WO2023241403A1 - 心室功能辅助装置、输送回收系统及心室功能辅助系统 - Google Patents

心室功能辅助装置、输送回收系统及心室功能辅助系统 Download PDF

Info

Publication number
WO2023241403A1
WO2023241403A1 PCT/CN2023/098562 CN2023098562W WO2023241403A1 WO 2023241403 A1 WO2023241403 A1 WO 2023241403A1 CN 2023098562 W CN2023098562 W CN 2023098562W WO 2023241403 A1 WO2023241403 A1 WO 2023241403A1
Authority
WO
WIPO (PCT)
Prior art keywords
ventricular function
assist device
base
delivery
drug
Prior art date
Application number
PCT/CN2023/098562
Other languages
English (en)
French (fr)
Inventor
耿康康
周奇
黄海勇
Original Assignee
上海微创医疗器械(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创医疗器械(集团)有限公司 filed Critical 上海微创医疗器械(集团)有限公司
Publication of WO2023241403A1 publication Critical patent/WO2023241403A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2478Passive devices for improving the function of the heart muscle, i.e. devices for reshaping the external surface of the heart, e.g. bags, strips or bands
    • A61F2/2487Devices within the heart chamber, e.g. splints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9505Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument
    • A61F2002/9511Instruments specially adapted for placement or removal of stents or stent-grafts having retaining means other than an outer sleeve, e.g. male-female connector between stent and instrument the retaining means being filaments or wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2002/9528Instruments specially adapted for placement or removal of stents or stent-grafts for retrieval of stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0057Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof stretchable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0066Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof shrinkable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0004Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0067Means for introducing or releasing pharmaceutical products into the body
    • A61F2250/0068Means for introducing or releasing pharmaceutical products into the body the pharmaceutical product being in a reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/04General characteristics of the apparatus implanted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/12Blood circulatory system
    • A61M2210/125Heart

Definitions

  • the invention relates to the technical field of medical devices, and in particular to a ventricular function assisting device, a delivery and recovery system and a ventricular function assisting system.
  • HFpEF heart failure with preserved ejection fraction
  • HFpEF HFpEF patients
  • Sacubitril Valsartan Sodium Tablets Noxintuo
  • other drugs cannot be proven to improve the prognosis of HFpEF patients and reduce the patient's mortality. They can only improve other drugs. Endpoints such as readmission rates, activity tolerance, and quality of life. Therefore, the treatment of HFpEF has been downgraded to treating comorbid diseases that affect disease progression.
  • the existing treatment options mainly include reducing volume load, treating comorbidities, improving activity tolerance or alleviating symptoms, establishing chronic disease management, and preventing rehospitalization.
  • a potential treatment method is to implant an auxiliary device in the patient's left ventricle to enhance diastolic function.
  • a coronal medical ventricular function auxiliary device is provided, which includes two one or more arms, each arm including a base end, a free top end, and a middle portion extending between said ends.
  • the arms of the ventricular function assist device are bent and folded under radial pressure during cardiac systole, and the kinetic energy during ventricular systole is converted into potential energy and stored in the elastic arms of the device.
  • the arms of the device are deployed radially outward, exerting outward expansion pressure on the inner wall of the ventricle, thereby helping the heart to expand.
  • the potential energy stored in the device arms is converted into kinetic energy.
  • the ventricular function assist device can be implanted through transapical surgery, or it can be delivered into the human heart through percutaneous intervention using a sheath and delivery device to improve the cardiac function of HFpEF patients and help the left ventricle relax and relax during diastole.
  • the purpose of the present invention is to provide a ventricular function auxiliary device, a delivery and recovery system and a ventricular function auxiliary system to help the heart relax, achieve targeted drug delivery, reduce the dose of implanted drugs, improve drug utilization, and improve implantation.
  • the posterior ventricular function assist device has tight fit and long-term fit stability to the inner wall of the ventricle, and reduces harm to the patient.
  • a ventricular function assist device which has a folded state and an unfolded state, and can be switched between the folded state and the unfolded state;
  • the ventricular The functional auxiliary device includes a support structure and a base; the base is used to detachably connect with the conveying device;
  • the support structure includes a plurality of skeletons, all of which are distributed sequentially along the circumferential direction of the base; each of the skeletons One end is connected to the base, and the other end is a free end; and at least part of the outer surface of the skeleton is provided with a drug-carrying groove.
  • the drug-loaded tank includes connected large-diameter holes and small-diameter holes, and the diameter of the large-diameter holes is larger than the diameter of the small-diameter holes. diameter, the large-diameter hole penetrates the outer surface of the skeleton, the small-diameter hole penetrates the inner surface of the skeleton, and the large-diameter hole is used to place medicine.
  • At least part of the skeleton has a hollow area, and at least part of the skeleton is provided with the drug-carrying groove in a solid area other than the hollow area.
  • the hollow area is composed of a whole piece of hollow grooves arranged continuously, and/or the hollow area is composed of a plurality of hollow grooves arranged non-continuously.
  • the skeleton is a sheet-like or block-like structure, and the middle part of the skeleton extends from one end to the opposite end to form a continuous piece of the hollow groove, and along the continuous piece
  • the drug-carrying groove is provided in the solid area other than the hollow groove.
  • the skeleton is a mesh stent structure
  • the mesh holes of each grid in the mesh stent structure form the hollow groove
  • the drug-loaded groove is provided on the surface of the rod portion of the grid.
  • the mesh support structure is a single-layer mesh structure and includes a plurality of bands arranged side by side along the circumference of the base. One ends of all bands are connected to each other and then connected to the base. The opposite ends of the wave segments are connected to each other to form the free end of the skeleton, and any two adjacent wave segments are connected by a deformable connecting rod.
  • each of the wave segments includes a plurality of repeating units, the repeating units are composed of arc segments and wave rod segments, and two ends of each arc segment are respectively connected to the wave rod segments.
  • the outer surface of the rod section is provided with the drug-carrying groove, and the length of the drug-carrying groove is less than or equal to the length of the wave rod section.
  • each of the skeletons is provided with a threading hole; wherein the threading hole is provided through the drug-containing groove, and/or the threading hole and the drug-containing groove are independent of each other. place setting.
  • the ventricular function assist device further includes an anchoring structure connected to the base, and the anchoring structure is used to connect to the target tissue.
  • the anchoring structure includes a plurality of spiny structures extending to the outside of the support structure, and the spiny structures are used to penetrate the target tissue, or the anchoring structure includes a spiral structure, the spiral structure is used to screw into the target tissue.
  • the portion of the anchoring structure for insertion into the target tissue is configured to be made of biodegradable material.
  • a locking mechanism is provided on the base, and the locking mechanism is used for engaging connection with the conveying device.
  • the locking mechanism includes a plurality of elastic engaging pieces, all of which are sequentially distributed along the circumferential direction of the base; the elastic engaging pieces are configured to retract when subjected to external force. into the base, and uses its own elasticity to extend out of the base after the external force is removed.
  • a drug structure disposed in the drug-carrying tank is also included, and the drug structure is composed of a drug and a polymer carrier.
  • each frame itself has elasticity, and/or the end surface of the free end of each frame is a smooth arc surface.
  • the expanded maximum diameter of the support structure is larger than the inner ventricular diameter of the portion where the support structure abuts the ventricular inner wall, so that the support structure uses its own expansion force to support the inner ventricular wall.
  • the number of the skeletons is three or four, and all the skeletons are evenly distributed along the circumferential direction of the base.
  • a delivery and recovery device for realizing the delivery and recovery of any one of the ventricular function assist devices, which includes a recovery device and a delivery device, so
  • the recovery device includes a tightening mechanism
  • the delivery device includes a push rod and a delivery sheath
  • the distal end of the push rod is used to detachably connect with the base of the ventricular function assist device
  • the tightening mechanism is used to Releasably connected to the support structure of the ventricular function assist device
  • the push rod and the tightening mechanism are used to cooperate with each other to load the ventricular function assist device into the delivery sheath and/or automatically Output in the delivery sheath.
  • the free ends of all the frames are provided with threading holes
  • the tightening mechanism includes a tightening wire
  • the tightening wire is used to pass through the threading holes on all the frames in sequence, and It extends axially inside the delivery sheath, and both ends of the tightening wire extend out of the proximal end of the delivery sheath and are fixedly arranged.
  • the recovery device further includes a recovery catheter disposed in the delivery sheath, the recovery catheter being connected to the The push rods are arranged side by side in the delivery sheath, and the tightening wire is used to penetrate into the recovery catheter.
  • the proximal end of the recovery catheter is provided with a fixed structure, and the fixed structure is used to fix the recovery catheter. Tighten both ends of the wire.
  • the push rod and the recovery catheter are provided in the same chamber or in different chambers of the delivery sheath.
  • the recovery conduit has two axially extending and independent chambers, and the two strands of the tightening wire are respectively threaded in the two chambers of the recovery conduit.
  • the delivery device further includes an additional conduit disposed in the delivery sheath, the additional conduit being used to cover the outside of the push rod and to release the push rod from the base. the connection between.
  • a locking mechanism is provided on the base, and a connecting piece is provided at the distal end of the push rod, and the connecting piece is engaged with the locking mechanism.
  • the connecting piece is a hollow tubular structure and is used to be sleeved on the base.
  • the push rod is a coil spring structure made of helically wound single or multi-strand wires, and/or the push rod has different hardnesses along its own axial direction, and the middle part of the push rod The hardness is less than the hardness of the proximal part and the distal part of the push rod.
  • the delivery sheath has a flexible distal portion located distally for receiving the ventricular function assist device.
  • a ventricular function assisting implantation system which includes any one of the ventricular function assisting devices and any one of the delivery and recovery systems.
  • the present invention also provides an implantation method, which specifically includes the following steps:
  • the release of the ventricular function assist device is unsuccessful or the release position is inappropriate, pull both ends of the tightening wire and push the push rod of the delivery device to open the proximal end of the ventricular function assist device (i.e., the free ends of all skeletons).
  • the defined proximal opening is restrained and gathered; finally, with the control of the push rod and the tightening wire, the folded ventricular function assist device is moved to the delivery sheath for reloading, and the ventricular function can be assisted by withdrawing the delivery sheath Remove the device.
  • the ventricular function assist device includes: a support structure and a base; the base is used to detachably connect with the delivery device; the support structure includes a plurality of skeletons, all of the skeletons are arranged along the base are distributed in sequence in the circumferential direction, one end of each frame is connected to the base, the other end is a free end, and at least part of the outer surface of the frame is provided with a drug-carrying groove.
  • the self-expansion force of the skeleton is used to fit with the inner wall of the ventricle, thereby enhancing the ventricular function during diastole and helping the stiff and unruly ventricle to relax and fill properly.
  • the surface is coated with a drug coating. Since the drug is carried through the drug-carrying groove provided on the outer surface of the skeleton, the drug carried by the drug-carrying groove is released mainly in the direction of the inner wall of the ventricle.
  • This method can achieve targeted drug delivery. , not only reduces the amount of drug implantation, but also the drug will not be diffused and released to affect the growth of ventricular tissue. Without affecting the growth of ventricular tissue, it is conducive to ventricular tissue climbing on the ventricular function assist device, thus improving implantation.
  • the ventricular function assisting device provided by the present invention is provided with a hollow area on at least part of the skeleton. Such configuration is conducive to the growth of ventricular tissue through the hollow area toward the inside of the support structure, further enhancing the close fit between the ventricular function assisting device and the inner wall of the ventricle. performance and long-term fit stability.
  • the delivery and recovery system provided by the present invention can use the delivery device and the recovery device to recover the ventricular function assist device into the delivery sheath for reloading without the need for surgery when the release position of the ventricular function assist device is inappropriate or the release is unsuccessful.
  • the ventricular function assist device is recovered in a manner that reduces damage to the patient.
  • the ventricular function auxiliary device and the push rod provided by the present invention are preferably connected by an elastic engaging piece.
  • an elastic engaging piece When configured in this way, the process of disconnecting is simpler and the difficulty of surgical operation is reduced.
  • the elastic engaging piece is The snap connection can reduce the damage caused by the anchoring structure to the ventricular tissue during the detachment process, making it safer and more reliable.
  • Figure 1a is a schematic structural diagram of the ventricular function assist device when folded in Embodiment 1 of the present invention
  • Figure 1b is a partial enlarged view of the position a of the central ventricular function auxiliary device in Figure 1a;
  • Figure 1c is a cross-sectional view along line A-A in Figure 1b;
  • Figure 2 is a schematic structural diagram of the ventricular function assist device in Embodiment 1 of the present invention when fully deployed;
  • Figures 3a to 3d are respectively schematic diagrams of base locking and unlocking in Embodiment 1 of the present invention.
  • Figure 4a is a schematic diagram of the cooperation between the anchoring structure and the base in Embodiment 1 of the present invention, in which the skeleton is shown in a folded state;
  • Figure 4b is a partial enlarged view of position b in Figure 4a;
  • Figure 5 is a schematic structural diagram of the push rod and its distal connector in Embodiment 1 of the present invention.
  • Figure 6 is a schematic diagram of the cooperation between the push rod and the ventricular function assist device in Embodiment 1 of the present invention, in which the frame is shown in a folded state;
  • Figure 7 is a schematic structural diagram of the ventricular function assist device and recovery device being transported in a delivery sheath in Embodiment 1 of the present invention
  • FIGS 8a to 8c are respectively simplified structural views of the delivery sheath and recovery catheter in Embodiment 1 of the present invention.
  • Figures 9a and 9b are respectively state diagrams of the ventricular function assist device in Embodiment 1 of the present invention when it is released from the distal end of the delivery sheath, where Figure 9a shows partial release, and Figure 9b shows complete deployment after complete release;
  • Figures 10a to 10d are respectively schematic diagrams of the process of withdrawing the delivery device and the recovery device from the human body in Embodiment 1 of the present invention.
  • Figure 10a is to release the connection between the push rod and the ventricular function auxiliary device
  • Figure 10b is to withdraw the push rod.
  • 10c is the withdrawal of the additional catheter
  • Figure 10d is the withdrawal of the guidewire and delivery sheath;
  • Figure 11a is a schematic diagram of the cooperation between the anchor structure and the base in Embodiment 2 of the present invention, in which the support structure is in a folded state;
  • Figure 11b is a schematic structural diagram of the anchoring structure at position c in Figure 11a;
  • Figure 11c is a schematic diagram of the cooperation between the anchor structure and the base in Embodiment 2 of the present invention, in which the support structure is in an expanded state;
  • Figures 12a and 12b are respectively schematic structural diagrams of the ventricular function assist device in Embodiment 3 of the present invention, where Figure 12a shows four skeletons, and Figure 12b shows three skeletons;
  • Figure 13 is a partially enlarged schematic diagram of the ventricular function assist device in Embodiment 3 of the present invention, in which the reference numeral d indicates the location of one of the drug-loading slots.
  • 10-support structure 11-skeleton; 101-band; 102-connecting rod; 103-repeating unit; 103a-arc section; 103b-rod section; 111-fixed end; 112-skeleton body; 113- Free end; 114-hollow area; 115-drug tank; 115a-large diameter hole; 115b-small diameter hole; 20-base; 21-inner hole; 22-locking mechanism; 221-elastic engaging piece; 201-storage Hole; 23-ventricular tissue; 24-ventricular wall; 26-guide wire; 110-push rod; 130-connector; 131-cavity; 132-slot; 150-delivery sheath; 151-flexible distal part; 30-anchoring structure; 31-thorn structure; 32-anchoring inner hole; 33-helical structure; 210-tightening wire; 220-retrieval catheter; 221-second quick exchange interface; 160-first quick exchange Interface; 230-Additional conduit.
  • first and second may explicitly or implicitly include one or at least two of the features, “one end” and “another end” and “proximal end” and “distant end” are generally refers to the two corresponding parts, which not only include the endpoints.
  • proximal end and distal end are defined herein with respect to a ventricular function assist device having an end for intervening in the human body and a control end extending outside the body.
  • proximal end refers to the position of the element closer to the control end of the ventricular function assist device that extends out of the body
  • distal end refers to the end of the element closer to the ventricular function assist device inserted into the human body and therefore further away from the ventricular function.
  • the position of the control end of the auxiliary device is defined herein with respect to an operator such as a surgeon or clinician.
  • proximal refers to the location of the element closer to the operator
  • distal refers to the location of the element closer to the ventricular function assist device and therefore farther from the operator.
  • connection, coupling, or connection between the two elements.
  • Cooperation or transmission relationship, and the connection, coupling, cooperation or transmission between the two elements can be direct or indirect through an intermediate element, and it cannot be understood as indicating or implying the spatial positional relationship between the two elements, that is, one element can be in another Any orientation inside, outside, above, below, or to one side of a component, unless the content clearly indicates otherwise.
  • the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • directional terms such as above, below, up, down, up, down, left, right, etc. are used with respect to the exemplary embodiments as they are shown in the figures, with the upward or upward direction being toward the top of the corresponding figure, The downward or downward direction is towards the bottom of the corresponding figure.
  • radial or transverse refers to a direction perpendicular to the longitudinal axis
  • axial refers to a direction parallel to the longitudinal axis
  • circumferential refers to a direction about the longitudinal axis.
  • the present invention discloses a ventricular function assisting device, which is used to help the heart relax, improve drug utilization, reduce the dose of implanted drugs, and improve the ventricular function assisting device after implantation. Tight fit to the inner wall of the ventricle and long-term fit stability.
  • the invention also discloses a delivery and recovery system, which is used to realize the delivery and recovery of the ventricular function auxiliary device, and can reduce the damage to the inner wall of the ventricle when the delivery device is detached and withdrawn, and can also avoid the use of surgical operations to repair the ventricular wall.
  • the ventricular function assist device is recovered and reloaded to reduce harm to the patient.
  • the invention also discloses a ventricular function assisting system, which includes a ventricular function assisting device and a delivery and recovery system.
  • detachable connections include detachable connections, that is, the connections between structures can be detached after being connected.
  • detachable connections that is, the connections between structures can be detached after being connected.
  • the skeleton in the support structure is easily straightened due to being bound by the delivery sheath in the folded state, so that the originally curved skeleton almost takes on a linear shape along the delivery sheath after being folded in the delivery sheath.
  • the original straight-line skeleton returns to its original shape and assumes an arc shape along its own length.
  • Figures 1a to 1c show the structure of the ventricular function assist device in the folded state in Embodiment 1 of the present invention
  • Figure 2 shows the structure of the ventricular function assist device in the unfolded state.
  • the ventricular function assist device provided in Embodiment 1 of the present invention is generally an umbrella-shaped structure, has a folded state and an unfolded state, and can be switched between the folded state and the unfolded state.
  • the ventricular function assist device includes a support structure 10 and a base 20; the base 20 is used to detachably connect with the delivery device; the support structure 10 is used to fit the inner wall of the ventricle after deployment to help the heart relax;
  • the support structure 10 includes a plurality of skeletons 11 used to form the canopy of the umbrella-shaped structure.
  • the number of the skeletons 11 is at least two, preferably more than two, such as three, four or more. More preferably, it is three or four. Three or four skeletons11 It will not increase the burden on the heart too much, and it can also provide sufficient relaxation.
  • All the skeletons 11 are sequentially distributed along the circumferential direction of the base 20 , preferably evenly distributed along the circumferential direction of the base 20 .
  • One end (i.e., the fixed end 111) of each frame 11 is connected to the base 20, such as the distal end of the base 20.
  • the connection method is not limited, for example, welding, bonding, etc. can be used; each frame 11 The other end is the free end 113; each frame 11 also has a frame body 112 extending between the fixed end 111 and the free end 113.
  • the fixed end 111 of the skeleton 11 corresponds to the distal end of the skeleton 11
  • the free end 113 of the skeleton 11 corresponds to the proximal end of the skeleton 11 .
  • each of the skeletons 11 itself has elasticity, that is, the elastic skeleton is used to construct the support structure 10, thereby utilizing the elasticity of the support structure 10 to achieve autonomous expansion.
  • Figure 1 shows the folded state, in which the skeleton body 112 is gathered and recovered in the direction of the longitudinal axis close to the base 20, so that the radial diameter of the entire ventricular function assist device is significantly reduced, presenting a folded umbrella shape.
  • This folded position facilitates storage of the entire ventricular function assist device within the delivery sheath of the delivery device.
  • the radial diameter of the entire ventricular function assist device increases and takes on an expanded umbrella shape, as shown in FIG. 2 .
  • an included angle is formed between the extension direction of the skeleton body 112 and the longitudinal axis of the base 20 .
  • the included angle may be greater than 90° and less than 180°, or less than or equal to 90°.
  • the size of the included angle is specific. Determined by the shape of the inner wall of the ventricle it abuts.
  • the angle here is the angle between the extension direction of the skeleton 11 and the positive direction of the longitudinal axis of the base 20.
  • the positive direction refers to the direction in which the distal end of the base 20 points to the proximal end; the extension direction can be the surface of the skeleton body 112.
  • the tangential direction, or when the skeleton body 112 itself is a linear structure, the extension direction of the skeleton 11 corresponds to the direction of the longitudinal axis of the skeleton body 112 itself.
  • the elasticity of the skeleton 11 can be used to expand and fit the inner wall of the left ventricle to help the heart relax and properly relax and fill the stiff and unruly ventricle.
  • the skeleton 11 is preferably made of medical metal elastic material and can be deployed independently.
  • the metal elastic material used to prepare the skeleton 11 is not limited, but is preferably a superelastic material, more preferably a lightweight superelastic material with excellent biocompatibility, and further preferably a shape memory alloy material, such as nickel-titanium alloy.
  • Each skeleton 11 has a smooth surface after unfolding to achieve damage-free contact with the inner wall of the ventricle.
  • the expanded shape of the skeleton 11 matches the shape of the inner wall of the ventricle. Since the inner wall of the ventricle is an arc surface, the outline shape of the expanded skeleton 11 along its own length is also an arc shape, but the arc shape can be a circle with the same radius.
  • each skeleton 11 can adaptively adjust its shape and size to better adhere to the inner wall of the ventricle.
  • the maximum diameter of the support structure 10 after expansion is larger than the inner diameter of the ventricle where it abuts against the inner wall of the ventricle. If all the free ends 113 of the skeleton 11 are evenly distributed on the same circle after expansion, the diameter of the circle should be It is larger than the inner diameter of the ventricle where the frame 11 is in contact with the inner ventricular wall, so that the support structure 10 can use its own expansion force (elastic force) to firmly support the ventricular wall.
  • the base 20 is used as the umbrella handle of the umbrella-shaped structure, and is not only used to connect the support structure 10 but also to connect the conveying device.
  • the base 20 has a longitudinally penetrating inner hole 21 , and the guide wire can pass through the base 20 along the inner hole 21 .
  • There are no special requirements on the size and shape of the base 20 and it is preferably a hollow cylindrical structure.
  • at least part of the outer surface of the skeleton 11 is provided with a drug-carrying groove 115, and the drug-carrying groove 115 is used to set a drug structure.
  • the drug structure is composed of drugs. and polymer carrier.
  • the polymer carrier is mixed with the drug to form drug raw materials, and the drug raw materials are filled in the drug-loading tank 115 to form a drug structure.
  • the polymer carrier can not only carry the drug, but also control the release rate of the drug, so that the drug can be released continuously. way to release.
  • the ventricular assist device further includes the drug structure, and the drug structure is disposed in the drug-loading tank 115 .
  • the medicine-carrying groove 115 may penetrate the inner surface and the outer surface of the frame 11 to form a through hole, or may only penetrate the outer surface but not the inner surface to form a blind hole.
  • the ventricular function assist device provided by the present invention can carry drugs through the drug-loading groove 115 without coating the inner and outer surfaces of the skeleton with drug coatings.
  • the drug release in the drug-loading groove 115 is mainly released in the direction of the inner wall of the ventricle.
  • this method can achieve targeted drug delivery, which not only reduces the amount of drug implantation and improves drug utilization, but also the drug will not spread around and affect the growth of ventricular tissue (heart tissue) without affecting the growth of ventricular tissue.
  • medicine is only provided in the medicine-loading tank 115, and no medicine is provided in other locations.
  • the drug raw materials can be sprayed into the drug-loading tank 115 to form a drug structure through precise spraying.
  • drugs include but are not limited to drugs that promote tissue growth.
  • the drug may include antithrombotic agents, anticoagulants, antiplatelet agents, antitumor agents, antiproliferative agents, antibiotics, anti-inflammatory agents, gene therapy agents, recombinant DNA products, recombinant RNA products , at least one of collagen, collagen derivatives, protein analogs, carbohydrates, carbohydrate derivatives, smooth muscle cell proliferation inhibitors, endothelial cell migration, proliferation and/or survival promoters, and combinations thereof.
  • the present invention is not limited to the material of the polymer carrier.
  • the drug-carrying matrix can be selected from the group consisting of poly(hydroxyalkanoate) (PHA), poly(ester amide) (PEA), poly(hydroxyalkanoate)-co- -ester amide), polyacrylate, polymethacrylate, polycaprolactone, poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), poly(propylene oxide) (PPO), poly( Propylene fumarate) (PPF), poly(D-lactide), poly(L-lactide), poly(D,L-lactide), poly(meso-lactide), Poly(L-lactide-co-meso-lactide), poly(D-lactide-co-meso-lactide), poly(D,L-lactide-co- meso-lactide), poly(D,L-lactide-co-PEG), poly(D,L-lactide-co-trimethylene carbonate), poly(lactide-co- -g
  • the shape of the drug-loading groove 115 There is no special requirement for the shape of the drug-loading groove 115. For example, if it is a circular hole, a long hole, or other shapes, a shape that is easy to process is generally selected.
  • the size and number of the drug-carrying slots 115 can be set according to needs. As long as the required amount of drug is met, the mechanical strength of the skeleton 11 can be ensured.
  • a plurality of drug-carrying grooves 115 are provided on the outer surface of each frame 11. The specific number and distribution mode of the drug-carrying grooves 115 on the frame 11 are not limited.
  • the drug-carrying grooves 115 are evenly distributed on the skeleton 11 in a certain manner to make the drug release more uniform.
  • drug structures can be provided in part of the drug-loading slots 115 or in all of the drug-loading slots 115 .
  • the user can select the available drug-loading slots 115 and the amount of drug-loading according to actual needs.
  • the drug-carrying groove 115 is provided with small holes that penetrate the inner surface of the skeleton 11 so that the heart tissue can pass through the drug-carrying groove 115 and grow into the inside of the support structure 10, further improving the connection between the skeleton 11 and the inner wall of the ventricle. Tightness of fit and long-term fit stability.
  • the drug-loading groove 115 is a stepped hole, with large-diameter holes close to the outer surface of the skeleton 11 and small-diameter holes close to the inner surface of the skeleton 11 , and the drug structure is disposed in the large-diameter holes.
  • At least part of the surface of the skeleton 11 (including the inner surface and/or the outer surface) is covered with a non-drug coating, such as a coating that promotes the adhesion of the inner wall of the ventricle to the skeleton 11, or a coating that prevents Chromium nitride coating to prevent the precipitation of harmful substances, such as coatings that prevent the precipitation of harmful nickel ions, or other functional coatings.
  • a non-drug coating such as a coating that promotes the adhesion of the inner wall of the ventricle to the skeleton 11, or a coating that prevents Chromium nitride coating to prevent the precipitation of harmful substances, such as coatings that prevent the precipitation of harmful nickel ions, or other functional coatings.
  • a non-drug coating such as a coating that promotes the adhesion of the inner wall of the ventricle to the skeleton 11, or a coating that prevents Chromium nitride coating to prevent the precipitation of harmful substances, such as coating
  • the medicine-carrying tank 115 is provided in the physical area. Therefore, the growing ventricular tissue can pass through the hollow area 114 and further grow into the interior of the support structure 10 to further enhance the tightness and long-term fit stability of the skeleton 11 and the inner wall of the ventricle.
  • the hollow area 114 is composed of a continuous entire piece of hollow groove (blank area). This continuous entire piece of hollow groove occupies a large area, which can not only minimize the support
  • the weight of the structure 10 is beneficial to the climbing and growth of heart tissue in a wider range, and more effectively improves the tightness of the fit between the skeleton 11 and the inner wall of the ventricle and the long-term fit stability.
  • the hollow area 114 may also be composed of a plurality of hollow grooves arranged discontinuously.
  • the skeleton 11 is a sheet or block structure, and the middle part of the skeleton 11 extends from one end to the other end to form a continuous piece of the hollow groove, and in the continuous whole Drug-carrying grooves 115 are provided in the solid area of the piece other than the hollow grooves, that is, drug-carrying grooves 115 are distributed along the physical area of the edge of the hollow groove of the entire piece.
  • the drug-carrying groove 115 is preferably a stepped hole and includes a connected large-diameter hole 115a and a small-diameter hole 115b.
  • the diameter of the large-diameter hole 115a is larger than the diameter of the small-diameter hole 115b.
  • the large-diameter hole 115a penetrates the frame.
  • the small diameter hole 115b penetrates the inner surface of the frame 11 on the outer surface of the skeleton 11, and the drug structure is arranged in the large diameter hole 115a.
  • the heart tissue can sequentially pass through the large-diameter holes 115a and the small-diameter holes 115b and grow toward the inside of the support structure 10. At this time, the provision of the small-diameter hole 115b can reduce the leakage and release of the drug to the inner surface of the skeleton 11.
  • the end surface of the free end 113 of the skeleton 11 is set to a non-invasive surface, that is, a smooth arc surface, preferably a circular arc surface, and more preferably a semicircular arc surface, so that the skeleton body 112 and the free end 113 are in contact with each other.
  • the smooth transition of the end face connection that is, the smooth rounded corners are provided at the edge, can reduce the friction of the ventricular function auxiliary device when the delivery sheath is moved, so as to avoid damage to the inner wall of the delivery sheath and the structure of the skeleton 11, and at the same time, it can also make the After unfolding, the skeleton 11 fits the inner wall of the ventricle more smoothly without damaging the ventricular tissue.
  • the free ends 113 of all the skeletons 11 can be distributed on the same circumference or on different circumferences, that is, the skeletons 11 can be long or short, or have different degrees of expansion. .
  • the free ends 113 of all the skeletons 11 are equally angularly distributed on the same circumference, so that the inner wall of the ventricle that is attached to the skeleton 11 is evenly stressed, and the effect of assisting the heart to relax is better.
  • the maximum diameter of the support structure 10 after expansion is greater than the fully diastolic inner diameter of the ventricle, so that during diastole, the skeleton 11 can always exert pressure on the inner wall of the ventricle to ensure a tight fit. performance and long-term fit stability.
  • the number of the skeletons 11 can be selected from 3 to 10, the length is from 25 mm to 65 mm, and the thickness is from 0.1 mm to 1.2 mm. This size can be suitable for ventricular assist therapy for most patients.
  • the free end 113 of each frame 11 is provided with a threading hole (not labeled), and the threading hole is used to detachably connect with the recovery device.
  • the threading holes are provided integrally with the drug-carrying grooves 115 , that is, some of the drug-carrying grooves 115 can serve as threading holes. There may be one or more threading holes on each frame 11, and the number is not limited.
  • the medicine-carrying groove 115 and the threading hole are provided independently of each other.
  • the threading hole is only used to connect the recovery device, and the medicine-carrying groove 115 is only used for medicine.
  • part of the drug-containing groove 115 overlaps with the threading hole, and part of the drug-containing groove 115 and the threading hole are arranged independently of each other.
  • the base 20 is detachably connected to the conveying device.
  • the base 20 is provided with a locking mechanism 22, and the locking mechanism 22 is used for engaging connection with the conveying device.
  • the locking mechanism 22 is preferably an elastic locking mechanism, which makes the detachment process simpler, reduces the difficulty of surgical operation, and can reduce the damage caused by the anchoring structure 30 to the ventricular tissue during the detachment process.
  • the elastic locking mechanism includes a plurality of elastic engaging members 221 , such as two or three or more elastic engaging members 221 , and all elastic engaging members 221 are along the circumferential direction of the base 20 Distributed in sequence, preferably, all elastic locking members 221 are evenly distributed along the circumferential direction of the base 20 .
  • Each elastic engaging member 221 is telescopically disposed on the base 20 .
  • the elastic engaging member 221 retracts into the base 20 when an external force is applied, and extends out of the base 20 after the external force is released.
  • the side wall of the base 20 is provided with a storage hole 201 for accommodating the elastic engaging member 221 .
  • the elastic engaging member 221 can retract into the receiving hole 201 to unlock when it is acted upon by an external force. When it is not acted upon by an external force, it can extend out of the receiving hole 201 to achieve locking under the action of its own elastic force.
  • the elastic engaging member 221 can be in various shapes such as sheet, columnar, block, etc., and there is no specific requirement. In a specific example, the elastic engaging members 221 are in the shape of a half-moon, and the elastic engaging members 221 are evenly distributed on the side surfaces of the base 20 .
  • the elastic engaging member 221 when no external force is applied, the elastic engaging member 221 automatically pops up from the receiving hole 201; as shown in Figures 3c and 3d, when the elastic engaging member 221 is subjected to radial force, When the inward pressing force Fr is applied, the elastic engaging member 221 exposed in the receiving hole 201 will gradually retract into the receiving hole 201 .
  • the delivery and recovery system includes a delivery device for delivering the ventricular function assist device to a target location for release.
  • the conveying device includes a push rod 110, and the distal end of the push rod 110 is used to detachably connect with the base 20.
  • the detachable connection method is such as threaded connection, snap connection or other mechanical connection or non-mechanical connection method, preferably For snap connection.
  • the distal end of the pushing rod 110 is provided with a connecting piece 130 , and the connecting piece 130 is used to engage with the locking mechanism 22 on the base 20 .
  • the connecting member 130 is a hollow tubular structure with a cavity 131 formed inside.
  • the connecting member 130 is coated on the base 20 through the cavity 131 .
  • a latching slot 132 is provided on the side wall of the connecting piece 130 , and the elastic latching member 221 is used to be inserted into the latching slot 132 to achieve a latching connection.
  • the clamping slot 132 and the elastic engaging member 221 are arranged in one-to-one correspondence.
  • the connection The member 130 is preferably a thin-walled cylindrical structure, with an inner diameter of 3.5 mm to 8 mm and a wall thickness of 0.5 mm to 1.5 mm. More specifically, referring to FIG.
  • the elastic engaging member 221 pops out from the storage hole 201 on the side of the base 20 and is embedded in the slot 132 of the connecting member 130 .
  • the ejected elastic engaging member 221 functions as a stop block. to prevent the central chamber functional auxiliary device from being separated from the push rod 110 during the transportation process.
  • the proximal end of the push rod 110 is preferably provided with a handle (not shown in the figure) that can rotate and push and pull the push rod 110. By manipulating the handle, the advancement, withdrawal and orientation adjustment of the ventricular function assist device can be achieved.
  • the push rod 120 can also be used as a push rod, and the push rod 120 cooperates with the recovery device to realize the gathering and recovery of the ventricular function assist device.
  • the push rod 110 is a hollow tubular structure to allow the guide wire to pass through.
  • the push rod 110 is a coiled spring structure that is spirally wound with single or multiple strands of wire to form a hollow tubular shape.
  • the coiled spring structure can enhance the bending performance of the push rod 110 and facilitate the push rod 110 to pass through complex intracardiac tissue structures.
  • the push rod 110 has different hardness distributions in its own axial direction, such as being connected by segments with different hardnesses.
  • the middle part of the push rod 110 has the smallest hardness, for example, the push rod 110 has the smallest hardness.
  • the middle part of the rod 110 can be made of softer material or structure to facilitate the bending of the middle part, or the middle part of the pushing rod 110 can be made of a spiral tube that is easy to bend.
  • the push rod 110 includes a distal part, a middle part and a proximal part distributed axially in sequence.
  • the hardness of the proximal part and the distal part is greater than that of the middle part, making the middle part easier to
  • the proximal part and the distal part can be bent, and the proximal part and the distal part can be made of harder materials.
  • the proximal part needs to ensure the pushing performance, and the distal part needs to ensure the operational performance during recovery.
  • the delivery device further includes a delivery sheath 150, so that the ventricular function assist device is compressed in the delivery sheath 150 and delivered to the target location, and the push rod 110 operates the ventricular function assist device within the delivery sheath 150. To achieve operations such as release or recycling.
  • the ventricular function assist device preferably further includes an anchoring structure 30 connected to the base 20, and the anchoring structure 30 is located at the farthest end of the ventricular function assist device.
  • the base 20 and the anchoring structure 30 may be integrally formed or manufactured separately and then connected.
  • the anchoring structure 30 is used to connect with the apical tissue (i.e., the target tissue), thereby avoiding the provision of fixing structures such as microthorns or barbs on the skeleton 11, thereby reducing damage to the heart tissue during fixation and reducing the difficulty of fixation control.
  • the anchoring structure 30 includes a base and a plurality of spiny structures 31 disposed on the base.
  • the spiny structures 31 extend toward the outside of the support structure 10 and are used to penetrate the apical tissue. And fixedly connected with the ventricular tissue.
  • the base of the anchoring structure 30 is connected to the base 20 by welding, bonding or integral molding.
  • the anchoring structure 30 is provided with an anchoring inner hole 32 that allows the guide wire to pass through.
  • the diameter of the anchoring inner hole 32 may be 1 mm to 3 mm, matching the diameter of the guide wire.
  • the spiny structure 31 preferably has a widened head to achieve stronger fixation.
  • the length of the spiny structure 31 should not be too long or too short. If it is too long, it will easily pierce the ventricular wall, causing ventricular perforation. If it is too short, the connection stability will be insufficient.
  • the length of the spiny structure 31 should not exceed the length of the ventricular wall. Thickness, especially of the ventricular wall at the apical tissue.
  • the number of the spiny structures 31 is set as needed, preferably 3 to 8, and the length is 3 mm to 22 mm.
  • the spiny structure 31 can be made separately and then fixed on the base.
  • the material of the spiny structure 31 may be a biocompatible metal material or a degradable material.
  • the delivery sheath 150 preferably has a flexible distal portion 151 located at the distal end.
  • the flexible distal portion 151 is softer in structure relative to other parts of the delivery sheath 150 to facilitate loading and ejection. Reduces the difficulty of loading and releasing ventricular function assist devices.
  • the ventricular function assist device is folded and received within the flexible distal portion 151 .
  • the flexibility of the flexible distal portion 151 can be ensured from the material and/or structure, such as being configured as an elongated flexible tube or a tube with an axially extending slit, which can be closed or opened to achieve folding of the tube.
  • the ventricular function assist device In the folded state, the ventricular function assist device is placed within the flexible distal portion 151 through the distal opening of the delivery sheath 150 .
  • the inner diameter of the delivery sheath 150 is generally 15-18 Fr, and the length of the push rod 110 is usually equivalent to the length of the delivery sheath 130 .
  • the delivery and recovery system also includes a recovery device for cooperating with the delivery device to achieve half or full recovery of the ventricular function assist device.
  • the recovery device specifically includes a tightening mechanism for detachably connecting with the support structure 10, and the push rod 110 and the tightening mechanism are used to cooperate with each other to load the ventricular function assist device to in delivery sheath 150.
  • the tightening mechanism preferably includes a tightening wire 210, the tightening wire 210 having a first end, a second end, and between the first end and the second end.
  • the wire body is used to pass through all the threading holes on the frame 11 in sequence, and further extends axially inside the delivery sheath 150, and the first end and The second end is disposed at the proximal end of the delivery sheath 150 and locked.
  • the tightening wire 210 can tighten the proximal end of the support structure 10 and further pull the gathered support structure 10 into the delivery sheath 150 .
  • the tightening wire 210 and the push rod 110 can only be realized by cooperating with each other.
  • the push rod 110 first resists the base 20 to keep the ventricular function assist device stationary, and then the tightening wire 210 tightens the proximal end of the support structure 10 , after being folded, the push rod 110 and the tightening wire 210 together install the ventricular function assist device into the delivery sheath 150 .
  • the tightening wire 210 should be long enough, longer than the length of the delivery sheath 150 , and can extend from the distal end of the delivery sheath 150 until it is rewinded and extended from the proximal end of the delivery sheath 150 .
  • the tightening wire 210 is used to pull and shrink the ventricular function assisting device to recover the ventricular function assisting device into the delivery sheath 150, and the tightening wire 210 can also be used to pull the ventricular function assisting device away from the delivery sheath 150. Controlling the expansion rate of the skeleton 11 after the end is detached can slow down the expansion rate of the skeleton 11 and prevent the rapid self-expansion of the skeleton 11 from damaging the ventricular tissue. When the ventricular function assist device is transported to a designated position through the delivery sheath 150, the tightening wire 210 can completely release and unfold the frame 11, and partially expose it outside the delivery sheath 150.
  • the recovery device also includes a recovery catheter 220, which is used to be disposed in the delivery sheath 150 and arranged side by side with the push rod 110, that is, the push rod 110 and the recovery catheter 220 are not in a nested relationship with each other. .
  • the recovery conduit 220 is used to accommodate the tightening wire 210 to prevent the tightening wire 210 from being entangled on the push rod 110 and increasing the difficulty of recovery.
  • the recovery conduit 220 may also be eliminated.
  • the proximal end of the recovery catheter 220 is provided with a fixing structure for fixing both ends of the tightening wire 210 .
  • the push rod 110 and the recovery catheter 220 are disposed in the same chamber of the delivery sheath 150 . In other embodiments, the push rod 110 and the recovery catheter 220 are disposed in two different chambers of the delivery sheath 150, as shown in Figure 8c.
  • a first quick exchange port 160 should be provided between adjacent chambers. The first quick exchange port 160 extends a certain length along the axial direction of the delivery sheath 150, so that The tightening wire 210 or other required components can pass through the first quick exchange port 160 to facilitate quick operation and improve surgical efficiency.
  • the recovery conduit 220 of this embodiment may be provided with only one chamber, or may be provided with two axially extending and independent chambers.
  • the two strands of the tightening wire 210 pass through different chambers of the recovery conduit 220 to prevent double wire entanglement, knotting, etc. during the process of pulling the tightening wire 210. situation, making recycling operations safer and more reliable.
  • the two strands of the tightening wire 210 refer to a part that returns from the distal end to the proximal end of the delivery sheath 150 after passing through the threading hole, and that extends from the proximal end of the delivery sheath 150 before the threading hole is threaded. to the other part on the far side.
  • a second quick exchange port 221 can also be provided on the side wall of the recovery conduit 220. If the second quick exchange port 221 is square, it is preferably extended to a certain length along the axial direction of the recovery conduit 220.
  • the second quick exchange port 221 is provided on the side wall of the recovery catheter 220 to facilitate the quick operation of the tightening wire 210 and make the surgical operation more convenient.
  • the proximal end of the recovery catheter 220 is preferably provided with two tightening valves (not shown in the figure).
  • the tightening valves serve as fixed structures to respectively fix the two ends of the tightening wire 210, thereby pulling the tightening wire 21
  • the operation can be realized by withdrawing the retrieval catheter 220. This arrangement facilitates the transmission of force, thereby reducing the difficulty of retrieval of the ventricular assist function device.
  • This embodiment also provides a preferred implantation method of the above-mentioned ventricular function assist device. Taking the left ventricle as an example, it includes the following steps:
  • Step 1 Connect the ventricular function assist device to the push rod 110, and preload the tightening wire 210 of the recovery device in the threading hole at the proximal end of the ventricular function assist device. Use the push rod 110 and the tightening wire 210 to The ventricular function assist device is received in the delivery sheath 150;
  • Step 2 Send the push rod 110, the ventricular function assist device, and the recovery device to the appropriate position of the left ventricle along the delivery sheath 150;
  • Step 3 Release the ventricular function assist device, and determine whether the release is successful, such as whether the release position is appropriate, whether the frame 11 is fully deployed, whether the frame 11 is poorly attached to the inner wall of the ventricle, etc.
  • Step 4a Unload the tightening wire 210 and the recovery catheter 220, release the connection between the ventricular auxiliary function device and the push rod 110, and take out other components except the ventricular function auxiliary device from the human body.
  • Step 4b Use the push rod 110 to push against the ventricular function assist device, and at the same time pull back the recovery catheter 220 and the tightening wire 210 to close the proximal end of the frame 11 toward the longitudinal axis of the base 20, and then fold the ventricular function assist device.
  • the device is pulled back into the delivery sheath 150 and then loaded. After the loading is completed, it can be considered to release again or withdraw all the devices from the human body.
  • step 1 use the locking mechanism 22 on the base 20 to connect the ventricular function assist device to the connector 130 on the push rod 110, and at the same time pass the tightening wire 210 through each threading hole at the proximal end of all the skeletons 11 in sequence. And extends from the distal end of the delivery sheath 150 until protruding from the proximal end of the recovery catheter 220, using a tightening valve (not shown) at the proximal end of the recovery catheter 220 to fix the two ends of the tightening wire 210.
  • the push rod 110 cooperates with the tightening wire 210 to fold and store the ventricular function assist device into the flexible distal portion 151 of the delivery sheath 150 .
  • step 2 before the ventricular function assist device is formally implanted, the tip of the guidewire is first inserted into the patient's left ventricle along the femoral vein through the inferior vena cava through puncture technology, and then the ventricular function assist device and the ventricular function assist device are installed.
  • the delivery sheath 150 of the recovery device is delivered along the guide wire to the appropriate location in the left ventricle.
  • the ventricular function assist device when the distal end of the delivery sheath 150 reaches a suitable position in the left ventricle, by pushing the push rod 110 toward the distal end of the delivery sheath 150, the ventricular function assist device can be gradually detached from the distal end of the delivery sheath 150 come out.
  • each frame 11 will gradually expand radially outward due to superelasticity or shape memory until it fits the ventricular inner wall 24.
  • the tightening wire 210 is pulled The rate at which the skeleton 11 unfolds can be slowed down to avoid rapid self-expansion of the skeleton 11 and damage to the ventricular tissue 23; if the release is successful, by pushing the push rod 110, the spiny structure 31 at the bottom of the anchoring structure 30 is inserted into the ventricular tissue 23 at the apex, and is connected with the ventricular tissue 23.
  • the tightening wire 210 can be pulled and the push rod 110 is used to retract the ventricular function assist device into the delivery sheath 150.
  • the position of the distal end of the delivery sheath 150 is adjusted by rotating the delivery sheath 150 to adjust the position of the ventricular function assist device.
  • the ventricular function assist device is released and deployed through the push rod 110 again.
  • the connection between the push rod 110 and the ventricular function assist device can be released by introducing an additional catheter 230, as shown in Figures 10a to 10d.
  • the conveying device preferably further includes an additional conduit 230, which is used to cover the outside of the push rod 110 and to release the connection between the push rod 110 and the base 20, that is, a locking mechanism. 22 is disconnected from the connector 130 .
  • the inner diameter of the additional conduit 230 is slightly larger than the outer diameter of the distal connector 130 of the push rod 110 , so that the connector 130 can be embedded inwardly into the additional conduit 230 . Please refer to Figure 10a and Figure 10b for the release process.
  • Embodiment 1 The following mainly describes the differences from Embodiment 1.
  • the same parts as Embodiment 1 will not be described further, and please refer to Embodiment 1 for the same parts.
  • the anchoring structure 30 of this embodiment includes a base and a spiral structure 33 provided on the base.
  • the spiral structure 33 is used to screw into the ventricle.
  • the wall 24 is connected to the ventricular tissue 23, and the anchoring structure 30 in the first embodiment penetrates the ventricular wall 24 through the spinous structure 31 and is connected to the ventricular tissue 23.
  • the material of the spiral structure 33 can be a biocompatible metal or a degradable material.
  • the diameter of the spiral structure 33 is preferably 1 mm to 5 mm, and the diameter of the wire used to manufacture the spiral structure 33 is preferably 0.2 mm to 0.5. mm, and adjust the length of the spiral, preferably the length of the spiral is 4 mm to 20 mm, so that it will not penetrate the ventricular tissue 23.
  • This embodiment makes the connection between the ventricular function assist device and the ventricular tissue 23 more stable.
  • the spiral structure 33 is made of biodegradable material.
  • Embodiment 1 The same parts as Embodiment 1 will not be described further, and please refer to Embodiment 1 for the same parts.
  • the difference from Embodiment 1 is that the skeleton 11 in this embodiment is a mesh bracket structure, that is, a bracket-like structure.
  • the mesh holes of each grid in the mesh bracket structure form hollow grooves, and the mesh holes of the grids are hollow grooves.
  • a medicine-carrying groove 115 is provided on the surface of the rod.
  • the skeleton 11 is a single-layer mesh structure and includes a plurality of bands 101 arranged side by side along the circumferential direction of the base 20. One end of all the bands 101 After being connected to each other, they are connected to the base 20. The other ends of all the bands 101 are connected to each other to form the free end 113 of the frame 11, and any two adjacent bands 101 are connected by a deformable connecting rod 102. connection, the connecting rod 102 is used to maintain the stability of the structure.
  • the skeleton 11 in this structure is provided with a large number of hollow grooves, and these hollow grooves are separated by connecting rods 102.
  • Each skeleton 11 can include two or more wave bands 101.
  • the wave bands 101 is preferably two.
  • the connecting rod 102 itself can be telescopically deformed, and can have various structures, generally a folded line structure or a curved structure, such as an N-shaped structure, or an S-shaped, Z-shaped structure or other shapes.
  • each of the wave segments 101 includes a plurality of repeating units 103.
  • the repeating units 103 are composed of arc segments 103a and rod segments 103b. The two ends of each arc segment 103a are respectively connected to two rods.
  • the medicine-carrying groove 115 is provided on the outer surface of the wave rod section 103b.
  • the width and/or thickness of the wave rod section 103b is larger than the corresponding size of the connecting rod 102. Since the size of the wave band 01 is generally very small, during processing, the drug-carrying groove 115 can be formed on the wave rod section 103b by laser etching.
  • the length of the medicine-carrying groove 115 is less than or equal to the length of the wave rod section 103b.
  • the wave rod section 103 can be a straight rod or a curved rod, without limitation.
  • the skeleton in this embodiment has a mesh stent structure, it can significantly reduce the weight of the ventricular function assist device and reduce the burden on the heart. It can also improve the fit and long-term fit stability with the ventricular wall 24, while also increasing the strength of the skeleton.
  • the lateral flexibility of 11 reduces the stresses that may occur on the frame 11 during operation, especially those related to ventricular torsion and longitudinal movement.
  • the number of the skeletons 11 is set according to the needs. For example, in one embodiment, as shown in Figure 12a, the number of the skeletons 11 is four, evenly distributed along the circumferential direction, as in another embodiment, as shown in Figure 12b. As shown in the figure, the number of the skeletons 11 is three, evenly distributed along the circumferential direction.
  • the present application also provides a ventricular function assist system, which includes the ventricular function assist device and the delivery and recovery system of any embodiment.
  • the ventricular function assist device uses the self-expansion force of the skeleton to fit with the inner wall of the ventricle, thereby enhancing the ventricular function during diastole and helping the stiff and unruly ventricle to properly relax and fill.
  • the drug since the drug is carried through the drug-carrying groove provided on the outer surface of the skeleton, it is avoided to coat the inner and outer surfaces of the skeleton with drug coatings, so that the drug carried by the drug-carrying groove is released mainly in the direction of the inner wall of the ventricle.
  • Targeted drug delivery can be achieved, which not only reduces the amount of drug implantation, but also prevents the drug from spreading around and affecting the growth of ventricular tissue. Without affecting the growth of ventricular tissue, it is beneficial to the ventricular tissue in the ventricular function assist device. Climb up to improve the tightness of the implanted ventricular function assist device and the inner wall of the ventricle and the long-term stability of the fit.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Transplantation (AREA)
  • Vascular Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Prostheses (AREA)

Abstract

本发明涉及一种心室功能辅助装置、输送回收系统及心室功能辅助系统,心室功能辅助系统包括心室功能辅助装置和输送回收系统,输送回收系统包括回收装置和输送装置,回收装置包括收紧机构,输送装置包括推送杆和输送鞘管,推送杆的远端用于与底座可解脱地连接,收紧机构用于与支撑结构可解脱地连接,推送杆和收紧机构相互配合以将心室功能辅助装置装载至输送鞘管中,心室功能辅助装置包括支撑结构和底座;底座用于与推送杆可解脱地连接;支撑结构包括多根骨架,所有骨架沿底座的周向依次分布,每个骨架的一端与底座连接,另一端为自由端,且至少部分骨架的外表面设置有载药槽;从而提高药物利用率和贴合的长期稳定性。

Description

心室功能辅助装置、输送回收系统及心室功能辅助系统 技术领域
本发明涉及医疗器械技术领域,特别涉及一种心室功能辅助装置、输送回收系统及心室功能辅助系统。
背景技术
目前普遍认为射血分数保留心衰(HFpEF)患者占心衰总数的比例超过52%,已成为心衰的主要类型。研究发现,HFpEF患者左心室向心性重构,心肌僵硬、肥厚,导致主动舒张功能障碍,这会引起左心室舒张末压增高,使得左心房血流入左心室的阻力增大,从而引发左心房压和肺静脉压升高,导致患者出现呼吸困难、急性肺淤血、消化道淤血以及腹腔积液等症状,对患者的生命造成巨大威胁。
目前对于HFpEF患者来说,药物治疗领域除沙库巴曲缬沙坦钠片(诺欣妥)外,其余药物均无法被证明可改善HFpEF患者的预后、降低患者的死亡率,仅能改善其他终点,如再住院率、活动耐量和生活质量等。因此,HFpEF的治疗被降级为治疗影响疾病进展的合并疾病,现有的治疗方案主要为减轻容量负荷、治疗合并症、提高活动耐量或减轻症状的治疗、建立慢性病管理以及预防再住院等。
为了治疗心力衰竭,特别是HFpEF,一种潜在的治疗方法是在病人左心室植入一种增强心脏舒张功能的辅助装置,如提供了一种花冠状的医疗用心室功能辅助装置,该装置包括两个或多个臂,每个臂包括底端、自由顶端和在所述端部之间延伸的中间部分。该装置被植入左心室内时,其臂连接的部分被放置在心室内心尖的内膜表面上,其臂相对于所述基部向上弯曲,使得臂靠在心室内壁上。心室功能辅助装置的臂在心脏收缩期间径向受压弯曲收拢,心室收缩期的动能从而转化为势能存储在装置的弹性臂中。相应地,在心脏舒张期间,上述装置的臂径向向外展开,对心室内壁施加外扩压力,从而帮助心脏扩张,此时存储在装置臂中的势能被转换为动能。该心室功能辅助装置可以通过经心尖外科手术植入,也可以通过经皮介入方式用鞘管和输送装置将其输送进人体心脏内,改善HFpEF患者的心功能,在舒张期帮助左心室舒张和充盈。但是在使用经皮介入方式手术时,当发生植入位置不合适、产品尺寸太小导致贴壁不良或者释放失败时,由于没有回收装置,可能需要通过外科手术的方式将装置取出,这会给患者带来较大的创伤。此外,当此结构植入到左心室内部后,其长期贴壁稳定性较差,装置可能随心脏的收缩、扭转及纵向运动发生移位现象,因而在臂的部分或全部区域上覆盖生物相容性材料以及促进组织生长的涂层和药物,来促进心室功能辅助装置与心脏组织的粘附,但这一方面增加了植入材料量,另一方面药物会四处扩散释放影响心脏组织的生长。
因此,需要对现有的心室功能辅助装置作进一步改进,以克服上述缺陷中的至少一个。
发明内容
本发明的目的在于提供一种心室功能辅助装置、输送回收系统及心室功能辅助系统,用于帮助心脏舒张,并实现靶向给药,降低植入药物剂量,提高药物利用率,另提高植入后心室功能辅助装置与心室内壁的贴合紧密性以及长期贴合稳定性,并降低对患者的伤害。
为实现上述至少一个目的,根据本发明的第一个方面,提供一种心室功能辅助装置,具有折叠状态和展开状态,并能够在所述折叠状态和所述展开状态之间切换;所述心室功能辅助装置包括支撑结构和底座;所述底座用于与输送装置可解脱地连接;所述支撑结构包括多根骨架,所有所述骨架沿所述底座的周向依次分布;每一个所述骨架的一端与所述底座连接,另一端为自由端;且至少部分所述骨架的外表面设置有载药槽。
可选地,所述载药槽包括连通的大径孔和小径孔,所述大径孔的孔径大于所述小径孔的孔 径,所述大径孔贯穿所述骨架的外表面,所述小径孔贯穿所述骨架的内表面,所述大径孔中用于设置药物。
可选地,至少部分所述骨架具有镂空区,至少部分所述骨架在自身所述镂空区以外的实体区设置所述载药槽。
可选地,所述镂空区由连续设置的一整片镂空槽组成,和/或,所述镂空区由非连续设置的多个镂空槽组成。
可选地,所述骨架为片状或块状结构,且所述骨架的中间部自一端向相对的另一端延伸形成有连续的一整片所述镂空槽,并沿着连续的一整片所述镂空槽以外的实体区设置所述载药槽。
可选地,所述骨架为网状支架结构,所述网状支架结构中各个网格的网孔形成所述镂空槽,且所述网格的杆部表面设置有所述载药槽。
可选地,所述网状支架结构为单层网片结构,并包括沿所述底座的周向并排设置的多个波段,所有所述波段的一端相互连接后与所述底座连接,所有所述波段相对的另一端相互连接后形成所述骨架的自由端,且任意相邻两个所述波段之间通过可变形的连接杆连接。
可选地,每个所述波段包括多个重复单元,所述重复单元由圆弧段以及波杆段组成,每一个所述圆弧段的两端分别连接所述波杆段,所述波杆段的外表面设置有所述载药槽,所述载药槽的长度小于或等于所述波杆段的长度。
可选地,每一个所有所述骨架的所述自由端设置有穿线孔;其中,所述穿线孔贯穿所述载药槽设置,和/或,所述穿线孔与所述载药槽相互独立地设置。
可选地,所述心室功能辅助装置还包括与所述底座连接的锚定结构,所述锚定结构用于与目标组织连接。
可选地,所述锚定结构包括向所述支撑结构的外部延伸的多个刺状结构组成,所述刺状结构用于刺入所述目标组织,或者,所述锚定结构包括螺旋状结构,所述螺旋状结构用于旋入所述目标组织。
可选地,所述锚定结构中用于插入所述目标组织的部分被配置为由生物可降解材料制成。
可选地,所述底座上设置有锁紧机构,所述锁紧机构用于与所述输送装置卡合连接。
可选地,所述锁紧机构包括多个弹性卡合件,所有所述弹性卡合件沿所述底座的周向依次分布;所述弹性卡合件被配置为在受到外力时缩回所述底座内,并在解除外力后利用自身弹性伸出所述底座。
可选地,还包括设置在所述载药槽中的药物结构,所述药物结构由药物和聚合物载体组成。
可选地,每一个所述骨架自身具有弹性,和/或,每一个所述骨架的所述自由端的端面为光滑弧面。
可选地,所述支撑结构展开后的最大直径大于所述支撑结构与心室内壁相贴靠部位的心室内径,以使得所述支撑结构利用自身的扩张力支撑在心室内壁上。
可选地,所述骨架的数量为三根或四根,并且所有所述骨架沿所述底座的周向均匀分布。
为实现上述至少一个目的,根据本发明的第二个方面,提供一种输送回收装置,用于实现任一项所述的心室功能辅助装置的输送和回收,其包括回收装置和输送装置,所述回收装置包括收紧机构,所述输送装置包括推送杆和输送鞘管,所述推送杆的远端用于与所述心室功能辅助装置的底座可解脱地连接,所述收紧机构用于与所述心室功能辅助装置的支撑结构可解脱地连接,所述推送杆和所述收紧机构用于相互配合,以将所述心室功能辅助装置装载至所述输送鞘管中和/或自所述输送鞘管中输出。
可选地,所有所述骨架的所述自由端设置有穿线孔,所述收紧机构包括收紧线,所述收紧线用于依次穿过所有所述骨架上的所述穿线孔,并在所述输送鞘管的内部沿轴向延伸,且所述收紧线的两端伸出所述输送鞘管的近端并固定设置。
可选地,所述回收装置还包括用于设置在所述输送鞘管中的回收导管,所述回收导管与所 述推送杆在所述输送鞘管中并排设置,所述收紧线用于穿入所述回收导管中,所述回收导管的近端设置有固定结构,所述固定结构用于固定所述收紧线的两端。
可选地,所述推送杆和所述回收导管设置在所述输送鞘管的同一个腔室内或不同腔室内。
可选地,所述回收导管具有轴向延伸且相互独立的两个腔室,所述收紧线的两股线分别穿设在所述回收导管的两个所述腔室中。
可选地,所述输送装置还包括用于设置在所述输送鞘管中的附加导管,所述附加导管用于外套在所述推送杆的外部,并用以解除所述推送杆与所述底座之间的连接。
可选地,所述底座上设置有锁紧机构,所述推送杆的远端设置有连接件,所述连接件与所述锁紧机构卡合连接。
可选地,所述连接件为中空管状结构并用于套设在所述底座上。
可选地,所述推送杆为由单股或多股丝螺旋绕制而成的绕簧结构,和/或,所述推送杆沿自身轴向具有不同的硬度,所述推送杆的中间部分的硬度小于所述推送杆的近端部分和远端部分的硬度。
可选地,所述输送鞘管具有位于远端的柔性远端部分,所述柔性远端部分用于收纳所述心室功能辅助装置。
为实现上述至少一个目的,根据本发明的第三个方面,提供一种心室功能助植入系统,其包括任一项所述的心室功能辅助装置以及任一项所述的输送回收系统。
为实现上述至少一个目的,本发明还提供了一种植入方法,具体包括如下步骤:
a)将心室功能辅助装置装载在输送装置的推送杆上,并将回收装置的收紧线预装载在所述心室功能辅助装置中的骨架的穿线孔中;
b)将输送装置和回收装置一同沿着输送装置的输送鞘管递送至左心室的合适位置;到达合适位置后,释放所述心室功能辅助装置,并判断心室功能辅助装置是否释放成功;
c)如果心室功能辅助装置释放成功,则撤出收紧线,并利用附加导管使推送杆与心室功能辅助装置分离,最后将推送杆、附加导管等依次撤出人体;
其中,如果心室功能辅助装置释放不成功或释放位置不合适时,则拉动收紧线的两端,并推进输送装置的推送杆,将心室功能辅助装置的近端开口(即所有骨架的自由端所限定的近端开口)束缚收拢;最后配合推送杆和收紧线的控制,将收拢后的心室功能辅助装置移动至输送鞘管中再装载,并通过回撤输送鞘管可以将心室功能辅助装置取出。
综上所述,本发明提供的心室功能辅助装置包括:支撑结构和底座;所述底座用于与输送装置可解脱地连接;所述支撑结构包括多根骨架,所有所述骨架沿所述底座的周向依次分布,每一个所述骨架的一端与所述底座连接,另一端为自由端,且至少部分所述骨架的外表面设置有载药槽。如此配置时,一方面利用骨架的自身扩张力而与心室内壁贴合在一起,从而在舒张期增强心室功能,帮助僵硬不顺的心室适当放松和充盈,另一方面,避免了在骨架的内外表面均涂覆药物涂层,由于通过骨架的外表面上设置的载药槽来携带药物,使得载药槽携带的药物释放主要针对心室内壁方向进行释放,该方式可以实现药物的靶向给药,不仅减少了药物植入量,而且药物也不会四处扩散释放影响心室组织的生长,在不影响心室组织生长的情况下,有利于心室组织在心室功能辅助装置上攀爬,从而提高植入后心室功能辅助装置与心室内壁贴合紧密性以及长期贴合稳定性。
本发明提供的心室功能辅助装置在至少部分所述骨架上设置有镂空区,如此配置,有利于心室组织穿过镂空区向支撑结构的内部生长,进一步增强心室功能辅助装置与心室内壁贴合紧密性以及长期贴合稳定性。
本发明提供的输送回收系统在心室功能辅助装置释放位置不合适或者释放不成功时,可以利用输送装置和回收装置将所述心室功能辅助装置回收至输送鞘管中再装载,而无需采用外科手术的方式将所述心室功能辅助装置回收,减小了对患者的损伤。
本发明提供的心室功能辅助装置与推送杆优选采用弹性卡合件卡合连接,如此配置时,解除连接的过程更简单,手术操作难度降低,并且与传统螺纹连接相比,弹性卡合件的卡接能够减少脱离过程中锚定结构对心室组织造成的损伤,更加的安全和可靠。
附图说明
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。附图中:
图1a是本发明实施例一中的心室功能辅助装置折叠时的结构示意图;
图1b是图1a中心室功能辅助装置a位置的局部放大图;
图1c是图1b中沿A-A连线的剖面图;
图2是本发明实施例一中的心室功能辅助装置完全展开时的结构示意图;
图3a至图3d分别是本发明实施例一中的底座锁紧和解锁的原理图;
图4a是本发明实施例一中的锚定结构与底座的配合示意图,其中骨架以折叠状态表示;
图4b是图4a中b位置的局部放大图;
图5是本发明实施例一中的推送杆及其远端连接件的结构示意图;
图6是本发明实施例一中的推送杆与心室功能辅助装置的配合示意图,其中骨架以折叠状态表示;
图7是本发明实施例一中的心室功能辅助装置及回收装置位于输送鞘管中输送的结构示意图;
图8a至图8c分别是本发明实施例一中的输送鞘管和回收导管的结构简易图;
图9a和图9b分别是本发明实施例一中的心室功能辅助装置从输送鞘管远端释放时的状态图,其中图9a为局部释放,图9b为完全释放后完全展开;
图10a至图10d分别是本发明实施例一中的输送装置及回收装置撤出人体的过程示意图,其中图10a是解除推送杆和心室功能辅助装置的连接,图10b是撤出推送杆,图10c是撤出附加导管,图10d是撤出导丝和输送鞘管;
图11a是本发明实施例二中的锚定结构与底座的配合示意图,其中支撑结构处于折叠状态;
图11b是图11a中c位置的锚定结构的结构示意图;
图11c是本发明实施例二中的锚定结构与底座的配合示意图,其中支撑结构处于展开状态;
图12a和图12b分别是本发明实施例三中的心室功能辅助装置的结构示意图,其中图12a为四根骨架,图12b为三根骨架;
图13是本发明实施例三中的心室功能辅助装置的局部放大示意图,其中标号d指示的是其中一个载药槽所在的位置。
图中:10-支撑结构;11-骨架;101-波段;102-连接杆;103-重复单元;103a-圆弧段;103b-波杆段;111-固定端;112-骨架本体;113-自由端;114-镂空区;115-载药槽;115a-大径孔;115b-小径孔;20-底座;21-内孔;22-锁紧机构;221-弹性卡合件;201-收纳孔;23-心室组织;24-心室壁;26-导丝;110-推送杆;130-连接件;131-空腔;132-卡槽;150-输送鞘管;151-柔性远端部分;30-锚定结构;31-刺状结构;32-锚定内孔;33-螺旋状结构;210-收紧线;220-回收导管;221-第二快速交换接口;160-第一快速交换接口;230-附加导管。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、明晰地辅 助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。
如在本发明中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,术语“或”通常是以包括“和/或”的含义而进行使用的,术语“若干”通常是以包括“至少一个”的含义而进行使用的,术语“至少两个”通常是以包括“两个或两个以上”的含义而进行使用的,此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者至少两个该特征,“一端”与“另一端”以及“近端”与“远端”通常是指相对应的两部分,其不仅包括端点。术语“近端”和“远端”在本文中相对于心室功能辅助装置定义,该心室功能辅助装置具有用于介入人体的一端与伸出体外的操控端。术语“近端”是指元件的更靠近心室功能辅助装置之伸出体外的操控端的位置,术语“远端”是指元件的更靠近心室功能辅助装置之介入人体的一端且因此更远离心室功能辅助装置之操控端的位置。可选的,在手动或用手操作的应用场景中,术语“近端”和“远端”在本文中相对于操作者诸如外科医生或临床医生来定义。术语“近端”是指元件的更靠近操作者的位置,并且术语“远端”是指元件的更靠近心室功能辅助装置并且因此更远离操作者的位置。此外,如在本发明中所使用的,“安装”、“相连”、“连接”,一元件“设置”于另一元件,应做广义理解,通常仅表示两元件之间存在连接、耦合、配合或传动关系,且两元件之间可以是直接的或通过中间元件间接的连接、耦合、配合或传动,而不能理解为指示或暗示两元件之间的空间位置关系,即一元件可以在另一元件的内部、外部、上方、下方或一侧等任意方位,除非内容另外明确指出外。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。此外,诸如上方、下方、上、下、向上、向下、左、右等的方向术语相对于示例性实施方案如它们在图中所示进行使用,向上或上方向朝向对应附图的顶部,向下或下方向朝向对应附图的底部。本文中,“径向”或“横向”指的是垂直于纵向轴线的方向,“轴向”是平行于纵向轴线的方向,“周向”指的是围绕纵向轴线的方向。
为了解决现有技术中的至少一个技术问题,本发明公开了一种心室功能辅助装置,用于帮助心脏舒张,并提升药物利用率,降低植入药物剂量,且提高植入后心室功能辅助装置与心室内壁的贴合紧密性以及长期贴合稳定性。本发明还公开了一种输送回收系统,用于实现心室功能辅助装置的输送和回收,且能够减少输送装置脱离及回撤时对心室内壁造成的损伤,另还可避免采用外科手术的方式对心室功能辅助装置进行回收再装载,降低对患者的伤害。本发明还公开了一种心室功能辅助系统,包括心室功能辅助装置以及输送回收系统。
接下去结合附图和优选实施例对本发明作进一步地说明,且在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互补充或相互组合。本文中,可解脱连接包括可分离连接,即结构之间连接后还能解除连接。需说明的是,支撑结构中的骨架在折叠状态下由于被输送鞘管所束缚而容易被拉直,使得原先弯曲的骨架在输送鞘管中折叠后几乎呈现为沿输送鞘管的直线形状,反之,当支撑结构脱离输送鞘管的束缚后,原先直线形状的骨架恢复原状而呈现为沿自身长度方向的弧线形状。
<实施例一>
图1a至图1c示出了本发明实施例一中的心室功能辅助装置处于折叠状态时的结构,图2示出了心室功能辅助装置处于展开状态时的结构。如图1和图2所示,本发明实施例一提供的心室功能辅助装置大体为伞状结构,并且具有折叠状态和展开状态,并能够在折叠状态和展开状态之间切换。具体地,所述心室功能辅助装置包括支撑结构10和底座20;所述底座20用于与输送装置可解脱地连接;所述支撑结构10展开后用于贴合心室内壁,以帮助心脏舒张;所述支撑结构10包括用于形成所述伞状结构的伞面的多根骨架11,所述骨架11的数量至少为两根,优选为两根以上,如三根、四根或更多根,更优选为三根或四根。三根或四根骨架11 不会过多地增加心脏负担,而且还能提供足够的舒张力。
所有所述骨架11沿底座20的周向依次分布,优选沿底座20的周向均匀分布。每一个所述骨架11的一端(即固定端111)与底座20连接,如与底座20的远端连接,连接方式不限定,例如可采用焊接、粘接等连接方式;每一个所述骨架11的另一端为自由端113;每一个所述骨架11还具有在固定端111和自由端113之间延伸的骨架本体112。在一应用场景中,所述骨架11的固定端111即对应于骨架11的远端,所述骨架11的自由端113即对应于骨架11的近端。优选地,每一个所述骨架11自身具有弹性,即采用弹性骨架构造支撑结构10,从而利用支撑结构10自身弹性实现自主扩张。
图1为折叠状时的状态,其中所述骨架本体112向靠近底座20的纵向轴线方向聚拢回收,使整个心室功能辅助装置的径向直径显著减小,呈现为折叠伞状。该折叠状态便于将整个心室功能辅助装置收纳在输送装置的输送鞘管中。相反的,当所有所述骨架11的自由端113向远离底座20的纵向轴线方向释放展开后,整个心室功能辅助装置的径向直径增大,呈现为展开伞状,即图2所示。在展开状态下,所述骨架本体112的延伸方向与底座20的纵向轴线之间呈夹角,该夹角可以大于90°且小于180°,也可以小于或等于90°,夹角的大小具体由所贴靠的心室内壁的形状所决定。而且这里的夹角为骨架11的延伸方向与底座20的纵向轴线的正方向之间的夹角,正方向是指底座20的远端指向近端的方向;延伸方向可以是骨架本体112表面的切线方向,或者是,骨架本体112本身为直线型结构时,骨架11的延伸方向即对应于骨架本体112自身的纵向轴线所在的方向。如此配置后,即可利用骨架11自身的弹性展开并与左心室内壁贴合,帮助心脏舒张,使僵硬不顺的心室适当放松和充盈。
所述骨架11优选由医用金属弹性材料制备而成,能够自主展开。制备骨架11的金属弹性材料不作限制,优选为超弹性材料,更优选为生物相容性优异的轻质超弹性材料,进一步优选为形状记忆合金材料,如镍钛合金等。每根骨架11展开后具有光滑的表面,以实现对心室内壁的无损伤贴靠。一般的,所述骨架11展开后的形状与心室内壁的形状相匹配,由于心室内壁为弧面,则骨架11展开沿自身长度方向的轮廓形状也是弧形,但是弧形可以是相同半径的圆弧或多段不同半径的圆弧相切连接组成。需理解,每一根骨架11可以自适应调整其形态和大小来较好的贴靠心室内壁。优选,所述支撑结构10展开后的最大直径大于其与心室内壁相贴靠部位的心室内径,如所有所述骨架11的自由端113在展开后均匀分布在同一圆周上,该圆的直径应大于骨架11与心室内壁贴靠部位的心室内径,以便支撑结构10利用自身扩张力(弹性力)稳固地支撑在心室壁上。
所述底座20为所述伞状结构的伞柄使用,不仅用于连接支撑结构10,还用于连接输送装置。所述底座20具有纵向贯通的内孔21,导丝可以沿内孔21穿过底座20。所述底座20的大小和形状没有特别的要求,优选为中空圆柱体结构。此外,为了减小药物植入量,提高药物利用率,至少部分所述骨架11的外表面设置有载药槽115,所述载药槽115内用于设置药物结构,所述药物结构由药物和聚合物载体组成。所述聚合物载体与药物混合制成药物原料,药物原料填充在载药槽115内形成药物结构,所述聚合物载体不仅能够承载药物,还用以控制药物的释放速度,使药物以持续的方式释放。进一步地,所述心室辅助装置还包括所述药物结构,所述药物结构设置在载药槽115内。所述载药槽115可以贯通骨架11的内表面和外表面以形成通孔,也可以仅贯通外表面而不贯通内表面以形成盲孔。
本发明提供的心室功能辅助装置可通过载药槽115携带药物,不需要在骨架的内外表面涂覆药物涂层,如此配置时,使得载药槽115内的药物释放主要针对心室内壁方向进行释放,该方式可以实现药物的靶向给药,不仅减少了药物植入量,提高了药物利用率,而且药物也不会四处扩散蔓延影响心室组织(心脏组织)的生长,在不影响心室组织生长的情况下,有利于心室组织在心室功能辅助装置上攀爬,提高植入后心室功能辅助装置与心室内壁贴合紧密性以及长期贴合稳定性。需理解,本发明仅在载药槽115内设置有药物,其他位置没有设置药物。实 际制作时,可以通过精准的喷涂方式,将药物原料喷涂在载药槽115内形成药物结构。
本发明对药物的种类不限定,如药物包括但不限于为促进组织生长的药物。在一实施例中,所述药物可包含抗血栓形成剂、抗凝血剂、抗血小板剂、抗肿瘤剂、抗增殖剂、抗生素、抗炎剂、基因治疗剂、重组DNA产物、重组RNA产物、胶原蛋白、胶原蛋白衍生物、蛋白质类似物、糖类、糖类衍生物、平滑肌细胞增殖抑制剂、内皮细胞迁移、增殖和/或存活的促进剂中的至少一种,及其组合。本发明对聚合物载体的材料不限定,如所述载药基质可选自聚(羟基链烷酸酯)(PHA)、聚(酯酰胺)(PEA)、聚(羟基链烷酸酯-共-酯酰胺)、聚丙烯酸酯、聚甲基丙烯酸酯、聚己内酯、聚(乙二醇)(PEG)、聚(丙二醇)(PPG)、聚(环氧丙烷)(PPO)、聚(富马酸丙烯酯)(PPF)、聚(D-丙交酯)、聚(L-丙交酯)、聚(D,L-丙交酯)、聚(内消旋-丙交酯)、聚(L-丙交酯-共-内消旋-丙交酯)、聚(D-丙交酯-共-内消旋-丙交酯)、聚(D,L-丙交酯-共-内消旋-丙交酯)、聚(D,L-丙交酯-共-PEG)、聚(D,L-丙交酯-共-三亚甲基碳酸酯)、聚(丙交酯-共-乙交酯)、聚(乙醇酸-共-三亚甲基碳酸酯)、聚(三亚甲基碳酸酯)、PHA-PEG、PBT-PEG(PolyActive(R))、PEG-PPOPEG(Pluronic(R))和PPF-共-PEG、聚己内酯、聚甘油癸二酸酯、聚碳酸酯、生物聚酯、聚环氧乙烷、聚对苯二甲酸丁二醇酯(polybutylene terephalate)、聚对二氧环己酮、杂交体、复合物、具有生长调节剂的胶原基质、蛋白聚糖、粘多糖、真空形成的小肠粘膜下层、纤维、几丁质、葡聚糖及其混合物。
所述载药槽115的形状没有特别要求,如为圆形孔或长条形孔或其他形状,一般选择易加工的形状。此外,所述载药槽115的大小和数量根据需求来设定,在满足所需药物量的情况下,能够保证骨架11的力学强度即可。在本发明实施例中,每根骨架11的外表面设置有多个载药槽115,所述骨架11上的载药槽115的具体数量和分布方式不限制。优选地,所述载药槽115在骨架11上按照一定的方式均匀分布,使药物释放更加均匀。此外,实际使用时,可以在部分载药槽115内设置药物结构,或全部载药槽115内设置药物结构,使用者可以根据实际需求自行选择可利用的载药槽115和载药量。优选地,所述载药槽115内设置有小孔,小孔贯通骨架11的内表面,使心脏组织能够穿过载药槽115而向支撑结构10的内部生长,进一步提高骨架11与心室内壁的贴合紧密性以及长期贴合稳定性。优选地,所述载药槽115为阶梯孔,靠近骨架11的外表面的为大径孔,靠近骨架11的内表面的为小径孔,所述药物结构设置在所述大径孔中。
进一步地,至少部分骨架11的表面(包括内表面和/或外表面)覆盖有非药物涂层,所述非药物涂层如为促进心室内壁与骨架11粘附的涂层,又如为防止有害物质析出的氮化铬涂层,如防止一些有害的镍离子析出,或者其他功能的涂层。为了降低重量,减小心脏负担以及适于心脏组织爬架,优选地,至少部分骨架11具有允许心脏组织(即心室组织)穿过的镂空区114,至少部分骨架11在自身镂空区114以外的实体区设置所述载药槽115。因此,生长的心室组织能够穿过镂空区114进一步向支撑结构10的内部生长,以进一步增强骨架11与心室内壁的贴合紧密性以及长期贴合稳定性。
参考图1a,在一具体示例中,所述镂空区114由连续的一整片镂空槽(空白区域)组成,该连续的一整片镂空槽所占面积较大,不仅可以最大化地减轻支撑结构10的重量,并且有利于心脏组织更大范围地攀爬生长,更有效地提高骨架11与心室内壁的贴合紧密性以及长期贴合稳定性。然而本领域技术人员可以理解,在其他实施例中,所述镂空区114也可由非连续设置的多个镂空槽组成。如本发明实施例中,所述骨架11为片状或块状结构,且所述骨架11的中间部自一端向另一端延伸形成有一整片连续的所述镂空槽,并在连续的一整片所述镂空槽以外的实体区设置载药槽115,即沿着整片的镂空槽的边缘的实体区分布载药槽115。
参考图1b和图1c,所述载药槽115优选为阶梯孔,并包括连通的大径孔115a和小径孔115b,大径孔115a的孔径大于小径孔115b的孔径,大径孔115a贯穿骨架11的外表面,小径孔115b贯穿骨架11的内表面,所述药物结构设置在大径孔115a内。当所述药物结构中的药 物释放后,心脏组织能够依次穿过大径孔115a和小径孔115b而向支撑结构10的内部生长。此时,小径孔115b的设置,可以减少药物向骨架11的内表面的泄漏和释放。
进一步地,所述骨架11的自由端113的端面设置为无创伤的表面,即光滑弧面,优选为圆弧面,更优选为半圆形的圆弧面,使骨架本体112与自由端113的端面连接处光滑过渡,即边线处设置光滑圆角,可以减小心室功能辅助装置在输送鞘管移动时的摩擦力,以避免对输送鞘管内壁以及骨架11结构造成损伤,同时也能使得骨架11展开后更为平滑地贴合心室内壁,不会损伤心室组织。
所述心室功能辅助装置完全展开后,所有所述骨架11的自由端113可以分布在同一圆周上,也可以分布在不同的圆周上,即,骨架11可以有长有短,或者展开的程度不同。优选地,所有所述骨架11的自由端113等角度分布于同一圆周上,使得与骨架11贴合的心室内壁受力均匀,辅助心脏舒张效果更好。所述支撑结构10展开后的最大直径,如自由端113所限定的最大直径大于完全舒张开的心室内径,从而在心脏舒张期间,骨架11能够一直对心室内壁施加压力,确保贴合的紧密性以及长期贴合稳定性。
所述骨架11的数量可选为3~10个,长度在25mm~65mm,厚度为0.1mm~1.2mm,该尺寸可适用于大多数患者的心室辅助治疗。优选地,每一根所述骨架11的自由端113设置有穿线孔(未标注),所述穿线孔用于与回收装置可解脱地连接。在一示例中,所述穿线孔与所述载药槽115一体设置,即一些载药槽115可以充当穿线孔。每根骨架11上的穿线孔可以是一个或多个,具体不限定。在另一示例中,所述载药槽115与穿线孔相互独立设置,所述穿线孔仅用于连接回收装置,所述载药槽115仅用于载药。在其他示例中,部分载药槽115与穿线孔重合,另有部分载药槽115与穿线孔是相互独立地设置。
如以上所述,所述底座20与输送装置可解脱地连接。在一优选实施例中,所述底座20上设置有锁紧机构22,所述锁紧机构22用于与输送装置卡合连接。所述锁紧机构22优选为弹性锁紧机构,脱离过程更加简单,降低手术操作难度,并且能够减少脱离过程中锚定结构30对心室组织造成的损伤。
参考图3a至图3d,所述弹性锁紧机构包括多个弹性卡合件221,如两个或三个或更多的弹性卡合件221,所有弹性卡合件221沿底座20的周向依次分布,优选地,所有弹性卡合件221沿底座20的周向均匀分布。每一个弹性卡合件221可伸缩地设置在底座20上,所述弹性卡合件221在受到外力时缩回所述底座20内,并在解除外力后伸出所述底座20。如所述底座20的侧壁上设置有容纳弹性卡合件221的收纳孔201。所述弹性卡合件221在受到外力作用时可以缩进收纳孔201内以解除锁定,在不受到外力作用时在自身弹性力的作用下可以伸出收纳孔201以实现锁定。所述弹性卡合件221可以是片状、柱状、块状等各种形状,具体没有要求。在一具体示例中,所述弹性卡合件221呈半月牙状,所述弹性卡合件221均匀分布于底座20的侧面上。更详细地,如图3a和图3b所示,在未受到外力时,弹性卡合件221从收纳孔201中自动弹出;如图3c和图3d所示,当弹性卡合件221受到径向向内的挤压力Fr时,露出于收纳孔201的弹性卡合件221会逐步缩回至收纳孔201中。
进一步地,本发明实施例还提供一种输送回收系统,用于实现心室功能辅助装置的输送和回收。参考图5,所述输送回收系统包括输送装置,用于将心室功能辅助装置递送至目标位置释放。所述输送装置包括推送杆110,所述推送杆110的远端用于与底座20可解脱地连接,可解脱的连接方式如螺纹连接、卡合连接或其他机械连接或非机械连接方式,优选为卡合连接。在一具体实施例中,所述推送杆110的远端设置有连接件130,所述连接件130用于与底座20上的锁紧机构22卡合连接。
在一具体示例中,所述连接件130为中空管状结构,内部形成空腔131,所述连接件130通过空腔131外套在底座20上。所述连接件130的侧壁设置有卡槽132,所述弹性卡合件221用于插入卡槽132以实现卡合连接。所述卡槽132与弹性卡合件221一一对应设置。所述连接 件130优选为薄壁圆柱结构,内径可选为3.5mm~8mm,壁厚0.5mm~1.5mm。更具体地,参考图6,所述弹性卡合件221从底座20侧面的收纳孔201中弹出并嵌入至连接件130的卡槽132中,弹出后的弹性卡合件221起到止动块的作用,以防止输送过程中心室功能辅助装置与推送杆110分离。
所述推送杆110的近端优选地设置有能够转动和推拉推送杆110的手柄(图中未示出),通过操纵该手柄能够实现心室功能辅助装置的推进、回撤以及方位调整。此外,在释放失败而对心室功能辅助装置进行回收时,所述推送杆120还可以充当顶杆使用,通过推送杆120和回收装置相配合可以实现心室功能辅助装置的聚拢回收。所述推送杆110为空心管状结构,以允许导丝穿过。如推送杆110为由单股或多股丝螺旋绕制形成空心管状的绕簧结构。所述绕簧结构可以增强推送杆110的弯曲性能,方便推送杆110通过复杂的心内组织结构。优选地,所述推送杆110在自身轴向上具有不同的硬度分布,如由不同硬度的分段连接而成,可选地,所述推送杆110的中间部分的硬度最小,例如所述推送杆110的中间部分可以采用较软的材料或结构,便于中间部分的弯曲,或者所述推送杆110的中间部分可以采用容易弯曲的螺旋管。作为一优选实施例,所述推送杆110包括轴向依次分布的远端部分、中间部分和近端部分,所述近端部分和远端部分的硬度大于中间部分的硬度,使中间部分更容易弯曲,而近端部分和远端部分可以采用较硬的材料,近端部分需要保证推送性能,远端部分需要保证回收时的操作性能。
参考图7,所述输送装置还包括输送鞘管150,使心室功能辅助装置压缩在输送鞘管150内被递送至目标位置,且所述推送杆110在输送鞘管150内操作心室功能辅助装置以实现释放或回收等操作。
返回参考图4a和图4b,所述心室功能辅助装置优选还包括与底座20连接的锚定结构30,所述锚定结构30位于心室功能辅助装置的最远端。所述底座20与锚定结构30可以一体成型制作或分开制作后连接。所述锚定结构30用于与心尖组织(即目标组织)连接,以此避免在骨架11上设置微刺或倒刺等固定结构,从而降低固定时对心脏组织的损伤,并且降低固定控制难度。在一具体实施例中,所述锚定结构30包括基座和设置于基座上的多个刺状结构31,所述刺状结构31朝支撑结构10的外部延伸,并用于刺入心尖组织而与心室组织固定连接。此外,所述锚定结构30的基座与底座20连接,如焊接、粘接或一体成型等。所述锚定结构30设置有允许导丝穿过的锚定内孔32,所述锚定内孔32的直径可为1mm~3mm,与导丝的直径匹配。所述刺状结构31优选具有加宽的头部,以实现更牢固的固定。所述刺状结构31的长度不宜过长或过短,过长容易刺穿心室壁,造成心室穿孔,过短则连接稳定性不足,一般,所述刺状结构31的长度不超过心室壁的厚度,尤其是心尖组织处的心室壁厚度。所述刺状结构31的数量根据需要设置,优选为3~8个,长度为3mm~22mm。所述刺状结构31可单独制作后固定在基座上。所述刺状结构31的材料可以是生物相容性金属材料或可降解材料。
返回参考图7,所述输送鞘管150优选具有位于远端的柔性远端部分151,所述柔性远端部分151相对于输送鞘管150的其他部位的结构更为柔软,便于装入和推出心室功能辅助装置时降低装载和释放难度。通常,所述心室功能辅助装置折叠后容纳在柔性远端部分151内。实际制作时,可以从材料和/结构上来确保柔性远端部分151的柔软性,如配置成细长的柔性管或配置成具有轴向延伸缝隙的管子,缝隙可以闭合或打开来实现管子的折叠和伸展,或者选用硬度较小材料制作等,存在多种实现方式,本申请对此不加限定。在折叠状态下,通过输送鞘管150的远端开口,将心室功能辅助装置放置于柔性远端部分151内。所述输送鞘管150的内径一般为15~18Fr,所述推送杆110的长度通常与输送鞘管130的长度相当。
所述输送回收系统还包括回收装置,用于与输送装置配合,实现心室功能辅助装置的半回收或全回收。所述回收装置具体包括收紧机构,所述收紧机构用于与支撑结构10可解脱地连接,所述推送杆110和所述收紧机构用于相互配合,以将心室功能辅助装置装载至输送鞘管150中。
参考图7和图8a~图8c,所述收紧机构优选包括收紧线210,所述收紧线210具有第一端、第二端以及在所述第一端和所述第二端之间延伸的线本体,所述线本体用于依次穿过所有所述骨架11上的所述穿线孔,并进一步在所述输送鞘管150的内部沿轴向延伸,且所述第一端和所述第二端设置在所述输送鞘管150的近端并锁定。如此配置时,所述收紧线210能够收拢支撑结构10的近端,并进一步将收拢的支撑结构10拉入输送鞘管150中。在回收时,所述收紧线210与推送杆110相互配合才能实现,推送杆110先顶住底座20,使心室功能辅助装置保持不动,然后收紧线210再收拢支撑结构10的近端,收拢后,推送杆110和收紧线210一起将心室功能辅助装置装入输送鞘管150中。
采用收紧线210和穿线孔的方式回收心室功能辅助装置时,由于收紧线210的尺寸小,柔性好,因此可以减小输送装置的尺寸,还可以确保输送装置的柔顺性,并且方便撤出和回收。所述收紧线210应足够长,应长于输送鞘管150的长度,能从输送鞘管150的远端延伸直至回绕后从输送鞘管150的近端伸出。所述收紧线210用于牵拉收拢心室功能辅助装置,以回收所述心室功能辅助装置至输送鞘管150内,且收紧线210还可以在心室功能辅助装置从输送鞘管150的远端脱离后控制骨架11展开的速率,可以减缓骨架11展开的速率,避免骨架11快速自膨损伤心室组织。当心室功能辅助装置通过输送鞘管150输送至指定位置时,收紧线210能使得骨架11完全释放展开,又能有部分裸露在输送鞘管150外。
可选地,所述回收装置还包括回收导管220,所述回收导管220用于设置在输送鞘管150内并与推送杆110并排设置,即推送杆110和回收导管220不是相互嵌套的关系。所述回收导管220用于容纳收紧线210,避免收紧线210缠绕在推送杆110上增加回收的难度。当然在其他实施例中,也可取消回收导管220。进一步地,所述回收导管220的近端设置有固定结构,用于固定收紧线210的两端。在一些实施例中,所述推送杆110与回收导管220设置在输送鞘管150的同一腔室内。在另一些实施例中,所述推送杆110与回收导管220设置在输送鞘管150的两个不同腔室,如图8c所示。当输送鞘管150设置两个腔室时,优选,相邻腔室间应设置有第一快速交换接口160,所述第一快速交换口160沿输送鞘管150的轴向延伸一定长度,使得收紧线210或其它所需部件可以通过第一快速交换口160,以便于快速操作,提升手术效率。
本实施例的回收导管220可以只设置一个腔室,也可以设置轴向延伸且相互独立的两个腔室。当回收导管220设置两个腔室时,所述收紧线210的两股线分别穿过回收导管220的不同腔室,以防牵拉收紧线210过程中出现双线缠绕、打结等情况,使回收操作更为安全和可靠。所应理解,收紧线210的两股线是指穿过穿线孔后,从输送鞘管150的远端返回至近端的一部分,以及在穿设穿线孔之前,从输送鞘管150的近端延伸至远端的另一部分。
参考图8b,在所述回收导管220的侧壁还可以设置有第二快速交换口221,该第二快速交换口221如呈方形,优选其沿着回收导管220的轴向延伸一定长度,将第二快速交换口221设置在回收导管220的侧壁,以方便收紧线210的快速操作,使手术操作更加的方便。所述回收导管220的近端优选设置有两个拧紧阀(图中未示出),所述拧紧阀作为固定结构,分别将收紧线210的两端固定,由此牵拉收紧线21的操作可以通过回撤回收导管220来实现,这种设置便于力的传递,从而降低心室辅助功能装置的回收难度。
本实施例还提供一种上述心室功能辅助装置的优选植入方法,以左心室为例,包括以下步骤:
步骤1、将心室功能辅助装置与推送杆110相连接,并将回收装置的收紧线210预装载在心室功能辅助装置近端的穿线孔中,通过推送杆110并配合收紧线210将所述心室功能辅助装置收纳入输送鞘管150中;
步骤2、将推送杆110、心室功能辅助装置、回收装置一同沿输送鞘管150送至左心室的合适位置;
步骤3、释放心室功能辅助装置,并判断是否释放成功,如释放位置是否合适、骨架11是否完全展开、骨架11与心室内壁是否贴合不良等。
如果心室辅助功能装置释放成功,则执行如下步骤:
步骤4a、卸载收紧线210和回收导管220,解除心室辅助功能装置与推送杆110的连接,将除所述心室功能辅助装置以外的其他部件取出人体。
如果心室辅助功能装置释放不成功,则执行如下步骤:
步骤4b、利用推送杆110顶住心室功能辅助装置,同时回拉回收导管220和收紧线210,使骨架11近端朝着底座20的纵向轴线合拢收束,随后将折叠后的心室功能辅助装置拉回至输送鞘管150中再装载,装载完成后,可以考虑再次释放或将所有装置撤出人体。
在步骤1中,利用底座20上的锁紧机构22将心室功能辅助装置与推送杆110上的连接件130相连接,同时将收紧线210依次穿过所有骨架11近端的各个穿线孔,并从所述输送鞘管150的远端延伸直至从所述回收导管220的近端伸出,利用回收导管220近端的拧紧阀(未示出)将收紧线210的两端固定,通过推送杆110和收紧线210相配合,将心室功能辅助装置折叠收纳入输送鞘管150的柔性远端部分151内。
在步骤2中,在正式植入心室功能辅助装置前,首先通过穿刺技术将导丝的头端沿股静脉经下腔静脉穿入到患者的左心室内,随后将装有心室功能辅助装置和回收装置的输送鞘管150沿着导丝输送到左心室的合适位置。
接下去结合图9a至图9b,以及图10a至图10d更详细的说明心室功能辅助装置的输送和释放过程。
参考图9a,当输送鞘管150的远端到达左心室的合适位置后,通过向输送鞘管150的远端推动推送杆110,可以逐步使心室功能辅助装置从输送鞘管150的远端脱离出来。
参考图9b,当心室功能辅助装置完全脱离输送鞘管150后,各个骨架11由于超弹性或形状记忆会径向向外逐步展开直至与心室内壁24贴合,此时通过牵拉收紧线210可以减缓骨架11展开的速率,避免骨架11快速自膨损伤心室组织23;如果释放成功,通过推动推送杆110,使得锚定结构30底部的刺状结构31扎入心尖的心室组织23内,与心尖建立固定连接;如果出现释放位置不合适、骨架11与心室壁24贴合不良等情况,可以牵拉收紧线210并配合推送杆110,将心室功能辅助装置收回到输送鞘管150中再装载,再通过输送鞘管150的转动等操作来调整输送鞘管150远端的位置,以调整心室功能辅助装置的位置,调整完后,再次通过推送杆110将心室功能辅助装置释放展开。
在一非限制性实施例中,当心室辅助装置释放成功后,推送杆110和心室功能辅助装置之间的连接可以通过引入一根附加导管230来解除,如图10a至图10d所示。所述输送装置优选还包括附加导管230,所述附加导管230用于外套在所述推送杆110的外部,并用以解除所述推送杆110与所述底座20之间的连接,即锁紧机构22与连接件130解除连接。在一具体实施例中,所述附加导管230的内径略大于推送杆110的远端连接件130的外径,从而使得所述连接件130能够朝内嵌入至附加导管230中。解除过程请参考图10a和图10b,首先将附加导管230通过导丝26推入左心室,直至推送杆110上的连接件130完全朝内嵌入至附加导管230中,此时附加导管230的内壁对弹性卡合件221(如压簧片)施加径向的挤压力,从而使得弹性卡合件221完全收缩至收纳孔201中,使得推送杆110和心室辅助装置之间的连接被解除,此后,朝近端拉动推送杆110将其取出即可。当推送杆110撤出后,依次将除心室功能辅助装置以外的其他部件取出,如图10c和10d所示。
<实施例二>
以下主要针对与实施例一的区别之处进行说明,对于与实施例一相同的部分不再展开说明,且相同部分请参考实施例一。
参考图11a~图11c,与实施例一不同之处是,本实施例的锚定结构30包括基座和设置于基座上的螺旋状结构33,所述螺旋状结构33用于旋入心室壁24后与心室组织23连接,而实施例一中的锚定结构30通过刺状结构31刺入心室壁24后与心室组织23连接。
类似的,螺旋状结构33的材料可为生物相容性金属或可降解材料,所述螺旋状结构33的直径优选为1mm~5mm,制造该螺旋状结构33的丝径优选为0.2mm~0.5mm,并调整螺旋的长度,优选螺旋长度为4mm~20mm,使其不会穿透心室组织23。本实施例使得心室功能辅助装置与心室组织23的连接更为稳固。可选,所述螺旋状结构33由生物可降解材料制成。
<实施例三>
以下主要针对与实施例一的区别之处进行说明,对于与实施例一相同的部分不再展开说明,且相同部分请参考实施例一。与实施例一不同之处在于,本实施例中的骨架11为网状支架结构,即类支架构造,所述网状支架结构中各个网格的网孔形成镂空槽,且所述网格的杆部表面设置有载药槽115。
参考图12a、图12b和图13,在具体实施例中,所述骨架11为单层网片结构,并包括沿底座20的周向并排设置的多个波段101,所有所述波段101的一端相互连接后与所述底座20连接,所有所述波段101的另一端相互连接后形成所述骨架11的自由端113,且任意相邻两个所述波段101之间通过可变形的连接杆102连接,所述连接杆102用以保持结构的稳定性。该种结构中的骨架11留设有大量镂空槽,这些镂空槽通过连接杆102分开,其中每一根骨架11可以包括两个或更多个的波段101,本发明实施例中,所述波段101优选为两个。所述连接杆102自身可以伸缩变形,结构可以是多种,一般为折线型结构或曲线型结构,如为N型结构,也可以设置为S型、Z型结构或者其他形状结构。
参考图13,每个所述波段101包括多个重复单元103,所述重复单元103由圆弧段103a以及波杆段103b组成,每一个所述圆弧段103a的两端分别连接两根所述波杆段103b,所述波杆段103b的外表面设置有所述载药槽115。所述波杆段103b的宽度和/或厚度大于连接杆102的相应尺寸。由于波段01的尺寸一般很小,因此在加工时,可通过激光刻蚀的方式在波杆段103b上形成载药槽115,载药槽115的长度小于或等于波杆段103b的长度。所述波杆段103可以是直杆或弯杆,不作限定。
本实施例中的骨架由于为网状支架结构,可以显著降低心室功能辅助装置的重量,减轻心脏负担,也能够提高与心室壁24的贴合度和长期贴合稳定性,同时也增加了骨架11侧向的灵活性,减少操作期间可能在骨架11上产生的应力,特别是与心室扭转和纵向运动有关的应力。所述骨架11的数量根据需求设置,如在一实施例中,如图12a所示,所述骨架11的数量为四根,沿周向均匀分布,如在另一实施例中,如图12b所示,所述骨架11的数量为三根,沿周向均匀分布。
进一步地,基于上述任一实施例,本申请还提供一种心室功能辅助系统,其包括任一实施例的心室功能辅助装置以及输送回收系统。
综上所述,本发明提供的心室功能辅助装置一方面利用骨架的自身扩张力与心室内壁贴合在一起,从而在舒张期增强心室功能,帮助僵硬不顺的心室适当放松和充盈,另一方面,由于通过骨架的外表面上设置的载药槽来携带药物,从而避免了在骨架的内外表面涂覆药物涂层,使得载药槽携带的药物释放主要针对心室内壁方向进行释放,该方式可以实现药物的靶向给药,不仅减少了药物植入量,而且药物也不会四处扩散释放影响心室组织的生长,在不影响心室组织生长的情况下,有利于心室组织在心室功能辅助装置上攀爬而提高植入后心室功能辅助装置与心室内壁贴合紧密性以及长期贴合稳定性。
应理解,上述实施例具体公开了本发明优选实施例的特征,使得本领域技术人员可以更好地理解本发明。本领域技术人员应当理解,在本申请文件公开内容的基础上,容易将本发明做 适当修改,以实现与本发明所公开的实施例相同的目的和/或实现相同的优点。本领域技术人员还应该认识到,这样的相似构造不脱离本发明公开的范围,并且在不脱离本发明公开范围的情况下,它们可以进行各种改变、替换和变更。

Claims (29)

  1. 一种心室功能辅助装置,其特征在于,具有折叠状态和展开状态,并能够在所述折叠状态和所述展开状态之间切换;所述心室功能辅助装置包括支撑结构和底座;所述底座用于与输送装置可解脱地连接;所述支撑结构包括多根骨架,所有所述骨架沿所述底座的周向依次分布;每一个所述骨架的一端与所述底座连接,另一端为自由端;且至少部分所述骨架的外表面设置有载药槽。
  2. 根据权利要求1所述的心室功能辅助装置,其特征在于,所述载药槽包括连通的大径孔和小径孔,所述大径孔的孔径大于所述小径孔的孔径,所述大径孔贯穿所述骨架的外表面,所述小径孔贯穿所述骨架的内表面,所述大径孔中用于设置药物。
  3. 根据权利要求1或2所述的心室功能辅助装置,其特征在于,至少部分所述骨架具有镂空区,至少部分所述骨架在自身所述镂空区以外的实体区设置所述载药槽。
  4. 根据权利要求3所述的心室功能辅助装置,其特征在于,所述镂空区由连续设置的一整片镂空槽组成,和/或,所述镂空区由非连续设置的多个镂空槽组成。
  5. 根据权利要求4所述的心室功能辅助装置,其特征在于,所述骨架为片状或块状结构,且所述骨架的中间部自一端向相对的另一端延伸形成有连续的一整片所述镂空槽,并沿着连续的一整片所述镂空槽以外的实体区设置所述载药槽。
  6. 根据权利要求4所述的心室功能辅助装置,其特征在于,所述骨架为网状支架结构,所述网状支架结构中各个网格的网孔形成所述镂空槽,且所述网格的杆部表面设置有所述载药槽。
  7. 根据权利要求6所述的心室功能辅助装置,其特征在于,所述网状支架结构为单层网片结构,并包括沿所述底座的周向并排设置的多个波段,所有所述波段的一端相互连接后与所述底座连接,所有所述波段相对的另一端相互连接后形成所述骨架的自由端,且任意相邻两个所述波段之间通过可变形的连接杆连接。
  8. 根据权利要求7所述的心室功能辅助装置,其特征在于,每个所述波段包括多个重复单元,所述重复单元由圆弧段以及波杆段组成,每一个所述圆弧段的两端分别连接所述波杆段,所述波杆段的外表面设置有所述载药槽,所述载药槽的长度小于或等于所述波杆段的长度。
  9. 根据权利要求1或2所述的心室功能辅助装置,其特征在于,每一个所述骨架的所述自由端设置有穿线孔;其中,所述穿线孔贯穿所述载药槽设置,和/或,所述穿线孔与所述载药槽相互独立地设置。
  10. 根据权利要求1或2所述的心室功能辅助装置,其特征在于,还包括与所述底座连接的锚定结构,所述锚定结构用于与目标组织连接。
  11. 根据权利要求10所述的心室功能辅助装置,其特征在于,所述锚定结构包括向所述支撑结构的外部延伸的多个刺状结构,所述刺状结构用于刺入所述目标组织,或者,所述锚定结构包括螺旋状结构,所述螺旋状结构用于旋入所述目标组织。
  12. 根据权利要求10所述的心室功能辅助装置,其特征在于,所述锚定结构中用于插入所述目标组织的部分被配置为由生物可降解材料制成。
  13. 根据权利要求1或2所述的心室功能辅助装置,其特征在于,所述底座上设置有锁紧机构,所述锁紧机构用于与所述输送装置卡合连接。
  14. 根据权利要求13所述的心室功能辅助装置,其特征在于,所述锁紧机构包括多个弹性卡合件,所有所述弹性卡合件沿所述底座的周向依次分布;每一个所述弹性卡合件被配置为在受到外力时缩回所述底座内,并在解除外力后利用自身弹性伸出所述底座。
  15. 根据权利要求1或2所述的心室功能辅助装置,其特征在于,还包括设置在所述载 药槽中的药物结构,所述药物结构由药物和聚合物载体组成。
  16. 根据权利要求1或2所述的心室功能辅助装置,其特征在于,每一个所述骨架自身具有弹性,和/或,每一个所述骨架的所述自由端的端面为光滑弧面。
  17. 根据权利要求1或2所述的心室功能辅助装置,其特征在于,所述支撑结构展开后的最大直径大于所述支撑结构与心室内壁相贴靠部位的心室内径,以使得所述支撑结构利用自身的扩张力支撑在心室内壁上。
  18. 根据权利要求1或2所述的心室功能辅助装置,其特征在于,所述骨架的数量为三根或四根,并且所有所述骨架沿所述底座的周向均匀分布。
  19. 一种输送回收系统,用于实现如权利要求1-18中任一项所述的心室功能辅助装置的输送和回收,其特征在于,包括回收装置和输送装置,所述回收装置包括收紧机构,所述输送装置包括推送杆和输送鞘管,所述推送杆的远端用于与所述心室功能辅助装置的底座可解脱地连接,所述收紧机构用于与所述心室功能辅助装置的支撑结构可解脱地连接,所述推送杆和所述收紧机构用于相互配合,以将所述心室功能辅助装置装载至所述输送鞘管中和/或自所述输送鞘管中输出。
  20. 根据权利要求19所述的输送回收系统,其特征在于,每一个所述骨架的所述自由端设置有穿线孔,所述收紧机构包括收紧线,所述收紧线用于依次穿过所有所述骨架上的所述穿线孔,并在所述输送鞘管的内部沿轴向延伸,且所述收紧线的两端伸出所述输送鞘管的近端并固定设置。
  21. 根据权利要求20所述的输送回收系统,其特征在于,所述回收装置还包括用于设置在所述输送鞘管中的回收导管,所述回收导管与所述推送杆在所述输送鞘管中并排设置,所述收紧线用于穿入所述回收导管,所述回收导管的近端设置有固定结构,所述固定结构用于固定所述收紧线的两端。
  22. 根据权利要求21所述的输送回收系统,其特征在于,所述推送杆和所述回收导管设置在所述输送鞘管的同一个腔室内或不同腔室内。
  23. 根据权利要求21所述的输送回收系统,其特征在于,所述回收导管具有轴向延伸且相互独立的两个腔室,所述收紧线的两股线分别穿设在所述回收导管的两个所述腔室中。
  24. 根据权利要求19所述的输送回收系统,其特征在于,所述输送装置还包括用于设置在所述输送鞘管中的附加导管,所述附加导管用于套设在所述推送杆的外部,并用以解除所述推送杆与所述底座之间的连接。
  25. 根据权利要求24所述的输送回收系统,其特征在于,所述底座上设置有锁紧机构,所述推送杆的远端设置有连接件,所述连接件与所述锁紧机构卡合连接。
  26. 根据权利要求25所述的输送回收系统,其特征在于,所述连接件为中空管状结构并用于套设在所述底座上。
  27. 根据权利要19所述的输送回收系统,其特征在于,所述推送杆为由单股或多股丝螺旋绕制而成的绕簧结构,和/或,所述推送杆沿自身轴向具有不同的硬度,所述推送杆的中间部分的硬度小于所述推送杆的近端部分和远端部分的硬度。
  28. 根据权利要求19所述的输送回收系统,其特征在于,所述输送鞘管具有位于远端的柔性远端部分,所述柔性远端部分用于收纳所述心室功能辅助装置。
  29. 一种心室功能辅助系统,其特征在于,包括如权利要求1-18中任一项所述的心室功能辅助装置以及如权利要求19-28中任一项所述的输送回收系统。
PCT/CN2023/098562 2022-06-17 2023-06-06 心室功能辅助装置、输送回收系统及心室功能辅助系统 WO2023241403A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210692170.5A CN114983633A (zh) 2022-06-17 2022-06-17 心室功能辅助装置、输送回收系统及心室功能辅助系统
CN202210692170.5 2022-06-17

Publications (1)

Publication Number Publication Date
WO2023241403A1 true WO2023241403A1 (zh) 2023-12-21

Family

ID=83036037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098562 WO2023241403A1 (zh) 2022-06-17 2023-06-06 心室功能辅助装置、输送回收系统及心室功能辅助系统

Country Status (2)

Country Link
CN (1) CN114983633A (zh)
WO (1) WO2023241403A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114983633A (zh) * 2022-06-17 2022-09-02 上海微创医疗器械(集团)有限公司 心室功能辅助装置、输送回收系统及心室功能辅助系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020007209A1 (en) * 2000-03-06 2002-01-17 Scheerder Ivan De Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
US20040002626A1 (en) * 2001-07-16 2004-01-01 Yair Feld In-vivo method and device for improving diastolic function of the left ventricle
US20050228468A1 (en) * 2004-04-01 2005-10-13 Macoviak John A Devices, systems, and methods for treating atrial fibrillation
US20110087203A1 (en) * 2006-08-02 2011-04-14 Kardium Inc. System for improving diastolic dysfunction
US20110257461A1 (en) * 2008-10-20 2011-10-20 Corassist Cardiovascular Ltd. Ventricular function assisting device and a method and apparatus for implanting it
CN106667539A (zh) * 2017-01-12 2017-05-17 上海心瑞医疗科技有限公司 一种隔离装置后装载的介入系统
US20170172742A1 (en) * 1999-08-09 2017-06-22 Alexander Khairkhahan System for improving cardiac function by sealing a partitioning membrane within a ventricle
CN114983633A (zh) * 2022-06-17 2022-09-02 上海微创医疗器械(集团)有限公司 心室功能辅助装置、输送回收系统及心室功能辅助系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170172742A1 (en) * 1999-08-09 2017-06-22 Alexander Khairkhahan System for improving cardiac function by sealing a partitioning membrane within a ventricle
US20020007209A1 (en) * 2000-03-06 2002-01-17 Scheerder Ivan De Intraluminar perforated radially expandable drug delivery prosthesis and a method for the production thereof
US20040002626A1 (en) * 2001-07-16 2004-01-01 Yair Feld In-vivo method and device for improving diastolic function of the left ventricle
US20050228468A1 (en) * 2004-04-01 2005-10-13 Macoviak John A Devices, systems, and methods for treating atrial fibrillation
US20110087203A1 (en) * 2006-08-02 2011-04-14 Kardium Inc. System for improving diastolic dysfunction
US20110257461A1 (en) * 2008-10-20 2011-10-20 Corassist Cardiovascular Ltd. Ventricular function assisting device and a method and apparatus for implanting it
CN106667539A (zh) * 2017-01-12 2017-05-17 上海心瑞医疗科技有限公司 一种隔离装置后装载的介入系统
CN114983633A (zh) * 2022-06-17 2022-09-02 上海微创医疗器械(集团)有限公司 心室功能辅助装置、输送回收系统及心室功能辅助系统

Also Published As

Publication number Publication date
CN114983633A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US11801136B2 (en) Delivery system having an integral centering mechanism for positioning a valve prosthesis in situ
JP6876664B2 (ja) 置換心臓弁を植え込むための装置および方法
JP6508550B2 (ja) 弁モジュールおよびモジュラー式経皮弁デバイス
JP6629956B2 (ja) 弁膜留め具
US10376364B2 (en) Implant delivery capsule
CN108601654B (zh) 用于对接心脏瓣膜的装置和系统
JP6576944B2 (ja) 僧帽弁置換におけるトグルセル固定
CN105188611B (zh) 用于置换二尖瓣的假体瓣膜
US8905961B2 (en) Systems, apparatuses, and methods for cardiovascular conduits and connectors
JP4929172B2 (ja) 心室分割装置
CN106714734A (zh) 双凸缘人工瓣膜框架
JP7421546B2 (ja) 人工心弁デバイス、システム、および方法
JP2022504241A (ja) 人工心弁デバイス、システム、および方法
US20090012354A1 (en) System and method for intraventricular treatment
CN116616961A (zh) 假体瓣膜的储存组件
JP2012515624A (ja) 術後調整ツール、最小侵襲性取付け装置、および調整可能な三尖弁リング
WO2023241403A1 (zh) 心室功能辅助装置、输送回收系统及心室功能辅助系统
JP2012096040A (ja) 心室区画装置用の周辺シール
CN110691554A (zh) 双壁固定长度的支架状设备及其使用方法
US10888414B2 (en) Aortic dissection implant
CN113143348A (zh) 一种含有可控释放机构的支架系统
WO2023216812A1 (zh) 人工瓣膜及经导管人工瓣膜置换系统
US20210402193A1 (en) Cardiac pacing system and pacemaker fixing device
CN217938478U (zh) 心室功能辅助装置、输送回收系统及心室功能辅助系统
CN214967138U (zh) 升主动脉覆膜支架及输送系统组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822972

Country of ref document: EP

Kind code of ref document: A1