WO2021196217A1 - 电池模块、电池组、装置及失效处理方法 - Google Patents

电池模块、电池组、装置及失效处理方法 Download PDF

Info

Publication number
WO2021196217A1
WO2021196217A1 PCT/CN2020/083334 CN2020083334W WO2021196217A1 WO 2021196217 A1 WO2021196217 A1 WO 2021196217A1 CN 2020083334 W CN2020083334 W CN 2020083334W WO 2021196217 A1 WO2021196217 A1 WO 2021196217A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting piece
battery
failed
battery unit
battery module
Prior art date
Application number
PCT/CN2020/083334
Other languages
English (en)
French (fr)
Inventor
徐冶
陈选
周迪
王增忠
吕建先
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to KR1020227035627A priority Critical patent/KR20220154758A/ko
Priority to JP2022560269A priority patent/JP7509911B2/ja
Priority to EP20824421.0A priority patent/EP3916904A4/en
Priority to PCT/CN2020/083334 priority patent/WO2021196217A1/zh
Priority to CN202080096023.0A priority patent/CN115066804B/zh
Priority to US17/134,005 priority patent/US12015171B2/en
Publication of WO2021196217A1 publication Critical patent/WO2021196217A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • H01M50/529Intercell connections through partitions, e.g. in a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the technical field of energy storage devices, and in particular to a battery module, a battery pack, a device, and a failure processing method.
  • the battery module includes a plurality of battery cells stacked on each other, and the plurality of battery cells are electrically connected, so as to realize the output of electric energy of the battery module and supply power to the electric equipment.
  • the battery unit is faulty, the entire circuit of the battery module fails, and the battery module cannot work normally.
  • the present application provides a battery module, a battery pack, a device, and a failure processing method.
  • the battery module has a small number of components, a simple structure, and a high energy density.
  • a first aspect of the embodiments of the present application provides a battery module, the battery module including:
  • the first connecting piece is used to connect the failed battery unit and the at least one non-failed battery unit.
  • the first connecting piece includes a first connecting portion and a conductive portion connected to the first connecting portion.
  • a connecting portion is used for electrical connection with the shell of the failed battery unit, and the conductive portion is used for electrical connection with the at least one non-failed battery unit, so that the battery module can resume operation.
  • the housing includes a housing and a top cover connected to the housing;
  • the first connecting portion is used for connecting with the housing or the top cover of the failed battery unit.
  • the first connecting portion is bent toward the shell of the failed battery cell relative to the conductive portion, so that the first connecting portion and the failed battery cell Shell connection.
  • one of the first connecting portion and the shell of the failed battery unit is provided with a raised portion, and the other is provided with a recessed portion;
  • the protruding portion is used to connect with the recessed portion.
  • the protruding portion is provided on the housing, and the protruding portion protrudes in a direction away from the housing;
  • the recessed portion is a through hole provided in the first connecting portion
  • the protruding portion is used for inserting with the through hole.
  • the first connecting portion is riveted or welded to the shell of the failed battery unit.
  • the first connecting portion and the conductive portion are connected through a second connecting portion.
  • the battery module further includes a second connecting piece for connecting at least two of the non-failed battery cells;
  • the second connecting piece is provided with a bending guide portion for guiding the second connecting piece to bend and forming the first connecting portion and the conductive portion that are relatively bent.
  • a second aspect of the embodiments of the present application provides a battery pack, including: the battery module as described above; and
  • the box is used for accommodating the battery module.
  • a third aspect of the embodiments of the present application provides a device including the above-mentioned battery pack, and the battery pack is used to provide electrical energy.
  • the fourth aspect of the embodiments of the present application provides a failure processing method for processing failed battery cells, and the failure processing method includes:
  • the connecting piece connected with the failed battery unit is electrically connected with the shell of the failed battery unit.
  • the housing includes a housing and a top cover connected to the housing;
  • the failure processing method includes:
  • the connecting piece connected with the failed battery unit is connected with the casing or the top cover of the failed battery unit.
  • the failure processing method before electrically connecting the connecting piece connected with the failed battery cell to the shell of the failed battery cell, the failure processing method further includes:
  • the connecting piece connected with the failed battery unit is bent, and the first connecting portion is formed after bending, and the first connecting portion is used for connecting with the outer shell of the failed battery unit.
  • the connecting piece includes a bending guide
  • the failure processing method further includes:
  • the connecting piece is bent along the bending guide portion to form the first connecting portion and the conductive portion.
  • the connecting piece further includes a fracture guide part and a connecting part
  • the failure processing method further includes:
  • the fracture guide is broken.
  • one of the first connecting portion and the shell of the failed battery unit is provided with a raised portion, and the other is provided with a recessed portion;
  • the failure processing method includes:
  • the protruding portion is provided on the housing, and the recessed portion is a through hole provided on the first connecting portion;
  • the failure processing method includes:
  • the failure processing method before bending the connecting piece connected to the failed battery cell, the failure processing method further includes:
  • connection between the electrode terminal of the failed battery cell and the at least one connecting piece connected to it is disconnected.
  • the failure processing method before disconnecting the connection between the electrode terminal of the failed battery cell and the at least one connecting piece connected thereto, the failure processing method further includes:
  • a spacer is placed between the connecting piece and the outer shell of the non-failed battery unit connected to it.
  • the battery module there is no need to add other components to connect the electrode terminals of the failed battery cell, and only by corresponding operations on the original connection piece of the battery module, thereby reducing the number of components of the battery module and reducing the complexity of the battery module structure , And can ensure the normal use of the battery module.
  • FIG. 1 is a schematic structural diagram of a device provided by this application in a specific embodiment
  • FIG. 2 is a schematic diagram of the structure of the battery pack in FIG. 1 in a specific embodiment
  • Fig. 3 is a top view of the battery module in Fig. 2 in a specific embodiment
  • Figure 4 is a cross-sectional view taken along the line A-A of Figure 3;
  • Figure 5 is a partial enlarged view of part I in Figure 4.
  • Fig. 6 is a partial structural diagram of the battery module in Fig. 2 in the first specific embodiment
  • Fig. 7 is a partial structural diagram of the battery module in Fig. 2 in a second specific embodiment
  • Fig. 8 is a partial structural diagram of the battery module in Fig. 2 in a third specific embodiment
  • Fig. 9 is a partial structural diagram of the battery module in Fig. 2 in a fourth specific embodiment
  • Fig. 10 is a partial structural diagram of the battery module in Fig. 2 in a fifth specific embodiment
  • FIG. 11 is a schematic diagram of the structure of the first connecting piece in FIG. 10;
  • Figure 12 is a cross-sectional view taken along the line B-B in Figure 3;
  • Figure 13 is a partial enlarged view of part II in Figure 12;
  • FIG. 14 is a schematic diagram of the structure of the second connecting piece in FIG. 12;
  • Fig. 15 is a partial structural diagram of the battery module in Fig. 2 in a sixth specific embodiment
  • Figure 16 is a side view of Figure 15;
  • Fig. 17 is a partial structural diagram of the battery module in Fig. 2 in a seventh specific embodiment
  • FIG. 18 is a schematic structural diagram of a wide chisel provided by an embodiment of the application.
  • Figure 19 is a schematic structural diagram of a narrow chisel provided by an embodiment of the application.
  • the embodiments of the present application provide a device, a battery pack, and a battery module that use a battery unit as a power source.
  • the device may be a mobile device such as a vehicle, a ship, a small aircraft, etc.
  • the device includes a power source, and the power source is used to provide the device with Driving power, and the power source can be configured as a battery module that provides electrical energy to the device.
  • the driving force of the device may be all electric energy, or may include electric energy and other energy sources (for example, mechanical energy), and the power source may be a battery module (or battery pack).
  • the device may also be an energy storage device such as a battery cabinet, and the battery cabinet may include a plurality of battery modules (or battery packs), so that the battery cabinet can output electric energy. Therefore, any device that can use the battery unit as a power source falls within the protection scope of the present application.
  • the device D in the embodiment of the present application may be a new energy vehicle.
  • the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or a range-extended vehicle.
  • the vehicle may include a battery pack M and a vehicle body.
  • the battery pack M is disposed on the vehicle body.
  • the vehicle body is also provided with a drive motor.
  • the drive motor is electrically connected to the battery pack M.
  • the battery pack M provides electrical energy to drive the motor.
  • the transmission mechanism is connected with the wheels on the vehicle body to drive the vehicle to travel.
  • the battery pack M may be horizontally arranged at the bottom of the vehicle body.
  • the battery pack M includes a box M1 and the battery module M2 of the present application, wherein the box M1 has a receiving cavity M13, the battery module M2 is received in the receiving cavity M13, and the number of the battery module M2 can be one Or multiple, multiple battery modules M2 are arranged in the accommodating cavity M13.
  • the type of the box M1 is not limited, and can be a frame-shaped box, a disk-shaped box, or a box-shaped box.
  • the box body M1 may include a lower box body M12 that accommodates the battery module M2 and an upper box body M11 that is closed with the lower box body M12.
  • the thickness direction X, the length direction Y, and the height direction Z mentioned in this article are defined on the basis of the battery cell, where the thickness direction X refers to the thickness direction of the battery cell, and the height direction Z refers to The extending direction of the electrode terminals in the battery cell, the length direction Y is the direction perpendicular to the thickness direction X and the height direction Z (the three are approximately perpendicular), that is, the length direction Y is perpendicular to the plane formed by the thickness direction X and the height direction Z.
  • the battery module includes a plurality of battery cells and a frame structure for fixing the battery cells, wherein the plurality of battery cells can be stacked on each other along the thickness direction X.
  • the frame structure may include end plates. The end plates are located at both ends of the battery cell along the thickness direction X to limit the movement of the battery cell along the thickness direction X.
  • the frame structure may further include Side plates, the side plates are located on both sides of the battery unit along the length direction Y, and the side plates are connected with the end plates to form a frame structure; in another embodiment, the frame structure may not be provided with side plates, and the battery cells are stacked Afterwards, the end plate and the cable tie form the above-mentioned frame structure by connecting the first cable tie or connecting the first cable tie and the second cable tie.
  • the battery pack may include a box body and a plurality of battery cells, wherein the box body has an accommodating cavity, and the plurality of battery cells are located in the accommodating cavity and can be connected to the box body, specifically, The battery cell can be adhered to the inner wall of the box by an adhesive.
  • the electrode terminal includes a first electrode terminal and a second electrode terminal with opposite polarities.
  • a battery module or battery pack a plurality of battery cells are electrically connected to form a circuit of the battery module or battery pack.
  • the series connection is adopted, and the battery cells can be connected by connecting pieces. For example, when the battery cells are connected in series, the first electrode terminal of one battery cell and the second electrode terminal of another battery cell are connected through the connecting piece.
  • each battery cell is continuously charged and discharged, and the battery cell has a problem (such as abnormal capacity attenuation), which causes the battery cell to fail to work normally. Therefore, in this article, there will be a faulty battery cell that cannot work normally. It is defined as a failed battery unit, and a battery unit that can work normally without failure is defined as a non-failed battery unit.
  • a failed battery unit and a battery unit that can work normally without failure is defined as a non-failed battery unit.
  • the present application solves the technical problem by removing the failed battery cell from the circuit of the battery module and forming the circuit again.
  • the battery unit mentioned in the embodiment of the present application may include the following two situations.
  • the first one when the battery module is connected in series by multiple battery cells, the battery unit in the embodiment of the present application may be a single The battery cell, correspondingly, the failed battery cell may be one of the failed battery cells.
  • the second type when the battery module includes at least one parallel group formed by two or more battery cells in parallel, the battery unit in the embodiment of the present application may be a parallel group, and accordingly, the failed battery unit is one of the parallel groups.
  • the parallel group includes at least one failed battery cell.
  • the battery unit involved in the embodiment of the present application may be a soft pack battery, or may be a square battery or a cylindrical battery.
  • the battery module M2 includes a first connecting piece 2A.
  • the first connecting piece 2A includes a first connecting portion 23 and a conductive portion 26 that are connected to each other, wherein the first connecting portion 23 It may be directly connected to the conductive portion 26 or indirectly connected through other components, as long as the connection between the two can be achieved.
  • the multiple battery cells 1 connected in series may include a failed battery cell 13 and at least one non-failed battery cell 14 adjacent to the failed battery cell 13, where "adjacent" includes: The failed battery unit 14 and the failed battery unit 13 are physically adjacent, that is, there are no other battery units between them (the two can have structures such as heat insulation pads, cushion pads, etc.), and the non-failed battery unit 14 and the failed battery unit 13 Electrically adjacent, electrical adjacent refers to: along the direction of current flow, the battery cells connected to the same connecting piece are electrically adjacent, and when the battery cells are electrically adjacent, between the two battery cells connected to the same connecting piece There may also be other battery cells, that is, the connecting piece straddles at least one battery cell. In this case, two electrically adjacent battery cells do not meet the requirement of being physically adjacent.
  • the first connecting portion 23 of the above-mentioned first connecting piece 2A is used for electrical connection with the shell 12 of the failed battery unit 13, and the conductive portion 26 is used for connecting with at least one non-failed battery unit 14 (the non-failed battery unit 14 and the failed battery unit 13 Adjacent) electrical connection.
  • the first connecting piece 2A When the first connecting piece 2A is electrically connected to the housing 12 of the failed battery unit 13, the failed battery unit 13 can be short-circuited through the first connecting piece 2A, so that the battery module M2 can resume operation.
  • the repair process needs to return the failed battery pack (battery pack containing the failed battery unit) to the factory for matching the corresponding battery unit or battery module, or send the corresponding battery unit model or battery module model to the manufacturer . This process requires a lot of time to wait, which is not conducive to the optimization of resources.
  • the above-mentioned processing method conforms to the processing method in most fields, that is, replacing the failed component or structure, so as to restore the overall structure to work. Therefore, at maintenance points in most areas, samples of components that are prone to failure will be prepared, and simple related testing equipment will be prepared. If it is a failure of a component that is not prone to failure, or a component that is not easy to store and place, the repair point needs to call the component from the manufacturer to be able to replace and repair the component. If you encounter more complicated repair methods, you also need to request technical support from the corresponding technicians from the manufacturer.
  • battery cells account for a large proportion of the failed components of battery packs, but there are many difficulties in preparing battery cells.
  • battery cells are not parts that can be stored for a long time. The reasons are as follows: 1. There are many types of battery cells. There are differences in size, capacity, chemical system, structure, etc.; 2. The battery cell will self-discharge when placed for a long time. The longer the time, the capacity balance between the positive and negative terminals of the battery cell will be gradually broken. And deepen; 3. When placed for a long time, the decomposition reaction of the electrolyte will also accumulate some irreversible capacity loss. In addition, the storage conditions of the battery cells are also relatively high. If you do not pay attention to environmental factors, the self-discharge of the battery cells may also be accelerated.
  • a failed battery module refers to a battery module containing a failed battery cell.
  • This method can achieve faster maintenance.
  • a battery module includes multiple battery cells. In rare cases, all battery cells in a battery module fail; under normal circumstances, only a small number of battery cells in a battery module fail (for example, only one battery cell fails). If the battery unit fails), the battery module cannot work normally. At this time, replacing the entire battery module causes a waste of resources.
  • the replacement of a new battery module will also have a greater problem in battery balancing.
  • the capacity of the battery pack will be attenuated, and the capacity of the newly replaced battery module and the old battery module will have inconsistencies.
  • the capacity of the battery pack depends on the battery module with the lowest capacity, so the newly replaced battery module cannot play a very good role in the structure; Fully charged and discharged will speed up the end of the service life of the old battery module; in addition, the internal resistance of the old battery module is greater than that of the newly replaced battery module, and the old battery module and the newly replaced battery module flow the same current
  • the old battery module with larger internal resistance generates more heat, that is, the temperature of the battery cell in the old battery module is higher, and the battery cell deterioration speed is accelerated, which causes the internal resistance of the old battery module to further increase. Big. Therefore, the internal resistance and temperature rise of the battery unit form a pair of negative feedback, which accelerates the deterioration of the battery unit with
  • the short circuit is mainly used to realize the fuse blowing through the short circuit, or the load of other test equipment.
  • no one will add conductive parts to the corresponding structure to short-circuit the failed battery cells. From simple recognition, it will be considered that there is a big problem and cannot achieve the goal.
  • the entire battery module one of the batteries The short circuit of the unit will not cause a large change in capacity, thus ensuring the normal use of the battery pack.
  • the positive terminal 111 and the negative terminal 112 of the failed battery unit 13 are connected to the housing through the first connecting piece 2A, thereby short-circuiting the failed battery unit 13 so that the failed battery unit 13 is no longer Participate in the charging and discharging process of the battery module, that is, the failed battery unit 13 does not affect the circuit of the battery module.
  • the battery module when there are one or more failed battery cells 13 in the working process of the battery module, it is only necessary to connect the first connecting piece 2A connected with each failed battery cell 13 to the shell of the failed battery cell 13, without replacing the whole
  • the battery module when the battery module is applied to a vehicle, enables the vehicle to be directly repaired in a 4S shop without the need to return the entire vehicle to the factory or replace a new battery pack, thereby improving the maintenance efficiency of the battery module and simplifying the maintenance process and Maintenance costs.
  • the processing method has the advantages of convenient operation and high efficiency.
  • the battery module there is no need to add other components to connect to realize the short-circuit of the failed battery cell 13, only by performing corresponding operations on the original connection piece of the battery module, thereby reducing the number of components of the battery module and reducing the structure of the battery module.
  • the complexity of the battery module can make the battery module have a higher energy density.
  • the housing 12 of the failed battery unit 13 includes a housing 122 and a top cover 121 connected to the housing 122, and the top cover 121 is connected to an opening of the housing 122, thereby forming a housing for accommodating The electrode assembly of the battery cell and the inner cavity of the electrolyte, and the first electrode terminal 111 and the second electrode terminal 112 are disposed on the top cover 121.
  • the first connecting portion of the first connecting piece 2A is used for electrical connection with the housing 122 or the top cover 121 of the failed battery unit 13, so that the short-circuit of the failed battery unit 13 can be realized through the first connecting piece 2A, so that The battery module resumes operation.
  • first connecting piece 2A when the first connecting piece 2A is provided with two or more first connecting parts 23, a part of the two or more first connecting parts 23 may be used to connect the top cover of the failed battery unit 13 121, the other part can be used to connect the housing 122 of the failed battery unit 13.
  • the first connecting portion of the first connecting piece can be bent toward the shell or the top cover of the failed battery cell relative to the conductive portion, thereby facilitating the realization of the first The connection between the connection part and the housing or top cover of the failed battery unit.
  • first connecting piece when the first connecting piece is provided with two or more first connecting parts, a part of the two or more first connecting parts is bent toward the top cover of the failed battery cell, and the other part may be bent toward the top cover of the failed battery cell.
  • the shell of the failed battery unit is bent.
  • the first connecting portion 23 of the first connecting piece 2A is bent relative to the conductive portion 26 toward the top cover 121 of the failed battery cell 13, so that the first connecting portion 23 It is used for electrical connection with the top cover 121 of the failed battery unit 13.
  • the conductive portion 26 of the first connecting piece 2A can be used to electrically connect to the electrode terminal 11 of the non-failed battery cell 14 adjacent to the failed battery cell 13.
  • the connection between the first connecting piece 2A and the top cover 121 can be facilitated. And can improve the connection reliability of the two, thereby improving the working reliability of the battery module.
  • connection between the first connection portion 23 and the housing can also be realized by connecting the first connection portion 23 with the housing 122 of the failed battery unit 13. Specifically, as shown in FIG. 6, along the length direction Y of the battery unit 1, the first connection portion 23 is located at the end of the failed battery unit 13, and the first connection portion 23 is bent toward the housing 122 of the failed battery unit 13. Folded, so that the first connecting portion 23 is electrically connected to the housing 122 of the failed battery unit 13.
  • the first connecting piece 2A includes a first connecting portion 23 and a conductive portion 26.
  • the first connecting portion 23 is bent relative to the conductive portion 26 along the height direction Z of the battery unit, and is bent. After folding, the first connecting portion 23 is located at the end of the casing 122 along the length direction Y of the battery unit, and is used to connect with the casing 122.
  • the conductive portion 26 is connected to the electrode terminals of the non-failed battery unit 14.
  • the housing 122 of the failed battery unit 13 After the first connecting portion 23 of the first connecting piece 2A is electrically connected to the housing 122 of the failed battery unit 13, the current of a non-failed battery unit 14 flows to the failed battery unit through the conductive portion 26 and the first connection portion 23 The housing 122 of 13 flows to another non-failure battery unit 14 through the first connecting portion 23 and the conductive portion 26 of the other first connecting piece 2A, so that the function of the battery module is restored.
  • one of the first connecting portion of the first connecting piece and the shell of the failed battery unit is provided with a raised portion and the other is provided with a recessed portion, and the raised portion is connected to the recessed portion
  • the connection between the first connecting portion and the outer shell of the failed battery unit is realized, and one of the recessed portion and the raised portion can be arranged on the casing or the top cover of the failed battery unit.
  • the top cover 121 of the failed battery unit 13 is provided with the aforementioned protrusion 121a, and the first connecting portion 23 of the first connecting piece 2A is provided with the aforementioned recess 231.
  • the concave portion 231 can be matched with the convex portion 121a, so as to realize the connection between the first connecting piece 2A and the top cover 121.
  • the connecting piece 2 connected to the electrode terminal 11 of the failed battery cell 13 and the top cover 121.
  • the arrangement of the protrusion 121a can facilitate the realization of the first
  • the connection between the connecting piece 2A and the top cover 121 ensures the connection strength between the first connecting piece 2A and the top cover 121, and can also accurately realize the connection between the first connecting piece 2A and the top cover 121.
  • the first connecting portion 23 of the first connecting piece 2A is bent in a direction toward the top cover 121 relative to the conductive portion 26, that is, along the height direction Z of the battery cell.
  • the distance between the first connecting portion 23 and the top cover 121 is smaller. Since there is a certain height difference between the conductive portion 26 of the first connecting piece 2A and the top cover 121, when the first connecting portion 23 is bent in the direction of the top cover 121, the first connecting portion 23 and the top cover 121 can be reduced.
  • the height difference between the top cover 121 is convenient to realize the connection between the two.
  • a bending guide portion (for example, a crease) may be provided between the two, and when the failure treatment is performed, it only needs to be guided along the bend.
  • the first connecting portion 23 and the conductive portion 26 can be formed by bending the first connecting portion 23 and the conductive portion 26, which helps to realize the relative bending between the first connecting portion 23 and the conductive portion 26, thereby facilitating the realization of the first connecting portion 23 and the top cover 121 Accurate connection between.
  • one of the first connecting portion and the casing may be provided with the above-mentioned protrusion, and the other may be provided with the above-mentioned protrusion. Depression.
  • the raised portion 121a is disposed on the top cover 121 of the failed battery unit 13, along the height direction Z of the battery unit 1, and the raised portion 121 is along the distance away from the top cover 12.
  • Directional protrusion that is, the protrusion 121 protrudes upward and is close to the first connecting piece 2A.
  • the first connecting portion 23 of the first connecting piece 2A is provided with a through hole 231a, and the through hole 231a is the aforementioned recessed portion 231.
  • at least part of the raised portion 121a is located in the corresponding through hole 231a and communicates with The holes 231a cooperate to realize the connection between the top cover 121 and the first connecting piece 2A.
  • the through hole 231a can also play a role of pre-positioning the top cover 121 and the first connecting piece 2A, thereby facilitating quick installation of the two.
  • the above-mentioned recessed portion 231 does not have to be a hole-shaped structure (along the height direction Z, the recessed portion 231 penetrates the first connecting portion 23), but can also be a groove structure, that is, along the height direction Z, the recessed portion 231 may not penetrate the first connecting portion 23.
  • the protrusion 121a may have a cylindrical structure, or a structure of other shapes such as a rectangular parallelepiped or a cone, as long as the protrusion 121a can be matched with the through hole 231a.
  • the mating manner of the protrusion 121a and the through hole 231a may specifically be: the protrusion 121a and the side wall of the through hole 231a are interference fit, so as to realize the connection between the two; or, the protrusion The portion 121a may be provided with a card slot.
  • the protrusion 121a passes through the through hole 231a, a part of the first connecting portion 23 is located in the card slot, thereby restricting the protrusion 121a from connecting with the first slot through the side wall of the card slot.
  • the relative movement of the portion 23 along the height direction Z of the battery unit realizes the connection between the protrusion 121a and the through hole 231a; or, after the protrusion 121a passes through the through hole 231a, it protrudes from the protrusion 121a.
  • the portion of the first connecting portion 23 is pressed to deform it, and abuts against the upper end surface of the first connecting portion 23, thereby realizing the connection between the protruding portion 121a and the through hole 231a.
  • the first connecting portion 23 is in direct contact with the top cover 121 (through direct contact with the protrusion 121a).
  • the protrusion 121a and the sidewall of the through hole 231a can be welded, or connected by conductive glue, or connected by pouring molten tin, aluminum, or other metals.
  • the solder When the two are soldered, the solder is located in the preset gap between the protrusion 121a and the through hole 231a, thereby connecting the two, and the two can be electrically conductive; when the two are connected by conductive glue, the conductive glue is located Within the preset gap between the protrusion 121 and the through hole 231a, so as to connect the two and conduct electricity between the two.
  • the molten metal When the two are connected by molten metal, the molten metal is located at the protrusion 121a after cooling. In the predetermined gap between the through hole 231a, the two are connected, and the two can be electrically conductive.
  • the bottom surface of the first connecting part 23 is connected to the top cover
  • the top surfaces of 121 may or may not be in contact with each other.
  • they can be connected by conductive materials such as conductive glue, which can increase the connection area between the first connecting piece 2A and the top cover 112. Thereby improving the connection strength of the two and increasing the flow area.
  • the first connecting portion 23 and the outer shell 12 of the failed battery unit 13 may also be connected in the following manner.
  • the first connecting portion 23 of the first connecting piece 2A is riveted to the outer shell 12 of the failed battery unit 13. Specifically, the first connecting portion 23 is riveted to the failed battery unit 13 The top cover 121 is riveted.
  • the first connecting piece 2A includes a conductive portion 26 and a first connecting portion 23, and the first connecting portion 23 may be a structure formed by bending the first connecting piece 2A.
  • 23 is used to be electrically connected to the housing 12 (for example, the top cover 121 or the housing 122) of the failed battery cell 13, and the conductive portion 26 is electrically connected to the non-failed battery cell 14 adjacent to the failed battery cell 13 (the conductive portion 26 Specifically, it can be electrically connected to the electrode terminal 11 of the non-failed battery cell 14).
  • the first connecting portion 23 and the outer shell 12 of the failed battery unit 13 may also be riveted through the connecting member 27, thereby improving the reliability of the connection between the first connecting portion 23 and the outer shell 12, thereby improving the battery module The stability of the work.
  • the connecting member 27 may be a rivet, and the first connecting portion 23 and the shell 12 of the failed battery unit 13 may be connected by a plurality of rivets.
  • the riveting method is used to reduce It has the advantages of simple operation, low maintenance cost and relatively low requirements for maintenance personnel.
  • the first connecting portion 23 of the first connecting piece 2A is welded to the outer shell 12 of the failed battery cell 13, specifically, the first connecting portion 23 is welded to the failed battery cell 13
  • the top cover 121 of 13 is welded.
  • the first connecting piece 2A includes a conductive portion 26 and a first connecting portion 23, and the first connecting portion 23 may be a structure formed by bending the first connecting piece 2A.
  • 23 is used to be electrically connected to the housing 12 (for example, the top cover 121 or the housing 122) of the failed battery cell 13, and the conductive portion 26 is electrically connected to the non-failed battery cell 14 adjacent to the failed battery cell 13 (the conductive portion 26 Specifically, it can be electrically connected to the electrode terminal 11 of the non-failed battery cell 14).
  • the first connecting portion 23 and the shell 12 of the failed battery unit 13 can also be welded.
  • the first connecting piece 2A can be connected to the shell 12 of the failed battery unit 13 through a high-temperature welding joint. Pressure welding.
  • the reliability of the mechanical connection and the electrical connection of the two is high, thereby improving the working reliability of the battery module.
  • no metal shavings are generated during the welding of the first connecting portion 23 and the housing 12, thereby avoiding the risk that metal shavings generated during maintenance enter the battery module and cause a short circuit.
  • the first connecting portion 23 and the casing 12 are welded, it is possible to avoid opening a hole between the first connecting portion 23 and the casing 12, thereby avoiding passivation of the failed battery cell 13 or leakage of electrolyte from the opening.
  • first connecting portion 23 of the first connecting piece 2A and the outer shell 12 of the failed battery cell 13 may be connected by welding and riveting simultaneously, thereby further improving the reliability of the connection between the two.
  • the first connecting piece 21A may further include a second connecting portion 24, wherein the second connecting portion 24 is used to electrically connect to the electrode terminal 11 of the failed battery cell 13 .
  • the second connecting portion 24 is provided with a via hole 241, and the electrode terminal 11 can be connected to the connecting piece after passing through the via hole 241, and the two can be connected by welding.
  • the connecting piece in the battery module needs to be electrically connected to the electrode terminals of the battery module to be connected in series. Therefore, when the battery module includes a failed battery cell 13 and needs to be repaired, only the first connection piece 2A connected to the failed battery unit 13 needs to be processed so that the first connection piece 2A is connected to the shell of the failed battery unit 13 12, the electrical connection is sufficient. After processing, the first connecting piece 2A can still be connected to the electrode terminal 11 of the failed battery cell 13, and connected to the electrode terminal 11 of the non-failed battery cell 14 adjacent to the failed battery cell 13, that is, the The first connecting piece 2A also includes a second connecting portion 24 electrically connected to the electrode terminal 11 of the failed battery cell 13.
  • the connecting piece of the battery module itself has high ductility, so it can bend the first connecting piece 2A under the action of its own ductility, so that the first connection can be easily realized.
  • the thinner the thickness of the connecting piece the greater its ductility, which can facilitate the bending of the first connecting piece 2A.
  • the connecting piece may specifically be a strip-shaped structure, or may also be a structure of other shapes.
  • the connecting piece connected to the failed battery cell 13 maintains a complete structure, and there is no need to cut and remove the connecting piece, so that metal particles can be avoided during the cutting and removal process, thereby preventing metal particles from entering the battery.
  • the module caused a short circuit.
  • the first connecting piece 2A includes a first connecting portion 23 and a conductive portion 26, and does not include the above-mentioned second connecting portion connected to the electrode terminal 11 of the failed battery cell 13 .
  • the first connecting piece 2A when the thickness of the connecting piece of the battery module is large and the ductility is small, it is not easy to bend the first connecting piece 2A only by the ductility of the connecting piece itself, and the first connecting piece 2A can be bent during the bending process.
  • the connection between 2A and the electrode terminal 11 has a relatively large pulling force, and under this pulling force, there is a risk that the connection between the first connecting piece 2A and the electrode terminal 11 of the non-failed battery cell 14 may fail.
  • the second connection part connected to the electrode terminal 11 of the failed battery cell 13 can be removed (for example, cut off).
  • the first connecting piece 2A with the second connecting portion removed is easier to bend, and the tension between the conductive portion 26 and the electrode terminal 11 of the non-failed battery unit 14 during the bending process is small, which can be Improve connection reliability.
  • the second connection part is removed, the weight of the battery module can be reduced, and the energy density can be improved.
  • the first connecting portion 23 and the conductive portion 26 in the first connecting piece 2A are directly connected, of course, the two can also be indirectly connected.
  • the conductive portion 26 and the first connecting portion 23 are indirectly connected through the second connecting portion 24, wherein the second connecting portion 24 may be The part where the electrode terminals of the battery cell 13 are connected.
  • the above-mentioned first connecting piece 2A includes a first part 21A and a second part 22A, wherein the first part 21A is used to connect to the housing 12 of the failed battery cell 13, and the second part 22A is used to be adjacent to the failed battery cell 13.
  • the battery cells (which may be failed battery cells 13 or non-failed battery cells 14) are connected to each other.
  • the first part 21A and the second part 22A of the first connecting piece 2A have the same structure (the same structure means that both include the first connecting portion 23 and the conductive portion 26, but the structure of the first connecting portion 23 and/or the conductive portion 26 of the two may be different); when the battery cell adjacent to the failed battery cell 13 is the non-failed battery cell 14, the first The first part 21A and the second part 22A of the connecting piece 2A have different structures.
  • the following description takes the battery cell adjacent to the failed battery cell 13 as the non-failed battery cell 14 (that is, the first part 21A and the second part 22A have different structures), that is, the first part 21A of the first connecting piece 2A is connected to the failed battery.
  • the housing 12 of the cell 13 and the second part 22A are connected to the electrode terminal 11 of the non-failed battery cell 14.
  • the first connecting piece 2A further includes a connecting portion 251, which is located between the first connecting portion 23 and the second portion 22A and is connected to both.
  • a connecting portion 251 which is located between the first connecting portion 23 and the second portion 22A and is connected to both.
  • the first portion 21A includes a first connecting portion 23, and the first portion 21A may also include a second connecting portion 24 (or may not include the second connecting portion 24) connected to the electrode terminal of the failed battery cell.
  • the first connecting portion 23 and the second portion 22A are not connected, and along the thickness direction X of the battery cell, there is a first predetermined connection between the first connecting portion 23 and the second portion 22A.
  • the space 232 is provided so that the second portion 22A does not affect the connection between the first connecting portion 23 and the top cover of the failed battery unit.
  • the connection between the first connecting portion 23 and the top cover can be facilitated, and the first connecting portion 23 is connected to the top cover.
  • the process of connecting the top cover it will not be affected by the second part 22A, and the reliability of the connection between the top cover and the first part 21A is improved.
  • the connecting portion 251 has an arc-shaped cross section along the height direction Z of the battery cell, and the connecting portion 251 can be deformed.
  • the connecting portion 251 can buffer The impact load received by the first connecting piece 2A improves the structural strength of the first connecting piece 2A and the connection reliability between the first connecting piece 2A and the electrode terminal and the top cover of the failed battery cell.
  • there is an expansion force during the operation of the battery cell and the expansion force along the thickness direction X of the battery cell is relatively large.
  • the connecting portion 251 can be deformed along the thickness direction X of the battery cell, thereby buffering the first connecting piece 2A from receiving The expansion force.
  • the first part 21A of the first connecting piece 2A is used to connect the shell of the failed battery cell
  • the second part 22A is used to connect the non-failed battery cell.
  • the part 21A includes a first connecting part 23 and a conductive part 26 that are relatively bent.
  • the first connecting part 23 is used to connect with the housing.
  • the second part 22A is a flat structure and is provided with a through hole 231a and a through hole 241 Wherein, when the battery cell connected to the second part 22A fails, the through hole 231a is used to connect to the top cover of the failed battery cell, and the through hole 241 is connected to the electrode terminal of the battery cell.
  • the first part 21A and the second part 22A of the first connecting piece 2A when the first part 21A and the second part 22A of the first connecting piece 2A are both used to connect failed battery cells, the first part 21A and the second part 22A have the same structure (the two The structures are both the structure of the first connecting portion 21A shown in FIG. 12), both of which include a first connecting portion 23 and a conductive portion 26 that are relatively bent, wherein the first connecting portion 23 of the two is used to connect to a failed battery
  • the shells of the units are connected, and the conductive parts 26 of the two are connected to each other, and are used to connect to the non-failed battery unit.
  • the failure of the battery module includes one or more failed battery cells, and also includes non-failed battery cells.
  • the connecting piece connected to the failed battery cell It needs to be connected to the shell of the failed battery unit, and the connecting piece connected to the failed battery unit is the first connecting piece 2A shown in FIG. 12; in the non-failed battery unit, the connection connected to the non-failed battery unit The sheet cannot be connected to the shell of each battery cell, and the connecting sheet connected to the non-failed battery cell is the second connecting sheet 2B shown in FIGS. 13-17, that is, when the battery module has failed battery cells, the battery module includes The above-mentioned first connecting piece and second connecting piece 2B. When there is no failed battery unit in the battery module, the battery module only includes the second connecting piece 2B.
  • the specific structure of the second connecting piece 2B is as described in the following embodiments.
  • the second connecting piece 2B of the battery module for connecting with the non-failed battery cell 14 includes a third part 21B and a fourth part 22B.
  • the third part 21B and the fourth part 22B are respectively connected to two non-failure battery cells, and the third part 21B and the fourth part 22B
  • the four parts 22B may include a bending guide portion for guiding the second connecting piece 2B to bend, and forming a first connecting portion 23 and a conductive portion 26 that are relatively bent.
  • the battery module includes a plurality of non-failed battery cells 14, and the plurality of non-failed battery cells 14 are connected in series via the second connecting piece 2B.
  • the second connecting piece 2B includes a third part 21B and a fourth part 22B, wherein the fourth part 22B is electrically connected to the electrode terminal 11 of the non-failure battery cell 14.
  • the third portion 21B is bent along the bending guide portion.
  • the second connecting piece 2B when the battery unit connected to the second connecting piece 2B fails, the second connecting piece 2B can be connected to the outer shell of the failed battery unit. Specifically, as shown in FIG. 13, during the failure processing, the third portion 21B of the second connecting piece 2B can be bent toward the housing 122 so as to be connected to the housing 122 of the failed battery unit, or, The fourth part 22B of the two connecting pieces 2B can be bent toward the top cover 121 so as to be connected to the top cover 121 of the failed battery unit.
  • the second connecting piece 2B in this embodiment may include two third parts 21B, and two The third portion 21B respectively corresponds to the casing 122 of the two battery cells connected in series by the second connecting piece 2B.
  • the third portion 21B and the fourth portion 22B of the second connecting piece 2B are respectively connected to the first electrode terminal 111 of the adjacent non-failed battery cell 14. And the second electrode terminal 112.
  • the third part 21B and/or the fourth part 22B can be bent toward the top cover 121 to achieve electrical connection with the top cover 121.
  • the third part and the fourth part of the second connecting piece 2B are both provided with through holes 231a.
  • the top of the non-failure battery unit 14 The cover 121 is provided with a raised portion 121a.
  • the through hole 231a can be connected to the protrusion 121a.
  • the through hole 231a has a first axis (the through holes 231a are symmetrically distributed with respect to the first axis), and the protrusions
  • the portion 121a has a second axis (the protrusions 121a are symmetrically distributed with respect to the second axis), and the line connecting the first axis and the second axis is along the length direction Y, that is, the through hole 231a and the protrusion 121a is arranged along the length direction Y and along the height direction Z of the battery unit.
  • the projection of the through hole 231a and the projection of the protrusion 121a may partially overlap, or the two may not overlap, as long as the third portion 21B is along the When the height direction Z of the battery unit is bent to form the first connecting portion and the conductive portion, at least part of the protrusion 121a can pass through the through hole 231a and be connected to the side wall of the through hole 231a.
  • each battery unit in the battery module may be provided with the above-mentioned protrusion, and each connecting piece may be provided with the above-mentioned through hole.
  • the second connecting piece 2B may further include an intermediate part 25 connecting the third part 21B and the fourth part 22B.
  • the intermediate member 25 may include a connection part 251 and a fracture guide part 252, wherein, along the thickness direction X of the battery cell, the connection between the fracture guide part 252 and the third part 21B, the fracture guide part 252 and the third part 21B At least one of the connection between the four parts 22B and the fracture guide 252 can be disconnected.
  • the fracture guide portion 252 may be provided with a weak portion, so that the fracture guide portion 252 can be broken along the weak portion.
  • the fracture guide portion 252 when the fracture guide portion 252 is broken, there are the following situations: first, the fracture guide portion 252 is disconnected from the connection position of the third portion 21B, and is not disconnected from the connection position of the fourth portion 22B; In the second type, the fracture guide 252 is disconnected from the connection position of the fourth part 22B, and is not disconnected from the connection position of the third part 21B; in the third type, the fracture guide 252 is disconnected from the third part 21B, and The connection of the fourth part 22B is also disconnected.
  • the breaking guide 252 itself is disconnected, and the breaking guide 252 is disconnected.
  • two disconnected parts are formed, and the two parts are respectively connected to the third part 21B and the fourth part 22B.
  • it can also be any combination of the above four situations, and the application does not limit the specific location of the fracture.
  • the structure of the second connecting piece 2B needs to be changed to the structure of the above-mentioned first connecting piece in order to short-circuit the failed battery cell.
  • the second connecting piece 2B when the connection between the fracture guide portion 252 and the third portion 21B and/or the fourth portion 22B is disconnected, it is convenient to realize that the third portion 21B is downward along the height direction Z of the battery unit. Bending, thereby facilitating the connection between the first connecting piece and the top cover.
  • the fracture guide portion 252 when the battery cell connected to the second connecting piece 2B has not failed, the fracture guide portion 252 can connect the third portion 21B and the fourth portion 22B along the thickness direction X, thereby improving the The structural strength of the second connecting piece 2B can increase the flow area of the second connecting piece 2B.
  • the fracture guide portion 252 may include a plurality of bending structures 252a protruding along the height direction Z of the battery cell.
  • the bending structures 252a may protrude upward and each bend
  • the structures 252a are arranged at intervals along the length direction Y, there is a second predetermined space 252b between adjacent bending structures 252a, and each bending structure 252a can be deformed.
  • the cross section of the bending structure 252a along the height direction Z may be arc-shaped.
  • the fracture guide portion 252 When vibration occurs during the operation of the battery module, the fracture guide portion 252 can be deformed so as to buffer the impact load received by the second connecting piece 2B. In addition, when the battery module swells during operation, the second connecting piece 2B is affected by the expansion force. At this time, the deformation of the fracture guide portion 252 can buffer the expansion force received by the second connecting piece 2B, thereby reducing the risk of the second connecting piece 2B being disconnected from the electrode terminal.
  • the second predetermined space 252b between the adjacent bending structures 252a makes the bending structure 252a more easily deformable, and it is more convenient to disconnect the fracture component 252 from the third part 21B and/or The connection between the second part 22B, thereby improving the efficiency of failure processing.
  • the second preset space 252b between the adjacent bending structures 252a can also reduce the weight of the second connecting piece 2B, thereby increasing the energy density of the battery module.
  • the connecting portion 251 connecting the third portion 21B and the fourth portion 22B has an arc-shaped cross section along the height direction Z, and the connecting portion 252 can be deformed, thereby Buffer the force between the third part 21B and the fourth part 22B.
  • the second connecting piece 2B of the battery module has a larger dimension along the length direction Y than the connecting piece only used for connecting electrode terminals in the prior art, so that the second connecting piece 2B has a larger size
  • the flow area is larger.
  • the material of the second connecting piece 2B may be aluminum, which has low hardness and is easy to deform.
  • each connecting piece of the battery module may be a common plate structure on the market, that is, each connecting piece may not be provided with a bending guide portion, a fracture guide portion, etc., and when the battery module fails At this time, the connecting piece connected to the failed battery cell is replaced with a second connecting piece provided with features such as a bending guide portion and a fracture guide portion (the structure of the second connecting piece is as described in any of the above embodiments), specifically The alternative is: remove the connecting piece connected to the failed battery cell from the battery module, connect the second connecting piece to the electrode terminal of the failed battery cell, and then perform operations such as bending and breaking the second connecting piece to make It forms the first connecting piece, and connects the first connecting piece with the outer shell of the failed battery unit to realize the failure treatment of the failed battery unit and restore the battery module to work.
  • the embodiment of the present application also provides a failure processing method for processing the failed battery unit 13, wherein the failure processing method specifically includes the following steps:
  • S3 Electrically connect the connecting piece 2 connected to the failed battery unit 13 with the casing 12 of the failed battery unit 13.
  • the positive terminal 111 and the negative terminal 112 of the failed battery cell 13 are connected to the housing 12 through the first connecting piece 2A, so that the failed battery cell 13 is short-circuited, so that the failed battery cell 13 is not Participate in the charging and discharging process of the battery module again, that is, the failed battery unit 13 does not affect the circuit of the battery module. Therefore, when there are one or more failed battery cells 13 in the working process of the battery module, it is only necessary to connect the first connecting piece 2A connected with each failed battery cell 13 to the outer shell 12 of the failed battery cell 13, and there is no need to replace it.
  • the entire battery module when the battery module is applied to a vehicle, enables the vehicle to be directly repaired in a 4S shop, without the need to return the vehicle to the factory for processing, or to replace a new battery pack, thereby improving the maintenance efficiency of the battery module and simplifying the maintenance process And maintenance costs.
  • only a small amount of battery cells (battery cells of the failed battery cell 13) in the battery module do not participate in the formation of the circuit, nor will it cause a significant reduction in the battery capacity of the battery module, so that The battery module and battery pack can work normally.
  • the housing 12 of the battery unit includes a housing 122 and a top cover 121 connected to the housing 122.
  • the foregoing step S3 may specifically include:
  • the connecting piece 2 before the connecting piece 2 is connected to the top cover 121 or the housing 122 of the failed battery unit 13, the connecting piece 2 may specifically be the second connecting piece 2B described in the above embodiments, and the connecting piece 2 After the sheet 2 is connected to the top cover 121 or the housing 122 of the failed battery unit 13, the connecting sheet 2 may specifically be the first connecting sheet 2A described in the above embodiments.
  • the failure processing method may further include:
  • the specific structure of the first connecting portion 23 formed after the connecting piece 2 is bent is as described in the above embodiments.
  • the connecting portion 23 only needs to be connected to the housing 12 of the failed battery unit 13. Therefore, the processing flow of the failed battery unit 13 is simple, the maintenance cost is low, and the working efficiency of the battery module M2 can be improved.
  • a bending guide (such as a crease) can be provided at a preset position of the connecting piece 2. The position of the mark corresponds. After pressure is applied through the wide chisel 4, the connecting piece 2 can be bent along the fold.
  • the connecting piece 2 connected to the failed battery cell 13 may specifically be the second connecting piece 2B described in the above embodiments, and the second connecting piece 2B includes a bending guide. Therefore, the above step S2 may specifically include:
  • the second connecting piece 2B includes a third part 21B and a fourth part 22B, wherein the third part 21B is connected to the failed battery cell 13, and the fourth part 22B is connected to the non-failed battery cell 14, or the The four part 22B is connected to another failed battery cell 13.
  • the above step S22 may specifically include:
  • S221 Bend the third portion 21B along the bending guide portion provided on the third portion 21B, and form a first portion 21A including a first connecting portion 23 and a second connecting portion 24 after bending, wherein the first portion 21A It may be the structure described in the above embodiments.
  • the connecting piece 2 connected to the failed battery cell 13 may specifically be the second connecting piece 2B described in the above embodiments, and the second connecting piece 2B may also include a third connecting piece 2B.
  • the middle part 25 of the part 21B and the fourth part 22B, and the middle part 25 includes the fracture guide part 252 and the connecting part 251; based on this, before the above step S22, the failure processing method may further include:
  • the connection between the fracture guide 252 and the third part 21B, the connection between the fracture guide 252 and the fourth part 22B, and the fracture guide 252 can be used. At least one of them is disconnected.
  • the fracture guide portion 252 can also be provided with a weak structure, and at this time, it can be broken along the weak structure.
  • the third portion 21B is easily deformed. Therefore, the third portion 21B can be easily bent , Forming the first connecting portion 23 and the second connecting portion 24 that are relatively bent, thereby facilitating the connection of the first connecting portion 23 with the housing 12 of the failed battery unit 13 to complete the processing of the failed battery unit 13.
  • the structure after the failure treatment does not increase the size of the battery module M in the thickness direction X, the length direction Y, and the height direction Z, thereby avoiding interference with other components of the battery module M2.
  • the structure of the second connecting piece 2B connected to the failed battery unit 13 can be transformed into the first connecting piece 2A
  • the structure of the second connecting piece 2B shown in FIG. 17 is the structure before the failure treatment, and one of the battery cells 1 connected to the connecting piece 2 (the second connecting piece 2B) has failed and the other has not failed.
  • the third portion 21B connected to the failed battery cell 13 performs the above operation, that is, after the connection between the fracture guide portion 252 and the third portion 21B and/or the fourth portion 22B is broken, the third portion 21B is bent, and Both form the first portion 21A including the first connection portion 23 and the second connection portion 24, and the fourth portion 22B connected to the non-failed battery cell 14 does not need to be bent to form the first connection piece 2A shown in FIG. 12 (failure treatment The following structure), and after processing, the third part 21B becomes the first part 21A, and the fourth part 22B becomes the second part 22A (the structure is not changed).
  • both the third part 21B and the fourth part 22B of the connecting piece 2 (the second connecting piece 2B) connected to the two failed battery cells 1 need to perform the above operations, namely After the connection between the fracture guide portion 252 and the third portion 21B and/or the fourth portion 22B is broken, the third portion 21B and the fourth portion 22B are both bent, and both form a first connection portion 23 and a second connection.
  • the first portion 21A of the portion 24 forms the first connecting piece 2A of another embodiment, and after processing, both the third portion 21B and the fourth portion 22B become the first portion 21A.
  • the structure of the first connecting piece 2A after the failure treatment is also different.
  • one of the first connecting portion 23 and the housing 12 of the failed battery unit 13 is provided with a raised portion 121a, and the other is provided with a recessed portion 231. Based on this, the step S31 is described above. It can include:
  • the reliability of the connection between the first connecting portion 23 and the housing 12 of the failed battery unit 13 can be further improved, thereby improving the stability of the battery module. sex.
  • the raised portion 121a is disposed on the housing 12 of the failed battery unit 13, and the recessed portion 231 is a through hole 231a disposed on the first connecting portion 23.
  • the above step S311 may specifically include:
  • S311a Pass the protrusion 121a through the through hole 231a, and connect the protrusion 121a and the through hole 231a through a conductive material.
  • the protrusion 121a and the sidewall of the through hole 231a may be welded, or the protrusion 121a and the sidewall of the through hole 231a may be connected by conductive glue, or the protrusion 121a and the sidewall of the through hole 231a may be connected by welding. Pour molten metal in between.
  • the way of fitting the protrusion 121a and the through hole 231a may also be: the protrusion 121a and the side wall of the through hole 231a are interference fit, thereby realizing the connection between the two; or, the protrusion 121a may be provided with a card.
  • the raised portion 121a passes through the through hole 231a, a part of the first connecting portion 23 is located in the slot, so that the side wall of the slot restricts the raised portion 121a and the first connecting portion 23 along the battery unit
  • the relative movement in the height direction Z further realizes the connection between the protrusion 121a and the through hole 231a; or, after the protrusion 121a passes through the through hole 231a, the protrusion 121a protrudes from the first connecting portion 23 Partially pressurizes, deforms, and abuts against the upper end surface of the first connecting portion 23, thereby realizing the connection between the protrusion 121a and the through hole 231a.
  • the first connecting portion 23 of the first connecting piece 2A may be riveted to the shell 12 of the failed battery cell 13. And when the first connecting portion 23 and the housing 12 are riveted, there is no need to add a heat source when the two are connected, thereby reducing the risk of excessive temperature damage to the battery cell when the heat source is introduced.
  • the riveting method also has simple operation , The advantages of low maintenance cost and relatively low requirements for maintenance personnel.
  • the first connecting portion 23 of the first connecting piece 2A and the shell 12 of the failed battery unit 13 can be welded.
  • the reliability of the mechanical and electrical connections between the two is high, thereby improving the operation of the battery module. reliability.
  • no metal shavings are generated during the welding of the first connecting portion 23 and the housing 12, thereby avoiding the risk that metal shavings generated during maintenance enter the battery module and cause a short circuit.
  • the first connecting portion 23 and the casing 12 are welded, it is possible to avoid opening a hole between the first connecting portion 23 and the casing 12, thereby avoiding passivation of the failed battery cell 13 or leakage of electrolyte from the opening.
  • the diameter of the protrusion 121a may be the same as the diameter of the through hole 231a, or may be slightly larger than the diameter of the through hole 231a.
  • the failure processing method may further include:
  • S12 Disconnect the connection between the electrode terminal 11 of the failed battery cell 13 and the at least one connecting piece 2 connected to it.
  • the first connecting piece 2A when the thickness of the connecting piece of the battery module is large and the ductility is small, it is not easy to bend the first connecting piece 2A only by the ductility of the connecting piece itself, and the first connecting piece 2A can be bent during the bending process.
  • the connection between 2A and the electrode terminal 11 has a relatively large pulling force, and under this pulling force, there is a risk that the connection between the first connecting piece 2A and the electrode terminal 11 of the non-failed battery cell 14 may fail.
  • the part (for example, the second connection part 24) connected to the electrode terminal 11 of the failed battery cell 13 may be removed (for example, cut off).
  • the first connecting piece 2A after the second connecting portion 24 is removed is easier to bend, and the tension between the conductive portion 26 and the electrode terminal 11 of the non-failed battery cell 14 is smaller during the bending process. , Can improve connection reliability.
  • the second connecting portion 24 is removed, the weight of the battery module can also be reduced, and the energy density can be improved.
  • the narrow chisel 5 as shown in FIG. 19 can be used.
  • the narrow chisel 5 can be used to apply pressure to the connecting piece 2 at a preset position of the connecting piece 2.
  • the connecting piece 2 can be disconnected along a preset position.
  • the second connecting portion 24 can be removed (for example, cut).
  • a crease can be provided at a preset position of the connecting piece 2.
  • the invalidation processing method may further include:
  • a spacer 3 is placed between the connecting piece 2 and the casing 12 of the non-failed battery unit 14 connected to it.
  • the connecting piece 2 made of metal material has a certain degree of ductility, when the connecting piece 2 is bent, in order to avoid contact between the connecting piece 2 and the casing 12 of the non-failed battery unit 14 during the bending process, which may cause a short circuit, A cushion block 3 is placed between the outer shell 12 of the non-failure battery unit 14 and the connecting piece 2 to be bent. After the bending is completed, the cushion block 3 can be removed.
  • the spacer block 3 can not only prevent the connecting piece 2 from short-circuiting the non-failed battery cell 14, but also can protect the outer shell 12 of the non-failed battery cell 14 and prevent it from being damaged during the bending process.
  • the spacer 3 may be made of a non-conductive material, so as to prevent short circuits.
  • each of its connecting pieces 2 may include a fracture guide portion 252, a bending guide portion and other structures (ie, similar to the common plate-shaped The structure of the connecting piece is different), when the battery module M2 fails, only the second connecting piece 2B connected to the failed battery unit 13 needs to be operated accordingly, and there are fewer maintenance steps.
  • the connecting piece 2 when the battery module M2 has not failed, the connecting piece 2 may be a common plate-like structure on the market, which does not include the above-mentioned bending guide portion and fracture guide portion, etc., when the battery module M2 When it fails, first remove the connecting piece connected to the failed battery cell 13 (for example, cut off the connection between the connecting piece and the electrode terminal), and replace it with the second connecting piece 2B (including the structure of the bending guide portion and the fracture guide portion, etc., 17), the second connecting piece 2B is connected to the electrode terminal 11 of the failed battery cell 13, and then the second connecting piece 2B is bent along the bending guide portion to form the first connecting portion 23, and The first connecting portion 23 may be connected to the shell of the failed battery unit 13.
  • the connecting piece connected to the failed battery cell 13 for example, cut off the connection between the connecting piece and the electrode terminal
  • the second connecting piece 2B including the structure of the bending guide portion and the fracture guide portion, etc., 17
  • the structure of the connecting piece 2 in the battery module M2 is relatively simple, and it is not necessary for all the connecting pieces to be configured as a structure including a fracture guide portion and a bending guide portion as shown in FIG. 17, thereby saving cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及一种电池模块、电池组、装置及失效处理方法,电池模块包括:多个用于串联的电池单元,当电池模块失效后,多个电池单元包括失效电池单元和至少一个与失效电池单元相邻的非失效电池单元;和第一连接片,用于连接失效电池单元与至少一个非失效电池单元,第一连接片包括第一连接部和与第一连接部相连的导电部,第一连接部用于与失效电池单元的外壳电气连接,导电部用于与至少一个非失效电池单元电气连接,以使电池模块恢复工作。该电池模块中,无需增设其他部件,仅通过对电池模块原有的连接片进行相应的操作即可,从而减少电池模块的部件数量,降低电池模块结构的复杂性,并能够使得该电池模块具有较高的能量密度。

Description

电池模块、电池组、装置及失效处理方法 技术领域
本申请涉及储能器件技术领域,尤其涉及一种电池模块、电池组、装置及失效处理方法。
背景技术
电池模块包括多个相互堆叠的电池单元,且多个电池单元电连接,从而实现电池模块电能的输出,为用电设备供电。电池单元存在故障时,导致电池模块的整个电路发生故障,从而导致电池模块无法正常工作。
发明内容
本申请提供了一种电池模块、电池组、装置及失效处理方法,该电池模块的部件数量较少,结构较简单,且能量密度较高。
本申请实施例第一方面提供一种电池模块,所述电池模块包括:
多个用于串联的电池单元,当所述电池模块失效后,所述多个电池单元包括失效电池单元和至少一个与所述失效电池单元相邻的非失效电池单元;和
第一连接片,用于连接所述失效电池单元与所述至少一个非失效电池单元,所述第一连接片包括第一连接部和与所述第一连接部相连的导电部,所述第一连接部用于与所述失效电池单元的外壳电气连接,所述导电部用于与所述至少一个非失效电池单元电气连接,以使所述电池模块恢复工作。
在一种可能的设计中,所述外壳包括壳体和与所述壳体相连的顶盖;
所述第一连接部用于与所述失效电池单元的所述壳体或所述顶盖连接。
在一种可能的设计中,所述第一连接部相对于所述导电部朝向所述失效电池单元的所述外壳弯折,以使所述第一连接部与所述失效电池单元的所述外壳连接。
在一种可能的设计中,所述第一连接部与所述失效电池单元的所述外壳中,一者设置有凸起部,另一者设置有凹陷部;
所述凸起部用于与所述凹陷部相连。
在一种可能的设计中,所述凸起部设置于所述外壳,所述凸起部沿远离所述外壳的方向凸起;
所述凹陷部为设置于所述第一连接部的通孔;
其中,所述凸起部用于与所述通孔插接。
在一种可能的设计中,所述第一连接部与所述失效电池单元的所述外壳铆接或焊接。
在一种可能的设计中,所述第一连接部与所述导电部之间通过第二连接部连接。
在一种可能的设计中,所述电池模块还包括用于连接至少两个所述非失效电池单元的第二连接片;
所述第二连接片设置有弯折引导部,用于引导所述第二连接片产生弯折,并形成相对弯折的所述第一连接部和所述导电部。
本申请实施例第二方面提供一种电池组,包括:如以上所述的电池模块;和
箱体,用于容纳所述电池模块。
本申请实施例第三方面提供一种装置,包括以上所述的电池组,所述电池组用于提供电能。
本申请实施例第四方面提供一种失效处理方法,用于处理失效电池单元,所述失效处理方法包括:
将与所述失效电池单元连接的连接片与所述失效电池单元的外壳电气连接。
在一种可能的设计中,所述外壳包括壳体和与所述壳体相连的顶盖;
在将与所述失效电池单元连接的连接片与所述失效电池单元的外壳电气连接时,所述失效处理方法包括:
将与所述失效电池单元连接的所述连接片与所述失效电池单元的壳体或顶盖连接。
在一种可能的设计中,在将与所述失效电池单元连接的所述连接片与所述失效电池单元的外壳电气连接之前,所述失效处理方法还包括:
将与所述失效电池单元连接的所述连接片弯折,且弯折后形成第一连接部,所述第一连接部用于与所述失效电池单元的外壳连接。
在一种可能的设计中,所述连接片包括弯折引导部;
在将与所述失效电池单元连接的所述连接片与所述失效电池单元的外壳连接之前,所述失效处理方法还包括:
沿所述弯折引导部弯折所述连接片,以便形成所述第一连接部和所述导电部。
在一种可能的设计中,所述连接片还包括断裂引导部和连接部分;
沿所述弯折引导部弯折所述连接片之前,所述失效处理方法还包括:
将所述断裂引导部断开。
在一种可能的设计中,所述第一连接部与所述失效电池单元的外壳两者中,一者设置有凸起部,另一者设置有凹陷部;
在将与所述失效电池单元连接的所述连接片与所述失效电池单元的外壳电气连接时,所述失效处理方法包括:
将所述凸起部与所述凹陷部相连。
在一种可能的设计中,所述凸起部设置于所述外壳,所述凹陷部为设置于所述第一连接部的通孔;
在将所述凸起部与所述凹陷部相连时,所述失效处理方法包括:
将所述凸起部穿过所述通孔,并将所述凸起部与所述通孔之间通过导电材料相连。
在一种可能的设计中,将与所述失效电池单元连接的所述连接片弯折之前,所述失效处理方法还包括:
将所述失效电池单元的电极端子和与其相连的至少一个所述连接片的连接断开。
在一种可能的设计中,将所述失效电池单元的电极端子和与其相连的至少一个所述连接片的连接断开之前,所述失效处理方法还包括:
在所述连接片和与其相连的所述非失效电池单元的外壳之间放置垫块。
该电池模块中,无需增设其他部件连接失效电池单元的电极端子,仅通过对电池模块原有的连接片进行相应的操作即可,从而能够减少电池模块的部件数量,降低电池模块结构的复杂性,并且能够保证电池模块的正常使用。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为本申请所提供装置在一种具体实施例中的结构示意图;
图2为图1中电池组在一种具体实施例中的结构示意图;
图3为图2中电池模块在一种具体实施例中的俯视图;
图4为图3的A-A向剖视图;
图5为图4中Ⅰ部分的局部放大图;
图6为图2中电池模块在第一种具体实施例中的局部结构示意图;
图7为图2中电池模块在第二种具体实施例中的局部结构示意图;
图8为图2中电池模块在第三种具体实施例中的局部结构示意图;
图9为图2中电池模块在第四种具体实施例中的局部结构示意图;
图10为图2中电池模块在第五种具体实施例中的局部结构示意图;
图11为图10中第一连接片的结构示意图;
图12为图3的B-B向剖视图;
图13为图12中Ⅱ部分的局部放大图;
图14为图12中第二连接片的结构示意图;
图15为图2中电池模块在第六种具体实施例中的局部结构示意图
图16为图15的侧视图;
图17为图2中电池模块在第七种具体实施例中的局部结构示意图;
图18为本申请实施例提供的宽錾的结构示意图;
图19为本申请实施例提供的窄錾的结构示意图。
附图标记:
D-装置;
M-电池组;
M1-箱体;
M11-上箱体;
M12-下箱体;
M13-容纳腔;
M2-电池模块;
1-电池单元;
11-电极端子;
111-正极端子;
112-负极端子;
12-外壳;
121-顶盖;
121a-凸起部;
122-壳体;
13-失效电池单元;
14-非失效电池单元;
15-电极组件;
2-连接片;
2A-第一连接片;
21A-第一部分;
22A-第二部分;
2B-第二连接片;
21B-第三部分;
22B-第四部分;
23-第一连接部;
231-凹陷部;
231a-通孔;
232-第一预设空间;
24-第二连接部;
241-过孔;
25-中间部件;
251-连接部分;
252-断裂引导部;
252a-弯折结构;
252b-第二预设空间;
26-导电部;
27-连接件;
3-垫块;
4-宽錾;
5-窄錾。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
本申请实施例提供一种使用电池单元作为电源的装置、电池组和电池模块,其中,装置可以为车辆、船舶、小型飞机等移动设备,其中装置包括动力源,该 动力源用于为装置提供驱动力,且该动力源可被配置为向装置提供电能的电池模块。其中,该装置的驱动力可全部为电能,也可包括电能和其他能源(例如机械能),该动力源可为电池模块(或电池组)。另外,该装置还可以为电池柜等储能设备,该电池柜可以包括多个电池模块(或电池组),从而使得该电池柜能够输出电能。因此,只要能够使用电池单元作为电源的装置均在本申请的保护范围内。
如图1所示,以车辆为例,本申请实施例中的装置D可为新能源汽车,该新能源汽车可为纯电动汽车,也可为混合动力汽车或增程式汽车等。其中,该车辆可包括电池组M和车辆主体,该电池组M设置于车辆主体,该车辆主体还设置有驱动电机,且驱动电机与电池组M电连接,由电池组M提供电能,驱动电机通过传动机构与车辆主体上的车轮连接,从而驱动车辆行进。具体地,该电池组M可水平设置车辆主体的底部。
如图2所示,电池组M包括箱体M1和本申请的电池模块M2,其中,箱体M1具有容纳腔M13,电池模块M2收容于该容纳腔M13内,电池模块M2的数量可为一个或多个,多个电池模块M2排列布置于容纳腔M13内。箱体M1的类型不受限制,可为框状箱体、盘状箱体或盒状箱体等。具体地,如图2所示,该箱体M1可包括容纳电池模块M2的下箱体M12和与下箱体M12盖合的上箱体M11。
需要说明的是,本文中提到的厚度方向X、长度方向Y和高度方向Z是以电池单元为基准定义的,其中,厚度方向X指的是电池单元的厚度方向,高度方向Z指的是电池单元中电极端子的延伸方向,长度方向Y为与上述厚度方向X和高度方向Z垂直的方向(三者大致垂直),即长度方向Y垂直于厚度方向X和高度方向Z形成的平面。
其中,该电池模块包括多个电池单元和用于固定电池单元的框架结构,其中,多个电池单元可以沿厚度方向X相互堆叠。该框架结构可以包括端板,端板位于电池单元沿厚度方向X的两端部,用于限制电池单元沿厚度方向X的运动,同时,在一种具体实施例中,该框架结构还可包括侧板,两侧板位于电池单元沿长度方向Y的两侧,且该侧板与端板连接,从而形成框架结构;在另一种实施例中,该框架结构可不设置侧板,电池单元堆叠后,通过第一扎带连接或者通过第一扎 带和第二扎带连接,该端板和扎带形成上述框架结构。另外,在一种具体实施例中,电池组可以包括箱体和多个电池单元,其中,箱体具有容纳腔,多个电池单元位于该容纳腔内,且可以与箱体连接,具体地,电池单元可以通过胶粘剂粘接于箱体的内壁。
电极端子包括极性相反的第一电极端子和第二电极端子,在电池模块或电池组中,多个电池单元之间电气连接,形成电池模块或电池组的电路,各电池单元之间具体可采用串联的连接方式,且电池单元之间可以通过连接片连接,例如,当电池单元串联时,一电池单元的第一电极端子和另一电池单元的第二电极端子过连接片连接。
该电池模块工作过程中,各电池单元不断充放电,电池单元存在故障(例如容量非正常衰减)的问题,导致该电池单元无法正常工作,因此,本文中,将发生故障无法正常工作的电池单元定义为失效电池单元,将未发生故障能够正常工作的电池单元定义为非失效电池单元。此时,该电池模块或电池组由于存在一个或多个失效电池单元,导致其电路故障,无法正常供电,即为电池模块或电池组失效。为了解决该技术问题,本申请通过将失效电池单元从电池模块的电路中去除,并重新形成电路来解决该技术问题。
需要说明的是,本申请实施例中提到的电池单元可以包括以下两种情况,第一种:当该电池模块由多个电池单体串联时,本申请实施例中的电池单元可以为单个电池单体,相应地,失效电池单元可以为其中一个失效的电池单体。第二种:当该电池模块包括至少一个由两个以上的电池单体并联形成的并联组时,本申请实施例中的电池单元可以为一个并联组,相应地,失效电池单元为其中一个并联组,且该并联组中包括至少一个失效的电池单体。
另外,本申请实施例涉及的电池单元可以为软包电池,也可以为方形电池或者圆柱电池等。
为了解决上述技术问题,如图3所示,电池模块M2包括第一连接片2A,该第一连接片2A包括相互连接的第一连接部23和导电部26,其中,该第一连接部23与导电部26之间可以直接连接,也可以通过其他部件间接连接,只要能够实现二者之间的连接即可。
本实施例中,电池模块M2失效后,多个串联的电池单元1可以包括失效电池 单元13和至少一个与失效电池单元13相邻的非失效电池单元14,其中,“相邻”包括:非失效电池单元14与失效电池单元13物理相邻,即二者之间不具有其他电池单元(二者之间可以具有隔热垫、缓冲垫等结构),非失效电池单元14与失效电池单元13电学相邻,电学相邻指的是:沿电流的流动方向,与同一连接片连接的电池单元电学相邻,且当电池单元电学相邻时,与同一连接片连接的两个电池单元之间还可以具有其他电池单元,即该连接片跨过至少一个电池单元,此时,两个电学相邻的电池单元不满足物理相邻。
上述第一连接片2A的第一连接部23用于与失效电池单元13的外壳12电气连接,导电部26用于与至少一个非失效电池单元14(该非失效电池单元14与失效电池单元13相邻)电气连接。当将第一连接片2A与失效电池单元13的外壳12电气连接时,能够通过该第一连接片2A将该失效电池单元13短路,从而使得电池模块M2恢复工作。
在现有设计中,当电池组的中某个电池单元失效时,人们能够想到的是将这个失效电池单元进行替换;或者,为了加快维修效率,则会对整个电池模块进行更换维修。因此,维修的过程需要将失效的电池组(包含失效电池单元的电池组)返厂进行匹配相对应的电池单元或电池模块,或者将相应的电池单元的型号或电池模块的型号发送给制造厂。这个过程需要耗费大量的时间进行等待,不利于实现资源的优化。
上述处理方式符合大部分领域中的处理方式,即针对失效的部件或者结构进行更换,从而使整体结构恢复工作。因此,在大部分领域的维修点,会对容易发生失效的部件进行备样,以及会准备简单的相关检测设备。如果是不易发生失效的部件失效,或者,不易保存和放置的部件失效,则维修点需要从厂家调取部件,才能够实现部件的更换维修。如果遇到较为复杂的维修方式,还需要从厂家请求相应的技术人员技术支持。
在电池领域中,电池组的失效部件中电池单元占有很大比例,但是电池单元备样存在诸多困难,同时电池单元不属于可长时间放置的部件,原因如下:1.目前电池单元型号很多,有大小区别、容量区别、化学体系区别、结构区别等;2.电池单元在长时间放置时会进行自放电,时间越长,则电池单元正负极端子之间的容量平衡就会被逐渐打破并深化;3.长时间的放置时,电解质的分解反应也会 累积一些不可逆的容量损失。另外,电池单元的存放条件要求也比较高,如果不注意环境因素,电池单元的自放电也可能会加速。
即使没有型号的问题,所有电池单元采用一种结构,但是电池单元在长时间存储后若要进行重新使用,需要重新测量电池单元的容量及自放电速率等参数。但是在一般的维修点不会有这样的测试条件,操作人员也没有专业的分析能力;不经过重新测试的电池单元不能够保证维修后的电池组能够正常工作。另外,再加上电池型号的问题,每一个维修点不仅需要储备不同型号的电池单元,还需要配备相关检测设备以及对应的技术人员。因此,维修点很难实现上述对电池单元进行更换的维修方式。
因此,目前为了提高电池组的维修效率,操作人员会针对电池组中失效的电池模块(失效的电池模块指的是包含失效电池单元的电池模块)进行更换,该方式能够较快实现维修。然而,一个电池模块包括多个电池单元,在极少数的情况下,一个电池模块中的所有电池单元均发生失效;正常情况下,一个电池模块中仅有少量的电池单元失效(例如仅有一个电池单元失效),就会造成电池模块不能够正常工作,此时,更换整个电池模块造成资源浪费。
进一步地,更换新的电池模块在电池均衡上也会有较大的问题。正常使用时,电池组容量会有衰减,而新更换的电池模块和旧的电池模块容量会存在不一致的问题。按照木桶原则,电池组的容量取决于容量最低的电池模块,所以新更换的电池模块在结构中也不能够起到很好的作用;其次,旧的电池模块由于容量的衰减,所以每次都是满充满放,会加快旧的电池模块达到使用寿命的终点;另外,旧的电池模块内阻大于新更换的电池模块,且该旧的电池模块与新更换的电池模块流过相同的电流,此时,内阻较大的旧的电池模块发热量较多,即该旧的电池模块中的电池单元温度较高,其电池单元劣化速度加快,从而导致旧的电池模块的内阻进一步增大。因此,电池单元的内阻和温升形成一对负反馈,使高内阻的电池单元加速劣化。
另一方面,针对用电设备的电路,无论是短路还是断路都是形容电路故障。目前在短路的使用上,主要是通过短路实现保险丝熔断,或者其他测试设备的负载等。然而没有人会在相应的结构中增设导电部件,达到使失效电池单元短路,这个从简单认知中会认为存在很大问题,也不能够实现目标,但是在整个电池模 块中,对其中一个电池单元进行短路,不会造成容量的大幅度变化,从而保证了电池组的正常使用。
本实施例中,如图4所示,失效电池单元13的正极端子111与负极端子112通过第一连接片2A和外壳连接,从而将该失效电池单元13短路,使得该失效电池单元13不再参与电池模块的充放电过程,即该失效电池单元13不影响该电池模块的电路。因此,当电池模块工作过程中存在某一个或多个失效电池单元13时,仅需将与各失效电池单元13连接的第一连接片2A连接于失效电池单元13的外壳即可,无需更换整个电池模块,当该电池模块应用于车辆时,使得该车辆能够在4S店直接维修,无需整车返厂处理,或者无需更换新的电池组,从而提高电池模块的维修效率,并简化维护流程和维护成本。同时,经过上述处理后,该电池模块中,仅存在少量的电池单体(失效电池单元13的电池单体)不参与电路的形成,也不会造成该电池模块电池容量的大幅度降低,使得电池模块和电池组能够正常工作。
同时,对于电池单元通过结构胶粘贴于箱体的容纳腔的结构,当某一电池单元失效时,将该失效电池单元从容纳腔内拆出的操作不易实现,因此,本实施例中的处理方式具有操作方便和效率高的优点。
另外,该电池模块中,无需增设其他部件连接实现失效电池单元13的短路,仅通过对电池模块原有的连接片进行相应的操作即可,从而能够减少电池模块的部件数量,降低电池模块结构的复杂性,并能够使得该电池模块具有较高的能量密度。
具体地,如图4所示,该失效电池单元13的外壳12包括壳体122和与壳体122相连的顶盖121,且该顶盖121连接于壳体122的开口,从而形成用于容纳电池单元的电极组件和电解液的内腔,且第一电极端子111和第二电极端子112设置于该顶盖121。基于此,该第一连接片2A的第一连接部用于与失效电池单元13的壳体122或顶盖121电气连接,从而能够通过该第一连接片2A实现失效电池单元13的短路,使得电池模块恢复工作。
另外,当该第一连接片2A设置有两个或两个以上的第一连接部23时,两个或两个以上的第一连接部23的一部分可以用于连接失效电池单元13的顶盖121,另一部分可以用于连接失效电池单元13的壳体122。
更具体地,通过第一连接部连接失效电池单元的外壳时,可以将第一连接片的第一连接部相对于导电部朝向失效电池单元的壳体或顶盖弯折,从而便于实现第一连接部与失效电池单元的壳体或顶盖之间的连接。
另外,当该第一连接片设置有两个或两个以上的第一连接部时,两个或两个以上的第一连接部的一部分朝向失效电池单元的顶盖弯折,另一部分可以朝向失效电池单元的壳体弯折。
具体地,在如图5所示的实施例中,该第一连接片2A的第一连接部23相对于导电部26朝向失效电池单元13的顶盖121弯折,以使第一连接部23用于与失效电池单元13的顶盖121电气连接。同时,该第一连接片2A的导电部26可以用于和与该失效电池单元13相邻的非失效电池单元14的电极端子11电气连接,因此,该第一连接片2A的第一连接部23与失效电池单元13的顶盖121电气连接后,一个非失效电池单元14的电流经该导电部26、第一连接部23流向失效电池单元13的顶盖121,再经另一个第一连接片2A的第一连接部23、导电部26流向另一个非失效电池单元14,从而使得电池模块的功能恢复。
本实施例中,通过将第一连接片2A的第一连接部23朝向失效电池单元13的顶盖121的方向弯折,从而能够便于实现第一连接片2A与顶盖121之间的连接,并能够提高二者的连接可靠性,进而提高电池模块的工作可靠性。
如图6所示的实施例中,还可以通过将第一连接部23与失效电池单元13的壳体122连接来实现第一连接部23与外壳连接。具体地,如图6所示,沿电池单元1的长度方向Y,该第一连接部23位于失效电池单元13的端部,且该第一连接部23朝向失效电池单元13的壳体122弯折,从而使得该第一连接部23与失效电池单元13的壳体122电气连接。
本实施中,如图6所示,该第一连接片2A包括第一连接部23和导电部26,该第一连接部23相对于导电部26沿电池单元的高度方向Z弯折,且弯折后,该第一连接部23位于壳体122沿电池单元的长度方向Y的端部,用于与壳体122连接,同时,该导电部26与非失效电池单元14的电极端子连接。因此,该第一连接片2A的第一连接部23与失效电池单元13的壳体122电气连接后,一个非失效电池单元14的电流经该导电部26、第一连接部23流向失效电池单元13的壳体122,再经另一个第一连接片2A的第一连接部23、导电部26流向另一个非 失效电池单元14,从而使得电池模块的功能恢复。
在一种具体实施例中,该第一连接片的第一连接部与失效电池单元的外壳中,一者设置有凸起部,另一者设置有凹陷部,该凸起部与凹陷部相连,从而实现第一连接部与失效电池单元的外壳之间的连接,且该凹陷部和凸起部的一者可以设置于失效电池单元的壳体或顶盖。
如图7所示的实施例中,该失效电池单元13的顶盖121设置有上述凸起部121a,第一连接片2A的第一连接部23设置有上述凹陷部231,当该电池单元失效时,能够凹陷部231与凸起部121a配合,从而实现第一连接片2A与顶盖121之间的连接。
本实施例中,与该失效电池单元13的电极端子11连接的连接片2与顶盖121之间具有一定的高度差,本实施例中,通过凸起部121a的设置,能够便于实现第一连接片2A与顶盖121之间的连接,从而保证第一连接片2A与顶盖121的连接强度,也能够准确的实现第一连接片2A与顶盖121的连接。
另外,如图7所示,沿电池单元的高度方向Z,该第一连接片2A的第一连接部23相对于导电部26朝向顶盖121的方向弯折,即沿电池单元的高度方向Z,相对于导电部26,该第一连接部23与顶盖121之间的距离更小。由于第一连接片2A的导电部26与顶盖121之间具有一定的高度差,因此,当第一连接部23朝向顶盖121的方向弯折时,能够减小该第一连接部23与顶盖121之间的高度差,从而便于实现二者的连接。
具体地,为了便于实现第一连接部23与导电部26之间的相对弯折,二者之间可以设置弯折引导部(例如折痕),当进行失效处理时,仅需沿弯折引导部弯折即可形成上述第一连接部23和导电部26,有助于实现第一连接部23与导电部26之间的相对弯折,从而便于实现第一连接部23与顶盖121之间的准确连接。
需要说明的是,当第一连接片的第一连接部与失效电池单元的壳体连接时,该第一连接部与壳体中的一者可以设置上述凸起部,另一者可以设置上述凹陷部。
在一种具体实施例中,如图7所示,该凸起部121a设置于失效电池单元13的顶盖121,沿电池单元1的高度方向Z,该凸起部121沿远离顶盖12的方向凸起,即该凸起部121向上凸起,并靠近第一连接片2A。相应地,第一连接片2A的第一连接部23设置有通孔231a,通孔231a为上述凹陷部231,此时,该凸起 部121a的至少部分位于对应的通孔231a,并与通孔231a配合,从而实现顶盖121与第一连接片2A之间的连接。同时,在连接顶盖121与第一连接片2A的过程中,该通孔231a还能够起到预定位顶盖121与第一连接片2A的作用,从而能够便于实现二者的快速安装。
当然,上述凹陷部231并非必须为孔状结构(沿高度方向Z,凹陷部231贯穿第一连接部23),还可为凹槽结构,即沿高度方向Z,该凹陷部231可以不贯穿第一连接部23。另外,该凸起部121a可以为圆柱体结构,也可以为长方体或锥体等其他形状的结构,只要能够实现凸起部121a与通孔231a的配合即可。
其中,如图7所示,该凸起部121a与通孔231a的配合方式具体可以为:凸起部121a与通孔231a的侧壁过盈配合,从而实现二者的连接;或者,凸起部121a可以设置有卡槽,当凸起部121a穿过通孔231a时,第一连接部23的一部分位于该卡槽内,从而通过该卡槽的侧壁限制凸起部121a与第一连接部23沿电池单元的高度方向Z的相对运动,进而实现凸起部121a与通孔231a的连接;又或者,该凸起部121a穿过通孔231a后,通过对凸起部121a凸出于第一连接部23的部分施压,使其变形,并与第一连接部23的上端面抵接,从而实现凸起部121a与通孔231a之间的连接。
本实施例中,通孔231a与凸起部121a配合后,第一连接部23与顶盖121之间直接接触(通过与凸起部121a直接接触)。
在另一种具体实施例中,沿通孔231a的径向,该凸起部121a与对应的通孔231a之间具有预设间隙,凸起部121a与通孔231a的侧壁之间通过导电材料连接。例如,凸起部121a与通孔231a的侧壁之间可以焊接,或者通过导电胶连接,或者通过灌入熔化的锡、铝等金属连接。当二者焊接时,焊料位于凸起部121a与通孔231a之间的预设间隙内,从而将二者连接,且二者之间能够导电;当二者通过导电胶连接时,导电胶位于凸起部121与通孔231a之间的预设间隙内,从而将二者连接,且二者之间能够导电,当二者通过熔化的金属连接时,熔化的金属冷却后位于凸起部121a与通孔231a之间的预设间隙内,从而将二者连接,且二者之间能够导电。
另外,以上各实施例中,顶盖121与第一连接片2A之间通过凸起部121a与通孔241a连接时,沿电池单元的高度方向Z,该第一连接部23的底面与顶盖 121的顶面之间可以接触也可以不接触,当二者接触时,二者之间可以通过导电胶等导电材料连接,能够增大第一连接片2A与顶盖112之间的连接面积,从而提高二者的连接强度和增加过流面积。
第一连接部23与失效电池单元13的外壳12之间除上述连接方式外,还可以采用如下所述的方式连接。
在一种具体实施例中,如图8所示,该第一连接片2A的第一连接部23与失效电池单元13的外壳12铆接,具体地,该第一连接部23与失效电池单元13的顶盖121铆接。
如图8所示,该第一连接片2A包括导电部26和第一连接部23,且该第一连接部23可以为将第一连接片2A弯折后形成的结构,该第一连接部23用于与失效电池单元13的外壳12(例如顶盖121或壳体122)电气连接,该导电部26和与该失效电池单元13相邻的非失效电池单元14电气连接(该导电部26具体可以与非失效电池单元14的电极端子11电气连接)。本实施例中,该第一连接部23与失效电池单元13的外壳12之间还可以通过连接件27铆接,从而提高第一连接部23与外壳12之间的连接可靠性,进而提高电池模块的工作稳定性。
具体地,该连接件27具体可以为铆钉,且第一连接部23与失效电池单元13的外壳12之间可以通过多个铆钉连接。
本实施例中,第一连接部23与外壳12之间铆接时,使得二者之间连接时无需增加热源,从而降低引入热源时温度过高损伤电池单元的风险,同时,采用铆接的方式还具有操作简单、维修成本低且对维修人员要求相对较低的优点。
在另一种具体实施例中,如图9所示,该第一连接片2A的第一连接部23与失效电池单元13的外壳12焊接,具体地,该第一连接部23与失效电池单元13的顶盖121焊接。
如图9所示,该第一连接片2A包括导电部26和第一连接部23,且该第一连接部23可以为将第一连接片2A弯折后形成的结构,该第一连接部23用于与失效电池单元13的外壳12(例如顶盖121或壳体122)电气连接,该导电部26和与该失效电池单元13相邻的非失效电池单元14电气连接(该导电部26具体可以与非失效电池单元14的电极端子11电气连接)。本实施例中,该第一连接部23与失效电池单元13的外壳12之间还可以焊接,在一些实施例中,可以通 过高温焊接头将第一连接片2A与失效电池单元13的外壳12压焊。
本实施例中,第一连接部23与外壳12之间焊接时,二者的机械连接和电气连接的可靠性均较高,从而提高电池模块的工作可靠性。同时,第一连接部23与外壳12焊接过程中不会产生金属屑,从而能够避免维修产生的金属屑进入电池模块内部导致短路的风险。另外,第一连接部23与外壳12之间焊接时,能够避免在第一连接部23和外壳12开孔,从而避免失效电池单元13钝化或电解液从开孔漏液。
或者,该该第一连接片2A的第一连接部23与失效电池单元13的外壳12之间可以通过焊接同时铆接的方式连接,从而进一步提高二者的连接可靠性。
以上各实施例中,如图5~9所示,该第一连接片21A还可以包括第二连接部24,其中,该第二连接部24用于与失效电池单元13的电极端子11电气连接。具体地,该第二连接部24设置有过孔241,电极端子11穿过该过孔241后,能够与该连接片连接,二者具体可以采用焊接的方式连接。
对于未发生失效的电池模块来说,为了实现多个电池单元的串联,该电池模块中的连接片需要与待串联的电池模块的电极端子电气连接。因此,当该电池模块包括失效电池单元13,需要进行维修处理时,仅需对与该失效电池单元13相连的第一连接片2A处理,使该第一连接片2A与失效电池单元13的外壳12电气连接即可,处理后,该第一连接片2A可以仍然连接失效电池单元13的电极端子11,并连接与该失效电池单元13相邻的非失效电池单元14的电极端子11,即该第一连接片2A还包括与失效电池单元13的电极端子11电气连接的第二连接部24。
本实施例中,该电池模块的连接片本身具有较高的延展性,因此能够在其本身的延展性的作用下,实现对第一连接片2A的弯折,从而能够便于实现该第一连接片2A与失效电池单元13的外壳12之间的连接。另外,该连接片的厚度越小,其延展性越大,从而能够更加便于实现第一连接片2A的弯折,但是,第一连接片2A厚度过小时,强度和刚度较低,存在断裂的风险。因此,可以综合考虑上述两方面的因素合理选择连接片的厚度,使其具有较高的结构强度,且能够便于弯折。其中,该连接片具体可以为条形结构,或者,还可以为其他形状的结构。
另外,本实施例中,与失效电池单元13连接的连接片保持完整的结构,无需对该连接片进行剪断和拆除操作,从而能够避免剪断和拆除过程中产生金属微粒,进而避免金属微粒进入电池模块导致短路。
在另一种具体实施例中,如图10所示,该第一连接片2A包括第一连接部23和导电部26,不包括上述与失效电池单元13的电极端子11连接的第二连接部。
本实施例中,当电池模块的连接片厚度较大、延展性较小时,仅靠连接片本身的延展性不易实现第一连接片2A的弯折,且弯折过程中对该第一连接片2A和电极端子11连接处具有较大拉力,在该拉力作用下,存在第一连接片2A与非失效电池单元14的电极端子11之间的连接失效的风险。为了便于实现第一连接片2A的弯折,并保证非失效电池单元14的电极端子11与第一连接片2A的导电部26之间的连接可靠性,在弯折第一连接片2A之前,可以将与失效电池单元13的电极端子11连接的第二连接部拆除(例如剪掉)。
在该实施方式中,拆除第二连接部的第一连接片2A更加容易弯折,且弯折的过程中对导电部26与非失效电池单元14的电极端子11之间的拉力较小,能够提高连接可靠性。另外,拆除第二连接部时,还能够降低电池模块的重量,提高能量密度。
如图5~10所示的实施例中,该第一连接片2A中的第一连接部23和导电部26之间直接连接,当然,二者也可以间接连接。
具体地,如图11所示,该第一连接片2A中,其导电部26与第一连接部23之间通过第二连接部24间接连接,其中,该第二连接部24可以为与失效电池单元13的电极端子相连的部分。同时,上述第一连接片2A包括第一部分21A和第二部分22A,其中,该第一部分21A用于与失效电池单元13的外壳12连接,第二部分22A用于和与失效电池单元13相邻的电池单元(可以为失效电池单元13,也可以为非失效电池单元14)相连。
当与该失效电池单元13相邻的电池单元为失效电池单元13时,该第一连接片2A的第一部分21A和第二部分22A结构相同(结构相同指的是二者均包括第一连接部23和导电部26,但是二者的第一连接部23和/或导电部26的结构可以不同);当与该失效电池单元13相邻的电池单元为非失效电池单元14时,该第 一连接片2A的第一部分21A和第二部分22A结构不同。以下以与该失效电池单元13相邻的电池单元为非失效电池单元14(即第一部分21A和第二部分22A结构不同)为例描述,即该第一连接片2A的第一部分21A连接失效电池单元13的外壳12,第二部分22A连接非失效电池单元14的电极端子11。
如图12所示的实施例中,该第一连接片2A还包括连接部分251,该连接部分251位于第一连接部23和第二部分22A之间,并与二者连接。当该第一连接片2A的第一部分21A用于连接失效电池单元的顶盖时,该第一部分21A和第二部分22A沿电池单元的厚度方向X布置,且连接部分251位于二者之间。
其中,该第一部分21A包括用于第一连接部23,且该第一部分21A还可以包括与失效电池单元的电极端子连接的第二连接部24(也可以不包括该第二连接部24)。沿电池单元的厚度方向X,该第一连接部23与第二部分22A之间不连接,且沿电池单元的厚度方向X,该第一连接部23与第二部分22A之间具有第一预设空间232,使得第二部分22A不会影响第一连接部23与失效电池单元的顶盖的连接。
本实施例中,第一连接片2A中,当第一连接部23与第二部分22A之间不连接时,能够便于实现第一连接部23与顶盖的连接,且第一连接部23与顶盖连接的过程中,不会受到第二部分22A的影响,提高顶盖与第一部分21A的连接可靠性。
更具体地,如图12所示,该连接部分251沿电池单元的高度方向Z的截面为弧形,该连接部分251能够变形,当电池模块工作过程中存在振动时,该连接部分251能够缓冲第一连接片2A受到的冲击载荷,从而提高第一连接片2A的结构强度,并提高该第一连接片2A与失效电池单元的电极端子和顶盖之间的连接可靠性。另外,电池单元工作过程中存在膨胀力,且沿电池单元的厚度方向X的膨胀力较大,此时,该连接部分251能够沿电池单元的厚度方向X变形,从而缓冲第一连接片2A受到的膨胀力。
综上所述,如图12所示的实施例中,该第一连接片2A的第一部分21A用于连接失效电池单元的外壳,第二部分22A用于连接非失效电池单元,此时,第一部分21A包括相对弯折的第一连接部23和导电部26,该第一连接部23用于与外壳连接,同时,第二部分22A为平板式结构,且设置有通孔231a和过孔241, 其中,当与该第二部分22A连接的电池单元失效时,该通孔231a用于与该失效电池单元的顶盖外壳连接,该过孔241与该电池单元的电极端子连接。
在另一种具体实施例中,当该第一连接片2A的第一部分21A和第二部分22A均用于连接失效电池单元时,该第一部分21A与第二部分22A的结构相同(二者的结构均为图12所示的第一连接部21A的结构),二者均包括相对弯折的第一连接部23和导电部26,其中,二者的第一连接部23用于与失效电池单元的外壳相连,二者的导电部26相互连接,并用于与非失效电池单元相连。
如上所述,该电池模块失效中,包括一个或多个失效电池单元,还包括非失效电池单元,为了使得电池模块能够正常工作,在该失效电池单元中,与该失效电池单元连接的连接片需与该失效电池单元的外壳连接,且与失效电池单元连接的该连接片即为图12所示的第一连接片2A;在该非失效电池单元中,与该非失效电池单元连接的连接片不能与各电池单元的外壳连接,且与该非失效电池单元连接的连接片为图13~17所示的第二连接片2B,即该电池模块存在失效电池单元时,该电池模块中包括上述第一连接片和第二连接片2B。该电池模块中不存在失效电池单元时,该电池模块仅包括第二连接片2B。其中,第二连接片2B的具体结构如以下各实施例所述。
该电池模块的用于与非失效电池单元14连接的第二连接片2B的结构如以下各实施例所述。如图10所示,该第二连接片2B包括第三部分21B和第四部分22B,该第三部分21B和第四部分22B分别连接两个非失效电池单元,且该第三部分21B和第四部分22B可以包括弯折引导部,该弯折引导部用于引导该第二连接片2B弯折,并形成相对弯折的第一连接部23和导电部26。
在一种具体实施例中,如图13和图14所示,该电池模块包括多个非失效电池单元14,且多个非失效电池单元14通过第二连接片2B串联。在图13和图14所示的实施例中,该第二连接片2B包括第三部分21B和第四部分22B,其中,该第四部分22B与非失效电池单元14的电极端子11电气连接,该第三部分21B沿弯折引导部弯折。
因此,本实施例中,当与该第二连接片2B连接的电池单元失效时,该第二连接片2B能够与该失效电池单元的外壳连接。具体地,如图13所示,进行失效处理时,该第二连接片2B的第三部分21B能够朝向壳体122的方向弯折,以便 与失效电池单元的壳体122相连,或者,该第二连接片2B的第四部分22B能够朝向顶盖121的方向弯折,以便与失效电池单元的顶盖121相连。
另外,如图13所示,由于该第二连接片2B用于串联相邻的两个电池单元,因此,本实施例中的第二连接片2B可以包括两个第三部分21B,且两个第三部分21B分别与该第二连接片2B串联的两个电池单元的壳体122对应。
在另一种具体实施例中,如图15所示的实施例中,该第二连接片2B的第三部分21B和第四部分22B分别连接相邻非失效电池单元14的第一电极端子111和第二电极端子112。当与该第二连接片2B相连的电池单元失效时,该第三部分21B和/或第四部分22B能够朝向顶盖121的方向弯折,从而实现与顶盖121的电气连接。
在一种可能的设计中,如图16所示,该第二连接片2B的第三部分和第四部分均设置有通孔231a,以第三部分为例,该非失效电池单元14的顶盖121均设置有凸起部121a,当该电池单元未失效时,沿电池单元的高度方向Z,该通孔231a与凸起部121a之间具有间隔,(即该第三部分与顶盖121不连接),当该电池单元失效时,该通孔231a能够与该凸起部121a连接。
同时,如图16所示,该第二连接片2B中,沿电池单元的高度方向Z,该通孔231a具有第一轴心(通孔231a关于该第一轴心呈对称分布),凸起部121a具有第二轴心(凸起部121a关于该第二轴心呈对称分布),该第一轴心与第二轴心的连线沿长度方向Y,即该通孔231a与凸起部121a沿长度方向Y布置,且沿电池单元的高度方向Z,该通孔231a的投影与凸起部121a的投影可以部分重合,或者,二者也可以不重合,只要当该第三部分21B沿电池单元的高度方向Z弯折并形成上述第一连接部和导电部时,该凸起部121a的至少部分能够穿过该通孔231a,并与该通孔231a的侧壁连接即可。
因此,该电池模块中各电池单元的顶盖均可以设置有上述凸起部,各连接片均可以设置有上述通孔。
在一种可能的设计中,如图17所示,该第二连接片2B还可以包括连接第三部分21B和第四部分22B的中间部件25。具体地,该中间部件25可以包括连接部分251和断裂引导部252,其中,沿电池单元的厚度方向X,该断裂引导部252与第三部分21B之间的连接、该断裂引导部252与第四部分22B之间的连接、 断裂引导部252三者中,至少一者能够断开。其中,该断裂引导部252可以设置有薄弱部,从而使得该断裂引导部252能够沿该薄弱部断开。
本实施例中,该断裂引导部252断裂时,存在下述情况:第一种,该断裂引导部252与第三部分21B的连接位置断开,与第四部分22B的连接位置不断开;第二种,该断裂引导部252与第四部分22B的连接位置断开,与第三部分21B的连接位置不断开;第三种,该断裂引导部252与第三部分21B的连接断开,与第四部分22B的连接也断开,此时,相当于将断裂部件252从该第二连接片2B中去除;第四种:该断裂引导部252本身断开,且该断裂引导部252断开后,形成断开的两部分,该两部分分别与第三部分21B和第四部分22B连接。当然,还可以为上述四种情况的任意组合,本申请对断裂的具体位置不作限定。
其中,当与该第二连接片2B连接的电池单元失效时,需要将第二连接片2B的结构变为上述第一连接片的结构,以便将该失效电池单元短路。该第二连接片2B中,当该断裂引导部252与第三部分21B和/或第四部分22B之间的连接断开时,便于实现该第三部分21B沿电池单元的高度方向Z向下弯折,从而便于实现第一连接片与顶盖的连接。同时,通过设置该断裂引导部252,当与该第二连接片2B连接的电池单元未失效时,该断裂引导部252能够沿厚度方向X连接第三部分21B和第四部分22B,从而提高该第二连接片2B的结构强度,并能够增大该第二连接片2B的过流面积。
具体地,如图17所示,该断裂引导部252可以包括多个沿电池单元的高度方向Z凸起的弯折结构252a,具体地,该弯折结构252a可以向上凸起,且各弯折结构252a沿长度方向Y间隔布置,相邻弯折结构252a之间具有第二预设空间252b,且各弯折结构252a能够变形。更具体地,该弯折结构252a沿高度方向Z的截面可以为弧形。
电池模块工作过程中发生振动时,该断裂引导部252能够变形,从而能够缓冲第二连接片2B受到的冲击载荷,另外,电池模块工作过程中发生膨胀时,第二连接片2B受到膨胀力的作用,此时,断裂引导部252的变形能够缓冲第二连接片2B受到的膨胀力,从而降低第二连接片2B与电极端子断开的风险。
另外,该断裂引导部252中,相邻弯折结构252a之间的第二预设空间252b使得弯折结构252a更加容易变形,且更加便于断开该断裂部件252与第三部分 21B和/或第二部分22B之间的连接,从而提高失效处理的效率。同时,相邻弯折结构252a之间的第二预设空间252b还能够减小第二连接片2B的重量,从而提高电池模块的能量密度。
更具体地,如图17所示,该第二连接片2B中,连接第三部分21B和第四部分22B的连接部分251沿高度方向Z的截面为弧形,该连接部分252能够变形,从而缓冲第三部分21B和第四部分22B之间的作用力。
综上所述,该电池模块的第二连接片2B与现有技术中仅用于连接电极端子的连接片相比,其沿长度方向Y的尺寸较大,从而使得该第二连接片2B的过流面积较大。同时,为了便于对该第二连接片2B的第三部分21B进行弯折操作,该第二连接片2B的材质可以为铝,其硬度较小,容易变形。
在另一种具体实施例中,该电池模块的各连接片均可以为市面上常见的板状结构,即各连接片可以不设置弯折引导部、断裂引导部等结构,当该电池模块失效时,将与失效电池单元相连的连接片替换为设置有弯折引导部和断裂引导部等特征的的第二连接片(该第二连接片的结构如以上任一实施例所述),具体替换方式为:将与失效电池单元相连的连接片从电池模块中拆下,并将第二连接片与失效电池单元的电极端子连接,然后通过对该第二连接片进行弯折断裂等操作使其形成第一连接片,并将第一连接片与失效电池单元的外壳连接,实现失效电池单元的失效处理,使电池模块恢复工作。
另外,本申请实施例还提供一种失效处理方法,用于处理失效电池单元13,其中,该失效处理方法具体包括下述步骤:
S3:将与失效电池单元13连接的连接片2与失效电池单元13的外壳12电气连接。
本实施例中,如图4所示,失效电池单元13的正极端子111与负极端子112通过第一连接片2A和外壳12连接,从而将该失效电池单元13短路,使得该失效电池单元13不再参与电池模块的充放电过程,即该失效电池单元13不影响该电池模块的电路。因此,当电池模块工作过程中存在某一个或多个失效电池单元13时,仅需将与各失效电池单元13连接的第一连接片2A连接于失效电池单元13的外壳12即可,无需更换整个电池模块,当该电池模块应用于车辆时,使得该车辆能够在4S店直接维修,无需整车返厂处理,或者无需更换新的电池组, 从而提高电池模块的维修效率,并简化维护流程和维护成本。同时,经过上述处理后,该电池模块中,仅存在少量的电池单体(失效电池单元13的电池单体)不参与电路的形成,也不会造成该电池模块电池容量的大幅度降低,使得电池模块和电池组能够正常工作。
具体地,如上所述,电池单元的外壳12包括壳体122和与壳体122相连的顶盖121,基于此,上述步骤S3具体可以包括:
S31:将与所失效电池单元13连接的连接片2与失效电池单元13的壳体122或顶盖121连接。
本实施例中,当该连接片2与失效电池单元13的顶盖121或壳体122连接之前,该连接片2具体可以为以上各实施例中所述的第二连接片2B,且该连接片2与失效电池单元13的顶盖121或壳体122连接之后,该连接片2具体可以为以上各实施例中所述的第一连接片2A。
在一种可能的设计中,上述步骤S3之前,该失效处理方法还可以包括:
S2:将与失效电池单元13连接的连接片2弯折,且弯折后形成第一连接部23,第一连接部23用于与失效电池单元13的外壳12连接。
本实施例中,该连接片2弯折后形成的第一连接部23的具体结构如以上各实施例所述,且维修过程中,仅需将该连接片2弯折后,将其第一连接部23与失效电池单元13的外壳12连接即可,因此,该失效电池单元13的处理流程简单,且维护成本较低,并能够提高电池模块M2的工作效率。
本实施例中,在弯折与失效电池单元13连接的连接片2时,可以采用如图18所示的宽錾4实现,操作时,可以通过该宽錾4在连接片2的预设位置对连接片2施加压力,且由于宽錾4与连接2的接触面积较大,其作用于连接片2的压强较小,从而能够避免连接片2被宽錾4断开。在该宽錾4的压力作用下,该连接片2朝向失效电池单元13的外壳12的方向弯折。
另外,为了便于弯折,且提高弯折的精确性,可以在连接片2的预设位置设置弯折引导部(例如折痕),在进行弯折操作时,可以将宽錾4与该折痕的位置对应,通过该宽錾4施加压力后,连接片2能够沿该折痕弯折。
在一种具体实施例中,在维修处理之前,与失效电池单元13连接的连接片2具体可以为以上各实施例中所述的第二连接片2B,该第二连接片2B包括弯折引 导部,因此,上述步骤S2具体可以包括:
S22:沿弯折引导部弯折该第二连接片2B,以便形成第一连接部23和导电部26。
具体地,该第二连接片2B包括第三部分21B和第四部分22B,其中,该第三部分21B与失效电池单元13连接,第四部分22B与非失效电池单元14连接,或者,该第四部分22B与另一失效电池单元13连接。以第三部分21B与失效电池单元13连接,第四部分22B与非失效电池单元14连接为例,上述步骤S22具体可以包括:
S221:沿设置于第三部分21B的弯折引导部弯折该第三部分21B,且弯折后形成包括第一连接部23和第二连接部24的第一部分21A,其中,该第一部分21A可以为以上各实施例所述的结构。
更具体地,在维修处理之前,与失效电池单元13连接的连接片2具体可以为以上各实施例中所述的第二连接片2B,该第二连接片2B还可以包括用于连接第三部分21B和第四部分22B的中间部件25,且该中间部件25包括断裂引导部252和连接部分251;基于此,上述步骤S22之前,该失效处理方法还可以包括:
S21:将断裂引导部252断开,且断开后,该第四部分22B为上述各实施例中的第二部分22A。
具体地,断裂引导部252断开时,可以将该断裂引导部252与第三部分21B之间的连接处、断裂引导部252与第四部分22B之间的连接处、断裂引导部252三者中的至少一者断开。另外,该断裂引导部252还可以设置有薄弱结构,此时,可以沿该薄弱结构断开。
本实施例中,将断裂引导部252与第三部分21B和/或第四部分22B之间的连接断开后,使得第三部分21B容易变形,因此,能够便于将该第三部分21B弯折,形成相对弯折的第一连接部23和第二连接部24,从而便于将第一连接部23与该失效电池单元13的外壳12连接,完成失效电池单元13的处理。且失效处理后的结构不会增大电池模块M沿厚度方向X、长度方向Y和高度方向Z的尺寸,从而避免与电池模块M2的其他部件发生干涉。
可以理解,本申请实施例中,当电池单元1失效时,对该失效电池单元13处理后,能够将与该失效电池单元13连接的该第二连接片2B的结构转变为第一 连接片2A的结构,即图17所示的第二连接片2B为失效处理之前的结构,且与该连接片2(第二连接片2B)连接的电池单元1中,一个失效,另一个未失效,此时,与失效电池单元13连接的第三部分21B进行上述操作,即断裂引导部252与第三部分21B和/或第四部分22B之间的连接断开后,第三部分21B弯折,并均形成包括第一连接部23和第二连接部24的第一部分21A,而与未失效电池单元14连接的第四部分22B无需弯折,形成图12所示的第一连接片2A(失效处理之后的结构),且处理后,第三部分21B变为第一部分21A,第四部分22B变为第二部分22A(结构并未改变)。
另外,当相邻两个电池单元1均失效时,与两个失效电池单元1连接的连接片2(第二连接片2B)的第三部分21B和第四部分22B均需要进行上述操作,即断裂引导部252与第三部分21B和/或第四部分22B之间的连接断开后,第三部分21B和第四部分22B均弯折,并均形成包括第一连接部23和第二连接部24的第一部分21A,形成另一种实施例的第一连接片2A,且处理后,上述第三部分21B和第四部分22B均变为第一部分21A。
因此,根据连接片连接的失效电池单元13的个数不同,进行失效处理后的第一连接片2A的结构也不同。
在一种具体实施例中,上述第一连接部23与失效电池单元13的外壳12两者中,一者设置有凸起部121a,另一者设置有凹陷部231,基于此,上述步骤S31具体可以包括:
S311:将凸起部121a与凹陷部231相连。
本实施例中,通过设置能够相互配合的凸起部121a与凹陷部231,能够进一步提高该第一连接部23与失效电池单元13的外壳12之间的连接可靠性,从而提高电池模块的稳定性。
更具体地,该凸起部121a设置于失效电池单元13的外壳12,该凹陷部231为设置于第一连接部23的通孔231a,基于此,上述步骤S311具体可以包括:
S311a:将凸起部121a穿过通孔231a,并将凸起部121a与通孔231a之间通过导电材料相连。
例如,凸起部121a与通孔231a的侧壁之间可以焊接,或者,凸起部121a与通孔231a的侧壁可以通过导电胶连接,或者,还可以在凸起部121a与通孔231a 之间灌入熔化的金属。
或者,该凸起部121a与通孔231a的配合方式还可以为:凸起部121a与通孔231a的侧壁过盈配合,从而实现二者的连接;或者,凸起部121a可以设置有卡槽,当凸起部121a穿过通孔231a时,第一连接部23的一部分位于该卡槽内,从而通过该卡槽的侧壁限制凸起部121a与第一连接部23沿电池单元的高度方向Z的相对运动,进而实现凸起部121a与通孔231a的连接;又或者,该凸起部121a穿过通孔231a后,通过对凸起部121a凸出于第一连接部23的部分施压,使其变形,并与第一连接部23的上端面抵接,从而实现凸起部121a与通孔231a之间的连接。
又或者,该第一连接片2A的第一连接部23可以与失效电池单元13的外壳12铆接。且当第一连接部23与外壳12之间铆接时,使得二者之间连接时无需增加热源,从而降低引入热源时温度过高损伤电池单元的风险,同时,采用铆接的方式还具有操作简单、维修成本低且对维修人员要求相对较低的优点。
再或者,该第一连接片2A的第一连接部23与失效电池单元13的外壳12可以焊接,此时,二者的机械连接和电气连接的可靠性均较高,从而提高电池模块的工作可靠性。同时,第一连接部23与外壳12焊接过程中不会产生金属屑,从而能够避免维修产生的金属屑进入电池模块内部导致短路的风险。另外,第一连接部23与外壳12之间焊接时,能够避免在第一连接部23和外壳12开孔,从而避免失效电池单元13钝化或电解液从开孔漏液。
本实施例中,当凸起部121a与通孔231a的截面均为圆形时,该凸起部121a的直径可以与通孔231a的直径相同,或者可以稍大于通孔231a的直径。
在一种可能的设计中,上述步骤S2之前,该失效处理方法还可以包括:
S12:将失效电池单元13的电极端子11和与其相连的至少一个连接片2的连接断开。
本实施例中,当电池模块的连接片厚度较大、延展性较小时,仅靠连接片本身的延展性不易实现第一连接片2A的弯折,且弯折过程中对该第一连接片2A和电极端子11连接处具有较大拉力,在该拉力作用下,存在第一连接片2A与非失效电池单元14的电极端子11之间的连接失效的风险。为了便于实现第一连接片2A的弯折,并保证非失效电池单元14的电极端子11与第一连接片2A的导 电部26之间的连接可靠性,在弯折第一连接片2A之前,可以将与失效电池单元13的电极端子11连接的部分(例如第二连接部24)拆除(例如剪掉)。
在该实施方式中,拆除第二连接部24后的第一连接片2A更加容易弯折,且弯折的过程中对导电部26与非失效电池单元14的电极端子11之间的拉力较小,能够提高连接可靠性。另外,拆除第二连接部24时,还能够降低电池模块的重量,提高能量密度。
本实施例中,在拆除第二连接部24时,可以采用如图19所示的窄錾5实现,操作时,可以通过该窄錾5在连接片2的预设位置对连接片2施加压力,且由于窄錾5与连接2的接触面积较小,其作用于连接片2的压强较大,在该窄錾5的压力作用下,该连接片2能够沿预设位置断开,断开后,拆除(例如剪断)该第二连接部24即可。另外,为了便于断开连接片2,可以在连接片2的预设位置设置折痕,在进行断开操作时,可以将窄錾5与该折痕的位置对应,通过该窄錾5施加压力后,连接片2能够沿该折痕断开。
以上各实施例中,步骤S12之前,该失效处理方法还可以包括:
S11:在连接片2和与其相连的非失效电池单元14的外壳12之间放置垫块3。
由于金属材质的连接片2具有一定的延展性,当对该连接片2进行折弯时,为避免折弯过程中该连接片2与非失效电池单元14的外壳12接触而导致短路,可以在非失效电池单元14的外壳12与待折弯的连接片2之间放置垫块3,在折弯完成后,可以将该垫块3取走。该垫块3不仅能够防止连接片2与非失效电池单元14短路,还能够起到保护非失效电池单元14的外壳12的作用,防止其在折弯过程中损伤。
其中,垫块3可以由非导电材料制成,从而能够防止短路。
以上各实施例中,当电池模块M2未失效时,其各连接片2(具体为第二连接片2B)可以包括断裂引导部252、弯折引导部等结构(即与市面上常见的板状连接片结构不同),当电池模块M2失效时,仅需将与失效电池单元13相连的该第二连接片2B进行相应的操作即可,维修步骤较少。
在另一种具体实施例中,当电池模块M2未失效时,其连接片2可以为市面上常见的板状结构,其不包括上述弯折引导部和断裂引导部等结构,当电池模块M2失效时,首先将与失效电池单元13相连的连接片拆下(例如剪断该连接片与 电极端子的连接),并替换为第二连接片2B(包括弯折引导部和断裂引导部等结构,如图17所示的结构),该第二连接片2B与失效电池单元13的电极端子11连接,然后将该第二连接片2B沿弯折引导部弯折形成第一连接部23,并将第一连接部23与失效电池单元13的外壳连接即可。
本实施例中,该电池模块M2中连接片2的结构较简单,无需全部连接片均设置为如图17所示的包括断裂引导部和弯折引导部的结构,从而节省成本。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (19)

  1. 一种电池模块(M2),其特征在于,所述电池模块(M2)包括:
    多个用于串联的电池单元(1),当所述电池模块(M2)失效后,所述多个电池单元(1)包括失效电池单元(13)和至少一个与所述失效电池单元(13)相邻的非失效电池单元(14);和
    第一连接片(2A),用于连接所述失效电池单元(13)与所述至少一个非失效电池单元(14),所述第一连接片(2A)包括第一连接部(23)和与所述第一连接部(23)相连的导电部(26),所述第一连接部(23)用于与所述失效电池单元(13)的外壳(12)电气连接,所述导电部(26)用于与所述至少一个非失效电池单元(14)电气连接,以使所述电池模块(M2)恢复工作。
  2. 根据权利要求1所述的电池模块(M2),其特征在于,所述外壳(12)包括壳体(122)和与所述壳体(122)相连的顶盖(121);
    所述第一连接部(23)用于与所述失效电池单元(13)的所述壳体(122)或所述顶盖(121)相连。
  3. 根据权利要求1或2所述的电池模块(M2),其特征在于,所述第一连接部(23)相对于所述导电部(26)朝向所述失效电池单元(13)的所述外壳(12)弯折,以使所述第一连接部(23)与所述失效电池单元(13)的所述外壳(12)连接。
  4. 根据权利要求1~3中任一项所述的电池模块(M2),其特征在于,所述第一连接部(23)与所述失效电池单元(13)的所述外壳(12)中,一者设置有凸起部(121a),另一者设置有凹陷部(231);
    所述凸起部(121a)用于与所述凹陷部(231)相连。
  5. 根据权利要求4所述的电池模块(M2),其特征在于,所述凸起部(121a)设置于所述外壳(12),所述凸起部(121a)沿远离所述外壳(12)的方向凸起;
    所述凹陷部(231)为设置于所述第一连接部(23)的通孔(231a);
    其中,所述凸起部(121a)用于与所述通孔(231a)插接。
  6. 根据权利要求1~3中任一项所述的电池模块(M2),其特征在于,所述第一连接部(23)与所述失效电池单元(13)的所述外壳(12)铆接或焊接。
  7. 根据权利要求1~6中任一项所述的电池模块(M2),其特征在于,所述第一连接部(23)与所述导电部(26)之间通过第二连接部(24)连接。
  8. 根据权利要求1~7中任一项所述的电池模块(M2),其特征在于,所述电池模块(M2)还包括用于连接至少两个所述非失效电池单元(14)的第二连接片(2B);
    所述第二连接片(2B)设置有弯折引导部,用于引导所述第二连接片(2B)产生弯折,并形成相对弯折的所述第一连接部(23)和所述导电部(26)。
  9. 一种电池组(M),其特征在于,包括:如权利要求1~8中任一项所述的电池模块(M2);和
    箱体(M1),用于容纳所述电池模块(M2)。
  10. 一种装置(D),其特征在于,包括根据权利要求9所述的电池组(M),所述电池组(M)用于提供电能。
  11. 一种失效处理方法,用于处理失效电池单元(13),其特征在于,所述失效处理方法包括:
    将与所述失效电池单元(13)连接的第一连接片(2A)与所述失效电池单元(13)的外壳(12)电气连接。
  12. 根据权利要求11所述的失效处理方法,其特征在于,所述外壳(12)包括壳体(122)和与所述壳体(122)相连的顶盖(121);
    在将与所述失效电池单元(13)连接的连接片(2)与所述失效电池单元(13)的外壳(12)电气连接时,所述失效处理方法包括:
    将与所述失效电池单元(13)连接的所述第一连接片(2A)与所述失效电池单元(13)的壳体(122)或顶盖(121)连接。
  13. 根据权利要求11或12所述的失效处理方法,其特征在于,在将与所述失效电池单元(13)连接的连接片(2)与所述失效电池单元(13) 的外壳(12)电气连接之前,所述连接片(2)为第二连接片(2B),所述失效处理方法还包括:
    将所述第二连接片(2B)的与所述失效电池单元(13)连接的部分弯折,且弯折后形成包括第一连接部(23)的所述第一连接片(2A),所述第一连接部(23)用于与所述失效电池单元(13)的外壳(12)连接。
  14. 根据权利要求11~13中任一项所述的失效处理方法,其特征在于,在将与所述失效电池单元(13)连接的连接片(2)与所述失效电池单元(13)的外壳(12)电气连接之前,所述连接片(2)为第二连接片(2B),所述第二连接片(2B)包括弯折引导部,所述失效处理方法还包括:
    沿所述弯折引导部弯折所述第二连接片(2B),以便形成包括所述第一连接部(23)和所述导电部(26)的所述第一连接片(2A)。
  15. 根据权利要求14所述的失效处理方法,其特征在于,所述第二连接片(2B)还包括断裂引导部(252)和连接部分(251);
    沿所述弯折引导部弯折所述第二连接片(2B)之前,所述失效处理方法还包括:
    将所述断裂引导部(252)断开。
  16. 根据权利要求13~15中任一项所述的失效处理方法,其特征在于,所述第一连接部(23)与所述失效电池单元(13)的外壳(12)两者中,一者设置有凸起部(121a),另一者设置有凹陷部(231);
    在将与所述失效电池单元(13)连接的所述第一连接片(2A)与所述失效电池单元(13)的外壳(12)电气连接时,所述失效处理方法包括:
    将所述凸起部(121a)与所述凹陷部(231)相连。
  17. 根据权利要求16所述的失效处理方法,其特征在于,所述凸起部(121a)设置于所述外壳(12),所述凹陷部(231)为设置于所述第一连接部(23)的通孔(231a);
    在将所述凸起部(121a)与所述凹陷部(231)相连时,所述失效处理方法包括:
    将所述凸起部(121a)穿过所述通孔(231a),并将所述凸起部(121a)与所述通孔(231a)之间通过导电材料相连。
  18. 根据权利要求13~17中任一项所述的失效处理方法,其特征在于,将所述第二连接片(2B)的与所述失效电池单元(13)连接的部分弯折之前,所述失效处理方法还包括:
    将所述失效电池单元(13)的电极端子(11)和与其相连的至少一个所述第二连接片(2B)的连接断开。
  19. 根据权利要求18所述的失效处理方法,其特征在于,将所述失效电池单元(11)的电极端子(13)和与其相连的至少一个所述第二连接片(2B)的连接断开之前,所述失效处理方法还包括:
    在所述第二连接片(2B)和与其相连的所述非失效电池单元(14)的外壳(12)之间放置垫块(3)。
PCT/CN2020/083334 2020-04-03 2020-04-03 电池模块、电池组、装置及失效处理方法 WO2021196217A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227035627A KR20220154758A (ko) 2020-04-03 2020-04-03 배터리 모듈, 배터리 팩, 장치 및 고장 처리 방법
JP2022560269A JP7509911B2 (ja) 2020-04-03 電池モジュール、電池パック、装置及び故障処理方法
EP20824421.0A EP3916904A4 (en) 2020-04-03 2020-04-03 BATTERY MODULE, BATTERY KIT, DEVICE, AND TROUBLESHOOTING PROCEDURE
PCT/CN2020/083334 WO2021196217A1 (zh) 2020-04-03 2020-04-03 电池模块、电池组、装置及失效处理方法
CN202080096023.0A CN115066804B (zh) 2020-04-03 2020-04-03 电池模块、电池组、装置及失效处理方法
US17/134,005 US12015171B2 (en) 2020-04-03 2020-12-24 Battery module, battery pack, apparatus and failure treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083334 WO2021196217A1 (zh) 2020-04-03 2020-04-03 电池模块、电池组、装置及失效处理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/134,005 Continuation US12015171B2 (en) 2020-04-03 2020-12-24 Battery module, battery pack, apparatus and failure treatment method

Publications (1)

Publication Number Publication Date
WO2021196217A1 true WO2021196217A1 (zh) 2021-10-07

Family

ID=77922036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083334 WO2021196217A1 (zh) 2020-04-03 2020-04-03 电池模块、电池组、装置及失效处理方法

Country Status (5)

Country Link
US (1) US12015171B2 (zh)
EP (1) EP3916904A4 (zh)
KR (1) KR20220154758A (zh)
CN (1) CN115066804B (zh)
WO (1) WO2021196217A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332036B (zh) * 2020-04-03 2023-04-07 宁德时代新能源科技股份有限公司 电池模块、电池组、装置及失效处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826611A (zh) * 2009-03-04 2010-09-08 Sb锂摩托有限公司 可再充电电池及其模块
CN103872710A (zh) * 2012-12-11 2014-06-18 苏州宝时得电动工具有限公司 电池管理系统及电动工具
US20160260959A1 (en) * 2015-03-03 2016-09-08 Samsung Sdi Co., Ltd. Rechargeable battery having upper insulator member

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132873A (ja) 2001-10-26 2003-05-09 Mitsubishi Electric Corp 二次電池を用いた組電池
JP2004319463A (ja) 2003-03-28 2004-11-11 Matsushita Electric Ind Co Ltd 二次電池
JP5428548B2 (ja) 2009-01-21 2014-02-26 トヨタ自動車株式会社 蓄電装置
JP5644315B2 (ja) 2010-09-24 2014-12-24 トヨタ自動車株式会社 接続ユニットおよび蓄電装置
KR101359310B1 (ko) * 2011-07-25 2014-02-07 주식회사 엘지화학 안전성이 향상된 전지팩
US20130252052A1 (en) * 2012-03-21 2013-09-26 GM Global Technology Operations LLC Integrated Busbar, Terminal Pin And Circuit Protection For Sensing Individual Battery Cell Voltage
KR20120056812A (ko) * 2012-05-21 2012-06-04 주식회사 엘지화학 안전성이 향상된 중대형 전지팩
JP2014032949A (ja) 2012-07-13 2014-02-20 Toyota Motor Corp 蓄電装置の収容庫及びバスバーユニット
US20140227567A1 (en) 2013-02-14 2014-08-14 Samsung Sdi Co., Ltd. Battery module
JP6380420B2 (ja) 2016-02-04 2018-08-29 トヨタ自動車株式会社 二次電池および組電池
JP6399021B2 (ja) * 2016-03-10 2018-10-03 トヨタ自動車株式会社 二次電池および組電池
CN206650127U (zh) * 2017-02-28 2017-11-17 比亚迪股份有限公司 一种单体电池、双电池组及电池模组
CN207818750U (zh) * 2018-02-12 2018-09-04 宁德时代新能源科技股份有限公司 电池模组
DE102018204000A1 (de) 2018-03-15 2019-09-19 Audi Ag Dynamisch abschaltbares Batteriesystem für ein Kraftfahrzeug und Verfahren zum Betreiben eines dynamisch abschaltbaren Batteriesystems
JP6937268B2 (ja) * 2018-06-13 2021-09-22 株式会社オートネットワーク技術研究所 蓄電素子モジュール
KR102598669B1 (ko) * 2018-09-11 2023-11-06 에스케이온 주식회사 버스 바 및 이를 구비하는 배터리 팩
CN209496940U (zh) * 2019-04-18 2019-10-15 宁德时代新能源科技股份有限公司 一种电池模组
CN112331983B (zh) 2019-11-29 2021-10-08 宁德时代新能源科技股份有限公司 电池模块、装置及失效电池单体的失效处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826611A (zh) * 2009-03-04 2010-09-08 Sb锂摩托有限公司 可再充电电池及其模块
CN103872710A (zh) * 2012-12-11 2014-06-18 苏州宝时得电动工具有限公司 电池管理系统及电动工具
US20160260959A1 (en) * 2015-03-03 2016-09-08 Samsung Sdi Co., Ltd. Rechargeable battery having upper insulator member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3916904A4 *

Also Published As

Publication number Publication date
US20210313654A1 (en) 2021-10-07
KR20220154758A (ko) 2022-11-22
JP2023520084A (ja) 2023-05-15
CN115066804A (zh) 2022-09-16
US12015171B2 (en) 2024-06-18
CN115066804B (zh) 2024-04-16
EP3916904A4 (en) 2021-12-15
EP3916904A1 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
JP5490406B2 (ja) 車両用の電源装置
US7807288B2 (en) Battery cartridge-connecting system for battery module
WO2021196730A1 (zh) 电池模块、电池组、装置及失效处理方法
US20210143518A1 (en) Battery Module, Battery Pack, Apparatus, and Failure Handling Method
US9680138B2 (en) Battery pack
US20230170535A1 (en) Battery module, device, and failure handling method for failed battery cell
WO2021196217A1 (zh) 电池模块、电池组、装置及失效处理方法
US20230387559A1 (en) Battery, power consuming device, and method and apparatus for manufacturing battery
WO2021196729A1 (zh) 电池模块、电池组、用电装置和失效处理方法
JP7509911B2 (ja) 電池モジュール、電池パック、装置及び故障処理方法
EP3930074B1 (en) Battery module, apparatus, and failure processing method for failed battery cell
US20220384913A1 (en) Fixing member, battery, electric device, and method and system for manufacturing battery
US20230268604A1 (en) Battery, power consumption device, and method and device for producing battery
KR20170086815A (ko) 전지케이스의 고정용 돌기가 전극 탭의 고정용 관통구에 리벳 구조로 결합된 이차전지
JP2022132857A (ja) 蓄電パック

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020824421

Country of ref document: EP

Effective date: 20201223

ENP Entry into the national phase

Ref document number: 2022560269

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227035627

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE