WO2023124760A1 - 电子驻车夹紧力的确定方法及装置 - Google Patents

电子驻车夹紧力的确定方法及装置 Download PDF

Info

Publication number
WO2023124760A1
WO2023124760A1 PCT/CN2022/136085 CN2022136085W WO2023124760A1 WO 2023124760 A1 WO2023124760 A1 WO 2023124760A1 CN 2022136085 W CN2022136085 W CN 2022136085W WO 2023124760 A1 WO2023124760 A1 WO 2023124760A1
Authority
WO
WIPO (PCT)
Prior art keywords
clamping force
brake
slope
parking
temperature
Prior art date
Application number
PCT/CN2022/136085
Other languages
English (en)
French (fr)
Inventor
史亨波
隋清海
张建斌
郝占武
王仕伟
侯杰
陈志刚
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023124760A1 publication Critical patent/WO2023124760A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/24Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to vehicle inclination or change of direction, e.g. negotiating bends
    • B60T8/245Longitudinal vehicle inclination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the technical field of electronic parking, for example, to a method and device for determining the clamping force of electronic parking.
  • EPB Electrical Park Brake
  • the magnitude of the clamping force provided by the electronic parking system in the related art is related to the slope.
  • the clamping force corresponding to different slopes is usually input into the electronic parking system in advance.
  • the electronic parking system selects the corresponding clamping force according to the slope of the road and acts on the vehicle.
  • the clamping force is only determined by the slope, which leads to insufficient clamping force when the vehicle is in other harsh environments, and parking failure is more likely to occur, which affects the safety of the vehicle and public safety outside the vehicle.
  • This application provides a method and device for determining the clamping force of electronic parking, which has high accuracy in the definition and calculation of extreme working conditions, reduces the probability of parking failure, and ensures the safety of the vehicle and the safety of the vehicle. of public safety.
  • a method for determining electronic parking clamping force comprising:
  • a maximum value among the plurality of required clamping forces is determined as the electronic parking clamping force.
  • determining the actual standing slope requirement according to the temperature of the brake and the primary standing slope requirement includes: defining the temperature of the brake as a first temperature interval, a second temperature interval and a third temperature interval, the first temperature interval The corresponding temperature is less than or equal to 100°C, and the determined actual standing slope requirement is to meet the 30% standing slope requirement of the engineering target; the temperature corresponding to the second temperature range is greater than 100°C and less than 200°C, and the determined actual The standing slope requirement is to meet the 30% standing slope requirement of the engineering target; the temperature corresponding to the third temperature range is greater than or equal to 200°C and less than 300°C, and the determined actual standing slope requirement is to meet the engineering target of 20% standing slope Require.
  • the temperature of the brake further includes a fourth temperature interval, the temperature corresponding to the fourth temperature interval is greater than or equal to 300°C, and the fourth temperature interval corresponds to the misuse condition of the vehicle brake, and parking is prohibited. car.
  • the parking condition has two types, one of which is that the brake is immediately subjected to a parking operation in a high temperature state; the other is that the brake is cooled to normal temperature after parking at a high temperature.
  • the required clamping corresponding to each parking condition is calculated according to the temperature of the brake, the actual parking requirement, the vehicle weight, the rolling radius of the wheel, the effective braking radius of the brake, and the friction coefficient at different temperatures. force, including:
  • the clamping force calculation formula the required clamping force corresponding to each slope range under each parking condition is calculated, and the clamping force calculation formula is:
  • F represents the required clamping force
  • G represents the weight of the vehicle
  • g represents the acceleration of gravity
  • i represents the slope
  • R represents the rolling radius of the wheel
  • r represents the effective braking radius of the brake
  • represents the friction coefficient
  • the plurality of slope ranges are the first slope range, the second slope range and the third slope range, the first slope range is 0-8%; the second slope range is 8%- 17%; the third slope range is a slope greater than 17%.
  • the calculation method of the required clamping force corresponding to the first slope range is:
  • the decaying clamping force of the brake after cooling down to 40 °C after parking operation at 300 °C is supplemented by the high temperature re-clamping function, therefore, it is not calculated and considered;
  • the electronic parking clamping force corresponding to the first slope range satisfies the following conditions:
  • F 1 represents the electronic parking clamping force corresponding to the first slope range
  • F g represents the clamping force tolerance
  • is the clamping force decay ratio when the brake temperature decreases from 200°C to 40°C
  • F 11 represents the first requirement Clamping force
  • F 12 indicates the second required clamping force
  • F 13 indicates the third required clamping force.
  • the calculation method of the required clamping force corresponding to the second slope range is:
  • the decaying clamping force of the brake after cooling down to 40 °C after parking operation at 300 °C is supplemented by the high temperature re-clamping function, therefore, it is not calculated and considered;
  • the electronic parking clamping force corresponding to the second slope range satisfies the following conditions:
  • F 2 represents the electronic parking clamping force corresponding to the second slope range
  • F g represents the clamping force tolerance
  • is the clamping force decay ratio when the brake temperature decreases from 200°C to 40°C
  • F 21 represents the fourth requirement Clamping force
  • F 22 represents the fifth required clamping force
  • F 23 represents the sixth required clamping force.
  • the calculation method of the required clamping force corresponding to the third slope range is:
  • the decaying clamping force of the brake after cooling down to 40 °C after parking operation at 300 °C is supplemented by the high temperature re-clamping function, therefore, it is not calculated and considered;
  • the electronic parking clamping force corresponding to the third slope range satisfies the following conditions:
  • F 3 represents the electronic parking clamping force corresponding to the third slope range
  • F g represents the clamping force tolerance
  • is the clamping force decay ratio when the brake temperature decreases from 200°C to 40°C
  • F 31 represents the seventh requirement Clamping force
  • F 32 represents the eighth required clamping force
  • F 33 represents the ninth required clamping force.
  • a device for determining electronic parking clamping force comprising:
  • the first determination module is configured to determine the primary parking slope requirement according to vehicle parking regulations
  • the second determination module is configured to determine multiple parking conditions of the vehicle brake
  • the third determining module is configured to determine the actual slope-holding requirement according to the temperature of the brake and the primary slope-holding requirement;
  • the calculation module is set to calculate the required clamping force corresponding to each parking condition according to the brake temperature, the actual parking slope requirement, the vehicle weight, the wheel rolling radius, the gradient and the effective braking radius of the brake;
  • the fourth determination module is configured to determine the largest force among the plurality of required clamping forces as the electronic parking clamping force.
  • a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the above-mentioned method for determining the electronic parking clamping force is realized.
  • An electronic device includes a memory, a processor, and a computer program stored on the memory and operable by the processor.
  • the processor executes the computer program, the method for determining the electronic parking clamping force as described above is realized.
  • FIG. 1 is a flowchart of a method for determining electronic parking clamping force provided by an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a device for determining electronic parking clamping force provided by an embodiment of the present application
  • Fig. 3 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • This embodiment provides a method for determining the electronic parking clamping force.
  • the electronic parking clamping force is determined according to factors such as temperature, parking conditions, and slope, which has high accuracy and reduces the risk of parking failure. The probability ensures the safety of the vehicle and the public safety outside the vehicle.
  • the method for determining the electronic parking clamping force includes the following steps.
  • the parking brake system of a passenger car should be able to keep a fully loaded vehicle stationary on an uphill or downhill slope with a gradient of 20%. It can be seen that the regulations are the most basic requirements for vehicles, that is, no matter what working conditions or conditions, a fully loaded vehicle must be able to keep the vehicle from slipping on 20% of the up and down slopes to ensure the safety of the vehicle.
  • Whether the vehicle’s maximum standing capacity should satisfy a slope of 20% or 30% is related to whether it is in an extreme working condition.
  • extreme working conditions during vehicle braking such as high temperature, high pressure, low vacuum, low adhesion conditions, etc.
  • high temperature high pressure
  • low vacuum low adhesion conditions
  • the extreme condition strongly related to the parking brake performance is high temperature, which directly affects the parking friction coefficient and the decline level of the electronic parking clamping force after the high temperature is reduced to normal temperature.
  • the parking conditions refer to the conditions under which the vehicle is parked. There may be multiple parking conditions of the vehicle, such as parking on a level road, parking on a snowy field, parking on a slope Parking on roads, parking in winter, and parking in summer.
  • this embodiment only considers two parking conditions when calculating the electronic parking clamping force, one of which is that the brake is immediately parked at a high temperature. operation; the other is to cool down to normal temperature after the brake is parked at high temperature.
  • two parking conditions one of which is that the brake is immediately parked at a high temperature. operation; the other is to cool down to normal temperature after the brake is parked at high temperature.
  • the brake is immediately parked at high temperature, since the friction plate has declined at this time and the friction coefficient is low, a greater electronic parking clamping force is required to ensure the parking demand; and after the brake is parked at high temperature
  • the initially applied electronic parking clamping force is reduced, which is not enough to continue to keep the vehicle stationary. Therefore, only considering the above two parking conditions can ensure that the calculated parking clamping force meets the demand, and the calculation amount can also be reduced.
  • step S1 the primary parking requirement is obtained only according to the vehicle parking regulations, but the actual parking requirement is also related to temperature. Therefore, under the premise of meeting the vehicle parking regulations, the temperature of the brake needs to be considered to determine the actual parking requirement.
  • Slope demand Exemplarily, the actual standing slope demand is the demand when the brake temperature is less than 200°C, the demand when the brake temperature is greater than 200°C and less than 300°C, etc., which is not limited in this embodiment.
  • the temperature of the brake can be used to determine the coefficient of friction of the brake, ie the coefficient of friction is temperature dependent and is required for calculating the required clamping force.
  • the weight of the vehicle can be the weight of the vehicle when it is fully loaded.
  • the effective braking radius of the brake can be determined according to whether the vehicle is front or rear braked. In some embodiments, the effective braking radius of the brake is the effective braking radius of the rear brake.
  • S5. Determine the largest force among the plurality of required clamping forces as the electronic parking clamping force.
  • a required clamping force By calculating each parking condition, a required clamping force can be obtained, and the maximum value among multiple required clamping forces is determined as the electronic parking clamping force.
  • the method for determining the electronic parking clamping force first obtains the primary parking slope requirement according to the vehicle parking regulations, and determines multiple parking conditions, and then obtains the actual parking slope according to the brake temperature and the primary parking slope requirement. According to the actual parking slope requirements, vehicle weight, wheel rolling radius and effective braking radius of the brake, multiple required clamping forces are calculated, and the maximum value of the multiple required clamping forces is determined as the electronic parking clamping force , it can be seen that the electronic parking clamping force determined by the method of determining the electronic parking clamping force is not only related to the slope, but also related to the temperature and parking conditions, and has a high accuracy for the definition of extreme working conditions and calculation ideas. The definition and calculation idea of extreme working conditions have high accuracy, which reduces the probability of parking failure and ensures the safety of the vehicle and the public safety outside the vehicle.
  • step S3 includes: defining the temperature of the brake as a first temperature interval, a second temperature interval and a third temperature interval.
  • the temperature corresponding to the first temperature interval is less than or equal to 100°C
  • the determined actual standing slope requirement is to meet the 30% standing slope requirement of the engineering target
  • the temperature corresponding to the second temperature interval is greater than 100°C and less than 200°C
  • the determined actual standing slope requirement is to meet the 30% standing slope requirement of the project target
  • the temperature corresponding to the third temperature range is greater than or equal to 200°C and less than 300°C
  • the actual standing slope requirement determined according to the third temperature range is It is necessary to meet the 20% standing slope requirement of the engineering target.
  • meeting the 30% parking slope requirement of the engineering target can be understood as keeping a fully loaded vehicle at rest when parking on a road with a 30% slope.
  • the actual standing slope requirements corresponding to the first temperature range and the second temperature range are the same, so the actual standing slope requirements corresponding to the temperature range below 200°C are all required to meet the 30% standing slope requirement of the engineering target.
  • the temperature of the brake also includes a fourth temperature interval, the temperature corresponding to the fourth temperature interval is greater than or equal to 300°C, and the fourth temperature interval corresponds to the misuse condition of the vehicle brake, which belongs to the extreme misuse condition, and parking is prohibited. car, and the actual parking slope demand and electronic parking clamping force are not sure for this interval.
  • step S4 includes the following steps:
  • the multiple slope ranges are the first slope range, the second slope range and the third slope range, the first slope range is 0-8%; the second slope range is 8-17%; the third slope range The range is a slope greater than 17%. According to the actual standing slope requirement, the highest standing slope requirement is 30% of the project target. Therefore, the range of the third slope is 17-30%.
  • the clamping force calculation formula is:
  • F represents the required clamping force
  • G represents the weight of the vehicle
  • g represents the acceleration of gravity
  • i represents the slope
  • R represents the rolling radius of the wheel
  • r represents the effective braking radius of the brake
  • represents the friction coefficient.
  • arctan(i) means to calculate the arc tangent of i
  • sin(arctan(i)) means to calculate the sine of arctan(i).
  • G, g, R and r are all related to the structure and weight of the vehicle itself, but have nothing to do with the standing slope conditions. Therefore, when the slope and temperature are different, the values of i and ⁇ are different, and the corresponding required clamping force can be obtained.
  • the present embodiment calculates the electronic parking clamping forces in the first slope range, the second slope range and the third slope range respectively.
  • the clamping force required is the largest when the temperature of the brake is 200°C. Therefore, in this step, the coefficient of friction is the coefficient of friction when the brake is working at 200°C. Similarly, the slope takes the maximum value in the first slope range.
  • This step can be understood as a parking condition when the brake temperature is below 200°C.
  • This step can be understood as another parking condition when the brake temperature is below 200°C.
  • This step can be understood as a parking condition when the brake temperature is 200-300°C.
  • the working condition of the brake temperature cooling from 300°C to normal temperature is supplemented by the high temperature re-clamping function, so the calculation and consideration are not carried out, that is, the clamping of the decay of the brake cooling to 40°C after the parking operation at 300°C
  • the force is supplemented by the high temperature re-clamping function, therefore, it is not calculated and taken into account
  • the electronic parking clamping force corresponding to the first slope range meets the following conditions:
  • Condition 1 (F 1 -F g ) ⁇ F 11 ;
  • Condition 2 (F 1 -F g ) ⁇ F 13 ;
  • Condition 2 (F 1 -F g ) ⁇ (1- ⁇ ) ⁇ F 12 ;
  • F 1 indicates the electronic parking clamping force corresponding to the first slope range;
  • F g indicates the clamping force tolerance;
  • is the clamping force decay ratio when the brake temperature decreases from 200°C to 40°C;
  • F 11 indicates the first clamping force ;
  • F 12 represents the second required clamping force;
  • F 13 represents the third required clamping force.
  • the clamping force tolerance is a fixed value, for example, the clamping force tolerance is 1500N. Therefore, when calculating, the electronic parking clamping force is the first maximum clamping force plus the clamping force tolerance. Or the second required clamping force plus the clamping force tolerance.
  • the decay ratio of the clamping force can be taken into account.
  • the decay ratio of the clamping force can be obtained from tests and simulations.
  • the decaying clamping force of the brakes cooling down to 40°C after a parking operation at 300°C is supplemented by the high-temperature re-clamping function and is therefore not calculated and taken into account.
  • the electronic parking clamping force corresponding to the second slope range meets the following conditions:
  • Condition 1 (F 2 -F g ) ⁇ F 21 ;
  • Condition 2 (F 2 -F g ) ⁇ F 23 ;
  • Condition 3 (F 2 -F g ) ⁇ (1- ⁇ ) ⁇ F 22 ; among them, F 2 indicates the electronic parking clamping force corresponding to the second slope range;
  • F g indicates the clamping force tolerance;
  • is the clamping force decay ratio when the brake temperature decreases from 200°C to 40°C;
  • F 21 indicates the fourth demand clamping Force;
  • F 22 represents the fifth required clamping force;
  • F 23 represents the sixth required clamping force.
  • the decaying clamping force of the brakes cooling down to 40°C after a parking operation at 300°C is supplemented by the high temperature re-clamping function and is therefore not calculated and taken into account.
  • the electronic parking clamping force corresponding to the third slope range meets the following conditions:
  • Condition 1 (F 3 -F g ) ⁇ F 31 ;
  • Condition 2 (F 3 -F g ) ⁇ F 33 ;
  • Condition 3 (F 3 -F g ) ⁇ (1- ⁇ ) ⁇ F 32 ; among them, F 3 indicates the electronic parking clamping force corresponding to the third slope range;
  • F g indicates the clamping force tolerance;
  • is the clamping force decay ratio when the brake temperature decreases from 200°C to 40°C;
  • F 31 indicates the seventh demand clamping Force;
  • F 32 represents the eighth required clamping force;
  • F 33 represents the ninth required clamping force.
  • FIG. 2 is a schematic structural diagram of a device for determining electronic parking clamping force provided by an embodiment of the present application. As shown in Figure 2, this embodiment also provides a device for determining the electronic parking clamping force, which is applied to the above-mentioned method for determining the electronic parking clamping force, and the device for determining the electronic parking clamping force includes a first A determination module 210 , a second determination module 220 , a third determination module 230 , a calculation module 240 and a fourth determination module 250 .
  • the first determination module 210 is configured to determine a primary parking slope requirement according to vehicle parking regulations.
  • the second determination module 220 is configured to determine a plurality of parking conditions of the vehicle brakes.
  • the third determining module 230 is configured to determine the actual parking slope requirement according to the temperature of the brake and the primary parking slope requirement.
  • the calculation module 240 is configured to calculate the required clamping force corresponding to each parking condition according to the temperature of the brake, the actual parking requirement, the weight of the vehicle, the rolling radius of the wheel, the gradient and the effective braking radius of the brake.
  • the fourth determining module 250 is configured to determine the largest force among the plurality of required clamping forces as the electronic parking clamping force.
  • the device for determining the electronic parking clamping force first obtains the primary parking slope requirement according to the vehicle parking regulations, and determines multiple parking conditions, and then obtains the actual parking slope according to the temperature of the brake and the primary parking slope requirement. According to the actual parking slope requirements, vehicle weight, wheel rolling radius and effective braking radius of the brake, multiple required clamping forces are calculated, and the maximum value of the multiple required clamping forces is determined as the electronic parking clamping force , it can be seen that the electronic parking clamping force determined by the method of determining the electronic parking clamping force is not only related to the slope, but also related to the temperature and parking conditions, which has high accuracy and reduces the probability of parking failure , to ensure the safety of the vehicle and the public safety outside the vehicle.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions, the computer-executable instructions are used to execute the method for determining the electronic parking clamping force in the above-mentioned embodiments when executed by a computer processor
  • Storage medium refers to any of various types of memory electronics or storage electronics.
  • the term "storage medium” is intended to include: installation media such as Compact Disc Read-Only Memory (CD-ROM), floppy disks, or tape drives; computer system memory or random access memory, such as dynamic random access memory (Dynamic RAM, DRAM), double rate random access memory (Double Data Rate RAM, DDR RAM), static random access memory (Static RAM, SRAM), extended data output random access memory (Extended Data Output RAM, EDO RAM), Rambus Random Access Memory (Random Access Memory, Rambus RAM), etc.; non-volatile memory, such as flash memory, magnetic media (such as hard disk or optical storage); registers or other similar types of memory components, etc.
  • installation media such as Compact Disc Read-Only Memory (CD-ROM), floppy disks, or tape drives
  • computer system memory or random access memory such as dynamic random access memory (Dynamic RAM, DRAM), double rate random access memory (Double Data Rate RAM, DDR RAM
  • the storage medium may also include other types of memory or combinations thereof. Also, the storage medium may be located in a computer system in which the program is executed, or may be located in a different second computer system connected to the computer system through a network such as the Internet. The second computer system may provide program instructions to the computer for execution.
  • the term "storage medium" may include two or more storage media that may reside on different devices, for example in different computer systems connected by a network.
  • a storage medium may store program instructions (eg, implemented as a computer program) that are executable by one or more processors.
  • the embodiment of the present application provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are not limited to the determination of the electronic parking clamping force as described above, and can also perform the operations provided by any embodiment of the present application. Related operations in the method for determining the electronic parking clamping force.
  • the embodiment of the present application provides an electronic device, which can integrate the device for determining the electronic parking clamping force provided in the embodiment of the present application.
  • the electronic device can be configured in the system, or can be implemented in the system. Some or all of the performance of the device.
  • Fig. 3 is a schematic structural diagram of an electronic device provided by an embodiment of the present application. As shown in FIG. 3 , this embodiment provides an electronic device 500, which includes: one or more processors 520; a storage device 510 configured to store one or more programs, when the one or more programs are executed The one or more processors 520 execute, so that the one or more processors 520 implement the method for determining the electronic parking clamping force provided in the embodiment of the present application.
  • the processor 520 also implements the technical solution of the method for determining the electronic parking clamping force provided in any embodiment of the present application.
  • the electronic device 500 shown in FIG. 3 is only an example, and should not limit the performance and application scope of the embodiment of the present application.
  • the electronic device 500 includes a processor 520, a storage device 510, an input device 530, and an output device 540; the number of processors 520 in the electronic device can be one or more, and one processor 520 As an example; the processor 520, the storage device 510, the input device 530 and the output device 540 in the electronic device may be connected through a bus or in other ways. In FIG. 3, the connection through the bus 550 is taken as an example.
  • the storage device 510 can be configured to store software programs, computer-executable programs and module units, such as program instructions corresponding to the method for determining the electronic parking clamping force in the embodiment of the present application.
  • the storage device 510 may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system and at least one application program required for performance; the data storage area may store data created according to the use of the terminal, and the like.
  • the storage device 510 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 510 may include memory located remotely from the processor 520, and these remote memories may be connected through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 530 may be configured to receive input numbers, character information or voice information, and generate key signal input related to user settings and performance control of the electronic device.
  • the output device 540 may include electronic equipment such as a display screen and a speaker.
  • the device, medium, and electronic device for determining the electronic parking clamping force provided in the above embodiments can implement the method for determining the electronic parking clamping force provided in any embodiment of the present application, and have corresponding performance modules and effects for executing the method .
  • the method for determining electronic parking clamping force provided in any embodiment of the present application can implement the method for determining the electronic parking clamping force provided in any embodiment of the present application, and have corresponding performance modules and effects for executing the method .

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

本文公开了一种电子驻车夹紧力的确定方法及装置。电子驻车夹紧力的确定方法包括:根据车辆驻车法规确定初级驻坡需求;确定车辆制动器的多个驻车工况;根据制动器的温度及所述初级驻坡需求确定实际驻坡需求;根据制动器的温度、实际驻坡需求、车辆重量、车轮滚动半径、坡度及制动器有效制动半径及不同温度下的摩擦系数计算每个驻车工况对应的需求夹紧力;将多个需求夹紧力中最大值确定为电子驻车夹紧力。

Description

电子驻车夹紧力的确定方法及装置
本申请要求在2021年12月31日提交中国专利局、申请号为202111668028.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子驻车技术领域,例如涉及一种电子驻车夹紧力的确定方法及装置。
背景技术
电子驻车系统(Electrical Park Brake,EPB)是车辆常用的驻车系统,相较于传统的机械驻车,具有较高的灵敏性和可靠性。
相关技术的电子驻车系统提供的夹紧力的大小与坡度相关,坡度越大,需要的夹紧力越大,在车辆设计初期,通常将不同坡度对应的夹紧力提前输入至电子驻车系统中,电子驻车系统根据所在道路的坡度选择对应的夹紧力,并作用在车辆上。但是,相关技术中仅通过坡度确定夹紧力,导致车辆在其他恶劣环境下时,夹紧力的不足,较容易发生驻车失败,影响了车辆的使用安全和车外的公共安全。
发明内容
本申请提供一种电子驻车夹紧力的确定方法及装置,针对极端工况定义及计算思路具有较高的准确性,降低了发生驻车失败的几率,保证了车辆的使用安全和车外的公共安全。
一种电子驻车夹紧力的确定方法,包:
根据车辆驻车法规确定初级驻坡需求;
确定车辆制动器的多个驻车工况;
根据制动器的温度及所述初级驻坡需求确定实际驻坡需求;
根据所述制动器的温度、实际驻坡需求、车辆重量、车轮滚动半径、坡度及制动器有效制动半径计算每个驻车工况对应的需求夹紧力;
将多个所述需求夹紧力中的最大值确定为电子驻车夹紧力。
一实施方式中,根据制动器的温度及所述初级驻坡需求确定实际驻坡需求包括:将制动器的温度定义为第一温度区间、第二温度区间和第三温度区间, 所述第一温度区间对应的温度为小于或等于100℃,且确定的实际驻坡需求为需满足工程目标30%驻坡要求;所述第二温度区间对应的温度为大于100℃且小于200℃,且确定的实际驻坡需求为需满足工程目标30%驻坡要求;所述第三温度区间对应的温度为大于或等于200℃且小于300℃,且确定的实际驻坡需求为需满足工程目标20%驻坡要求。
一实施方式中,所述制动器的温度还包括第四温度区间,所述第四温度区间对应的温度为大于或等于300℃,且所述第四温度区间对应车辆制动器误用工况,禁止驻车。
一实施方式中,所述驻车工况具有两种,其中一种为所述制动器在高温状态下立即进行驻车操作;另一种为所述制动器高温驻车后冷却到常温。
一实施方式中,根据所述制动器的温度、所述实际驻坡需求、车辆重量、车轮滚动半径、制动器有效制动半径及不同温度下的摩擦系数计算每个驻车工况对应的需求夹紧力,包括:
将坡度进行分级,得到多个坡度范围;
根据夹紧力计算公式计算每个坡度范围在每个驻车工况下对应的需求夹紧力,所述夹紧力计算公式为:
Figure PCTCN2022136085-appb-000001
其中,F表示需求夹紧力;G表示车辆重量;g表示重力加速度;i表示坡度;R表示车轮滚动半径;r表示制动器有效制动半径;μ表示摩擦系数。
一实施方式中,多个所述坡度范围分别为第一坡度范围、第二坡度范围及第三坡度范围,所述第一坡度范围为0~8%;所述第二坡度范围为8%~17%;所述第三坡度范围为大于17%的坡度。
一实施方式中,所述第一坡度范围对应的需求夹紧力的计算方式为:
计算制动器的温度在200℃以下立即进行驻车操作时的第一需求夹紧力,且所述夹紧力计算公式中的摩擦系数取制动器在200℃工作时的摩擦系数,坡度取8%;
计算制动器的温度在200℃驻车操作后冷却到40℃保证不溜车的第二需求夹紧力,且所述夹紧力计算公式中摩擦系数取制动器在40℃工作时的摩擦系数,坡度取8%,同时确定制动器从200℃冷却到40℃的夹紧力衰退比;
计算制动器的温度在300℃立即驻车操作时的第三需求夹紧力,且所述夹紧力计算公式中的摩擦系数取制动器在300℃工作时的摩擦系数,坡度取8%;
制动器在300℃驻车操作后冷却至40℃的衰退的夹紧力由高温再夹紧功能进行补充,因此,不进行计算和考虑;
所述第一坡度范围对应的电子驻车夹紧力满足以下条件:
条件一:(F 1-F g)≥F 11
条件二:(F 1-F g)≥F 13
条件二:(F 1-F g)×(1-Φ)≥F 12
其中,F 1表示第一坡度范围对应的电子驻车夹紧力;F g表示夹紧力公差;Φ为制动器温度由200℃降低到40℃的夹紧力衰退比;F 11表示第一需求夹紧力;F 12表示第二需求夹紧力;F 13表示第三需求夹紧力。
一实施方式中,所述第二坡度范围对应的需求夹紧力的计算方式为:
计算制动器的温度在200℃以下立即进行驻车操作时的第四需求夹紧力,且所述夹紧力计算公式中的摩擦系数取制动器在200℃工作时的摩擦系数,坡度取17%;
计算制动器的温度在200℃驻车操作后冷却到40℃保证不溜车的第二需求夹紧力,且所述夹紧力计算公式中摩擦系数取制动器在40℃工作时的摩擦系数,坡度取17%,同时确定制动器从200℃冷却到40℃的夹紧力衰退比;
计算制动器的温度在300℃立即驻车操作时的第六需求夹紧力,且所述夹紧力计算公式中的摩擦系数取制动器在300℃工作时的摩擦系数,坡度取17%;
制动器在300℃驻车操作后冷却至40℃的衰退的夹紧力由高温再夹紧功能进行补充,因此,不进行计算和考虑;
所述第二坡度范围对应的电子驻车夹紧力满足以下条件:
条件一:(F 2-F g)≥F 21
条件二:(F 2-F g)≥F 23
条件三:(F 2-F g)×(1-Φ)≥F 22
其中,F 2表示第二坡度范围对应的电子驻车夹紧力;F g表示夹紧力公差;Φ为制动器温度由200℃降低到40℃的夹紧力衰退比;F 21表示第四需求夹紧力;F 22表示第五需求夹紧力;F 23表示第六需求夹紧力。
一实施方式中,所述第三坡度范围对应的需求夹紧力的计算方式为:
计算制动器的温度在200℃以下立即进行驻车操作时的第七需求夹紧力,且所述夹紧力计算公式中的摩擦系数取制动器在200℃工作时的摩擦系数,坡度取30%;
计算制动器的温度在200℃驻车操作后冷却到40℃保证不溜车的第八需求夹紧力,且所述夹紧力计算公式中摩擦系数取制动器在40℃工作时的摩擦系数,坡度取30%,同时确定制动器从200℃冷却到40℃的夹紧力衰退比;
计算制动器的温度在300℃立即驻车操作时的第九需求夹紧力,且所述夹紧力计算公式中的摩擦系数取制动器在300℃工作时的摩擦系数,坡度取20%;
制动器在300℃驻车操作后冷却至40℃的衰退的夹紧力由高温再夹紧功能进行补充,因此,不进行计算和考虑;
所述第三坡度范围对应的电子驻车夹紧力满足以下条件:
条件一:(F 3-F g)≥F 31
条件二:(F 3-F g)≥F 33
条件三:(F 3-F g)×(1-Φ)≥F 32
其中,F 3表示第三坡度范围对应的电子驻车夹紧力;F g表示夹紧力公差;Φ为制动器温度由200℃降低到40℃的夹紧力衰退比;F 31表示第七需求夹紧力;F 32表示第八需求夹紧力;F 33表示第九需求夹紧力。
一种电子驻车夹紧力的确定装置,包括:
第一确定模块,设置为根据车辆驻车法规确定初级驻坡需求;
第二确定模块,设置为确定车辆制动器的多个驻车工况;
第三确定模块,设置为根据制动器的温度及所述初级驻坡需求确定实际驻坡需求;
计算模块,设置为根据制动器温度、实际驻坡需求、车辆重量、车轮滚动半径、坡度及制动器有效制动半径及计算每个驻车工况对应的需求夹紧力;
第四确定模块,设置为将多个需求夹紧力中最大的力确定为电子驻车夹紧力。
一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的电子驻车夹紧力的确定方法。
一种电子设备,包括存储器,处理器及存储在存储器上并可在处理器运行的计算机程序,所述处理器执行所述计算机程序时实现如上述的电子驻车夹紧力的确定方法。
附图说明
图1是本申请实施例提供的一种电子驻车夹紧力的确定方法的流程图;
图2是本申请实施例提供的一种电子驻车夹紧力的确定装置的结构示意图;
图3是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
下面结合附图并通过具体实施方式来说明本申请的技术方案。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
本实施例提供了一种电子驻车夹紧力的确定方法,根据温度、驻车工况及坡度等因素确定电子驻车夹紧力,具有较高的准确性,降低了发生驻车失败的几率,保证了车辆的使用安全和车外的公共安全。
如图1所示,电子驻车夹紧力的确定方法包括如下步骤。
S1、根据车辆驻车法规确定初级驻坡需求。
本实施例中,对于车辆的驻车,存在规定。示例地,根据GB21670中的第5.2.3.1项要求,乘用车驻车制动系统应能使满载车辆在坡度为20%的上、下坡道上保持静止。可见,法规项是对车辆的最基本要求,即无论在何种工况或何种条件下,满载状态的车辆必须能在20%的上、下坡道上不溜车,以保证车辆的安全。
随着车辆技术的发展,大部分车辆在满足法规的基础上,通常会提出更高的要求。在不同车型的工程目标中,一般要求驻车制动系统应能使满载车辆在坡度为30%的上、下坡道上保持静止,但是,该要求仅需在常用工况或常用条件下满足即可,极端工况可以不考虑。
车辆最大驻坡能力应该满足20%还是30%的坡度,与其是否处于极端工况相关。而车辆制动时的极端工况有很多,例如高温、高压、低真空度、低附着条件等。其中,经过大量试验、模拟发现与驻车制动性能强相关的极端条件为高温,高温驻车直接影响驻车摩擦系数和高温降低到常温后电子驻车夹紧力的衰退水平。
S2、确定车辆制动器的多个驻车工况。
本实施例中,驻车工况是指车辆在哪些工况下进行驻车,车辆的驻车工况可以具有多个,如在水平道路上进行驻车、在雪地进行驻车、在坡道上进行驻车、在冬季进行驻车以及在夏季进行驻车等。
可选地,根据车辆驻车性能与温度强相关的结论,本实施例在计算电子驻车夹紧力时仅考虑两种驻车工况,其中一种为制动器在高温状态下立即进行驻 车操作;另一种为制动器高温驻车后冷却到常温。其中,制动器在高温状态即刻进行驻车操作时,由于此时的摩擦片已衰退,摩擦系数较低,因此需要更大的电子驻车夹紧力来保证驻车需求;而制动器高温驻车后冷却到常温时,由于冷缩作用,使得最初施加的电子驻车夹紧力减小,不足以继续维持车辆静止。因此,仅考虑上述两种驻车工况能够保证计算得到的驻车夹紧力满足需求的情况下,还能够减小计算量。
S3、根据制动器的温度及初级驻坡需求确定实际驻坡需求。
在步骤S1中,仅根据车辆驻车法规得到初级驻坡需求,但实际的驻坡需求还与温度相关,因此,在满足车辆驻车法规的前提下,需要考虑制动器的温度,以确定实际驻坡需求。示例地,实际驻坡需求示例为在制动器温度小于200℃时的需求、在制动器温度大于200℃且小于300℃时的需求等,本实施例对此不作限定。
S4、根据制动器温度、实际驻坡需求、车辆重量、车轮滚动半径、制动器有效制动半径及不同温度下的摩擦系数计算每个驻车工况对应的需求夹紧力。
制动器温度可以用于确定制动器的摩擦系数,也即是,摩擦系数与温度相关,而在计算需求夹紧力需要摩擦系数。车辆重量可以为车辆满载时的重量,制动器的有效制动半径可以根据车辆前制动还是后制动进行确定,在一些实施例中,制动器的有效制动半径为后制动器的有效制动半径。
当驻车工况具有两种情况时,分别计算两种情况下的需求夹紧力。
S5、将多个需求夹紧力中最大的力确定为电子驻车夹紧力。
对每种驻车工况进行计算,能够得到一个需求夹紧力,将多个需求夹紧力中的最大值确定为电子驻车夹紧力。
本实施例提供的电子驻车夹紧力的确定方法,先根据车辆驻车法规得到初级驻坡需求,并确定多个驻车工况,然后根据制动器的温度及初级驻坡需求得到实际驻坡需求,并根据实际驻坡需求、车辆重量、车轮滚动半径及制动器有效制动半径及计算得到多个需求夹紧力,将多个需求夹紧力中的最大值确定为电子驻车夹紧力,可见,电子驻车夹紧力的确定方法确定的电子驻车夹紧力不仅与坡度相关,还与温度及驻车工况相关,对极端工况定义及计算思路具有较高的准确性对极端工况定义及计算思路具有较高的准确性,降低了发生驻车失败的几率,保证了车辆的使用安全和车外的公共安全。
可选地,本实施例中,步骤S3包括:将制动器的温度定义为第一温度区间、第二温度区间和第三温度区间。其中,第一温度区间对应的温度为小于或等于100℃,且确定的实际驻坡需求为需满足工程目标30%驻坡要求;第二温度区间 对应的温度为大于100℃且小于200摄氏度,且确定的实际驻坡需求为需满足工程目标30%驻坡要求;第三温度区间对应的温度为大于或等于200℃且小于300℃,并且,根据第三温度区间确定的实际驻坡需求为需满足工程目标20%驻坡要求。其中,满足工程目标30%驻坡要求可以理解为满载车辆在30%坡度的道路上驻车时保持静止。
第一温度区间与第二温度区间对应的实际驻坡需求相同,因此可以归类至200℃以下的温度区间对应的实际驻坡需求均为需满足工程目标30%驻坡要求。
可选地,制动器的温度还包括第四温度区间,第四温度区间对应的温度为大于或等于300℃,且第四温度区间对应车辆制动器误用工况,属于极端误用工况,禁止驻车,且对该区间不确定实际驻坡需求及电子驻车夹紧力。
本实施例中,步骤S4包括如下步骤:
S41、将坡度进行分级,得到多个坡度范围。
由于不同的坡度对应不同的电子驻车夹紧力,因此,有必要将坡度进行分级计算。
在一些实施例中,多个坡度范围分别为第一坡度范围、第二坡度范围及第三坡度范围,第一坡度范围为0~8%;第二坡度范围为8~17%;第三坡度范围为大于17%的坡度。根据实际驻坡需求,最高驻坡需求为满足工程目标30%驻坡需求。因此,第三坡度范围为17~30%。
S42、根据夹紧力计算公式计算每个坡度范围在每个驻车工况下对应的需求夹紧力,夹紧力计算公式为:
Figure PCTCN2022136085-appb-000002
其中,F表示需求夹紧力;G表示车辆重量;g表示重力加速度;i表示坡度;R表示车轮滚动半径;r表示制动器有效制动半径;μ表示摩擦系数。arctan(i)表示对i进行反正切计算,sin(arctan(i))表示对arctan(i)进行正弦计算。
G、g、R及r均与车辆本身结构及重量有关,而与驻坡工况无关,因此当坡度和温度不同时,i及μ的取值不同,能够得到对应的需求夹紧力。
下面,本实施例针对第一坡度范围、第二坡度范围及第三坡度范围的电子驻车夹紧力分别进行计算。
第一坡度范围对应的需求夹紧力的计算步骤为:
S101、计算制动器的温度在200℃以下立即进行驻车操作时的第一需求夹紧力,且夹紧力计算公式中的摩擦系数取制动器在200℃工作时的摩擦系数,坡度 取8%。
由于制动器的温度为200℃以下时,制动器的温度为200℃时需要的夹紧力最大,因此,本步骤中,摩擦系数取制动器在200℃工作时的摩擦系数。同理,坡度取第一坡度范围中的最大值。
该步骤可以理解为制动器温度在200℃以下时的一种驻车工况。
S102、计算制动器的温度在200℃驻车操作后冷却到40℃保证不溜车的第二需求夹紧力,且夹紧力计算公式中摩擦系数取制动器在40℃工作时的摩擦系数,坡度取8%,同时确定制动器从200℃冷却到40℃的夹紧力衰退比。
该步骤可以理解为制动器温度在200℃以下时的另一种驻车工况。
S103、计算制动器的温度在300℃立即驻车操作时的第三需求夹紧力,且夹紧力计算公式中的摩擦系数取制动器在300℃工作时的摩擦系数,坡度取8%。
该步骤可以理解为制动器温度在200~300℃时的一种驻车工况。而制动器温度由300℃冷却至常温的工况属于由高温再夹紧功能进行补充,因此不进行计算和考虑,也即是,制动器在300℃驻车操作后冷却至40℃的衰退的夹紧力由高温再夹紧功能进行补充,因此,不进行计算和考虑
第一坡度范围对应的电子驻车夹紧力满足以下条件:
条件一:(F 1-F g)≥F 11;条件二:(F 1-F g)≥F 13;条件二:(F 1-F g)×(1-Φ)≥F 12;其中,F 1表示第一坡度范围对应的电子驻车夹紧力;F g表示夹紧力公差;Φ为制动器温度由200℃降低到40℃的夹紧力衰退比;F 11表示第一夹紧力;F 12表示第二需求夹紧力;F 13表示第三需求夹紧力。
车辆的制动器在设计时,由于电压波动、制造公差、硬件公差等因素,实际作用的夹紧力与电子驻车夹紧力存在一定的公差,即夹紧力公差。针对已经制造完成的车辆,夹紧力公差为定值,如夹紧力公差为1500N,因此,在计算时,电子驻车夹紧力为第一夹紧力最大值加上夹紧力公差,或者第二需求夹紧力加上夹紧力公差。
制动器温度由200℃降低到40℃时,存在夹紧力衰退,因此,在计算时,应将夹紧力衰退比考虑进来,该夹紧力衰退比可以根据测试及模拟得到。
类似地,第二坡度范围对应的需求夹紧力的计算步骤为:
S201、计算制动器的温度在200℃以下立即进行驻车操作时的第四需求夹紧力,且夹紧力计算公式中的摩擦系数取制动器在200℃工作时的摩擦系数,坡度取17%。
S202、计算制动器的温度在200℃驻车操作后冷却到40℃保证不溜车的第 二需求夹紧力,且夹紧力计算公式中摩擦系数取制动器在40℃工作时的摩擦系数,坡度取17%,同时确定制动器从200℃冷却到40℃的夹紧力衰退比。
S203、计算制动器的温度在300℃立即驻车操作时的第六需求夹紧力,且夹紧力计算公式中的摩擦系数取制动器在300℃工作时的摩擦系数,坡度取17%。
制动器在300℃驻车操作后冷却至40℃的衰退的夹紧力由高温再夹紧功能进行补充,因此不进行计算和考虑。
第二坡度范围对应的电子驻车夹紧力满足以下条件:
条件一:(F 2-F g)≥F 21;条件二:(F 2-F g)≥F 23;条件三:(F 2-F g)×(1-Φ)≥F 22;其中,F 2表示第二坡度范围对应的电子驻车夹紧力;F g表示夹紧力公差;Φ为制动器温度由200℃降低到40℃的夹紧力衰退比;F 21表示第四需求夹紧力;F 22表示第五需求夹紧力;F 23表示第六需求夹紧力。
类似地,第三坡度范围对应的需求夹紧力的计算步骤为:
S301、计算制动器的温度在200℃以下立即进行驻车操作时的第七需求夹紧力,且夹紧力计算公式中的摩擦系数取制动器在200℃工作时的摩擦系数,坡度取30%。
S302、计算制动器的温度在200℃驻车操作后冷却到40℃保证不溜车的第八需求夹紧力,且夹紧力计算公式中摩擦系数取制动器在40℃工作时的摩擦系数,坡度取30%,同时确定制动器从200℃冷却到40℃的夹紧力衰退比。
S303、计算制动器的温度在300℃立即驻车操作时的第九需求夹紧力,且夹紧力计算公式中的摩擦系数取制动器在300℃工作时的摩擦系数,坡度取20%。
制动器在300℃驻车操作后冷却至40℃的衰退的夹紧力由高温再夹紧功能进行补充,因此,不进行计算和考虑。
第三坡度范围对应的电子驻车夹紧力满足以下条件:
条件一:(F 3-F g)≥F 31;条件二:(F 3-F g)≥F 33;条件三:(F 3-F g)×(1-Φ)≥F 32;其中,F 3表示第三坡度范围对应的电子驻车夹紧力;F g表示夹紧力公差;Φ为制动器温度由200℃降低到40℃的夹紧力衰退比;F 31表示第七需求夹紧力;F 32表示第八需求夹紧力;F 33表示第九需求夹紧力。
图2是本申请实施例提供的一种电子驻车夹紧力的确定装置的结构示意图。如图2所示,本实施例还提供了一种电子驻车夹紧力的确定装置,应用于上述的电子驻车夹紧力的确定方法,电子驻车夹紧力的确定装置包括第一确定模块210、第二确定模块220、第三确定模块230、计算模块240及第四确定模块250。
第一确定模块210设置为根据车辆驻车法规确定初级驻坡需求。第二确定 模块220设置为确定车辆制动器的多个驻车工况。第三确定模块230设置为根据制动器的温度及初级驻坡需求确定实际驻坡需求。计算模块240设置为根据制动器的温度、实际驻坡需求、车辆重量、车轮滚动半径、坡度及制动器有效制动半径及计算每个驻车工况对应的需求夹紧力。第四确定模块250设置为将多个需求夹紧力中最大的力确定为电子驻车夹紧力。
本实施例提供的电子驻车夹紧力的确定装置,先根据车辆驻车法规得到初级驻坡需求,并确定多个驻车工况,然后根据制动器的温度及初级驻坡需求得到实际驻坡需求,并根据实际驻坡需求、车辆重量、车轮滚动半径及制动器有效制动半径及计算得到多个需求夹紧力,将多个需求夹紧力中的最大值确定为电子驻车夹紧力,可见,电子驻车夹紧力的确定方法确定的电子驻车夹紧力不仅与坡度相关,还与温度及驻车工况相关,具有较高的准确性,降低了发生驻车失败的几率,保证了车辆的使用安全和车外的公共安全。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行上述实施例中的电子驻车夹紧力的确定方法
存储介质是指任何的多种类型的存储器电子设备或存储电子设备。术语“存储介质”旨在包括:安装介质,例如光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、软盘或磁带装置;计算机系统存储器或随机存取存储器,诸如动态随机存取存储器(Dynamic RAM,DRAM)、双倍速率随机存取存储器(Double Data Rate RAM,DDR RAM)、静态随机存取存储器(Static RAM,SRAM)、扩展数据输出随机存取存储器(Extended Data Output RAM,EDO RAM),兰巴斯随机存取存储器(Random Access Memory,Rambus RAM)等;非易失性存储器,诸如闪存、磁介质(例如硬盘或光存储);寄存器或其它相似类型的存储器元件等。存储介质可以还包括其它类型的存储器或其组合。另外,存储介质可以位于程序在其中被执行的计算机系统中,或者可以位于不同的第二计算机系统中,第二计算机系统通过网络(诸如因特网)连接到计算机系统。第二计算机系统可以提供程序指令给计算机用于执行。术语“存储介质”可以包括可以驻留在不同未知中(例如在通过网络连接的不同计算机系统中)的两个或更多存储介质。存储介质可以存储可由一个或多个处理器执行的程序指令(例如实现为计算机程序)。
本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的电子驻车夹紧力的确定操作,还可以执行本申请任意实施例所提供的电子驻车夹紧力的确定方法中的相关操作。
本申请实施例提供了一种电子设备,该电子设备中可集成本申请实施例提 供的电子驻车夹紧力的确定装置,该电子设备可以是配置于系统内的,也可以是执行系统内的部分或者全部性能的设备。图3是本申请实施例提供的一种电子设备的结构示意图。如图3所示,本实施例提供了一种电子设备500,其包括:一个或多个处理器520;存储装置510,设置为存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器520执行,使得所述一个或多个处理器520实现本申请实施例所提供的电子驻车夹紧力的确定方法。
处理器520还实现本申请任意实施例所提供的电子驻车夹紧力的确定方法的技术方案。
图3显示的电子设备500仅仅是一个示例,不应对本申请实施例的性能和使用范围带来任何限制。
如图3所示,该电子设备500包括处理器520、存储装置510、输入装置530和输出装置540;电子设备中处理器520的数量可以是一个或多个,图3中以一个处理器520为例;电子设备中的处理器520、存储装置510、输入装置530和输出装置540可以通过总线或其他方式连接,图3中以通过总线550连接为例。
存储装置510作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块单元,如本申请实施例中的电子驻车夹紧力的确定方法对应的程序指令。
存储装置510可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个性能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储装置510可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置510可包括相对于处理器520远程设置的存储器,这些远程存储器可以通过网络连接。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置530可设置为接收输入的数字、字符信息或语音信息,以及产生与电子设备的用户设置以及性能控制有关的键信号输入。输出装置540可包括显示屏、扬声器等电子设备。
上述实施例中提供的电子驻车夹紧力的确定装置、介质及电子设备可执行本申请任意实施例所提供的电子驻车夹紧力的确定方法,具备执行该方法相应的性能模块和效果。未在上述实施例中详尽描述的技术细节,可参见本申请任意实施例所提供的电子驻车夹紧力的确定方法。

Claims (12)

  1. 一种电子驻车夹紧力的确定方法,包括:
    根据车辆驻车法规确定初级驻坡需求;
    确定车辆制动器的多个驻车工况;
    根据制动器的温度及所述初级驻坡需求确定实际驻坡需求;
    根据所述制动器的温度、所述实际驻坡需求、车辆重量、车轮滚动半径、坡度、制动器有效制动半径及不同温度下的摩擦系数计算每个驻车工况对应的需求夹紧力;
    将多个需求夹紧力中的最大值确定为电子驻车夹紧力。
  2. 根据权利要求1所述的电子驻车夹紧力的确定方法,其中,所述制动器的温度被定义为第一温度区间、第二温度区间和第三温度区间;
    所述第一温度区间对应的温度为小于或等于100℃,且对应的实际驻坡需求为需满足工程目标30%驻坡要求;
    所述第二温度区间对应的温度为大于100℃且小于200℃,且对应的实际驻坡需求为需满足工程目标30%驻坡要求;
    所述第三温度区间对应的温度为大于或等于200℃且小于300℃,且对应的实际驻坡需求为需满足工程目标20%驻坡要求。
  3. 根据权利要求2所述的电子驻车夹紧力的确定方法,其中,所述制动器的温度还包括第四温度区间,所述第四温度区间对应的温度为大于或等于300℃,且所述第四温度区间对应车辆制动器误用工况,禁止驻车。
  4. 根据权利要求1-3任一项所述的电子驻车夹紧力的确定方法,其中,所述驻车工况具有两种,一种为所述制动器在高温状态下立即进行驻车操作;另一种为所述制动器高温驻车后冷却到常温。
  5. 根据权利要求1-3任一项所述的电子驻车夹紧力的确定方法,其中,所述根据所述制动器的温度、所述实际驻坡需求、车辆重量、车轮滚动半径、制动器有效制动半径及不同温度下的摩擦系数计算每个驻车工况对应的需求夹紧力,包括:
    将坡度进行分级,得到多个坡度范围;
    根据夹紧力计算公式计算每个坡度范围在每个驻车工况下对应的需求夹紧力,所述夹紧力计算公式为:
    Figure PCTCN2022136085-appb-100001
    其中,F表示需求夹紧力;G表示车辆重量;g表示重力加速度;i表示坡度;R表示所述车轮滚动半径;r表示所述制动器有效制动半径;μ表示摩擦系数,与所述制动器的温度相关。
  6. 根据权利要求5所述的电子驻车夹紧力的确定方法,其中,所述多个坡度范围分别为第一坡度范围、第二坡度范围及第三坡度范围,所述第一坡度范围为0~8%;所述第二坡度范围为8%~17%;所述第三坡度范围为大于17%的坡度。
  7. 根据权利要求6所述的电子驻车夹紧力的确定方法,其中,所述第一坡度范围对应的需求夹紧力的计算方式为:
    计算所述制动器的温度在200℃以下立即进行驻车操作时的第一需求夹紧力,且所述夹紧力计算公式中的所述摩擦系数取制动器在200℃工作时的摩擦系数,坡度取8%;
    计算所述制动器的温度在200℃驻车操作后冷却到40℃保证不溜车的第二需求夹紧力,且所述夹紧力计算公式中所述摩擦系数取制动器在40℃工作时的摩擦系数,坡度取8%,同时确定制动器从200℃冷却到40℃的夹紧力衰退比;
    计算所述制动器的温度在300℃立即驻车操作时的第三需求夹紧力,且所述夹紧力计算公式中的所述摩擦系数取制动器在300℃工作时的摩擦系数,坡度取8%;
    制动器在300℃驻车操作后冷却至40℃的衰退的夹紧力由高温再夹紧功能进行补充,因此,不进行计算和考虑;
    所述第一坡度范围对应的电子驻车夹紧力满足以下条件:
    条件一:(F 1-F g)≥F 11
    条件二:(F 1-F g)≥F 13
    条件二:(F 1-F g)×(1-Φ)≥F 12
    其中,F 1表示所述第一坡度范围对应的电子驻车夹紧力;F g表示夹紧力公差;Φ为所述制动器的温度由200℃降低到40℃的夹紧力衰退比;F 11表示第一夹紧力;F 12表示第二需求夹紧力;F 13表示第三需求夹紧力。
  8. 根据权利要求6所述的电子驻车夹紧力的确定方法,其中,所述第二坡度范围对应的需求夹紧力的计算方式为:
    计算所述制动器的温度在200℃以下立即进行驻车操作时的第四需求夹紧力,且所述夹紧力计算公式中的所述摩擦系数取制动器在200℃工作时的摩擦系数,坡度取17%;
    计算所述制动器的温度在200℃驻车操作后冷却到40℃保证不溜车的第二 需求夹紧力,且所述夹紧力计算公式中所述摩擦系数取制动器在40℃工作时的摩擦系数,坡度取17%,同时确定制动器从200℃冷却到40℃的夹紧力衰退比;
    计算所述制动器的温度在300℃立即驻车操作时的第六需求夹紧力,且所述夹紧力计算公式中的所述摩擦系数取制动器在300℃工作时的摩擦系数,坡度取17%;
    制动器在300℃驻车操作后冷却至40℃的衰退的夹紧力由高温再夹紧功能进行补充,因此,不进行计算和考虑;
    所述第二坡度范围对应的电子驻车夹紧力满足以下条件:
    条件一:(F 2-F g)≥F 21
    条件二:(F 2-F g)≥F 23
    条件三:(F 2-F g)×(1-Φ)≥F 22
    其中,F 2表示所述第二坡度范围对应的电子驻车夹紧力;F g表示夹紧力公差;Φ为所述制动器放入温度由200℃降低到40℃的夹紧力衰退比;F 21表示第四需求夹紧力;F 22表示第五需求夹紧力;F 23表示第六需求夹紧力。
  9. 根据权利要求6所述的电子驻车夹紧力的确定方法,其中,所述第三坡度范围对应的需求夹紧力的计算方式为:
    计算所述制动器的温度在200℃以下立即进行驻车操作时的第七需求夹紧力,且所述夹紧力计算公式中的所述摩擦系数取制动器在200℃工作时的摩擦系数,坡度取30%;
    计算所述制动器的温度在200℃驻车操作后冷却到40℃保证不溜车的第八需求夹紧力,且所述夹紧力计算公式中所述摩擦系数取制动器在40℃工作时的摩擦系数,坡度取30%,同时确定制动器从200℃冷却到40℃的夹紧力衰退比;
    计算所述制动器的温度在300℃立即驻车操作时的第九需求夹紧力,且所述夹紧力计算公式中的所述摩擦系数取制动器在300℃工作时的摩擦系数,坡度取20%;
    制动器在300℃驻车操作后冷却至40℃的衰退的夹紧力由高温再夹紧功能进行补充,因此,不进行计算和考虑;
    所述第三坡度范围对应的电子驻车夹紧力满足以下条件:
    条件一:(F 3-F g)≥F 31
    条件二:(F 3-F g)≥F 33
    条件三:(F 3-F g)×(1-Φ)≥F 32
    其中,F 3表示所述第三坡度范围对应的电子驻车夹紧力;F g表示夹紧力公差;Φ为所述制动器的温度由200℃降低到40℃的夹紧力衰退比;F 31表示第七需求夹紧力;F 32表示第八需求夹紧力;F 33表示第九需求夹紧力。
  10. 一种电子驻车夹紧力的确定装置,包括:
    第一确定模块,设置为根据车辆驻车法规确定初级驻坡需求;
    第二确定模块,设置为确定车辆制动器的多个驻车工况;
    第三确定模块,设置为根据制动器的温度及所述初级驻坡需求确定实际驻坡需求;
    计算模块,设置为根据所述制动器的温度、实际驻坡需求、车辆重量、车轮滚动半径、坡度及制动器有效制动半径及计算每个驻车工况对应的需求夹紧力;
    第四确定模块,设置为将多个需求夹紧力中最大的力确定为电子驻车夹紧力。
  11. 一种电子设备,包括存储器,处理器及存储在所述存储器上并可在所述处理器运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1-9中任一项所述的电子驻车夹紧力的确定方法。
  12. 一种计算机可读存储介质,存储有计算机程序,所述程序被处理器执行时实现如权利要求1-9中任一项所述的电子驻车夹紧力的确定方法。
PCT/CN2022/136085 2021-12-31 2022-12-02 电子驻车夹紧力的确定方法及装置 WO2023124760A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111668028.9 2021-12-31
CN202111668028.9A CN114212063B (zh) 2021-12-31 2021-12-31 一种电子驻车夹紧力的确定方法及装置

Publications (1)

Publication Number Publication Date
WO2023124760A1 true WO2023124760A1 (zh) 2023-07-06

Family

ID=80707444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136085 WO2023124760A1 (zh) 2021-12-31 2022-12-02 电子驻车夹紧力的确定方法及装置

Country Status (2)

Country Link
CN (1) CN114212063B (zh)
WO (1) WO2023124760A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114212063B (zh) * 2021-12-31 2023-02-17 中国第一汽车股份有限公司 一种电子驻车夹紧力的确定方法及装置
CN115366856B (zh) * 2022-07-29 2023-10-03 中国第一汽车股份有限公司 一种驻车再夹紧控制方法、装置、车辆及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1442952A1 (de) * 2003-01-30 2004-08-04 WABCO GmbH & CO. OHG Verfahren zur Steuerung einer Rollsperre für ein Fahrzeug
CN1891545A (zh) * 2005-06-27 2007-01-10 罗伯特.博世有限公司 汽车制动设备的取决于状态的停车冲击限制功能
US20090197738A1 (en) * 2008-02-06 2009-08-06 Jonathan Leslie Christopher Jackson Brake system and method
CN106828473A (zh) * 2017-01-19 2017-06-13 上海汽车集团股份有限公司 电子驻车夹紧力控制方法
CN110539737A (zh) * 2018-05-28 2019-12-06 比亚迪股份有限公司 车辆驻车方法、装置、存储介质、电子设备及车辆
CN111746296A (zh) * 2020-05-22 2020-10-09 上海大陆汽车制动系统销售有限公司 一种电子驻车制动系统再夹紧控制方法
CN114212063A (zh) * 2021-12-31 2022-03-22 中国第一汽车股份有限公司 一种电子驻车夹紧力的确定方法及装置
CN115366856A (zh) * 2022-07-29 2022-11-22 中国第一汽车股份有限公司 一种驻车再夹紧控制方法、装置、车辆及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014222197A1 (de) * 2014-10-30 2016-05-04 Robert Bosch Gmbh Feststellbremsvorrichtung für ein Kraftfahrzeug und Verfahren zur Ansteuerung der Feststellbremsvorrichtung
CN106768586B (zh) * 2016-12-14 2019-04-02 广州汽车集团股份有限公司 电子驻车卡钳夹紧力校验方法和系统
CN108202730B (zh) * 2016-12-20 2020-08-18 宝沃汽车(中国)有限公司 用于驻车控制的方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1442952A1 (de) * 2003-01-30 2004-08-04 WABCO GmbH & CO. OHG Verfahren zur Steuerung einer Rollsperre für ein Fahrzeug
CN1891545A (zh) * 2005-06-27 2007-01-10 罗伯特.博世有限公司 汽车制动设备的取决于状态的停车冲击限制功能
US20090197738A1 (en) * 2008-02-06 2009-08-06 Jonathan Leslie Christopher Jackson Brake system and method
CN106828473A (zh) * 2017-01-19 2017-06-13 上海汽车集团股份有限公司 电子驻车夹紧力控制方法
CN110539737A (zh) * 2018-05-28 2019-12-06 比亚迪股份有限公司 车辆驻车方法、装置、存储介质、电子设备及车辆
CN111746296A (zh) * 2020-05-22 2020-10-09 上海大陆汽车制动系统销售有限公司 一种电子驻车制动系统再夹紧控制方法
CN114212063A (zh) * 2021-12-31 2022-03-22 中国第一汽车股份有限公司 一种电子驻车夹紧力的确定方法及装置
CN115366856A (zh) * 2022-07-29 2022-11-22 中国第一汽车股份有限公司 一种驻车再夹紧控制方法、装置、车辆及存储介质

Also Published As

Publication number Publication date
CN114212063A (zh) 2022-03-22
CN114212063B (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
WO2023124760A1 (zh) 电子驻车夹紧力的确定方法及装置
WO2021143723A1 (zh) 一种停车方法及装置
CN111546903B (zh) 滑行扭矩的确定方法、装置、设备及存储介质
CN114802137B (zh) 制动衰退补偿方法、装置、电子设备及计算机存储介质
WO2021249556A1 (zh) 干涉扭矩控制方法、装置、控制器、设备、程序、介质
US9610937B2 (en) Apparatus and method for controlling torque reduction of hybrid electric vehicle
US10967847B2 (en) Controlling method of RPM flare of transmission for hybrid vehicle
CN113306407A (zh) 一种驻车起步时扭矩输出的控制方法、电机控制器及汽车
CN114148308A (zh) 一种电子驻车系统高温再夹紧方法
CN111734543B (zh) 发动机喷油量控制方法、装置、设备及车辆
CN111873982B (zh) 一种起步控制方法、装置、车辆和存储介质
CN111605413B (zh) 一种控制方法、装置、车辆及存储介质
CN114834408B (zh) 汽车制动方法及系统
WO2023005615A1 (zh) 一种车辆再生制动工况的试验系统、试验方法、设备及存储介质
WO2023134414A1 (zh) 制动盘温度确定方法、装置及车辆
US20230373455A1 (en) Methods and apparatus to determine brake system health
CN114987411B (zh) 一种汽车制动力智能分配系统、电子设备及存储介质
CN114056098B (zh) 增程器控制方法、装置和电子设备
CN113954842B (zh) 混合轮端扭矩能力确定方法、装置、电子设备及存储介质
CN117162984A (zh) 车辆制动控制方法、装置、电子设备、介质和车辆
CN116447255A (zh) 确定制动衬块磨损的方法和设备
CN111137266B (zh) 车辆空气处理单元的控制方法、装置、设备及车辆
CN114701499A (zh) 一种坡道驻车控制方法、装置、设备及存储介质
CN113704675A (zh) 车速计算方法、装置、电子设备及存储介质
CN112265547B (zh) 一种坡路起步的控制方法、装置、设备及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914015

Country of ref document: EP

Kind code of ref document: A1