WO2023124552A1 - 一种发光二极管外延结构及发光二极管 - Google Patents

一种发光二极管外延结构及发光二极管 Download PDF

Info

Publication number
WO2023124552A1
WO2023124552A1 PCT/CN2022/130718 CN2022130718W WO2023124552A1 WO 2023124552 A1 WO2023124552 A1 WO 2023124552A1 CN 2022130718 W CN2022130718 W CN 2022130718W WO 2023124552 A1 WO2023124552 A1 WO 2023124552A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
emitting diode
concentration
hole injection
light
Prior art date
Application number
PCT/CN2022/130718
Other languages
English (en)
French (fr)
Inventor
黄理承
宋长伟
郭园
程志青
芦玲
Original Assignee
淮安澳洋顺昌光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 淮安澳洋顺昌光电技术有限公司 filed Critical 淮安澳洋顺昌光电技术有限公司
Publication of WO2023124552A1 publication Critical patent/WO2023124552A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present application relates to the technical field of semiconductors, in particular, to an epitaxial structure of a light emitting diode and a light emitting diode.
  • LED Light-emitting diode
  • LED is a light-emitting device, which is widely used in the fields of lighting, display and medical devices due to its advantages of energy saving, environmental protection, small size, good color rendering and response speed.
  • the light emitting diode structure in the prior art includes: a substrate, and an N-type semiconductor layer, a multi-quantum well layer, an electron blocking layer and a P-type semiconductor layer sequentially arranged on the substrate.
  • the P-type semiconductor layer is usually doped with P-type impurities, and the concentration setting of the P-type impurities can affect the effect on electron blocking and hole injection.
  • the first object of the present application is to provide an epitaxial structure of a light emitting diode, in which an Mg modulation layer is provided between the multi-quantum well light-emitting layer and the first hole injection layer of the P-type semiconductor layer, And limiting the doping concentration of impurities can produce better effects of electron blocking and hole injection.
  • a light-emitting diode epitaxial structure provided by the present application includes a substrate, an N-type semiconductor layer, a multi-quantum well light-emitting layer, and a P-type semiconductor layer arranged on the upper surface of the substrate in sequence, wherein the P-type semiconductor
  • the layer includes a first hole injection layer, an electron blocking layer and a second hole injection layer, and the P-type semiconductor layer is doped with P-type impurity Mg, and the P-type impurity Mg is different in the P-type semiconductor layer. having different doping concentrations or concentration variations in the sublayers;
  • a Mg modulation layer is arranged between the multi-quantum well light-emitting layer and the first hole injection layer;
  • the average concentration of impurity doping in the Mg modulation layer is A
  • the average concentration of impurity doping in the first hole injection layer is B
  • the average concentration of impurity doping in the electron blocking layer is C
  • defining the direction from the second hole injection layer to the substrate as a first direction
  • the difference between the maximum and minimum values of the Mg doping concentration in the Mg modulation layer and the maximum and minimum values of the Mg doping concentration in the first hole injection layer is different.
  • the Mg doping concentration first increases and then decreases, and there is a first peak
  • the doping concentration of Mg first increases and then decreases, and there is a second peak.
  • said first peak value is smaller than said second peak value.
  • the doping concentration of Mg remains unchanged or fluctuates very little within a certain thickness range, and there is a plateau value
  • the doping concentration of impurities first increases and then decreases, and there is a second peak.
  • said plateau value is smaller than said second peak value.
  • the second peak value >1 ⁇ 10 20 atom/cm 3 ;
  • the multiple quantum well light-emitting layer includes the element In;
  • the concentration of In has a characteristic of fluctuation, and the fluctuation of the concentration value of In includes several peaks and several troughs.
  • the linear distance between the peak of the In element closest to the P-type semiconductor and the second peak of the Mg element is d;
  • d ⁇ 15nm more preferably, 20nm ⁇ d ⁇ 50nm.
  • the P-type semiconductor layer includes the element In, and in the P-type semiconductor layer, the concentration value of the element In includes at least two concentration peaks.
  • a concentration peak of the element In coincides with a second peak concentration of the Mg element.
  • the P-type semiconductor layer is an AlInGaN structure doped with impurities;
  • the concentration of Al is D;
  • the concentration of Al is E;
  • the concentration of Al is F
  • the concentration of Al is G;
  • D 1 ⁇ 10 20 atom/cm 3 ;
  • E 1 ⁇ 10 20 atom/cm 3 ;
  • F 2 ⁇ 10 20 atom/cm 3 .
  • D first increases and then decreases, and there is a third peak.
  • the present application also provides a light-emitting diode, including a substrate, and a buffer layer, an N-type semiconductor layer, a multi-quantum well light-emitting layer, a P-type semiconductor layer, and a P-type contact layer that are sequentially stacked on the surface of the substrate.
  • the N electrode provided on the surface of the N-type semiconductor layer, and the P electrode provided on the surface of the P-type semiconductor layer, are characterized in that,
  • the P-type semiconductor layer includes a first electron blocking layer, a first hole injection layer, a second electron blocking layer and a second hole injection layer stacked on the surface of the multi-quantum well light-emitting layer in sequence;
  • the energy level of the first electron blocking layer is lower than that of the second electron blocking layer
  • the first electron blocking layer includes multiple sublayers, at least one of which is a P-type doped nitride layer.
  • the first electron blocking layer is in the Mg modulation layer, the average concentration of Mg impurity doping in the Mg modulation layer is A, and the average concentration of Mg impurity doping in the first hole injection layer is is B, and the average concentration of Mg impurity doping in the second electron blocking layer is C; wherein, B>A>C.
  • defining the direction from the second hole injection layer to the substrate as a first direction
  • the difference between the maximum and minimum values of the Mg doping concentration in the Mg modulation layer and the maximum and minimum values of the Mg doping concentration in the first hole injection layer is different.
  • the doping concentration of Mg remains unchanged or fluctuates very little within a certain thickness range, and there is a plateau value
  • the doping concentration of impurities first increases and then decreases, and there is a second peak
  • said plateau value is smaller than said second peak value.
  • the first electron blocking layer comprises a first sub-layer, a second sub-layer and a third sub-layer which are sequentially stacked;
  • the first sublayer comprises an aluminum-containing nitride layer and/or an aluminum-free nitride layer;
  • the second sublayer comprises an aluminum-containing nitride layer and/or an aluminum-free nitride layer;
  • the third sublayer includes a P-type nitride layer containing aluminum and/or a P-type nitride layer not containing aluminum.
  • the aluminum-containing nitride layer comprises an AlGaN layer and/or an AlN layer;
  • the aluminum-free nitride layer comprises a GaN layer
  • the aluminum-containing P-type nitride layer includes a P-type AlGaN layer and/or a P-type AlN layer;
  • the aluminum-free P-type nitride layer includes a P-type GaN layer.
  • the thickness of the first sublayer is greater than the thickness of the second sublayer
  • the thickness of the second sublayer is not less than the thickness of the third sublayer
  • the sum of the thicknesses of the second sublayer and the third sublayer is smaller than the thickness of the first sublayer.
  • the thickness of the first sublayer is 8-12 nm
  • the thickness of the second sublayer is 1-2 nm
  • the thickness of the third sublayer is 1-2 nm.
  • the thickness of the first hole injection layer is greater than the thickness of the Mg modulation layer
  • the thickness of the second electron blocking layer is greater than 10 nm
  • the thickness of the second hole injection layer is greater than 5 nm.
  • a light-emitting diode epitaxial structure provided by the present application in the epitaxial structure, a Mg modulation layer is included between the transition from the multi-quantum well light-emitting layer to the first hole injection layer, and the Mg modulation layer
  • the concentration of Mg in the layer is between the multi-quantum well light-emitting layer and the first hole injection layer, which plays a better role of electron blocking and hole injection.
  • the Mg modulation layer corresponds to a peak value of Al, and the maximum value of Al can produce a better electron blocking effect.
  • a light-emitting diode provided by the present application the light-emitting diode has better electron blocking effect and better hole injection effect, and thus has better light efficiency.
  • FIG. 1 is a schematic diagram of an epitaxial structure of a light emitting diode provided in an embodiment of the present application.
  • FIG. 2 is a diagram of SIMS detection results of the light emitting diode epitaxial structure provided by the embodiment of the present application.
  • FIG. 3 is a diagram of SIMS detection results of a light emitting diode epitaxial structure provided by another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a light emitting diode provided in the present application.
  • FIG. 5 is another structural schematic diagram of the light emitting diode provided by the present application.
  • FIG. 6 is a partial structural schematic diagram of yet another structure of a light emitting diode provided in the present application.
  • the second electron blocking layer 50.
  • FIG. Layer 150 A light-emitting diode epitaxial structure provided by the present application, as shown in FIG. Layer 150, wherein the P-type semiconductor layer 150 includes a first hole injection layer 152, an electron blocking layer 153 and a second hole injection layer 154, and the P-type semiconductor layer 150 is doped with P-type impurity Mg,
  • the P-type impurity Mg has different doping concentrations or concentration changes in different sublayers of the P-type semiconductor layer 150;
  • a Mg modulation layer 151 is arranged between the multi-quantum well light-emitting layer 140 and the first hole injection layer 152;
  • the average concentration of impurity doping in the Mg modulation layer 151 is A
  • the average concentration of impurity doping in the first hole injection layer 152 is B
  • the average concentration of impurity doping in the electron blocking layer 153 is C; where B>A>C.
  • the light-emitting diode epitaxial structure provided in this application includes a Mg modulation layer 151 between the transition from the multi-quantum well light-emitting layer 140 to the first hole injection layer 152, and the Mg modulation layer 151
  • the concentration of Mg is between the multi-quantum well light-emitting layer 140 and the first hole injection layer 152, which plays a better role in electron blocking and hole injection.
  • the direction from the second hole injection layer 154 to the substrate 110 is defined as the first direction
  • the variation range of the Mg doping concentration in the Mg modulation layer 151 is different from the variation range of the Mg doping concentration in the first hole injection layer 152, that is, the Mg modulation
  • the difference between the maximum value and the minimum value of the Mg doping concentration in layer 151 is different from the difference between the maximum value and the minimum value of the Mg doping concentration in said first hole injection layer 152 .
  • FIG. 2 is a diagram of SIMS detection results of the light emitting diode epitaxial structure provided by the embodiment of the present application.
  • the Mg modulation layer 151 along the first direction, in the Mg modulation layer 151, the Mg doping concentration first increases and then decreases, and there is a first peak;
  • the doping concentration of Mg in the first hole injection layer 152 first increases and then decreases, and there is a second peak.
  • the first peak value is smaller than the second peak value.
  • FIG. 3 is a diagram of SIMS detection results of a light emitting diode epitaxial structure provided by another embodiment of the present application.
  • the doping concentration of Mg in the first direction, in the Mg modulation layer 151, the doping concentration of Mg remains constant or fluctuates very little within a certain thickness range, and there is a plateau value; wherein, a certain thickness range refers to a certain thickness interval that does not exceed the thickness of the Mg modulation layer 151;
  • the doping concentration of impurities in the first hole injection layer 152 first increases and then decreases, and there is a second peak.
  • the plateau value is smaller than the second peak value.
  • the second peak value is >1 ⁇ 10 20 atom/cm 3 ;
  • the multi-quantum well light-emitting layer 140 includes the element In;
  • the concentration of In has a characteristic of fluctuation. As shown in FIG. 2 , the fluctuation of the concentration of In includes several peaks and several troughs.
  • the linear distance between the wave peak closest to the P-type semiconductor and the second peak is d;
  • d ⁇ 15nm more preferably, 20nm ⁇ d ⁇ 50nm.
  • the P-type semiconductor layer 150 includes the element In, and in the P-type semiconductor layer 150, the concentration of the element In includes at least two concentration peaks.
  • a concentration peak of the element In coincides with a position of the second peak.
  • the concentration ratio of Mg/In affects the effect of hole injection, which can achieve better light efficiency.
  • the P-type semiconductor layer 150 is an AlInGaN structure doped with impurities
  • the concentration of Al is D;
  • the concentration of Al is E;
  • the concentration of Al is F
  • the concentration of Al is G;
  • D 1 ⁇ 10 20 atom/cm 3 ;
  • E >1 ⁇ 10 20 atom/cm 3 ;
  • F >2 ⁇ 10 20 atom/cm 3 .
  • D first increases and then decreases, and there is a third peak.
  • the Mg modulation layer 151 corresponds to a peak value of Al, and Al having a maximum value can produce a better electron blocking effect.
  • the concentration of Al has a better effect on limiting carrier overflow, and cooperates with the concentration of Mg/In to obtain better light efficiency of the diode.
  • An embodiment of the present application provides a method for preparing the epitaxial structure of the light emitting diode, comprising the following steps:
  • the Mg modulation layer 151 , the first hole injection layer 152 , the electron blocking layer 153 , and the second hole injection layer 154 are sequentially grown on the multi-quantum well light-emitting layer 140 .
  • the present application also provides a light-emitting diode. As shown in FIG. type semiconductor layer 300 and the P type contact layer 70, the N electrode 100 provided on the surface of the N type semiconductor layer 30, and the P electrode 200 provided on the surface of the P type semiconductor layer 300.
  • the P-type semiconductor layer 300 includes a first electron blocking layer 80 , a first hole injection layer 90 , a second electron blocking layer 50 and a second hole injection layer 60 sequentially stacked on the surface of the multi-quantum well light-emitting layer 40 .
  • Both the first electron blocking layer 80 and the second electron blocking layer 50 contain aluminum element, and the content of aluminum element in the first electron blocking layer 80 is lower than that in the second electron blocking layer 50 .
  • the first electron blocking layer 80 is a Mg modulation layer containing Mg doping, the average concentration of Mg impurity doping in the Mg modulation layer is A, and the average concentration of Mg impurity doping in the first hole injection layer is B, the average concentration of Mg impurity doping in the second electron blocking layer is C; wherein, B>A>C.
  • the direction from the second hole injection layer to the substrate is defined as the first direction, then in the first direction, the difference between the maximum value and the minimum value of the doping concentration of Mg in the Mg modulation layer The value is different from the difference between the maximum value and the minimum value of the doping concentration of Mg in the first hole injection layer.
  • the doping concentration of Mg in the first direction, in the Mg modulation layer, the doping concentration of Mg remains constant or fluctuates very little within a certain thickness range, and there is a plateau value; in the first direction, the first holes In the injection layer, the doping concentration of the impurity first increases and then decreases, and there is a second peak value; the plateau value is smaller than the second peak value.
  • the first electron blocking layer 80 includes a first sub-layer 81, a second sub-layer 82 and a third sub-layer 83 which are sequentially stacked; further, the first sub-layer 81 Including an aluminum-containing nitride layer and/or an aluminum-free nitride layer; the second sub-layer 82 includes an aluminum-containing nitride layer and/or an aluminum-free nitride layer; the third sub-layer 83 includes an aluminum-containing P-type nitride layer and/or aluminum-free P-type nitride layer.
  • the aluminum-containing nitride layer includes an AlGaN layer and/or an AlN layer; the aluminum-free nitride layer includes a GaN layer; the aluminum-containing P-type nitride layer includes a P-type AlGaN layer and/or a P-type AlN layer; The aluminum-free P-type nitride layer includes a P-type GaN layer.
  • the first electron blocking layer 80 is Al-containing nitride, for example, the first sublayer 81 is an AlGaN layer, the second sublayer 82 is an AlN layer, and the third sublayer 83 is a P-type AlN layer;
  • the first sublayer 81 includes a superlattice structure layer.
  • the alternating period of the superlattice structure layer is 2 to 8 periods, and 3 periods, 4 periods, 5 periods, 6 periods or 7 periods can also be selected.
  • the superlattice structure layer includes AlGaN layers and GaN layers alternately stacked periodically. As shown in FIG.
  • the first sublayer 81, the second sublayer 82 and the third sublayer 83 are sequentially stacked on the surface of the multi-quantum well light emitting 40, and all the electron blocking layers in the first electron blocking layer 80
  • the first sublayer 81 is an AlGaN/GaN superlattice structure layer
  • the second sublayer 82 is an AlN layer
  • the third sublayer 83 is a P-type AlN layer.
  • the thickness of the first sublayer 81 is greater than the thickness of the second sublayer 82; the thickness of the second sublayer 82 is not less than the thickness of the third sublayer, and the second sublayer 82 and the third sublayer
  • the sum of the thicknesses of the layers 83 is less than the thickness of the first sub-layer 81
  • the thickness of the third sub-layer 83 is less than 20% of the thickness of the first electron blocking layer 80 .
  • the thickness of the first sub-layer 81 is 8-12 nm; the thickness of the second sub-layer 82 is 1-2 nm; and the thickness of the third sub-layer 83 is 1-2 nm.
  • the first hole injection layer 90 includes a low temperature P-type AlInGaN layer.
  • the P-type impurity used in the low-temperature P-type AlInGaN layer is Mg, and the doping concentration is not greater than 1 ⁇ 10 20 atom/cm 3 , and 3 ⁇ 10 20 atom/cm 3 , 5 ⁇ 10 20 atom/cm 3 can also be selected. 3. 8 ⁇ 10 20 atoms/cm 3 or 1 ⁇ 10 21 atoms/cm 3 .
  • the aluminum element content in the first hole injection layer 90 is smaller than the aluminum element content in the first electron blocking layer 80 . However, the thickness of the first hole injection layer 90 is greater than the thickness of the first electron blocking layer 80 .
  • the second hole injection layer 60 includes a high temperature P-type GaN layer.
  • the P-type impurity doped in the high-temperature P-type GaN layer is Mg, and the doping concentration of the P-type impurity is greater than 3 ⁇ 10 19 atom/cm 3 , and can also be selected from 5 ⁇ 10 19 atom/cm 3 , 8 ⁇ 10 19 atom/cm 3 , 1 ⁇ 10 20 atom/cm 3 , 5 ⁇ 10 20 atom/cm 3 or 8 ⁇ 10 21 atom/cm 3 .
  • the second electron blocking layer 50 includes one of an AlGaN layer and a P-type AlGaN layer.
  • the thickness of the second electron blocking layer 50 is greater than 10nm, preferably 10-100nm (15nm, 20nm, 25nm, 30nm, 35nm, 40nm, 50nm, 60nm, 70nm, 80nm, 90nm or 95nm can also be selected); the second hole injection
  • the thickness of layer 60 is greater than 5nm, preferably 5-100nm (10nm, 15nm, 20nm, 25nm, 30nm, 35nm, 40nm, 50nm, 60nm, 70nm, 80nm, 90nm or 95nm can also be selected).
  • the material of the substrate 10 includes at least one of sapphire, silicon carbide and silicon substrate.
  • the buffer layer 20 includes an AlN buffer layer 20 and/or a GaN buffer layer 20 .
  • the N-type semiconductor layer 30 includes an N-type GaN layer doped with Si.
  • the multi-quantum well light-emitting layer 40 includes an InGaN potential well layer and a GaN barrier layer that are stacked.
  • the multi-quantum well light-emitting layer 40 is an InGaN/GaN superlattice structure, and the first electron blocking layer 80 is disposed on the InGaN potential well layer, which is equivalent to the last InGaN potential well layer of the multi-quantum well light-emitting layer 40 .
  • the P-type contact layer 70 includes a P-type GaN layer.
  • the P-type impurity doped in the P-type contact layer 70 is Mg. More preferably, the Mg doping concentration in the P-type contact layer 70 is greater than the Mg doping concentration in the second hole injection layer 60 (high-temperature P-type GaN layer), and the P-type contact layer 70 The doping concentration of Mg is lower than the doping concentration of Mg in the first hole injection layer 90 (low temperature P-type AlInGaN layer).

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

本申请涉及半导体技术领域,具体而言,涉及一种发光二极管外延结构及发光二极管。该发光二极管外延结构在多量子阱发光层与第一空穴注入层之间设置有Mg调变层;所述Mg调变层中杂质掺杂的平均浓度为A,所述第一空穴注入层中杂质掺杂的平均浓度为B,所述电子阻挡层中杂质掺杂的平均浓度为C;B>A>C,该设定可以产生较佳的电子阻挡以及空穴注入效果,从而提高发光二极管光效。

Description

一种发光二极管外延结构及发光二极管
相关申请的交叉引用
本申请要求于2021年12月30日提交中国国家知识产权局的申请号为202111655093.8、名称为“一种发光二极管及其制备方法”以及于2022年8月23日提交中国国家知识产权局的申请号为202211012734.2、名称为“一种发光二极管外延结构及发光二极管”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体技术领域,具体而言,涉及一种发光二极管外延结构及发光二极管。
背景技术
发光二极管(简称LED)是一种发光器件,因具有节能、环保、尺寸小以及显色性与响应速度好等优点,被广泛应用于照明、显示器和医疗器件等领域。
现有技术中的发光二极管结构包括:衬底,以及依次设置于衬底上的N型半导体层、多量子阱层、电子阻挡层和P型半导体层。其中,P型半导体层通常掺杂P型杂质,P型杂质的浓度设定可以影响对电子阻挡以及空穴注入的作用。
但是,目前并没有对掺杂杂质浓度进行限定。
有鉴于此,特提出本申请。
发明内容
本申请的第一目的在于提供一种发光二极管外延结构,在该外延结构中,通过在多量子阱发光层与P型半导体层的第一空穴注入层之间设置一层Mg调变层,并限定杂质的掺杂浓度,可以产生较佳的电子阻挡以及空穴注入的效果。
为了实现本申请的上述目的,特采用以下技术方案:
本申请所提供的一种发光二极管外延结构,包括一衬底,依次设置在所述衬底上表面的N型半导体层、多量子阱发光层、P型半导体层,其中,所述P型半导体层包括第一空穴注入层、电子阻挡层和第二空穴注入层,所述P型半导体层内掺杂有P型杂质Mg,所述P型杂质Mg在所述P型半导体层的不同子层中具有不同的掺杂浓度或浓度变化;
所述多量子阱发光层与所述第一空穴注入层之间设置有Mg调变层;
所述Mg调变层中杂质掺杂的平均浓度为A,所述第一空穴注入层中杂质掺杂的平均浓度为B,所述电子阻挡层中杂质掺杂的平均浓度为C;
B>A>C。
优选地,定义从所述第二空穴注入层到所述衬底的方向为第一方向;
所述第一方向上,所述Mg调变层中Mg的掺杂浓度的最大值和最小值之间的差值与所述第一空穴注入层中Mg的掺杂浓度的最大值和最小值之间的差值不同。
优选地,沿所述第一方向上,所述Mg调变层中,Mg的掺杂浓度先增加后减小,并存在一第一峰值;
所述第一方向上,所述第一空穴注入层中,Mg的掺杂浓度先增加后减小,并存在一第二峰值。
更优选地,所述第一峰值小于所述第二峰值。
优选地,所述第一方向上,所述Mg调变层中,Mg的掺杂浓度在一定厚度范围内保持不变或波动极小,并存在一平台值;
所述第一方向上,所述第一空穴注入层中,杂质的掺杂浓度先增加后减小,并存在一第二峰值。
更优选地,所述平台值小于所述第二峰值。
优选地,所述第二峰值>1×10 20atom/cm 3
和/或;A>1×10 19atom/cm 3
和/或;C>5×10 18atom/cm 3
优选地,所述多量子阱发光层包括元素In;
所述第一方向上,In的浓度具有波动的特点,In的浓度值的波动包括若干波峰和若干波谷。
优选地,距离所述P型半导体最近的In元素波峰与Mg元素第二峰值的直线距离为d;
d≥15nm;更优选地,20nm≤d≤50nm。
优选地,所述P型半导体层包括元素In,所述P型半导体层中,元素In的浓度值包括至少两个浓度峰值。
优选地,所述P型半导体层中,所述元素In的一浓度峰值与Mg元素第二峰值的位置重合。
优选地,所述P型半导体层为掺杂杂质的AlInGaN结构;
所述Mg调变层中,Al的浓度为D;
所述第一空穴注入层中,Al的浓度为E;
所述电子阻挡层中,Al的浓度为F;
所述第二空穴注入层中,Al的浓度为G;
F>D>E>G。
优选地,D>1×10 20atom/cm 3
优选地,E>1×10 20atom/cm 3
优选地,F>2×10 20atom/cm 3
优选地,在所述Mg调变层中,D先增大再减小,并存在一第三峰值。
本申请还提供一种发光二极管,包括衬底,以及在所述衬底表面依次层叠设置的缓冲层、N型半导体层、多量子阱发光层、P型半导体层和P型接触层,在所述N型半导体层表面设置的N电极,以及在所述P型半导体层表面设置的P电极,其特征在于,
所述P型半导体层包括依次层叠设置在所述多量子阱发光层表面的第一电子阻挡层、第一空穴注入层、第二电子阻挡层和第二空穴注入层;
所述第一电子阻挡层的能级低于所述第二电子阻挡层;
所述第一电子阻挡层包含多个子层,其中至少一子层为P型掺杂氮化物层。
优选地,所述第一电子阻挡层为Mg调变层中,所述Mg调变层中Mg杂质掺杂的平均浓度为A,所述第一空穴注入层中Mg杂质掺杂的平均浓度为B,所述第二电子阻挡层中Mg杂质掺杂的平均浓度为C;其中,B>A>C。
优选地,定义从所述第二空穴注入层到所述衬底的方向为第一方向;
所述第一方向上,所述Mg调变层中Mg的掺杂浓度的最大值和最小值之间的差值与所述第一空穴注入层中Mg的掺杂浓度的最大值和最小值之间的差值不同。
优选地,所述第一方向上,所述Mg调变层中,Mg的掺杂浓度在一定厚度范围内保持不变或波动极小,并存在一平台值;
所述第一方向上,所述第一空穴注入层中,杂质的掺杂浓度先增加后减小,并存在一第二峰值;
优选地,所述平台值小于所述第二峰值。
优选地,所述第一电子阻挡层包括依次层叠设置的第一子层,第二子层和第三子层;
所述第一子层包括含铝的氮化物层和/或不含铝的氮化物层;
所述第二子层包括含铝的氮化物层和/或不含铝的氮化物层;
所述第三子层包括含铝的P型氮化物层和/或不含铝的P型氮化物层。
优选地,所述含铝的氮化物层包括AlGaN层和/或AlN层;
优选地,所述不含铝的氮化物层包括GaN层;
优选地,所述含铝的P型氮化物层包括P型AlGaN层和/或P型AlN层;
优选地,所述不含铝的P型氮化物层包括P型GaN层。
优选地,所述第一子层的厚度大于所述第二子层的厚度;
和/或,所述第二子层的厚度不小于所述第三子层的厚度;
和/或,所述第二子层与所述第三子层的厚度之和小于所述第一子层的厚度。
优选地,所述第一子层的厚度为8~12nm;
和/或,所述第二子层的厚度为1~2nm;
和/或,所述第三子层的厚度为1~2nm。
优选地,所述第一空穴注入层的厚度大于所述Mg调变层的厚度;
和/或,所述第二电子阻挡层的厚度大于10nm;
和/或,所述第二空穴注入层的厚度大于5nm。
与现有技术相比,本申请的有益效果为:
(1)本申请所提供的一种发光二极管外延结构,在该外延结构中,在由所述多量子阱发光层过渡到第一空穴注入层之间包括一Mg调变层,Mg调变层的Mg的浓度在多量子阱发光层和第一空穴注入层之间,起到较好的电子阻挡以及空穴注入作用。
(2)本申请所提供的一种发光二极管外延结构,在Mg调变层中对应了一个Al的峰值,Al具有最大值可以产生更好的电子阻挡效果。
(3)本申请所提供的一种发光二极管,该发光二极管具有较好的电子阻挡效果及较好的空穴注入效果,因而具有较佳的光效。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的发光二极管外延结构示意图。
图2为本申请实施例提供的发光二极管外延结构SIMS检测结果图。
图3为本申请另一实施例提供的发光二极管外延结构SIMS检测结果图。
图4为本申请提供的发光二极管的结构示意图。
图5为本申请提供的发光二极管的另一结构示意图。
图6为本申请提供的发光二极管的再一结构的局部结构示意图。
附图标记:
10、110-衬底;
20、120-缓冲层;
30、130-N型半导体层;
40、140-多量子阱发光层;
300、150-P型半导体层;
151-Mg调变层;
80-第一电子阻挡层;
81-第一子层;
82-第二子层;
83-第三子层;
90、152-第一空穴注入层;
153-电子阻挡层;
50、第二电子阻挡层
60、154-第二空穴注入层;
70-P型接触层;
100-N电极;
200-P电极。
具体实施方式
下面将结合附图和具体实施方式对本申请的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本申请一部分实施例,而不是全部的实施例,仅用于说明本申请,而不应视为限制本申请的范围。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本申请所提供的一种发光二极管外延结构,图1所示,包括一衬底110,依次设置在所述衬底110上表面的N型半导体层130、多量子阱发光层140、P型半导体层150,其中,所述P型半导体层150包括第一空穴注入层152、电子阻挡层153和第二空穴注入层154,所述P型半导体层150内掺杂有P型杂质Mg,所述P型杂质Mg在所述P型半导体层150的不同子层中具有不同的掺杂浓度或浓度变化;
所述多量子阱发光层140与所述第一空穴注入层152之间设置有Mg调变层151;
所述Mg调变层151中杂质掺杂的平均浓度为A,所述第一空穴注入层152中杂质掺杂的平均浓度为B,所述电子阻挡层153中杂质掺杂的平均浓度为C;其中,B>A>C。
本申请所提供的发光二极管外延结构,在该外延结构中,在由所述多量子阱发光层140过渡到第一空穴注入层152之间包括一Mg调变层151,Mg调变层151的Mg的浓度在多量子阱发光层140和第一空穴注入层152之间,起到较好的电子阻挡以及空穴注入作用。
一优选的实施方式中,定义从所述第二空穴注入层154到所述衬底110的方向为第一方向;
所述第一方向上,所述Mg调变层151中Mg的掺杂浓度的变化幅度与所述第一空穴注入层152中Mg的掺杂浓度的变化幅度不同,即所述Mg调变层151中Mg的掺杂浓度的最大值和最小值之间的差值与所述第一空穴注入层152中Mg的掺杂浓度的最大值和最小值之间的差值不同。
图2为本申请实施例提供的发光二极管外延结构SIMS检测结果图。一优选的实施方式中,如图2所示,沿所述第一方向上,所述Mg调变层151中,Mg的掺杂浓度先增加后减小,并存在一第一峰值;
所述第一方向上,所述第一空穴注入层152中,Mg的掺杂浓度先增加后减小,并存在一第二峰值。
一优选的实施方式中,所述第一峰值小于所述第二峰值。
图3为本申请另一实施例提供的发光二极管外延结构SIMS检测结果图。一优选的实施方式中,图3所示,所述第一方向上,所述Mg调变层151中,Mg的掺杂浓度在一定厚度范围内保持不变或波动极小,并存在一平台值;其中,一定厚度范围是指不超过Mg调变层151厚度的一定的厚度区间内;
所述第一方向上,所述第一空穴注入层152中,杂质的掺杂浓度先增加后减小,并存在一第二峰值。
一优选的实施方式中,所述平台值小于所述第二峰值。
一优选的实施方式中,所述第二峰值>1×10 20atom/cm 3
和/或;A>1×10 19atom/cm 3
和/或;C>5×10 18atom/cm 3
一优选的实施方式中,所述多量子阱发光层140包括元素In;
所述第一方向上,In的浓度具有波动的特点,如图2所示,In的浓度值的波动包括若干波峰和若干波谷。
一优选的实施方式中,距离所述P型半导体最近的所述波峰与所述第二峰值的直线距离为d;
d≥15nm;更优选地,20nm≤d≤50nm。
一优选的实施方式中,所述P型半导体层150包括元素In,所述P型半导体层150中,元素In的浓度包括至少两个浓度峰值。
一优选的实施方式中,所述P型半导体层150中,所述元素In的一浓度峰值与所述第二峰值的位置重合。
Mg/In的浓度比影响空穴注入的效果,可实现更佳的光效。
一优选的实施方式中,所述P型半导体层150为掺杂杂质的AlInGaN结构;
所述Mg调变层151中,Al的浓度为D;
所述第一空穴注入层152中,Al的浓度为E;
所述电子阻挡层153中,Al的浓度为F;
所述第二空穴注入层154中,Al的浓度为G;
F>D>E>G。
一优选的实施方式中,D>1×10 20atom/cm 3
一优选的实施方式中,E>1×10 20atom/cm 3
一优选的实施方式中,F>2×10 20atom/cm 3
一优选的实施方式中,在所述Mg调变层151中,D先增大再减小,并存在一第三峰值。在Mg调变层151中对应了一个Al的峰值,Al具有最大值可以产生更好的电子阻挡效果。
另外,Al的浓度对于限制载流子溢流有较好的效果,与Mg/In的浓度协同,得到二极管更好的光效。
本申请一实施例提供一种所述发光二极管外延结构的制备方法,包括以下步骤:
(1)提供一衬底110,例如蓝宝石衬底110,并在高温下对蓝宝石衬底110进行吹扫;
(2)在蓝宝石彻底上生长缓冲层120;
(3)在缓冲层120上生长未掺杂的GaN层;
(4)在未掺杂GaN层上生长n型掺杂GaN层;
(5)在n型掺杂GaN层上生长多量子阱发光层140;
(6)在多量子阱发光层140上依次生长Mg调变层151、第一空穴注入层152、电子阻挡层153、第二空穴注入层154。
本申请还提供了一种发光二极管,如图4所示,发光二极管包括衬底10,在衬底10表面依次层叠设置的缓冲层20、N型半导体层30、多量子阱发光层40、P型半导体层300和P型接触层70,在N型半导体层30表面设置的N电极100,以及在P型半导体层300表面设置的P电极200。
P型半导体层300包括依次层叠设置在多量子阱发光层40表面的第一电子阻挡层80、第一空穴注入层90、第二电子阻挡层50和第二空穴注入层60。
第一电子阻挡层80和第二电子阻挡层50中均含有铝元素,且第一电子阻挡层80中铝元素的含量低于第二电子阻挡层50中铝元素的含量。
进一步,第一电子阻挡层80为含Mg掺杂的Mg调变层,该Mg调变层中Mg杂质掺杂的平均浓度为A,第一空穴注入层中Mg杂质掺杂的平均浓度为B,所述第二电子阻挡层中Mg杂质掺杂的平均浓度为C;其中,B>A>C。
若定义从所述第二空穴注入层到所述衬底的方向为第一方向,那么在第一方向上,Mg调变层中Mg的掺杂浓度的最大值和最小值之间的差值与所述第一空穴注入层中Mg的掺杂浓度的最大值和最小值之间的差值不同。优选地,在第一方向上,Mg调变层中,Mg的掺杂浓度在一定厚度范围内保持不变或波动极小,并存在一平台值;所述第一方向上,第 一空穴注入层中,杂质的掺杂浓度先增加后减小,并存在一第二峰值;该平台值小于第二峰值。
在另一实施方式中,如图5所示,第一电子阻挡层80包括依次层叠设置的第一子层81,第二子层82和第三子层83;进一步地,第一子层81包括含铝的氮化物层和/或不含铝的氮化物层;第二子层82包括含铝的氮化物层和/或不含铝的氮化物层;第三子层83包括含铝的P型氮化物层和/或不含铝的P型氮化物层。优选地,含铝的氮化物层包括AlGaN层和/或AlN层;不含铝的氮化物层包括GaN层;含铝的P型氮化物层包括P型AlGaN层和/或P型AlN层;不含铝的P型氮化物层包括P型GaN层。
第一电子阻挡层80厚度的30%以上为含Al氮化物,例如第一子层81为AlGaN层,第二子层82为AlN层,第三子层83为P型AlN层;
在本申请一些具体的实施例中,第一子层81包括超晶格结构层。超晶格结构层的交替周期为2~8个周期,还可以选择3个周期、4个周期、5个周期、6个周期或7个周期。优选地,所述超晶格结构层包括呈周期性交替层叠设置的AlGaN层和GaN层。如图6所示,第一子层81,第二子层82和第三子层83依次层叠设置在所述所述多量子阱发光40表面,且所述第一电子阻挡层80中的所述第一子层81为AlGaN/GaN超晶格结构层,所述第二子层82为AlN层,所述第三子层83为P型AlN层。
通常地,第一子层81的厚度大于所述第二子层82的厚度;第二子层82的厚度不小于所述第三子层的厚度,第二子层82与所述第三子层83的厚度之和小于所述第一子层81的厚度,第三子层83的厚度小于所述第一电子阻挡层80厚度的20%。具体地,第一子层81的厚度为8~12nm;第二子层82的厚度为1~2nm;第三子层83的厚度为1~2nm。
第一空穴注入层90包括低温P型AlInGaN层。优选地,低温P型AlInGaN层中所用的P型杂质为Mg,掺杂浓度不大于1×10 20atom/cm 3,还可以选择3×10 20atom/cm 3、5×10 20atom/cm 3、8×10 20atom/cm 3或1×10 21atom/cm 3。第一空穴注入层90中的铝元素含量小于所述第一电子阻挡层80中的铝元素含量。但第一空穴注入层90的厚度大于第一电子阻挡层80的厚度。
第二空穴注入层60包括高温P型GaN层。优选地,所述高温P型GaN层中所掺杂的P型杂质为Mg,P型杂质的掺杂浓度大于3×10 19atom/cm 3,还可以选择5×10 19atom/cm 3、8×10 19atom/cm 3、1×10 20atom/cm 3、5×10 20atom/cm 3或8×10 21atom/cm 3
第二电子阻挡层50包括AlGaN层和P型AlGaN层中的一种。第二电子阻挡层50的厚度大于10nm,优选为10~100nm(还可以选择15nm、20nm、25nm、30nm、35nm、40nm、50nm、60nm、70nm、80nm、90nm或95nm);第二空穴注入层60的厚度大于5nm,优选为5~100nm(还可以选择10nm、15nm、20nm、25nm、30nm、35nm、40nm、50nm、60nm、 70nm、80nm、90nm或95nm)。
在本申请一些具体的实施例中,所述衬底10的材料包括蓝宝石、碳化硅以及硅衬底中的至少一种。
在本申请一些具体的实施例中,所述缓冲层20包括AlN缓冲层20和/或GaN缓冲层20。
在本申请一些具体的实施例中,所述N型半导体层30包括掺杂Si的N型GaN层。
在本申请一些具体的实施例中,所述多量子阱发光层40包括层叠设置的InGaN势阱层和GaN势垒层。优选地,所述多量子阱发光层40为InGaN/GaN超晶格结构,第一电子阻挡层80设置于InGaN势阱层上,相当于多量子阱发光层40的最后一个InGaN势阱层。
在本申请一些具体的实施例中,所述P型接触层70包括P型GaN层。优选地,所述P型接触层70中所掺杂的P型杂质为Mg。更优选地,所述P型接触层70中Mg的掺杂浓度大于所述第二空穴注入层60(高温P型GaN层)中Mg的掺杂浓度,且所述P型接触层70中Mg的掺杂浓度小于所述第一空穴注入层90(低温P型AlInGaN层)中Mg的掺杂浓度。
尽管已用具体实施例来说明和描述了本申请,然而应意识到,以上各实施例仅用以说明本申请的技术方案,而非对其限制;本领域的普通技术人员应当理解:在不背离本申请的精神和范围的情况下,可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围;因此,这意味着在所附权利要求中包括属于本申请范围内的所有这些替换和修改。

Claims (20)

  1. 一种发光二极管外延结构,包括一衬底,依次设置在所述衬底上表面的N型半导体层、多量子阱发光层、P型半导体层,其中,所述P型半导体层包括第一空穴注入层、电子阻挡层和第二空穴注入层,其特征在于,所述P型半导体层内掺杂有P型杂质Mg,所述P型杂质Mg在所述P型半导体层的不同子层中具有不同的掺杂浓度或浓度变化;
    所述多量子阱发光层与所述第一空穴注入层之间设置有Mg调变层;
    所述Mg调变层中杂质掺杂的平均浓度为A,所述第一空穴注入层中杂质掺杂的平均浓度为B,所述电子阻挡层中杂质掺杂的平均浓度为C;
    B>A>C。
  2. 根据权利要求1所述的发光二极管外延结构,其特征在于,定义从所述第二空穴注入层到所述衬底的方向为第一方向;
    所述第一方向上,所述Mg调变层中Mg的掺杂浓度的最大值和最小值之间的差值与所述第一空穴注入层中Mg的掺杂浓度的最大值和最小值之间的差值不同。
  3. 根据权利要求2所述的发光二极管外延结构,其特征在于,沿所述第一方向上,所述Mg调变层中,Mg的掺杂浓度先增加后减小,并存在一第一峰值;
    所述第一方向上,所述第一空穴注入层中,Mg的掺杂浓度先增加后减小,并存在一第二峰值;
    优选地,所述第一峰值小于所述第二峰值。
  4. 根据权利要求2所述的发光二极管外延结构,其特征在于,所述第一方向上,所述Mg调变层中,Mg的掺杂浓度在一定厚度范围内保持不变或波动极小,并存在一平台值;
    所述第一方向上,所述第一空穴注入层中,杂质的掺杂浓度先增加后减小,并存在一第二峰值;
    优选地,所述平台值小于所述第二峰值。
  5. 根据权利要求3或4所述的发光二极管外延结构,其特征在于,所述第二峰值>1×10 20atom/cm 3
    和/或;A>1×10 19atom/cm 3
    和/或;C>5×10 18atom/cm 3
  6. 根据权利要求3或4所述的发光二极管外延结构,其特征在于,所述多量子阱发光层包括元素In,
    所述第一方向上,In的浓度具有波动的特点,In的浓度值的波动包括若干波峰和若干波谷。
  7. 根据权利要求6所述的发光二极管外延结构,其特征在于,距离所述P型半导体最 近的In元素波峰与Mg元素第二峰值的直线距离为d;
    d≥15nm;
    优选地,20nm≤d≤50nm。
  8. 根据权利要求3或4所述的发光二极管外延结构,其特征在于,所述P型半导体层包括元素In,所述P型半导体层中,元素In的浓度包括至少两个浓度峰值。
  9. 根据权利要求8所述的发光二极管外延结构,其特征在于,所述P型半导体层中,所述元素In的一浓度峰值与所述第二峰值的位置重合。
  10. 根据权利要求1任一项所述的发光二极管外延结构,其特征在于,
    所述Mg调变层中,Al的浓度为D;
    所述第一空穴注入层中,Al的浓度为E;
    所述电子阻挡层中,Al的浓度为F;
    所述第二空穴注入层中,Al的浓度为G;
    F>D>E>G;
    优选地,D>1×10 20atom/cm 3
    优选地,E>1×10 20atom/cm 3
    优选地,F>2×10 20atom/cm 3
  11. 根据权利要求10所述的发光二极管外延结构,其特征在于,在所述Mg调变层中,Al的浓度D先增大再减小,并存在一第三峰值。
  12. 一种发光二极管,其特征在于,包括衬底,在所述衬底表面依次层叠设置的缓冲层、N型半导体层、多量子阱发光层、P型半导体层和P型接触层,在所述N型半导体层表面设置的N电极,以及在所述P型半导体层表面设置的P电极,其特征在于,
    所述P型半导体层包括依次层叠设置在所述多量子阱发光层表面的第一电子阻挡层、第一空穴注入层、第二电子阻挡层和第二空穴注入层;
    所述第一电子阻挡层的能级低于所述第二电子阻挡层;
    所述第一电子阻挡层包含多个子层,其中至少一子层为P型掺杂氮化物层。
  13. 根据权利要求12所述的一种发光二极管,其特征在于,所述第一电子阻挡层为Mg调变层中,所述Mg调变层中Mg杂质掺杂的平均浓度为A,所述第一空穴注入层中Mg杂质掺杂的平均浓度为B,所述第二电子阻挡层中Mg杂质掺杂的平均浓度为C;其中,B>A>C。
  14. 根据权利要求13所述的一种发光二极管,其特征在于,定义从所述第二空穴注入层到所述衬底的方向为第一方向;
    所述第一方向上,所述Mg调变层中Mg的掺杂浓度的最大值和最小值之间的差值与 所述第一空穴注入层中Mg的掺杂浓度的最大值和最小值之间的差值不同。
  15. 根据权利要求14所述的一种发光二极管,其特征在于,所述第一方向上,所述Mg调变层中,Mg的掺杂浓度在一定厚度范围内保持不变或波动极小,并存在一平台值;
    所述第一方向上,所述第一空穴注入层中,杂质的掺杂浓度先增加后减小,并存在一第二峰值;
    优选地,所述平台值小于所述第二峰值。
  16. 根据权利要求13所述的一种发光二极管,其特征在于,所述第一电子阻挡层包括依次层叠设置的第一子层,第二子层和第三子层;
    所述第一子层包括含铝的氮化物层和/或不含铝的氮化物层;
    所述第二子层包括含铝的氮化物层和/或不含铝的氮化物层;
    所述第三子层包括含铝的P型氮化物层和/或不含铝的P型氮化物层。
  17. 根据权利要求16所述的发光二极管,其特征在于,所述含铝的氮化物层包括AlGaN层和/或AlN层;
    优选地,所述不含铝的氮化物层包括GaN层;
    优选地,所述含铝的P型氮化物层包括P型AlGaN层和/或P型AlN层;
    优选地,所述不含铝的P型氮化物层包括P型GaN层。
  18. 根据权利要求16所述的发光二极管,其特征在于,所述第一子层的厚度大于所述第二子层的厚度;
    和/或,所述第二子层的厚度不小于所述第三子层的厚度;
    和/或,所述第二子层与所述第三子层的厚度之和小于所述第一子层的厚度。
  19. 根据权利要求18所述的发光二极管,其特征在于,所述第一子层的厚度为8~12nm;
    和/或,所述第二子层的厚度为1~2nm;
    和/或,所述第三子层的厚度为1~2nm。
  20. 根据权利要求13所述的发光二极管,其特征在于,所述第一空穴注入层的厚度大于所述Mg调变层的厚度;
    和/或,所述第二电子阻挡层的厚度大于10nm;
    和/或,所述第二空穴注入层的厚度大于5nm。
PCT/CN2022/130718 2021-12-30 2022-11-08 一种发光二极管外延结构及发光二极管 WO2023124552A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111655093 2021-12-30
CN202111655093.8 2021-12-30
CN202211012734.2A CN115132892B (zh) 2021-12-30 2022-08-23 一种发光二极管外延结构及发光二极管
CN202211012734.2 2022-08-23

Publications (1)

Publication Number Publication Date
WO2023124552A1 true WO2023124552A1 (zh) 2023-07-06

Family

ID=83388038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130718 WO2023124552A1 (zh) 2021-12-30 2022-11-08 一种发光二极管外延结构及发光二极管

Country Status (2)

Country Link
CN (2) CN115663083B (zh)
WO (1) WO2023124552A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117476834A (zh) * 2023-12-28 2024-01-30 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、发光二极管

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115663083B (zh) * 2021-12-30 2024-05-17 淮安澳洋顺昌光电技术有限公司 一种发光二极管及其制备方法
CN115472721B (zh) * 2022-10-24 2023-09-15 淮安澳洋顺昌光电技术有限公司 发光二极管外延结构及发光二极管
CN116365363A (zh) * 2023-03-22 2023-06-30 江苏第三代半导体研究院有限公司 激光器外延结构及激光器
CN116565079B (zh) * 2023-03-24 2024-06-21 淮安澳洋顺昌光电技术有限公司 外延结构及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550668A (zh) * 2018-02-28 2018-09-18 华灿光电(苏州)有限公司 一种发光二极管外延片及其制作方法
CN109192825A (zh) * 2018-08-30 2019-01-11 华灿光电(浙江)有限公司 一种发光二极管外延片及其制造方法
CN111180563A (zh) * 2020-02-12 2020-05-19 江西乾照光电有限公司 一种led芯片及其制作方法
CN115132892A (zh) * 2021-12-30 2022-09-30 淮安澳洋顺昌光电技术有限公司 一种发光二极管外延结构及发光二极管

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101805192B1 (ko) * 2011-06-17 2017-12-06 엘지이노텍 주식회사 발광소자
CN105977358B (zh) * 2016-05-17 2018-06-26 华灿光电(苏州)有限公司 一种发光二极管外延片及其制作方法
CN106025016B (zh) * 2016-05-17 2018-07-31 华灿光电(苏州)有限公司 一种发光二极管外延片及其制备方法
CN106206866B (zh) * 2016-07-15 2018-08-10 华灿光电(浙江)有限公司 一种发光二极管的制造方法及发光二极管
CN108281519B (zh) * 2018-01-30 2019-12-10 华灿光电(苏州)有限公司 一种发光二极管外延片及其制造方法
CN109216519B (zh) * 2018-07-27 2020-03-27 华灿光电(浙江)有限公司 一种发光二极管外延片及其制造方法
CN111326626A (zh) * 2018-12-13 2020-06-23 西安智盛锐芯半导体科技有限公司 一种能够改善空穴传输能力的半导体发光器件
CN111326628A (zh) * 2018-12-13 2020-06-23 西安智盛锐芯半导体科技有限公司 一种基于n型掺杂叠层和功能层的发光二极管
CN109742203A (zh) * 2019-01-14 2019-05-10 江西兆驰半导体有限公司 一种氮化物发光二极管
CN112909141A (zh) * 2021-02-28 2021-06-04 安徽三安光电有限公司 一种氮化物半导体发光元件及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550668A (zh) * 2018-02-28 2018-09-18 华灿光电(苏州)有限公司 一种发光二极管外延片及其制作方法
CN109192825A (zh) * 2018-08-30 2019-01-11 华灿光电(浙江)有限公司 一种发光二极管外延片及其制造方法
CN111180563A (zh) * 2020-02-12 2020-05-19 江西乾照光电有限公司 一种led芯片及其制作方法
CN115132892A (zh) * 2021-12-30 2022-09-30 淮安澳洋顺昌光电技术有限公司 一种发光二极管外延结构及发光二极管

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117476834A (zh) * 2023-12-28 2024-01-30 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、发光二极管
CN117476834B (zh) * 2023-12-28 2024-03-22 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、发光二极管

Also Published As

Publication number Publication date
CN115132892A (zh) 2022-09-30
CN115663083B (zh) 2024-05-17
CN115663083A (zh) 2023-01-31
CN115132892B (zh) 2024-02-27

Similar Documents

Publication Publication Date Title
WO2023124552A1 (zh) 一种发光二极管外延结构及发光二极管
CN115347098B (zh) 低工作电压发光二极管外延片及其制备方法、发光二极管
US7429756B2 (en) Nitride semiconductor light emitting device
KR100525545B1 (ko) 질화물 반도체 발광소자 및 그 제조방법
CN108461592B (zh) 一种发光二极管外延片及其制造方法
KR100649496B1 (ko) 질화물 반도체 발광소자 및 제조방법
US8053794B2 (en) Nitride semiconductor light emitting device and fabrication method thereof
WO2017101521A1 (zh) 一种氮化物发光二极管及其生长方法
CN115548180A (zh) 低电流Micro-LED芯片外延结构及其制备方法、Micro-LED芯片
WO2016037467A1 (zh) 一种发光二极管
JP2010010666A (ja) 表面粗化した窒化ガリウム系発光素子
CN116960248B (zh) 一种发光二极管外延片及制备方法
CN109671817A (zh) 一种发光二极管外延片及其制备方法
CN111628059B (zh) AlGaN基深紫外发光二极管器件及其制备方法
CN206401345U (zh) 一种发光二极管外延片
CN105870278A (zh) 一种氮化镓基发光二极管及其制备方法
KR20100056601A (ko) 초격자층을 갖는 발광 다이오드
TWI759602B (zh) 半導體元件
CN115692566A (zh) 氮化物发光二极管
CN113725327B (zh) 一种GaN基绿光LED外延结构及其制备方法和应用
US7763902B2 (en) Light emitting diode chip
TWI790928B (zh) 半導體元件
CN217822839U (zh) 具有高复合发光效率的外延片及发光二极管
CN113725332B (zh) 一种紫外led外延结构及其制备方法和应用
WO2019218350A1 (zh) 发光二极管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913815

Country of ref document: EP

Kind code of ref document: A1