WO2023125441A1 - 血管支架及输送系统 - Google Patents

血管支架及输送系统 Download PDF

Info

Publication number
WO2023125441A1
WO2023125441A1 PCT/CN2022/142017 CN2022142017W WO2023125441A1 WO 2023125441 A1 WO2023125441 A1 WO 2023125441A1 CN 2022142017 W CN2022142017 W CN 2022142017W WO 2023125441 A1 WO2023125441 A1 WO 2023125441A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
wave
vascular
state
coil
Prior art date
Application number
PCT/CN2022/142017
Other languages
English (en)
French (fr)
Inventor
吴轩
肖本好
Original Assignee
先健科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先健科技(深圳)有限公司 filed Critical 先健科技(深圳)有限公司
Publication of WO2023125441A1 publication Critical patent/WO2023125441A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod

Definitions

  • the technical problem to be solved by the present invention is to aim at blocking the branch arterial entrance caused by the bare stent wave coil after the release of the vascular stent used for aortic aneurysm in the prior art, thereby affecting the blood supply, and even, the bare stent wave coil pushes to the branch The inside of the blood vessel, thus causing the problem of branch blood vessel dissection, provides a blood vessel stent and delivery system.
  • Fig. 2 is a schematic structural view of a vascular stent in a fully released state in the prior art
  • FIG. 9 is a schematic structural view of a bare stent in a compressed state in an embodiment of the present invention.
  • Fig. 12 is a structural schematic diagram of a bare stent fully released in a natural state in an embodiment of the present invention
  • Fig. 17 is a schematic structural view of a bare stent fully released in a natural state in another embodiment of the present invention.
  • Fig. 19 is a structural schematic diagram of a flipping wave in a post-release state in another embodiment of the present invention.
  • a blood vessel is used as an example to illustrate the lumen, and the blood vessel may be the aortic arch, thoracic aorta, or abdominal aorta.
  • the use of blood vessels for illustration is only used as an example, and is not a limitation of the present invention.
  • covered stent refers to the structure after the surface of the bare stent is covered with a film
  • the bare stent refers to a structure including at least one uncoated corrugated structure.
  • the bare stent is generally used for hooking on the hook of the conveyor when it is released. hanging structure.
  • the elastic material with a non-ring structure is pre-bent with a certain point on itself, including a fixed part and an overturned part. Under the action of an external force, the overturned part can expand relative to the fixed part.
  • the tendency of the natural state of pre-bending, wherein the unfolded state under the action of external force is the inverted connection of the inverted part and the fixed part of the structure.
  • the inner surface and the outer surface can be exchanged (the initial inner surface is turned 180° to become the outer surface, and the initial outer surface becomes the inner surface).
  • sub-stable state if under the action of external force, the flip angle range of the non-fixed elastic body is (0°, 180°), then due to the elastic body’s own elasticity and the torque caused by the flip, when the external force interference is removed,
  • the wavy ring has a tendency to move from the inverted state to the stable state or the sub-stable state; if a part of the wave of the wavy ring is fixed in the natural state, under the action of an external force, the other part of the wave is turned over (0°, 180°], When the external force interference is removed, the part of the waves flipped by the waveform ring has a tendency to return to the natural state from the flipped state.
  • Active overturning refers to the unstable state of the annular, wave-shaped or cylindrical structure in the range of (0°, 180°).
  • the annular or cylindrical structure will naturally move from the unstable state.
  • the trend of status reversal. For example, if part of the wave of the wave ring is fixed in the natural state, and the other part of the wave is turned over (0°, 180°] under the action of an external force, the part of the wave that is turned over by removing the external force can return to the natural state; or there are other things that can cause the wave When the ring turns back from the flipped state to the resilience of the natural state.
  • the wave-shaped ring 80 when the external force is removed at this time, the wave-shaped ring 80 will turn from the unsteady state There is a tendency to turn back to the natural state; if the wave-shaped ring 80 is in an unstable state of turning over to (90°, 180°) under the action of an external force (torque), when the external force is removed at this time, the wave-shaped ring will 80 There is a tendency from this unstable state to a sub-stable state. If a small external force can be applied at this time to bring the partially overturned structure to an unstable state in the range of (0°, 90°) and then remove the external force, then, The wavy ring 80 has a tendency to roll back towards the natural state.
  • the main bracket 121 includes a plurality of annular Z-shaped wave rings arranged at intervals along the axial direction, and each wave ring is made of a metal elastic material (for example, nickel-titanium alloy) so that when the stent 10 (compressed radially in the state shown in FIG.
  • the device 70 realizes the loading of the vascular stent 10 .
  • the covered stent 12 can be deployed in the blood vessel, and then the bare stent 11 can be post-released by using the hooking structure 71 of the transporter 70 .
  • the bare stent 11 includes a first corrugated coil 111 that is connected but not fixed to the stent-graft 12 at one end.
  • the bare stent and the stent-graft are movably connected through the membrane and the polymer wire, so that the bare stent 11 can be moved relative to the stent-graft.
  • the membrane support is turned over with the connecting point as the turning point, and the first corrugated ring 111 is a wave-shaped ring as shown in FIG. 5 .
  • the first corrugated coil 111 and the second corrugated coils 1211 are both arranged at the proximal end of the vascular stent 10 .
  • the difference is that one end of the first wave coil 111 (the proximal end in the flipped state as shown in FIG.
  • the angle between the bare stent 11 and the bare stent in the natural state is approximately 180 degrees, approximately 180 degrees means that there may be a deviation of plus or minus 5 degrees) compressed and loaded into the sheath tube 73 for delivery, wherein the first wave
  • the flip fulcrum of the ring 111 is the connection between the first wave ring and the covering film; while the second wave ring 1211 belongs to the part of the main bracket 121, and it is pasted in the covering film 122 by two layers of covering films to support the covering film. Film 122.
  • the first wave ring 111 and the second wave ring 1211 are arranged at intervals along the axial direction, and the trough of the first wave ring 111
  • the axial distance D from the peak of the second wave ring 1211 satisfies: 0mm ⁇ D ⁇ 3mm, in other embodiments, D satisfies: 1mm ⁇ D ⁇ 3mm, so that the distance between the first wave ring 111 and the second wave ring 1211
  • There is a gap because the gap is connected by the soft membrane 122, and the first wave coil 111 is turned over and connected with the stent graft 12 and compressed into the sheath tube 73 of the conveyor 70.
  • the conveyor 70 When the post-release structure releases the first corrugated coil 111 in the post-release state, the soft coating 122 is conducive to the free rotation of the first corrugated coil 111 toward the lumen of the stent-graft 12, as shown in Figure 6 in conjunction with Figures 9-11 It is shown that when the first wave coil 111 and the second wave coil 1211 interfere with each other in the axial direction, it is difficult to turn over.
  • the stent-graft 12 is a hollow tube in a natural state, as shown in Figure 7-8, the radius of the tube of the stent-graft 12 is defined as R, and the wave height of the first wave ring 111 is defined as H , then H satisfies: H ⁇ R.
  • R the radius of the tube of the stent-graft 12
  • H the wave height of the first wave ring 111
  • H satisfies: H ⁇ R.
  • the wave heights of the first wave ring 111 and the second wave ring 1211 are equal in height and wave period are the same, the troughs of the first wave ring 111 and the wave troughs of the second wave ring 1211 are on the same straight line along the axial direction, It is beneficial that after the first wave coil 111 is overturned, the wave rods of the first wave coil 111 and the second wave coil 1211 intersect with each other, and the first wave coil 111 can cover the film 122 in the gap of the second wave coil 1211 ( The second corrugated coil 1211 is not supported to the covering film) to play a supporting role, so that the covering film 122 at the proximal end of the vascular stent 10 is more in line with the blood vessel, and the double-layer cross corrugated coil structure makes the After the covering film 122 is attached to the blood vessel, it has a better sealing effect and reduces endoleak and stent displacement, as shown in FIG.
  • the first wave coil 111 is in an unnatural reverse connection state (as shown in FIGS. 7 and 9 ), the area where the second wave coil 1211 is located Therefore, after the vascular stent 10 provided by this embodiment is completely released, the first corrugated coil 111 (the annular corrugated coil of the bare stent 11) will turn back into the covered stent 12 (vascular stent 10 is in a natural state, as shown in Figure 6), to prevent the bare stent 11 from interfering with the blood vessel branch after it is completely released, that is, to prevent the bare stent 11 from blocking the entrance of the branch artery, thereby avoiding affecting the blood supply; and to avoid the bare stent 11
  • the corrugated coil pushes to the inside of the branch blood vessel 53 so as to avoid dissection of the branch blood vessel 53 . While not increasing the assembly volume of the vascular stent
  • the first wave circle 111 and the second wave circle 1211 have the same single wave height, and the wave heights and wave periods of the first wave circle 111 and the second wave circle 1211 are the same, the first wave circle The trough of 111 and the crest of the second wave ring 1211 are not on the same straight line in the axial direction. As shown in FIG. The wave rod can realize the intersection.
  • the process of turning over the bare stent 11 and the covered stent 12 includes: turning the bare stent 11 of the vascular stent 10 in a natural state (as shown in FIG. 6 ) to the state shown in FIG. 7 , compressing it radially and then Loaded into the sheath tube 73 of the transporter 70, as shown in FIG. 9 , the angle between the bare stent 11 at this time and the bare stent 11 in the natural state is approximately 180°.
  • both the bare stent 11 and the stent graft 12 are in a compressed state, and the complete release process of the stent 10 provided in this embodiment includes in sequence: a compressed state, a first released state, and a post-release state and natural state.
  • the vascular stent 10 in the compressed state is loaded into the sheath tube 73 of the transporter 70. Since the bare stent 11 and the stent-graft 12 are turned over and connected, and the first wave The crest of the circle 111 (as shown in FIG. 9 ).
  • the vascular stent 10 in the compressed state (as shown in Figure 9) will remain in the same position as the covered stent relative to the vascular stent 10 in the natural state (as shown in Figure 6).
  • 12 turns over the connected state, the stent graft 12 is compressed radially, and after the stent graft 10 is transported to the site to be implanted in this state, the sheath tube 73 is withdrawn to release the stent graft 12 .
  • the process from the compressed state to the first release state also includes withdrawing the sheath tube 73 to release the stent graft 12, and the process of withdrawing the sheath tube 73 to release the stent graft 12 includes:
  • the sheath tube 73 is withdrawn in the direction opposite to the feeding direction (that is, along the direction of blood flow), and the vascular stent 10 is gradually released from the proximal end to the distal end until the stent graft 12 is completely released, leaving only the bare stent 11 hooked.
  • On the hook structure 71 of the conveyor 70 as shown in FIG. 10 .
  • First release state after the stent graft 12 is completely released from the sheath tube of the transporter, it expands and expands to fit on the blood vessel wall (as shown in Figure 10), and the first wave ring 111 of the bare stent is still hooked on the hook The state when hanging structure 71.
  • the stent graft 12 expands and adheres to the wall to have a certain fixing effect.
  • the sheath core assembly 72 can be moved backward, thereby driving the hook structure 71 on the sheath core assembly 72 to move to the distal end of the vascular stent 10, and the first stent of the bare stent Driven by the hooking structure 71 , the wave ring 111 can turn over to the inside of the stent graft 12 .
  • Natural state After the first wave circle 111 breaks away from the hooking structure 71 and turns back into the covered stent 12, the bare stent 11 is in a natural state, and the covered stent 12 and the bare stent 11 are both attached to the vessel wall, as shown in Figure 12 Show.
  • first wave coil 111 is only slightly connected to the membrane 122 at the proximal end of the stent-graft 12, most of the first wave coil 111 is exposed outside the membrane 122.
  • connection strength between the corrugated coil 111 and the stent-graft 12 can be provided by placing the polymer wire 13 in the membrane 122 , and the two ends of the polymer wire 13 are respectively connected to the first corrugated coil 111 and the second corrugated coil 1211 .
  • the two layers of coatings are bonded to cover the main support 121, the polymer wire 13 is pressed into the two layers of coatings 122, and one end is connected to the trough of the first wave ring 111 (referring to the first wave ring 111 and the stent graft 12 are turned over and connected, as shown in Figure 13), the other end is connected to the peak of the second wave coil 1211 nearby, as shown in Figure 13, the number of polymer wires 13 can be the same as the number of wave cycles.
  • the delivery system 100 provided in this embodiment, as shown in FIGS. 9-12 , includes a delivery device 70 and the vascular stent 10 as described above.
  • the function is formed by the cooperation of the guide head 711 and the anchor piece 712 , and a receiving cavity for receiving the vascular stent 10 is formed between the sheath tube 73 and the sheath-core assembly 72 .
  • the sheath core assembly 72 includes an inner sheath core (not shown in the figure) and an outer sheath core 721, the inner sheath core is connected with the guide head 711, the outer sheath core 721 is connected with the anchor 712, and the outer sheath core 721 can be placed on the handle Under the control of the inner sheath core, it moves axially relative to the inner sheath core, so as to drive the anchor 712 to close or move away from the bottom of the guide head 711 , so that the first wave coil 111 of the bare stent 11 is hooked or disengaged from the hooking structure 71 .
  • the bare stent 11 can prevent the bare stent 11 from interfering with the branch of the blood vessel after it is completely released, that is, it can prevent the bare stent 11 from blocking the entrance of the branch artery, thereby avoiding affecting the blood supply; and it can also avoid the bare stent 11 wave
  • the sealing effect at the proximal end of the vascular stent 10 can be enhanced to reduce endoleak and stent displacement.
  • one end of the first corrugated circle 211 is connected to the covering film 222, and other parts of the first corrugated circle 211 are attached to the covering film 222 but not fixed, so that the vascular stent 20 can be turned out of the covering film with the first corrugated circle 211 stent 22, and in an overturned form (that is, when the bare stent 21 and the covered stent 22 are in an unfolded state that is turned over and connected but not compressed, as shown in Figure 15, the bare stent 21 at this time and the bare stent in the natural state 21 with an included angle of approximately 180°) and loaded into the sheath tube, wherein the turning fulcrum of the first wave coil 211 is the junction where the first wave coil 211 is connected to the membrane.
  • the folding rod structure 23 is fixedly connected to the wave rod of the first wave coil 211, and the other end is fixedly connected to the nearest wave rod of the second wave coil 2211.
  • the folding rod structure 23 also includes a folding point F, as shown in FIG. 15 , one end of the folding rod structure 23 is fixed at the midpoint of the wave rod of the first wave coil 211 (the midpoint of the wave rod between the adjacent troughs and crests) or any position between the midpoint and the wave crest, so as to facilitate folding
  • the rod structure 23 is automatically folded back to the natural state with the folding point F as the fulcrum from the folded state, the moment to the first corrugated circle 211 is relatively large (the fulcrum when the first corrugated circle 211 is turned back to the natural state is as shown in Figure 15 trough of the first wave circle 211 shown).
  • the folding rod structure 23 also includes a folding part 231, a fixing part 232 and an elastically foldable joint.
  • One end of the folding part 231 is fixed on the wave rod of the first wave coil 211 through the cylinder sleeve 231, and the other end is connected to the fixing part 232 through The elastically foldable joint is connected, and the joint is the folding point F, and the folding point F is inside the film support 22;
  • one end of the fixing part 232 is fixed on the wave rod of the second wave coil 2211 through the cylinder sleeve, and fixed
  • the part 232 is fixed in the covering film 222 , and the other end is fixed to the folded part 231 .
  • the folding part 231 and the fixing part 232 are folded in half with the folding point F as the fulcrum and integrally formed; F is that the fulcrum is turned outward toward the stent graft 22 and has a tendency to turn back to the natural state.
  • the folding rod structure 23 is made of metal elastic material (eg, Nitinol).
  • the folding rod structure 23 is fixed to the first wave coil 211 and the second wave coil 2211 by compressing and fixing the cylinder sleeve 231 or by welding and binding wires.
  • One or more folding rod structures 23 that can be reversed and folded in half can be provided, so that when the folding rod structure 23 is folded in half from the flipped state and returns to the natural state, it can provide a turning back that drives the first wave circle 211 to turn back from the flipped state to the natural state just force.
  • the reversible folding rod structure 23 is in an S-like shape, and the two ends transition smoothly to facilitate the transition connection with the wave rod on the wave coil.
  • there are an even number of folding rod structures 23, and the two of them are circumferentially symmetrical with respect to the axial direction of the stent graft 22, so that the first corrugated coil 211 is turned back to the natural state, and the force is balanced. .
  • the vascular stent 20 provided in this embodiment is compressed and loaded into the sheath of the transporter in the flipped state shown in FIG. 15 , and the angle between the bare stent 21 and the bare stent in the natural state is approximately 180°.
  • the complete release process of the stent 20 provided in this embodiment includes in sequence: a compressed state, a post-release state and a natural state.
  • the process from the compressed state to the post-release state also includes withdrawing the sheath to release the stent graft (refer to FIG. 10 for the compressed state).
  • the compressed state in this embodiment can refer to Embodiment 1, and will not be repeated here.
  • the main difference between the release process of the bare stent 21 and Embodiment 1 is that it does not include the external force of the hook structure 71 of the conveyor to release the bare stent 21.
  • the process of driving the first wave ring 211 from the first release state to the rear release state that is, when the first wave ring 211 in this embodiment is in the first release state in Embodiment 1, the hooking structure 71 can be controlled to make the first
  • the wave coil 211 is disengaged from the anchor 712 to achieve a rear release, ie, the rear release state coincides with the first release state.
  • the overturning of the bare support 21 in the present embodiment is: the active overturning that automatically turns back to the natural state after being released directly from the first release state.
  • the folding rod structure 23 After the last release state, control the inner and outer sheath cores of the sheath-core assembly 72, so that the first wave coil 211 is separated from the anchor 712, then, since the first wave coil 211 and the folding rod structure 23 are both in an overturned state, the folding rod structure 23 is turned over again. Belonging to the single-rod structure, the folding rod structure 23 has a greater tendency to return to the natural state by folding in half from the flipped state, and can drive the first wave circle 211 to turn back to the natural state together (that is, it is received in the covered stent 22 and attached to it. attached to the stent graft 22), as shown in Figure 17.
  • the vascular stent 20 provided in this embodiment can prevent the bare stent 21 from interfering with the branch of the blood vessel after it is completely released, that is, it can prevent the bare stent 21 from blocking the entrance of the branch artery, thereby avoiding affecting the blood supply; Push to the inside of the branch blood vessel 53, so as to avoid dissection of the branch blood vessel 53. While not increasing the assembly volume of the vascular stent 10, it can also be automatically rolled back into the stent graft 22 after release, thereby enhancing the sealing effect at the proximal end of the vascular stent 20 and reducing endoleak and stent displacement.
  • the bare stent is automatically flipped into the covered stent, and no external force is required in the post-release state. Compared with passive flipping, it can also reduce the risk of displacement or shortening of the vascular stent that may be caused by the external force provided by the hook structure of the conveyor.
  • Embodiment 3 proposes a vascular stent 30 and a delivery system, as shown in FIGS. 18-19 .
  • the vascular stent 30 and the delivery system of the third embodiment are the same as those of the first embodiment or the features that can be appropriated will not be repeated here.
  • the main difference is that the bare stent 31 of the stent 30 of the third embodiment includes a natural state.
  • the first wave coil 311 in the stent-graft defines the first area M from the trough of the second wave coil to the proximal end of the stent-graft 32 in the axial direction.
  • the first wave coil 311 includes a fixed wave 3111 as a fixed part and a reversible non-stationary wave, the fixed part includes at least one fixed wave, and the fixed wave 3111 is fixed in the first region; the non-stationary wave can be compared with the fixed wave 3111 flipping to form a flipping wave 3112, in the flipping state, the flippable non-fixed wave flips out of the stent graft 32 to form a flipping wave 3112, the flipping wave is used as the flipping part, and the flipping part includes at least one flipping wave; define the second wave circle 3211
  • the covering region from the wave crest to the proximal end of the stent-graft 32 in the axial direction is the second region N, and the fulcrum of the reversible non-stationary wave reversal is located in the second region, as shown in FIG. 18 .
  • a wave defining a cycle is a wave
  • the other two waves are circularly symmetric. Since there are four waves reversed approximately 180° (as shown in FIG. 18 ) and compressed into the sheath tube, when the vascular stent 30 is released to the post-release state, the four reversed waves are in the reversed state as shown in FIG.
  • the flipping wave 3112 is flipped and deformed with the adjacent fixed wave 3111, causing the flipping state in the first wave circle 311 Wave 3112 has a strong tendency to return to its natural state. Therefore, in the post-release state of FIG. 19 , the flipping wave 3112 is separated from the anchor 712 by controlling the hooking structure 71 , and the flipping wave turns back into the stent graft 32 and attaches to the graft 322 .
  • the overturning wave 3112 and the fixed wave 3111 are in the expanded state of overturning connection, as shown in Figure 18, the overturning wave 3112 and the second wave coil 3211 are arranged at intervals along the axial direction, the trough of the overturning wave 3112 is located in the second region, and the overturning wave
  • the axial distance D1 (reference example 1) between the trough of the trough and the crest of the second wave coil satisfies: 0mm ⁇ D1 ⁇ 3mm.
  • the wave height of the flipping wave is less than or equal to the tube body radius of the stent-graft, so that the flipping wave can smoothly flip back into the stent-graft.
  • the trough of the inversion wave 3112 as the inversion part when it is in an inversion state (as shown in FIG. 18 ) and the crest of the second wave coil 3211 are not on the same straight line along the axial direction, but the trough of the inversion wave 3112 and the first The troughs of the second wave ring 3211 are on the same straight line in the axial direction, and the wave height of the flipping wave 3112 is equal to the wave height of the fixed wave 3111 and the wave height of the second wave ring 3211, so that the flipping wave 3112 can flip back to the stent graft In 32, the wave rod that can realize the turning wave and the wave rod of the second wave coil cross support the film.
  • the vascular stent 30 provided in this embodiment can prevent the bare stent 31 from interfering with the branch of the blood vessel after it is completely released, that is, it can prevent the bare stent 31 from blocking the entrance of the branch artery, thereby avoiding affecting the blood supply; Push to the inside of the branch blood vessel 53, so as to avoid dissection of the branch blood vessel 53. It can also be automatically turned back into the covered stent 32 after being released, so as to enhance the sealing effect at the proximal end of the vascular stent 30 and reduce endoleak and stent displacement.
  • the flipping wave automatically flips into the stent graft, and no external force is needed in the post-release state. Compared with passive flipping, it can also reduce the risk of displacement or shortening of the vascular stent that may be caused by the external force provided by the hook structure of the conveyor.
  • the flipping wave of the first wave coil 311 of the bare stent 31 returns to the state of the covered stent 32 after being released at the site to be implanted, which is similar to the state shown in FIG. Some waves are fixed to the stent-graft 32 to connect with the stent-graft 32 , instead of only the troughs in the inverted state in Embodiment 1 to connect with the stent-graft 32 .
  • Embodiment 4 proposes a vascular stent 40 and a delivery system, as shown in FIGS. 20-21 .
  • the vascular stent 40 and the delivery system of Embodiment 4 are the same as those of Embodiment 1 or the characteristic parts that can be diverted will not be repeated here.
  • the main difference is that the first wave coil of the bare stent 41 of the vascular stent 40 of Embodiment 4 411 includes at least one single bending wave, rather than a complete undulating ring end-to-end, the bending wave is naturally within the stent-graft 42 .
  • the bending wave includes a connection part 4112 and a bending part 4111, the connection part 4112 is attached to the stent graft 42, and one end of the connection part 4112 is fixed to the second wave coil through a cylinder sleeve 4113 or a welding binding wire On the probe 4211, the other end of the connection part 4112 is connected to the bending part 4111.
  • a single bending wave includes two connecting parts 4112 and a bending part 4111 , the bending part 4111 includes the crest of the bending wave, and the bending part 4111 and the connecting part 4112 can be integrally formed.
  • the bending wave is parallel to the plane where the two connecting parts 4112 are located after the bending part 4111 is turned over by 90°, compressed in this turned over state, and loaded into the sheath of the transporter 70 .
  • the fulcrum of the bending part 4111 turning over is the connection between the bending part 4111 and the connecting part 4112, and the connection is located in the area inside the stent graft 42, so that the vascular stent 40 can be bent after being released at the site to be implanted.
  • the bending part 4111 of the wave After the bending part 4111 of the wave turns back to the natural state, the bending part 4111 is not exposed outside the stent graft 42; and when the bending part 4111 of the bending wave is turned 90° relative to the connecting part 4112, most of the bending part 4111 is exposed on the stent graft 42 so that it can be hooked to the hooking structure 71 of the conveyor 70 after the bending wave is reversed by 90°, and it is convenient for subsequent release, as shown in FIG. 21 .
  • the bent part of the bending wave when entering the released state, as shown in Figure 21, the bent part of the bending wave is in an inverted state and has a direction towards the natural state.
  • control the hooking structure 71 so that the bending wave is separated from the anchor 712 of the hooking structure 71, and the bending part 4111 of the bending wave can be realized with the junction of the bending part 4111 and the connecting part 4112 as the fulcrum.
  • the vascular stent 40 provided in this embodiment can prevent the bare stent 41 from interfering with the branch of the blood vessel after the bare stent 41 is completely released, that is, it can prevent the bare stent 41 from blocking the entrance of the branch artery, thereby avoiding affecting the blood supply; Push to the inside of the branch blood vessel 53, so as to avoid dissection of the branch blood vessel.
  • the bending part is automatically flipped into the stent graft, and no external force is needed in the post-release state. Compared with passive flipping, it can also reduce the risk of displacement or shortening of the vascular stent that may be caused by the external force provided by the hook structure of the conveyor. .
  • the range of the angle ⁇ between the bending portion 4111 and the connecting portion 4112 of the bending wave is [0°, 90°], and the corresponding restoring force in the flipped state Relatively large (corresponding to when the bending part 4111 and the connecting part 4112 are in the reversed state, the angle required to be reversed is relatively large compared to the natural state); of course, in other embodiments, the angle range ⁇ between the bending part 4111 and the connecting part 4112 It can also be (90°, 180°), as long as it is not exposed to the stent graft 42 in its natural state and it is easy to hook and release the hook structure 71 when it is turned over.
  • the inversion angle of the bending part 4111 relative to the connecting part 4112 is 180- ⁇
  • the inversion angle in the post-release state is smaller than 180- ⁇ , that is, in the natural state, the larger the ⁇ angle, the greater the angle in the inversion state.
  • the smaller the angle of the flipping deformation is, the smaller the restoring force is; in the natural state, the smaller the ⁇ angle is, and the larger the flipping deformation angle is, the greater the restoring force is in the flipping state or in the post-release state.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Prostheses (AREA)

Abstract

一种血管支架(10),在输送过程中,血管支架(10)包括覆膜支架(12)以及与覆膜支架(12)近端相连的裸支架(11),裸支架(11)包括第一波圈(111),第一波圈(111)与覆膜支架(12)相连,第一波圈(111)包括翻转部及与覆膜支架(12)固定连接的固定部,翻转部与固定部翻转连接以使裸支架(11)从输送器(70)释放后,翻转部自动翻转至覆膜支架(12)内以使裸支架(11)不露于覆膜支架(12)外。血管支架(10)可以避免裸支架(11)挡住分支动脉的入口,影响血运;可避免分支血管夹层;可自动回翻至覆膜支架(12)内,增强血管支架(10)近端处的密封效果,减少内漏和支架移位;无需借助外力,相对于被动翻转还可以减少血管支架(10)的移位和短缩风险。

Description

血管支架及输送系统 技术领域
本发明涉及介入医疗器械技术领域,特别是涉及一种血管支架及输送系统。
背景技术
主动脉瘤是一种常见的主动脉疾病,现有的治疗主动脉瘤的主要方式包括传统开放手术和腔内修复术,腔内修复术因其创伤小、手术及住院时间短、术后恢复快、并发症发生率低等优点,得到广泛的使用,其手术原理是将覆膜的血管支架压缩后预装在输送器的鞘管内,将输送器鞘管输送到血管内病变位置,将血管支架从输送器鞘管中释放出来,血管支架通过自身的径向支撑力展开贴合血管,通过覆膜隔绝健康血管和瘤体,起到治愈动脉瘤的作用。
在腔内修复术过程中,血管支架50为了确保稳定释放,会有后释放结构,如图1所示,后释放结构指的是输送器前端有钩挂结构71,血管支架50近端有裸露出来的波圈(裸支架波圈51),可以将裸支架波圈51挂在钩挂结构71上从而进行后释放。当利用输送器将血管支架50输送至待释放位置,后撤鞘管,血管支架50展开贴合血管,由于血管支架50的前端通过裸支架波圈51固定于钩挂结构71上,血管支架50在覆膜支架展开的过程中不会移位;然后打开输送器的钩挂结构71,裸支架波圈51从钩挂结构71上脱离并完全展开,撤出输送器系统,其释放效果如图2所示,对于主动脉的一些特殊位置,主动脉有分支血管53,比如升主动脉处的冠状动脉,主动脉弓部的上肢动脉,腹主动脉的内脏、肾动脉,当瘤体54扩张位置靠近分支血管53时,瘤颈(血管支架50近端锚定的长度)较短时,血管支架50的近端需要尽可能靠近分支血管53,争取更多的锚定长度,这时,裸支架波圈51可能会挡住分支血管53的入口,影响血运,更严重的情况下,裸支架波圈51可能会顶到分支血管53的内部,导致分支血管53夹层。
发明内容
本发明要解决的技术问题在于,针对现有技术中用于主动脉瘤的血管支架释放后裸支架波圈导致的挡住分支动脉入口,从而影响血运,甚至是,裸支架波圈顶到分支血管内部,从而导致分支血管夹层的问题,提供一种血管支架及输送系统。
本发明解决其技术问题所采用的技术方案是:
本发明一实施例提供一种血管支架,所述血管支架在输送过程中,所述血管支架包括覆膜支架以及与所述覆膜支架近端相连的裸支架,所述裸支架包括第一波圈,所述第一波圈与所述覆膜支架相连,所述第一波圈包括翻转部及与所述覆膜支架固定连接的固定部,所述翻转部与所述固定部翻转连接以使所述裸支架从所述输送器释放后,所述翻转部自动翻转至所述覆膜支架内以使所述裸支架不露于所述覆膜支架外。
在本发明一实施例中,所述血管支架被输送时,所述裸支架处于压缩状态,所述裸支架自所述压缩状态翻转至所述覆膜支架内的过程依次包括压缩状态、后释放状态和自然状态。
在本发明一实施例中,所述第一波圈为波形环状物,所述固定部包括至少一个固定波,所述翻转部包括至少一个翻转波,且所述翻转波的翻转支点位于所述覆膜近端处。
在本发明一实施例中,所述覆膜支架包括主支架以及覆盖在所述主支架上的覆膜,所述主支架包括多个沿轴向排列间隔设置的波圈,且与所述固定波在同一覆膜区域内的波圈为第二波圈,所述翻转波与所述固定波处于所述翻转连接的展开状态时,所述翻转波与所述第二波圈沿轴向间隔设置。
在本发明一实施例中,所述翻转波的波谷距所述第二波圈的波峰的轴向距离D1满足:0mm<D1≤3mm。
在本发明一实施例中,所述翻转波的波谷与所述第二波圈的波峰不在沿轴向上的同一直线上。
在本发明一实施例中,所述翻转波的波谷与所述第二波圈的波谷在沿轴向上的同一直线上。
在本发明一实施例中,所述第一波圈的各个单波等高,且所述第一波圈与所述第二波圈的波高等高。
在本发明一实施例中,所述第一波圈与所述第二波圈的波周期相同。
在本发明一实施例中,所述第一波圈包括至少一个弯折波,所述弯折波包括弯折部和两个连接部。
在本发明一实施例中,所述固定部包括至少两个连接部,所述翻转部包括至少一个弯折部,所述连接部的一端固定于所述覆膜支架,所述连接部的另一端与所述弯折部连接,且所述弯折波的翻转支点位于所述覆膜。
在本发明一实施例中,所述血管支架在所述输送器时,所述弯折波翻转90°。
在本发明一实施例中,所述覆膜支架在自然状态下呈中空的管体,所述翻转部的波高小于或等于所述覆膜支架的管体半径。
在本发明一实施例中,所述翻转部沿覆膜支架的轴心方向圆周对称设置。
上述血管支架可以防止裸支架释放完全后对血管分支的干扰,即可以避免裸支架会挡住分支动脉的入口,从而避免影响血运;又可以避免裸支架波圈顶到分支血管内部,从而避免导致分支血管夹层。还可以后释放后自动回翻至覆膜支架内,增强血管支架近端处的密封效果,减少内漏和支架移位。翻转部自动翻转至覆膜支架内,在后释放状态下无需借助外力,相对于被动翻转还可以减少由于需借助外力可能导致的血管支架的移位或短缩风险。
本发明还提供了一种输送系统,包括输送器和如上述的血管支架,所述输送器包括鞘管和鞘芯组件,所述鞘管和所述鞘芯组件之间形成用于收容所述血管支架的收容腔。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是现有技术中血管支架后释放状态下的结构示意图;
图2是现有技术中血管支架完全释放状态下的结构示意图;
图3是自然状态下正八边形环形结构的结构示意图;
图4是图3翻转后正八边形环形结构的结构示意图;
图5自然状态下波形环状物的结构示意图;
图6为本发明一实施例中血管支架自然状态的结构示意图;
图7为本发明一实施例中裸支架与覆膜支架翻转连接的结构示意图;
图8为本发明一实施例中裸支架回翻至90°时的结构示意图;
图9为本发明一实施例中裸支架处于压缩状态的结构示意图;
图10为本发明一实施例中裸支架处于第一释放状态的结构示意图;
图11为本发明一实施例中裸支架处于后释放状态的结构示意图;
图12为本发明一实施例中裸支架完全释放处于自然状态的结构示意图;
图13为本发明一实施例中血管支架自然状态的结构示意图;
图14为本发明另一实施例中血管支架自然状态的结构示意图;
图15为本发明另一实施例中裸支架与覆膜支架翻转连接的结构示意图;
图16为本发明另一实施例中裸支架处于后释放状态的结构示意图;
图17为本发明另一实施例中裸支架完全释放处于自然状态的结构示意图;
图18为本发明又一实施例中翻转波与固定波翻转连接的结构示意图;
图19为本发明又一实施例中翻转波处于后释放状态的结构示意图;
图20为本发明再一实施例中弯折波处于自然状态的结构示意图;
图21为本发明再一实施例中弯折波处于后释放状态的结构示意图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。 本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。为方便描述,以血管为例来阐述管腔,该血管可以是主动脉弓,或胸主动脉,或腹主动脉等。本领域的普通技术人员应当知晓,采用血管来阐述仅用作举例,并不是对本发明的限制,本发明的方案适用于各种人体管腔,例如消化道管腔等,基于本发明教导的各种该进和变形均在本发明的保护范围之内。另外,在阐述血管中,可按照血流方向定义方位,本发明中定义血流从近端流向远端。
本申请中“覆膜支架”是指裸支架表面覆盖有薄膜后的结构,裸支架是指包括至少一个未覆膜的波形的结构,裸支架一般用于后释放时钩挂于输送器的钩挂结构。
为便于理解本发明的技术方案,在此对“翻转连接”“被动翻转”和“自动翻转”进行如下说明:
翻转连接:是指将环状或筒状结构(环状或筒状结构由弹性材料制成)在其自然状态下的内侧面外翻后与其他结构(例如管状物)连接,或者与其他结构(例如管状物)连接后,非连接端以连接端为支点进行翻转。或是波形环状物以部分单波固定,另一部分单波(翻转波)相对固定波翻转的状态,此时,波形环状物内部具有翻转波朝向固定波回复呈波形环状物自然状态的扭转力。或者是非环状结构的弹性材料以自身某一点为界进行预弯,包括固定部和翻转部,在外力作用下翻转部可相对固定部展开,撤去外力后翻转部有以该点为支点回复至预弯的自然状态的趋势,其中在外力作用下的展开状态为该结构的翻转部和固定部的翻转连接。
以波形环状物为例,若该结构整体完全翻转180°可达到内侧面与外侧面互换(初始的内侧面翻转180°变成了外侧面,初始的外侧面变成了内侧面)的次稳定状态;若在外力作用下,非固定的弹性体的翻转角度范围在(0°,180°), 则由于弹性体的自身弹性和翻转引起的扭矩作用,在撤去外力干涉的情况下,波形环状物有自翻转状态向稳定状态或次稳定状态运动的趋势;若波形环状物的一部分波固定在自然状态,在外力作用下,使另一部分波翻转(0°,180°],在撤去外力干涉时,波形环状物翻转的那部分波有自翻转状态回复至自然状态的趋势。
被动翻转:是指环状或筒状结构处于翻转至(90°,180°)范围内的非稳定状态,此时撤去外力时,环状或筒状结构自该非稳定状态有向次稳定状态的趋势,需借助外力将部分翻转的结构带至(0°,90°)范围内的非稳定状态后撤去外力,则,环状或筒状结构有向自然状态回翻的趋势。
主动翻转:是指环状、波形或筒状结构处于翻转至(0°,180°)范围内的非稳定状态,此时直接撤去外力时,环状或筒状结构自该非稳定状态有向自然状态回翻的趋势。例如,波形环状物的一部分波固定在自然状态,另一部分波在外力作用下翻转(0°,180°]时,撤去外力翻转的那部分波可回复至自然状态;或有其他可导致波形环状物自翻转状态回翻至自然状态的回弹力时。
关于环状或筒状结构能够实现自动向自然状态回翻的原理简单阐述如下:
请参阅图3,以正八边形的环状结构60(弹性材料制成)为例做原理说明,由弹性材料制成的环状结构60包括内侧面61和外侧面62,环状结构60在自然状态下具有内角θ1,以环状结构60的一端(轴向的端部)为支点,对环状结构60的另一端施加扭矩,使环状结构60绕图3所示的箭头方向W向外翻转,外翻的角度范围为(0°,180°]。
当环状结构60在扭矩的作用下整体完全翻转180°时,可达到内侧面61与外侧面62互换(自然状态下的内侧面61翻转180°变成了外侧面62,自然状态下的内角θ1外翻变成了θ2,自然状态下的外侧面62变成了内侧面61)的次稳定状态,如图4所示。由于环状结构60发生翻转的实质是弹性体发生了弹性变形,则,处于次稳定状态的环状结构60的弹性体在极小的扭矩力下,便极易从次稳定状态回翻至自然状态;相反地,需要施加较大的扭矩,环状结构60的弹性体才会从自然状态发生弹性形变至不稳定状态。
而对于血管支架中常用的波形环状物80而言,如图5所示的波形环状物80 包括波峰81和波谷82。由于其由弹性材料制成,若自然状态下的波形环状物80,在施加的扭矩的作用下,波形环状物80以图5的波峰81为支点,图5所示的波谷82绕波峰81向内或向外翻转而发生弹性变形。非固定的波形环状物80从自然状态翻转(0°,180°)达到一种不稳定的翻转状态时,则由于波形环状物80的自身弹性和翻转引起的抵抗力矩的作用下有回翻趋势,撤去施加的扭矩,波形环状物80有自翻转状态向稳定状态或次稳定状态运动的趋势。
具体地,若波形环状物80在外力(扭矩)作用下,处于翻转至(0°,90°)范围内的非稳定状态,此时撤去外力时,波形环状物80自该非稳定状态有向自然状态回翻的趋势;若波形环状物80在外力(扭矩)作用下,处于翻转至(90°,180°)范围内的非稳定状态,此时撤去外力时,波形环状物80自该非稳定状态有向次稳定状态的趋势,若此时可施加较小的外力可将部分翻转的结构带至(0°,90°)范围内的非稳定状态后撤去外力,则,波形环状物80有向自然状态回翻的趋势。
若波形环状物80的一部分波在自然状态下固定,在外力(扭矩)作用下,使另一部分波翻转(0°,180°],由于一部分波被固定,且波形环状物80翻转的另一部分波由于自身的弹性变形的影响以及波圈本身产生的抵抗扭矩的作用,则,在撤去外力干涉时,翻转的那部分波有自翻转状态回复至自然状态的趋势。
实施例1
如图6-11所示,本实施例所提供的输送系统100包括血管支架10和输送器70,血管支架10通过输送器70输送至待植入部位(例如靠近上肢动脉的主动脉弓部),如图9-11所示。
在输送过程中,如图6-7结合图9-11所示,血管支架10包括覆膜支架12以及与覆膜支架12的近端相连的裸支架11,覆膜支架12包括主支架121以及覆盖于主支架121的覆膜122。主支架121用于支撑覆膜122以使覆膜支架12整体形成中空的管体结构,主支架121包括多个沿轴向排列间隔设置的环形Z字波圈,各波圈由金属弹性材料(例如,镍钛合金)制成,以便于在将血管支架10(以图7所示的状态沿径向压缩)压缩装载至输送器70的鞘管73内时, 可以发生径向变形,使输送器70实现对血管支架10的装载。同时,输送器70将其输送至待植入部位初步释放后,覆膜支架12可以在血管中展开,再利用输送器70的钩挂结构71进行裸支架11的后释放。本实施例所提供的血管支架10由于其裸支架11与覆膜支架12之间在输送时为翻转连接,则输送器70在对裸支架11进行后释放后,裸支架11将回翻至覆膜支架12内,如图6结合图9-12所示。覆膜122材料为PTFE膜或PET膜,用于隔绝血流。
裸支架11包括一端与覆膜支架12连接但不固定的第一波圈111,在本实施例中,裸支架与覆膜支架通过覆膜和高分子线活动连接,使裸支架11可以相对覆膜支架以连接点为翻转点而翻转,且第一波圈111为如图5所示的波形环状物。在其他实施例中,第一波圈也可包括可翻转的单波或是具有翻转部的单波,只要能实现第一波圈与覆膜支架翻转连接(或第一波圈的翻转部与固定部翻转连接)使得裸支架从输送器70释放后可以翻转回覆膜支架内即可。主支架121包括多个沿轴向排列间隔设置的环形Z字波圈,且靠近第一波圈111的主支架121波圈为第二波圈1211,血管支架10处于自然状态下如图6所示(本实施例中,自然状态下的裸支架11与覆膜122相贴合,此时的裸支架11与自然状态下的裸支架的夹角为0°),第一波圈111与第二波圈1211均设置在位于血管支架10近端处的区域。不同的是,第一波圈111的一端(如图7所示的翻转状态的近端处)与覆膜122连接,第一波圈111的其他部位在自然状态时贴附于覆膜122但不与覆膜122连接,便于使血管支架10以第一波圈111翻转出覆膜支架12的形态(即裸支架11与覆膜支架12处于翻转连接的展开状态时,如图7所示,此时的裸支架11与自然状态下的裸支架夹角为大致180度,大致180度是指可以有正负5度的偏差)压缩并装载至鞘管73内进行输送,其中,第一波圈111的翻转支点为第一波圈与覆膜连接的连接处;而第二波圈1211属于主支架121的部分,则其被两层覆膜贴合在覆膜122内,用于支撑覆膜122。
如图7所示,裸支架11与覆膜支架12处于翻转连接但是未被压缩的展开状态时,第一波圈111与第二波圈1211沿轴向间隔设置,第一波圈111的波谷距第二波圈1211的波峰的轴向距离D满足:0mm<D≤3mm,在其他实施例中,D满足:1mm≤D≤3mm,使得第一波圈111与第二波圈1211之间留有间隙,因间 隙处靠柔软的覆膜122连接,而第一波圈111与覆膜支架12翻转连接被压缩至输送器70的鞘管73内,结合图9所示,在输送器70的后释放结构在后释放状态对第一波圈111进行释放时,柔软的覆膜122有利于第一波圈111朝向覆膜支架12管腔内自由翻转,如图6结合图9-11所示,防止第一波圈111与第二波圈1211轴向上互相干涉时,导致难以翻转的情况。
在本实施方式中,覆膜支架12在自然状态下呈中空的管体,如图7-8所示,定义覆膜支架12的管体半径为R,定义第一波圈111的波高为H,则H满足:H≤R。可以防止第一波圈111翻转回覆膜支架12内(自然状态)的过程中,波高互相干涉导致的回翻失败。支架回翻至覆膜支架12内后会紧贴覆膜支架12的近端覆膜段,可以使近端覆膜段更贴合血管,减少I型内漏,为了使得减少I型内漏的效果达到最佳,第一波圈111与第二波圈1211的波高等高且波周期相同,第一波圈111的波谷与第二波圈1211的波谷在沿轴向上的同一直线上,有利于在第一波圈111翻转后,第一波圈111的波杆与第二波圈1211的波杆互相交叉,第一波圈111可以对第二波圈1211空隙处的覆膜122(第二波圈1211未支撑到的覆膜处)起到支撑作用,从而使血管支架10近端的覆膜122更贴合血管,双层的交叉波圈结构,使血管支架10近端处的覆膜122与血管贴合后有更好的密封效果,减少内漏和支架移位,如图6和图12所示。同时,由于在对血管支架10压缩装载进入鞘管73的过程中,第一波圈111处于非自然状态的翻转连接状态(如图7和图9所示),第二波圈1211所在的区域内并不会增加其压缩面积,因此,本实施方式提供的血管支架10在完全释放后,第一波圈111(裸支架11的环形波圈)会回翻至覆膜支架12内(血管支架10处于自然状态,如图6所示),防止裸支架11释放完全后对血管分支的干扰,即可以避免裸支架11会挡住分支动脉的入口,从而避免影响血运;又可以避免裸支架11波圈顶到分支血管53内部,从而避免导致分支血管53夹层。在不增加血管支架10的装配体积的同时,还可以增强血管支架10近端处的密封效果,减少内漏和支架移位。
在其他的实施例中,当第一波圈111与第二波圈1211各个单波等高,第一波圈111与第二波圈1211的波高等高且波周期相同时,第一波圈111的波谷与 第二波圈1211的波峰不在沿轴向上的同一直线上,如图6所示,第一波圈111翻转后,第一波圈111的波杆与第二波圈1211的波杆即可实现交叉。
将裸支架11与覆膜支架12翻转连接的过程包括:将自然状态下(如图6所示)的血管支架10的裸支架11翻转至如图7所示的状态后,沿径向压缩然后装载至输送器70的鞘管73中,如图9所示,此时的裸支架11与自然状态下的裸支架11夹角为大致180°。利用输送器70输送血管支架10时,裸支架11和覆膜支架12均处于压缩状态,本实施例所提供的血管支架10的完整的释放过程依次包括:压缩状态、第一释放状态、后释放状态和自然状态。
压缩状态下,如图9所示(结合图7),将压缩状态下的血管支架10装载至输送器70的鞘管73中,由于裸支架11与覆膜支架12翻转连接,且第一波圈111的波峰(如图7所示的波峰)钩挂于输送器70的钩挂结构71上,钩挂结构71将裸支架11的第一波圈111维持在相对覆膜支架12的翻转状态,由于鞘管73的空间束缚,压缩状态下的血管支架10(如图9所示)相对于自然状态下的血管支架10(如图6所示),裸支架11将维持在与覆膜支架12翻转连接的状态,覆膜支架12沿径向压缩,血管支架10以此状态输送至待植入部位后,将后撤鞘管73进行覆膜支架12的释放。
如图9-12结合图6-7所示,从压缩状态到第一释放状态的过程还包括后撤鞘管73释放覆膜支架12,后撤鞘管73释放覆膜支架12的过程包括:以与送入方向相反的方向(即沿血流的方向)后撤鞘管73,血管支架10由其近端向远端逐渐释放,直至覆膜支架12完全释放,仅剩裸支架11钩挂于输送器70的钩挂结构71上,如图10所示。在后撤鞘管73释放覆膜支架12的过程中,由于鞘管73与覆膜支架12之间存在向后(后撤鞘管73的方向)的摩擦力,裸支架11的第一波圈111一直维持在翻转状态,直到鞘管73实现对覆膜支架12的完全释放,此时,裸支架11依然钩挂于钩挂结构71,而覆膜支架12膨胀展开,贴合血管壁,起到一定的固定作用。
第一释放状态:在覆膜支架12从输送器的鞘管中完全释放后,膨胀展开,贴合于血管壁(如图10所示),裸支架的第一波圈111依然钩挂于钩挂结构71时的状态。覆膜支架12膨胀贴壁有一定的固定作用,此时,可以向后移动鞘芯 组件72,从而带动鞘芯组件72上的钩挂结构71向血管支架10的远端移动,裸支架的第一波圈111在钩挂结构71的带动下,可向覆膜支架12的内部翻转。
后释放状态:钩挂组件使第一波圈111脱离的状态,即为后释放状态。本实施例中,第一波圈111在钩挂结构71的带动下,翻转至与自然状态下的第一波圈111(本实施例中,自然状态下的裸支架11与覆膜122相贴合)的角度小于90°,若此时第一波圈111未受外力,则其具有向自然状态回翻的趋势(如图11所示)。打开锚定件712,可使得第一波圈111脱离钩挂结构71,由于其具有回翻至自然状态的趋势,第一波圈111会回翻至自然状态。
自然状态:在第一波圈111脱离钩挂结构71后回翻至覆膜支架12内后,裸支架11处于自然状态,覆膜支架12和裸支架11均贴合血管壁,如图12所示。
即,本实施例中的裸支架11的翻转为:自第一释放状态被动翻转(钩挂结构71带动)至后释放状态后脱离钩挂结构71并自动回翻至自然状态的被动翻转。
在其他的实施例中,由于第一波圈111与覆膜支架12近端的覆膜122段只有少量连接,以使第一波圈111大部分裸露于覆膜122之外,为了增强第一波圈111与覆膜支架12的连接强度,可设置高分子线13于覆膜122中,且高分子线13两端分别连接第一波圈111和第二波圈1211。在一个实施例中,两层覆膜相贴合,覆盖主支架121,高分子线13压设于两层覆膜122之中,且一端连接第一波圈111的波谷(指第一波圈111与覆膜支架12翻转连接时,如图13所示),另一端就近连接第二波圈1211的波峰,如图13所示,高分子线13的个数可与波周期数相同。
本实施例提供的输送系统100,如图9-12所示,包括输送器70和如上述的血管支架10,输送器70包括鞘管73、鞘芯组件72、钩挂结构71,其中钩挂功能由导引头711和锚定件712配合形成,鞘管73和鞘芯组件72之间形成用于收容血管支架10的收容腔。鞘芯组件72包括内鞘芯(图中未示出)和外鞘芯721,内鞘芯与导引头711连接,外鞘芯721与锚定件712连接,且外鞘芯721可在手柄的控制下相对内鞘芯沿轴向运动,从而带动锚定件712封闭或远离导 引头711的底部,从而实现裸支架11的第一波圈111钩挂或脱离于钩挂结构71。相对于现有技术中的输送系统,可以防止裸支架11释放完全后对血管分支的干扰,即可以避免裸支架11会挡住分支动脉的入口,从而避免影响血运;又可以避免裸支架11波圈顶到分支血管53内部,从而避免导致分支血管夹层。在不增加血管支架10的装配体积的同时,还可以增强血管支架10近端处的密封效果,减少内漏和支架移位。
实施例2
实施例2提出一种血管支架20及输送系统,如图14-17所示。实施例2的血管支架20及输送系统与实施例1相同或可以挪用的特征部分在此不再赘述,主要的不同之处在于,实施例2的血管支架20还包括可翻转对折的折叠杆结构23,第一波圈211与第二波圈2211通过该折叠杆结构23连接。其中,折叠杆结构23和裸支架21的自然状态如图14所示,此时折叠杆结构23处于折叠的自然状态,第一波圈211与第二波圈2211均设置在位于血管支架20近端处的区域,第一波圈211一端与覆膜222连接,第一波圈211的其他部位与覆膜222贴合但不固定,便于使血管支架20以第一波圈211翻转出覆膜支架22,并以翻转出的形态(即裸支架21与覆膜支架22处于翻转连接但是未被压缩的展开状态时,如图15所示,此时的裸支架21与自然状态下的裸支架21夹角为大致180°)压缩并装载至鞘管内,其中,第一波圈211的翻转支点为第一波圈211与覆膜连接的连接处。
折叠杆结构23的一端与第一波圈211的波杆固定连接,另一端与第二波圈2211的距离最近的波杆固定连接,折叠杆结构23还包括折叠点F,如图15所示,折叠杆结构23的一端固定在第一波圈211的波杆的中点(相邻的波谷与波峰之间的波杆的中点)或中点与波峰之间的任意位置,以便于折叠杆结构23自翻折状态以折叠点F为支点自动折叠回翻至自然状态时,对第一波圈211的力矩较大(第一波圈211翻转回自然状态时的支点为如图15所示的第一波圈211的波谷)。
折叠杆结构23还包括折叠部231、固定部232和可弹性翻折的连接处,折 叠部231的一端通过缸套231固定在第一波圈211的波杆上,另一端与固定部232通过可弹性翻折的连接处连接,连接处即为折叠点F,且折叠点F在覆膜支架22内;固定部232的一端通过缸套固定在第二波圈2211的波杆上,且固定部232固定在覆膜222内,另一端与折叠部231固定。在自然状态下的折叠杆结构23,如图14所示,折叠部231与固定部232以折叠点F为支点对折且一体成型;翻转状态下,如图15所示,折叠部231以折叠点F为支点朝覆膜支架22外翻折,并具有回翻至自然状态下的趋势。
在本实施例中,折叠杆结构23由金属弹性材料(例如,镍钛合金)制成。折叠杆结构23与第一波圈211和第二波圈2211的固定方式为通过缸套231压紧固定或者通过焊接绑线固定。
可翻转对折的折叠杆结构23可设置一个或多个,能实现折叠杆结构23自翻转状态对折回复至自然状态时,可提供带动第一波圈211自翻转状态回翻至自然状态的回翻力即可。可翻转对折的折叠杆结构23呈类S型,两端圆滑过渡以便于与波圈上的波杆过渡连接。在其他的实施方式中,折叠杆结构23设置偶数个,且两两之间相对覆膜支架22的轴心方向圆周对称,使第一波圈211回翻至自然状态的过程中,受力均衡。
本实施例所提供的血管支架20以图15所示的翻转状态压缩装载至输送器的鞘管内,此时的裸支架21与自然状态下的裸支架的夹角为大致180°。利用输送器70输送血管支架20时,裸支架21和覆膜支架22均处于压缩状态,本实施例所提供的血管支架20的完整的释放过程依次包括:压缩状态、后释放状态和自然状态。其中,从压缩状态到后释放状态的过程还包括后撤鞘管释放覆膜支架(压缩状态可参考图10)。
本实施例中的压缩状态可参考实施例1,此处不再赘述,裸支架21的释放过程与实施例1的主要区别在于:不包括借助输送器的钩挂结构71的外力将裸支架21的第一波圈211自第一释放状态带动至后释放状态的过程,即本实施例中第一波圈211处于实施例1中的第一释放状态时即可控制钩挂结构71使第一波圈211脱离锚定件712以实现后释放,即,后释放状态与第一释放状态重合。本实施例中的裸支架21的翻转为:自第一释放状态直接后释放后自动回翻至自 然状态的主动翻转。
如图16所示,血管支架20处于后释放状态,在此之前,血管支架20自压缩状态,通过后撤鞘管73实现覆膜支架22的释放,使覆膜支架22贴合血管。
后释放状态之后,控制鞘芯组件72的内外鞘芯,使第一波圈211脱离锚定件712,则,由于第一波圈211和折叠杆结构23均处于翻转状态,折叠杆结构23又属于单杆结构,则,折叠杆结构23具有较大的自翻转状态对折回复至自然状的趋势,可带动第一波圈211一起回翻至自然状态(即收入覆膜支架22内,并贴附于覆膜支架22),如图17所示。本实施例所提供的血管支架20可以防止裸支架21释放完全后对血管分支的干扰,即可以避免裸支架21会挡住分支动脉的入口,从而避免影响血运;又可以避免裸支架21波圈顶到分支血管53内部,从而避免导致分支血管53夹层。在不增加血管支架10的装配体积的同时,还可以后释放后自动回翻至覆膜支架22内,增强血管支架20近端处的密封效果,减少内漏和支架移位。裸支架自动翻转至覆膜支架内,在后释放状态无需借助外力,相对于被动翻转还可以减少由于需借助输送器的钩挂结构提供外力可能导致的血管支架的移位或短缩风险。
实施例3
实施例3提出一种血管支架30及输送系统,如图18-19所示。实施例3的血管支架30及输送系统与实施例1相同或可以挪用的特征部分在此不再赘述,主要的不同之处在于,实施例3的血管支架30的裸支架31包括自然状态下位于覆膜支架内的第一波圈311,定义自第二波圈的波谷沿轴向至覆膜支架32近端的端部的覆膜区域为第一区域M。第一波圈311自然状态下包括作为固定部的固定波3111和可翻转的非固定波,固定部包括至少一个固定波,固定波3111固定于第一区域内;非固定波可相对于固定波3111翻转形成翻转波3112,翻转状态下,可翻转的非固定波翻转出覆膜支架32形成翻转波3112,翻转波作为翻转部,且翻转部至少包括一个翻转波;定义第二波圈3211的波峰沿轴向至覆膜支架32近端端部的覆膜区域为第二区域N,且可翻转的非固定波翻转的支点位于第二区域内,如图18所示。
在本实施例中,可翻转的非固定波为四个(定义一个周期的波为一个波), 包括相邻的两个波以及与此相邻的两个波沿覆膜支架32轴心方向圆周对称的另两个波。由于,有四个波翻转大致180°后(如图18所示)压缩至鞘管内,在血管支架30释放至后释放状态时,该四个翻转波处于如图19所示的翻转状态,如果撤去钩挂结构71的钩挂作用,在固定波3111固定于覆膜322的基础上,翻转波3112由于与相邻的固定波3111之间翻转变形导致第一波圈311中处于翻转状态的翻转波3112有回翻到自然状态的强烈趋势。因此,当图19的后释放状态通过控制钩挂结构71使得翻转波3112脱离锚定件712,翻转波回翻至覆膜支架32内,并贴附于覆膜322。
翻转波3112与固定波3111处于翻转连接的展开状态时,如图18所示,翻转波3112与第二波圈3211沿轴向间隔设置,翻转波3112的波谷位于第二区域内,且翻转波的波谷距第二波圈的波峰的轴向距离D1(参考实施例1)满足:0mm<D1≤3mm。翻转波的波高小于或等于覆膜支架的管体半径,以便于翻转波能顺利回翻至覆膜支架内。
本实现方式中,作为翻转部的翻转波3112翻转状态(如图18所示)时的波谷与第二波圈3211的波峰不在沿轴向上的同一直线上,而翻转波3112的波谷与第二波圈3211的波谷在沿轴向上的同一直线上,且翻转波3112的波高与固定波3111的波高和第二波圈3211的波高均相等,以便于翻转波3112回翻至覆膜支架32内可以实现翻转波的波杆与第二波圈的波杆交叉支撑覆膜。
本实施例所提供的血管支架30可以防止裸支架31释放完全后对血管分支的干扰,即可以避免裸支架31会挡住分支动脉的入口,从而避免影响血运;又可以避免裸支架31波圈顶到分支血管53内部,从而避免导致分支血管53夹层。还可以后释放后自动回翻至覆膜支架32内,增强血管支架30近端处的密封效果,减少内漏和支架移位。翻转波自动翻转至覆膜支架内,在后释放状态下无需借助外力,相对于被动翻转还可以减少由于需借助输送器的钩挂结构提供外力可能导致的血管支架的移位或短缩风险。
裸支架31的第一波圈311的翻转波在待植入部位释放后回到覆膜支架32内的状态类似于如图12所示的状态,区别在于,本实施例的第一波圈311有部分数量的波固定于覆膜支架32以与覆膜支架32连接,而不是实施例1中的仅 其翻转状态时的波谷与覆膜支架32连接。
实施例4
实施例4提出一种血管支架40及输送系统,如图20-21所示。实施例4的血管支架40及输送系统与实施例1相同或可以挪用的特征部分在此不再赘述,主要的不同之处在于,实施例4的血管支架40的裸支架41的第一波圈411包括至少一个单独的弯折波,而不是首尾相连的完整的波形环状物,弯折波在自然状态下处于覆膜支架42内。
如图20所示,弯折波包括连接部4112和弯折部4111,连接部4112贴附于覆膜支架42,且连接部4112的一端通过缸套4113或者焊接绑线固定于第二波圈4211的波杆上,连接部4112的另一端与弯折部4111连接。一个单独的弯折波包括两个连接部4112和一个弯折部4111,弯折部4111包括该弯折波的波峰,且弯折部4111可与连接部4112一体成型。自然状态下的弯折部4111所在的平面与两个连接部4112所在的平面垂直,如图20所示的α=90°。
在本实施例中,弯折波在弯折部4111翻转90°后平行于两个连接部4112所在的平面,以此翻转状态压缩,从而装载进输送器70的鞘管内。其中,弯折部4111翻转的支点为弯折部4111与连接部4112的连接处,且该连接处位于覆膜支架42内的区域,以使血管支架40在待植入部位释放后,弯折波的弯折部4111回翻至自然状态后,弯折部4111不露于覆膜支架42之外;而弯折波的弯折部4111相对连接部4112翻转90°时,大部分弯折部4111露出于覆膜支架42,以便于实现弯折波翻转90°后可钩挂于输送器70的钩挂结构71,且便于后续的后释放,如图21所示。
在本实施例中,由于两个连接部作为固定部,弯折部作为翻转部,进入后释放状态时,如图21所示,弯折波的弯折部处于翻转状态而具有朝向自然状态的回弹力,此时控制钩挂结构71使弯折波脱离钩挂结构71的锚定件712,可实现弯折波的弯折部4111以弯折部4111和连接部4112的连接处为支点进行回翻至自然状态。本实施例所提供的血管支架40可以防止裸支架41释放完全后对血管分支的干扰,即可以避免裸支架41会挡住分支动脉的入口,从而避免影响血运;又可以避免裸支架41波圈顶到分支血管53内部,从而避免导致分支血 管夹层。弯折部自动翻转至覆膜支架内,在后释放状态下无需借助外力,相对于被动翻转还可以减少由于需借助输送器的钩挂结构提供外力可能导致的血管支架的移位或短缩风险。
本实施例所提供的血管支架40在自然状态下,弯折波的弯折部4111与连接部4112的角度α范围为:[0°,90°],则其对应的翻转状态下的回复力相对较大(对应弯折部4111与连接部4112处于翻转状态时,相对自然状态所需要翻转的角度大);当然,在其他的实施方式中,弯折部4111与连接部4112的角度范围α也可以为(90°,180°),只需要保证其自然状态下不露出于覆膜支架42且翻转时易于钩挂结构71的钩挂和后释放即可。在压缩状态的翻转情况下,弯折部4111相对连接部4112的翻转角度为180-α,后释放状态下的翻转角度小于180-α,即,自然状态下,α角度越大,翻转状态时或后释放状态时,翻转变形的角度越小,回复力越小;自然状态下,α角度越小,翻转状态时或后释放状态时,翻转变形的角度越大,回复力越大。
本实施例提供的血管支架40包括两个沿覆膜支架的轴心方向圆周对称设置的弯折波,且使α=90°,即可保证回复力的平衡和大小,又能保证回翻至自然状态下的弯折波个数少,虽然弯折波未贴于覆膜支架42,但是也不会对血流产生较大的影响,且减小翻转角度可以防止弯折部4111与连接部4112的连接处变形过大导致的不可靠性(例如,可能导致单波杆的塑性变形或者断裂)。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种血管支架,所述血管支架在输送过程中,所述血管支架包括覆膜支架以及与所述覆膜支架近端相连的裸支架,其特征在于,所述裸支架包括第一波圈,所述第一波圈与所述覆膜支架相连,所述第一波圈包括翻转部及与所述覆膜支架固定连接的固定部,所述翻转部与所述固定部翻转连接以使所述裸支架从所述输送器释放后,所述翻转部自动翻转至所述覆膜支架内以使所述裸支架不露于所述覆膜支架外。
  2. 如权利要求1所述的血管支架,其特征在于,所述血管支架被输送时,所述裸支架处于压缩状态,所述裸支架自所述压缩状态翻转至所述覆膜支架内的过程依次包括压缩状态、后释放状态和自然状态。
  3. 如权利要求1所述的血管支架,其特征在于,所述第一波圈为波形环状物,所述固定部包括至少一个固定波,所述翻转部包括至少一个翻转波,且所述翻转波的翻转支点位于所述覆膜近端处。
  4. 如权利要求3所述的血管支架,其特征在于,所述覆膜支架包括主支架以及覆盖在所述主支架上的覆膜,所述主支架包括多个沿轴向排列间隔设置的波圈,且与所述固定波在同一覆膜区域内的波圈为第二波圈,所述翻转波与所述固定波处于所述翻转连接的展开状态时,所述翻转波与所述第二波圈沿轴向间隔设置。
  5. 如权利要求4所述的血管支架,其特征在于,所述翻转波的波谷距所述第二波圈的波峰的轴向距离D1满足:0mm<D1≤3mm。
  6. 如权利要求4所述的血管支架,其特征在于,所述翻转波的波谷与所述第二波圈的波峰不在沿轴向上的同一直线上。
  7. 如权利要求4所述的血管支架,其特征在于,所述翻转波的波谷与所述第二波圈的波谷在沿轴向上的同一直线上。
  8. 如权利要求6或7所述的血管支架,其特征在于,所述第一波圈的各个单波等高,且所述第一波圈与所述第二波圈的波高等高。
  9. 如权利要求8所述的血管支架,其特征在于,所述第一波圈与所述第二波圈的波周期相同。
  10. 如权利要求1所述的血管支架,其特征在于,所述第一波圈包括至少 一个弯折波,所述弯折波包括弯折部和两个连接部。
  11. 如权利要求10所述的血管支架,其特征在于,所述固定部包括至少两个连接部,所述翻转部包括至少一个弯折部,所述连接部的一端固定于所述覆膜支架,所述连接部的另一端与所述弯折部连接,且所述弯折波的翻转支点位于所述覆膜。
  12. 如权利要求10所述的血管支架,其特征在于,所述血管支架在所述输送器时,所述弯折波翻转90°。
  13. 如权利要求3或10所述的血管支架,其特征在于,所述覆膜支架在自然状态下呈中空的管体,所述翻转部的波高小于或等于所述覆膜支架的管体半径。
  14. 如权利要求3或10所述的血管支架,其特征在于,所述翻转部沿覆膜支架的轴心方向圆周对称设置。
  15. 一种输送系统,其特征在于,包括输送器和如权利要求1-14任意一项所述的血管支架,所述输送器包括鞘管和鞘芯组件,所述鞘管和所述鞘芯组件之间形成用于收容所述血管支架的收容腔。
PCT/CN2022/142017 2021-12-31 2022-12-26 血管支架及输送系统 WO2023125441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111675233.8 2021-12-31
CN202111675233.8A CN116407376A (zh) 2021-12-31 2021-12-31 血管支架及输送系统

Publications (1)

Publication Number Publication Date
WO2023125441A1 true WO2023125441A1 (zh) 2023-07-06

Family

ID=86997838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142017 WO2023125441A1 (zh) 2021-12-31 2022-12-26 血管支架及输送系统

Country Status (2)

Country Link
CN (1) CN116407376A (zh)
WO (1) WO2023125441A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116725614A (zh) * 2023-08-16 2023-09-12 北京华脉泰科医疗器械股份有限公司 瘤腔内支架和瘤腔内支架组
CN117100456A (zh) * 2023-10-18 2023-11-24 北京华脉泰科医疗器械股份有限公司 血管支架及其输送器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040176832A1 (en) * 2002-12-04 2004-09-09 Cook Incorporated Method and device for treating aortic dissection
CN103598929A (zh) * 2013-11-28 2014-02-26 先健科技(深圳)有限公司 胸主动脉覆膜支架
US20170209254A1 (en) * 2014-10-10 2017-07-27 Jotec Gmbh Vascular prosthesis system
CN109464212A (zh) * 2018-12-14 2019-03-15 东莞先健畅通医疗有限公司 覆膜支架
CN110420079A (zh) * 2019-06-28 2019-11-08 深圳市先健畅通医疗有限公司 管腔支架和管腔支架系统
CN115486961A (zh) * 2022-09-15 2022-12-20 深圳市慧极创新医疗科技有限公司 一种新型血管腔内植入物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040176832A1 (en) * 2002-12-04 2004-09-09 Cook Incorporated Method and device for treating aortic dissection
CN103598929A (zh) * 2013-11-28 2014-02-26 先健科技(深圳)有限公司 胸主动脉覆膜支架
US20170209254A1 (en) * 2014-10-10 2017-07-27 Jotec Gmbh Vascular prosthesis system
CN109464212A (zh) * 2018-12-14 2019-03-15 东莞先健畅通医疗有限公司 覆膜支架
CN110420079A (zh) * 2019-06-28 2019-11-08 深圳市先健畅通医疗有限公司 管腔支架和管腔支架系统
CN115486961A (zh) * 2022-09-15 2022-12-20 深圳市慧极创新医疗科技有限公司 一种新型血管腔内植入物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116725614A (zh) * 2023-08-16 2023-09-12 北京华脉泰科医疗器械股份有限公司 瘤腔内支架和瘤腔内支架组
CN116725614B (zh) * 2023-08-16 2023-11-17 北京华脉泰科医疗器械股份有限公司 瘤腔内支架组
CN117100456A (zh) * 2023-10-18 2023-11-24 北京华脉泰科医疗器械股份有限公司 血管支架及其输送器
CN117100456B (zh) * 2023-10-18 2024-02-02 北京华脉泰科医疗器械股份有限公司 血管支架及其输送器

Also Published As

Publication number Publication date
CN116407376A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2023125441A1 (zh) 血管支架及输送系统
US11766323B2 (en) Surgical implant devices and methods for their manufacture and use
JP6730481B2 (ja) モジュラー式経皮弁デバイス
CN107822739B (zh) 管腔支架及管腔支架系统
US8083792B2 (en) Percutaneous endoprosthesis using suprarenal fixation and barbed anchors
JP4772807B2 (ja) ステントデバイス
CN110420079B (zh) 管腔支架和管腔支架系统
JP2004305778A (ja) インプラント展開配置装置
AU2021251702B2 (en) High retention drainage device
EP2326292A1 (en) Self-expanding medical device
WO2019128775A1 (zh) 双层血管支架
CN109966033A (zh) 管腔支架
WO2023241403A1 (zh) 心室功能辅助装置、输送回收系统及心室功能辅助系统
WO2023125547A1 (zh) 一种覆膜支架
CN116407372A (zh) 管腔支架及管腔支架系统
CN116407378A (zh) 管腔支架及输送系统
CN110393607B (zh) 覆膜支架
JP2003334255A (ja) ステント及びステントグラフト
JP2001333987A (ja) 一時留置型ステントグラフト
WO2023124901A1 (zh) 管腔支架
WO2023125387A1 (zh) 覆膜支架
CN219680864U (zh) 单层输送的反流支架
US20230041280A1 (en) Lumen stent
JP2003019209A (ja) ステント
CN118021491A (zh) 管腔支架及管腔支架系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914695

Country of ref document: EP

Kind code of ref document: A1