WO2023124675A1 - 光学组件以及包含该光学组件的电子设备 - Google Patents

光学组件以及包含该光学组件的电子设备 Download PDF

Info

Publication number
WO2023124675A1
WO2023124675A1 PCT/CN2022/134137 CN2022134137W WO2023124675A1 WO 2023124675 A1 WO2023124675 A1 WO 2023124675A1 CN 2022134137 W CN2022134137 W CN 2022134137W WO 2023124675 A1 WO2023124675 A1 WO 2023124675A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
reflection
reflection particles
optical component
particles
Prior art date
Application number
PCT/CN2022/134137
Other languages
English (en)
French (fr)
Inventor
张之礼
林昇勋
冯超
Original Assignee
安徽飞谚新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽飞谚新材料科技有限公司 filed Critical 安徽飞谚新材料科技有限公司
Publication of WO2023124675A1 publication Critical patent/WO2023124675A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials

Definitions

  • the invention relates to the field of optical technology, in particular to an optical component and electronic equipment containing the optical component.
  • Anti-reflection refers to reducing or eliminating the reflected light on the surface of the optical component, thereby increasing the light transmission of the optical component and reducing or eliminating the stray light of the system.
  • effective anti-reflection devices are needed to reduce the reflectivity, so as to achieve the purpose of making the edges of electronic products appear "one-piece black".
  • "One-piece black” will make the appearance of electronic products evenly black and more beautiful.
  • "one-piece black” can also make flexible screens and folding screens bend or fold. Creases from folding are less noticeable.
  • the research and development of traditional anti-reflection devices mainly has two directions.
  • the first direction is to coat a layer of low-refractive-index coating on the surface of the electronic product, and the refractive index of the coating (Refractive Index) is generally between 1.35 and 1.40.
  • the refractive index between the substances is different, so according to Snell's law, the light will be refracted and reflected (as shown in Figure 1).
  • the theoretical calculation of the reflectivity is only related to the refractive index.
  • the reflectivity R (Reflectivity) calculation formula is Therefore, simply changing the refractive index (N 1 ) of the material to reduce the reflectivity will have physical limitations, and the reduction in reflectivity is limited, and the coating with a low refractive index is not scratch-resistant and easily brittle. An additional coating process will be added to the construction. In addition, there are few sources of low-refractive-index coating materials and high prices, and further screening is required to meet the adhesion to the underlying coating, and the available materials are very limited.
  • the second direction is to add some particles to the hardened coating on the surface of electronic products to reduce the reflectivity.
  • the additional introduction of particles into the hardened coating can obtain a lower degree of reflectivity, but it will lead to a decrease in the surface wear resistance of the hardened coating, making it difficult to apply such as the coating on the screen surface of electronic products.
  • the present invention provides an optical component with anti-reflection optical performance, high wear resistance and bending resistance, and an electronic device including the same.
  • the first aspect of the present invention provides an optical component, including a substrate, and a first film layer and a second film layer sequentially stacked on the surface of the substrate, and the second film layer is dispersed with a mass percentage of 1 % ⁇ 20% anti-reflection particles;
  • the anti-reflection particles include 48% to 52% of the first anti-reflection particles, 28% to 32% of the second anti-reflection particles and 18% to 22% of the third anti-reflection particles;
  • the particle diameter of the first anti-reflection particles is ⁇ 50nm and ⁇ 100nm;
  • the particle size of the second anti-reflection particles is ⁇ 20nm and ⁇ 50nm;
  • the particle diameter of the third anti-reflection particles is ⁇ 20nm.
  • the mass percentage of the anti-reflection particles in the second film layer is 10%-20%.
  • the anti-reflection particles are solid structures.
  • the material of the anti-reflection particles is selected from one or more of silicon dioxide and titanium dioxide.
  • the second film layer is prepared by dispersing the anti-reflection particles in a colloid and curing.
  • the preparation raw materials of the colloid include:
  • the raw materials for the preparation of the first film layer include:
  • the refractive index of the first film layer is greater than the refractive index of the second film layer.
  • the thickness of the second film layer is 0.1 ⁇ m-2 ⁇ m; and/or
  • the thickness of the first film layer is 3 ⁇ m ⁇ 10 ⁇ m.
  • the material of the substrate is polyimide, polyethylene terephthalate, cellulose triacetate, glass, polycarbonate or polymethyl methacrylate.
  • a second aspect of the present invention provides an electronic device, including a body and an anti-reflection device embedded in the body, the anti-reflection device being the optical component as described above.
  • the anti-reflection device is a protective cover.
  • the above-mentioned optical components arrange the first film layer between the substrate and the second film layer, reasonably control the proportion of anti-reflection particles in the second film layer, and use three kinds of anti-reflection particles with different particle sizes to set a reasonable level. Therefore: 1) Through the mutual cooperation between the three kinds of anti-reflection particles with different particle sizes, the reflection can be reduced to the greatest extent, and the anti-reflection optical characteristics of the component can be guaranteed.
  • the stable glue inner link makes the film layer have better wear resistance and can ensure the hardness of the film layer; 2)
  • the second film layer dispersed with three kinds of anti-reflection particles of different particle sizes also has a certain degree of flexibility , cooperate with the first film layer to make the adhesion between the second film layer and the base material dense, so that the optical component has better bending resistance.
  • optical component can be used as the outermost protective layer of the electronic device to protect the internal structure, such as the display panel and the touch control component, so that when the user clicks on the electronic device, the internal structure will not be crushed.
  • Figure 1 is a schematic diagram of refraction and reflection of light passing through a medium
  • Fig. 2 is a schematic diagram of refraction and reflection when light encounters anti-reflection particles dispersed in the second film layer;
  • Fig. 3 is a schematic structural diagram of an optical assembly of an example of the present invention.
  • Fig. 4 is a schematic structural diagram of an optical assembly of another example of the present invention.
  • Fig. 5 is a schematic structural diagram of an optical assembly of another example of the present invention.
  • FIG. 6 is an electron microscope image of an optical component according to an embodiment of the present invention.
  • optical component and the electronic device including the optical component of the present invention will be further described in detail below in conjunction with specific embodiments.
  • the present invention can be embodied in many different forms and is not limited to the embodiments described herein. On the contrary, the purpose of providing these embodiments is to make the understanding of the disclosure of the present invention more thorough and comprehensive.
  • the first aspect is used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or quantity, nor as implying the importance or importance of the indicated technical features. quantity. Moreover, “first”, “second”, etc. are only for the purpose of non-exhaustive enumeration and description, and it should be understood that they do not constitute a closed limitation on the quantity.
  • the technical features described in open form include closed technical solutions consisting of the enumerated features, as well as open technical solutions including the enumerated features.
  • the above numerical interval is considered continuous, and includes the minimum and maximum values of the range, and every value between such minimum and maximum values.
  • a range refers to an integer, every integer between the minimum and maximum of the range is included.
  • the ranges may be combined. In other words, unless otherwise indicated, all ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein.
  • the percentages involved refer to mass percentages for solid-liquid mixing and solid-solid phase mixing, and refer to volume percentages for liquid-liquid mixing, unless otherwise specified.
  • the percentage concentration involved refers to the final concentration unless otherwise specified.
  • the final concentration refers to the proportion of the added component in the system after the component is added.
  • both constant temperature treatment and treatment within a certain temperature range are allowed.
  • the isothermal treatment allows the temperature to fluctuate within the precision of the instrument control.
  • stacked on the surface of " and “arranged between " may refer to direct contact with the stacked (set) object, or indirect contact with the stacked (set) object, that is, to achieve connection through other intermediate structures.
  • oligomer refers to a polymer composed of less repeating units, and its relative molecular mass is between small molecules and macromolecules.
  • oligomer in the present invention refers to a polymer composed of 10-20 repeating units.
  • the invention provides an optical component, which comprises a base material and a first film layer and a second film layer sequentially stacked on the surface of the base material, and the second film layer is dispersed with anti-reflection particles with a mass percentage of 1% to 20%.
  • the anti-reflection particles include 48% to 52% of the first anti-reflection particles, 28% to 32% of the second anti-reflection particles and 18% to 22% of the third anti-reflection particles; wherein, the first The particle diameter of the antireflection particles is ⁇ 50nm and ⁇ 100nm; the particle diameter of the second antireflection particles is ⁇ 20nm and ⁇ 50nm; the particle diameter of the third antireflection particles is ⁇ 20nm.
  • the main function of the first film layer is to form a transition between the substrate and the second film layer, that is, to serve as a transition layer to make the adhesion between the second film layer and the substrate dense.
  • the second film layer can be any functional film layer on the surface of the substrate of the electronic device, which is provided according to different electronic devices. Further, the second film layer is not an optical coating. In one specific example, the second film layer is a protective film layer, which provides encapsulation and protection for the underlying film layer. Further, the second film layer is a hard layer.
  • the above-mentioned optical component uses anti-reflection particles with a combination of specific particle diameters in the second film layer, which can increase the direction of travel of light through the gap.
  • 48% to 52% of the first anti-reflection particles have a particle size ⁇ 50nm and ⁇ 100nm, and their distribution range is the widest in the second film layer, which first plays a role in changing the light path, 28% to 32%
  • the second anti-reflection particles (particle size ⁇ 20nm and ⁇ 50nm) and the third anti-reflection particles ( ⁇ 20nm) of 18% to 22% can find gaps between the first anti-reflection particles to change the light intensity again. direction of travel.
  • the proportions and particle diameters of the three anti-reflection particles are outside the above-mentioned ranges, the optical characteristics are likely to deviate, and the reflectance cannot be effectively reduced.
  • the particle size of the third anti-reflection particles is ⁇ 10 ⁇ m and ⁇ 20 nm.
  • the mass percentage of the anti-reflection particles in the second film layer is 1%-20%. If the added amount is insufficient, it will happen that after the light is incident on the surface layer, it will not be able to touch the anti-reflection particles, because the direction of light cannot be changed without touching the anti-reflection particles. If the direction of light cannot be changed, the light will go straight and reflect, resulting in an increase in reflectivity, and the reflectivity cannot be effectively reduced. Too much added amount may cause the anti-reflection particles after stirring to be too concentrated.
  • the mass percentage of antireflection particles in the second film layer includes but not limited to: 1%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 20%.
  • the mass percentage of the anti-reflection particles in the second film layer is 10%-20%.
  • the second film layer is prepared by dispersing the anti-reflection particles in the colloid and curing, and the anti-reflection particles need to be uniformly dispersed in the colloid.
  • the raw materials for the preparation of the colloid include:
  • the functionality of the acrylic resin oligomer is 6 to 15, which can be selected from polyether urethane acrylate oligomers, polyester urethane acrylate oligomers, polycarbonate urethane acrylate Oligomer, aliphatic urethane acrylate oligomer, silicone modified urethane acrylate oligomer, fluorine modified urethane acrylate oligomer, epoxy modified urethane acrylate oligomer and polyester acrylate low one or more of polymers.
  • the functionality of the photocurable reactive diluent is mainly 2 to 6, which can be selected from pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, trimethylolpropane triacrylate Acrylates, Ethoxylated Trimethylolpropane Triacrylate, Trimethylolpropane Trimethacrylate, 1,6-Hexanediol Di(meth)acrylate, Trimethylolpropane Triacrylate, Trimethylolpropane Trimethacrylate, Hydroxymethylpentane trimethacrylate, trimethylolpropane pentaerythritol triacrylate, propoxylated neopentyl glycol diacrylate, ethoxylated 1,6-hexanediol diacrylate and tris(2-acryloyl
  • the photoinitiator can be selected from 1-hydroxycyclohexyl phenone (photoinitiator 184), 2-hydroxy-2-methyl-1-phenyl-1-propanone (photoinitiator 1173), 2, 4,6-Trimethylbenzoyl-diphenylphosphine oxide (photoinitiator TPO) and 2-hydroxy-4-(2-hydroxyethoxy)-2-methylpropiophenone (photoinitiator 2959) one or more of.
  • the additives may be selected from one or more of inorganic nanomaterials and fluorosilicon additives.
  • the solvent may be selected from one or more of ethyl acetate, butyl acetate, butanone, methyl isobutyl ketone, propylene glycol methyl ether, and propylene glycol methyl ether acetate.
  • the anti-reflection particles are solid structures.
  • the use of anti-reflection particles with a solid structure can achieve better compatibility with the colloid.
  • the solid structure is more effective in destroying reflected light, and the production and acquisition It is more convenient, and the price is lower. It will not be deformed due to too much change in the ambient temperature. It is durable and wear-resistant. , even after a long period of use, the characteristics of the product after use can be the same as those at the beginning of use, and the characteristics will not become worse as the use time increases).
  • the anti-reflection particles are preferably transparent and colorless anti-reflection particles.
  • the material of the anti-reflection particles is selected from one or more of silicon dioxide and titanium dioxide. Titanium dioxide and silicon dioxide have a low refractive index and are transparent, and can be effectively linked with the preparation raw materials of the second film layer during synthesis, thereby improving the appearance transparency and low haze. Specifically, the aforementioned refractive index is between 1.2 ⁇ 1.3. If it is further smaller than 1.2, the compatibility with the raw materials for the preparation of the second film layer will become poor, resulting in inability to dissolve, affecting transparency, light transmittance, and increasing haze.
  • the method for preparing the aforementioned second film layer includes the following steps:
  • the second film layer may be one layer, or more than two layers, such as three layers.
  • the multiple layers can be connected by the colloidal layer of the second film layer without anti-reflection particles, or can be directly contacted and stacked, and the colloid layer of the second film layer without anti-reflection particles can also be more than one layer.
  • Figure 3 shows that the first film layer 200, two colloid layers 301 and the second film layer 300 are sequentially stacked on the surface of the substrate 100;
  • FIG. 5 shows that the first film layer 200 , the second film layer 300 , the colloid layer 301 and the second film layer 300 are sequentially stacked on the surface of the substrate 100 .
  • the thickness of the second film layer is 0.1 ⁇ m ⁇ 2 ⁇ m. It is found in the research that the reflectivity, wear resistance and bending performance of the film are reduced to varying degrees if the thickness is too high, and the film thickness is too small, which will make the film surface uneven and poor in appearance.
  • the thickness of the first film layer is 3 ⁇ m ⁇ 10 ⁇ m. It has been found in the research that if the film thickness is too thick, the number of layers will be more, and the production yield will be reduced. If the film thickness is too small, poor adhesion may occur.
  • the raw materials for the first film layer include:
  • the functionality of the acrylic resin oligomer is 6 to 15, which can be selected from polyether urethane acrylate oligomers, polyester urethane acrylate oligomers, polycarbonate urethane acrylate Oligomer, aliphatic urethane acrylate oligomer, silicone modified urethane acrylate oligomer, fluorine modified urethane acrylate oligomer, epoxy modified urethane acrylate oligomer and polyester acrylate low one or more of polymers.
  • the functionality of the photocurable reactive diluent is mainly 2 to 6, which can be selected from pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, trimethylolpropane triacrylate Acrylates, Ethoxylated Trimethylolpropane Triacrylate, Trimethylolpropane Trimethacrylate, 1,6-Hexanediol Di(meth)acrylate, Trimethylolpropane Triacrylate, Trimethylolpropane Trimethacrylate, Hydroxymethylpentane trimethacrylate, trimethylolpropane pentaerythritol triacrylate, propoxylated neopentyl glycol diacrylate, ethoxylated 1,6-hexanediol diacrylate and tris(2-acryloyl
  • the photoinitiator can be selected from 1-hydroxycyclohexyl phenone (photoinitiator 184), 2-hydroxy-2-methyl-1-phenyl-1-propanone (photoinitiator 1173), 2, 4,6-Trimethylbenzoyl-diphenylphosphine oxide (photoinitiator TPO) and 2-hydroxy-4-(2-hydroxyethoxy)-2-methylpropiophenone (photoinitiator 2959) one or more of.
  • the additives may be selected from one or more of inorganic nanomaterials and fluorosilicon additives.
  • the solvent may be selected from one or more of ethyl acetate, butyl acetate, butanone, methyl isobutyl ketone, propylene glycol methyl ether, and propylene glycol methyl ether acetate.
  • the refractive index of the first film layer is greater than the refractive index of the second film layer. In this way, excessive reflection and refraction can be avoided, and the interaction with the second film layer will cause interference fringes and affect the appearance.
  • the refractive index of the first film layer is 1.485-1.505
  • the refractive index of the second film layer is 1.465-1.484. It can be understood that, in order not to affect the function of the transition layer, anti-reflection particles may also be properly mixed into the first film layer. After anti-reflection particles are mixed in, its refractive index will decrease, for example, to 1.465.
  • the material of the substrate is polyimide (CPI), polyethylene terephthalate (PET), triacetyl cellulose (TAC), glass (such as ultra-thin glass UTG), Polycarbonate (PC) or polymethylmethacrylate (PMMA).
  • CPI polyimide
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • glass such as ultra-thin glass UTG
  • PC Polycarbonate
  • PMMA polymethylmethacrylate
  • the above-mentioned optical component further includes a dielectric layer disposed between the base material and the first film layer, and the dyne value of the dielectric layer is ⁇ 40.
  • a dielectric layer disposed between the base material and the first film layer, and the dyne value of the dielectric layer is ⁇ 40.
  • the surface energy of the substrate is too small, and when the dyne value is less than 40 (the dyne value can be measured with a dyne pen), the first film layer will occur on the substrate. Poor adhesion makes the functional layer easy to peel off from the substrate.
  • the existence of the medium layer can increase the surface energy of the substrate, making the first film layer and the substrate have good adhesion
  • the thickness of the dielectric layer is 100 nm ⁇ 300 nm.
  • the material of the dielectric layer is primer (such as chlorinated polypropylene, SBS resin, etc.) or Corona (Corona refers to the use of corona treatment to cooperate with the hardening glue to adhere or to make the hardening glue easy to apply on the substrate. surface)
  • primer such as chlorinated polypropylene, SBS resin, etc.
  • Corona Corona refers to the use of corona treatment to cooperate with the hardening glue to adhere or to make the hardening glue easy to apply on the substrate. surface
  • the present invention also provides an electronic device, which includes a body and an anti-reflection device embedded in the body, and the anti-reflection device is the above-mentioned optical component. Further, the electronic device may be a mobile phone or a monitor.
  • the anti-reflection device is a protective cover.
  • the protective cover is a screen cover.
  • the glue that forms transition layer in embodiment and comparative example is identical, and composition is as follows (mass percentage):
  • Jieshida DSP-552F (6-official fluorine modified polyurethane acrylate oligomer) 15%, Changxing Chemical 6195-100 (10-official aliphatic urethane acrylate oligomer) 10%, dipentaerythritol hexaacrylate 10%, Photoinitiator 2959 2%, NANOBYK-3605 (inorganic nanomaterials) 2.5%, Shin-Etsu KY-1203 (fluorosilicon additives) 1%, propylene glycol methyl ether 20% and butyl acetate 39.5%.
  • optical components provided by Examples 1-5 and Comparative Examples 1-3 are manufactured as follows:
  • Colloid 1 Jieshida DSP-552F (6-official fluorine modified urethane acrylate oligomer) 15%, Changxing Chemical 6195-100 (10-official aliphatic urethane acrylate oligomer) 10%, dipentaerythritol hexaacrylate 10%, photoinitiator 2959 2%, NANOBYK-3605 (inorganic nanomaterials) 2.5%, Shin-Etsu KY-1203 (fluorosilicon additive) 1%, propylene glycol methyl ether 20% and butyl acetate 39.5%.
  • Colloid 2 Bahe New Material BW8025 (average 10-official fluorine modified polyurethane acrylate oligomer) 10%, Sartomer CN9006NS (6-official aliphatic urethane acrylate oligomer) 18%, trimethylolpropane trimethylolpropane Acrylate (TMPTA) 12%, photoinitiator 2959 2.2%, NANOBYK-3605 (inorganic nanomaterial) 2.5%, Shin-Etsu KY-1203 (fluorosilicon additive) 1%, propylene glycol methyl ether 15% and butyl acetate 30.7% .
  • Colloid 3 Changxing Chemical 6196-100 (15-functional aliphatic urethane acrylate oligomer) 10%, Sartomer CN9006NS (6-functional aliphatic urethane acrylate oligomer) 15%, pentaerythritol triacrylate 13%, light Initiator 1173 2.5%, NANOBYK-3605 (inorganic nanomaterials) 2.5%, Shin-Etsu KY-1203 (fluorosilicon additives) 1%, propylene glycol methyl ether 19% and butyl acetate 37%.
  • step 2.4 Pour the mixture obtained in step 2.3 on the surface of the transition layer, and use a roller to evenly spread it on the substrate, control the distance between the roller and the surface of the transition layer to be about 1 ⁇ m to 2 ⁇ m, and harden it after being irradiated by a UV lamp.
  • the energy of the UV lamp is about 220mJ
  • the obtained Hard film layer the thickness of the film layer is 2 ⁇ m.
  • the length of the tested sample is not less than 150mm
  • the transmittance test is the ratio of the light traveling in a straight line to the incident light; the haze test is the ratio of the scattered light to the incident light.
  • the test is carried out under the condition of 750g load.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

本发明涉及一种光学组件以及包含该光学组件的电子设备。所述光学组件包括基材,以及依次层叠于所述基材表面的第一膜层和第二膜层,所述第二膜层中分散有质量百分比为1%~20%的减反射粒子;以质量百分比计,所述减反射粒子包括48%~52%的第一减反射粒子、28%~32%的第二减反射粒子和18%~22%的第三减反射粒子;其中,所述第一减反射粒子的粒径为≥50nm,且≤100nm;所述第二减反射粒子的粒径为≥20nm,且<50nm;所述第三减反射粒子的粒径为<20nm。该光学组件在具备减反射光学性能的同时,还具有较高的耐磨性能和耐弯折性能。

Description

光学组件以及包含该光学组件的电子设备 技术领域
本发明涉及光学技术领域,特别是涉及一种光学组件以及包含该光学组件的电子设备。
背景技术
减反射是指减少或消除光学组件表面的反射光,从而增加光学组件的透光量,减少或消除系统的杂散光。对于手机、显示器等电子产品,需要有效的减反射装置以降低反射率,达到如使电子产品的边缘呈现“一体黑”外观表现的目的。“一体黑”会让电子产品的外观黑的很均匀,看起来更美观,同时随着电子产品中柔性屏、折叠屏的广泛应用,“一体黑”也可以让柔性屏、折叠屏在弯曲或折叠时产生的折痕看起来比较不明显。但是,如果将传统的减反射涂层直接应用于柔性屏或折叠屏,弯曲或折叠一段时间后会出现涂层开裂的情况。因此,需要进一步开发能够应用于柔性屏、折叠屏的,具有良好耐弯折性的减反射装置。
传统的减反射装置的研发主要有两个方向。第一个方向为在电子产品的表面涂覆一层低折射率的涂层,涂层折射率(Refractive Index)一般介于1.35~1.40之间。由于光经过不同物质时,物质间彼此的折射率不同,所以根据Snell’s law,光就会发生折射与反射(如图1所示),然而反射率的理论计算只跟折射率有关,反射率R(Reflectivity)计算公式为
Figure PCTCN2022134137-appb-000001
因此单纯从改变材料折射率(N 1)来降低反射率,会有物理上的限制,反射率降低幅度有限,并且低折射率的涂层不耐刮擦、容易脆化。在施工上还会额外增加一道涂布过程。除 此之外,低折射率的涂层材料来源较少且价格高昂,还需要进一步筛选满足与下面涂层的附着,可供选择的材料十分有限。
第二个方向为在电子产品表面本身具有的硬化涂层中添加一些粒子来达到降低反射率的目的。但是在硬化涂层中额外引入粒子,虽然可以获得较低程度的反射率,但是会导致硬化涂层的表面耐磨性能下降,难以应用于如电子产品的屏幕表面的涂层中。
同时,传统的两个研究方向中均对减反射装置的耐弯折性能关注较少。
发明内容
基于此,本发明提供一种在具备减反射光学性能的同时,还具有较高的耐磨性能和耐弯折性能的光学组件,以及包含其的电子设备。
本发明的第一方面,提供一种光学组件,包括基材,以及于所述基材表面依次层叠的第一膜层和第二膜层,所述第二膜层中分散有质量百分比为1%~20%的减反射粒子;
以质量百分比计,所述减反射粒子包括48%~52%的第一减反射粒子、28%~32%的第二减反射粒子和18%~22%的第三减反射粒子;
其中,所述第一减反射粒子的粒径为≥50nm,且≤100nm;
所述第二减反射粒子的粒径为≥20nm,且<50nm;
所述第三减反射粒子的粒径为<20nm。
在其中一个实施例中,所述减反射粒子在所述第二膜层中的质量百分比为10%~20%。
在其中一个实施例中,所述减反射粒子为实心结构。
在其中一个实施例中,所述减反射粒子的材料选自二氧化硅和二氧化钛中 的一种或多种。
在其中一个实施例中,所述第二膜层通过将所述减反射粒子分散在胶体中经固化成型制备,以质量百分比计,所述胶体的制备原料包括:
20%~40%的聚丙烯酸树脂、10%~30%的环氧树脂、20%~40%的丙烯酸酯低聚物、5%~25%的UV单体稀释剂以及1%~5%的光引发剂。
在其中一个实施例中,以质量百分比计,所述第一膜层的制备原料包括:
20%~40%的聚丙烯酸树脂、10%~30%的环氧树脂、20%~40%的丙烯酸酯低聚物、5%~25%的UV单体稀释剂以及1%~5%的光引发剂。
在其中一个实施例中,所述第一膜层的折射率大于所述第二膜层的折射率。
在其中一个实施例中,所述第二膜层的厚度为0.1μm~2μm;及/或
所述第一膜层的厚度为3μm~10μm。
在其中一个实施例中,所述基材的材料为聚酰亚胺、聚对苯二甲酸乙二酯、三醋酸纤维素、玻璃、聚碳酸酯或聚甲基丙烯酸甲酯。
本发明的第二方面,提供一种电子设备,包括本体以及嵌合于所述本体的减反射装置,所述减反射装置为如上所述的光学组件。
在其中一个实施例中,所述减反射装置为保护盖板。
上述光学组件通过在基材与第二膜层之间设置第一膜层,同时合理控制第二膜层中减反射粒子的占比,并采用不同粒径的三种减反射粒子设置合理的级配,由此:1)通过不同粒径的三种减反射粒子之间的互相配合,能够较大限度的减少反射,保证组件的减反射光学特性,同时还能够在第二膜层中形成较为稳定的胶内链接,使膜层具有较佳的耐磨性,且能够保证膜层硬度;2)适量的、不同粒径的三种减反射粒子分散的第二膜层还具有一定的柔韧性,配合设置第 一膜层,使第二膜层与基材之间的附着致密,如此可以使光学组件具有较佳的耐弯折性。
此外,上述光学组件能够作为电子设备最外层的保护层,保护内部的结构,如显示面板和触控组件等,当用户在对电子设备进行点击时,不会压伤其内部的结构。
附图说明
图1为光通过介质发生折射与反射的示意图;
图2为光线遇到第二膜层中分散的减反射粒子时的折射与反射的示意图;
图3为本发明一示例的光学组件结构示意图;
图4为本发明又一示例的光学组件结构示意图;
图5为本发明再一示例的光学组件结构示意图;
图6为本发明一实施例的光学组件的电镜图。
具体实施方式
以下结合具体实施例对本发明的光学组件以及包含该光学组件的电子设备作进一步详细的说明。本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明公开内容理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本发明中,“一种或多种”指所列项目的任一种、任两种或任两种以上。
本发明中,“第一方面”、“第二方面”等仅用于描述目的,不能理解为指示或暗示相对重要性或数量,也不能理解为隐含指明所指示的技术特征的重要性或数量。而且“第一”、“第二”等仅起到非穷举式的列举描述目的,应当理解并不构成对数量的封闭式限定。
本发明中,以开放式描述的技术特征中,包括所列举特征组成的封闭式技术方案,也包括包含所列举特征的开放式技术方案。
本发明中,涉及到数值区间,如无特别说明,上述数值区间内视为连续,且包括该范围的最小值及最大值,以及这种最小值与最大值之间的每一个值。进一步地,当范围是指整数时,包括该范围的最小值与最大值之间的每一个整数。此外,当提供多个范围描述特征或特性时,可以合并该范围。换言之,除非另有指明,否则本文中所公开之所有范围应理解为包括其中所归入的任何及所有的子范围。
本发明中,涉及的百分比含量,如无特别说明,对于固液混合和固相-固相混合均指质量百分比,对于液相-液相混合指体积百分比。
本发明中,涉及的百分比浓度,如无特别说明,均指终浓度。所述终浓度,指添加成分在添加该成分后的体系中的占比。
本发明中,的温度参数,如无特别限定,既允许为恒温处理,也允许在一定温度区间内进行处理。所述的恒温处理允许温度在仪器控制的精度范围内进行波动。
本发明中,“层叠于……表面”、“设置于……之间”可以指与层叠(设置)对象直接接触,也可以与层叠(设置)对象间接接触,即通过其它中间结构实现连接。
本发明中,“低聚物”是指由较少的重复单元所组成的聚合物,其相对分子 质量介于小分子和高分子之间。不作限制地,本发明中“低聚物”是指由10~20个重复单元所组成的聚合物。
本发明提供一种光学组件,包括基材以及于所述基材表面依次层叠的第一膜层和第二膜层,第二膜层中分散有质量百分比为1%~20%的减反射粒子;以质量百分比计,减反射粒子包括48%~52%的第一减反射粒子、28%~32%的第二减反射粒子和18%~22%的第三减反射粒子;其中,第一减反射粒子的粒径为≥50nm,且≤100nm;第二减反射粒子的粒径为≥20nm,且<50nm;第三减反射粒子的粒径为<20nm。
可以理解地,第一膜层的主要作用在于在基材与第二膜层之间形成过渡,即作为过渡层使第二膜层与基材之间的附着致密。
不作限制地,第二膜层可为电子设备基材表面的任意功能膜层,根据电子设备的不同而设置。进一步地,第二膜层并非光学涂层。在其中一个具体的示例中,第二膜层为保护膜层,即提供对其下膜层的封装和保护作用。进一步地,第二膜层为硬质层。
不作限制地,上述光学组件的减反射原理如下:
当光线进入光学组件的第二膜层内时,遇到其中分散的减反射粒子,光线会改变原本直直的行径路线,产生了折射与反射的变化,不同粒径的减反射粒子改变光的折射与反射路径不同,光线在不同粒径的减反射粒子之间发生更多的折射和反射,反射率也因此降的更低。参见图1和2,图1为正常的光线行径介质材料时的折射与反射行为,图2是光线遇到第二膜层中分散的减反射粒子时,改变了原本行径的路线,也改变光线的折射与反射路径,进而降低反射率。同时,减反射粒子的存在除了改变光线的行径方向外,还使光线多走了路径, 因此也会衰减光的能量,进一步降低反射率。
特别地,上述光学组件在第二膜层中采用特定粒径组合的减反射粒子,可以经由空隙,增加改变光的行径方向。其中,48%~52%的第一减反射粒子的粒径为≥50nm,且≤100nm,其在第二膜层中分布范围最广,首先起到改变光线路径的作用,28%~32%的第二减反射粒子(粒径为≥20nm,且<50nm)和18%~22%的第三减反射粒子(<20nm),可以在第一减反射粒子之间找到空隙,再次改变光线的行径方向。当三种减反射粒子的占比和粒径在上述范围之外时,光学特性容易发生偏差,无法有效降低反射率。
在其中一个具体的示例中,第三减反射粒子的粒径为≥10μm,且<20nm。
进一步地,减反射粒子在第二膜层中的质量百分比为1%~20%。添加量不足,会发生光入射到表面层后,无法碰到减反射粒子,因为碰不到减反射粒子,就无法改变光的行径方向。无法改变光的行径方向,光就会直直走,产生反射,导致反射率提升,无法有效降低反射率。添加量过多,可能会发生经过搅拌后的减反射粒子,仍然过于集中,过于集中的微小减反射粒子,虽然还是可以改变光的行径方向,但过于集中,会影响整体的穿透率,将会导致从底部发出的光线被遮蔽,导致穿透率降低,且无法有效降低反射率。同时,添加量过多,光学组件的雾度也会增加,影响产品的外观。具体地,减反射粒子在第二膜层中的质量百分比包括但不限于:1%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、20%。
在其中一个具体的示例中,减反射粒子在第二膜层中的质量百分比为10%~20%。
可以理解地,第二膜层通过将减反射粒子分散在胶体中经固化成型制备,减反射粒子需要在胶体中实现均匀分散。在其中一个具体的示例中,以质量百 分比计,胶体的制备原料包括:
20%~40%的丙烯酸树脂低聚物、10%~20%的光固化活性稀释剂、1%~5%的光引发剂、1.5%~8%的添加剂以及50%~70%的溶剂。
其中,不作限制地,丙烯酸树脂低聚物的官能度为6~15官,可选自聚醚型聚氨酯丙烯酸酯低聚物、聚酯型聚氨酯丙烯酸酯低聚物、聚碳酸酯型聚氨酯丙烯酸酯低聚物、脂肪族聚氨酯丙烯酸酯低聚物、有机硅改性聚氨酯丙烯酸酯低聚物、氟改性聚氨酯丙烯酸酯低聚物、环氧改性聚氨酯丙烯酸酯低聚物和聚酯丙烯酸酯低聚物中的一种或多种。
不作限制地,光固化活性稀释剂的官能度主要为2~6官,可选自季戊四醇三丙烯酸酯、季戊四醇四丙烯酸酯、双季戊四醇五丙烯酸酯、双季戊四醇六丙烯酸酯、三羟甲基丙烷三丙烯酸酯、乙氧化三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、三羟甲基丙烷三丙烯酸酯、三羟甲基戊烷三甲基丙烯酸酯、三羟甲基丙烷季戊四醇三丙烯酸酯、丙氧化新戊二醇二丙烯酸酯、乙氧化1,6-己二醇二丙烯酸酯和三(2-丙烯酰氧乙基)异氰脲酸酯中的一种或多种。
不作限制地,光引发剂可选自1-羟环己基苯酮(光引发剂184)、2-羟基-2-甲基-1-苯基-1-丙酮(光引发剂1173)、2,4,6-三甲基苯甲酰基-二苯基氧化膦(光引发剂TPO)和2-羟基-4-(2-羟乙氧基)-2-甲基苯丙酮(光引发剂2959)中的一种或多种。
不作限制地,添加剂可选自无机纳米材料和氟硅类添加剂中的一种或多种。
不作限制地,溶剂可选自醋酸乙酯、醋酸丁酯、丁酮、甲基异丁基甲酮、丙二醇甲醚和丙二醇甲醚醋酸酯中的一种或多种。
在其中一个具体的示例中,减反射粒子为实心结构。在上述第二膜层的制 备原料中,采用实心结构的减反射粒子能够实现与胶体之间较好的相容性,同时,实心结构在破坏反射光的效果上更优,且生产和获得皆较为方便,价格也更低,不会因为环境温度变化太大而产生形变,耐用耐磨性好,信耐性(信耐性或又称信赖性(Reliability Test),指的是产品在不同使用环境下,就算经过长时间使用,使用后的产品特性可以与一开始使用时的特性一样,不会因为随着使用时间增加而特性越来越差)表现更优。
可以理解地,减反射粒子优选为透明无色的减反射粒子。在其中一个具体的示例中,减反射粒子的材料选自二氧化硅和二氧化钛中的一种或多种。二氧化钛和二氧化硅具有较低的折射率且是透明的,且与第二膜层的制备原料在合成时,能有效地链结,提高外观透明度,雾度低。具体地,前述折射率介于1.2~1.3。如果进一步小于1.2,与第二膜层制备原料的兼容性会变差,导致无法溶解,会影响透明度、光的穿透率,增加雾度。
不作限制地,前述第二膜层的制备方法包括如下步骤:
将第二膜层的胶体的制备原料混合,制备胶体溶液;
将减反射粒子分批加入至胶体溶液中,搅拌分散。
可以理解地,第二膜层可以为一层,也可以为两层以上,如三层。多层之间可以通过未添加减反射粒子的第二膜层的胶体层连接,也可以直接接触层叠,未添加减反射粒子的第二膜层的胶体层也可以为一层以上。具体可如图3~5所示:图3展示于基材100表面依次层叠第一膜层200、两层胶体层301以及第二膜层300;图4展示于基材100表面依次层叠第一膜层200以及三层第二膜层300;图5展示于基材100表面依次层叠第一膜层200、第二膜层300、胶体层301以及第二膜层300。
在其中一个具体的示例中,第二膜层的厚度为0.1μm~2μm。研究中发现, 厚度过高反射率、耐磨耗性能弯折性能均有不同程度的下降,膜厚过小,则会使得膜表面不平整,外观不良。
在其中一个具体的示例中,第一膜层的厚度为3μm~10μm。研究中发现,过厚说明层数较多,生产的良率会降低,膜厚过小,则可能会发生密着不良的状况。
在其中一个具体的示例中,以质量百分比计,第一膜层的制备原料包括:
20%~40%的丙烯酸树脂低聚物、10%~20%的光固化活性稀释剂、1%~5%的光引发剂、1.5%~8%的添加剂以及50%~70%的溶剂。
其中,不作限制地,丙烯酸树脂低聚物的官能度为6~15官,可选自聚醚型聚氨酯丙烯酸酯低聚物、聚酯型聚氨酯丙烯酸酯低聚物、聚碳酸酯型聚氨酯丙烯酸酯低聚物、脂肪族聚氨酯丙烯酸酯低聚物、有机硅改性聚氨酯丙烯酸酯低聚物、氟改性聚氨酯丙烯酸酯低聚物、环氧改性聚氨酯丙烯酸酯低聚物和聚酯丙烯酸酯低聚物中的一种或多种。
不作限制地,光固化活性稀释剂的官能度主要为2~6官,可选自季戊四醇三丙烯酸酯、季戊四醇四丙烯酸酯、双季戊四醇五丙烯酸酯、双季戊四醇六丙烯酸酯、三羟甲基丙烷三丙烯酸酯、乙氧化三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、三羟甲基丙烷三丙烯酸酯、三羟甲基戊烷三甲基丙烯酸酯、三羟甲基丙烷季戊四醇三丙烯酸酯、丙氧化新戊二醇二丙烯酸酯、乙氧化1,6-己二醇二丙烯酸酯和三(2-丙烯酰氧乙基)异氰脲酸酯中的一种或多种。
不作限制地,光引发剂可选自1-羟环己基苯酮(光引发剂184)、2-羟基-2-甲基-1-苯基-1-丙酮(光引发剂1173)、2,4,6-三甲基苯甲酰基-二苯基氧化膦(光引发剂TPO)和2-羟基-4-(2-羟乙氧基)-2-甲基苯丙酮(光引发剂2959)中的一 种或多种。
不作限制地,添加剂可选自无机纳米材料和氟硅类添加剂中的一种或多种。
不作限制地,溶剂可选自醋酸乙酯、醋酸丁酯、丁酮、甲基异丁基甲酮、丙二醇甲醚和丙二醇甲醚醋酸酯中的一种或多种。
在其中一个具体的示例中,第一膜层的折射率大于第二膜层的折射率。如此可以避免产生过多的反射折射,与第二膜层之间互相影响,出现干涉条纹,影响外观。进一步地,第一膜层的折射率为1.485~1.505,第二膜层的折射率为1.465~1.484。可以理解地,为不影响其过渡层功能的情况下,第一膜层中也可以适当地混入减反射粒子。混入减反射粒子后,其折射率会出现下降,如降低至1.465,同时在本示例中,为避免影响外观,仍需保证其折射率大于第二膜层的折射率,可通过如改变第二膜层的材料或其中减反射粒子的掺量等达到该目的。
在其中一个具体的示例中,基材的材料为聚酰亚胺(CPI)、聚对苯二甲酸乙二酯(PET)、三醋酸纤维素(TAC)、玻璃(如超薄玻璃UTG)、聚碳酸酯(PC)或聚甲基丙烯酸甲酯(PMMA)。
进一步地,上述光学组件还包括设置于基材与第一膜层之间的介质层,介质层的达因值≥40。不作限制地,需要添加介质层的情况之一在于,基材的表面能太小,当达因值小于40(可用达因笔测达因值)时,第一膜层在基材上会发生密着性不佳,导致功能层很容易从基材上剥离,该介质层的存在可以提高基材的表面能,使第一膜层与基材的密着性良好
在其中一个具体的示例中,介质层的厚度为100nm~300nm。
在其中一个具体的示例中,介质层的材料为primer(例如氯化聚丙烯、SBS树脂等)或者是Corona(Corona是指以电晕处理配合硬化胶附着或使硬化胶易 于涂布在基材表面)
本发明还提供一种电子设备,包括本体以及嵌合于本体的减反射装置,所减反射装置为上述的光学组件。进一步地,电子设备可如手机、显示器。
在其中一个具体的示例中,减反射装置为保护盖板。进一步地,保护盖板为屏幕盖板。
以下为具体的实施例。
实施例和对比例中形成过渡层的胶水相同,组成如下(质量百分比):
杰事达DSP-552F(6官氟改性聚氨酯丙烯酸酯低聚物)15%、长兴化学6195-100(10官脂肪族聚氨酯丙烯酸酯低聚物)10%、双季戊四醇六丙烯酸酯10%、光引发剂2959 2%、NANOBYK-3605(无机纳米材料)2.5%、信越KY-1203(氟硅类添加剂)1%、丙二醇甲醚20%和醋酸丁酯39.5%。
实施例1~5和对比例1~3提供的光学组件,其制作方法如下:
(1)过渡层制作:将过渡层的胶水倒在基材PET上,使用线棒将胶均匀涂在基材上,经过UV灯照射硬化,UV灯照射能量约220mJ,得到过渡层,层厚约6μm;
(2)硬质膜层制作:
2.1按照表1(质量百分比)的级配混合二氧化硅实心粒子;
2.2按照如下配方配制胶体(质量百分比):
胶体1:杰事达DSP-552F(6官氟改性聚氨酯丙烯酸酯低聚物)15%、长兴化学6195-100(10官脂肪族聚氨酯丙烯酸酯低聚物)10%、双季戊四醇六丙烯酸酯10%、光引发剂2959 2%、NANOBYK-3605(无机纳米材料)2.5%、信越KY-1203(氟硅类添加剂)1%、丙二醇甲醚20%和醋酸丁酯39.5%。
胶体2:八禾新材料BW8025(平均10官氟改性聚氨酯丙烯酸酯低聚物)10%、沙多玛CN9006NS(6官脂肪族聚氨酯丙烯酸酯低聚物)18%、三羟甲基丙烷三丙烯酸酯(TMPTA)12%、光引发剂2959 2.2%、NANOBYK-3605(无机纳米材料)2.5%、信越KY-1203(氟硅类添加剂)1%、丙二醇甲醚15%和醋酸丁酯30.7%。
胶体3:长兴化学6196-100(15官脂肪族聚氨酯丙烯酸酯低聚物)10%、沙多玛CN9006NS(6官脂肪族聚氨酯丙烯酸酯低聚物)15%、季戊四醇三丙烯酸酯13%、光引发剂1173 2.5%、NANOBYK-3605(无机纳米材料)2.5%、信越KY-1203(氟硅类添加剂)1%、丙二醇甲醚19%和醋酸丁酯37%。
2.3按照表1的质量百分比将二氧化硅实心粒子分批倒入相应的胶体中均匀搅拌,搅拌转速控制为每分钟180转,加入完成后继续搅拌10分钟;
2.4将步骤2.3所得混合物倒在过渡层的表面,利用滚轮均匀涂在基材上,控制滚轮与过渡层表面间的距离约1μm~2μm,经过UV灯照射硬化,UV灯照射能量约220mJ,得到硬质膜层,膜层厚度为2μm。
对比例3提供的光学组件的制作方法和原料同实施例1,主要区别在于:未进行步骤(1)过渡层的制作。
其中,实施例1制作得到的光学组件的电镜图如图6所示。
表1
Figure PCTCN2022134137-appb-000002
Figure PCTCN2022134137-appb-000003
对实施例1~7以及对比例1~3的光学组件的测试方法如下:
(1)反射率测试方法(光谱仪型号:柯尼卡美能达CM-5;光源为D65,角度为100):
1.1准备两个线性偏光片(Polarizer);
1.2垂直粘合两个偏光片(Polarizer);
1.3.粘合测试样品和交叉偏光片;
1.4.将测试样品面放在传感器区域;
1.5.确保被测样品平整且各粘合剂间无气泡;
1.6.开始量测,确认量测结果。
(2)弯折性能测试方法(设备型号:汤浅DML HB-FS):
2.1准备用于折叠的测试样品;
2.2被测样品长度不小于150mm;
2.3对于内折叠,硬质膜层朝上;
2.4将测试样品的两侧固定在折叠板上;
2.5设置折叠频率为每秒一次;
2.6每5万次监测一次,直到20万次停止;
2.7检查外观并比较折叠前与折叠后的光学结果。
(3)穿透率(Transmittance)/雾度:
一束入射光穿过产品后,部分光会直直走,部分光会发生散射。+/-3度的光,定义为直线走的光,超过+/-3度的光称为散射光。
穿透率测试直线走的光与入射光的比值;雾度测试散射光与入射光的比值。
(4)耐磨:
0000#钢丝绒负重1kg上放法码重物来对产品做摩擦测试,1500次无明显划痕。
(5)硬度:
750g负重条件下进行测试。
结果如下表2所示:
表2
Figure PCTCN2022134137-appb-000004
Figure PCTCN2022134137-appb-000005
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,便于具体和详细地理解本发明的技术方案,但并不能因此而理解为对发明专利保护范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。应当理解,本领域技术人员在本发明提供的技术方案的基础上,通过合乎逻辑的分析、推理或者有限的试验得到的技术方案,均在本发明所附权利要求的保护范围内。因此,本发明专利的保护范围应以所附权利要求的内容为准,说明书及附图可以用于解释权利要求的内容。

Claims (11)

  1. 一种光学组件,其特征在于,包括基材以及于所述基材表面依次层叠的第一膜层和第二膜层,所述第二膜层中分散有占所述第二膜层质量百分比为1%~20%的减反射粒子;
    以质量百分比计,所述减反射粒子包括48%~52%的第一减反射粒子、28%~32%的第二减反射粒子和18%~22%的第三减反射粒子;
    其中,所述第一减反射粒子的粒径为≥50nm,且≤100nm;
    所述第二减反射粒子的粒径为≥20nm,且<50nm;
    所述第三减反射粒子的粒径为<20nm。
  2. 根据权利要求1所述的光学组件,其特征在于,所述减反射粒子在所述第二膜层中的质量百分比为10%~20%。
  3. 根据权利要求1所述的光学组件,其特征在于,所述第二膜层通过将所述减反射粒子分散在胶体中经固化成型制备,以质量百分比计,所述胶体的制备原料包括:
    20%~40%的聚丙烯酸树脂、10%~30%的环氧树脂、20%~40%的丙烯酸酯低聚物、5%~25%的UV单体稀释剂以及1%~5%的光引发剂。
  4. 根据权利要求1所述的光学组件,其特征在于,所述减反射粒子为实心结构。
  5. 根据权利要求1所述的光学组件,其特征在于,所述减反射粒子的材料选自二氧化硅和二氧化钛中的一种或多种。
  6. 根据权利要求1所述的光学组件,其特征在于,以质量百分比计,所述第一膜层的制备原料包括:
    20%~40%的聚丙烯酸树脂、10%~30%的环氧树脂、20%~40%的丙烯酸酯低聚物、5%~25%的UV单体稀释剂以及1%~5%的光引发剂。
  7. 根据权利要求1所述的光学组件,其特征在于,所述第一膜层的折射率大于所述第二膜层的折射率。
  8. 根据权利要求1~7任一项所述的光学组件,其特征在于,所述第二膜层的厚度为0.1μm~2μm;及/或
    所述第一膜层的厚度为3μm~10μm。
  9. 根据权利要求1~7任一项所述的光学组件,其特征在于,所述基材的材料为聚酰亚胺、聚对苯二甲酸乙二酯、三醋酸纤维素、玻璃、聚碳酸酯或聚甲基丙烯酸甲酯。
  10. 一种电子设备,其特征在于,包括本体以及嵌合于所述本体的减反射装置,所述减反射装置为权利要求1~9任一项所述的光学组件。
  11. 根据权利要求10所述的电子设备,其特征在于,所述减反射装置为保护盖板。
PCT/CN2022/134137 2021-12-30 2022-11-24 光学组件以及包含该光学组件的电子设备 WO2023124675A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111664890.2A CN114415270B (zh) 2021-12-30 2021-12-30 光学组件以及包含该光学组件的电子设备
CN202111664890.2 2021-12-30

Publications (1)

Publication Number Publication Date
WO2023124675A1 true WO2023124675A1 (zh) 2023-07-06

Family

ID=81270626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134137 WO2023124675A1 (zh) 2021-12-30 2022-11-24 光学组件以及包含该光学组件的电子设备

Country Status (3)

Country Link
CN (1) CN114415270B (zh)
TW (1) TW202335857A (zh)
WO (1) WO2023124675A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114415270B (zh) * 2021-12-30 2024-02-02 安徽飞谚新材料科技有限公司 光学组件以及包含该光学组件的电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120019915A1 (en) * 2009-10-09 2012-01-26 Yongan Yan Durable anti-reflection coatings
CN103620449A (zh) * 2011-07-26 2014-03-05 大日本印刷株式会社 防眩性膜、偏振片和图像显示装置
EP3195024A1 (en) * 2014-08-22 2017-07-26 Sunlight Photonics Inc. Flexible and tunable anti-reflection skin
JP2017207699A (ja) * 2016-05-20 2017-11-24 日油株式会社 耐指紋性反射防止フィルム
CN111212733A (zh) * 2018-01-24 2020-05-29 株式会社Lg化学 抗反射膜、偏光板和显示装置
CN114415270A (zh) * 2021-12-30 2022-04-29 安徽飞谚新材料科技有限公司 光学组件以及包含该光学组件的电子设备
CN114415269A (zh) * 2021-12-30 2022-04-29 安徽飞谚新材料科技有限公司 光学组件及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120019915A1 (en) * 2009-10-09 2012-01-26 Yongan Yan Durable anti-reflection coatings
CN103620449A (zh) * 2011-07-26 2014-03-05 大日本印刷株式会社 防眩性膜、偏振片和图像显示装置
EP3195024A1 (en) * 2014-08-22 2017-07-26 Sunlight Photonics Inc. Flexible and tunable anti-reflection skin
JP2017207699A (ja) * 2016-05-20 2017-11-24 日油株式会社 耐指紋性反射防止フィルム
CN111212733A (zh) * 2018-01-24 2020-05-29 株式会社Lg化学 抗反射膜、偏光板和显示装置
CN114415270A (zh) * 2021-12-30 2022-04-29 安徽飞谚新材料科技有限公司 光学组件以及包含该光学组件的电子设备
CN114415269A (zh) * 2021-12-30 2022-04-29 安徽飞谚新材料科技有限公司 光学组件及其制作方法

Also Published As

Publication number Publication date
CN114415270B (zh) 2024-02-02
TW202335857A (zh) 2023-09-16
CN114415270A (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
CN102778712B (zh) 一种光学扩散膜
JP2013174888A (ja) アンチグレアフィルム用組成物およびそれを用いて製造したアンチグレアフィルム
JP2010527046A (ja) アンチグレアフィルム用組成物およびそれを用いて製造したアンチグレアフィルム
US10845509B2 (en) Low sparkle matte coats and methods of making
JP2015118383A (ja) 防眩フィルム用コーティング層およびこれを含む防眩フィルム
CN103620449A (zh) 防眩性膜、偏振片和图像显示装置
WO2023124675A1 (zh) 光学组件以及包含该光学组件的电子设备
JPH11286083A (ja) 防眩性フイルム
JP2003260748A (ja) 防眩フィルム
JP2007086775A (ja) 高度の光拡散能を有する反射部材
JP2014525056A (ja) 高明暗比を示す防眩フィルムおよびその製造方法
TW201946986A (zh) 一種低霧度防眩膜
CN110119004A (zh) 防眩膜及具有此防眩膜的偏光板
KR20240057381A (ko) 디스플레이용 눈부심방지 반사방지 필름
TW200839303A (en) Light-diffusing sheet for backlight unit
CN106707373A (zh) 一种高辉度高挺度反射膜及其制备方法
CN100478713C (zh) 光学薄膜及其制造方法以及高分子液晶微粒
Hu et al. Fabrication and evaluation of dual function PMMA/nano-carbon composite particles for UV curable anti-glare coating
CN104204656B (zh) 侧光型背光装置及光扩散性构件
CN110936693B (zh) 全角度透光率变化小的散射光调节薄膜及其制备方法
KR100836013B1 (ko) 복합입자를 포함하는 방현필름 및 그 제조방법
CN112646501A (zh) 一种高透过率防眩防爆保护膜及其制备方法
JP2023099316A (ja) 光学部品及びその製造方法
TWI237127B (en) Structure of a diffuser with improved the transmittance
WO2018111054A9 (ko) 광학 필름 형성용 조성물, 광학 필름 및 이를 포함하는 편광판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913933

Country of ref document: EP

Kind code of ref document: A1