WO2023125782A1 - 涡旋压缩机和用于涡旋压缩机的套筒 - Google Patents

涡旋压缩机和用于涡旋压缩机的套筒 Download PDF

Info

Publication number
WO2023125782A1
WO2023125782A1 PCT/CN2022/143314 CN2022143314W WO2023125782A1 WO 2023125782 A1 WO2023125782 A1 WO 2023125782A1 CN 2022143314 W CN2022143314 W CN 2022143314W WO 2023125782 A1 WO2023125782 A1 WO 2023125782A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll compressor
sleeve
cylindrical body
scroll
axial
Prior art date
Application number
PCT/CN2022/143314
Other languages
English (en)
French (fr)
Inventor
孙玉松
Original Assignee
丹佛斯(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111683036.0A external-priority patent/CN116412133A/zh
Priority claimed from CN202123449891.3U external-priority patent/CN217898551U/zh
Application filed by 丹佛斯(天津)有限公司 filed Critical 丹佛斯(天津)有限公司
Publication of WO2023125782A1 publication Critical patent/WO2023125782A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/02Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings

Definitions

  • Embodiments of the present invention relate to a scroll compressor and a sleeve for the scroll compressor.
  • a traditional scroll compressor includes a fixed scroll and an orbiting scroll.
  • the fixed scroll has an end plate and a fixed scroll protruding from the end plate.
  • the movable scroll has an end plate and a movable scroll protruding from the end plate, and the movable scroll and the fixed scroll cooperate to form a compression chamber for compressing the medium.
  • the motor drives the movable scroll to rotate through the drive shaft to compress the medium in the compression chamber.
  • An embodiment of the present invention provides a scroll compressor, including: a first scroll, the first scroll includes a first end plate and a first scroll protruding from the first end plate in a first direction coil; a second scroll comprising a second end plate and a second scroll wrap protruding from the second end plate in a second direction opposite to the first direction, the second scroll wrap and The first scroll wrap cooperates to form a compression chamber for compressing the medium; the bracket, the bracket is located on the side of the second scroll away from the first scroll; the motor; the driving member, the driving member is rotatably installed on the bracket and Located on the side of the second scroll far away from the first scroll, the motor drives the first scroll to rotate through the driving member, and the first scroll drives the second scroll to rotate, and the driving member includes: an inner hole a hub portion, the hub portion includes opposite first end portions and second end portions; an inner hole portion of one end, the hub has a first fixing portion disposed on a hole wall of the inner hole portion; and a sleeve,
  • the sleeve has a clearance fit with the inner hole portion of the hub; or the sleeve has an interference fit with the inner hole portion of the hub.
  • one of the first fixing part and the second fixing part includes a recess
  • the other of the first fixing part and the second fixing part includes a protrusion fitted in the recess
  • the second fixing portion includes a radial protrusion protruding radially outward from the outer peripheral surface of the cylindrical body
  • the first fixing portion includes a radial recess on the hole wall of the inner hole portion, and radially The protrusion fits in the radial recess.
  • the radial recesses of the sleeve body are a plurality of radial recesses spaced apart in the circumferential direction and the radial projections are a plurality of radial recesses spaced apart in the circumferential direction respectively fit in the plurality of radial recesses Radially raised.
  • the radial protrusion has a radially outward facing surface, the surface of the radial protrusion being convex, and the radial recess has a radially inward facing surface, the surface of the radial recess being concave.
  • the radial protrusion is wedge-shaped in the axial direction, so that in the direction from the first end to the second end of the cylindrical body, the radial dimension of the radial protrusion gradually changes.
  • Small, and the radial recess is wedge-shaped in the axial direction, so that in the direction from the first end to the second end of the hub, the size of the radial recess gradually becomes smaller in the radial direction.
  • the radial protrusion has a radially outward facing surface which is a rough surface.
  • the radial protrusion extends from the first end of the cylindrical body to between the first end and the second end of the cylindrical body, and the radial protrusion faces the second end of the cylindrical body. Ends of the two end portions abut against ends of the radial recess facing the second end portion of the hub.
  • the second fixing portion includes an axial protrusion protruding axially outward from the end surface of the second end portion of the cylindrical body, and the hole wall of the inner hole portion of the hub has a fixing step, and the fixing step Having a stepped surface facing in a direction from the second end to the first end of the hub, the first fixing portion includes an axial recess on the fixing step, and the axial protrusion fits into the axial recess.
  • the axial recesses are a plurality of axial recesses spaced apart in the circumferential direction and the axial protrusions are a plurality of axial protrusions spaced apart in the circumferential direction respectively fitted in the plurality of axial recesses .
  • the axial protrusion has a radially outward facing surface, the surface of which is convex, and the axial recess has a radially inward facing surface, the surface of which is concave.
  • the axial projection is wedge-shaped in the axial direction, so that in the direction axially outward from the end face of the second end of the cylindrical main body, the axial projection tapers gradually, and the axial projection
  • the recess is axially wedge-shaped such that the axial recess tapers in a direction from the first end to the second end of the hub.
  • the sleeve further comprises a bearing bush arranged inside the cylindrical body.
  • the bearing bush has two circumferential ends abutting in the circumferential direction.
  • the bearing bush has an interference fit with the cylindrical body.
  • the bearing bush is made of the same material as the cylindrical body, eg aluminum alloy.
  • the bearing bush and the cylindrical body are made of different materials, eg the bearing bush is made of PTFE and the cylindrical body is made of steel.
  • the bearing bush is made of a single material, such as an aluminum alloy.
  • the bearing bushing is made of a composite material, for example, the composite material sequentially includes: a PTFE layer, a copper layer and a steel layer; or a carbon layer and a steel layer from the innermost side to the outermost side of the bearing bushing.
  • the hardness of the cylindrical body is greater than or equal to 30HRC.
  • the cylindrical body is made of cast iron, powder metallurgy, alloy, steel or polymer material.
  • the scroll compressor further includes: a fixed shaft, the fixed shaft is fixed to the bracket, wherein the driving member is rotatably mounted on the bracket by the hub portion of the driving member being rotatably mounted on the fixed shaft, and wherein The hub of the driver is mounted on the stationary shaft at the first end via the sleeve.
  • the cylindrical body has a notch axially inwardly recessed from the end surface of the first end portion for lubricating oil to flow from the inner side of the cylindrical body to the outer side of the cylindrical body.
  • the motor is an axial flux motor, including a stator and a rotor, the stator is fixed on the support, and the rotor is fixedly connected to the driving member for driving the driving member to rotate, thereby driving The first scroll rotates.
  • An embodiment of the present invention also provides a sleeve for a scroll compressor, comprising: a cylindrical main body, and a fixing portion provided on the cylindrical main body for mating connection with other components.
  • the fixing portion includes a recess or a protrusion.
  • the fixing portion includes a radial protrusion protruding radially outward from an outer peripheral surface of the cylindrical body.
  • the radial protrusion is a plurality of radial protrusions spaced apart in the circumferential direction.
  • the plurality of radial protrusions are distributed at equal intervals in the circumferential direction.
  • the radial protrusion has a radially outwardly facing surface which is convex.
  • the radial protrusion is wedge-shaped in the axial direction, so that in the direction from the first end to the second end of the cylindrical body, the radial dimension of the radial protrusion gradually changes. Small.
  • the radial protrusion has a radially outward facing surface which is a rough surface.
  • the radial protrusion extends from the first end of the cylindrical body to between the first end and the second end of the cylindrical body.
  • the fixing portion includes a recess recessed radially inward from the outer peripheral surface of the cylindrical body.
  • the radial recess is a plurality of circumferentially spaced apart radial recesses.
  • the plurality of radial recesses are distributed at equal intervals in the circumferential direction.
  • the fixing portion includes an axial protrusion protruding axially outward from an end face of the second end portion of the cylindrical body.
  • the axial protrusion is a plurality of axial protrusions spaced apart in the circumferential direction.
  • the plurality of axial protrusions are distributed at equal intervals in the circumferential direction.
  • the axial projection has a radially outwardly facing surface which is convex.
  • the axial protrusion is wedge-shaped in the axial direction such that the axial protrusion tapers in an axially outward direction from the end face of the second end portion of the cylindrical body.
  • the fixing portion includes an axial recess recessed axially inwardly from an end surface of the second end portion of the cylindrical body.
  • the axial recess is a plurality of circumferentially spaced axial recesses.
  • the plurality of axial recesses are distributed at equal intervals in the circumferential direction.
  • the sleeve further includes: a bearing bush disposed within the cylindrical body.
  • the bearing bush has two circumferential ends abutting in the circumferential direction.
  • the bearing bush has an interference fit with the cylindrical body.
  • the bearing bush is made of the same material as the cylindrical body, such as aluminium.
  • the bearing bush and the cylindrical body are made of different materials, for example the bearing bush is made of PTFE and the cylindrical body is made of steel.
  • the bearing bush is made of a single material, such as an aluminum alloy.
  • the bearing bushing is made of a composite material, for example, the composite material sequentially includes: a PTFE layer, a copper layer and a steel layer; or a carbon layer and a steel layer from the innermost side to the outermost side of the bearing bushing.
  • the cylindrical body has a notch axially inwardly recessed from the end surface of the first end portion for lubricating oil to flow from the inner side of the cylindrical body to the outer side of the cylindrical body.
  • the scroll compressor according to the embodiment of the present invention can improve the performance of the scroll compressor.
  • FIG. 1 is a schematic cross-sectional view of a scroll compressor according to an embodiment of the present invention
  • FIG. 2 is a schematic perspective view of a first scroll of the scroll compressor shown in FIG. 1;
  • FIG. 3 is a schematic perspective view of a second scroll of the scroll compressor shown in FIG. 1;
  • FIG. 4 is a schematic perspective view of a drive member of the scroll compressor shown in FIG. 1;
  • Fig. 5 is a schematic perspective view of a driving member of a scroll compressor according to a modified example of an embodiment of the present invention
  • FIG. 6 is a schematic perspective view of a drive member of the scroll compressor shown in FIG. 4;
  • Fig. 7 is a schematic top view of the driving member of the scroll compressor shown in Fig. 4;
  • Fig. 8 is a schematic top view of a driving member of a scroll compressor according to a modified example of an embodiment of the present invention.
  • Fig. 9 is a schematic cross-sectional view of the drive member of the scroll compressor shown in Fig. 8 along the line AA in Fig. 8;
  • Fig. 10 is a schematic cross-sectional view of the drive member of the scroll compressor shown in Fig. 8 along line DD in Fig. 8;
  • Fig. 11 is a schematic cross-sectional view of the drive member of the scroll compressor shown in Fig. 8 along line EE in Fig. 8;
  • Fig. 12 is a schematic cross-sectional view of the drive member of the scroll compressor shown in Fig. 8 along line FF in Fig. 8;
  • Fig. 13 is a schematic sectional view of the drive member of the scroll compressor shown in Fig. 8 along line GG in Fig. 8;
  • Fig. 14 is a schematic top view of a driving member of a scroll compressor according to another modified example of the embodiment of the present invention.
  • Fig. 15 is a schematic cross-sectional view of the drive member of the scroll compressor shown in Fig. 14 along line JJ in Fig. 14;
  • Fig. 16 is a schematic cross-sectional view of a driving member of a scroll compressor according to yet another modification of the embodiment of the present invention.
  • Fig. 17 is a schematic cross-sectional view of a driving member of a scroll compressor according to yet another modified example of the embodiment of the present invention.
  • Fig. 18 is a schematic perspective view of a sleeve of a drive member of the scroll compressor shown in Fig. 1;
  • Figure 19 is another schematic perspective view of the sleeve of the drive member of the scroll compressor shown in Figure 18;
  • Fig. 20 is a schematic cross-sectional view of the scroll compressor shown in Fig. 1 in the assembled state of the driving member, the second scroll, the fixed shaft, and the oiling bolt;
  • FIG. 21 is a schematic perspective view of a bearing bush of a sleeve of a drive member of the scroll compressor shown in FIG. 1;
  • FIG. 22 is a schematic perspective view of a sleeve of a drive member of a scroll compressor according to a modification of the embodiment of the present invention
  • Figure 23 is another schematic perspective view of the sleeve of the drive member of the scroll compressor shown in Figure 22;
  • Fig. 24 is a schematic cross-sectional view of the scroll compressor shown in Fig. 1 in the assembled state of the driving member, fixed shaft, sleeve, etc.;
  • Fig. 25 is a schematic exploded perspective view of the drive member, fixed shaft, sleeve, etc. of the scroll compressor shown in Fig. 24;
  • Fig. 26 is a schematic exploded cross-sectional view of the driving member, fixed shaft, sleeve, etc. of the scroll compressor shown in Fig. 24;
  • Fig. 27 is a schematic sectional view of the driving member, the first scroll, the second scroll, the fixed shaft, etc. of the scroll compressor shown in Fig. 1;
  • FIG. 28 is a schematic exploded perspective view of a drive member, a first scroll, a second scroll, a fixed shaft, etc. of the scroll compressor shown in FIG. 27;
  • Fig. 29 is a schematic perspective view of a bracket of the scroll compressor shown in Fig. 1;
  • Fig. 30 is a schematic cross-sectional view of the bracket of the scroll compressor shown in Fig. 29;
  • Fig. 31 is a schematic sectional view of the driving member, the first scroll, the second scroll, etc. of the scroll compressor shown in Fig. 1;
  • FIG. 32 is a schematic exploded perspective view of the drive member, first scroll, second scroll, etc. of the scroll compressor shown in FIG. 31;
  • FIG. 33 is a schematic cross-sectional view of a scroll compressor according to a modified example of the embodiment of the present invention in an assembled state of a bracket, a fixed shaft, a driver, a second scroll, and the like.
  • the sleeve 9 for the driving member 3 of the scroll compressor 100 includes: a cylindrical body 94 , and a fixing portion provided on the cylindrical body 94 for connecting with the cylindrical body 94 Other components such as the driver 3 are matingly connected.
  • the fixing portion may include a recess or a protrusion.
  • the fixing portion includes a radial protrusion 96 protruding radially outward from the outer peripheral surface 95 of the cylindrical body 94 .
  • the radial protrusion 96 may be a plurality of circumferentially spaced radial protrusions 96 .
  • a plurality of radial projections 96 may be distributed at equal intervals in the circumferential direction.
  • the radial protrusion 96 has a radially outward facing surface 961 which may be convex. For example, surface 961 is a rough surface.
  • the radial protrusion 96 is wedge-shaped in the axial direction, so that in the direction from the first end 97 to the second end 98 of the cylindrical body 94, the radial protrusion 96 is radially size gradually decreases.
  • the radial projection 96 may extend from the first end 97 of the cylindrical body 94 to between the first end 97 and the second end 98 of the cylindrical body 94 .
  • the fixing portion may also include a recess recessed radially inward from the outer peripheral surface 95 of the cylindrical body 94 .
  • the radial recess may be a plurality of circumferentially spaced radial recesses. A plurality of radial recesses may be distributed at equal intervals in the circumferential direction.
  • the fixing portion includes an axial protrusion 99 protruding axially outward from an end surface 981 of the second end portion 98 of the cylindrical body 94 .
  • the axial protrusion 99 may be a plurality of axial protrusions 99 spaced apart in the circumferential direction. A plurality of axial protrusions 99 may be distributed at equal intervals in the circumferential direction.
  • the axial projection 99 has a radially outward facing surface 991 which may be convex.
  • the axial protrusion 99 may be wedge-shaped in the axial direction such that the axial protrusion 99 tapers in an axially outward direction from the end surface 981 of the second end portion 98 of the cylindrical body 94 .
  • the fixing portion may also include an axial recess recessed axially inwardly from the end surface 981 of the second end portion 98 of the cylindrical body 94 .
  • the axial recess may be a plurality of circumferentially spaced axial recesses. A plurality of axial recesses may be distributed at equal intervals in the circumferential direction.
  • the sleeve 9 further includes: a bearing bush as the first bearing 51, the bearing bush is arranged in the cylindrical main body 94, and the bearing bush is fixed in the cylindrical body 94 Inside the main body 94.
  • the bearing bush may have two circumferential ends 511 abutting in the circumferential direction.
  • the bearing bush can have an interference fit with the cylindrical body 94 .
  • the bearing bush and the cylindrical body 94 are made of the same material, such as aluminum alloy.
  • the bearing bush and the cylindrical body 94 may also be made of different materials, for example the bearing bush is made of PTFE and the cylindrical body 94 is made of steel.
  • the bearing bushes may be made of a single material, eg aluminum alloy.
  • the bearing bushing can also be made of composite material, for example, the composite material includes: PTFE layer, copper layer and steel layer; or carbon layer and steel layer in sequence from the innermost to the outermost side of the bearing bushing.
  • the hardness of the cylindrical body 94 may be greater than or equal to 30HRC.
  • the cylindrical body 94 can be made of cast iron, alloy, steel, polymer material or powder metallurgy. Thus, the cylindrical body 94 is more wear-resistant and has a longer life, and the processing of the cylindrical body 94 is easy and the cost is low.
  • the cylindrical body 94 has a notch 940 recessed axially inwardly from the end surface 971 of the first end portion 97 for lubricating oil to flow from the inside of the cylindrical body 94 to the outside of the cylindrical body 94 .
  • a scroll compressor 100 includes a first scroll 11 and a second scroll 12 .
  • the driver 3 according to an embodiment of the present invention includes: a hub 31 having an inner hole 30, the hub 31 includes opposite first ends 311 and second ends 312;
  • the first end portion 311 of the hub portion 31 of 3 has a flange portion 32 protruding radially outward, and the driving member 3 is connected to the first scroll 11 through the flange portion 32 .
  • the flange portion 32 connects the driving member 3 with the first scroll 11 to drive the first scroll 11 to rotate.
  • the flange portion 32 includes a connecting piece 130 ( FIG. 27 , FIG. 28 ), and the connecting piece 130 connects the driving piece 3 with the first scroll 11 to drive the first scroll 11 to rotate.
  • the connecting part 130 may be integrated with one of the first scroll 11 and the driving part 3, or may be a separate connecting part.
  • the end surface 3120 of the second end portion 312 of the hub portion 31 of the driving member 3 has an oil groove 56 .
  • the oil groove 56 may extend in a radial direction. According to an example of the present invention, as shown in FIG. 5 , the oil groove 56 is spaced apart from the outer periphery 3121 of the end surface 3120 of the second end portion 312 of the hub portion 31 of the driving member 3 .
  • the oil groove 56 may be at least one oil groove, or two or more oil grooves distributed according to a certain interval (such as an equal interval).
  • the hole wall 301 of the inner hole 30 of the hub portion 31 of the driver 3 has a stepped portion 302, and the stepped portion 302 of the hub portion 31 of the driver 3 has a The stepped surface 303 in the two directions D2.
  • the fixed shaft 5 has a stepped portion 501
  • the stepped portion 501 of the fixed shaft 5 has a stepped surface 502 facing the first direction D1
  • the scroll compressor 100 also includes a first The thrust bearing 54 , the first thrust bearing 54 is disposed between the stepped surface 303 of the stepped portion 302 of the hub portion 31 of the driver 3 and the stepped surface 502 of the stepped portion 501 of the fixed shaft 5 .
  • the driver 3 includes at least one fluid channel formed in the flange portion 32 of the driver 3 6.
  • the flange portion 32 has a first surface 321 facing the direction from the first end portion 311 to the second end portion 312; and a second surface 320 facing the direction from the second end portion 312 to the first end portion 311,
  • the fluid channel 6 has a fluid inlet 61 formed in the first surface 321, and a fluid outlet 62 formed in the second surface 320, so that the fluid passes through the fluid inlet 61 of the fluid channel 6, enters the fluid channel 6, and exits the fluid outlet 62 flow out.
  • the driver 3 may comprise two fluid channels 6 , which are opposite each other in the radial direction of the driver 3 .
  • the fluid channel 6 of the driver 3 can have a circular or oval or curved cross section.
  • the fluid channel 6 extends obliquely relative to the axial direction of the drive member 3, and the fluid outlet 62 of the fluid channel 6 is larger than the fluid inlet. 61 is remote from the axis of rotation 91 of the drive 3 .
  • the included angle between the axis 93 of the fluid channel 6 and the first plane is 0 to 60 degrees
  • the included angle between the axis 93 of the fluid channel 6 and the second plane is 5 to 60 degrees.
  • the fluid channel 6 extends along the axial direction of the driver 3, that is, the axis 93 of the fluid channel 6 is parallel to the rotation axis 91 of the driver 3, and the fluid channel 6
  • the included angle between the axis 93 of the fluid channel 6 and the first plane is 0 degrees
  • the included angle between the axis 93 of the fluid channel 6 and the second plane is also 0 degrees.
  • the flange portion 32 of the driver 3 has a driver connection hole 323, and the driver connection hole 323 of the flange portion 32 of the driver 3 has a threaded portion 324
  • the connecting piece 130 ( FIG. 27 , FIG. 28 ) includes a bolt 132 , and the bolt 132 fixedly connects the first scroll 11 and the driving piece 3 through the connecting hole 323 of the driving piece.
  • the flange portion 32 of the driver 3 has a driver pin hole 322 .
  • the outer wall 111 of the first scroll 11 has a scroll pin hole 114, and the connecting member 130 further includes: a pin 131 inserted into the scroll pin hole 114 ( FIG. 2 ) of the outer wall 111 of the first scroll 11 and The driver pin hole 322 ( FIG. 7 ) of the flange portion 32 of the driver 3 is used to determine the relative position of the first scroll 11 and the driver 3 .
  • the driving member 3 further includes: a counterweight hole 325 formed in the flange portion 32 , and the counterweight hole 325 is used to dynamically balance the driving member 3 .
  • the weight hole may be a blind hole extending from the second surface 320 of the flange portion 32 toward the first surface 321 of the flange portion 32 .
  • the driving member 3 does not have a counterweight hole 325 .
  • the driving member 3 further includes: an eccentric ring hole formed in the flange portion 32 326, the eccentric ring 341 (see Figure 28, Figure 31, Figure 32, Figure 33) is set in the eccentric ring hole 326, and the coupling pin 342 is inserted into the coupling pin hole 126 formed in the second end plate 123 of the second scroll 12 (Fig. 3) and in the hole 3410 of the eccentric ring 341 (see Fig. 28, Fig. 31, Fig. 32, Fig. 33).
  • the driver 3 may have three eccentric ring holes 326 .
  • the bracket 4 is located on a side of the second scroll 12 away from the first scroll 11 .
  • the driver 3 is rotatably mounted on the bracket 4 and is located on the side of the second scroll 12 away from the first scroll 11, and the motor 7 drives the first scroll 11 around the axis of rotation 91 through the driver 3 (Fig. 4 , Fig. 6, Fig. 9 to Fig. 13, Fig. 15, Fig. 28) rotate, and the first scroll 11 drives the second scroll 12 to rotate around the rotation axis 92 (Fig. 28).
  • the axis of rotation 91 is the axis of rotation or axis of the drive 3 ( FIGS. 4 , 6 , 9 to 13 , 15 ).
  • the axis of rotation 91 and the axis of rotation 92 are parallel to each other and spaced apart.
  • the driver 3 includes: a hub 31 having an inner hole 30, the hub 31 includes opposite first ends 311 and second ends 312; Outwardly protruding flange portion 32 .
  • the bore 50 of the hub 31 has a bore portion 504 at the first end 311 (see FIGS. 4 and 6 ), and the hub 31 has a bore wall 304 disposed on the bore portion 504 (see FIGS. 4 and 6 ). on the first fixed part.
  • the sleeve 9 is disposed in the inner hole portion 504 of the hub portion 31, and the sleeve 9 includes: a cylindrical main body 94, and a second fixing portion disposed on the cylindrical main body 94, the sleeve 9 The second fixing portion cooperates with the first fixing portion of the hub portion 31 .
  • the sleeve 9 and the inner hole portion 504 of the hub portion 31 may be clearance fit; or the sleeve 9 and the inner hole portion 504 of the hub portion 31 may be interference fit.
  • One of the first fixing part and the second fixing part may include a recess, and the other of the first fixing part and the second fixing part may include a protrusion fitted in the recess.
  • the second fixing part includes a radial protrusion 96 protruding radially outward from the outer peripheral surface 95 of the cylindrical body 94, and the first fixing part
  • the portion includes a radial recess 306 on the bore wall 304 of the inner bore portion 504 into which the radial protrusion 96 fits.
  • the radial recesses 306 may be a plurality of radial recesses 306 spaced apart in the circumferential direction and the radial protrusions 96 may be a plurality of radial protrusions 96 respectively fitted in the plurality of radial recesses 306 spaced apart in the circumferential direction .
  • the radial projection 96 has a radially outward facing surface 961 which may be convex, and the radial recess 306 has a radially inward surface 3061 which may be concave .
  • Surface 961 may be a rough surface.
  • the radial protrusion 96 is wedge-shaped in the axial direction, so that in the direction from the first end 97 to the second end 98 of the cylindrical body 94, the radial protrusion 96 The upward dimension gradually becomes smaller, and the radial recess 306 is wedge-shaped in the axial direction, so that in the direction from the first end 311 to the second end 312 of the hub 31, the radial direction of the radial recess 306 The size gradually decreases.
  • the radial protrusion 96 extends from the first end 97 of the cylindrical body 94 to between the first end 97 and the second end 98 of the cylindrical body 94 , and the radial protrusion 96 The end 962 facing the second end 98 of the cylindrical body 94 abuts against the end 3062 of the radial recess 306 facing the second end 312 of the hub 31 .
  • the second fixing portion includes a radial recess, while the first fixing portion includes a radial protrusion .
  • the second fixing portion includes an axial protrusion 99 protruding axially outward from the end surface 981 of the second end portion 98 of the cylindrical body 94, and the hub portion 31
  • the hole wall 304 of the inner hole portion 504 has a fixing step 307, and the fixing step 307 has a step surface 3071 facing the direction from the second end portion 312 of the hub portion 31 to the first end portion 311, and the first fixing portion is included in the fixing step 307 on the axial recess 3072, the axial projection 99 fits in the axial recess 3072.
  • the axial recesses 3072 may be a plurality of axial recesses 3072 spaced apart in the circumferential direction and the axial protrusions 99 may be a plurality of axial protrusions 99 respectively fitted in the plurality of axial recesses 3072 spaced apart in the circumferential direction .
  • the axial projection 99 has a radially outward surface 991
  • the surface 991 of the axial projection 99 is a convex surface
  • the axial recess 3072 has a radially inward surface 3073
  • the axial recess 3072 has a radially inward surface 3073.
  • Surface 3073 is concave.
  • the axial protrusion 99 may be wedge-shaped in the axial direction, so that in the direction axially outward from the end surface 981 of the second end portion 98 of the cylindrical body 94, the axial protrusion 99 tapers and the axial recess 3702 may be wedge-shaped in the axial direction such that the axial recess 3072 tapers in a direction from the first end 311 to the second end 312 of the hub 31 .
  • the second fixing portion includes an axial recess, while the first fixing portion includes an axial protrusion.
  • the sleeve 9 further includes: a bearing bush as the first bearing 51 , and the bearing bush is disposed in the cylindrical main body 94 .
  • the bearing bush may have two circumferential ends 511 abutting in the circumferential direction.
  • the bearing bush has an interference fit with the cylindrical body 94 .
  • the bearing bush and the cylindrical body 94 are made of the same material, such as aluminum alloy.
  • the bearing bush and the cylindrical body 94 may also be made of different materials, for example the bearing bush is made of PTFE and the cylindrical body 94 is made of steel.
  • the bearing bushes may be made of a single material, eg aluminum alloy.
  • the bearing bushing can also be made of composite material, for example, the composite material includes: PTFE layer, copper layer and steel layer; or carbon layer and steel layer in sequence from the innermost to the outermost side of the bearing bushing.
  • the hardness of the cylindrical body 94 may be greater than or equal to 30HRC.
  • the cylindrical body 94 can be made of cast iron, powder metallurgy, alloy, steel or polymer material.
  • the cylindrical body 94 has a notch 940 recessed axially inwardly from the end surface 971 of the first end portion 97 for lubricating oil to flow from the inside of the cylindrical body 94 to the outside of the cylindrical body 94 .
  • a scroll compressor 100 includes: a first scroll 11 , a second scroll 12 , a bracket 4 , a motor 7 and a driving member 3 .
  • the first scroll 11 includes a first end plate 112 and a first scroll wrap 113 protruding from the first end plate 112 along a first direction D1.
  • the second scroll 12 includes a second end plate 123 and a second scroll wrap 124 protruding from the second end plate 123 in a second direction D2 opposite to the first direction D1, the second scroll wrap 124 and the first scroll wrap 124.
  • the scroll wraps 113 cooperate to form compression pockets for compressing media.
  • the bracket 4 is located on a side of the second scroll 12 away from the first scroll 11 .
  • the driver 3 is rotatably mounted on the bracket 4 and is located on the side of the second scroll 12 away from the first scroll 11, and the motor 7 drives the first scroll 11 around the rotation axis 91 through the driver 3 (Fig. 4 , Fig. 6, Fig. 9 to Fig. 13, Fig. 15, Fig. 28) rotate, and the first scroll 11 drives the second scroll 12 to rotate around the rotation axis 92 (Fig. 28).
  • the axis of rotation 91 is the axis of rotation or axis of the drive 3 ( FIGS. 4 , 6 , 9 to 13 , 15 ).
  • the axis of rotation 91 and the axis of rotation 92 are parallel to each other and spaced apart.
  • the driver 3 includes: a hub 31 having an inner hole 30, the hub 31 includes opposite first ends 311 and second ends 312; The protruding flange portion 32 , through which the driving member 3 is connected to the first scroll 11 .
  • the motor 7 drives the first scroll 11 to rotate through the hub 31 of the driving member 3 , and the first scroll 11 drives the second scroll 12 to rotate.
  • the scroll compressor 100 further includes a casing 101 , and the casing 101 may include a first casing 1011 , a second casing 1012 and a third casing 1013 .
  • the first casing 1011 and the second casing 1012 form a sealed space, and the first scroll 11 , the second scroll 12 , the support 4 , the motor 7 and the driving member 3 are arranged in the casing 101 .
  • the second housing 1012 and the third housing 1013 define an exhaust chamber.
  • the bracket 4 can be fixed to the first housing 1011, for example, the bracket 4 is welded to the first housing 1011, the bracket 4 is fixed to the first housing 1011 through an interference fit with the first housing 1011, or the bracket 4 is fixed to the first housing 1011 by bolts.
  • the first casing 1011 One end of the bracket 4 can be fixed to the bottom of the housing 101 or the bottom of the first housing 1011 .
  • the first scroll 11 further includes an outer wall 111 protruding from the first end plate 112 along the first direction D1, the outer wall 111 is located between the first scroll wrap 113 and On the radially outer side of the second scroll 12 , the outer wall 111 is provided with a connecting piece 130 ( FIG. 27 , FIG. 28 ), and the driving member 3 is connected to the first scroll 11 through the connecting piece 130 ( FIG. 27 , FIG. 28 ).
  • the outer wall 111 may have a ring shape.
  • the scroll compressor 100 further includes: a fixed shaft 5 fixed to the bracket 4 .
  • the driving member 3 is rotatably mounted on the bracket 4 through the hub portion 31 of the driving member 3 being rotatably mounted on the fixed shaft 5 .
  • the second end plate 123 of the second scroll 12 is rotatably supported on the driving member 3 on the flange portion 32.
  • the flange portion 32 of the driver 3 has a driver pin hole 322 ( FIG. 4 , FIG. 8 , FIG. 12 , and FIG. 14 ).
  • the outer wall 111 of the first scroll 11 has a scroll connecting hole 1116 (Fig. 27, Fig. 28), and the flange part 32 of the driver 3 has a driving part connecting hole 323 (Fig. 8, Fig. 13, Fig. 14, Fig. 27 , FIG. 28), one of the drive connecting hole 323 of the flange portion 32 of the driving member 3 and the scroll connecting hole 116 of the outer wall 111 of the first scroll 11 has a threaded portion 324, and the connecting member 130 (Fig. 27 , FIG.
  • the pin 131 includes: a pin 131 and a bolt 132, and the pin 131 is inserted into the scroll pin hole 114 ( FIG. 2 ) of the outer wall 111 of the first scroll 11 and the driver pin hole 322 of the flange portion 32 of the driver 3 (Fig. 4, Fig. 8, Fig. 12, Fig. 14), to determine the relative position of the first scroll 11 and the driving member 3, the bolt 132 passes through the scroll connecting hole 116 (Fig. 27, Fig. 28) and the driving member
  • the connecting hole 323 fixedly connects the first scroll 11 and the driving member 3 .
  • the scroll compressor 100 further includes a second bearing 52 .
  • the first end 311 of the hub 31 is mounted on the fixed shaft 5 through the first bearing 51
  • the second end 312 of the hub 31 is mounted on the fixed shaft 5 through the second bearing 52 .
  • the second scroll 12 further includes a hub portion 121 protruding from the second end plate 123 along the first direction D1, see Fig. 1 , FIG. 20
  • the fixed shaft 5 has an axial inner hole 50 .
  • the scroll compressor 100 also includes a third bearing 53 through which the hub 121 of the second scroll 12 is installed in the axial inner hole 50 of the fixed shaft 5 .
  • the stepped portion 302 has a stepped surface 303 facing the second direction D2
  • the fixed shaft 5 has a stepped portion 501
  • the stepped portion 501 of the fixed shaft 5 has a stepped surface 502 facing the first direction D1
  • the scroll compressor 100 also includes a first stop.
  • the thrust bearing 54 , the first thrust bearing 54 is disposed between the stepped surface 303 of the stepped portion 302 of the hub portion 31 of the driver 3 and the stepped surface 502 of the stepped portion 501 of the fixed shaft 5 .
  • the first thrust bearing 54 may be any suitable known thrust bearing.
  • the first thrust bearing 54 may be an annular thrust washer made of wear-resistant metal or non-metallic material, or the first thrust bearing 54 may be a ball thrust bearing, a roller thrust bearing, or the like.
  • the bracket 4 includes: a cylindrical portion 41, and a flange portion 42 protruding radially from the cylindrical portion 41 of the bracket 4, and the driver 3
  • the second end portion 312 of the hub portion 31 is supported on the flange portion 42 of the bracket 4 .
  • a part of the fixed shaft 5 is inserted into and fixed to the cylindrical portion 41 of the bracket 4 , and the fixed shaft 5 has a cylindrical shape.
  • the end face 3120 of the second end 312 of the hub 31 of the driving member 3 is in contact with the second end 312 of the hub 31 of the driving member 3 and the protrusion of the bracket 4.
  • the annular contact area of the rim 42 has an oil groove 56 extending laterally from the radially inner side of the annular contact area towards the radially outer side of the annular contact area across a portion of the annular contact area, the oil groove 56 being radially in contact with the annular contact area
  • the radially outer edges of are spaced apart.
  • the oil groove 56 may extend in a radial direction.
  • the oil groove 56 is spaced apart from the outer periphery 3121 of the end face 3120 of the second end portion 312 of the hub portion 31 of the driver 3 .
  • the oil groove 56 may also be formed on the surface 420 of the flange portion 42 of the bracket 4 .
  • the oil groove 56 may be at least one oil groove, or two or more oil grooves distributed according to a certain interval (such as an equal interval).
  • the motor 7 may be an axial flux motor or a radial flux motor.
  • the motor 7 includes a rotor 71 and a stator 72 fixed to the frame 4 , and the rotor 71 of the motor 7 drives the first scroll 11 to rotate by driving the driving member 3 to rotate.
  • the rotor 71 of the motor 7 is disposed on one side of the stator 72 facing the first direction D1 or the second direction D2.
  • the flange portion 32 of the driving member 3 and the outer wall of the first scroll 11 111 are hermetically connected to form the suction chamber 88 of the scroll compressor 100 through which fluid enters the compression chamber.
  • the driver 3 includes at least one fluid channel 6 formed in the flange portion 32 of the driver 3, the fluid channel 6 has a The fluid inlet 61 in the surface 321 of the flange portion 32 facing the first direction D1, and the fluid outlet 62 formed in the surface 320 of the flange portion 32 of the driver 3 facing the second direction D2, so that the fluid passes through the fluid
  • the fluid inlet 61 of the channel 6 enters the fluid channel 6 and enters the suction chamber 88 from the fluid outlet 62 .
  • the driver 3 may comprise two fluid channels 6 , which are opposite each other in the radial direction of the driver 3 .
  • the fluid channel 6 of the driver 3 can have a circular cross section. According to an example of the present invention, as shown in Fig. 4, Fig. 6 to Fig.
  • the fluid passage 6 extends obliquely relative to the axial direction of the drive member 3, and the fluid outlet 62 of the fluid passage 6 is farther away from the drive member 3 than the fluid inlet 61.
  • Axis of rotation 91 assuming that the first plane passes through the point at the fluid inlet 61 of the axis 93 of the fluid channel 6 and the axis of rotation 91 of the driver 3, while the second plane is perpendicular to the first plane and parallel to the axis of rotation 91 of the driver 3, Then the included angle between the axis 93 of the fluid channel 6 and the first plane is 0 to 60 degrees, and the included angle between the axis 93 of the fluid channel 6 and the second plane is 5 to 60 degrees.
  • the fluid channel 6 extends along the axial direction of the driver 3, that is, the axis 93 of the fluid channel 6 is parallel to the rotation axis 91 of the driver 3, and the fluid channel 6
  • the included angle between the axis 93 of the fluid channel 6 and the first plane is 0 degrees
  • the included angle between the axis 93 of the fluid channel 6 and the second plane is also 0 degrees.
  • the outer wall 111 has a recess 1110 at a position corresponding to the position of the fluid outlet 62 of the fluid passage 6, and the recess 1110 is formed on the outer wall 111 toward the first scroll 11 on the surface 1111 of the rotation axis of the first scroll 11, and the wall surface 11101 of the recess 1110 facing the rotation axis of the first scroll 11 gradually faces the first scroll in the direction of the first end plate 112 of the first scroll 11
  • the axis of rotation of 11 is inclined or curved.
  • the scroll compressor 100 further includes: an oiling bolt 81 , the oiling bolt 81 is accommodated in the inner hole 50 of the fixed shaft 5 , and one end is located at the bottom of the housing 101 . In the pool, the other end is fixedly connected with the hub 121 of the second scroll 12 .
  • Scroll compressor 100 may also include any other suitable pump.
  • the motor 7 drives the first scroll 11 to rotate through the driving member 3
  • the first scroll 11 drives the second scroll 12 to rotate.
  • the refrigerant enters the sealed space formed by the first housing 1011 and the second housing 1012 of the housing 101 through the inlet 82, and a part of the refrigerant flows upwards, bypasses the upper end of the cylindrical baffle 83, and then flows downwards through the fluid channel
  • the fluid inlet 61 of 6 enters the fluid passage 6 (refer to Fig. 4, Fig. 6 to Fig. 8, Fig. 10, Fig. 14, Fig.
  • the second scroll 12 drives the oiling bolt 81 arranged in the axial inner hole 50 of the fixed shaft 5 to rotate, and the lubricating oil contained in the oil groove at the bottom of the first housing 1011 of the housing 101 is sucked into the In the axial inner hole 50 of the fixed shaft 5, the first part of lubricating oil flows through the transverse through hole 85 (such as a radial through hole) on the fixed shaft 5 to the second bearing 52 and the second part of the hub portion 31 of the driving member 3. Between the end portion 312 and the flange portion 42 of the bracket 4 (see FIG. 1 ).
  • the second part of lubricating oil enters the gap between the hub 121 of the second scroll 12 and the third bearing 53 to lubricate the third bearing 53, and then enters the hub 121 of the second scroll 12 and the third bearing 53 Part of the lubricating oil in the gap between them enters the gap between the second end plate 123 of the second scroll 12 and the flange portion 32 of the driver 3, and finally enters the first scroll 11 and the second scroll through the fluid channel 6.
  • the space formed by the scroll 12 is used to lubricate the first scroll 11 and the second scroll 12 .
  • Another part of lubricating oil entering the gap between the hub portion 121 of the second scroll 12 and the third bearing 53 bypasses the upper end portion of the third bearing 53 and enters the first bearing 51, and partly enters the groove formed in the fixed shaft 5.
  • the oil return channel 862 then enters the oil return channel 861 formed in the fixed shaft 5 through the communication hole 89 , and finally returns to the oil groove at the bottom of the first housing 1011 of the housing 101 .
  • the lubricating oil entering the first bearing 51 enters the oil return passage 862 through the transverse through hole 87 (such as a radial through hole), then enters the oil return passage 861 through the communication hole 89, and finally returns to the first housing 1011 of the housing 101 in the oil tank at the bottom.
  • the sleeve 9 for the driver 3 of the scroll compressor 100 With the sleeve 9 for the driver 3 of the scroll compressor 100 according to the embodiment of the present invention, contact between the first bearing 51 and the driver 3 can be prevented.
  • the driving member 3 will expand due to high-speed rotation, and the sleeve 9 can fix the first bearing 51 .
  • an axial flux motor (such as a disc motor, which may include a stator and a rotor, the stator is fixed to the bracket 4, and the rotor is fixed to the drive member) can be used to make the axial size of the motor smaller, thereby making the compressor structure more compact.
  • the first scroll can be driven to rotate by the driving member, and the second scroll can be driven to rotate by the first scroll, so that all bearings can be further arranged on the same side of the compressor , such as the same side of the second scroll in the first direction D1, so that the compressor can be further compacted.
  • the shaft sleeve is often installed in the inner hole of the rotating part with interference, but when the scroll compressor runs at high speed, the inner hole will become larger and smaller under the action of centrifugal force. The adhesion of the bushing thus increases the risk of the bushing coming off.
  • the problem of local contact will occur when the inner diameter of the shaft sleeve contacts the outer diameter of the shaft, thereby reducing the bearing capacity of the shaft sleeve.
  • the structural design of the driving part and the cooperation between the design of the flange outside the sleeve and the inner hole of the driving part it can not only ensure that the shaft sleeve and the driving part will not rotate relative to each other, but also ensure that no bearing will occur. Shedding problem.
  • the outer diameter of the matching sleeve and the inner hole of the driving part is processed into a circular arc surface, so that the inner surface of the shaft sleeve evenly contacts the matching outer diameter of the shaft, so as to improve the bearing capacity of the bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rotary Pumps (AREA)

Abstract

一种用于涡旋压缩机(100)的套筒(9)以及涡旋压缩机(100)。涡旋压缩机(100)包括第一涡旋盘(11)、第二涡旋盘(12)、支架(4)、电机(5)、驱动件(3)和套筒(9)。驱动件(3)可转动地安装于支架(4),电机(5)通过驱动件(3)驱动第一涡旋盘(11)旋转且第一涡旋盘(11)驱动第二涡旋盘(12)旋转,驱动件(3)包括具有内孔(30)的毂部(31),毂部(31)包括第一端部(311)和第二端部(312)以及从驱动件(3)的毂部(31)的第一端部(311)径向向外伸出的凸缘部(32),毂部(31)的内孔(30)具有位于第一端部(311)的内孔部分(504),毂部(31)具有设置在内孔部分(504)的孔壁(304)上的第一固定部。套筒(9)设置在毂部(31)的内孔部分(504)中,并且套筒(9)包括:筒状主体(94)以及设置于筒状主体(94)的第二固定部,套筒(9)的第二固定部与毂部(31)的第一固定部配合。该涡旋压缩机结构紧凑、体积小、重量轻。

Description

涡旋压缩机和用于涡旋压缩机的套筒 技术领域
本发明的实施例涉及一种涡旋压缩机和用于涡旋压缩机的套筒。
背景技术
传统的涡旋压缩机包括静涡旋盘和动涡旋盘。静涡旋盘具有端板和从端板伸出的固定涡旋卷。动涡旋盘具有端板和从其端板伸出的动涡旋卷,动涡旋卷和固定涡旋卷配合形成用于压缩介质的压缩腔。电机通过驱动轴驱动动涡旋盘旋转,以在压缩腔中压缩介质。
发明内容
本发明的实施例的目的是提供一种涡旋压缩机和用于涡旋压缩机的套筒,由此例如可以改善涡旋压缩机的性能。
本发明的实施例提供了一种涡旋压缩机,包括:第一涡旋盘,该第一涡旋盘包括第一端板和从第一端板沿第一方向伸出的第一涡旋卷;第二涡旋盘,该第二涡旋盘包括第二端板和从第二端板沿与第一方向相反的第二方向伸出的第二涡旋卷,第二涡旋卷和第一涡旋卷配合以形成用于压缩介质的压缩腔;支架,支架位于第二涡旋盘的远离第一涡旋盘的一侧;电机;驱动件,驱动件可转动地安装于支架并且位于第二涡旋盘的远离第一涡旋盘的一侧,电机通过驱动件驱动第一涡旋盘旋转,且第一涡旋盘驱动第二涡旋盘旋转,驱动件包括:具有内孔的毂部,毂部包括相对的第一端部和第二端部;以及从驱动件的毂部的第一端部径向向外伸出的凸缘部,毂部的内孔具有位于第一端部的内孔部分,毂部具有设置在内孔部分的孔壁上的第一固定部;以及套筒,套筒设置在毂部的内孔部分中,并且套筒包括:筒状主体,以及设置于筒状主体的第二固定部,套筒的第二固定部与毂部的第一固定部配合。
根据本发明的实施例,套筒与毂部的内孔部分间隙配合;或者 套筒与毂部的内孔部分过盈配合。
根据本发明的实施例,第一固定部和第二固定部中的一个包括凹部,并且第一固定部和第二固定部中的另一个包括配合在凹部中凸起。
根据本发明的实施例,第二固定部包括从筒状主体的外周面径向向外突出的径向凸起,第一固定部包括在内孔部分的孔壁上的径向凹部,径向凸起配合在径向凹部中。
根据本发明的实施例,套筒主体的径向凹部是多个在周向上间隔开的径向凹部并且径向凸起是多个在周向上间隔开的分别配合在多个径向凹部中的径向凸起。
根据本发明的实施例,径向凸起具有径向朝外的表面,径向凸起的表面是凸面,并且径向凹部具有径向朝内的表面,径向凹部的表面是凹面。
根据本发明的实施例,径向凸起在轴向上呈楔形,使得在从筒状主体的第一端部到第二端部的方向上,径向凸起的在径向上的尺寸逐渐变小,并且径向凹部在轴向上呈楔形,使得在从毂部的第一端部到第二端部的方向上,径向凹部的在径向上的尺寸逐渐变小。
根据本发明的实施例,径向凸起具有径向朝外的表面,表面是粗糙表面。
根据本发明的实施例,径向凸起从筒状主体的第一端部延伸到筒状主体的第一端部与第二端部之间,并且径向凸起的朝向筒状主体的第二端部的端部与径向凹部的朝向毂部的第二端部的端部抵接。
根据本发明的实施例,第二固定部包括从筒状主体的第二端部的端面轴向向外突出的轴向凸起,并且毂部的内孔部分的孔壁具有固定台阶,固定台阶具有朝向从毂部的第二端部到第一端部的方向的台阶面,第一固定部包括在固定台阶上的轴向凹部,轴向凸起配合在轴向凹部中。
根据本发明的实施例,轴向凹部是多个在周向上间隔开的轴向凹部并且轴向凸起是多个在周向上间隔开的分别配合在多个轴向凹部中的轴向凸起。
根据本发明的实施例,轴向凸起具有径向朝外的表面,轴向凸起的表面是凸面,并且轴向凹部具有径向朝内的表面,轴向凹部的表面是凹面。
根据本发明的实施例,轴向凸起在轴向上呈楔形,使得在从筒状主体的第二端部的端面轴向向外的方向上,轴向凸起逐渐变细,并且轴向凹部在轴向上呈楔形,使得在从毂部的第一端部到第二端部的方向上,轴向凹部逐渐变细。
根据本发明的实施例,套筒还包括轴承衬套,轴承衬套设置在筒状主体内。
根据本发明的实施例,轴承衬套具有在周向方向上抵接的两个周向端部。
根据本发明的实施例,轴承衬套与筒状主体过盈配合。
根据本发明的实施例,轴承衬套与筒状主体由相同的材料制成例如铝合金。
根据本发明的实施例,轴承衬套与筒状主体由不同的材料制成,例如,轴承衬套由PTFE制成,筒状主体由钢制成。
根据本发明的实施例,轴承衬套由单一材料制成,例如铝合金。
根据本发明的实施例,轴承衬套由复合材料制成,例如复合材料从轴承衬套的最内侧到最外侧依次包括:PTFE层、铜层和钢层;或者碳层和钢层。
根据本发明的实施例,筒状主体的硬度大于或等于30HRC。
根据本发明的实施例,筒状主体由铸铁、粉末冶金、合金、钢或高分子材料制成。
根据本发明的实施例,涡旋压缩机还包括:固定轴,固定轴固定于支架,其中通过驱动件的毂部可转动地安装在固定轴上使驱动件可转动地安装于支架,并且其中驱动件的毂部在第一端经由套筒安装在固定轴上。
根据本发明的实施例,筒状主体具有从第一端部的端面轴向向内凹陷的缺口,用于润滑油从筒状主体的内侧流到筒状主体的外侧。
根据本发明的实施例,所述电机为轴向磁通电机,包括定子和 转子,定子固定到所述支架上,转子与所述驱动件固定连接,用于驱动所述驱动件转动,从而驱动所述第一涡旋盘转动。
本发明的实施例还提供了一种用于涡旋压缩机的套筒,包括:筒状主体,以及设置于筒状主体的固定部,用于与其它部件配合连接。
根据本发明的实施例,固定部包括凹部或凸起。
根据本发明的实施例,固定部包括从筒状主体的外周面径向向外突出的径向凸起。
根据本发明的实施例,径向凸起是多个在周向上间隔开的径向凸起。
根据本发明的实施例,多个径向凸起在周向上等间隔分布。
根据本发明的实施例,径向凸起具有径向朝外的表面,表面是凸面。
根据本发明的实施例,径向凸起在轴向上呈楔形,使得在从筒状主体的第一端部到第二端部的方向上,径向凸起的在径向上的尺寸逐渐变小。
根据本发明的实施例,径向凸起具有径向朝外的表面,表面是粗糙表面。
根据本发明的实施例,径向凸起从筒状主体的第一端部延伸到筒状主体的第一端部与第二端部之间。
根据本发明的实施例,固定部包括从筒状主体的外周面径向向内凹陷的凹部。
根据本发明的实施例,径向凹部是多个在周向上间隔开的径向凹部。
根据本发明的实施例,多个径向凹部在周向上等间隔分布。
根据本发明的实施例,固定部包括从筒状主体的第二端部的端面轴向向外突出的轴向凸起。
根据本发明的实施例,轴向凸起是多个在周向上间隔开的轴向凸起。
根据本发明的实施例,多个轴向凸起在周向上等间隔分布。
根据本发明的实施例,轴向凸起具有径向朝外的表面,表面是 凸面。
根据本发明的实施例,轴向凸起在轴向上呈楔形,使得在从筒状主体的第二端部的端面轴向向外的方向上,轴向凸起逐渐变细。
根据本发明的实施例,固定部包括从筒状主体的第二端部的端面轴向向内凹陷的轴向凹部。
根据本发明的实施例,轴向凹部是多个在周向上间隔开的轴向凹部。
根据本发明的实施例,多个轴向凹部在周向上等间隔分布。
根据本发明的实施例,套筒还包括:轴承衬套,轴承衬套设置在筒状主体内。
根据本发明的实施例,轴承衬套具有在周向方向上抵接的两个周向端部。
根据本发明的实施例,轴承衬套与筒状主体过盈配合。
根据本发明的实施例,轴承衬套与筒状主体由相同的材料制成,比如铝。
根据本发明的实施例,轴承衬套与筒状主体由不同的材料制成,例如轴承衬套由PTFE制成,并且筒状主体由钢制成。
根据本发明的实施例,轴承衬套由单一材料制成,例如铝合金。
根据本发明的实施例,轴承衬套由复合材料制成,例如复合材料从轴承衬套的最内侧到最外侧依次包括:PTFE层、铜层和钢层;或者碳层和钢层。
根据本发明的实施例,筒状主体具有从第一端部的端面轴向向内凹陷的缺口,用于润滑油从筒状主体的内侧流到筒状主体的外侧。
例如,根据本发明的实施例的涡旋压缩机,例如可以改善涡旋压缩机的性能。
附图说明
图1为根据本发明的实施例的涡旋压缩机的示意剖视图;
图2为图1中所示的涡旋压缩机的第一涡旋盘的示意透视图;
图3为图1中所示的涡旋压缩机的第二涡旋盘的示意透视图;
图4为图1中所示的涡旋压缩机的驱动件的示意透视图;
图5为根据本发明的实施例的一种变形例的涡旋压缩机的驱动件的示意透视图;
图6为图4中所示的涡旋压缩机的驱动件的示意透视图;
图7为图4中所示的涡旋压缩机的驱动件的示意俯视图;
图8为根据本发明的实施例的变形例的涡旋压缩机的驱动件的示意俯视图;
图9为图8中所示的涡旋压缩机的驱动件的沿图8中的线AA的示意剖视图;
图10为图8中所示的涡旋压缩机的驱动件的沿图8中的线DD的示意剖视图;
图11为图8中所示的涡旋压缩机的驱动件的沿图8中的线EE的示意剖视图;
图12为图8中所示的涡旋压缩机的驱动件的沿图8中的线FF的示意剖视图;
图13为图8中所示的涡旋压缩机的驱动件的沿图8中的线GG的示意剖视图;
图14为根据本发明的实施例的另一种变形例的涡旋压缩机的驱动件的示意俯视图;
图15为图14中所示的涡旋压缩机的驱动件的沿图14中的线JJ的示意剖视图;
图16为根据本发明的实施例的又一种变形例的涡旋压缩机的驱动件的示意剖视图;
图17为根据本发明的实施例的再一种变形例的涡旋压缩机的驱动件的示意剖视图;
图18为图1中所示的涡旋压缩机的驱动件的套筒的示意透视图;
图19为图18中所示的涡旋压缩机的驱动件的套筒的另一个示意透视图;
图20为图1中所示的涡旋压缩机的驱动件、第二涡旋盘、固定轴、上油螺栓等的组装状态下的示意剖视图;
图21为图1中所示的涡旋压缩机的驱动件的套筒的轴承衬套的示意透视图;
图22为根据本发明的实施例的变形例的涡旋压缩机的驱动件的套筒的示意透视图;
图23为图22中所示的涡旋压缩机的驱动件的套筒的另一个示意透视图;
图24为图1中所示的涡旋压缩机的驱动件、固定轴、套筒等的组装状态下的示意剖视图;
图25为图24中所示的涡旋压缩机的驱动件、固定轴、套筒等的示意分解透视图;
图26为图24中所示的涡旋压缩机的驱动件、固定轴、套筒等的示意分解剖视图;
图27为图1中所示的涡旋压缩机的驱动件、第一涡旋盘、第二涡旋盘、固定轴等的示意剖视图;
图28为图27中所示的涡旋压缩机的驱动件、第一涡旋盘、第二涡旋盘、固定轴等的示意分解剖视透视图;
图29为图1中所示的涡旋压缩机的支架的示意透视图;
图30为图29中所示的涡旋压缩机的支架的示意剖视图;
图31为图1中所示的涡旋压缩机的驱动件、第一涡旋盘、第二涡旋盘等的示意剖视图;
图32为图31中所示的涡旋压缩机的驱动件、第一涡旋盘、第二涡旋盘等的示意分解剖视透视图;以及
图33为根据本发明的实施例的变形例的涡旋压缩机的支架、固定轴、驱动件、第二涡旋盘等的组装状态下的示意剖视图。
具体实施方式
下面结合附图描述本发明的实施例。
参见图18至图26,根据本发明的实施例的用于涡旋压缩机100的驱动件3的套筒9包括:筒状主体94,以及设置于筒状主体94的固定部,用于与诸如驱动件3的其它部件配合连接。固定部可以包括 凹部或凸起。
参见图18至图19,在本发明的实施例中,固定部包括从筒状主体94的外周面95径向向外突出的径向凸起96。径向凸起96可以是多个在周向上间隔开的径向凸起96。多个径向凸起96可以在周向上等间隔分布。径向凸起96具有径向朝外的表面961,表面961可以是凸面。例如,表面961是粗糙表面。根据本发明的示例,径向凸起96在轴向上呈楔形,使得在从筒状主体94的第一端部97到第二端部98的方向上,径向凸起96的在径向上的尺寸逐渐变小。径向凸起96可以从筒状主体94的第一端部97延伸到筒状主体94的第一端部97与第二端部98之间。
在图18至图19所示的实施例中,固定部也可以包括从筒状主体94的外周面95径向向内凹陷的凹部。径向凹部可以是多个在周向上间隔开的径向凹部。多个径向凹部可以在周向上等间隔分布。
参见图22至图23,在本发明的实施例中,固定部包括从筒状主体94的第二端部98的端面981轴向向外突出的轴向凸起99。轴向凸起99可以是多个在周向上间隔开的轴向凸起99。多个轴向凸起99可以在周向上等间隔分布。轴向凸起99具有径向朝外的表面991,表面991可以是凸面。轴向凸起99在轴向上可以呈楔形,使得在从筒状主体94的第二端部98的端面981轴向向外的方向上,轴向凸起99逐渐变细。
在图22至图23所示的实施例中,固定部也可以包括从筒状主体94的第二端部98的端面981轴向向内凹陷的轴向凹部。轴向凹部可以是多个在周向上间隔开的轴向凹部。多个轴向凹部可以在周向上等间隔分布。
参见图18至图26,在本发明的实施例中,套筒9还包括:作为第一轴承51的轴承衬套,轴承衬套设置在筒状主体94内,并且轴承衬套固定在筒状主体94内。如图21所示,轴承衬套可以具有在周向方向上抵接的两个周向端部511。轴承衬套与筒状主体94可以过盈配合。
参见图18至图26,在本发明的实施例中,轴承衬套与筒状主体 94由相同的材料制成,例如由铝合金制成。轴承衬套与筒状主体94也可以由不同的材料制成,例如轴承衬套由PTFE制成,并且筒状主体94由钢制成。轴承衬套可以由单一材料制成,例如,由铝合金制成。轴承衬套也可以由复合材料制成,例如,复合材料从轴承衬套的最内侧到最外侧依次包括:PTFE层、铜层和钢层;或者碳层和钢层。根据本发明的示例,筒状主体94的硬度可以大于或等于30HRC。筒状主体94可以由铸铁、合金、钢、高分子材料或粉末冶金制成。由此,使筒状主体94更加耐磨,寿命更长,并且使筒状主体94加工容易,成本低。
参见图18、图19、在本发明的实施例中,筒状主体94具有从第一端部97的端面971轴向向内凹陷的缺口940,用于润滑油从筒状主体94的内侧流到筒状主体94的外侧。
参见图1,根据本发明的实施例的涡旋压缩机100包括第一涡旋盘11和第二涡旋盘12。参见图4至图26,根据本发明的实施例的驱动件3包括:具有内孔30的毂部31,毂部31包括相对的第一端部311和第二端部312;以及从驱动件3的毂部31的第一端部311径向向外伸出的凸缘部32,驱动件3通过凸缘部32与第一涡旋盘11连接。凸缘部32将驱动件3与第一涡旋盘11连接,从而驱动第一涡旋盘11转动。例如,凸缘部32包括连接件130(图27、图28),连接件130将驱动件3与第一涡旋盘11连接,从而驱动第一涡旋盘11转动。连接件130可以与第一涡旋盘11和驱动件3中的一个形成一体,或者也可以是单独的连接件。
参见图5,在本发明的实施例中,驱动件3的毂部31的第二端部312的端面3120具有油槽56。油槽56可以沿径向方向延伸。根据本发明的示例,如图5所示,油槽56与驱动件3的毂部31的第二端部312的端面3120的外周边3121间隔开。油槽56可以是至少一个油槽,或者按照一定间距(比如等间距)间隔分布的两个或更多个油槽。
参见图4、图6,在本发明的实施例中,驱动件3的毂部31的内孔30的孔壁301上具有台阶部302,驱动件3的毂部31的台阶部 302具有朝向第二方向D2的台阶面303。参见图1、图20,在本发明的实施例中,固定轴5具有台阶部501,固定轴5的台阶部501具有朝向第一方向D1的台阶面502,涡旋压缩机100还包括第一止推轴承54,第一止推轴承54设置在驱动件3的毂部31的台阶部302的台阶面303与固定轴5的台阶部501的台阶面502之间。
参见图4、图6、图7、图8、图10、图14、图15,在本发明的实施例中,驱动件3包括形成在驱动件3的凸缘部32中的至少一条流体通道6,凸缘部32具有朝向从第一端部311到第二端部312的方向的第一表面321;以及朝向从第二端部312到第一端部311的方向的第二表面320,流体通道6具有形成在第一表面321中的流体入口61,以及形成在第二表面320中的流体出口62,使得流体通过流体通道6的流体入口61,进入流体通道6,并从流体出口62流出。驱动件3可以包括两条流体通道6,两条流体通道6在驱动件3的径向方向上彼此相对。驱动件3的流体通道6可以具有圆形的或椭圆形或曲线形的横截面。根据本发明的一个示例,如图4、图6、图7、图8、图10所示,流体通道6相对于驱动件3的轴向方向倾斜延伸,流体通道6的流体出口62比流体入口61远离驱动件3的旋转轴线91。例如,假设第一平面通过流体通道6的轴线93的在流体入口61处的点和驱动件3的旋转轴线91,而第二平面与第一平面垂直并且与驱动件3的旋转轴线91平行,则流体通道6的轴线93与第一平面的夹角为0至60度,并且流体通道6的轴线93与第二平面的夹角为5至60度。根据本发明的另一个实例,如图14、图15所示,流体通道6沿驱动件3的轴向方向延伸,即流体通道6的轴线93与驱动件3的旋转轴线91平行,流体通道6的轴线93与第一平面的夹角为0度,并且流体通道6的轴线93与第二平面的夹角也为0度。
参见图8、图13、图14,在本发明的实施例中,驱动件3的凸缘部32具有驱动件连接孔323,驱动件3的凸缘部32的驱动件连接孔323具有螺纹部324,连接件130(图27、图28)包括螺栓132,螺栓132通过驱动件连接孔323将第一涡旋盘11与驱动件3固定连接。
参见图2、图4、图8、图12、图14,在本发明的实施例中,驱动件3的凸缘部32具有驱动件销孔322。第一涡旋盘11的外壁111具有涡旋盘销孔114,连接件130还包括:销131,销131插入第一涡旋盘11的外壁111的涡旋盘销孔114(图2)和驱动件3的凸缘部32的驱动件销孔322(图7),以确定第一涡旋盘11和驱动件3的相对位置。
参见图8、图11、图14,在本发明的实施例中,驱动件3还包括:形成在凸缘部32中的配重孔325,配重孔325用于使驱动件3动平衡。配重孔可以是盲孔,盲孔从凸缘部32的第二表面320朝向凸缘部32的第一表面321延伸。参见图17,在本发明的实施例的变形例中,驱动件3不具有配重孔325。
参见图4、图6、图7、图8、图11、图31、图32、图33,在本发明的实施例中,驱动件3还包括:形成在凸缘部32中的偏心环孔326,偏心环341(参见图28、图31、图32、图33)设置在偏心环孔326中,联接销342插入第二涡旋盘12的第二端板123中形成的联接销孔126(图3)以及偏心环341的孔3410中(参见图28、图31、图32、图33)。驱动件3可以具有三个偏心环孔326。
参见图1、图18至图26,根据本发明的实施例的涡旋压缩机100包括:第一涡旋盘11、第二涡旋盘12、支架4,电机7、驱动件3以及套筒9。第一涡旋盘11包括第一端板112和从第一端板112沿第一方向D1伸出的第一涡旋卷113。第二涡旋盘12包括第二端板123和从第二端板123沿与第一方向D1相反的第二方向D2伸出的第二涡旋卷124,第二涡旋卷124和第一涡旋卷113配合以形成用于压缩介质的压缩腔。支架4位于第二涡旋盘12的远离第一涡旋盘11的一侧。驱动件3可转动地安装于支架4并且位于第二涡旋盘12的远离第一涡旋盘11的一侧,电机7通过驱动件3驱动第一涡旋盘11围绕旋转轴线91(图4、图6、图9至图13、图15、图28)旋转,且第一涡旋盘11驱动第二涡旋盘12围绕旋转轴线92(图28)旋转。旋转轴线91为驱动件3的旋转轴线或轴线(图4、图6、图9至图13、图15)。旋转轴线91和转轴线92相互平行,并且间隔开。驱动件3 包括:具有内孔30的毂部31,毂部31包括相对的第一端部311和第二端部312;以及从驱动件3的毂部31的第一端部311径向向外伸出的凸缘部32。毂部31的内孔50具有位于第一端部311的内孔部分504(参见图4和图6),毂部31具有设置在内孔部分504的孔壁304(参见图4和图6)上的第一固定部。参见图18至图26,套筒9设置在毂部31的内孔部分504中,并且套筒9包括:筒状主体94,以及设置于筒状主体94的第二固定部,套筒9的第二固定部与毂部31的第一固定部配合。套筒9与毂部31的内孔部分504可以间隙配合;或者套筒9与毂部31的内孔部分504可以过盈配合。第一固定部和第二固定部中的一个可以包括凹部,并且第一固定部和第二固定部中的另一个可以包括配合在凹部中凸起。
参见图4和图6以及图18至图20,在本发明的实施例中,第二固定部包括从筒状主体94的外周面95径向向外突出的径向凸起96,第一固定部包括在内孔部分504的孔壁304上的径向凹部306,径向凸起96配合在径向凹部306中。径向凹部306可以是多个在周向上间隔开的径向凹部306并且径向凸起96可以是多个在周向上间隔开的分别配合在多个径向凹部306中的径向凸起96。径向凸起96具有径向朝外的表面961,径向凸起96的表面961可以是凸面,并且径向凹部306具有径向朝内的表面3061,径向凹部306的表面3061可以是凹面。表面961可以是粗糙表面。在本发明的示例中,径向凸起96在轴向上呈楔形,使得在从筒状主体94的第一端部97到第二端部98的方向上,径向凸起96的在径向上的尺寸逐渐变小,并且径向凹部306在轴向上呈楔形,使得在从毂部31的第一端部311到第二端部312的方向上,径向凹部306的在径向上的尺寸逐渐变小。在本发明的示例中,径向凸起96从筒状主体94的第一端部97延伸到筒状主体94的第一端部97与第二端部98之间,并且径向凸起96的朝向筒状主体94的第二端部98的端部962与径向凹部306的朝向毂部31的第二端部312的端部3062抵接。
参见图4和图6以及图18至图20,在本发明的未示出的实施例中,与上述实施例相反,第二固定部包括径向凹部,而第一固定部包 括径向凸起。
参见图22至图26,在本发明的实施例中,第二固定部包括从筒状主体94的第二端部98的端面981轴向向外突出的轴向凸起99,并且毂部31的内孔部分504的孔壁304具有固定台阶307,固定台阶307具有朝向从毂部31的第二端部312到第一端部311的方向的台阶面3071,第一固定部包括在固定台阶307上的轴向凹部3072,轴向凸起99配合在轴向凹部3072中。轴向凹部3072可以是多个在周向上间隔开的轴向凹部3072并且轴向凸起99可以是多个在周向上间隔开的分别配合在多个轴向凹部3072中的轴向凸起99。根据本发明的示例,轴向凸起99具有径向朝外的表面991,轴向凸起99的表面991是凸面,并且轴向凹部3072具有径向朝内的表面3073,轴向凹部3072的表面3073是凹面。轴向凸起99可以在轴向上呈楔形,使得在从筒状主体94的第二端部98的端面981轴向向外的方向上,轴向凸起99逐渐变细,并且轴向凹部3702可以在轴向上呈楔形,使得在从毂部31的第一端部311到第二端部312的方向上,轴向凹部3072逐渐变细。
参见图22至图26,在本发明的未示出的实施例中,与上述实施例相反,第二固定部包括轴向凹部,而第一固定部包括轴向凸起。
参见图18至图26,在本发明的实施例中,套筒9还包括:作为第一轴承51的轴承衬套,轴承衬套设置在筒状主体94内。如图21所示,轴承衬套可以具有在周向方向上抵接的两个周向端部511。轴承衬套与筒状主体94过盈配合。
参见图18至图26,在本发明的实施例中,轴承衬套与筒状主体94由相同的材料制成,例如由铝合金制成。轴承衬套与筒状主体94也可以由不同的材料制成,例如轴承衬套由PTFE制成,并且筒状主体94由钢制成。轴承衬套可以由单一材料制成,例如,由铝合金制成。轴承衬套也可以由复合材料制成,例如,复合材料从轴承衬套的最内侧到最外侧依次包括:PTFE层、铜层和钢层;或者碳层和钢层。根据本发明的示例,筒状主体94的硬度可以大于或等于30HRC。筒状主体94可以由铸铁、粉末冶金、合金、钢或高分子材料制成。
参见图18、图19、在本发明的实施例中,筒状主体94具有从第一端部97的端面971轴向向内凹陷的缺口940,用于润滑油从筒状主体94的内侧流到筒状主体94的外侧。
参见图1,根据本发明的实施例的涡旋压缩机100包括:第一涡旋盘11、第二涡旋盘12、支架4,电机7以及驱动件3。第一涡旋盘11包括第一端板112和从第一端板112沿第一方向D1伸出的第一涡旋卷113。第二涡旋盘12包括第二端板123和从第二端板123沿与第一方向D1相反的第二方向D2伸出的第二涡旋卷124,第二涡旋卷124和第一涡旋卷113配合以形成用于压缩介质的压缩腔。支架4位于第二涡旋盘12的远离第一涡旋盘11的一侧。驱动件3可转动地安装于支架4并且位于第二涡旋盘12的远离第一涡旋盘11的一侧,电机7通过驱动件3驱动第一涡旋盘11围绕旋转轴线91(图4、图6、图9至图13、图15、图28)旋转,且第一涡旋盘11驱动第二涡旋盘12围绕旋转轴线92(图28)旋转。旋转轴线91为驱动件3的旋转轴线或轴线(图4、图6、图9至图13、图15)。旋转轴线91和转轴线92相互平行,并且间隔开。驱动件3包括:具有内孔30的毂部31,毂部31包括相对的第一端部311和第二端部312;以及从驱动件3的毂部31的第一端部311径向向外伸出的凸缘部32,驱动件3通过凸缘部32与第一涡旋盘11连接。电机7通过驱动件3的毂部31驱动第一涡旋盘11旋转,且第一涡旋盘11驱动第二涡旋盘12旋转。
参见图1,在本发明的实施例中,涡旋压缩机100还包括壳体101,壳体101可以包括第一壳体1011、第二壳体1012和第三壳体1013。第一壳体1011和第二壳体1012形成密封空间,第一涡旋盘11、第二涡旋盘12、支架4,电机7以及驱动件3等设置在壳体101中。第二壳体1012和第三壳体1013限定排气腔。支架4可以固定于第一壳体1011,例如支架4焊接于第一壳体1011,支架4通过与第一壳体1011过盈配合而固定于第一壳体1011,或者支架4通过螺栓固定于第一壳体1011。支架4的一端可以固定于壳体101的底部或第一壳体1011的底部。
参见图1和图2,在本发明的实施例中,第一涡旋盘11还包括从第一端板112沿第一方向D1伸出的外壁111,外壁111在第一涡旋卷113以及第二涡旋盘12的径向外侧,外壁111设有连接件130(图27、图28),驱动件3通过连接件130(图27、图28)与第一涡旋盘11连接。外壁111可以具有环状形状。
参见图1、图27至图30,在本发明的实施例中,涡旋压缩机100还包括:固定轴5,固定轴5固定于支架4。通过驱动件3的毂部31可转动地安装在固定轴5上使驱动件3可转动地安装于支架4。参见图1、图2至图17、图27、图28、图31至图33,在本发明的实施例中,第二涡旋盘12的第二端板123被可转动地支撑在驱动件3的凸缘部32上。根据本发明的一个示例,参见图2、图4、图8、图10、图12、图14、图27、图28,第一涡旋盘11的外壁111具有涡旋盘销孔114(图2),驱动件3的凸缘部32具有驱动件销孔322(图4、图8、图12、图14)。第一涡旋盘11的外壁111具有涡旋盘连接孔1116(图27、图28),驱动件3的凸缘部32具有驱动件连接孔323(图8、图13、图14、图27、图28),驱动件3的凸缘部32的驱动件连接孔323和第一涡旋盘11的外壁111的涡旋盘连接孔116中的一个具有螺纹部324,连接件130(图27、图28)包括:销131以及螺栓132,销131插入第一涡旋盘11的外壁111的涡旋盘销孔114(图2)和驱动件3的凸缘部32的驱动件销孔322(图4、图8、图12、图14)中,以确定第一涡旋盘11和驱动件3的相对位置,螺栓132通过涡旋盘连接孔116(图27、图28)和驱动件连接孔323将第一涡旋盘11与驱动件3固定连接。
参见图1、图20至图28,在本发明的实施例中,涡旋压缩机100还包括第二轴承52。毂部31的第一端部311通过第一轴承51安装在固定轴5上,而毂部31的第二端部312通过第二轴承52安装在固定轴5上。参见图1、图20、图27、图28,在本发明的实施例中,第二涡旋盘12还包括从第二端板123沿第一方向D1伸出的毂部121,参见图1、图20,固定轴5具有轴向内孔50。涡旋压缩机100还包括第三轴承53,第二涡旋盘12的毂部121通过第三轴承53安装在 固定轴5的轴向内孔50中。
参见图1、图4、图6、图20,在本发明的实施例中,驱动件3的毂部31的内孔30的孔壁301上具有台阶部302,驱动件3的毂部31的台阶部302具有朝向第二方向D2的台阶面303,固定轴5具有台阶部501,固定轴5的台阶部501具有朝向第一方向D1的台阶面502,涡旋压缩机100还包括第一止推轴承54,第一止推轴承54设置在驱动件3的毂部31的台阶部302的台阶面303与固定轴5的台阶部501的台阶面502之间。第一止推轴承54可以是任何合适的现有的止推轴承。例如,第一止推轴承54可以是由耐磨金属或非金属材料制成的环形止推垫片,或者第一止推轴承54可以是滚珠止推轴承、滚柱止推轴承等。
参见图1、图29、图30,在本发明的实施例中,支架4包括:筒状部41,以及从支架4的筒状部41径向伸出的凸缘部42,驱动件3的毂部31的第二端部312支撑在支架4的凸缘部42上。根据本发明的一个示例,固定轴5的一部分插入支架4的筒状部41中并固定于支架4的筒状部41,并且固定轴5具有筒状形状。
参见图1、图5,在本发明的实施例中,驱动件3的毂部31的第二端部312的端面3120在驱动件3的毂部31的第二端部312和支架4的凸缘部42的环形接触区域上具有油槽56,油槽56从环形接触区域的径向内侧朝向环形接触区域的径向外侧横向延伸而横穿环形接触区域的一部分,油槽56在径向上与环形接触区域的径向外边缘间隔开。油槽56可以沿径向方向延伸。根据本发明的示例,油槽56与驱动件3的毂部31的第二端部312的端面3120的外周边3121间隔开。油槽56也可以形成在支架4的凸缘部42的表面420上。油槽56可以是至少一个油槽,或者按照一定间距(比如等间距)间隔分布的两个或更多个油槽。
参见图1,在本发明的实施例中,电机7可以是轴向磁通电机或径向磁通电机。在一实施例中,电机7包括转子71和固定于支架4的定子72,并且电机7的转子71通过驱动驱动件3旋转而驱动第一涡旋盘11旋转。电机7的转子71设置在定子72的朝向第一方向 D1或第二方向D2的一侧。
参见图1、图2、图4、图6至图10、图14、图15、图27,在本发明的实施例中,驱动件3的凸缘部32与第一涡旋盘11的外壁111密封地连接,以形成涡旋压缩机100的吸入腔88,流体通过吸入腔88进入压缩腔。参见图1、图4、图6至图10、图14、图15,驱动件3包括形成在驱动件3的凸缘部32中的至少一条流体通道6,流体通道6具有形成在驱动件3的凸缘部32的朝向第一方向D1的表面321中的流体入口61,以及形成在驱动件3的凸缘部32的朝向第二方向D2的表面320中的流体出口62,使得流体通过流体通道6的流体入口61,进入流体通道6,并从流体出口62进入吸入腔88。驱动件3可以包括两条流体通道6,两条流体通道6在驱动件3的径向方向上彼此相对。驱动件3的流体通道6可以具有圆形的横截面。根据本发明的一个示例,如图4、图6至图10所示,流体通道6相对于驱动件3的轴向方向倾斜延伸,流体通道6的流体出口62比流体入口61远离驱动件3的旋转轴线91。例如,假设第一平面通过流体通道6的轴线93的在流体入口61处的点和驱动件3的旋转轴线91,而第二平面与第一平面垂直并且与驱动件3的旋转轴线91平行,则流体通道6的轴线93与第一平面的夹角为0至60度,并且流体通道6的轴线93与第二平面的夹角为5至60度。根据本发明的另一个实例,如图14、图15所示,流体通道6沿驱动件3的轴向方向延伸,即流体通道6的轴线93与驱动件3的旋转轴线91平行,流体通道6的轴线93与第一平面的夹角为0度,并且流体通道6的轴线93与第二平面的夹角也为0度。
参见图1、图2,在本发明的实施例中,外壁111具有在与流体通道6的流体出口62的位置对应的位置处的凹部1110,凹部1110形成在外壁111的朝向第一涡旋盘11的旋转轴线的表面1111上,并且凹部1110的朝向第一涡旋盘11的旋转轴线的壁面11101在朝向第一涡旋盘11的第一端板112的方向上逐渐朝向第一涡旋盘11的旋转轴线倾斜或弯曲。
参见图1,在本发明的实施例中,涡旋压缩机100还包括:上油 螺栓81,上油螺栓81容纳于固定轴5的内孔50中,且一端位于壳体101的底部的油池中,另一端与第二涡旋盘12的毂部121固定连接。涡旋压缩机100也可以包括其它任何合适的泵。
当压缩机100运行时,参见图1,电机7通过驱动件3驱动第一涡旋盘11旋转,且第一涡旋盘11驱动第二涡旋盘12旋转。制冷剂通过入口82进入壳体101的第一壳体1011和第二壳体1012形成的密封空间,一部分制冷剂向上流动,绕过筒形挡板83的上端,然后向下流动,通过流体通道6的流体入口61进入流体通道6(参见图4、图6至图8、图10、图14、图15),另一部分制冷剂向下流动,在筒形挡板83的下端的下方,进入电机7,以冷却电机,然后向上流动,通过流体通道6的流体入口61进入流体通道6。全部制冷剂经由吸入腔88,进入第二涡旋卷124和第一涡旋卷113形成的压缩腔,压缩后的制冷剂通过出口84排出。参见图4、图6至图8、图10,如果流体通道6相对于驱动件3的轴向方向倾斜延伸,则通过流体通道6的流体入口61进入流体通道6的制冷剂由于离心力而经受一级压缩,然后经由吸入腔88,进入第二涡旋卷124和第一涡旋卷113形成的压缩腔而经受二级压缩。同时,第二涡旋盘12带动设置在固定轴5的轴向内孔50中的上油螺栓81旋转,将容纳在壳体101的第一壳体1011底部的油槽中的润滑油抽吸到固定轴5的轴向内孔50中,第一部分润滑油,通过固定轴5上的横向通孔85(例如径向通孔)流到第二轴承52以及驱动件3的毂部31的第二端部312和支架4的凸缘部42(参见图1)之间。第二部分润滑油进入第二涡旋盘12的毂部121与第三轴承53之间的间隙以对第三轴承53进行润滑,进入第二涡旋盘12的毂部121与第三轴承53之间的间隙的一部分润滑油进入第二涡旋盘12的第二端板123与驱动件3的凸缘部32之间的间隙,最后通过流体通道6进入第一涡旋盘11与第二涡旋盘12形成的空间,以对第一涡旋盘11与第二涡旋盘12进行润滑。进入第二涡旋盘12的毂部121与第三轴承53之间的间隙的另一部分润滑油绕过第三轴承53的上端部分进入第一轴承51,并且部分进入形成在固定轴5中的回油通道862,然后通过连通孔89进入形成在固定轴5中 的回油通道861,最后回到在壳体101的第一壳体1011底部的油槽中。进入第一轴承51的润滑油通过横向通孔87(例如径向通孔)进入回油通道862,然后通过连通孔89进入回油通道861,最后回到在壳体101的第一壳体1011底部的油槽中。
采用根据本发明的实施例的用于涡旋压缩机100的驱动件3的套筒9,可以防止第一轴承51和驱动件3之间的接触。驱动件3会因高速旋转而膨胀,此套筒9可固定第一轴承51。
根据本发明的实施例的涡旋压缩机,由于第一涡旋盘和第二涡旋盘各自围绕自己的旋转轴共同旋转,提高了压缩效率。另外,可以采用轴向磁通电动机(例如盘式电机,可以包括定子和转子,定子固定于支架4,转子固定于驱动件),可以使电机的轴向尺寸更小,由此使压缩机结构更紧凑。此外,由于驱动件的结构设计,可以由驱动件驱动第一涡旋盘旋转,而第一涡旋盘驱动第二涡旋盘旋转,从而可以进一步地将所有轴承都设置在压缩机的同一侧,比如第二涡旋盘的在第一方向D1上的同一侧,从而可以进一步使压缩机结构紧凑。另外,传统共转涡旋压缩机中,往往将轴套过盈安装在旋转件的内孔中,但当涡旋压缩机高速运行时,在离心力的作用下内孔会变大,会减小轴套的附着力从而增加轴套脱落的风险。同时由于轴承与轴配合间隙的存在以及装配的误差,轴套内径与轴的外径接触时会产生局部接触的问题,从而降低轴套的承载。本发明实施例中,通过驱动件的结构设计,以及通过套筒外的突缘设计与驱动件内孔的配合,既能保证轴套与驱动件不会产生相对旋转又能保证不会产生轴承脱落的问题。同时将套筒与驱动件内孔配合的外径加工成圆弧表面,以使轴套内表面均匀接触相配合的轴外径,以提高轴承的承载能力。
尽管描述了上述实施例,但是上述实施例中的一些特征可以进行组合形成新的实施例。

Claims (63)

  1. 一种涡旋压缩机,包括:
    第一涡旋盘(11),该第一涡旋盘包括第一端板和从第一端板沿第一方向(D1)伸出的第一涡旋卷;
    第二涡旋盘(12),该第二涡旋盘包括第二端板和从第二端板沿与第一方向相反的第二方向(D2)伸出的第二涡旋卷,第二涡旋卷和第一涡旋卷配合以形成用于压缩介质的压缩腔;
    支架(4),所述支架位于所述第二涡旋盘的远离第一涡旋盘的一侧;
    电机;
    驱动件(3),所述驱动件可转动地安装于所述支架并且位于第二涡旋盘的远离第一涡旋盘的一侧,所述电机通过所述驱动件驱动第一涡旋盘旋转,且第一涡旋盘驱动第二涡旋盘旋转,所述驱动件(3)包括:具有内孔的毂部(31),所述毂部包括相对的第一端部和第二端部;以及从所述驱动件的所述毂部的第一端部径向向外伸出的凸缘部(32),所述毂部(31)的内孔具有位于所述第一端部的内孔部分,所述毂部(31)具有设置在所述内孔部分的孔壁上的第一固定部;以及
    套筒(9),所述套筒设置在毂部(31)的所述内孔部分中,并且所述套筒(9)包括:筒状主体(94),以及设置于筒状主体(94)的第二固定部,所述套筒的第二固定部与所述毂部(31)的第一固定部配合。
  2. 根据权利要求1所述的涡旋压缩机,其中:
    所述套筒与所述毂部(31)的所述内孔部分间隙配合;或者
    所述套筒与所述毂部(31)的所述内孔部分过盈配合。
  3. 根据权利要求1所述的涡旋压缩机,其中:
    所述第一固定部和所述第二固定部中的一个包括凹部,并且所述第一固定部和所述第二固定部中的另一个包括配合在所述凹部中凸起。
  4. 根据权利要求1所述的涡旋压缩机,其中:
    所述第二固定部包括从筒状主体的外周面径向向外突出的径向凸起(96),
    所述第一固定部包括在所述内孔部分的孔壁上的径向凹部(306),所述径向凸起(96)配合在所述径向凹部(306)中。
  5. 根据权利要求4所述的涡旋压缩机,其中:
    所述径向凹部是多个在周向上间隔开的径向凹部并且所述径向凸起(96)是多个在周向上间隔开的分别配合在多个径向凹部中的径向凸起。
  6. 根据权利要求4所述的涡旋压缩机,其中:
    所述径向凸起(96)具有径向朝外的表面(961),所述径向凸起(96)的所述表面是凸面,并且所述径向凹部(306)具有径向朝内的表面(3061),所述径向凹部的所述表面是凹面。
  7. 根据权利要求4所述的涡旋压缩机,其中:
    所述径向凸起(96)在轴向上呈楔形,使得在从筒状主体的第一端部(97)到第二端部(98)的方向上,所述径向凸起的在径向上的尺寸逐渐变小,并且所述径向凹部(306)在轴向上呈楔形,使得在从所述毂部的第一端部(311)到第二端部(312)的方向上,所述径向凹部的在径向上的尺寸逐渐变小。
  8. 根据权利要求4所述的涡旋压缩机,其中:
    所述径向凸起(96)具有径向朝外的表面(961),所述表面是粗糙表面。
  9. 根据权利要求4所述的涡旋压缩机,其中:
    所述径向凸起(96)从筒状主体的第一端部(97)延伸到筒状主体的所述第一端部(97)与第二端部(98)之间,并且所述径向凸起(96)的朝向筒状主体的所述第二端部(98)的端部(962)与所述径向凹部(306)的朝向所述毂部的第二端部(312)的端部(3062)抵接。
  10. 根据权利要求1所述的涡旋压缩机,其中:
    所述第二固定部包括从筒状主体的第二端部的端面轴向向外突 出的轴向凸起(99),并且
    所述毂部(31)的所述内孔部分的孔壁具有固定台阶(307),所述固定台阶(307)具有朝向从所述毂部(31)的第二端部到第一端部的方向的台阶面(3071),所述第一固定部包括在所述固定台阶上的轴向凹部(3072),所述轴向凸起配合在所述轴向凹部中。
  11. 根据权利要求10所述的涡旋压缩机,其中:
    所述轴向凹部是多个在周向上间隔开的轴向凹部并且所述轴向凸起是多个在周向上间隔开的分别配合在多个轴向凹部中的轴向凸起。
  12. 根据权利要求10所述的涡旋压缩机,其中:
    所述轴向凸起(99)具有径向朝外的表面(991),所述轴向凸起的所述表面是凸面,并且所述轴向凹部(3072)具有径向朝内的表面(3073),所述轴向凹部的所述表面是凹面。
  13. 根据权利要求10所述的涡旋压缩机,其中:
    所述轴向凸起(99)在轴向上呈楔形,使得在从筒状主体的第二端部(98)的端面(981)轴向向外的方向上,所述轴向凸起(99)逐渐变细,并且所述轴向凹部(3702)在轴向上呈楔形,使得在从所述毂部的第一端部到第二端部的方向上,所述轴向凹部逐渐变细。
  14. 根据权利要求1所述的涡旋压缩机,其中:
    所述套筒还包括轴承衬套(51),所述轴承衬套设置在筒状主体内。
  15. 根据权利要求14所述的涡旋压缩机,其中:
    所述轴承衬套具有在周向方向上抵接的两个周向端部(511)。
  16. 根据权利要求14或15所述的涡旋压缩机,其中:
    所述轴承衬套与所述筒状主体过盈配合。
  17. 根据权利要求14或15所述的涡旋压缩机,其中:
    所述轴承衬套与所述筒状主体由相同的材料制成。
  18. 根据权利要求17所述的涡旋压缩机,其中:
    所述材料是铝合金。
  19. 根据权利要求14或15所述的涡旋压缩机,其中:
    所述轴承衬套与所述筒状主体由不同的材料制成。
  20. 根据权利要求19所述的涡旋压缩机,其中:
    所述轴承衬套由PTFE制成,并且所述筒状主体由钢制成。
  21. 根据权利要求14或15所述的涡旋压缩机,其中:
    所述轴承衬套由单一材料制成。
  22. 根据权利要求21所述的涡旋压缩机,其中:
    所述材料是铝合金。
  23. 根据权利要求14或15所述的涡旋压缩机,其中:
    所述轴承衬套由复合材料制成。
  24. 根据权利要求23所述的涡旋压缩机,其中:
    所述复合材料从轴承衬套的最内侧到最外侧依次包括:
    PTFE层、铜层和钢层;或者
    碳层和钢层。
  25. 根据权利要求1所述的涡旋压缩机,其中:
    所述筒状主体的硬度大于或等于30HRC。
  26. 根据权利要求1所述的涡旋压缩机,其中:
    所述筒状主体由铸铁、粉末冶金、合金、钢或高分子材料制成。
  27. 根据权利要求1所述的涡旋压缩机,还包括:
    固定轴(5),所述固定轴固定于所述支架,
    其中通过所述驱动件的所述毂部可转动地安装在所述固定轴上使所述驱动件可转动地安装于所述支架,并且
    其中所述驱动件的所述毂部在所述第一端经由所述套筒(9)安装在所述固定轴上。
  28. 根据权利要求1所述的涡旋压缩机,其中:
    筒状主体具有从第一端部(97)的端面轴向向内凹陷的缺口(940),用于润滑油从筒状主体的内侧流到筒状主体的外侧。
  29. 根据权利要求1所述的涡旋压缩机,其中:
    所述电机为轴向磁通电机,包括定子和转子,定子固定到所述支架上,转子与所述驱动件固定连接,用于驱动所述驱动件转动,从而驱动所述第一涡旋盘转动。
  30. 一种用于涡旋压缩机的套筒(9),包括:
    筒状主体(94),以及
    设置于筒状主体(94)的固定部,用于与其它部件配合连接。
  31. 根据权利要求30所述的用于涡旋压缩机的套筒,其中:
    所述固定部包括凹部或凸起。
  32. 根据权利要求30所述的用于涡旋压缩机的套筒,其中:
    所述固定部包括从筒状主体的外周面(95)径向向外突出的径向凸起(96)。
  33. 根据权利要求32所述的用于涡旋压缩机的套筒,其中:
    所述径向凸起(96)是多个在周向上间隔开的径向凸起。
  34. 根据权利要求33所述的用于涡旋压缩机的套筒,其中:
    所述多个径向凸起(96)在周向上等间隔分布。
  35. 根据权利要求32所述的用于涡旋压缩机的套筒,其中:
    所述径向凸起(96)具有径向朝外的表面(961),所述表面是凸面。
  36. 根据权利要求32所述的用于涡旋压缩机的套筒,其中:
    所述径向凸起(96)在轴向上呈楔形,使得在从筒状主体的第一端部(97)到第二端部(98)的方向上,所述径向凸起的在径向上的尺寸逐渐变小。
  37. 根据权利要求32所述的用于涡旋压缩机的套筒,其中:
    所述径向凸起(96)具有径向朝外的表面(961),所述表面是粗糙表面。
  38. 根据权利要求32所述的用于涡旋压缩机的套筒,其中:
    所述径向凸起(96)从筒状主体的第一端部(97)延伸到筒状主体的所述第一端部(97)与第二端部(98)之间。
  39. 根据权利要求30所述的用于涡旋压缩机的套筒,其中:
    所述固定部包括从筒状主体的外周面径向向内凹陷的凹部。
  40. 根据权利要求39所述的用于涡旋压缩机的套筒,其中:
    所述径向凹部是多个在周向上间隔开的径向凹部。
  41. 根据权利要求40所述的用于涡旋压缩机的套筒,其中:
    所述多个径向凹部在周向上等间隔分布。
  42. 根据权利要求30所述的用于涡旋压缩机的套筒,其中:
    所述固定部包括从筒状主体(94)的第二端部(98)的端面(981)轴向向外突出的轴向凸起(99)。
  43. 根据权利要求42所述的用于涡旋压缩机的套筒,其中:
    所述轴向凸起(99)是多个在周向上间隔开的轴向凸起。
  44. 根据权利要求43所述的用于涡旋压缩机的套筒,其中:
    所述多个轴向凸起(99)在周向上等间隔分布。
  45. 根据权利要求42所述的用于涡旋压缩机的套筒,其中:
    所述轴向凸起(99)具有径向朝外的表面(991),所述表面(991)是凸面。
  46. 根据权利要求42所述的用于涡旋压缩机的套筒,其中:
    所述轴向凸起(99)在轴向上呈楔形,使得在从筒状主体的第二端部(98)的端面(981)轴向向外的方向上,所述轴向凸起(99)逐渐变细。
  47. 根据权利要求30所述的用于涡旋压缩机的套筒,其中:
    所述固定部包括从筒状主体(94)的第二端部(98)的端面(981)轴向向内凹陷的轴向凹部。
  48. 根据权利要求47所述的用于涡旋压缩机的套筒,其中:
    所述轴向凹部是多个在周向上间隔开的轴向凹部。
  49. 根据权利要求48所述的用于涡旋压缩机的套筒,其中:
    所述多个轴向凹部在周向上等间隔分布。
  50. 根据权利要求30所述的用于涡旋压缩机的套筒,还包括:
    轴承衬套(51),所述轴承衬套设置在筒状主体内。
  51. 根据权利要求50所述的用于涡旋压缩机的套筒,其中:
    所述轴承衬套(51)具有在周向方向上抵接的两个周向端部(511)。
  52. 根据权利要求50或51所述的用于涡旋压缩机的套筒,其中:
    所述轴承衬套与所述筒状主体过盈配合。
  53. 根据权利要求50或51所述的用于涡旋压缩机的套筒,其中:
    所述轴承衬套与所述筒状主体由相同的材料制成。
  54. 根据权利要求53所述的用于涡旋压缩机的套筒,其中:
    所述材料是铝合金。
  55. 根据权利要求50或51所述的用于涡旋压缩机的套筒,其中:
    所述轴承衬套与所述筒状主体由不同的材料制成。
  56. 根据权利要求55所述的用于涡旋压缩机的套筒,其中:
    所述轴承衬套由PTFE制成,并且所述筒状主体由钢制成。
  57. 根据权利要求50或51所述的用于涡旋压缩机的套筒,其中:
    所述轴承衬套由单一材料制成。
  58. 根据权利要求57所述的用于涡旋压缩机的套筒,其中:
    所述材料是铝合金。
  59. 根据权利要求50或51所述的用于涡旋压缩机的套筒,其中:
    所述轴承衬套由复合材料制成。
  60. 根据权利要求59所述的用于涡旋压缩机的套筒,其中:
    所述复合材料从轴承衬套的最内侧到最外侧依次包括:
    PTFE层、铜层和钢层;或者
    碳层和钢层。
  61. 根据权利要求30所述的用于涡旋压缩机的套筒,其中:
    筒状主体具有从第一端部(97)的端面轴向向内凹陷的缺口(940),用于润滑油从筒状主体的内侧流到筒状主体的外侧。
  62. 根据权利要求30所述的用于涡旋压缩机的套筒,其中:
    所述筒状主体的硬度大于或等于30HRC。
  63. 根据权利要求30所述的用于涡旋压缩机的套筒,其中:
    所述筒状主体由铸铁、粉末冶金、合金、钢或高分子材料制成。
PCT/CN2022/143314 2021-12-31 2022-12-29 涡旋压缩机和用于涡旋压缩机的套筒 WO2023125782A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202123449891.3 2021-12-31
CN202111683036.0A CN116412133A (zh) 2021-12-31 2021-12-31 涡旋压缩机和用于涡旋压缩机的套筒
CN202111683036.0 2021-12-31
CN202123449891.3U CN217898551U (zh) 2021-12-31 2021-12-31 用于涡旋压缩机的套筒以及涡旋压缩机

Publications (1)

Publication Number Publication Date
WO2023125782A1 true WO2023125782A1 (zh) 2023-07-06

Family

ID=86998147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143314 WO2023125782A1 (zh) 2021-12-31 2022-12-29 涡旋压缩机和用于涡旋压缩机的套筒

Country Status (1)

Country Link
WO (1) WO2023125782A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609478A (en) * 1995-11-06 1997-03-11 Alliance Compressors Radial compliance mechanism for corotating scroll apparatus
CN204041461U (zh) * 2014-08-01 2014-12-24 艾默生环境优化技术(苏州)有限公司 压缩机
CN110360101A (zh) * 2018-04-11 2019-10-22 艾默生环境优化技术有限公司 具有衬套的压缩机
CN110469504A (zh) * 2018-05-11 2019-11-19 艾默生环境优化技术有限公司 具有衬套的压缩机
US20200063735A1 (en) * 2017-10-02 2020-02-27 Mitsubishi Heavy Industries, Ltd. Co-rotating scroll compressor
CN111684159A (zh) * 2018-02-05 2020-09-18 三菱重工业株式会社 双旋转涡旋型压缩机及其组装方法
CN213981182U (zh) * 2020-09-28 2021-08-17 艾默生环境优化技术(苏州)有限公司 动涡旋组件及包括其的涡旋压缩机
CN217898551U (zh) * 2021-12-31 2022-11-25 丹佛斯(天津)有限公司 用于涡旋压缩机的套筒以及涡旋压缩机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609478A (en) * 1995-11-06 1997-03-11 Alliance Compressors Radial compliance mechanism for corotating scroll apparatus
CN204041461U (zh) * 2014-08-01 2014-12-24 艾默生环境优化技术(苏州)有限公司 压缩机
US20200063735A1 (en) * 2017-10-02 2020-02-27 Mitsubishi Heavy Industries, Ltd. Co-rotating scroll compressor
CN111684159A (zh) * 2018-02-05 2020-09-18 三菱重工业株式会社 双旋转涡旋型压缩机及其组装方法
CN110360101A (zh) * 2018-04-11 2019-10-22 艾默生环境优化技术有限公司 具有衬套的压缩机
CN110469504A (zh) * 2018-05-11 2019-11-19 艾默生环境优化技术有限公司 具有衬套的压缩机
CN213981182U (zh) * 2020-09-28 2021-08-17 艾默生环境优化技术(苏州)有限公司 动涡旋组件及包括其的涡旋压缩机
CN217898551U (zh) * 2021-12-31 2022-11-25 丹佛斯(天津)有限公司 用于涡旋压缩机的套筒以及涡旋压缩机

Similar Documents

Publication Publication Date Title
KR100749040B1 (ko) 스크롤 압축기
WO2023125820A1 (zh) 涡旋压缩机
US5701668A (en) Method of making a refrigeration compressor thrust bearing assembly
CN217898551U (zh) 用于涡旋压缩机的套筒以及涡旋压缩机
JPS5828433B2 (ja) 旋回機械用継手部材
EP1740833A1 (en) Axial bearing arrangement in a hermetic compressor
CN217682264U (zh) 用于涡旋压缩机的驱动件以及涡旋压缩机
CN217582486U (zh) 涡旋压缩机
US20150354567A1 (en) Scroll compressor
US6280155B1 (en) Discharge manifold and mounting system for, and method of assembling, a hermetic compressor
CN217234169U (zh) 法兰和包括该法兰的涡旋压缩机
JPH11336676A (ja) スクロール式流体機械
CN217233793U (zh) 压缩机
US10344804B2 (en) Scroll compressor lower bearing
KR100729539B1 (ko) 스크롤기계용 원뿔형 허브 베어링
WO2023125782A1 (zh) 涡旋压缩机和用于涡旋压缩机的套筒
CN212003608U (zh) 一种小流量高扬程多级离心泵
JPS6022087A (ja) ベ−ン型回転ポンプ
CN218493797U (zh) 用于涡旋压缩机的涡旋盘以及涡旋压缩机
KR102060474B1 (ko) 스크롤 압축기
WO2023125816A1 (zh) 用于涡旋压缩机的驱动件以及涡旋压缩机
WO2023125783A1 (zh) 涡旋压缩机
CN116412133A (zh) 涡旋压缩机和用于涡旋压缩机的套筒
WO2024022504A1 (zh) 用于涡旋压缩机的驱动件以及涡旋压缩机
WO2020143350A1 (zh) 用于涡旋压缩机的止推板和涡旋压缩机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915032

Country of ref document: EP

Kind code of ref document: A1