex surface extends from a point of the wedge-shaped convex surface corresponding to the first wedge-shaped convex point away from the second wedge-shaped convex point and toward the surface of the flange portion to the The surface of the flange portion.
  • the cross section of the transition raised portion in the radial direction has a wedge shape.
  • the dimension of the transition protrusion portion in the radial direction is smaller than the dimension of the wedge-shaped protrusion portion in the radial direction.
  • An embodiment of the present invention also provides a scroll compressor, including: a first scroll, the first scroll includes a first end plate and a first scroll protruding from the first end plate in a first direction scroll; a second scroll comprising a second end plate and a second scroll extending from the second end plate in a second direction opposite to the first direction, the second scroll Cooperate with the first scroll to form a compression chamber for compressing the medium; the bracket is located on the side of the second scroll away from the first scroll; the motor; and the above-mentioned driving member, the The driving member is rotatably mounted on the bracket and is located on the side of the second scroll away from the first scroll, the driving member includes: a hub with an inner hole, and the hub includes an opposite second scroll.
  • the first scroll further includes an outer wall protruding from the first end plate in a first direction, the outer wall is radially outside the first scroll wrap and the second scroll, The outer wall is provided with a connecting piece, and the driving piece is connected with the first scroll through the connecting piece.
  • said outer wall has an annular shape.
  • the scroll compressor further includes: a fixed shaft, the fixed shaft is fixed to the bracket, and the hub portion of the driving member is rotatably mounted on the fixed shaft for The driving member is rotatably mounted on the bracket.
  • the second end plate of the second scroll is rotatably supported on the flange portion of the driving member.
  • the scroll compressor further includes: a first bearing, the first end of the hub is mounted on the fixed shaft through the first bearing; and a second bearing, the hub The second end of the second bearing is mounted on the fixed shaft.
  • the hole wall of the inner hole of the hub of the driver has a stepped portion, and the stepped portion of the hub of the driver has a stepped surface facing the second direction
  • the fixed shaft has a stepped portion, and the stepped portion of the fixed shaft has a stepped surface facing the first direction
  • the scroll compressor further includes a first thrust bearing, which is arranged on the drive member. between the stepped surface of the stepped portion of the hub and the stepped surface of the fixed shaft.
  • the bracket includes: a cylindrical portion, and a flange portion radially protruding from the cylindrical portion of the bracket, and the second end portion of the hub portion of the driving member is supported on on the flange portion of the bracket.
  • the end face of the second end of the hub of the driver has a ring-shaped contact area between the second end of the hub of the driver and the flange of the bracket.
  • an oil groove extending transversely across a portion of the annular contact region from a radially inner side towards a radially outer side of the annular contact region, the oil groove being radially spaced from a radially outer edge of the annular contact region open.
  • the oil groove is spaced apart from the outer periphery of the end face of the second end portion of the hub of the driving member.
  • the flange portion of the driving member is sealingly connected with the outer wall of the first scroll to form a suction chamber of a scroll compressor through which fluid enters the compression chamber .
  • the driving member includes at least one fluid channel formed in the flange portion of the driving member, the fluid channel having an orientation formed in the flange portion of the driving member a fluid inlet in a surface of the first direction, and a fluid outlet formed in a surface of the flange portion of the driver facing in the second direction, such that fluid passes through the fluid inlet of the fluid channel, into the fluid channel, and from the fluid outlet into the suction chamber.
  • the fluid channel extends obliquely with respect to the axial direction of the drive member, the fluid outlet of the fluid channel being farther from the rotation axis of the drive member than the fluid inlet.
  • the fluid passes through the axis of the fluid channel at the point at the fluid inlet and the axis of rotation of the driver, and the second plane is perpendicular to the first plane and parallel to the axis of rotation of the driver, the fluid
  • the included angle between the axis of the channel and the first plane is 0 to 60 degrees, and the included angle between the axis of the fluid channel and the second plane is 5 to 60 degrees.
  • the outer wall has a recess at a position corresponding to the position of the fluid outlet of the fluid channel, the recess being formed on the rotation of the outer wall towards the first scroll axis, and the wall surface of the recess facing the rotation axis of the first scroll gradually faces the rotation axis of the first scroll in the direction toward the first end plate of the first scroll Slope or bend.
  • the scroll compressor according to the embodiment of the present invention can improve the performance of the scroll compressor.
  • FIG. 1 is a schematic cross-sectional view of a scroll compressor according to an embodiment of the present invention
  • FIG. 2 is a schematic perspective view of a first scroll of the scroll compressor shown in FIG. 1;
  • FIG. 3 is a schematic perspective view of a second scroll of the scroll compressor shown in FIG. 1;
  • FIG. 4 is a schematic perspective view of a drive member of the scroll compressor shown in FIG. 1;
  • Fig. 5 is a schematic perspective view of a driving member of a scroll compressor according to a modified example of an embodiment of the present invention
  • FIG. 6 is a schematic perspective view of a drive member of the scroll compressor shown in FIG. 4;
  • Fig. 7 is a schematic top view of the driving member of the scroll compressor shown in Fig. 4;
  • Fig. 8 is a schematic top view of a driving member of a scroll compressor according to a modified example of an embodiment of the present invention.
  • Fig. 9 is a schematic cross-sectional view of the drive member of the scroll compressor shown in Fig. 8 along the line AA in Fig. 8;
  • Fig. 10 is a schematic cross-sectional view of the drive member of the scroll compressor shown in Fig. 8 along line DD in Fig. 8;
  • Fig. 11 is a schematic cross-sectional view of the drive member of the scroll compressor shown in Fig. 8 along line EE in Fig. 8;
  • Fig. 12 is a schematic cross-sectional view of the drive member of the scroll compressor shown in Fig. 8 along line FF in Fig. 8;
  • Fig. 13 is a schematic sectional view of the drive member of the scroll compressor shown in Fig. 8 along line GG in Fig. 8;
  • Fig. 14 is a schematic top view of a driving member of a scroll compressor according to another modified example of the embodiment of the present invention.
  • Fig. 15 is a schematic cross-sectional view of the drive member of the scroll compressor shown in Fig. 14 along line JJ in Fig. 14;
  • Fig. 16 is a schematic cross-sectional view of a driving member of a scroll compressor according to yet another modification of the embodiment of the present invention.
  • FIG. 17 is a partial enlarged view of a portion S of the drive member of the scroll compressor shown in FIG. 16;
  • Fig. 18 is a schematic cross-sectional view of a driving member of a scroll compressor according to yet another modified example of the embodiment of the present invention.
  • Fig. 19 is a schematic cross-sectional view of a drive member of a scroll compressor according to a further modification of the embodiment of the present invention.
  • Fig. 20 is a schematic exploded perspective view of a driving member, a thrust bearing and a second scroll of a scroll compressor according to a modified example of an embodiment of the present invention
  • Figure 21 is a schematic cutaway perspective view of the drive, thrust bearing and second scroll of the scroll compressor shown in Figure 20;
  • Fig. 22 is a schematic sectional perspective view of a driving member, a thrust bearing and a second scroll of a scroll compressor according to another modification of the embodiment of the present invention
  • Figure 23 is a schematic perspective view of a sleeve of the drive member of the scroll compressor shown in Figure 1;
  • Fig. 24 is a schematic perspective view of the assembled state of the driving member, the first scroll, the second scroll and the fixed shaft of the scroll compressor shown in Fig. 1;
  • Fig. 25 is a schematic exploded perspective view of the driving member, the first scroll, the second scroll, and the fixed shaft of the scroll compressor shown in Fig. 24;
  • Fig. 26 is a schematic sectional view of the driving member, the first scroll, the second scroll, and the fixed shaft of the scroll compressor shown in Fig. 24;
  • Fig. 27 is a schematic exploded perspective view of the driving member, the first scroll, the second scroll, and the fixed shaft of the scroll compressor shown in Fig. 24;
  • Fig. 28 is a schematic cross-sectional view of the scroll compressor shown in Fig. 1 in the assembled state of the driving member, the second scroll, the fixed shaft, and the oiling bolt;
  • Fig. 29 is a schematic perspective view of a bracket of the scroll compressor shown in Fig. 1;
  • Fig. 30 is a schematic cross-sectional view of the bracket of the scroll compressor shown in Fig. 29;
  • Fig. 31 is a schematic cross-sectional view of a driving member and a second scroll of a scroll compressor according to a modified example of an embodiment of the present invention
  • Fig. 32 is a partially enlarged schematic cross-sectional view of the part related to the annular protrusion in Fig. 31;
  • Fig. 33 is a schematic cross-sectional view of a driving member and a second scroll of a scroll compressor according to another modified example of the embodiment of the present invention.
  • Fig. 34 is a partially enlarged schematic cross-sectional view of the part related to the annular protrusion in Fig. 33;
  • Fig. 35 is a schematic sectional view of the driving member, the first scroll, and the second scroll of the scroll compressor shown in Fig. 1;
  • FIG. 36 is a schematic exploded perspective view of the driving member, the first scroll, and the second scroll of the scroll compressor shown in FIG. 35;
  • FIG. 37 is a schematic cross-sectional view of a scroll compressor according to a modified example of the embodiment of the present invention in an assembled state of a bracket, a fixed shaft, a driver, and a second scroll.
  • a scroll compressor 100 includes a first scroll 11 and a second scroll 12 .
  • the driver 3 according to an embodiment of the present invention includes: a hub 31 having an inner hole 30, the hub 31 includes opposite first ends 311 and second ends 312;
  • the first end portion 311 of the hub portion 31 of 3 has a flange portion 32 protruding radially outward, and the driving member 3 is connected to the first scroll 11 through the flange portion 32 .
  • the flange portion 32 connects the driving member 3 with the first scroll 11 to drive the first scroll 11 to rotate.
  • the flange portion 32 includes a connecting piece 130 ( FIGS.
  • the connecting piece 130 connects the driving piece 3 with the first scroll 11 to drive the first scroll 11 to rotate, so the first scroll
  • the gas generated by the rotation of the rotary disk 11 can drive the second scroll disk 12 to rotate together.
  • the connecting part 130 may be integrated with one of the first scroll 11 and the driving part 3, or may be a separate connecting part.
  • the end surface 3120 of the second end portion 312 of the hub portion 31 of the driving member 3 has an oil groove 56 .
  • the oil groove 56 may extend in a radial direction. According to an example of the present invention, as shown in FIG. 5 , the oil groove 56 is spaced apart from the outer periphery 3121 of the end surface 3120 of the second end portion 312 of the hub portion 31 of the driving member 3 .
  • the oil groove 56 may be at least one oil groove, or two or more oil grooves distributed according to a certain interval (such as an equal interval).
  • the hole wall 301 of the inner hole 30 of the hub portion 31 of the driver 3 has a stepped portion 302, and the stepped portion 302 of the hub portion 31 of the driver 3 has a The stepped surface 303 in the two directions D2.
  • the driver 3 includes at least one fluid channel formed in the flange portion 32 of the driver 3 6.
  • the flange portion 32 has a first surface 321 facing the direction from the first end portion 311 to the second end portion 312; and a second surface 320 facing the direction from the second end portion 312 to the first end portion 311,
  • the fluid channel 6 has a fluid inlet 61 formed in the first surface 321, and a fluid outlet 62 formed in the second surface 320, so that the fluid passes through the fluid inlet 61 of the fluid channel 6, enters the fluid channel 6, and exits the fluid outlet 62 flow out.
  • the driver 3 may comprise two fluid channels 6 , which are opposite each other in the radial direction of the driver 3 .
  • the fluid channel 6 of the driver 3 can have a circular or oval or curved cross section.
  • the fluid channel 6 extends obliquely relative to the axial direction of the drive member 3, and the fluid outlet 62 of the fluid channel 6 is larger than the fluid inlet. 61 is remote from the axis of rotation 91 of the drive 3 .
  • the included angle between the axis 93 of the fluid channel 6 and the first plane is 0 to 60 degrees
  • the included angle between the axis 93 of the fluid channel 6 and the second plane is 5 to 60 degrees.
  • the fluid channel 6 extends along the axial direction of the driver 3, that is, the axis 93 of the fluid channel 6 is parallel to the rotation axis 91 of the driver 3, and the fluid channel 6
  • the included angle between the axis 93 of the fluid channel 6 and the first plane is 0 degrees
  • the included angle between the axis 93 of the fluid channel 6 and the second plane is also 0 degrees.
  • the flange portion 32 of the driver 3 has a driver connection hole 323, and the driver connection hole 323 of the flange portion 32 of the driver 3 has a threaded portion 324
  • the connecting piece 130 ( FIG. 25 to FIG. 27 ) includes a bolt 132 , and the bolt 132 fixedly connects the first scroll 11 and the driving piece 3 through the connecting hole 323 of the driving piece.
  • the flange portion 32 of the driver 3 has a driver pin hole 322 .
  • the outer wall 111 of the first scroll 11 has a scroll pin hole 114, and the connecting member 130 further includes: a pin 131 inserted into the scroll pin hole 114 ( FIG. 2 ) of the outer wall 111 of the first scroll 11 and The driver pin hole 322 ( FIG. 7 ) of the flange portion 32 of the driver 3 is used to determine the relative position of the first scroll 11 and the driver 3 .
  • the driving member 3 further includes: a counterweight hole 325 formed in the flange portion 32 , and the counterweight hole 325 is used to dynamically balance the driving member 3 .
  • the weight hole may be a blind hole extending from the second surface 320 of the flange portion 32 toward the first surface 321 of the flange portion 32 .
  • the driving member 3 does not have a counterweight hole 325 .
  • the driving member 3 further includes: an eccentric ring hole formed in the flange portion 32 326, the eccentric ring 341 (see Figure 25, Figure 27, Figure 35, Figure 36, Figure 37) is set in the eccentric ring hole 326, and the coupling pin 342 is inserted into the coupling formed in the second end plate 123 of the second scroll 12 In the pin hole 126 (Fig. 3) and the hole 3410 of the eccentric ring 341 (see Fig. 25, Fig. 27, Fig. 35, Fig. 36, Fig. 37).
  • the driver 3 may have three eccentric ring holes 326 .
  • the driving member 3 further includes: an annular protrusion 326 protruding from the surface 320 of the flange portion 32 of the driving member 3 at the edge of the flange portion 32, and An annular groove 327 is formed on the inner peripheral surface of the annular protrusion 326 .
  • the O-ring can be placed in the annular groove 327, thereby, referring to FIG. 1, FIG. 24 to FIG. gap.
  • the driving member 3 further includes an annular protrusion 73 protruding from the surface 320 of the flange portion 32 , and the annular protrusion 73 has an annular wedge-shaped protrusion portion 731 , the wedge-shaped protrusion portion 731 has a wedge-shaped cross-section in the radial direction, and the wedge-shaped protrusion portion 731 has a wedge-shaped protrusion surface 7310 facing axially outward.
  • the axial distance between the first wedge-shaped protrusion point P1 of the wedge-shaped protrusion surface 7310 in the radial direction and the surface 320 is the largest, and the second wedge-shaped protrusion point P2 in the radial direction is far from the surface 320.
  • the axial distance of the surface 320 is zero, and at least the portion of the wedge-shaped convex surface 7310 corresponding to the first wedge-shaped convex point P1 is on the surface 320 of the flange portion 32 of the driving member 3 for supporting the second scroll 12 .
  • At least a portion of the wedge-shaped convex surface 7310 corresponding to the first wedge-shaped convex point P1 is in the annular contact area of the second end plate 123 of the second scroll 12 and the flange portion 32 of the driving member 3 .
  • most or all of the portion of the wedge-shaped protrusion surface 7310 corresponding to the first wedge-shaped protrusion point P1 and the rest of the wedge-shaped protrusion surface 7310 are located on the surface 320 of the flange portion 32 of the driving member 3 for supporting the second wedge-shaped protrusion surface 7310.
  • the annular region of the surface 1230 of the second end plate 123 of the scroll 12 In the annular region of the surface 1230 of the second end plate 123 of the scroll 12 .
  • the portion of the wedge-shaped convex surface 7310 corresponding to the first wedge-shaped convex point P1 and the rest of the wedge-shaped convex surface 7310 are located between the second end plate 123 of the second scroll 12 and the driving member 3 .
  • the axial distance between the wedge-shaped protrusion surface 7310 and the surface 320 is within a range of 0.1 microns to 1 mm, or within a range of 20 microns to 40 microns.
  • the first wedge-shaped protrusion point P1 may be radially outside the second wedge-shaped protrusion point P2, or the first wedge-shaped protrusion point P1 may be radially inside the second wedge-shaped protrusion point P2.
  • the annular protrusion 73 also has an annular transition protrusion portion 732, and the transition protrusion portion 732 has an axially outward transition protrusion surface 7320, In a cross-section in the radial direction, the transition convex surface 7320 extends from a point of the wedge-shaped convex surface 7310 corresponding to the first wedge-shaped convex point P1 to the surface 320 in a manner away from the second wedge-shaped convex point P2 and toward the surface 320 .
  • a cross section of the transition convex portion 732 in the radial direction may have a wedge shape.
  • the dimension of the transition convex portion 732 in the radial direction may be smaller than the dimension of the wedge-shaped convex portion 731 in the radial direction.
  • the inner hole 30 of the hub 31 has an inner hole portion located at the first end portion 311 , and a recess 306 is provided on the hole wall of the inner hole portion.
  • the sleeve 9 for the driver includes: a cylindrical body 94 , and a protrusion 96 protruding radially outward from an outer peripheral surface 95 of the cylindrical body.
  • the protrusion 96 has a radially outwardly facing surface 961 which may be convex.
  • the protrusion 96 is wedge-shaped in the axial direction such that the size of the protrusion 96 in the radial direction gradually becomes smaller in a direction from one end 97 to the other end 98 of the cylindrical body 94 .
  • the sleeve 9 is provided in the inner hole portion of the hub 31 , and the protrusion 96 of the sleeve 9 fits in the recess 306 on the hole wall of the inner hole portion of the hub 31 .
  • a bearing bush as the first bearing 51 is provided inside the cylindrical main body 94 . Referring to FIG. 18 , in another embodiment of the present invention, there is no recess 306 on the hole wall of the inner hole portion, and the sleeve 9 has no protrusion 96 correspondingly.
  • a scroll compressor 100 includes: a first scroll 11 , a second scroll 12 , a bracket 4 , a motor 7 and a driving member 3 .
  • the first scroll 11 includes a first end plate 112 and a first scroll wrap 113 protruding from the first end plate 112 along a first direction D1.
  • the second scroll 12 includes a second end plate 123 and a second scroll wrap 124 protruding from the second end plate 123 in a second direction D2 opposite to the first direction D1, the second scroll wrap 124 and the first scroll wrap 124.
  • the scroll wraps 113 cooperate to form compression pockets for compressing media.
  • the bracket 4 is located on a side of the second scroll 12 away from the first scroll 11 .
  • the driver 3 is rotatably mounted on the bracket 4 and is located on the side of the second scroll 12 away from the first scroll 11, and the motor 7 drives the first scroll 11 around the rotation axis 91 through the driver 3 (Fig. 4 , FIG. 6, FIG. 9 to FIG. 13, FIG. 15, FIG. 16, FIG. 27) rotation, and the first scroll disk 11 drives the second scroll disk 12 to rotate around the rotation axis 92 (FIG. 27).
  • the axis of rotation 91 is the axis of rotation or axis of the drive 3 ( FIGS. 4 , 6 , 9 to 13 , 15 , 16 ).
  • the rotation axis 91 and the rotation axis 92 are parallel to each other and spaced apart.
  • the driver 3 includes: a hub 31 having an inner hole 30, the hub 31 includes opposite first ends 311 and second ends 312; The protruding flange portion 32 , through which the driving member 3 is connected to the first scroll 11 .
  • the motor 7 drives the first scroll 11 to rotate through the hub 31 of the driving member 3 , and the first scroll 11 drives the second scroll 12 to rotate.
  • the scroll compressor 100 further includes a casing 101 , and the casing 101 may include a first casing 1011 , a second casing 1012 and a third casing 1013 .
  • the first casing 1011 and the second casing 1012 form a sealed space, and the first scroll 11 , the second scroll 12 , the support 4 , the motor 7 and the driving member 3 are arranged in the casing 101 .
  • the second housing 1012 and the third housing 1013 define an exhaust chamber.
  • the bracket 4 can be fixed to the first housing 1011, for example, the bracket 4 is welded to the first housing 1011, the bracket 4 is fixed to the first housing 1011 through an interference fit with the first housing 1011, or the bracket 4 is fixed to the first housing 1011 by bolts.
  • the first casing 1011 One end of the bracket 4 can be fixed to the bottom of the housing 101 or the bottom of the first housing 1011 .
  • the first scroll 11 further includes an outer wall 111 protruding from the first end plate 112 along the first direction D1, the outer wall 111 is located between the first scroll wrap 113 and On the radially outer side of the second scroll 12 , the outer wall 111 is provided with a connecting piece 130 ( FIG. 24 to FIG. 27 ), and the driving member 3 is connected to the first scroll 11 through the connecting piece 130 ( FIGS. 24 to 27 ).
  • the outer wall 111 may have a ring shape.
  • the scroll compressor 100 further includes: a fixed shaft 5 fixed to the bracket 4 .
  • the driving member 3 is rotatably mounted on the bracket 4 through the hub portion 31 of the driving member 3 being rotatably mounted on the fixed shaft 5 .
  • the second end plate 123 of the second scroll 12 is rotatably supported on the flange portion 32 of the driving member 3 superior.
  • Fig. 2 Fig. 4, Fig. 8, Fig. 10, Fig. 12, Fig. 14, Fig. 25 to Fig.
  • the outer wall 111 of the first scroll 11 has a scroll pin hole 114 (Fig. 2)
  • the flange part 32 of the driver 3 has a driver pin hole 322 (4, FIG. 8, FIG. 12, FIG. 14).
  • the outer wall 111 of the first scroll 11 has a scroll connecting hole 116 (Fig. 25, Fig. 26, Fig. 27), and the flange part 32 of the driver 3 has a driving part connecting hole 323 (Fig. 8, Fig. 13, Fig. 14 , Fig. 26 to Fig. 27), one of the driving part connecting hole 323 of the flange part 32 of the driving part 3 and the scroll connecting hole 116 of the outer wall 111 of the first scroll 11 has a threaded part 324, and the connecting part 130 ( FIG. 25 to FIG.
  • the scroll compressor 100 further includes: a first bearing 51 and/or a second bearing 52 .
  • the first end 311 of the hub 31 is mounted on the fixed shaft 5 through the first bearing 51
  • the second end 312 of the hub 31 is mounted on the fixed shaft 5 through the second bearing 52 .
  • the second scroll 12 further includes a hub portion 121 protruding from the second end plate 123 along the first direction D1, see Fig. 1, Fig. 28
  • the fixed shaft 5 has an axial bore 50 .
  • the scroll compressor 100 further includes a third bearing 53 through which the hub 121 of the second scroll 12 is installed in the axial inner hole 50 of the fixed shaft 5 .
  • the stepped portion 302 has a stepped surface 303 facing the second direction D2
  • the fixed shaft 5 has a stepped portion 501
  • the stepped portion 501 of the fixed shaft 5 has a stepped surface 502 facing the first direction D1
  • the scroll compressor 100 also includes a first stop.
  • the thrust bearing 54 , the first thrust bearing 54 is disposed between the stepped surface 303 of the stepped portion 302 of the hub portion 31 of the driver 3 and the stepped surface 502 of the stepped portion 501 of the fixed shaft 5 .
  • the first thrust bearing 54 may be any suitable known thrust bearing.
  • the first thrust bearing 54 may be an annular thrust washer made of wear-resistant metal or non-metallic material, or the first thrust bearing 54 may be a ball thrust bearing, a roller thrust bearing, or the like.
  • the bracket 4 includes: a cylindrical portion 41, and a flange portion 42 protruding radially from the cylindrical portion 41 of the bracket 4, and the driver 3
  • the second end portion 312 of the hub portion 31 is supported on the flange portion 42 of the bracket 4 .
  • a part of the fixed shaft 5 is inserted into and fixed to the cylindrical portion 41 of the bracket 4 , and the fixed shaft 5 has a cylindrical shape.
  • the scroll compressor 100 further includes: a first Two thrust bearings 55.
  • the surface 320 of the flange portion 32 of the driver 3 has an annular groove 3201 .
  • the grooves 3201 are deeper, while in the embodiment shown in Figure 22, the grooves 3201 are shallower.
  • the second thrust bearing 55' is disposed in the groove 3201 and is in contact with the surface 1230 of the second end plate 123 of the second scroll 12.
  • the groove 3201 is provided inside the eccentric ring hole 326 in the flange portion 32 in the radial direction.
  • the end face 3120 of the second end 312 of the hub 31 of the driving member 3 is in contact with the second end 312 of the hub 31 of the driving member 3 and the protrusion of the bracket 4.
  • the annular contact area of the rim 42 has an oil groove 56 extending laterally from the radially inner side of the annular contact area towards the radially outer side of the annular contact area across a portion of the annular contact area, the oil groove 56 being radially in contact with the annular contact area
  • the radially outer edges of are spaced apart.
  • the oil groove 56 may extend in a radial direction.
  • the oil groove 56 is spaced apart from the outer periphery 3121 of the end face 3120 of the second end portion 312 of the hub portion 31 of the driver 3 .
  • the oil groove 56 may also be formed on the surface 420 of the flange portion 42 of the bracket 4 .
  • the oil groove 56 may be at least one oil groove, or two or more oil grooves distributed according to a certain interval (such as an equal interval).
  • the scroll compressor 100 further includes: a third stopper disposed between the second end portion 312 of the hub portion 31 of the driving member 3 and the flange portion 42 of the bracket 4 Push bearings.
  • the third thrust bearing may be any suitable existing thrust bearing.
  • the third thrust bearing may be an annular thrust washer made of wear-resistant metal or non-metallic material, or the third thrust bearing may be a ball thrust bearing, a roller thrust bearing, or the like.
  • the motor 7 may be an axial flux motor or a radial flux motor.
  • the motor 7 includes a rotor 71 and a stator 72 fixed to the frame 4 , and the rotor 71 of the motor 7 drives the first scroll 11 to rotate by driving the driving member 3 to rotate.
  • the rotor 71 of the motor 7 is disposed on one side of the stator 72 facing the first direction D1 or the second direction D2.
  • the flange portion 32 of the driving member 3 is connected with the first scroll
  • the outer wall 111 of the scroll compressor 11 is hermetically connected to form the suction chamber 88 of the scroll compressor 100 through which fluid enters the compression chamber. 1, FIG. 4, FIG. 6 to FIG. 10, FIG. 14, FIG.
  • the driver 3 includes at least one fluid channel 6 formed in the flange portion 32 of the driver 3, the fluid channel 6 has a The fluid inlet 61 in the surface 321 of the flange portion 32 facing the first direction D1, and the fluid outlet 62 formed in the surface 320 of the flange portion 32 of the driver 3 facing the second direction D2, so that the fluid passes through the fluid
  • the fluid inlet 61 of the channel 6 enters the fluid channel 6 and enters the suction chamber 88 from the fluid outlet 62 .
  • the driver 3 may comprise two fluid channels 6 , which are opposite each other in the radial direction of the driver 3 .
  • the fluid channel 6 of the driver 3 can have a circular cross section. According to an example of the present invention, as shown in Fig. 4, Fig. 6 to Fig.
  • the fluid passage 6 extends obliquely relative to the axial direction of the drive member 3, and the fluid outlet 62 of the fluid passage 6 is farther away from the drive member 3 than the fluid inlet 61.
  • Axis of rotation 91 assuming that the first plane passes through the point at the fluid inlet 61 of the axis 93 of the fluid channel 6 and the axis of rotation 91 of the driver 3, while the second plane is perpendicular to the first plane and parallel to the axis of rotation 91 of the driver 3, Then the included angle between the axis 93 of the fluid channel 6 and the first plane is 0 to 60 degrees, and the included angle between the axis 93 of the fluid channel 6 and the second plane is 5 to 60 degrees.
  • the fluid channel 6 extends along the axial direction of the driver 3, that is, the axis 93 of the fluid channel 6 is parallel to the rotation axis 91 of the driver 3, and the fluid channel 6
  • the included angle between the axis 93 of the fluid channel 6 and the first plane is 0 degrees
  • the included angle between the axis 93 of the fluid channel 6 and the second plane is also 0 degrees.
  • the outer wall 111 has a recess 1110 at a position corresponding to the position of the fluid outlet 62 of the fluid passage 6, and the recess 1110 is formed on the outer wall 111 toward the first scroll 11 on the surface 1111 of the rotation axis of the first scroll 11, and the wall surface 11101 of the recess 1110 facing the rotation axis of the first scroll 11 gradually faces the first scroll in the direction of the first end plate 112 of the first scroll 11
  • the axis of rotation of 11 is inclined or bent.
  • the scroll compressor 100 further includes: an oiling bolt 81 , the oiling bolt 81 is accommodated in the inner hole 50 of the fixed shaft 5 , and one end is located at the bottom of the housing 101 . In the pool, the other end is fixedly connected with the hub 121 of the second scroll 12 .
  • Scroll compressor 100 may also include any other suitable pump.
  • the scroll compressor 100 further includes an annular protrusion 73 protruding from the surface 320 of the flange portion 32 of the driving member 3, the annular protrusion 73 has an annular
  • the wedge-shaped protruding portion 731 has a wedge-shaped cross-section in the radial direction, and the wedge-shaped protruding portion 731 has a wedge-shaped protruding surface 7310 facing outward axially.
  • the axial distance between the first wedge-shaped protrusion point P1 of the wedge-shaped protrusion surface 7310 in the radial direction and the surface 320 is the largest, and the second wedge-shaped protrusion point P2 in the radial direction is far from the surface 320.
  • the axial distance of the surface 320 is zero, and at least the portion of the wedge-shaped convex surface 7310 corresponding to the first wedge-shaped convex point P1 is on the surface 320 of the flange portion 32 of the driving member 3 for supporting the second scroll 12 .
  • At least a portion of the wedge-shaped convex surface 7310 corresponding to the first wedge-shaped convex point P1 is in the annular contact area of the second end plate 123 of the second scroll 12 and the flange portion 32 of the driving member 3 .
  • most or all of the portion of the wedge-shaped protrusion surface 7310 corresponding to the first wedge-shaped protrusion point P1 and the rest of the wedge-shaped protrusion surface 7310 are located on the surface 320 of the flange portion 32 of the driving member 3 for supporting the second wedge-shaped protrusion surface 7310.
  • the annular region of the surface 1230 of the second end plate 123 of the scroll 12 In the annular region of the surface 1230 of the second end plate 123 of the scroll 12 .
  • the portion of the wedge-shaped convex surface 7310 corresponding to the first wedge-shaped convex point P1 and the rest of the wedge-shaped convex surface 7310 are located between the second end plate 123 of the second scroll 12 and the driving member 3 .
  • the axial distance between the wedge-shaped protrusion surface 7310 and the surface 320 is in the range of 0.1 ⁇ m to 1 mm or in the range of 20 ⁇ m to 40 ⁇ m.
  • the first wedge-shaped protrusion point P1 may be radially outside the second wedge-shaped protrusion point P2, or the first wedge-shaped protrusion point P1 may be radially inside the second wedge-shaped protrusion point P2.
  • the annular protrusion 73 may also be disposed on the surface 1230 of the second end plate 123 of the second scroll 12 .
  • the annular protrusion 73 also has an annular transition protrusion portion 732, and the transition protrusion portion 732 has an axially outward transition protrusion surface 7320, In a cross-section in the radial direction, the transition convex surface 7320 extends from a point of the wedge-shaped convex surface 7310 corresponding to the first wedge-shaped convex point P1 to the surface 320 in a manner away from the second wedge-shaped convex point P2 and toward the surface 320 .
  • a cross section of the transition convex portion 732 in the radial direction may have a wedge shape.
  • the dimension of the transition convex portion 732 in the radial direction may be smaller than the dimension of the wedge-shaped convex portion 731 in the radial direction.
  • the motor 7 drives the first scroll 11 to rotate through the driving member 3
  • the first scroll 11 drives the second scroll 12 to rotate.
  • the refrigerant enters the sealed space formed by the first housing 1011 and the second housing 1012 of the housing 101 through the inlet 82, and a part of the refrigerant flows upwards, bypasses the upper end of the cylindrical baffle 83, and then flows downwards through the fluid channel
  • the fluid inlet 61 of 6 enters the fluid passage 6 (refer to Fig. 4, Fig. 6 to Fig. 8, Fig. 10, Fig. 14, Fig.
  • the second scroll 12 drives the oiling bolt 81 arranged in the axial inner hole 50 of the fixed shaft 5 to rotate, and the lubricating oil contained in the oil groove at the bottom of the first housing 1011 of the housing 101 is sucked into the In the axial inner hole 50 of the fixed shaft 5, the first part of lubricating oil flows through the transverse through hole 85 (such as a radial through hole) on the fixed shaft 5 to the second bearing 52 and the second part of the hub portion 31 of the driving member 3. Between the end portion 312 and the flange portion 42 of the bracket 4 (see FIG. 1 ).
  • the second part of lubricating oil enters the gap between the hub 121 of the second scroll 12 and the third bearing 53 to lubricate the third bearing 53, and then enters the hub 121 of the second scroll 12 and the third bearing 53 Part of the lubricating oil in the gap between them enters the gap between the second end plate 123 of the second scroll 12 and the flange portion 32 of the driver 3, and finally enters the first scroll 11 and the second scroll through the fluid channel 6.
  • the space formed by the scroll 12 is used to lubricate the first scroll 11 and the second scroll 12 .
  • Another part of lubricating oil entering the gap between the hub portion 121 of the second scroll 12 and the third bearing 53 bypasses the upper end portion of the third bearing 53 and enters the first bearing 51, and partly enters the groove formed in the fixed shaft 5.
  • the oil return channel 862 then enters the oil return channel 861 formed in the fixed shaft 5 through the communication hole 89 , and finally returns to the oil groove at the bottom of the first housing 1011 of the housing 101 .
  • the lubricating oil entering the first bearing 51 enters the oil return passage 862 through the transverse through hole 87 (such as a radial through hole), then enters the oil return passage 861 through the communication hole 89, and finally returns to the first housing 1011 of the housing 101 in the oil tank at the bottom.
  • the scroll compressor of the embodiment of the present invention since each of the first scroll and the second scroll jointly rotates around its own rotation axis, the compression efficiency is improved.
  • an axial flux motor can be used, which can make the axial size of the motor smaller, thereby making the compressor more compact.
  • the first scroll can be driven to rotate by the driving member, and the second scroll can be driven to rotate by the first scroll, so that all bearings can be further arranged on the same side of the compressor , such as the same side of the second scroll in the first direction D1, so that the compressor can be further compacted.
  • the design of the driving part of the driving part 3 can make the scroll compressor have two-stage compression.

Abstract

一种用于涡旋压缩机(100)的驱动件(3)以及包括该驱动件(3)的涡旋压缩机(100)。涡旋压缩机包括第一涡旋盘(11)和第二涡旋盘(12)。驱动件(3)包括:具有内孔的毂部(31),毂部(31)包括相对的第一端部(311)和第二端部(312);以及从驱动件(3)的毂部(31)的第一端部(311)径向向外伸出的凸缘部(32)。凸缘部(32)将驱动件(3)与涡旋压缩机的第一涡旋盘(11)连接,从而驱动第一涡旋盘(11)转动,而第一涡旋盘(11)驱动第二涡旋盘(12)转动。该涡旋压缩机((100)结构紧凑、体积小、重量轻。

Description

用于涡旋压缩机的驱动件以及涡旋压缩机 技术领域
本发明的实施例涉及一种用于涡旋压缩机的驱动件以及包括该驱动件的涡旋压缩机。
背景技术
传统的涡旋压缩机包括静涡旋盘和动涡旋盘。静涡旋盘具有端板和从端板伸出的固定涡旋卷。动涡旋盘具有端板和从其端板伸出的动涡旋卷,动涡旋卷和固定涡旋卷配合形成用于压缩介质的压缩腔。电机通过驱动轴驱动动涡旋盘旋转,以在压缩腔中压缩介质。
发明内容
本发明的实施例的目的是提供一种用于涡旋压缩机的驱动件以及包括该驱动件的涡旋压缩机,由此例如可以改善涡旋压缩机的性能。
本发明的实施例提供了一种用于涡旋压缩机的驱动件,所述涡旋压缩机包括:第一涡旋盘和第二涡旋盘,所述驱动件包括:具有内孔的毂部,所述毂部包括相对的第一端部和第二端部;以及从所述驱动件的所述毂部的第一端部径向向外伸出的凸缘部,其中所述凸缘部将所述驱动件与所述涡旋压缩机的第一涡旋盘连接,从而驱动所述第一涡旋盘转动,其中第一涡旋盘驱动第二涡旋盘转动。
根据本发明的实施例,所述凸缘部包括连接件,用于将所述驱动件与所述涡旋压缩机的第一涡旋盘连接。
根据本发明的实施例,所述驱动件的毂部的第二端部的端面具有油槽。
根据本发明的实施例,所述油槽与所述驱动件的毂部的第二端部的所述端面的外周边间隔开。
根据本发明的实施例,所述油槽沿径向方向延伸。
根据本发明的实施例,所述毂部的内孔的孔壁上具有台阶部, 所述毂部的所述台阶部具有台阶面。
根据本发明的实施例,所述驱动件还包括:形成在所述凸缘部中的至少一条流体通道,所述凸缘部具有朝向从第一端部到第二端部的方向的第一表面;以及朝向从第二端部到第一端部的方向的第二表面,所述流体通道具有形成在第一表面中的流体入口,以及形成在第二表面中的流体出口,使得流体通过所述流体通道的流体入口,进入所述流体通道,并从所述流体出口流出。
根据本发明的实施例,所述流体通道沿所述驱动件的轴向方向延伸。
根据本发明的实施例,所述流体通道相对于所述驱动件的轴向方向倾斜延伸,所述流体通道的所述流体出口比所述流体入口远离所述驱动件的轴线。
根据本发明的实施例,假设第一平面通过流体通道的轴线的在流体入口处的点和驱动件的旋转轴线,而第二平面与第一平面垂直并且与驱动件的旋转轴线平行,则流体通道的轴线与第一平面的夹角为0至60度,并且流体通道的轴线与第二平面的夹角为5至60度。
根据本发明的实施例,所述驱动件包括两条流体通道,所述两条流体通道在所述驱动件的径向方向上彼此相对。
根据本发明的实施例,所述驱动件的流体通道具有圆形的或椭圆形或曲线形的横截面。
根据本发明的实施例,所述凸缘部具有驱动件连接孔,所述驱动件连接孔具有螺纹部,用于通过螺栓将驱动件与所述第一涡旋盘固定连接。
根据本发明的实施例,所述驱动件还包括:形成在所述凸缘部中的配重孔,所述配重孔用于使所述驱动件动平衡。
根据本发明的实施例,所述凸缘部具有朝向从第一端部到第二端部的方向的第一表面;以及朝向从第二端部到第一端部的方向的第二表面,所述配重孔是盲孔,所述盲孔从所述凸缘部的第二表面朝向所述凸缘部的第一表面延伸。
根据本发明的实施例,所述驱动件还包括:从所述凸缘部的表 面突起的环状凸起,所述环状凸起具有环状的楔形凸起部分,所述楔形凸起部分在径向方向上的横截面具有楔形形状,所述楔形凸起部分具有轴向朝外的楔形凸起表面,在径向方向上的横截面中,所述楔形凸起表面在径向方向上的第一楔形凸起点与所述凸缘部的所述表面的轴向距离最大,并且在径向方向上的第二楔形凸起点与所述凸缘部的所述表面的轴向距离为零,至少所述楔形凸起表面的与所述第一楔形凸起点对应的部分在所述驱动件的所述凸缘部的所述表面的用于支撑所述第二涡旋盘的第二端板的所述表面的环形区域中。
根据本发明的实施例,在第一楔形凸起点,所述楔形凸起表面与所述凸缘部的所述表面的轴向距离在20微米至40微米的范围内或在0.1微米至1毫米的范围内。
根据本发明的实施例,所述第一楔形凸起点在第二楔形凸起点的径向外侧,或者所述第一楔形凸起点在第二楔形凸起点的径向内侧。
根据本发明的实施例,所述环状凸起还具有环状的过渡凸起部分,所述过渡凸起部分具有轴向朝外的过渡凸起表面,在径向方向上的横截面中,所述过渡凸起表面从所述楔形凸起表面的与所述第一楔形凸起点对应的点以远离所述第二楔形凸起点并朝向所述凸缘部的所述表面的方式延伸到所述凸缘部的所述表面。
根据本发明的实施例,所述过渡凸起部分在径向方向上的横截面具有楔形形状。
根据本发明的实施例,所述过渡凸起部分在径向方向上的尺寸小于所述楔形凸起部分在径向方向上的尺寸。
本发明的实施例还提供了一种涡旋压缩机,包括:第一涡旋盘,该第一涡旋盘包括第一端板和从第一端板沿第一方向伸出的第一涡旋卷;第二涡旋盘,该第二涡旋盘包括第二端板和从第二端板沿与第一方向相反的第二方向伸出的第二涡旋卷,第二涡旋卷和第一涡旋卷配合以形成用于压缩介质的压缩腔;支架,所述支架位于所述第二涡旋盘的远离第一涡旋盘的一侧;电机;以及上述的驱动件,所述驱动件可转动地安装于所述支架并且位于第二涡旋盘的远离第一涡旋盘 的一侧,所述驱动件包括:具有内孔的毂部,所述毂部包括相对的第一端部和第二端部;以及从所述驱动件的所述毂部的第一端部径向向外伸出的凸缘部,所述驱动件通过所述凸缘部与第一涡旋盘连接,所述电机通过所述驱动件的毂部驱动第一涡旋盘旋转,且第一涡旋盘驱动第二涡旋盘旋转。
根据本发明的实施例,所述第一涡旋盘还包括从第一端板沿第一方向伸出的外壁,所述外壁在第一涡旋卷以及第二涡旋盘的径向外侧,所述外壁设有连接件,所述驱动件通过所述连接件与第一涡旋盘连接。
根据本发明的实施例,所述外壁具有环状形状。
根据本发明的实施例,所述涡旋压缩机还包括:固定轴,所述固定轴固定于所述支架,通过所述驱动件的所述毂部可转动地安装在所述固定轴上使所述驱动件可转动地安装于所述支架。
根据本发明的实施例,所述第二涡旋盘的第二端板被可转动地支撑在所述驱动件的凸缘部上。
根据本发明的实施例,所述涡旋压缩机还包括:第一轴承,所述毂部的第一端部通过第一轴承安装在所述固定轴上;以及第二轴承,所述毂部的第二端部通过第二轴承安装在所述固定轴上。
根据本发明的实施例,所述驱动件的所述毂部的内孔的孔壁上具有台阶部,所述驱动件的所述毂部的所述台阶部具有朝向第二方向的台阶面,所述固定轴具有台阶部,所述固定轴的台阶部具有朝向第一方向的台阶面,所述涡旋压缩机还包括第一止推轴承,第一止推轴承设置在所述驱动件的所述毂部的所述台阶部的台阶面与所述固定轴的台阶部的台阶面之间。
根据本发明的实施例,所述支架包括:筒状部,以及从所述支架的所述筒状部径向伸出的凸缘部,所述驱动件的毂部的第二端部支撑在所述支架的所述凸缘部上。
根据本发明的实施例,所述驱动件的毂部的第二端部的端面在所述驱动件的毂部的第二端部和所述支架的所述凸缘部的环形接触区域上具有油槽,所述油槽从环形接触区域的径向内侧朝向环形接触 区域的径向外侧横向延伸而横穿所述环形接触区域的一部分,所述油槽在径向上与环形接触区域的径向外边缘间隔开。
根据本发明的实施例,所述油槽与所述驱动件的毂部的第二端部的所述端面的外周边间隔开。
根据本发明的实施例,所述驱动件的所述凸缘部与第一涡旋盘的所述外壁密封地连接,以形成涡旋压缩机的吸入腔,流体通过吸入腔进入所述压缩腔。
根据本发明的实施例,所述驱动件包括形成在所述驱动件的所述凸缘部中的至少一条流体通道,所述流体通道具有形成在所述驱动件的所述凸缘部的朝向所述第一方向的表面中的流体入口,以及形成在所述驱动件的所述凸缘部的朝向所述第二方向的表面中的流体出口,使得流体通过所述流体通道的流体入口,进入所述流体通道,并从所述流体出口进入所述吸入腔。
根据本发明的实施例,所述流体通道相对于所述驱动件的轴向方向倾斜延伸,所述流体通道的所述流体出口比所述流体入口远离所述驱动件的旋转轴线。
根据本发明的实施例,假设第一平面通过流体通道的轴线的在流体入口处的点和驱动件的旋转轴线,而第二平面与第一平面垂直并且与驱动件的旋转轴线平行,则流体通道的轴线与第一平面的夹角为0至60度,并且流体通道的轴线与第二平面的夹角为5至60度。
根据本发明的实施例,所述外壁具有在与所述流体通道的所述流体出口的位置对应的位置处的凹部,所述凹部形成在所述外壁的朝向所述第一涡旋盘的旋转轴线的表面上,并且所述凹部的朝向所述第一涡旋盘的旋转轴线的壁面在朝向所述第一涡旋盘的第一端板的方向上逐渐朝向第一涡旋盘的旋转轴线倾斜或弯曲。
例如,根据本发明的实施例的涡旋压缩机,例如可以改善涡旋压缩机的性能。
附图说明
图1为根据本发明的实施例的涡旋压缩机的示意剖视图;
图2为图1中所示的涡旋压缩机的第一涡旋盘的示意透视图;
图3为图1中所示的涡旋压缩机的第二涡旋盘的示意透视图;
图4为图1中所示的涡旋压缩机的驱动件的示意透视图;
图5为根据本发明的实施例的一种变形例的涡旋压缩机的驱动件的示意透视图;
图6为图4中所示的涡旋压缩机的驱动件的示意透视图;
图7为图4中所示的涡旋压缩机的驱动件的示意俯视图;
图8为根据本发明的实施例的变形例的涡旋压缩机的驱动件的示意俯视图;
图9为图8中所示的涡旋压缩机的驱动件的沿图8中的线AA的示意剖视图;
图10为图8中所示的涡旋压缩机的驱动件的沿图8中的线DD的示意剖视图;
图11为图8中所示的涡旋压缩机的驱动件的沿图8中的线EE的示意剖视图;
图12为图8中所示的涡旋压缩机的驱动件的沿图8中的线FF的示意剖视图;
图13为图8中所示的涡旋压缩机的驱动件的沿图8中的线GG的示意剖视图;
图14为根据本发明的实施例的另一种变形例的涡旋压缩机的驱动件的示意俯视图;
图15为图14中所示的涡旋压缩机的驱动件的沿图14中的线JJ的示意剖视图;
图16为根据本发明的实施例的又一种变形例的涡旋压缩机的驱动件的示意剖视图;
图17为图16中所示的涡旋压缩机的驱动件的部分S的局部放大图;
图18为根据本发明的实施例的再一种变形例的涡旋压缩机的驱动件的示意剖视图;
图19为根据本发明的实施例的进一步的变形例的涡旋压缩机的 驱动件的示意剖视图;
图20为根据本发明的实施例的一个变形例的涡旋压缩机的驱动件、止推轴承和第二涡旋盘的示意分解透视图;
图21为图20中所示的涡旋压缩机的驱动件、止推轴承和第二涡旋盘的示意剖视透视图;
图22为根据本发明的实施例的另一个变形例的涡旋压缩机的驱动件、止推轴承和第二涡旋盘的示意剖视透视图;
图23为图1中所示的涡旋压缩机的驱动件的套筒的示意透视图;
图24为图1中所示的涡旋压缩机的驱动件、第一涡旋盘、第二涡旋盘、固定轴的组装状态下的示意透视图;
图25为图24中所示的涡旋压缩机的驱动件、第一涡旋盘、第二涡旋盘、固定轴的示意分解透视图;
图26为图24中所示的涡旋压缩机的驱动件、第一涡旋盘、第二涡旋盘、固定轴的示意剖视图;
图27为图24中所示的涡旋压缩机的驱动件、第一涡旋盘、第二涡旋盘、固定轴的示意分解剖视透视图;
图28为图1中所示的涡旋压缩机的驱动件、第二涡旋盘、固定轴、上油螺栓的组装状态下的示意剖视图;
图29为图1中所示的涡旋压缩机的支架的示意透视图;
图30为图29中所示的涡旋压缩机的支架的示意剖视图;
图31为根据本发明的实施例的一个变形例的涡旋压缩机的驱动件、第二涡旋盘的示意剖视图;
图32为图31中的与环状凸起相关的部分的局部放大示意剖视图;
图33为根据本发明的实施例的另一个变形例的涡旋压缩机的驱动件、第二涡旋盘的示意剖视图;
图34为图33中的与环状凸起相关的部分的局部放大示意剖视图;
图35为图1中所示的涡旋压缩机的驱动件、第一涡旋盘、第二涡旋盘的示意剖视图;
图36为图35中所示的涡旋压缩机的驱动件、第一涡旋盘、第二涡旋盘的示意分解剖视透视图;以及
图37为根据本发明的实施例的变形例的涡旋压缩机的支架、固定轴、驱动件、第二涡旋盘的组装状态下的示意剖视图。
具体实施方式
下面结合附图描述本发明的实施例。
参见图1,根据本发明的实施例的涡旋压缩机100包括第一涡旋盘11和第二涡旋盘12。参见图4至图23,根据本发明的实施例的驱动件3包括:具有内孔30的毂部31,毂部31包括相对的第一端部311和第二端部312;以及从驱动件3的毂部31的第一端部311径向向外伸出的凸缘部32,驱动件3通过凸缘部32与第一涡旋盘11连接。凸缘部32将驱动件3与第一涡旋盘11连接,从而驱动所述第一涡旋盘11转动。例如,凸缘部32包括连接件130(图25至图27),连接件130将驱动件3与第一涡旋盘11连接,从而驱动所述第一涡旋盘11转动,所以第一涡旋盘11转动产生的气体可以驱动第二涡旋盘12共同旋转。连接件130可以与第一涡旋盘11和驱动件3中的一个形成一体,或者也可以是单独的连接件。
参见图5,在本发明的实施例中,驱动件3的毂部31的第二端部312的端面3120具有油槽56。油槽56可以沿径向方向延伸。根据本发明的示例,如图5所示,油槽56与驱动件3的毂部31的第二端部312的端面3120的外周边3121间隔开。油槽56可以是至少一个油槽,或者按照一定距间(比如等间距)间隔分布的两个或更多个油槽。
参见图4、图6,在本发明的实施例中,驱动件3的毂部31的内孔30的孔壁301上具有台阶部302,驱动件3的毂部31的台阶部302具有朝向第二方向D2的台阶面303。
参见图4、图6、图7、图8、图10、图14、图15,在本发明的实施例中,驱动件3包括形成在驱动件3的凸缘部32中的至少一条流体通道6,凸缘部32具有朝向从第一端部311到第二端部312的 方向的第一表面321;以及朝向从第二端部312到第一端部311的方向的第二表面320,流体通道6具有形成在第一表面321中的流体入口61,以及形成在第二表面320中的流体出口62,使得流体通过流体通道6的流体入口61,进入流体通道6,并从流体出口62流出。驱动件3可以包括两条流体通道6,两条流体通道6在驱动件3的径向方向上彼此相对。驱动件3的流体通道6可以具有圆形的或椭圆形或曲线形的横截面。根据本发明的一个示例,如图4、图6、图7、图8、图10所示,流体通道6相对于驱动件3的轴向方向倾斜延伸,流体通道6的流体出口62比流体入口61远离驱动件3的旋转轴线91。例如,假设第一平面通过流体通道6的轴线93的在流体入口61处的点和驱动件3的旋转轴线91,而第二平面与第一平面垂直并且与驱动件3的旋转轴线91平行,则流体通道6的轴线93与第一平面的夹角为0至60度,并且流体通道6的轴线93与第二平面的夹角为5至60度。根据本发明的另一个实例,如图14、图15所示,流体通道6沿驱动件3的轴向方向延伸,即流体通道6的轴线93与驱动件3的旋转轴线91平行,流体通道6的轴线93与第一平面的夹角为0度,并且流体通道6的轴线93与第二平面的夹角也为0度。
参见图8、图13、图14,在本发明的实施例中,驱动件3的凸缘部32具有驱动件连接孔323,驱动件3的凸缘部32的驱动件连接孔323具有螺纹部324,连接件130(图25至图27)包括螺栓132,螺栓132通过驱动件连接孔323将第一涡旋盘11与驱动件3固定连接。
参见图2、图4、图8、图12、图14、图25,在本发明的实施例中,驱动件3的凸缘部32具有驱动件销孔322。第一涡旋盘11的外壁111具有涡旋盘销孔114,连接件130还包括:销131,销131插入第一涡旋盘11的外壁111的涡旋盘销孔114(图2)和驱动件3的凸缘部32的驱动件销孔322(图7),以确定第一涡旋盘11和驱动件3的相对位置。
参见图8、图11、图14,在本发明的实施例中,驱动件3还包括:形成在凸缘部32中的配重孔325,配重孔325用于使驱动件3 动平衡。配重孔可以是盲孔,盲孔从凸缘部32的第二表面320朝向凸缘部32的第一表面321延伸。参见图19,在本发明的实施例的变形例中,驱动件3不具有配重孔325。
参见图4、图6、图7、图8、图11、图35、图36、图37,在本发明的实施例中,驱动件3还包括:形成在凸缘部32中的偏心环孔326,偏心环341(参见图25、图27、图35、图36、图37)设置在偏心环孔326中,联接销342插入第二涡旋盘12的第二端板123中形成的联接销孔126(图3)以及偏心环341的孔3410中(参见图25、图27、图35、图36、图37)。驱动件3可以具有三个偏心环孔326。
参见图16、图17,在本发明的实施例中,驱动件3还包括:从驱动件3的凸缘部32的表面320在凸缘部32的边缘伸出的环状凸起326,以及形成在环状凸起326的内周面上的环形凹槽327。可以将O型密封圈放置在环形凹槽327中,由此,参见图1、图24至图27,密封第一涡旋盘11的外壁111与驱动件3的环状凸起326之间的间隙。
参见图31至图34,在本发明的实施例中,驱动件3还包括从凸缘部32的表面320突起的环状凸起73,环状凸起73具有环状的楔形凸起部分731,楔形凸起部分731在径向方向上的横截面具有楔形形状,楔形凸起部分731具有轴向朝外的楔形凸起表面7310。在径向方向上的横截面中,楔形凸起表面7310在径向方向上的第一楔形凸起点P1与表面320的轴向距离最大,并且在径向方向上的第二楔形凸起点P2与表面320的轴向距离为零,至少楔形凸起表面7310的与第一楔形凸起点P1对应的部分在驱动件3的凸缘部32的表面320的用于支撑第二涡旋盘12的第二端板123的表面1230的环形区域中。例如,至少楔形凸起表面7310的与第一楔形凸起点P1对应的部分在第二涡旋盘12的第二端板123与驱动件3的凸缘部32的环形接触区域中。例如,楔形凸起表面7310的与第一楔形凸起点P1对应的部分以及楔形凸起表面7310的其余部分的大部分或全部位于驱动件3的凸缘部32的表面320的用于支撑第二涡旋盘12的第二端板 123的表面1230的环形区域中。例如,楔形凸起表面7310的与第一楔形凸起点P1对应的部分以及楔形凸起表面7310的其余部分的大部分或全部位于第二涡旋盘12的第二端板123与驱动件3的凸缘部32的环形接触区域中。根据本发明的示例,在第一楔形凸起点P1,楔形凸起表面7310与表面320的轴向距离在0.1微米至1毫米的范围内,或者在20微米至40微米的范围内。第一楔形凸起点P1可以在第二楔形凸起点P2的径向外侧,或者第一楔形凸起点P1可以在第二楔形凸起点P2的径向内侧。
参见图31至图34,在本发明的实施例中,所述环状凸起73还具有环状的过渡凸起部分732,过渡凸起部分732具有轴向朝外的过渡凸起表面7320,在径向方向上的横截面中,过渡凸起表面7320从楔形凸起表面7310的与第一楔形凸起点P1对应的点以远离第二楔形凸起点P2并且朝向表面320的方式延伸到表面320。过渡凸起部分732在径向方向上的横截面可以具有楔形形状。过渡凸起部分732在径向方向上的尺寸可以小于楔形凸起部分731在径向方向上的尺寸。
参见图4、图6,在本发明的实施例中,毂部31的内孔30具有位于第一端部311的内孔部分,内孔部分的孔壁上设有凹部306。如图23所示,用于驱动件的套筒9包括:筒状主体94,以及从筒状主体的外周面95径向向外突出的凸起96。凸起96具有径向朝外的表面961,表面961可以是凸面。凸起96在轴向上呈楔形,使得在从筒状主体94的一端97到另一端98的方向上,凸起96的在径向上的尺寸逐渐变小。套筒9设置在毂部31的内孔部分中,并且套筒9的凸起96配合在毂部31的内孔部分的孔壁上的凹部306中。作为第一轴承51的轴承衬套设置在筒状主体94内。参见图18,在本发明的另一个实施例中,内孔部分的孔壁上没有凹部306,套筒9相应地没有凸起96。
参见图1,根据本发明的实施例的涡旋压缩机100包括:第一涡旋盘11、第二涡旋盘12、支架4,电机7以及驱动件3。第一涡旋盘11包括第一端板112和从第一端板112沿第一方向D1伸出的第一涡旋卷113。第二涡旋盘12包括第二端板123和从第二端板123沿与 第一方向D1相反的第二方向D2伸出的第二涡旋卷124,第二涡旋卷124和第一涡旋卷113配合以形成用于压缩介质的压缩腔。支架4位于第二涡旋盘12的远离第一涡旋盘11的一侧。驱动件3可转动地安装于支架4并且位于第二涡旋盘12的远离第一涡旋盘11的一侧,电机7通过驱动件3驱动第一涡旋盘11围绕旋转轴线91(图4、图6、图9至图13、图15、图16、图27)旋转,且第一涡旋盘11驱动第二涡旋盘12围绕旋转轴线92(图27)旋转。旋转轴线91为驱动件3的旋转轴线或轴线(图4、图6、图9至图13、图15、图16)。旋转轴线91和旋转轴线92相互平行,并且间隔开。驱动件3包括:具有内孔30的毂部31,毂部31包括相对的第一端部311和第二端部312;以及从驱动件3的毂部31的第一端部311径向向外伸出的凸缘部32,驱动件3通过凸缘部32与第一涡旋盘11连接。电机7通过驱动件3的毂部31驱动第一涡旋盘11旋转,且第一涡旋盘11驱动第二涡旋盘12旋转。
参见图1,在本发明的实施例中,涡旋压缩机100还包括壳体101,壳体101可以包括第一壳体1011、第二壳体1012和第三壳体1013。第一壳体1011和第二壳体1012形成密封空间,第一涡旋盘11、第二涡旋盘12、支架4,电机7以及驱动件3等设置在壳体101中。第二壳体1012和第三壳体1013限定排气腔。支架4可以固定于第一壳体1011,例如支架4焊接于第一壳体1011,支架4通过与第一壳体1011过盈配合而固定于第一壳体1011,或者支架4通过螺栓固定于第一壳体1011。支架4的一端可以固定于壳体101的底部或第一壳体1011的底部。
参见图1和图2,在本发明的实施例中,第一涡旋盘11还包括从第一端板112沿第一方向D1伸出的外壁111,外壁111在第一涡旋卷113以及第二涡旋盘12的径向外侧,外壁111设有连接件130(图24至图27),驱动件3通过连接件130(图24至图27)与第一涡旋盘11连接。外壁111可以具有环状形状。
参见图1、图24至图30,在本发明的实施例中,涡旋压缩机100还包括:固定轴5,固定轴5固定于支架4。通过驱动件3的毂部31 可转动地安装在固定轴5上使驱动件3可转动地安装于支架4。参见图1、图2至图28、图31至图34,在本发明的实施例中,第二涡旋盘12的第二端板123被可转动地支撑在驱动件3的凸缘部32上。根据本发明的一个示例,参见图2、图4、图8、图10、图12、图14、图25至图27,第一涡旋盘11的外壁111具有涡旋盘销孔114(图2),驱动件3的凸缘部32具有驱动件销孔322(4、图8、图12、图14)。第一涡旋盘11的外壁111具有涡旋盘连接孔116(图25、图26、图27),驱动件3的凸缘部32具有驱动件连接孔323(图8、图13、图14、图26至图27),驱动件3的凸缘部32的驱动件连接孔323和第一涡旋盘11的外壁111的涡旋盘连接孔116中的一个具有螺纹部324,连接件130(图25至图27)包括:销131以及螺栓132,销131插入第一涡旋盘11的外壁111的涡旋盘销孔114(图2)和驱动件3的凸缘部32的驱动件销孔322(图4、图8、图12、图14)中,以确定第一涡旋盘11和驱动件3的相对位置,螺栓132通过涡旋盘连接孔116(图25至图27)和驱动件连接孔323将第一涡旋盘11与驱动件3固定连接。
参见图1、图26至图28,在本发明的实施例中,涡旋压缩机100还包括:第一轴承51和/或第二轴承52。毂部31的第一端部311通过第一轴承51安装在固定轴5上,而毂部31的第二端部312通过第二轴承52安装在固定轴5上。参见图1、图26至图28,在本发明的实施例中,第二涡旋盘12还包括从第二端板123沿第一方向D1伸出的毂部121,参见图1、图28,固定轴5具有轴向内孔50。涡旋压缩机100还包括第三轴承53,第二涡旋盘12的毂部121通过第三轴承53安装在固定轴5的轴向内孔50中。
参见图1、图4、图6、图28,在本发明的实施例中,驱动件3的毂部31的内孔30的孔壁301上具有台阶部302,驱动件3的毂部31的台阶部302具有朝向第二方向D2的台阶面303,固定轴5具有台阶部501,固定轴5的台阶部501具有朝向第一方向D1的台阶面502,涡旋压缩机100还包括第一止推轴承54,第一止推轴承54设置在驱动件3的毂部31的台阶部302的台阶面303与固定轴5的台 阶部501的台阶面502之间。第一止推轴承54可以是任何合适的现有的止推轴承。例如,第一止推轴承54可以是由耐磨金属或非金属材料制成的环形止推垫片,或者第一止推轴承54可以是滚珠止推轴承、滚柱止推轴承等。
参见图1、图29、图30,在本发明的实施例中,支架4包括:筒状部41,以及从支架4的筒状部41径向伸出的凸缘部42,驱动件3的毂部31的第二端部312支撑在支架4的凸缘部42上。根据本发明的一个示例,固定轴5的一部分插入支架4的筒状部41中并固定于支架4的筒状部41,并且固定轴5具有筒状形状。
参见图20至图22,在本发明的实施例中,涡旋压缩机100还包括:设置在第二涡旋盘12的第二端板123与驱动件3的凸缘部32之间的第二止推轴承55。具体而言,驱动件3的凸缘部32的表面320具有环状的凹槽3201。在图20和图21中所示的实施例中,凹槽3201较深,而在图22中所示的实施例中,凹槽3201较浅。第二止推轴承55’设置在凹槽3201中,并且与第二涡旋盘12的第二端板123的表面1230接触。凹槽3201在径向方向上设置在凸缘部32中的偏心环孔326的内侧。
参见图1、图5,在本发明的实施例中,驱动件3的毂部31的第二端部312的端面3120在驱动件3的毂部31的第二端部312和支架4的凸缘部42的环形接触区域上具有油槽56,油槽56从环形接触区域的径向内侧朝向环形接触区域的径向外侧横向延伸而横穿环形接触区域的一部分,油槽56在径向上与环形接触区域的径向外边缘间隔开。油槽56可以沿径向方向延伸。根据本发明的示例,油槽56与驱动件3的毂部31的第二端部312的端面3120的外周边3121间隔开。油槽56也可以形成在支架4的凸缘部42的表面420上。油槽56可以是至少一个油槽,或者按照一定间距(比如等间距)间隔分布的两个或更多个油槽。
参见图1,在本发明的替代实施例中,涡旋压缩机100还包括:设置在驱动件3的毂部31的第二端部312与支架4的凸缘部42之间的第三止推轴承。第三止推轴承可以是任何合适的现有的止推轴承。 例如,第三止推轴承可以是由耐磨金属或非金属材料制成的环形止推垫片,或者第三止推轴承可以是滚珠止推轴承、滚柱止推轴承等。
参见图1,在本发明的实施例中,电机7可以是轴向磁通电机或径向磁通电机。在一实施例中,电机7包括转子71和固定于支架4的定子72,并且电机7的转子71通过驱动驱动件3旋转而驱动第一涡旋盘11旋转。电机7的转子71设置在定子72的朝向第一方向D1或第二方向D2的一侧。
参见图1、图2、图4、图6至图10、图14、图15、图24至图26,在本发明的实施例中,驱动件3的凸缘部32与第一涡旋盘11的外壁111密封地连接,以形成涡旋压缩机100的吸入腔88,流体通过吸入腔88进入压缩腔。参见图1、图4、图6至图10、图14、图15,驱动件3包括形成在驱动件3的凸缘部32中的至少一条流体通道6,流体通道6具有形成在驱动件3的凸缘部32的朝向第一方向D1的表面321中的流体入口61,以及形成在驱动件3的凸缘部32的朝向第二方向D2的表面320中的流体出口62,使得流体通过流体通道6的流体入口61,进入流体通道6,并从流体出口62进入吸入腔88。驱动件3可以包括两条流体通道6,两条流体通道6在驱动件3的径向方向上彼此相对。驱动件3的流体通道6可以具有圆形的横截面。根据本发明的一个示例,如图4、图6至图10所示,流体通道6相对于驱动件3的轴向方向倾斜延伸,流体通道6的流体出口62比流体入口61远离驱动件3的旋转轴线91。例如,假设第一平面通过流体通道6的轴线93的在流体入口61处的点和驱动件3的旋转轴线91,而第二平面与第一平面垂直并且与驱动件3的旋转轴线91平行,则流体通道6的轴线93与第一平面的夹角为0至60度,并且流体通道6的轴线93与第二平面的夹角为5至60度。根据本发明的另一个实例,如图14、图15所示,流体通道6沿驱动件3的轴向方向延伸,即流体通道6的轴线93与驱动件3的旋转轴线91平行,流体通道6的轴线93与第一平面的夹角为0度,并且流体通道6的轴线93与第二平面的夹角也为0度。
参见图1、图2,在本发明的实施例中,外壁111具有在与流体 通道6的流体出口62的位置对应的位置处的凹部1110,凹部1110形成在外壁111的朝向第一涡旋盘11的旋转轴线的表面1111上,并且凹部1110的朝向第一涡旋盘11的旋转轴线的壁面11101在朝向第一涡旋盘11的第一端板112的方向上逐渐朝向第一涡旋盘11的旋转轴线倾斜或弯曲。
参见图1,在本发明的实施例中,涡旋压缩机100还包括:上油螺栓81,上油螺栓81容纳于固定轴5的内孔50中,且一端位于壳体101的底部的油池中,另一端与第二涡旋盘12的毂部121固定连接。涡旋压缩机100也可以包括其它任何合适的泵。
参见图31至图34,在本发明的实施例中,涡旋压缩机100还包括从驱动件3的凸缘部32的表面320突起的环状凸起73,环状凸起73具有环状的楔形凸起部分731,楔形凸起部分731在径向方向上的横截面具有楔形形状,楔形凸起部分731具有轴向朝外的楔形凸起表面7310。在径向方向上的横截面中,楔形凸起表面7310在径向方向上的第一楔形凸起点P1与表面320的轴向距离最大,并且在径向方向上的第二楔形凸起点P2与表面320的轴向距离为零,至少楔形凸起表面7310的与第一楔形凸起点P1对应的部分在驱动件3的凸缘部32的表面320的用于支撑第二涡旋盘12的第二端板123的表面1230的环形区域中。例如,至少楔形凸起表面7310的与第一楔形凸起点P1对应的部分在第二涡旋盘12的第二端板123与驱动件3的凸缘部32的环形接触区域中。例如,楔形凸起表面7310的与第一楔形凸起点P1对应的部分以及楔形凸起表面7310的其余部分的大部分或全部位于驱动件3的凸缘部32的表面320的用于支撑第二涡旋盘12的第二端板123的表面1230的环形区域中。例如,楔形凸起表面7310的与第一楔形凸起点P1对应的部分以及楔形凸起表面7310的其余部分的大部分或全部位于第二涡旋盘12的第二端板123与驱动件3的凸缘部32的环形接触区域中。根据本发明的示例,在第一楔形凸起点P1,楔形凸起表面7310与表面320的轴向距离在0.1微米至1毫米的范围内或在20微米至40微米的范围内。第一楔形凸起点P1可以在第二楔形凸起点P2的径向外侧,或者第一楔形凸起点P1可以在第 二楔形凸起点P2的径向内侧。环状凸起73也可以设置在第二涡旋盘12的第二端板123的表面1230上。
参见图31至图34,在本发明的实施例中,所述环状凸起73还具有环状的过渡凸起部分732,过渡凸起部分732具有轴向朝外的过渡凸起表面7320,在径向方向上的横截面中,过渡凸起表面7320从楔形凸起表面7310的与第一楔形凸起点P1对应的点以远离第二楔形凸起点P2并且朝向表面320的方式延伸到表面320。过渡凸起部分732在径向方向上的横截面可以具有楔形形状。过渡凸起部分732在径向方向上的尺寸可以小于楔形凸起部分731在径向方向上的尺寸。
当压缩机100运行时,参见图1,电机7通过驱动件3驱动第一涡旋盘11旋转,且第一涡旋盘11驱动第二涡旋盘12旋转。制冷剂通过入口82进入壳体101的第一壳体1011和第二壳体1012形成的密封空间,一部分制冷剂向上流动,绕过筒形挡板83的上端,然后向下流动,通过流体通道6的流体入口61进入流体通道6(参见图4、图6至图8、图10、图14、图15),另一部分制冷剂向下流动,在筒形挡板83的下端的下方,进入电机7,以冷却电机,然后向上流动,通过流体通道6的流体入口61进入流体通道6。全部制冷剂经由吸入腔88,进入第二涡旋卷124和第一涡旋卷113形成的压缩腔,压缩后的制冷剂通过出口84排出。参见图4、图6至图8、图10,如果流体通道6相对于驱动件3的轴向方向倾斜延伸,则通过流体通道6的流体入口61进入流体通道6的制冷剂由于离心力而经受一级压缩,然后经由吸入腔88,进入第二涡旋卷124和第一涡旋卷113形成的压缩腔而经受二级压缩。同时,第二涡旋盘12带动设置在固定轴5的轴向内孔50中的上油螺栓81旋转,将容纳在壳体101的第一壳体1011底部的油槽中的润滑油抽吸到固定轴5的轴向内孔50中,第一部分润滑油,通过固定轴5上的横向通孔85(例如径向通孔)流到第二轴承52以及驱动件3的毂部31的第二端部312和支架4的凸缘部42(参见图1)之间。第二部分润滑油进入第二涡旋盘12的毂部121与第三轴承53之间的间隙以对第三轴承53进行润滑,进入第二涡旋盘12的毂部121与第三轴承53之间的间隙的一部分润滑 油进入第二涡旋盘12的第二端板123与驱动件3的凸缘部32之间的间隙,最后通过流体通道6进入第一涡旋盘11与第二涡旋盘12形成的空间,以对第一涡旋盘11与第二涡旋盘12进行润滑。进入第二涡旋盘12的毂部121与第三轴承53之间的间隙的另一部分润滑油绕过第三轴承53的上端部分进入第一轴承51,并且部分进入形成在固定轴5中的回油通道862,然后通过连通孔89进入形成在固定轴5中的回油通道861,最后回到在壳体101的第一壳体1011底部的油槽中。进入第一轴承51的润滑油通过横向通孔87(例如径向通孔)进入回油通道862,然后通过连通孔89进入回油通道861,最后回到在壳体101的第一壳体1011底部的油槽中。
根据本发明的实施例的涡旋压缩机,由于第一涡旋盘和第二涡旋盘各自围绕自己的旋转轴共同旋转,提高了压缩效率。另外,可以采用轴向磁通电动机,可以使电机的轴向尺寸更小,由此使压缩机结构更紧凑。此外,由于驱动件的结构设计,可以由驱动件驱动第一涡旋盘旋转,而第一涡旋盘驱动第二涡旋盘旋转,从而可以进一步地将所有轴承都设置在压缩机的同一侧,比如第二涡旋盘的在第一方向D1上的同一侧,从而可以进一步使压缩机结构紧凑。并且,驱动件3的驱动件设计,可以使得涡旋压缩机具有二级压缩。
尽管描述了上述实施例,但是上述实施例中的一些特征可以进行组合形成新的实施例。

Claims (36)

  1. 一种用于涡旋压缩机的驱动件,所述涡旋压缩机包括:第一涡旋盘(11)和第二涡旋盘(12),所述驱动件包括:
    具有内孔的毂部(31),所述毂部包括相对的第一端部和第二端部;以及
    从所述驱动件的所述毂部的第一端部径向向外伸出的凸缘部(32),其中所述凸缘部将所述驱动件与所述涡旋压缩机的第一涡旋盘连接,从而驱动所述第一涡旋盘转动,其中第一涡旋盘驱动第二涡旋盘转动。
  2. 根据权利要求1所述的驱动件,其中:
    所述凸缘部包括连接件,用于将所述驱动件与所述涡旋压缩机的第一涡旋盘连接。
  3. 根据权利要求1所述的驱动件,其中:
    所述驱动件(3)的毂部(31)的第二端部的端面具有油槽(56)。
  4. 根据权利要求3所述的驱动件,其中:
    所述油槽(56)与所述驱动件(3)的毂部(31)的第二端部的所述端面的外周边间隔开。
  5. 根据权利要求4所述的驱动件,其中:
    所述油槽沿径向方向延伸。
  6. 根据权利要求1所述的驱动件,其中:
    所述毂部的内孔的孔壁上具有台阶部,所述毂部的所述台阶部具有台阶面。
  7. 根据权利要求1所述的驱动件,还包括:
    形成在所述凸缘部中的至少一条流体通道(6),所述凸缘部具有朝向从第一端部到第二端部的方向的第一表面;以及朝向从第二端部到第一端部的方向的第二表面,所述流体通道具有形成在第一表面中的流体入口(61),以及形成在第二表面中的流体出口(62),使得流体通过所述流体通道的流体入口,进入所述流体通道,并从所述流体出口流出。
  8. 根据权利要求7所述的驱动件,其中:
    所述流体通道(6)沿所述驱动件的轴向方向延伸。
  9. 根据权利要求7所述的驱动件,其中:
    所述流体通道(6)相对于所述驱动件的轴向方向倾斜延伸,所述流体通道的所述流体出口比所述流体入口远离所述驱动件的轴线。
  10. 根据权利要求9所述的驱动件,其中:
    假设第一平面通过流体通道的轴线的在流体入口处的点和驱动件的旋转轴线,而第二平面与第一平面垂直并且与驱动件的旋转轴线平行,则流体通道的轴线与第一平面的夹角为0至60度,并且流体通道的轴线与第二平面的夹角为5至60度。
  11. 根据权利要求7所述的驱动件,其中:
    所述驱动件包括两条流体通道(6),所述两条流体通道(6)在所述驱动件的径向方向上彼此相对。
  12. 根据权利要求7所述的驱动件,其中:
    所述驱动件的流体通道(6)具有圆形的或椭圆形或曲线形的横截面。
  13. 根据权利要求1所述的驱动件,其中:
    所述凸缘部(32)具有驱动件连接孔,所述驱动件连接孔具有螺纹部,用于通过螺栓将驱动件与所述第一涡旋盘固定连接。
  14. 根据权利要求1所述的驱动件,还包括:
    形成在所述凸缘部中的配重孔,所述配重孔用于使所述驱动件动平衡。
  15. 根据权利要求14所述的驱动件,其中:
    所述凸缘部具有朝向从第一端部到第二端部的方向的第一表面;以及朝向从第二端部到第一端部的方向的第二表面,所述配重孔是盲孔,所述盲孔从所述凸缘部的第二表面朝向所述凸缘部的第一表面延伸。
  16. 根据权利要求1所述的驱动件,还包括:
    从所述凸缘部(32)的表面突起的环状凸起,所述环状凸起具有环状的楔形凸起部分,所述楔形凸起部分在径向方向上的横截面具 有楔形形状,所述楔形凸起部分具有轴向朝外的楔形凸起表面,在径向方向上的横截面中,所述楔形凸起表面在径向方向上的第一楔形凸起点与所述凸缘部(32)的所述表面的轴向距离最大,并且在径向方向上的第二楔形凸起点与所述凸缘部(32)的所述表面的轴向距离为零,至少所述楔形凸起表面的与所述第一楔形凸起点对应的部分在所述驱动件的所述凸缘部的所述表面的用于支撑所述第二涡旋盘的第二端板的所述表面的环形区域中。
  17. 根据权利要求16所述的驱动件,其中:
    在第一楔形凸起点,所述楔形凸起表面与所述凸缘部(32)的所述表面的轴向距离在20微米至40微米的范围内;或,
    在第一楔形凸起点,所述楔形凸起表面与所述凸缘部(32)的所述表面的轴向距离在0.1微米至1毫米的范围内。
  18. 根据权利要求16所述的驱动件,其中:
    所述第一楔形凸起点在第二楔形凸起点的径向外侧,或者
    所述第一楔形凸起点在第二楔形凸起点的径向内侧。
  19. 根据权利要求16所述的驱动件,其中:
    所述环状凸起还具有环状的过渡凸起部分,所述过渡凸起部分具有轴向朝外的过渡凸起表面,在径向方向上的横截面中,所述过渡凸起表面从所述楔形凸起表面的与所述第一楔形凸起点对应的点以远离所述第二楔形凸起点并朝向所述凸缘部(32)的所述表面的方式延伸到所述凸缘部(32)的所述表面。
  20. 根据权利要求19所述的驱动件,其中:
    所述过渡凸起部分在径向方向上的横截面具有楔形形状。
  21. 根据权利要求20所述的驱动件,其中:
    所述过渡凸起部分在径向方向上的尺寸小于所述楔形凸起部分在径向方向上的尺寸。
  22. 一种涡旋压缩机,包括:
    第一涡旋盘(11),该第一涡旋盘包括第一端板和从第一端板沿第一方向(D1)伸出的第一涡旋卷;
    第二涡旋盘(12),该第二涡旋盘包括第二端板和从第二端板 沿与第一方向相反的第二方向(D2)伸出的第二涡旋卷,第二涡旋卷和第一涡旋卷配合以形成用于压缩介质的压缩腔;
    支架(4),所述支架位于所述第二涡旋盘的远离第一涡旋盘的一侧;
    电机;以及
    根据权利要求1至21中的任一项所述的驱动件(3),所述驱动件可转动地安装于所述支架并且位于第二涡旋盘的远离第一涡旋盘的一侧,所述驱动件(3)包括:具有内孔的毂部(31),所述毂部包括相对的第一端部和第二端部;以及从所述驱动件的所述毂部的第一端部径向向外伸出的凸缘部(32),所述驱动件通过所述凸缘部与第一涡旋盘连接,所述电机通过所述驱动件的毂部(31)驱动第一涡旋盘旋转,且第一涡旋盘驱动第二涡旋盘旋转。
  23. 根据权利要求22所述的涡旋压缩机,其中:
    所述第一涡旋盘(11)还包括从第一端板沿第一方向伸出的外壁(111),所述外壁在第一涡旋卷以及第二涡旋盘的径向外侧,所述外壁设有连接件,所述驱动件(3)通过所述连接件与第一涡旋盘连接。
  24. 根据权利要求23所述的涡旋压缩机,其中:
    所述外壁(111)具有环状形状。
  25. 根据权利要求22所述的涡旋压缩机,还包括:
    固定轴(5),所述固定轴固定于所述支架,
    通过所述驱动件的所述毂部可转动地安装在所述固定轴上使所述驱动件可转动地安装于所述支架。
  26. 根据权利要求22所述的涡旋压缩机,其中:
    所述第二涡旋盘(12)的第二端板被可转动地支撑在所述驱动件的凸缘部(32)上。
  27. 根据权利要求25所述的涡旋压缩机,还包括:
    第一轴承(51),所述毂部(31)的第一端部通过第一轴承(51)安装在所述固定轴(5)上;和/或
    第二轴承(52),所述毂部的第二端部通过第二轴承(52)安 装在所述固定轴上。
  28. 根据权利要求25所述的涡旋压缩机,其中:
    所述驱动件(3)的所述毂部的内孔的孔壁上具有台阶部,所述驱动件(3)的所述毂部的所述台阶部具有朝向第二方向的台阶面,
    所述固定轴(5)具有台阶部,所述固定轴(5)的台阶部具有朝向第一方向的台阶面,
    所述涡旋压缩机还包括第一止推轴承(54),第一止推轴承(54)设置在所述驱动件(3)的所述毂部的所述台阶部的台阶面与所述固定轴(5)的台阶部的台阶面之间。
  29. 根据权利要求25所述的涡旋压缩机,其中:
    所述支架(4)包括:筒状部(41),以及从所述支架的所述筒状部径向伸出的凸缘部(42),所述驱动件的毂部(31)的第二端部支撑在所述支架的所述凸缘部上。
  30. 根据权利要求29所述的涡旋压缩机,其中:
    所述驱动件(3)的毂部(31)的第二端部的端面在所述驱动件的毂部的第二端部和所述支架的所述凸缘部的环形接触区域上具有油槽(56),所述油槽从环形接触区域的径向内侧朝向环形接触区域的径向外侧横向延伸而横穿所述环形接触区域的一部分,所述油槽在径向上与环形接触区域的径向外边缘间隔开。
  31. 根据权利要求30所述的涡旋压缩机,其中:
    所述油槽(56)与所述驱动件(3)的毂部(31)的第二端部的所述端面的外周边间隔开。
  32. 根据权利要求24所述的涡旋压缩机,其中:
    所述驱动件的所述凸缘部与第一涡旋盘的所述外壁(111)密封地连接,以形成涡旋压缩机的吸入腔,流体通过吸入腔进入所述压缩腔。
  33. 根据权利要求32所述的涡旋压缩机,其中:
    所述驱动件包括形成在所述驱动件的所述凸缘部中的至少一条流体通道(6),所述流体通道具有形成在所述驱动件的所述凸缘部的朝向所述第一方向的表面中的流体入口(61),以及形成在所述驱 动件的所述凸缘部的朝向所述第二方向的表面中的流体出口(62),使得流体通过所述流体通道的流体入口,进入所述流体通道,并从所述流体出口进入所述吸入腔。
  34. 根据权利要求33所述的涡旋压缩机,其中:
    所述流体通道(6)相对于所述驱动件的轴向方向倾斜延伸,所述流体通道的所述流体出口比所述流体入口远离所述驱动件的旋转轴线。
  35. 根据权利要求34所述的涡旋压缩机,其中:
    假设第一平面通过流体通道的轴线的在流体入口处的点和驱动件的旋转轴线,而第二平面与第一平面垂直并且与驱动件的旋转轴线平行,则流体通道的轴线与第一平面的夹角为0至60度,并且流体通道的轴线与第二平面的夹角为5至60度。
  36. 根据权利要求34所述的涡旋压缩机,其中:
    所述外壁(111)具有在与所述流体通道的所述流体出口的位置对应的位置处的凹部(1110),所述凹部形成在所述外壁的朝向所述第一涡旋盘的旋转轴线的表面上,并且所述凹部的朝向所述第一涡旋盘的旋转轴线的壁面在朝向所述第一涡旋盘的第一端板的方向上逐渐朝向第一涡旋盘的旋转轴线倾斜或弯曲。
PCT/CN2022/143419 2021-12-31 2022-12-29 用于涡旋压缩机的驱动件以及涡旋压缩机 WO2023125816A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111681234.3 2021-12-31
CN202123441551.6 2021-12-31
CN202123441551.6U CN217682264U (zh) 2021-12-31 2021-12-31 用于涡旋压缩机的驱动件以及涡旋压缩机
CN202111681234.3A CN116412129A (zh) 2021-12-31 2021-12-31 用于涡旋压缩机的驱动件以及涡旋压缩机

Publications (1)

Publication Number Publication Date
WO2023125816A1 true WO2023125816A1 (zh) 2023-07-06

Family

ID=86998014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143419 WO2023125816A1 (zh) 2021-12-31 2022-12-29 用于涡旋压缩机的驱动件以及涡旋压缩机

Country Status (1)

Country Link
WO (1) WO2023125816A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090876A (en) * 1989-02-28 1992-02-25 Seiko Epson Corporation Scroll type fluid handling machine
CN101761477A (zh) * 2009-12-22 2010-06-30 大连三洋压缩机有限公司 一种涡旋式压缩机
JP2012215092A (ja) * 2011-03-31 2012-11-08 Toyota Industries Corp 両回転スクロール型圧縮機
JP2018059462A (ja) * 2016-10-06 2018-04-12 三菱重工業株式会社 両回転スクロール型圧縮機
CN111684159A (zh) * 2018-02-05 2020-09-18 三菱重工业株式会社 双旋转涡旋型压缩机及其组装方法
US20210404468A1 (en) * 2017-01-27 2021-12-30 Mitsubishi Heavy Industries, Ltd. Scroll compressor and assembly method thereof
CN217682264U (zh) * 2021-12-31 2022-10-28 丹佛斯(天津)有限公司 用于涡旋压缩机的驱动件以及涡旋压缩机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090876A (en) * 1989-02-28 1992-02-25 Seiko Epson Corporation Scroll type fluid handling machine
CN101761477A (zh) * 2009-12-22 2010-06-30 大连三洋压缩机有限公司 一种涡旋式压缩机
JP2012215092A (ja) * 2011-03-31 2012-11-08 Toyota Industries Corp 両回転スクロール型圧縮機
JP2018059462A (ja) * 2016-10-06 2018-04-12 三菱重工業株式会社 両回転スクロール型圧縮機
US20210404468A1 (en) * 2017-01-27 2021-12-30 Mitsubishi Heavy Industries, Ltd. Scroll compressor and assembly method thereof
CN111684159A (zh) * 2018-02-05 2020-09-18 三菱重工业株式会社 双旋转涡旋型压缩机及其组装方法
CN217682264U (zh) * 2021-12-31 2022-10-28 丹佛斯(天津)有限公司 用于涡旋压缩机的驱动件以及涡旋压缩机

Similar Documents

Publication Publication Date Title
WO2023125820A1 (zh) 涡旋压缩机
CN1183330C (zh) 涡旋式压缩机
JP2761586B2 (ja) スクロール式圧縮機
EP2839157B1 (en) Scroll compressor counterweight with axially distributed mass
JP2011510215A (ja) 流体圧縮用のスクロール圧縮機およびそのスラスト負荷の担持方法
US9909586B2 (en) Crankshaft with aligned drive and counterweight locating features
US9920762B2 (en) Scroll compressor with tilting slider block
CN217582486U (zh) 涡旋压缩机
CN217682264U (zh) 用于涡旋压缩机的驱动件以及涡旋压缩机
US11542942B2 (en) Dynamic radial compliance in scroll compressors
CN217898551U (zh) 用于涡旋压缩机的套筒以及涡旋压缩机
CN217234169U (zh) 法兰和包括该法兰的涡旋压缩机
WO2023125816A1 (zh) 用于涡旋压缩机的驱动件以及涡旋压缩机
JP2013504713A (ja) 端部シールを有するスクロール圧縮機のために最適化された吐出ポート
WO2023125783A1 (zh) 涡旋压缩机
JPH0751950B2 (ja) スクロール型流体装置
KR102060474B1 (ko) 스크롤 압축기
WO2023125782A1 (zh) 涡旋压缩机和用于涡旋压缩机的套筒
CN116412129A (zh) 用于涡旋压缩机的驱动件以及涡旋压缩机
WO2024022504A1 (zh) 用于涡旋压缩机的驱动件以及涡旋压缩机
WO2024042984A1 (ja) スクロール圧縮機
CN214170835U (zh) 止推组件和旋转式压缩机
CN216665913U (zh) 涡旋压缩机及空调系统
WO2023125780A1 (zh) 涡旋压缩机
WO2023125791A1 (zh) 涡旋压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915065

Country of ref document: EP

Kind code of ref document: A1