WO2023124267A1 - 电池包及其拆解方法 - Google Patents

电池包及其拆解方法 Download PDF

Info

Publication number
WO2023124267A1
WO2023124267A1 PCT/CN2022/119553 CN2022119553W WO2023124267A1 WO 2023124267 A1 WO2023124267 A1 WO 2023124267A1 CN 2022119553 W CN2022119553 W CN 2022119553W WO 2023124267 A1 WO2023124267 A1 WO 2023124267A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
heating
battery
layer
cells
Prior art date
Application number
PCT/CN2022/119553
Other languages
English (en)
French (fr)
Inventor
张新宾
张占江
王振涛
吴俊涛
李阳
杨明
卢雨龙
阎超
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023124267A1 publication Critical patent/WO2023124267A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of electric vehicle batteries, in particular to a battery pack and a dismantling method thereof.
  • Electric vehicles use electricity as the power source, and a large amount of fossil fuel can be saved by replacing the fuel engine with an electric motor.
  • electric vehicles With the increasing maturity and development of electric vehicle power battery technology, electric vehicles will surely become the main trend of the future development of the automobile industry.
  • the purpose of the present invention is to provide a battery pack and its disassembly method, so as to solve the problems raised in the above-mentioned background technology.
  • a battery pack comprising:
  • a box body, the box body is provided with an accommodation cavity
  • a self-heating adhesive assembly includes a heating layer, the heating layer is powered by the battery module, and the battery module is bonded and fixed in the accommodating cavity through the self-heating adhesive assembly Inside.
  • the self-heating bonding assembly further includes a first bonding layer and a second bonding layer, the heating layer is bonded to the first bonding layer and the second bonding layer respectively, and the first bonding layer
  • An adhesive layer is adhesively bonded to the battery module, and the second adhesive layer is adhesively fixed to the accommodating cavity.
  • the heating layer includes a first input positive electrode, a first input negative electrode and a heating element, the first input positive electrode and the first input negative electrode are respectively electrically connected to the heating element, and the first input positive electrode is connected to the heating element.
  • the first input negative poles are respectively electrically connected to the positive and negative poles of the battery pack.
  • the heating layer also includes a second input positive pole and a second input negative pole, the second input positive pole and the second input negative pole are respectively electrically connected to the heating element, and the second input positive pole and the second input
  • the input negative pole can be electrically connected to an external power supply, and the heating layer is powered by the external power supply.
  • the heating element is uniformly arranged in the self-heating bonding assembly, and the heating element is a heating wire or a heating film.
  • control switch is also included, the control switch is installed on the circuit between the battery pack and the heating element, and is used to control the battery pack to supply power to the heating element or to cut off power.
  • the accommodating cavity is surrounded by a side wall and a bottom plate, the bottom plate is provided with threaded holes, a crossbeam is arranged in the accommodating chamber, the crossbeam is provided with via holes, and the crossbeam also includes fasteners , the fastener passes through the through hole to fix the beam in the threaded hole.
  • the outer envelope of the battery cell is in the shape of a cuboid, and when a plurality of battery cells are arranged, a piece of the spacer is provided between every two battery cells.
  • the spacer is a cuboid that is thin at the center and gradually thickens toward the edges.
  • a method for disassembling a battery pack includes:
  • the battery management system collects the temperature of each point in the battery pack
  • the battery pack is disassembled after a preset time delay
  • the battery management system collects the temperature of each point in the battery pack
  • the battery pack is disassembled after a preset time delay
  • the faulty cell is one cell and/or multiple continuous cells, take the faulty cell as a node, divide the normal working cells into n groups, and connect the n groups of normal working cells in parallel or in series as For a new battery pack, the positive and negative poles of the new battery pack connected in parallel or in series are electrically connected to the two stages of the heating layer, respectively, for heating the bonding layer;
  • the battery management system collects the temperature of each point in the battery pack
  • the battery pack is disassembled after a preset time delay
  • the power of the battery pack is insufficient, and the remaining power cannot soften the adhesive layer;
  • the second output positive pole and the second output negative pole are electrically connected to an external power supply for heating the bonding layer
  • the battery management system collects the temperature of each point in the battery pack
  • the battery pack is disassembled after a preset time delay.
  • the beneficial effect of the present invention is: the present invention enables the current highly integrated battery to be disassembled without damage, prevents the spread of thermal runaway of the battery pack, and fully utilizes the remaining power of the battery pack, which reduces energy waste and It can reduce the difficulty of disassembling the battery pack.
  • FIG. 1 is a schematic diagram of an explosion of a battery pack structure according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a battery module according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the structure of the battery pack box according to the embodiment of the present invention.
  • Fig. 4 is the schematic diagram of the gasket structure of the embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a self-heating bonding assembly according to an embodiment of the present invention.
  • Fig. 6 is a flow chart of the dismantling method when the battery pack is fully charged and the main circuit of the battery pack is normal according to an embodiment of the present invention
  • Fig. 7 is a flow chart of the dismantling method when the battery pack is fully charged and the main circuit of the battery pack is blocked according to an embodiment of the present invention
  • Fig. 8 is a flowchart of a dismantling method for one or more consecutive faulty cells when the battery pack has sufficient power and the main circuit of the battery pack is blocked according to an embodiment of the present invention
  • FIG. 9 is a flowchart of a disassembly method when the battery pack is insufficient in an embodiment of the present invention.
  • FIG. 10 is a flowchart of a battery pack disassembly method according to an embodiment of the present invention.
  • 100 box body; 200, battery module; 300, gasket; 400, self-heating bonding assembly; 110, beam; 120, containing chamber; 410, heating layer; 420, first bonding layer; 430 , the second bonding layer; 111, the via hole; 411, the first input positive pole; 412, the heating element; 413, the first input negative pole; 121, the bottom plate; 1211, the threaded hole.
  • the meaning of “plurality” is two or more; the terms “upper”, “lower”, “left”, “right”, “inner”, “outer” , “front end”, “rear end”, “head”, “tail”, etc. indicate the orientation or positional relationship based on the orientation or positional relationship shown in the drawings, and are only for the convenience of describing the present invention and simplifying the description, rather than None indicating or implying that a referenced device or element must have a particular orientation, be constructed, and operate in a particular orientation should therefore not be construed as limiting the invention.
  • the terms “first”, “second”, “third”, etc. are used for descriptive purposes only and should not be construed as indicating or implying relative importance.
  • connection and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
  • a battery pack including:
  • a box body 100, the box body is provided with an accommodating chamber 120;
  • a battery module 200 disposed in the accommodating cavity 120, the battery module 200 includes at least one battery cell;
  • a self-heating bonding assembly 400 includes a heating layer 410, the heating layer 410 is powered by the battery module 200, and the battery module 200 is bonded by the self-heating bonding assembly 400 The knot is fixed in the receiving cavity 120 .
  • the battery cell is connected to the bottom plate of the box body through a self-heating structural adhesive assembly to realize positioning in the Y and Z directions.
  • the heating layer of the self-heating structural bonding component converts the electric energy of the cell itself into heat energy, and heats the bonding layer to a softened state to reduce its bonding strength, and then it can be disassembled. Avoid safety risks such as deformation, damage, liquid leakage or short circuit caused by forced disassembly.
  • the self-heating adhesive assembly 400 further includes a first adhesive layer 420 and a second adhesive layer 430, and the heating layer 410 is connected to the first adhesive layer 420 respectively. Bond with the second adhesive layer 430 .
  • the heating layer 410 includes a first input positive electrode 411, a first input negative electrode 413, and a heating element 412, and the first input positive electrode 411 and the first input negative electrode 413 are respectively connected to the heating
  • the component 412 is electrically connected, and the first input positive pole 411 and the first input negative pole 413 are respectively electrically connected to the positive and negative poles of the battery pack.
  • the heating element 412 can convert electrical energy into thermal energy, heat the first adhesive layer 420 and the second adhesive layer 430 to soften them, and realize non-destructive disassembly. Since the heat energy comes from the battery cell or battery pack, no additional energy input is required, reducing the individual energy consumption of disassembly.
  • the heating layer 410 further includes a second input positive electrode and a second input negative electrode, the second input positive electrode and the second input negative electrode are electrically connected to the heating element 412 respectively, and the second input positive electrode and the second input negative electrode are electrically connected to the heating element 412 respectively.
  • the second input negative electrode can be electrically connected to an external power supply, and the heating layer 410 is powered by the external power supply.
  • the heating element 412 is uniformly arranged in the self-heating bonding assembly 400, and the heating element 412 is a heating wire or a heating film.
  • control switch is also included, the control switch is installed on the circuit between the battery pack and the heating element, and is used to control the battery pack to supply or cut off power to the heating element.
  • the accommodating cavity 120 is surrounded by a side wall and a bottom plate 121, the bottom plate 121 is provided with a threaded hole 1211, and a crossbeam 110 is arranged in the accommodating cavity 120, and the crossbeam 110 is provided with a via hole 111, and the beam 110 also includes a fastener, and the fastener passes through the via hole 111 to fix the beam 110 in the threaded hole 1211, and the number of the via hole 111 depends on Number of fasteners required.
  • the detachable beam 110 is installed, and contacts with the battery cells to squeeze the battery cells, so as to fix the cells in the X direction.
  • a gasket 300 is also included.
  • the outer envelope of the cell is in the shape of a cuboid.
  • a piece of the gasket 300 is provided between every two cells. .
  • the spacer 300 is a cuboid that is thin at the center and gradually thickens toward the edges.
  • the gasket 300 is arranged between the battery cells, which can play the role of heat insulation and insulation.
  • the spacer 300 is characterized in that the projection is rectangular, and the thickness of the spacer 300 is much smaller than the length and width.
  • the thickness of the section of the spacer 300 along the thickness direction is that the edge thickness is greater than the middle thickness.
  • the cuboid-shaped cell will expand in the middle during use.
  • the design of the gasket 300 can provide a gap for the middle expansion of the cell.
  • the gasket 300 itself has insulation and heat insulation characteristics, which can block the heat transfer between the cells. Thermal runaway expansion can be delayed during thermal runaway.
  • a method for disassembling a battery pack includes the following steps:
  • the battery management system collects the temperature of each point in the battery pack
  • S220 Connect the two groups of cells in parallel or in series, and electrically connect the positive and negative electrodes of the two groups of cells connected in parallel or in series to the positive and negative electrodes of the heating layer, respectively, for heating the bonding layer;
  • the battery management system collects the temperature of each point in the battery pack
  • S300 if the faulty cell is one cell and/or multiple continuous cells, use the faulty cell as a node, divide the normally working cells into n groups, and divide the n groups Normal working batteries are connected in parallel or in series to form a new battery pack, and the positive and negative electrodes of the new battery pack after parallel or series connection are respectively electrically connected to the two stages of the heating layer for heating the bonding layer;
  • the battery management system collects the temperature of each point in the battery pack
  • the battery management system collects the temperature of each point in the battery pack
  • the battery pack is used to heat the structural adhesive, and at the same time, the battery management system collects the temperature of each point in the battery pack, and after reaching the softening temperature T1 of the adhesive layer, it is delayed for 30 minutes. can be disassembled;
  • Steps 200-240 assuming that a battery cell fails, at this time, the location of the faulty battery cell needs to be determined through the battery management system, and the battery cells in the battery pack are divided into two groups with this node as the node, and the output of the heating layer is used to The electrodes are respectively connected to the positive and negative electrodes of the two groups to convert electric energy and heat the adhesive layer.
  • the battery management system collects that each point in the battery pack reaches the softening temperature T1 of the adhesive layer, it can be disassembled after a delay of 30 minutes. When multiple cells fail, the processing idea is the same as when one cell fails.
  • Steps S400-S430 When the remaining power of the battery pack cannot soften the adhesive layer, electrically connect the second output positive electrode and the second output negative electrode to an external power supply to heat the adhesive layer at a temperature of T1 and delay for 30 minutes. Disassemble.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池包及其拆解方法,电池包包括:箱体(100)、电池模组(200)和自加热粘结组件(400),箱体(100)设置有容纳腔(120);电池模组(200)设置于容纳腔(120)内,电池模组(200)包括至少一个电芯;自加热粘结组件(400)包括加热层(410),加热层(410)由电池模组(200)供电,电池模组(200)通过自加热粘结组件(400)粘结固定在容纳腔(120)内。使得目前高集成电池能够无损拆解,并防止电池包热失控蔓延,将电池包剩余的电量充分利用,既减少能源浪费,又可降低电池包的拆解难度。

Description

电池包及其拆解方法 技术领域
本发明涉及一种电动车辆电池技术领域,尤其涉及一种电池包及其拆解方法。
背景技术
随着全球能源危机和环境污染问题的日益严重,电动车得到快速发展。电动汽车以电力为动力源,通过电动机取代燃油发动机可以节约大量的额化石燃料。随着电动汽车动力电池技术的日益成熟与发展,电动汽车必将成为未来汽车工业发展的主要趋势。
随着系统集成度的不断提升,使用胶粘技术已经成为一种趋势,胶粘技术的应用大大提高了电池包的能量密度,但是胶粘技术的缺陷是很难进行无损拆解,这样就限制了电池包维修和电池包退役后的梯次应用,目前的法规规定,电池包必须考虑梯次利用和回收,简单的暴力拆解不能够最大化地发挥电池的价值也不符合环保的要求,因此,粘胶方案的电池包如何无损拆解是一道需要解决的难题。
同时电池包在进行拆解时,需要将电池包剩余的电量释放,避免拆解过程中出现着火风险,目前使用的方法是将剩余电量通过配电柜直接释放,这样会造成能量浪费,合理地使用这部分能量也是需要考虑的问题。
发明内容
本发明的目的在于提供一种电池包及其拆解方法,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:一种电池包,包括:
箱体,所述箱体设置有容纳腔;
电池模组,设置于所述容纳腔内,所述电池模组包括多个电芯;
自加热粘结组件,所述自加热粘结组件包括加热层,所述加热层由所述 电池模组供电,所述电池模组通过所述自加热粘结组件粘结固定在所述容纳腔内。
进一步地,所述自加热粘结组件还包括第一粘结层和第二粘结层,所述加热层分别与所述的第一粘结层和第二粘结层粘结,所述第一粘结层与所述电池模组粘结,所述第二粘结层与所述容纳腔粘结固定。
进一步地,所述加热层包括第一输入正极、第一输入负极和加热件,所述第一输入正极和第一输入负极分别与所述加热件电连接,所述第一输入正极与所述第一输入负极分别电连接所述电池包的正负极。
进一步地,所述加热层还包括第二输入正极和第二输入负极,所述第二输入正极和第二输入负极分别与所述加热件电连接,所述第二输入正极和所述第二输入负极可以与外部电源电连接,通过所述外部电源为加热层供电。
进一步地,所述加热件均匀的布置在所述自加热粘结组件内,所述加热件为加热丝或加热膜。
进一步地,还包括控制开关,所述控制开关安装在所述电池包和所述加热件的回路上,用于控制所述电池包向所述加热件供电或断电。
进一步地,所述容纳腔由侧壁和底板围设而成,所述底板设置有螺纹孔,所述容纳腔内设置有横梁,所述横梁设置有过孔,所述横梁还包括紧固件,所述紧固件穿设所述过孔将所述横梁固定在所述螺纹孔内。
进一步地,还包括垫片,所述电芯的外包络为长方体形状,多个电芯进行排布时,每两个电芯间设置一片所述垫片。
进一步地,所述垫片为中心薄且向边缘逐渐增厚的长方体。
进一步地,一种电池包的拆解方法,包括:
电池包电量充足且电池包主回路正常时,将加热层的正负极分别与电池包的正负极连接,或分别与电池模组的正负极连接;
电池管理系统采集电池包内各点温度;
达到粘结层软化温度阈值,延迟预设时间后,对所述电池包进行拆解;
电池包电量充足但是主回路不通时,通过电池管理系统确定故障电芯位置;
如果故障电芯为一个或连续多个,以所述一个或连续多个故障电芯作为节点,将所述电池包的电芯划分为两组电芯;
将所述两组电芯并联或串联,将并联或串联后的所述两组电芯的正极和负极分别与所述加热层正负极电连接,用于加热粘结层;
电池管理系统采集电池包内各点温度;
达到粘结层软化温度阈值,延迟预设时间后,对所述电池包进行拆解;
如果故障电芯为一个电芯和/或多个连续电芯,以所述故障电芯为节点,将正常工作的电芯分隔为n组,将所述n组正常工作电芯并联或串联为新的电池组,将并联或串联后的新的电池组的正极和负极分别与所述加热层两级电连接,用于加热粘结层;
电池管理系统采集电池包内各点温度;
达到粘结层软化温度阈值,延迟预设时间后,对所述电池包进行拆解;
电池包电量不足,所剩电量不能软化所述粘结层;
通过第二输出正极和第二输出负极与外部电源电连接,用于加热粘结层;
电池管理系统采集电池包内各点温度;
达到粘结层软化温度阈值,延迟预设时间后,对所述电池包进行拆解。
与现有技术相比,本发明的有益效果是:本发明使得目前高集成电池能够无损拆解,并防止电池包热失控蔓延,并将电池包剩余的电量充分利用,即减少能源浪费,又可降低电池包的拆解难度。
附图说明
图1为本发明实施例的电池包结构爆炸示意图;
图2为本发明实施例的电池模组结构示意图;
图3为本发明实施例的电池包箱体结构示意图;
图4为本发明实施例的垫片结构示意图;
图5为本发明实施例的自加热粘结组件结构示意图;
图6为本发明实施例的电池包电量充足且电池包主回路正常时拆解方法流程图;
图7为本发明实施例的电池包电量充足且电池包主回路不通时拆解方法流程图;
图8为本发明实施例的电池包电量充足且电池包主回路不通时,故障电芯为一个或连续多个的拆解方法流程图;
图9为本发明实施例的电池包电量不足时的拆解方法流程图;
图10为本发明实施例的电池包拆解方法流程图。
图中:100、箱体;200、电池模组;300、垫片;400、自加热粘结组件;110、横梁;120、容纳腔;410、加热层;420、第一粘结层;430、第二粘结层;111、过孔;411、第一输入正极;412、加热件;413、第一输入负极;121、底板;1211、螺纹孔。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”、“前端”、“后端”、“头部”、“尾部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。 此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体的连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
请参阅说明书附图,本发明提供一种技术方案:如图1所示,一种电池包,包括:
箱体100,所述箱体设置有容纳腔120;
电池模组200,设置于所述容纳腔120内,所述电池模组200包括至少一个电芯;
自加热粘结组件400,所述自加热粘结组件400包括加热层410,所述加热层410由所述电池模组200供电,所述电池模组200通过所述自加热粘结组件400粘结固定在所述容纳腔120内。
上述实施例中,所述电芯通过自加热结构粘接组件将电芯与箱体底板连接,实现Y和Z方向定位。
在需要进行拆解电芯时,自加热结构粘接组件的加热层将电芯自身的电能转化成热能,将粘接层加热到软化状态,使其粘接强度降低,即可进行拆解,避免强行拆解带来的变形、损坏、漏液或短路等安全风险。
可选地,如图5所示,所述自加热粘结组件400还包括第一粘结层420和第二粘结层430,所述加热层410分别与所述的第一粘结层420和第二粘结层430粘结。
可选地,如图1所示,所述加热层410包括第一输入正极411、第一输入负极413和加热件412,所述第一输入正极411和第一输入负极413分别与所 述加热件412电连接,所述第一输入正极411与所述第一输入负极413分别电连接所述电池包的正负极。
上述实施例中,所述加热件412可将电能转化为热能,加热第一粘结层420和第二粘结层430,使其软化,实现非破坏性拆解。由于热能来源于电芯或者电池包,无需额外的能量输入,减少拆解的单独能量消耗。
可选地,所述加热层410还包括第二输入正极和第二输入负极,所述第二输入正极和第二输入负极分别与所述加热件412电连接,所述第二输入正极和所述第二输入负极可以与外部电源电连接,通过所述外部电源为加热层410供电。
可选地,所述加热件412均匀地布置在所述自加热粘结组件400内,所述加热件412为加热丝或加热膜。
可选地,还包括控制开关,所述控制开关安装在所述电池包和所述加热件的回路上,用于控制所述电池包向所述加热件供电或断电。
可选地,如图3所示,所述容纳腔120由侧壁和底板121围设而成,所述底板121设置有螺纹孔1211,所述容纳腔120内设置有横梁110,所述横梁110设置有过孔111,所述横梁110还包括紧固件,所述紧固件穿设所述过孔111将所述横梁110固定在所述螺纹孔1211内,过孔111的数量取决于需要的紧固件数量。
上述实施例中,电芯数量满足需求后,将可拆卸的横梁110安装,并与电芯接触挤压电芯,实现电芯的X方向固定。
可选地,如图4所示,还包括垫片300,所述电芯的外包络为长方体形状,多个电芯进行排布时,每两个电芯间设置一片所述垫片300。
可选地,所述垫片300为中心薄且向边缘逐渐增厚的长方体。
上述实施例中,垫片300布置在电芯与电芯之间,可起到隔热和绝缘的作用。
所述垫片300其特征在于投影为长方形,且垫片300的厚度远小于长和宽的尺寸,垫片300沿厚度方向的断面厚度为边缘厚度大于中间的厚度。
长方体形状电芯在使用时会出现中间膨胀的现象,垫片300的这种设计可以为电芯中间膨胀提供间隙,同时垫片300自身具有绝缘隔热特性,可以阻挡电芯间的热量传递,在热失控时可以延缓热失控扩展。
本发明的另一方面,一种电池包的拆解方法,包括以下步骤:
如图6所示,S100、电池包电量充足且电池包主回路正常时,将加热层的正负极分别与电池包的正负极连接,或分别与电池模组的正负极连接;
S110、电池管理系统采集电池包内各点温度;
S120、达到粘结层软化温度阈值,延迟预设时间后,对所述电池包进行拆解;
如图7所示,S200、电池包电量充足但是主回路不通时,通过电池管理系统确定故障电芯位置;
S210、如果故障电芯为一个或连续多个,以所述一个或连续多个故障电芯作为节点,将所述电池包的电芯划分为两组电芯;
S220、将所述两组电芯并联或串联,将并联或串联后的所述两组电芯的正极和负极分别与所述加热层正负极电连接,用于加热粘结层;
S230、电池管理系统采集电池包内各点温度;
S240、达到粘结层软化温度阈值,延迟预设时间后,对所述电池包进行拆解;
如图8所示,S300、如果故障电芯为一个电芯和/或多个连续电芯,以所述故障电芯为节点,将正常工作的电芯分隔为n组,将所述n组正常工作电芯并联或串联为新的电池组,将并联或串联后的新的电池组的正极和负极分别与所述加热层两级电连接,用于加热粘结层;
S310、电池管理系统采集电池包内各点温度;
S320、达到粘结层软化温度阈值,延迟预设时间后,对所述电池包进行拆解;
如图9所示,S400、电池包电量不足,所剩电量不能软化所述粘结层;
S410、通过第二输出正极和第二输出负极与外部电源电连接,用于加热粘结层;
S420、电池管理系统采集电池包内各点温度;
S430、达到粘结层软化温度阈值,延迟预设时间后,对所述电池包进行拆解。
如图10所示,上述实施例中步骤S100至S120,使用电池包的电量对结构胶进行加热,同时电池管理系统采集电池包内各点温度,达到粘接层软化温度T1之后,延迟30min,即可进行拆解;
步骤200-240,假设有一个电芯发生故障,此时需要通过电池管理系统,确定故障电芯位置,以此处作为节点,将电池包内的电芯划分为两组,用加热层的输出极分别连接两组的正负极进行电能转化,加热粘接层。当电池管理系统采集电池包内各点达到粘接层软化温度T1之后,延迟30min,即可进行拆解。当多电芯故障时处理思路与一个电芯故障时的处理思路相同。
步骤S400-S430当电池包剩余的电量不能使粘接层达到软化,通过第二输出正极和第二输出负极与外部电源电连接,用于加热粘结层,温度T1并延迟30min时,即可进行拆解。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

  1. 一种电池包,其特征在于,包括:
    箱体,所述箱体设置有容纳腔;
    电池模组,设置于所述容纳腔内,所述电池模组包括多个电芯;
    自加热粘结组件,所述自加热粘结组件包括加热层,所述加热层由所述电池模组供电,所述电池模组通过所述自加热粘结组件粘结固定在所述容纳腔内。
  2. 根据权利要求1所述的一种电池包,其特征在于,所述自加热粘结组件还包括第一粘结层和第二粘结层,所述加热层分别与所述的第一粘结层和第二粘结层粘结,所述第一粘结层与所述电池模组粘结,所述第二粘结层与所述容纳腔粘结固定。
  3. 根据权利要求1所述的一种电池包,其特征在于,所述加热层包括第一输入正极、第一输入负极和加热件,所述第一输入正极和第一输入负极分别与所述加热件电连接,所述第一输入正极与所述第一输入负极分别与所述电池包的正负极电连接。
  4. 根据权利要求3所述的一种电池包,其特征在于,所述加热层还包括第二输入正极和第二输入负极,所述第二输入正极和第二输入负极分别与所述加热件电连接,所述第二输入正极和所述第二输入负极可以与外部电源电连接,通过所述外部电源为加热层供电。
  5. 根据权利要求4所述的一种电池包,其特征在于,所述加热件均匀的布置在所述自加热粘结组件内,所述加热件为加热丝或加热膜。
  6. 根据权利要求3所述的一种电池包,其特征在于,还包括控制开关,所述控制开关安装在所述电池包和所述加热件的回路上,用于控制所述电池包向所述加热件供电或断电。
  7. 根据权利要求1所述的一种电池包,其特征在于,还包括横梁,所述容纳腔由侧壁和底板围设而成,所述底板设置有螺纹孔,所述横梁设置有过 孔,所述横梁还包括紧固件,所述紧固件穿设所述过孔将所述横梁固定在所述螺纹孔内。
  8. 根据权利要求1所述的一种电池包,其特征在于,还包括垫片,所述电芯的外包络为长方体形状,多个电芯进行排布时,每两个电芯间设置一片所述垫片。
  9. 根据权利要求8所述的一种电池包,其特征在于,所述垫片为中心薄且向边缘逐渐增厚的长方体。
  10. 一种电池包的拆解方法,其特征在于,包括:
    电池包电量充足且电池包主回路正常时,将加热层的正负极分别与电池包的正负极连接,或分别与电池模组的正负极连接;
    电池管理系统采集电池包内各点温度;
    达到粘结层软化温度阈值,延迟预设时间后,对所述电池包进行拆解;
    电池包电量充足但是主回路不通时,通过电池管理系统确定故障电芯位置;
    如果故障电芯为一个或连续多个,以所述一个或连续多个故障电芯作为节点,将所述电池包的电芯划分为两组电芯;
    将所述两组电芯并联或串联,将并联或串联后的所述两组电芯的正极和负极分别与所述加热层正负极电连接,用于加热粘结层;
    电池管理系统采集电池包内各点温度;
    达到粘结层软化温度阈值,延迟预设时间后,对所述电池包进行拆解;
    如果故障电芯为一个电芯和/或多个连续电芯,以所述故障电芯为节点,将正常工作的电芯分隔为n组,将所述n组正常工作电芯并联或串联为新的电池组,将并联或串联后的新的电池组的正极和负极分别与所述加热层两级电连接,用于加热粘结层;
    电池管理系统采集电池包内各点温度;
    达到粘结层软化温度阈值,延迟预设时间后,对所述电池包进行拆解;
    电池包电量不足,所剩电量不能软化所述粘结层;
    通过第二输出正极和第二输出负极与外部电源电连接,用于加热粘结层;
    电池管理系统采集电池包内各点温度;
    达到粘结层软化温度阈值,延迟预设时间后,对所述电池包进行拆解。
PCT/CN2022/119553 2021-12-31 2022-09-19 电池包及其拆解方法 WO2023124267A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111663802.7A CN114388976B (zh) 2021-12-31 2021-12-31 电池包及其拆解方法
CN202111663802.7 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023124267A1 true WO2023124267A1 (zh) 2023-07-06

Family

ID=81199387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119553 WO2023124267A1 (zh) 2021-12-31 2022-09-19 电池包及其拆解方法

Country Status (2)

Country Link
CN (1) CN114388976B (zh)
WO (1) WO2023124267A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114388976B (zh) * 2021-12-31 2024-07-05 中国第一汽车股份有限公司 电池包及其拆解方法
GB2628994A (en) * 2023-04-12 2024-10-16 Jaguar Land Rover Battery assembly

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184364A (ja) * 2000-12-19 2002-06-28 Matsushita Electric Ind Co Ltd 角型電池およびその外装方法
US20140287299A1 (en) * 2013-03-25 2014-09-25 Apple Inc. Heat-Debonding Adhesives
CN108199099A (zh) * 2018-02-05 2018-06-22 北京长城华冠汽车科技股份有限公司 一种电池保护装置及其控制方法
CN208444872U (zh) * 2018-05-03 2019-01-29 罗斌 一种电池组盒体
CN109585976A (zh) * 2018-12-14 2019-04-05 蜂巢能源科技有限公司 电池模组加热膜、电池包及其下壳体和电池包装配方法
CN111081940A (zh) * 2020-01-09 2020-04-28 惠州亿纬锂能股份有限公司 一种电池箱体结构及其组装和拆卸方法、蓄电池
CN112787033A (zh) * 2021-01-29 2021-05-11 东莞新能德科技有限公司 热减粘保护膜及应用其的电子装置
CN114388976A (zh) * 2021-12-31 2022-04-22 中国第一汽车股份有限公司 电池包及其拆解方法
CN217035874U (zh) * 2022-02-23 2022-07-22 蜂巢能源科技股份有限公司 模组无损拆解结构及电池包

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678243B (zh) * 2018-10-19 2019-12-01 國立臺南大學 太陽能電池模組的回收方法(三)
CN113523746B (zh) * 2021-05-26 2023-01-13 湖北亿纬动力有限公司 电池包拆解方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184364A (ja) * 2000-12-19 2002-06-28 Matsushita Electric Ind Co Ltd 角型電池およびその外装方法
US20140287299A1 (en) * 2013-03-25 2014-09-25 Apple Inc. Heat-Debonding Adhesives
CN108199099A (zh) * 2018-02-05 2018-06-22 北京长城华冠汽车科技股份有限公司 一种电池保护装置及其控制方法
CN208444872U (zh) * 2018-05-03 2019-01-29 罗斌 一种电池组盒体
CN109585976A (zh) * 2018-12-14 2019-04-05 蜂巢能源科技有限公司 电池模组加热膜、电池包及其下壳体和电池包装配方法
CN111081940A (zh) * 2020-01-09 2020-04-28 惠州亿纬锂能股份有限公司 一种电池箱体结构及其组装和拆卸方法、蓄电池
CN112787033A (zh) * 2021-01-29 2021-05-11 东莞新能德科技有限公司 热减粘保护膜及应用其的电子装置
CN114388976A (zh) * 2021-12-31 2022-04-22 中国第一汽车股份有限公司 电池包及其拆解方法
CN217035874U (zh) * 2022-02-23 2022-07-22 蜂巢能源科技股份有限公司 模组无损拆解结构及电池包

Also Published As

Publication number Publication date
CN114388976B (zh) 2024-07-05
CN114388976A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2023124267A1 (zh) 电池包及其拆解方法
JP4652415B2 (ja) 新規な構造のバッテリーカートリッジ及びそれを含む開放型バッテリーモジュール
WO2022011513A1 (zh) 一种电池模组及车辆
CN105895843A (zh) 一种智能锂离子电池模组
WO2023078360A1 (zh) 电池包、车辆和用电装置
CN212542554U (zh) 电池模组、用于电池模组成组的工装及电动汽车
CN116349052A (zh) 电池单体、电池、用电装置及制备电池单体的方法和设备
US20240097268A1 (en) Battery cell assembly and battery pack
WO2023000234A1 (zh) 电池、用电设备、制备电池的方法和设备
CN114678644A (zh) 电池组及储能系统
WO2021104332A1 (zh) 电池模块、装置及失效电池单体的失效处理方法
WO2023155133A1 (zh) 电池、用电设备、制备电池的方法和设备
US11888136B2 (en) Battery, power consumption device, and method and device for producing battery
US20230268588A1 (en) Battery, power consumption device, and method and device for producing battery
WO2023159486A1 (zh) 电池、用电设备、制备电池的方法和设备
CN214898600U (zh) 电池组和电池包
WO2021196217A1 (zh) 电池模块、电池组、装置及失效处理方法
CN114079107A (zh) 电池模组及电池包
WO2023155212A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024124689A1 (zh) 电池及用电装置
WO2023159487A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155209A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023155211A1 (zh) 电池、用电设备、制备电池的方法和设备
JP7492007B2 (ja) 電池、電力消費装置、電池の製造方法及び装置
WO2023155210A1 (zh) 电池、用电设备、制备电池的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913532

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE