WO2023123699A1 - 一种聚酯合成用钛系复合催化剂及其制备和应用 - Google Patents

一种聚酯合成用钛系复合催化剂及其制备和应用 Download PDF

Info

Publication number
WO2023123699A1
WO2023123699A1 PCT/CN2022/081847 CN2022081847W WO2023123699A1 WO 2023123699 A1 WO2023123699 A1 WO 2023123699A1 CN 2022081847 W CN2022081847 W CN 2022081847W WO 2023123699 A1 WO2023123699 A1 WO 2023123699A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
silicon
composite catalyst
catalyst
polyester
Prior art date
Application number
PCT/CN2022/081847
Other languages
English (en)
French (fr)
Inventor
徐锦龙
韦甜
梅锋
吉鹏
王华平
Original Assignee
江苏新视界先进功能纤维创新中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏新视界先进功能纤维创新中心有限公司 filed Critical 江苏新视界先进功能纤维创新中心有限公司
Publication of WO2023123699A1 publication Critical patent/WO2023123699A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/185Acids containing aromatic rings containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4

Definitions

  • the invention belongs to the technical field of catalysts, and relates to a titanium-based composite catalyst for polyester synthesis and its preparation and application.
  • Polyester is a class of widely used synthetic materials, among which polyethylene terephthalate (PET) has the largest output. Due to its excellent performance, it is widely used in the production of industrial products such as fibers, plastics and films. In order to increase the reaction rate and improve production capacity, catalysts need to be added during the production of PET. Catalysts not only affect esterification and polycondensation reactions, but also have important effects on various side reactions, reaction selectivity and product performance. Therefore, catalysts play a vital role in the production process of polyester.
  • PET polyethylene terephthalate
  • the metal elements that can catalyze the PET polymerization reaction are: lithium, sodium, potassium, boron, magnesium, calcium, germanium, antimony, titanium, manganese, iron, cobalt, aluminum, Copper and silver and other metal halides, oxides, alcoholates, acetates and their organic substances, etc., involve almost all the main and auxiliary group elements.
  • the catalysts used in the industrial production of polyester are mainly antimony compounds, such as antimony trioxide, antimony acetate and antimony glycol. Because antimony-containing compounds may cause harm to the environment and human body, new catalysts that can replace Sb series have attracted widespread attention. Among them, titanium-based catalysts have the most application prospects.
  • tetrabutyl titanate is mostly used as a catalyst, and the catalytic effect is good, but the defect is that it is easy to be hydrolyzed and partially inactivated, and its hydrolysis not only reduces Catalytic activity and easy to block the pipeline, causing fouling of the reactor, blocking the heating tube, reducing the service life of the melt filter, and restricting the long-term operation of the device; when the titanium content increases, the thermal stability and melting stability of the slice are affected. As a result, the molecular weight is reduced, the carboxyl end value is increased, and the color is darkened.
  • titanium salts such as titanium oxalate, titanium tetrachloride, and titanium sulfate have poor solubility in butanediol, and their catalytic effect is not as good as organic titanate. Therefore, it is very necessary to choose a catalyst that can inhibit the formation of THF, resist hydrolysis, use less, have high activity and be convenient to add.
  • Chinese patent CN1938361B discloses a catalyst for synthesizing PBT using a titanium compound and a metal element compound of group 2A of the periodic table, and the obtained PBT has excellent properties such as color tone, thermal stability, and transparency.
  • the catalyst is a titanium compound and another metal element compound of group 2A of the periodic table.
  • the titanium compound used is easily hydrolyzed when it encounters water, and it is easy to foul after long-term use, which has an impact on equipment and pipelines.
  • Another The metal element compound is solid, and it is inconvenient to continuously add to the reaction system.
  • Chinese invention patent CN110054765B discloses a preparation method and application of a silicon-titanium composite homogeneous catalyst for polyester synthesis.
  • the preparation method includes: 1) dissolving titanium compounds and silicon compounds in ethylene glycol and another In the mixed solvent composed of alcohol solvent, add the first co-catalyst and the second co-catalyst, and distill at 80-120°C under normal pressure; 2) Add the first complexing agent and the second complexing agent, Continue to distill under atmospheric pressure to obtain a silicon-titanium composite homogeneous catalyst.
  • the invention changes the ratio of titanium to silicon, introduces sulfonates, organic ligands and phosphoric acid complexing agents, wherein the phosphoric acid complexing agents can coordinate the titanium atoms and change its electronic environment , improve the activity and stability of the catalyst, and also improve the selectivity, effectively reduce the occurrence of side reactions, and prevent the polyester product from turning yellow.
  • the preparation process is cumbersome, and multiple co-catalysts are required for synergistic use.
  • the compounded sulfonates, organic ligands, and phosphoric acid complexing agents are all added in relatively high proportions, and all of them must be uniformly dispersed in the polymer. The above functions can only be achieved in the ester system.
  • the present invention provides a titanium-based composite catalyst for polyester synthesis and its preparation and application.
  • the technical solution provided by the present invention solves the problems of high activity regulation of existing titanium-based catalysts, Easy deactivation and yellowing of polyester affect its application.
  • the biochar with a porous structure is used as the catalyst support, the titanium-silicon catalyst is attached to the pores, and its activity is regulated by the phosphorus-containing functional group.
  • the occurrence of side reactions is effectively reduced, and the occurrence of side reactions is prevented.
  • the color of polyester products is yellowish.
  • the molecular weight distribution range of the obtained product is narrow, the polyester spinning performance is good, and in the process of use, a lower addition amount can be used.
  • the present invention adopts the following technical solutions:
  • a preparation method of titanium series composite catalyst for polyester synthesis comprising the steps of:
  • step (2) adding the titanium-silicon catalyst precursor obtained in step (1) to the biomass carbon material according to a certain mass ratio and mixing evenly, and then aging, drying, calcining and wet grinding to obtain a titanium-silicon composite catalyst;
  • the titanium-silicon composite catalyst is composed of a porous biochar and a titanium-silicon catalyst loaded in the porous structure;
  • the silicon catalyst and the biochar are combined based on physical force;
  • the biochar in the titanium-silicon composite catalyst has a porous structure, and the biochar plays the role of supporting the physical space, and the titanium-silicon catalyst is loaded on its porous structure.
  • the structure there are two types of components that cannot be distinguished from the macroscopic level, and there are two types of components on the microscopic level.
  • the average pore diameter of the pores in the biochar with a porous structure is 50-200nm;
  • the average particle size of the titanium-silicon catalyst in the titanium-silicon composite catalyst is 20-100nm;
  • Biochar is a highly aromatized, carbon-rich porous solid granular material produced by thermochemical conversion of carbon-rich biomass (ie, biochar material) under anaerobic or anoxic conditions. It has rich pore structure, large specific surface area and more oxygen-containing active groups on the surface.
  • the lignin content used in the present invention is not less than 20% biochar material refers to the lignin content will reach more than 20%, including coniferous wood (26-30%), hardwood (23-30%), and The expected effect cannot be obtained when the lignin content of herb plants is generally 16% or less.
  • biochar materials the pyrolysis of cellulose and hemicellulose mainly produces volatile products and a small amount of char, while the pyrolysis of lignin mainly produces charcoal and a small amount of water, so biomass with high lignin content is more suitable As a raw material for the production of biochar materials.
  • the silicon compound is more than one of tetramethyl silicate, tetraethyl silicate, tetrapropyl silicate and tetrabutyl silicate;
  • the titanium compound is more than one of tetraethyl titanate, tetrapropyl titanate, tetraisopropyl titanate, tetrabutyl titanate, tetraisooctyl titanate and titanium tetrachloride;
  • the phosphoric acid ester is one or more types of phosphoric acid monoester, phosphoric acid diester, and phosphoric acid triester.
  • the lignin content in the biochar material is not less than 20%, the purpose is to ensure that the size of the pores in the biochar of the porous structure reaches the requirement of the present invention Require.
  • the average particle diameter of the titanium-silicon composite catalyst is 100-400 nm.
  • step (1) the ratio of the added mass of the titanium compound to the mass of the silicon compound is 4:6-6:4.
  • a kind of preparation method of titanium series composite catalyst for polyester synthesis as above, concrete steps are as follows:
  • titanium-silicon catalyst precursor using sol-gel method: firstly add silicon compound, ethanol, distilled water and nitric acid to the reactor and mix in sequence; then heat and reflux the mixed material while stirring; After the compound is completely hydrolyzed (silicon compounds are all water-insoluble or slightly water-soluble compounds, it can be judged that complete hydrolysis has occurred when the silicon compound in the water disappears), add titanium compound therein, and mix well; then use a constant pressure burette Slowly add an appropriate amount of distilled water at a certain rate, and then reflux to prepare a titanium-silicon catalyst precursor (also called " TiO2 - SiO2 gel"); Esters and polyesters include PET, PBT, PTT, etc.
  • polyesters have different requirements for catalyst selectivity and catalytic activity, so it is necessary to change the ratio of titanium to silicon; the method of the present invention can be prepared from titanium silicon catalyst precursors During the process, regulation is realized by changing the addition ratio of the silicon compound and the titanium compound.
  • a new type of catalyst with titanium as the main active component compounded with silicon components meets the requirements of non-toxic and environmental protection;
  • titanium-silicon composite catalyst first add the titanium-silicon catalyst precursor obtained in step (1) to the biochar material according to a certain mass ratio and mix evenly, then place the mixed mixture at room temperature (generally 25°C) and then dried to remove water and ethanol in the reaction system; then put the dried mixture into a muffle furnace, and set the firing temperature, heating rate and firing time; After the calcining is completed, take out the calcined material, allow it to cool naturally, undergo wet grinding, and finally obtain a titanium-silicon composite catalyst;
  • the grinding process is to mechanically destroy the solid material by mechanical force, thereby forming a smaller-sized material.
  • the hardness of the silicon catalyst precursor is much greater than that of the biomass carbon material after being calcined.
  • the small-sized titanium Silicon catalyst powder is extruded into the porous structure of biomass;
  • step (1) when silicon compound, ethanol, distilled water and nitric acid are added successively, the mol ratio of silicon compound, ethanol, distilled water and nitric acid is 1 : 1.5 ⁇ 2: 0.1 ⁇ 0.5: 0.01 ⁇ 0.1; the parameters of heating and reflux while stirring are: heating temperature is 50 ⁇ 80°C, stirring speed is 500 ⁇ 1000r/min, reflux time is 2 ⁇ 4h; Adding means that the rate of addition is 10-50mL/min; after dropping, refluxing means that after dropping, reflux at 50-80°C for 2-6 hours;
  • step (2) the mass ratio of titanium-silicon catalyst precursor and biomass carbon material is 0.01 ⁇ 0.2:1; Drying after aging is Refers to drying in a blast drying oven at 100-140°C for 8-20 hours; the firing temperature is 400-800°C, the heating rate is 10°C/min, and the firing time is 2-5 hours.
  • the present invention also provides a titanium-based composite catalyst for polyester synthesis prepared by the above-mentioned method for preparing a titanium-based composite catalyst for polyester synthesis, which is composed of a phosphoric acid ester and a titanium-silicon composite catalyst;
  • the phosphate ester is adsorbed and wrapped on the surface of the titanium-silicon composite catalyst; the phosphate ester and the titanium-silicon catalyst in the titanium-silicon composite catalyst are combined by van der Waals force;
  • the mass ratio of the titanium-silicon composite catalyst to the phosphoric acid ester is 1:0.1-1.
  • the present invention also provides the application of a titanium-based composite catalyst for polyester synthesis as described above.
  • dibasic carboxylic acid or its derivatives and dibasic alcohol are used for esterification reaction at 230-260°C, and after esterification Add the titanium-based composite catalyst for polyester synthesis before the reaction, the pressure during the esterification reaction is not more than 0.3 MPa, and the esterification reaction time is 1 to 3 hours to obtain a prepolymer; then the prepolymer is subjected to polycondensation reaction under vacuum conditions , the polycondensation reaction temperature is 270-290°C, the polycondensation reaction pressure is lower than 100Pa, the polycondensation reaction time is 1-4h, and the polyester is obtained;
  • the amount of the titanium-based composite catalyst used for polyester synthesis is 1 to 10 ppm (the amount of catalyst added in the prior art is divided into varieties, if it is a non-titanium system catalyst, such as the amount of antimony-based catalyst added To reach more than 200ppm, the addition of titanium in the existing titanium series catalyst is more than 10ppm).
  • the dicarboxylic acid or its derivatives are terephthalic acid, phthalic acid, isophthalic acid, biphenyl dicarboxylic acid, oxalic acid, succinic acid, adipic acid, dimethyl terephthalate and one or more of diethyl terephthalate;
  • the dihydric alcohol is more than one of ethylene glycol, propylene glycol, butanediol and hexylene glycol.
  • Mechanism of the present invention is:
  • phosphate ester As a secondary antioxidant, phosphate ester has good anti-tarnish effect and can increase antioxidant and light stability.
  • phosphoric acid ester is also introduced to adjust the color of polyester, but the phosphoric acid ester is evenly dispersed in the raw material system of dibasic alcohol and dibasic acid in a relatively high proportion.
  • the present invention absorbs the phosphoric acid ester in the biochar, and the phosphoric acid ester forms an organic coating on the biochar, and the coated biochar will not be reunited due to the steric hindrance between the phosphoric acid esters, and at the same time
  • the phosphoric acid ester has better compatibility with the raw materials and products in the polyester, which improves the dispersibility of the catalyst of the present invention.
  • the use amount when using the titanium-based composite catalyst for polyester synthesis of the present invention to carry out polyester polymerization is lower because: the biochar of the porous structure of the present invention has played a carrier for enriching the titanium-silicon catalyst and phosphoric acid ester, and is porous
  • the structural support can realize the embedding of titanium silicon particles into the pore structure by virtue of its specific pore size and high specific surface area.
  • Existing catalysts for polyester include titanium ethylene glycol, tetrabutyl titanate, etc.
  • the introduced catalysts are uniformly dispersed in the system to achieve homogeneity Mixing to achieve the effect of promoting polymerization, which will lead to a relatively high content of the catalyst introduced, if the dispersion is not uniform, there will be a serious accident of detonation.
  • the size of the biomass in the porous structure of the present invention is 50-200nm, which can be used as individual carriers, and catalysts with smaller sizes can be loaded therein.
  • the biochar with a porous structure acts as a "place" for the titanium-silicon catalyst to catalyze the polyester reaction. Such an effect can realize the dispersibility of the titanium-silicon catalyst, and the addition amount does not need to be very high, and the usage amount is lower.
  • the polyester obtained by using the titanium-based composite catalyst for polyester synthesis of the present invention has a good color phase and a narrow molecular weight distribution;
  • the reaction occurs under the action of the titanium-silicon catalyst in the channel.
  • the unreacted dibasic acid and glycol in the diffusion system enter the channel again, and the products of the catalytic reaction diffuse out of the channel.
  • This process can be realized Raw materials are fully reacted and more homogeneous, resulting in an increase in molecular weight and a narrower molecular weight distribution.
  • the hydrolysis resistance of the titanium-based composite catalyst for polyester synthesis of the present invention is excellent, and the specific test method is: the catalyst to be evaluated is formulated with a titanium mass fraction of 0.5%, and dibasic alcohol aqueous solutions with different water contents (concentration: 0.5% ⁇ 5%) 250mL, into a 500mL round bottom flask.
  • the round bottom flask is heated by an electric heating mantle, and the upper part of the flask is connected with a condenser to condense and reflux the rising steam. Control the same heating rate, and compare the time for the white precipitate to appear in the flask, which is used to evaluate the hydrolysis resistance of the catalyst.
  • the hydrolysis resistance of the titanium-based composite catalyst for polyester synthesis is ⁇ 100 hours, and the hydrolysis resistance of the prior art is 50-100 hours.
  • the excellent hydrolysis resistance of the titanium-based composite catalyst for polyester synthesis of the present invention is because most of the existing titanium-based catalysts are in the form of chelates or organic titanium. Although the titanium-based catalysts of this type of structure are more active, they are unstable. In the polyester reaction system, the formed esterification water is hydrolyzed and inactivated, and the polyester prepared by this type of titanium-based catalyst is generally yellow in color.
  • the present invention is a titanium-silicon composite powder catalyst formed by the sol-gel process, which is then calcined and ground. There is no intermediate structure or metastable chemical structure, and the hydrolysis resistance is extremely high. .
  • (2) a kind of preparation method of titanium-based composite catalyst for polyester synthesis of the present invention has played the carrier that titanium-silicon catalyst and phosphoric acid ester are enriched with the biochar of porous structure, can improve the dispersibility of titanium-silicon catalyst and Reduce the amount of catalyst added;
  • the performance index of the polyester obtained by using the titanium-based composite catalyst for polyester synthesis of the present invention is: intrinsic viscosity 0.60 ⁇ 1.20dL/g, number average molecular weight 15000 ⁇ 40000g/mol, molecular weight distribution 1.2 ⁇ 2.2, carboxyl content ⁇ 20mol/t, b value ⁇ 3, oligomer content ⁇ 1.0%, ash content ⁇ 0.05%; good hue and narrow molecular weight distribution.
  • the room temperature refers to 25°C;
  • test method that the present invention adopts is as follows:
  • Average particle size test The average particle size, The average particle diameter of the titanium-silicon catalyst in the titanium-silicon composite catalyst
  • Number average molecular weight test adopt " gel permeation chromatography (GPC) to make eluent method with hexafluoroisopropanol " test the number average molecular weight of the polyester that makes and the molecular weight distribution of polyester;
  • a kind of preparation method of titanium series composite catalyst for polyester synthesis, concrete preparation steps are as follows:
  • titanium-silicon catalyst precursor first, silicon compound (tetramethyl silicate), ethanol, distilled water and nitric acid are sequentially added into the reactor and mixed according to the molar ratio of 1:1.5:0.1:0.01; then the mixed The finished substance was stirred at a speed of 500r/min, while being heated at a temperature of 50°C and refluxed for 2h; after the silicon compound was completely hydrolyzed, a titanium compound (tetraethyl titanate) was added thereto, and the added mass of the titanium compound was the same as The mass ratio of the silicon compound is 4.2:5.8, and mix evenly; then use a constant pressure burette to add distilled water with 20% of the molar amount of the titanium compound dropwise at a rate of 10mL/min. Reflux for 6 hours to prepare a titanium silicon catalyst precursor;
  • titanium-silicon composite catalyst first mix the titanium-silicon catalyst precursor obtained in step (1) with a biochar material with a lignin content of 20% according to a mass ratio of 0.01:1; The mixture was aged at room temperature, and then dried in a blast oven at 100°C for 20 hours to remove water and ethanol solvents in the reaction system; then the dried mixture was placed in a muffle furnace, Set the firing temperature to 400°C, the heating rate to 10°C/min, and burn in the muffle furnace for 5 hours; Squeeze the small-sized titanium-silicon catalyst powder into the porous structure of the biochar material under force, and finally obtain a titanium-silicon composite catalyst with an average particle size of 400nm;
  • the prepared titanium-silicon composite catalyst is composed of porous structure biochar and titanium-silicon catalyst supported in the porous structure; the average pore diameter of the pores of the porous structure biochar is 200nm; the titanium-silicon composite catalyst in the titanium-silicon composite catalyst The average particle size of the catalyst is 100nm;
  • titanium-based composite catalyst for polyester synthesis mixing a titanium-silicon composite catalyst with a mass ratio of 1:0.001 and phosphoric acid ester (phosphate monoester) to obtain a titanium-based composite catalyst for polyester synthesis;
  • the titanium-silicon composite catalyst for polyester synthesis is composed of phosphoric acid ester and titanium-silicon composite catalyst; the phosphoric acid ester is adsorbed and wrapped on the surface of the titanium-silicon composite catalyst; Combine;
  • the mass ratio of the titanium-silicon composite catalyst to the phosphoric acid ester is 1:0.1.
  • a kind of preparation method of titanium series composite catalyst for polyester synthesis, concrete preparation steps are as follows:
  • titanium-silicon catalyst precursor first add silicon compound (tetraethyl silicate), ethanol, distilled water and nitric acid into the reactor and mix them in sequence according to the molar ratio of 1:2:0.5:0.1; The finished substance was stirred at a speed of 1000r/min, while being heated at a temperature of 80°C and refluxed for 4h; after the silicon compound was completely hydrolyzed, a titanium compound (tetrapropyl titanate) was added thereto, and the added mass of the titanium compound was the same as The mass ratio of the silicon compound is 4.4:5.6, and mix evenly; then use a constant pressure burette to drop distilled water with 25% of the molar amount of the titanium compound at a rate of 50mL/min. Reflux for 2 hours to prepare a titanium silicon catalyst precursor;
  • titanium-silicon composite catalyst first mix the titanium-silicon catalyst precursor obtained in step (1) with a biochar material with a lignin content of 21% according to a mass ratio of 0.02:1; The mixture was aged at room temperature, and then dried in a blast oven at 140°C for 8 hours to remove water and ethanol solvents in the reaction system; then the dried mixture was placed in a muffle furnace, Set the firing temperature to 800°C, the heating rate to 10°C/min, and burn in the muffle furnace for 2 hours; Squeeze the small-sized titanium-silicon catalyst powder into the porous structure of the biochar material under force, and finally obtain a titanium-silicon composite catalyst with an average particle size of 350nm;
  • the prepared titanium-silicon composite catalyst is composed of porous-structured biochar and titanium-silicon catalyst loaded in the porous structure; the average pore diameter of the pores in the porous-structured biochar is 150nm; the titanium-silicon in the titanium-silicon composite catalyst The average particle size of the catalyst is 80nm;
  • titanium-based composite catalyst for polyester synthesis mixing a titanium-silicon composite catalyst with a mass ratio of 1:0.5 and phosphoric acid ester (phosphoric diester) to obtain a titanium-based composite catalyst for polyester synthesis;
  • the titanium-silicon composite catalyst for polyester synthesis is composed of phosphoric acid ester and titanium-silicon composite catalyst; the phosphoric acid ester is adsorbed and wrapped on the surface of the titanium-silicon composite catalyst; Combine;
  • the mass ratio of the titanium-silicon composite catalyst to the phosphoric acid ester is 1:0.2.
  • a kind of preparation method of titanium series composite catalyst for polyester synthesis, concrete preparation steps are as follows:
  • titanium-silicon catalyst precursor first, silicon compound (tetrapropyl silicate), ethanol, distilled water and nitric acid are added to the reactor in sequence according to the molar ratio of 1:1.5:0.5:0.05 and mixed; then the mixed The finished substance was stirred at a speed of 600r/min, while being heated at a temperature of 60°C and refluxed for 3h; after the silicon compound was completely hydrolyzed, a titanium compound (tetraisopropyl titanate) was added thereto, and the mass of the titanium compound added The mass ratio of the silicon compound to the silicon compound is 4.5:5.5, and mix well; then use a constant pressure burette to drop 30% of the molar amount of the titanium compound in distilled water at a rate of 20mL/min. Reflux for 5 hours to prepare a titanium silicon catalyst precursor;
  • titanium-silicon composite catalyst first mix the titanium-silicon catalyst precursor obtained in step (1) with the biochar material with a lignin content of 22% according to the mass ratio of 0.04:1; The mixture was aged at room temperature, and then dried in a blast oven at 110°C for 18 hours to remove water and ethanol solvents in the reaction system; then the dried mixture was placed in a muffle furnace, Set the firing temperature to 500°C, the heating rate to 10°C/min, and burn in the muffle furnace for 4 hours; Squeeze the small-sized titanium-silicon catalyst powder into the porous structure of the biochar material under force, and finally obtain a titanium-silicon composite catalyst with an average particle size of 280nm;
  • the prepared titanium-silicon composite catalyst is composed of porous structure biochar and titanium-silicon catalyst supported in the porous structure; the average pore diameter of the pores of the porous structure biochar is 120nm; the titanium-silicon composite catalyst in the titanium-silicon composite catalyst The average particle size of the catalyst is 60nm;
  • the titanium-silicon composite catalyst for polyester synthesis is composed of phosphoric acid ester and titanium-silicon composite catalyst; the phosphoric acid ester is adsorbed and wrapped on the surface of the titanium-silicon composite catalyst; Combine;
  • the mass ratio of the titanium-silicon composite catalyst to the phosphoric acid ester was 1:0.4.
  • a kind of preparation method of titanium series composite catalyst for polyester synthesis, concrete preparation steps are as follows:
  • titanium-silicon catalyst precursor first, silicon compound (tetrabutyl silicate), ethanol, distilled water and nitric acid are added to the reactor and mixed in sequence according to the molar ratio of 1:1.8:0.3:0.05; then the mixed The finished substance was stirred at a speed of 700r/min, while being heated at a temperature of 70°C and refluxed for 2.5h; after the silicon compound was completely hydrolyzed, a titanium compound (tetrabutyl titanate) was added to it, and the mass of the titanium compound added The ratio of the mass to the silicon compound is 5:5, and mix evenly; then use a constant pressure burette to add distilled water of 40% of the molar amount of the titanium compound dropwise at a rate of 30mL/min. Under reflux for 4h, the titanium silicon catalyst precursor is prepared;
  • titanium-silicon composite catalyst first mix the titanium-silicon catalyst precursor obtained in step (1) with a biochar material with a lignin content of 23% according to a mass ratio of 0.01:1; The mixture is placed at room temperature for aging, and after aging, it is dried in a blast drying oven at 120°C for 12 hours to remove water and ethanol solvent in the reaction system; then the dried mixture is placed in a muffle furnace, Set the firing temperature at 600°C and the heating rate at 10°C/min, and burn in the muffle furnace for 3 hours; Squeeze the small-sized titanium-silicon catalyst powder into the porous structure of the biochar material under force, and finally obtain a titanium-silicon composite catalyst with an average particle size of 260nm;
  • the prepared titanium-silicon composite catalyst is composed of porous-structured biochar and a titanium-silicon catalyst loaded in the porous structure; the average pore diameter of the pores in the porous-structured biochar is 100nm; the titanium-silicon in the titanium-silicon composite catalyst The average particle size of the catalyst is 55nm;
  • titanium-based composite catalyst for polyester synthesis mix titanium-silicon composite catalyst with a mass ratio of 1:0.2 and phosphoric acid ester (a mixture of phosphoric acid monoester and phosphoric acid diester with a mass ratio of 1:2) to obtain Titanium composite catalyst for polyester synthesis;
  • phosphoric acid ester a mixture of phosphoric acid monoester and phosphoric acid diester with a mass ratio of 1:2
  • the titanium-silicon composite catalyst for polyester synthesis is composed of phosphoric acid ester and titanium-silicon composite catalyst; the phosphoric acid ester is adsorbed and wrapped on the surface of the titanium-silicon composite catalyst; Combine;
  • the mass ratio of the titanium-silicon composite catalyst to the phosphoric acid ester was 1:0.5.
  • a kind of preparation method of titanium series composite catalyst for polyester synthesis, concrete preparation steps are as follows:
  • titanium-silicon catalyst precursor first silicon compound (a mixture of tetramethyl silicate and tetraethyl silicate with a mass ratio of 1:1), ethanol, distilled water and nitric acid, according to the molar ratio of 1:2 :0.3:0.05 were added to the reactor and mixed in turn; then the mixed material was stirred at a speed of 800r/min, while heating at a temperature of 50°C and refluxed for 2h; after the silicon compound was completely hydrolyzed, a titanium compound was added to it (tetraisooctyl titanate), the ratio of the added mass of the titanium compound to the mass of the silicon compound is 5.2:4.8, and mixed uniformly; After adding 30% distilled water dropwise, reflux at 80° C. for 2 hours to prepare a titanium-silicon catalyst precursor;
  • titanium-silicon composite catalyst first mix the titanium-silicon catalyst precursor obtained in step (1) with a biochar material with a lignin content of 24% according to a mass ratio of 0.15:1; The mixture was aged at room temperature, and then dried in a blast oven at 130°C for 10 h to remove water and ethanol solvents in the reaction system; then the dried mixture was placed in a muffle furnace, Set the firing temperature to 700°C, the heating rate to 10°C/min, and burn in the muffle furnace for 2 hours; Squeeze the small-sized titanium-silicon catalyst powder into the porous structure of the biochar material under force, and finally obtain a titanium-silicon composite catalyst with an average particle size of 180nm;
  • the prepared titanium-silicon composite catalyst is composed of porous-structured biochar and titanium-silicon catalyst supported in the porous structure; the average pore diameter of the pores in the porous-structured biochar is 75nm; the titanium-silicon composite catalyst in the titanium-silicon composite catalyst The average particle size of the catalyst is 40nm;
  • titanium-based composite catalyst for polyester synthesis mix titanium-silicon composite catalyst with a mass ratio of 1:0.3 and phosphoric acid ester (a mixture of phosphoric acid diester and phosphoric acid triester with a mass ratio of 2:1) to obtain Titanium composite catalyst for polyester synthesis;
  • phosphoric acid ester a mixture of phosphoric acid diester and phosphoric acid triester with a mass ratio of 2:1
  • the titanium-silicon composite catalyst for polyester synthesis is composed of phosphoric acid ester and titanium-silicon composite catalyst; the phosphoric acid ester is adsorbed and wrapped on the surface of the titanium-silicon composite catalyst; Combine;
  • the mass ratio of the titanium-silicon composite catalyst to the phosphoric acid ester was 1:0.8.
  • a kind of preparation method of titanium series composite catalyst for polyester synthesis, concrete preparation steps are as follows:
  • titanium silicon catalyst precursor first silicon compound (a mixture of tetramethyl silicate, tetraethyl silicate and tetrapropyl silicate with a mass ratio of 1:1:1), ethanol, distilled water and Nitric acid, according to the molar ratio of 1:1.8:0.5:0.1, was added to the reactor and mixed in turn; then the mixed material was stirred at a speed of 900r/min, while heating at a temperature of 50°C and refluxed for 3.5h; After the compound is completely hydrolyzed, add a titanium compound (titanium tetrachloride) therein, the ratio of the added mass of the titanium compound to the mass of the silicon compound is 6:4, and mix well; Add 35% of the distilled water of the molar amount of the titanium compound dropwise at a rate of dropwise, and then reflux at 50° C. for 5 hours to prepare a titanium-silicon catalyst precursor;
  • silicon compound a mixture of tetramethyl silicate, tetraethyl si
  • titanium-silicon composite catalyst first mix the titanium-silicon catalyst precursor obtained in step (1) with a biochar material with a lignin content of 25% according to a mass ratio of 0.20:1; The mixture was aged at room temperature, and then dried in a blast oven at 125°C for 11 hours to remove water and ethanol solvents in the reaction system; then the dried mixture was placed in a muffle furnace, Set the firing temperature at 650°C and the heating rate at 10°C/min, and burn in the muffle furnace for 2.5 hours; Squeeze the small-sized titanium-silicon catalyst powder into the porous structure of the biochar material under the force, and finally obtain a titanium-silicon composite catalyst with an average particle size of 100nm;
  • the prepared titanium-silicon composite catalyst is composed of porous-structured biochar and a titanium-silicon catalyst loaded in the porous structure; the average pore diameter of the pores in the porous-structured biochar is 50 nm; the titanium-silicon composite catalyst in the titanium-silicon composite catalyst The average particle size of the catalyst is 20nm;
  • titanium-based composite catalyst for polyester synthesis the titanium-silicon composite catalyst with a mass ratio of 1:0.4 and phosphoric acid ester (phosphoric acid monoester, phosphoric acid diester and phosphoric acid triester with a mass ratio of 1:1:1 The mixture) is mixed to obtain the titanium series composite catalyst for polyester synthesis;
  • the titanium-silicon composite catalyst for polyester synthesis is composed of phosphoric acid ester and titanium-silicon composite catalyst; the phosphoric acid ester is adsorbed and wrapped on the surface of the titanium-silicon composite catalyst; Combine;
  • the mass ratio of the titanium-silicon composite catalyst to the phosphoric acid ester is 1:1.
  • the performance index of the obtained polyester is shown in Table 1.
  • the performance index of the obtained polyester is shown in Table 1.
  • the prepolymer is subjected to polycondensation reaction under vacuum conditions, the polycondensation reaction temperature is 275°C, the polycondensation reaction pressure is 40Pa, and the polycondensation reaction time is 3h to obtain polyester;
  • the performance index of the obtained polyester is shown in Table 1.
  • the prepolymer is subjected to polycondensation reaction under vacuum conditions, the polycondensation reaction temperature is 280°C, the polycondensation reaction pressure is 45Pa, and the polycondensation reaction time is 2h to obtain polyester;
  • the performance index of the obtained polyester is shown in Table 1.
  • the prepolymer is subjected to polycondensation reaction under vacuum conditions, the polycondensation reaction temperature is 285°C, the polycondensation reaction pressure is 50Pa, and the polycondensation reaction time is 1.5h to obtain polyester;
  • the performance index of the obtained polyester is shown in Table 1.
  • the performance index of the obtained polyester is shown in Table 1.
  • the performance index of the obtained polyester is shown in Table 1.
  • the prepolymer is subjected to polycondensation reaction under vacuum conditions, the polycondensation reaction temperature is 275°C, the polycondensation reaction pressure is 80Pa, and the polycondensation reaction time is 2h to obtain polyester;
  • the performance index of the obtained polyester is shown in Table 1.
  • the prepolymer is subjected to polycondensation reaction under vacuum conditions, the polycondensation reaction temperature is 280°C, the polycondensation reaction pressure is 100Pa, and the polycondensation reaction time is 2.5h to obtain polyester;
  • the performance index of the obtained polyester is shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及聚酯合成用钛系复合催化剂及其制备方法和应用。所述制备方法是先制备钛硅催化剂前驱体,再将钛硅催化剂前驱体按照一定的质量比添加到生物质炭材料中混合均匀,经过陈化、干燥、焙烧和湿法研磨,得到钛硅复合催化剂,然后将质量比为1﹕0.001-0.5的钛硅复合催化剂与磷酸酯进行混合而得到所述聚酯合成用钛系复合催化剂。该聚酯合成用钛系复合催化剂中,磷酸酯吸附并包裹在钛硅复合催化剂的表面,磷酸酯与钛硅复合催化剂中的钛硅催化剂之间以范德华作用力相结合。使用该聚酯合成用钛系复合催化剂制备聚酯时,添加量少,并且制得的聚酯具有好的色相、分子量分布窄。

Description

一种聚酯合成用钛系复合催化剂及其制备和应用 技术领域
本发明属于催化剂技术领域,涉及一种聚酯合成用钛系复合催化剂及其制备和应用。
背景技术
聚酯是一类应用广泛的合成材料,其中聚对苯二甲酸乙二醇酯(PET)产量最大。由于其性能优良,被广泛运用于生产纤维、塑料和薄膜等工业产品。为了增加反应速率,提高生产能力,在PET的生产过程中需要添加催化剂。催化剂不仅对酯化和缩聚反应有影响,同时对各种副反应、反应选择性和产品性能也有重要影响,因此,催化剂在聚酯生产过程中起着至关重要的作用。通过对聚酯反应催化机理的研究发现,能够对PET聚合反应起催化作用的金属元素有:锂、钠、钾、硼、镁、钙、锗、锑、钛、锰、铁、钴、铝、铜和银等金属卤化物、氧化物、醇化物、乙酸盐及其有机物等,几乎涉及了所有的主副族元素。
目前,聚酯工业生产中所使用的催化剂主要为锑化合物,如三氧化二锑、醋酸锑和乙二醇锑等。含锑的化合物由于可能会对环境和人体造成危害,能够取代Sb系列的新型催化剂引起人们的广泛关注,这其中以钛系催化剂最具应用前景。
目前在聚酯(包括PET、PTT和PBT等)的实际生产中,大多采用钛酸四丁酯作为催化剂,催化效果较好,但是存在的缺陷是易于水解而部分失活,其水解不仅降低了催化活性而且容易堵塞管道,造成反应釜结垢,堵塞加热列管,减少了熔体过滤器的使用寿命,装置长周期运行受制约;钛含量增多时影响切片的热稳定性、熔融稳定性,从而使分子质量降低、端羧基值升高、色泽变深。另外,如草酸钛、四氯化钛、硫酸钛等钛盐类的水解产物,在丁二醇中溶解性不好,催化效果不如有机钛酸酯。因此,选择一种能够抑制四氢呋喃生成、耐水解、用量少、活性高且添加方式方便的催化剂非常有必要。
中国专利CN1938361B公开了一种使用钛化合物和周期表2A族金属元素化合物作为合成PBT的催化剂,制得的PBT色调、热稳定性、透明性等性能优异。但是,催化剂是一种钛化合物和另一种周期表2A族的金属元素化合物,所使用的钛化合物遇到水是易水解的,长周期使用易结垢、对设备和管线有影响,另一种金属元素化合物是固体,连续添加到反应体系时不方便。
中国发明专利CN110054765B,公开了一种用于聚酯合成的硅钛复合均相催化剂的制备方法及其应用,制备方法包括:1)将钛化合物、硅化合物溶于由乙二醇及另一种醇类溶剂组成的混合溶剂中,加入第一助催化剂、第二助催化剂,在80~120℃下常压蒸馏;2)加入第一 络合剂和第二络合剂,在80~120℃下继续常压蒸馏,得到硅钛复合均相催化剂。该发明在催化剂制备过程中改变了钛硅比例、引入磺酸盐类、有机配体和磷酸类络合剂,其中的磷酸类络合剂对钛原子可起到配位作用,改变其电子环境,提高催化剂的活性和稳定性,也提高选择性,有效地减少了副反应的发生,并且防止聚酯产品色相发黄。但是该制备过程繁琐,且需要多个助催化剂进行协效使用,所复配的磺酸盐类、有机配体和磷酸类络合剂添加量比例都比较高,且都是要均匀分散在聚酯体系中才能起到上述作用。
因此,如何实现钛系催化剂在聚酯合成保持一定较高的活性且不易失活,同时保证聚酯品质是研究的关键。
发明内容
为了解决现有技术中存在的上述问题,本发明提供一种聚酯合成用钛系复合催化剂及其制备和应用,采用本发明提供的技术方案解决了现有钛系催化剂活性高调控难度大、易失活以及聚酯的色泽发黄等影响其应用等问题。本发明通过多孔结构的生物质炭作为催化剂的担载,钛硅催化剂附着在孔道内,并用含磷官能团调控其活性,用于催化聚酯合成时,有效地减少了副反应的发生,并且防止聚酯产品色相发黄。获得的产物分子量分布范围窄,聚酯纺丝性能好,而且在使用的过程中,可以采用更低的添加量。
为达到上述目的,本发明采用如下技术方案:
一种聚酯合成用钛系复合催化剂的制备方法,包括如下步骤:
(1)将硅化合物、乙醇、蒸馏水和硝酸依次加入反应器中混合,再加入钛化合物,制备钛硅催化剂前驱体;
(2)将步骤(1)得到的钛硅催化剂前驱体按照一定的质量比添加到生物质炭材料中混合均匀,经过陈化、干燥、培烧和湿法研磨,得到钛硅复合催化剂;
钛硅复合催化剂由多孔结构的生物质炭及负载在所述多孔结构中的钛硅催化剂构成;所述负载是指钛硅催化剂在湿法研磨过程中嵌入到多孔结构的生物质炭中,钛硅催化剂与生物质炭是基于物理作用力相结合;钛硅复合催化剂中的生物质炭呈多孔结构,该生物质炭起到物理空间上担载的作用,将钛硅催化剂担载在其多孔结构中,宏观上是分别不出两种组成的,微观上是两种组成。
多孔结构的生物质炭中孔的平均孔径为50~200nm;
钛硅复合催化剂中的钛硅催化剂的平均粒径为20~100nm;
生物质炭是由富含碳的生物质(即生物质炭材料)在无氧或缺氧条件下经热化学转化生成的一种具有高度芳香化、富含碳素的多孔固体颗粒物质。它具有丰富的孔隙结构、较大的 比表面积且表面含有较多的含氧活性基团。本发明中采用的木质素含量不低于20%的生物质炭材料指的是木质素含量要达到20%以上,包括针叶木(26-30%),阔叶木(23-30%),而草本植物木质素含量一般为16%及以下就无法得到预期的效果。
生物质炭材料中,纤维素和半纤维素热解主要产生挥发性产物和少量的炭,而木质素热解则主要是产生炭和少量的水,因此具有高木质素含量的生物质更适合作为生产生物质炭材料的原料。
(3)将质量比为1:0.001~0.5的钛硅复合催化剂与磷酸酯进行混合得到所述聚酯合成用钛系复合催化剂。因为生物质炭是多孔结构的材料,比表面积大,在多孔结构尺寸与担载的钛硅催化剂的尺寸匹配下,可以将磷酸酯吸附到孔结构中,从而形成所述聚酯合成用钛系复合催化剂。
作为优选的技术方案:
如上所述的一种聚酯合成用钛系复合催化剂的制备方法,硅化合物为硅酸四甲酯、硅酸四乙酯、硅酸四丙酯和硅酸四丁酯中的一种以上;
钛化合物为钛酸四乙酯、钛酸四丙酯、钛酸四异丙酯、钛酸四丁酯、钛酸四异辛酯和四氯化钛中一种以上;
磷酸酯为磷酸单酯、磷酸二酯和磷酸三酯中的一种以上。
如上所述的一种聚酯合成用钛系复合催化剂的制备方法,生物质炭材料中木质素含量不低于20%,目的是保证多孔结构的生物质炭中的孔的尺寸达到本发明的要求。
如上所述的一种聚酯合成用钛系复合催化剂的制备方法,钛硅复合催化剂的平均粒径为100~400nm。
如上所述的一种聚酯合成用钛系复合催化剂的制备方法,步骤(1)中,钛化合物的加入质量与硅化合物质量之比为4:6~6:4。
如上所述的一种聚酯合成用钛系复合催化剂的制备方法,具体步骤如下:
(1)钛硅催化剂前驱体的制备(采用溶胶凝胶法):先将硅化合物、乙醇、蒸馏水和硝酸依次加入反应器中混合;再将混合后的物质一边搅拌一边加热并回流;待硅化合物完全水解后(硅化合物都是不溶于水或者微溶于水的化合物,当水中的硅化合物消失时可以判定发生了完全水解),向其中加入钛化合物,并混合均匀;然后使用恒压滴定管按一定速率缓慢的滴加适量蒸馏水,滴加完后,再进行回流,制备得到钛硅催化剂前驱体(也可以称为“TiO 2~SiO 2凝胶”);由于本发明催化的对象是聚酯,聚酯包括了PET、PBT、PTT等,不同种类的聚酯对催化剂的选择性及催化活性要求不一样,因此需要改变钛硅的比例;本发明的方法可以在钛硅催化剂前驱体制备过程中通过改变硅化合物与钛化合物的添加比例实现调控。以钛为主 要活性组分复配硅组分的新型催化剂,满足无毒环保的要求;
(2)钛硅复合催化剂的制备:先将步骤(1)得到的钛硅催化剂前驱体按照一定的质量比添加到生物质炭材料中混合均匀,然后将混合均匀后的混合物放在室温(一般为25℃)条件下陈化,陈化后进行干燥以除去反应体系中的水和乙醇;再将干燥后的混合物放入马弗炉里,设定培烧温度、升温速率与培烧时间;待培烧完成后,取出培烧物,让其自然冷却,经过湿法研磨,最后得到钛硅复合催化剂;
研磨过程是通过机械力将固态材料进行机械破坏,从而形成更加小尺寸的材料,本发明中硅催化剂前驱体经过培烧后硬度远大于生物质炭材料,在机械作用力下将小尺寸的钛硅催化剂粉体挤入生物质多孔结构中;
(3)聚酯合成用钛系复合催化剂的制备:将钛硅复合催化剂与磷酸酯进行混合,得到所述聚酯合成用钛系复合催化剂。
如上所述的一种聚酯合成用钛系复合催化剂的制备方法,步骤(1)中,将硅化合物、乙醇、蒸馏水和硝酸依次加入时,硅化合物、乙醇、蒸馏水和硝酸的摩尔比为1:1.5~2:0.1~0.5:0.01~0.1;一边搅拌一边加热并回流的参数为:加热温度为50~80℃,搅拌速度为500~1000r/min,回流时间为2~4h;一定速率滴加是指滴加速率为10~50mL/min;滴加完后,再进行回流是指滴加完后,再在50~80℃下回流2~6h;
如上所述的一种聚酯合成用钛系复合催化剂的制备方法,步骤(2)中,钛硅催化剂前驱体与生物质炭材料的质量比为0.01~0.2:1;陈化后进行干燥是指在鼓风干燥箱中100~140℃下干燥8~20h;培烧温度为400~800℃,升温速率为10℃/min,培烧时间为2~5h。
本发明还提供如上所述的一种聚酯合成用钛系复合催化剂的制备方法制得的聚酯合成用钛系复合催化剂,是由磷酸酯和钛硅复合催化剂组成;
磷酸酯吸附且包裹在钛硅复合催化剂的表面;磷酸酯与钛硅复合催化剂中的钛硅催化剂之间以范德华作用力相结合;
聚酯合成用钛系复合催化剂中,钛硅复合催化剂与磷酸酯的质量比为1:0.1~1。
本发明还提供如上所述的一种聚酯合成用钛系复合催化剂的应用,先采用二元羧酸或其衍生物和二元醇在230~260℃下进行酯化反应,且在酯化反应前加入所述聚酯合成用钛系复合催化剂,酯化反应时压力不超过0.3MPa,酯化反应时间为1~3h,得到预聚物;再将预聚物在真空条件下进行缩聚反应,缩聚反应温度为270~290℃,缩聚反应的压力低于100Pa,缩聚反应时间为1~4h,制得聚酯;
以催化剂中钛的当量计算,所述聚酯合成用钛系复合催化剂的加入量为1~10ppm(现有技术中催化剂加入量分品种,如果是非钛体系的催化剂,如锑系催化剂的加入量要达到 200ppm以上,现有钛系催化剂中钛的加入量为10ppm以上)。
所述二元羧酸或其衍生物为对苯二甲酸、邻苯二甲酸、间苯二甲酸、联苯二甲酸、乙二酸、丁二酸、己二酸、对苯二甲酸二甲酯和对苯二甲酸二乙酯中的一种以上;
所述二元醇为乙二醇、丙二醇、丁二醇和已二醇中的一种以上。
本发明的机理是:
磷酸酯作为辅助抗氧剂,具有良好的抗变色作用,可增加抗氧化性和光稳定性。现有技术中也会引入磷酸酯作为调节聚酯的色泽,但是是将磷酸酯按照较高的比例均匀分散在二元醇、二元酸原料体系中。本发明是将磷酸酯吸附在生物质炭中,磷酸酯对生物质炭形成了有机包覆,被包覆的生物质炭因磷酸酯之间的空间位阻而排斥不会团聚在一起,同时磷酸酯与聚酯中的原料及产物相容性比较好,这样提升了本发明催化剂的分散性。
使用本发明的聚酯合成用钛系复合催化剂进行聚酯聚合时的使用量更低,是因为:本发明的多孔结构的生物质炭起到了对钛硅催化剂与磷酸酯富集的载体,多孔结构的载体凭借其特定的孔洞尺寸大小与高比表面积可以实现钛硅颗粒嵌入到孔洞结构中。现有的聚酯用催化剂包括乙二醇钛、钛酸四丁酯等,加入到聚酯中催化时,为了保证聚酯的催化聚合,引入的催化剂都是均匀分散在体系中实现均相的混合从而实现促进聚合的效果,这样会导致所引入的催化剂含量比较高,如果分散不均匀还会出现爆聚的严重事故。本发明多孔结构的生物质尺寸大小在50~200nm,可以作为一个个独立的载体,可以将尺寸更小的催化剂进行负载其中。多孔结构的生物质炭起到了钛硅催化剂催化聚酯反应的“场所”。这样的效果可以实现钛硅催化剂分散性,以及添加量无需很高,使用量更低。
使用本发明的聚酯合成用钛系复合催化剂所制得聚酯具有好的色相、分子量分布窄;是因为:聚酯原料中二元醇、二元酸分子通过扩散作用进入孔道内,在孔道内的钛硅催化剂的作用下发生反应,完成反应后基于扩散体系中未反应的二元酸与二元醇再进入孔道内,而已经发生催化反应的产物扩散至孔道外,这样的过程可以实现原料充分的反应且均一性更强,从而实现分子量增加的同时分子量分布更窄。
另外,本发明的聚酯合成用钛系复合催化剂的耐水解性能优异,具体测试方法为:将待评价的催化剂配制成钛质量分数为0.5%,且不同含水量的二元醇水溶液(浓度是0.5%~5%)250mL,加入到500mL圆底烧瓶中。圆底烧瓶采用电加热套加热,烧瓶的上部接有冷凝管,冷凝回流上升的蒸汽。控制相同的加热速度,比较烧瓶出现白色沉淀的时间,用于评价催化剂的耐水解性能。本发明在此方法评价下聚酯合成用钛系复合催化剂耐水解性能为≥100h,现有技术中耐水解性50~100h。本发明的聚酯合成用钛系复合催化剂的耐水解性能优异是因为现有钛系催化剂中多以螯合物或有机钛形式,这类结构的钛系催化剂活性虽然比较高但是不 稳定,在聚酯反应体系中因形成的酯化水对其造成水解而失活,同时这类形式的钛系催化剂制备的聚酯颜色普遍发黄。本发明是溶胶-凝胶过程形成钛硅络合物凝胶,再经过培烧、研磨形成的钛硅复合型粉体催化剂,不存在中间态结构或亚稳态化学结构,耐水解性极高。
有益效果
(1)本发明的一种聚酯合成用钛系复合催化剂的制备方法,以磷酸酯作为辅助抗氧剂,可以提升了本发明催化剂的分散性;
(2)本发明的一种聚酯合成用钛系复合催化剂的制备方法,以多孔结构的生物质炭起到了对钛硅催化剂与磷酸酯富集的载体,可以提高钛硅催化剂的分散性以及降低催化剂的添加量;
(3)使用本发明的聚酯合成用钛系复合催化剂所制得聚酯性能指标为:特性粘度0.60~1.20dL/g,数均分子量15000~40000g/mol,分子量分布1.2~2.2,羧基含量≤20mol/t,b值≤3,低聚物含量≤1.0%,灰分含量≤0.05%;具有好的色相、分子量分布窄。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明在钛硅复合催化剂的制备过程中,室温是指25℃;
本发明采用的测试方法如下:
(1)平均粒径测试:采用《GB/T 15445.2-2006粒度分析结果的表述第2部分:由粒度分布计算平均粒径/直径和各次矩方法》测试钛硅复合催化剂的平均粒径、钛硅复合催化剂中的钛硅催化剂的平均粒径;
(2)平均直径测试:采用《GB/T19587-2017气体吸附BET法测定固态物质比表面积方法》测试多孔结构的生物质炭中孔的平均直径;
(3)特性粘度测试:采用《GB/T 14190-2017纤维级聚酯(PET)切片试验方法》测试制得的聚酯的特性粘度;
(4)数均分子量测试:采用《凝胶渗透色谱法(GPC)用六氟异丙醇做淋洗液方法》测试制得的聚酯的数均分子量和聚酯的分子量分布;
(5)含量测试:采用标准《GB/T 14190-2017纤维级聚酯(PET)切片试验方法》测试制得的聚酯的羧基含量、聚酯的低聚物含量、聚酯的b值和聚酯的灰分含量。
实施例1
一种聚酯合成用钛系复合催化剂的制备方法,具体制备步骤如下:
(1)钛硅催化剂前驱体的制备:先将硅化合物(硅酸四甲酯)、乙醇、蒸馏水和硝酸,按照摩尔比为1:1.5:0.1:0.01依次加入反应器中混合;再将混合后的物质一边按照500r/min的速度搅拌,一边在50℃的温度下加热并回流2h;待硅化合物完全水解后,向其中加入钛化合物(钛酸四乙酯),钛化合物的加入质量与硅化合物质量之比为4.2:5.8,并混合均匀;然后使用恒压滴定管,按照10mL/min的滴加速率滴加钛化合物摩尔量的20%的蒸馏水,滴加完后,再在50℃下回流6h,制备得到钛硅催化剂前驱体;
(2)钛硅复合催化剂的制备:先将步骤(1)得到的钛硅催化剂前驱体与木质素含量为20%的生物质炭材料按照质量比为0.01:1混合均匀;然后将混合均匀后的混合物放在室温条件下陈化,陈化后在鼓风干燥箱中在100℃下干燥20h,以除去反应体系中的水和乙醇溶剂;再将干燥后的混合物放入马弗炉里,设定培烧温度为400℃、升温速率为10℃/min,在马弗炉里培烧5h;待培烧完成后,取出培烧物,让其自然冷却,经过湿法研磨,在机械作用力下将小尺寸的钛硅催化剂粉体挤入生物质炭材料的多孔结构中,最后得到平均粒径为400nm的钛硅复合催化剂;
制得的钛硅复合催化剂由多孔结构的生物质炭及负载在所述多孔结构中的钛硅催化剂构成;多孔结构的生物质炭中孔的平均孔径为200nm;钛硅复合催化剂中的钛硅催化剂的平均粒径为100nm;
(3)聚酯合成用钛系复合催化剂的制备:将质量比为1:0.001的钛硅复合催化剂与磷酸酯(磷酸单酯)进行混合得到聚酯合成用钛系复合催化剂;
该聚酯合成用钛系复合催化剂由磷酸酯和钛硅复合催化剂组成;磷酸酯吸附且包裹在钛硅复合催化剂的表面;磷酸酯与钛硅复合催化剂中的钛硅催化剂之间以范德华作用力相结合;
制得的聚酯合成用钛系复合催化剂中,钛硅复合催化剂与磷酸酯的质量比为1:0.1。
实施例2
一种聚酯合成用钛系复合催化剂的制备方法,具体制备步骤如下:
(1)钛硅催化剂前驱体的制备:先将硅化合物(硅酸四乙酯)、乙醇、蒸馏水和硝酸,按照摩尔比为1:2:0.5:0.1依次加入反应器中混合;再将混合后的物质一边按照1000r/min的速度搅拌,一边在80℃的温度下加热并回流4h;待硅化合物完全水解后,向其中加入钛化合物(钛酸四丙酯),钛化合物的加入质量与硅化合物质量之比为4.4:5.6,并混合均匀;然后使用恒压滴定管,按照50mL/min的滴加速率滴加钛化合物摩尔量的25%的蒸馏水,滴加完后,再在80℃下回流2h,制备得到钛硅催化剂前驱体;
(2)钛硅复合催化剂的制备:先将步骤(1)得到的钛硅催化剂前驱体与木质素含量为21%的生物质炭材料按照质量比为0.02:1混合均匀;然后将混合均匀后的混合物放在室温条件下陈化,陈化后在鼓风干燥箱中在140℃下干燥8h,以除去反应体系中的水和乙醇溶剂;再将干燥后的混合物放入马弗炉里,设定培烧温度为800℃、升温速率为10℃/min,在马弗炉里培烧2h;待培烧完成后,取出培烧物,让其自然冷却,经过湿法研磨,在机械作用力下将小尺寸的钛硅催化剂粉体挤入生物质炭材料的多孔结构中,最后得到平均粒径为350nm的钛硅复合催化剂;
制得的钛硅复合催化剂由多孔结构的生物质炭及负载在所述多孔结构中的钛硅催化剂构成;多孔结构的生物质炭中孔的平均孔径为150nm;钛硅复合催化剂中的钛硅催化剂的平均粒径为80nm;
(3)聚酯合成用钛系复合催化剂的制备:将质量比为1:0.5的钛硅复合催化剂与磷酸酯(磷酸二酯)进行混合得到聚酯合成用钛系复合催化剂;
该聚酯合成用钛系复合催化剂由磷酸酯和钛硅复合催化剂组成;磷酸酯吸附且包裹在钛硅复合催化剂的表面;磷酸酯与钛硅复合催化剂中的钛硅催化剂之间以范德华作用力相结合;
制得的聚酯合成用钛系复合催化剂中,钛硅复合催化剂与磷酸酯的质量比为1:0.2。
实施例3
一种聚酯合成用钛系复合催化剂的制备方法,具体制备步骤如下:
(1)钛硅催化剂前驱体的制备:先将硅化合物(硅酸四丙酯)、乙醇、蒸馏水和硝酸,按照摩尔比为1:1.5:0.5:0.05依次加入反应器中混合;再将混合后的物质一边按照600r/min的速度搅拌,一边在60℃的温度下加热并回流3h;待硅化合物完全水解后,向其中加入钛化合物(钛酸四异丙酯),钛化合物的加入质量与硅化合物质量之比为4.5:5.5,并混合均匀;然后使用恒压滴定管,按照20mL/min的滴加速率滴加钛化合物摩尔量的30%的蒸馏水,滴加完后,再在60℃下回流5h,制备得到钛硅催化剂前驱体;
(2)钛硅复合催化剂的制备:先将步骤(1)得到的钛硅催化剂前驱体与木质素含量为22%的生物质炭材料按照质量比为0.04:1混合均匀;然后将混合均匀后的混合物放在室温条件下陈化,陈化后在鼓风干燥箱中在110℃下干燥18h,以除去反应体系中的水和乙醇溶剂;再将干燥后的混合物放入马弗炉里,设定培烧温度为500℃、升温速率为10℃/min,在马弗炉里培烧4h;待培烧完成后,取出培烧物,让其自然冷却,经过湿法研磨,在机械作用力下将小尺寸的钛硅催化剂粉体挤入生物质炭材料的多孔结构中,最后得到平均粒径为280nm的钛硅复合催化剂;
制得的钛硅复合催化剂由多孔结构的生物质炭及负载在所述多孔结构中的钛硅催化剂构 成;多孔结构的生物质炭中孔的平均孔径为120nm;钛硅复合催化剂中的钛硅催化剂的平均粒径为60nm;
(3)聚酯合成用钛系复合催化剂的制备:将质量比为1:0.1的钛硅复合催化剂与磷酸酯(磷酸三酯)进行混合得到聚酯合成用钛系复合催化剂;
该聚酯合成用钛系复合催化剂由磷酸酯和钛硅复合催化剂组成;磷酸酯吸附且包裹在钛硅复合催化剂的表面;磷酸酯与钛硅复合催化剂中的钛硅催化剂之间以范德华作用力相结合;
制得的聚酯合成用钛系复合催化剂中,钛硅复合催化剂与磷酸酯的质量比为1:0.4。
实施例4
一种聚酯合成用钛系复合催化剂的制备方法,具体制备步骤如下:
(1)钛硅催化剂前驱体的制备:先将硅化合物(硅酸四丁酯)、乙醇、蒸馏水和硝酸,按照摩尔比为1:1.8:0.3:0.05依次加入反应器中混合;再将混合后的物质一边按照700r/min的速度搅拌,一边在70℃的温度下加热并回流2.5h;待硅化合物完全水解后,向其中加入钛化合物(钛酸四丁酯),钛化合物的加入质量与硅化合物质量之比为5:5,并混合均匀;然后使用恒压滴定管,按照30mL/min的滴加速率滴加钛化合物摩尔量的40%的蒸馏水,滴加完后,再在70℃下回流4h,制备得到钛硅催化剂前驱体;
(2)钛硅复合催化剂的制备:先将步骤(1)得到的钛硅催化剂前驱体与木质素含量为23%的生物质炭材料按照质量比为0.01:1混合均匀;然后将混合均匀后的混合物放在室温条件下陈化,陈化后在鼓风干燥箱中在120℃下干燥12h,以除去反应体系中的水和乙醇溶剂;再将干燥后的混合物放入马弗炉里,设定培烧温度为600℃、升温速率为10℃/min,在马弗炉里培烧3h;待培烧完成后,取出培烧物,让其自然冷却,经过湿法研磨,在机械作用力下将小尺寸的钛硅催化剂粉体挤入生物质炭材料的多孔结构中,最后得到平均粒径为260nm的钛硅复合催化剂;
制得的钛硅复合催化剂由多孔结构的生物质炭及负载在所述多孔结构中的钛硅催化剂构成;多孔结构的生物质炭中孔的平均孔径为100nm;钛硅复合催化剂中的钛硅催化剂的平均粒径为55nm;
(3)聚酯合成用钛系复合催化剂的制备:将质量比为1:0.2的钛硅复合催化剂与磷酸酯(质量比为1:2的磷酸单酯和磷酸二酯的混合物)进行混合得到聚酯合成用钛系复合催化剂;
该聚酯合成用钛系复合催化剂由磷酸酯和钛硅复合催化剂组成;磷酸酯吸附且包裹在钛硅复合催化剂的表面;磷酸酯与钛硅复合催化剂中的钛硅催化剂之间以范德华作用力相结合;
制得的聚酯合成用钛系复合催化剂中,钛硅复合催化剂与磷酸酯的质量比为1:0.5。
实施例5
一种聚酯合成用钛系复合催化剂的制备方法,具体制备步骤如下:
(1)钛硅催化剂前驱体的制备:先将硅化合物(质量比为1:1的硅酸四甲酯和硅酸四乙酯混合物)、乙醇、蒸馏水和硝酸,按照摩尔比为1:2:0.3:0.05依次加入反应器中混合;再将混合后的物质一边按照800r/min的速度搅拌,一边在50℃的温度下加热并回流2h;待硅化合物完全水解后,向其中加入钛化合物(钛酸四异辛酯),钛化合物的加入质量与硅化合物质量之比为5.2:4.8,并混合均匀;然后使用恒压滴定管,按照40mL/min的滴加速率滴加钛化合物摩尔量的30%的蒸馏水,滴加完后,再在80℃下回流2h,制备得到钛硅催化剂前驱体;
(2)钛硅复合催化剂的制备:先将步骤(1)得到的钛硅催化剂前驱体与木质素含量为24%的生物质炭材料按照质量比为0.15:1混合均匀;然后将混合均匀后的混合物放在室温条件下陈化,陈化后在鼓风干燥箱中在130℃下干燥10h,以除去反应体系中的水和乙醇溶剂;再将干燥后的混合物放入马弗炉里,设定培烧温度为700℃、升温速率为10℃/min,在马弗炉里培烧2h;待培烧完成后,取出培烧物,让其自然冷却,经过湿法研磨,在机械作用力下将小尺寸的钛硅催化剂粉体挤入生物质炭材料的多孔结构中,最后得到平均粒径为180nm的钛硅复合催化剂;
制得的钛硅复合催化剂由多孔结构的生物质炭及负载在所述多孔结构中的钛硅催化剂构成;多孔结构的生物质炭中孔的平均孔径为75nm;钛硅复合催化剂中的钛硅催化剂的平均粒径为40nm;
(3)聚酯合成用钛系复合催化剂的制备:将质量比为1:0.3的钛硅复合催化剂与磷酸酯(质量比为2:1的磷酸二酯和磷酸三酯的混合物)进行混合得到聚酯合成用钛系复合催化剂;
该聚酯合成用钛系复合催化剂由磷酸酯和钛硅复合催化剂组成;磷酸酯吸附且包裹在钛硅复合催化剂的表面;磷酸酯与钛硅复合催化剂中的钛硅催化剂之间以范德华作用力相结合;
制得的聚酯合成用钛系复合催化剂中,钛硅复合催化剂与磷酸酯的质量比为1:0.8。
实施例6
一种聚酯合成用钛系复合催化剂的制备方法,具体制备步骤如下:
(1)钛硅催化剂前驱体的制备:先将硅化合物(质量比为1:1:1的硅酸四甲酯、硅酸四乙酯和硅酸四丙酯的混合物)、乙醇、蒸馏水和硝酸,按照摩尔比为1:1.8:0.5:0.1依次加入反应器中混合;再将混合后的物质一边按照900r/min的速度搅拌,一边在50℃的温度下加热并回流3.5h;待硅化合物完全水解后,向其中加入钛化合物(四氯化钛),钛化合物的加入质量与硅化合物质量之比为6:4,并混合均匀;然后使用恒压滴定管,按照50mL/min的滴加速率滴加钛化合物摩尔量的35%的蒸馏水,滴加完后,再在50℃下回流5h,制备得到钛硅催化剂前驱体;
(2)钛硅复合催化剂的制备:先将步骤(1)得到的钛硅催化剂前驱体与木质素含量为25%的生物质炭材料按照质量比为0.20:1混合均匀;然后将混合均匀后的混合物放在室温条件下陈化,陈化后在鼓风干燥箱中在125℃下干燥11h,以除去反应体系中的水和乙醇溶剂;再将干燥后的混合物放入马弗炉里,设定培烧温度为650℃、升温速率为10℃/min,在马弗炉里培烧2.5h;待培烧完成后,取出培烧物,让其自然冷却,经过湿法研磨,在机械作用力下将小尺寸的钛硅催化剂粉体挤入生物质炭材料的多孔结构中,最后得到平均粒径为100nm的钛硅复合催化剂;
制得的钛硅复合催化剂由多孔结构的生物质炭及负载在所述多孔结构中的钛硅催化剂构成;多孔结构的生物质炭中孔的平均孔径为50nm;钛硅复合催化剂中的钛硅催化剂的平均粒径为20nm;
(3)聚酯合成用钛系复合催化剂的制备:将质量比为1:0.4的钛硅复合催化剂与磷酸酯(质量比为1:1:1的磷酸单酯、磷酸二酯和磷酸三酯的混合物)进行混合得到聚酯合成用钛系复合催化剂;
该聚酯合成用钛系复合催化剂由磷酸酯和钛硅复合催化剂组成;磷酸酯吸附且包裹在钛硅复合催化剂的表面;磷酸酯与钛硅复合催化剂中的钛硅催化剂之间以范德华作用力相结合;
制得的聚酯合成用钛系复合催化剂中,钛硅复合催化剂与磷酸酯的质量比为1:1。
实施例7
一种聚酯合成用钛系复合催化剂的应用,其具体步骤如下:
(1)采用二元羧酸或其衍生物(对苯二甲酸)和二元醇(乙二醇)在230℃下进行酯化反应,且在酯化反应前加入10ppm(以催化剂中钛的当量计算)实施例1所制得的聚酯合成用钛系复合催化剂,酯化反应时压力为0.1MPa,酯化反应时间为3h,得到预聚物;
(2)将预聚物在真空条件下进行缩聚反应,缩聚反应温度为270℃,缩聚反应的压力为20Pa,缩聚反应时间为4h,制得聚酯;
制得的聚酯的性能指标见表1。
实施例8
一种聚酯合成用钛系复合催化剂的应用,其具体步骤如下:
(1)采用二元羧酸或其衍生物(邻苯二甲酸)和二元醇(丙二醇)在260℃下进行酯化反应,且在酯化反应前加入1ppm(以催化剂中钛的当量计算)实施例2所制得的聚酯合成用钛系复合催化剂,酯化反应时压力为0.15MPa,酯化反应时间为2h,得到预聚物;
(2)将预聚物在真空条件下进行缩聚反应,缩聚反应温度为290℃,缩聚反应的压力为30Pa,缩聚反应时间为1h,制得聚酯;
制得的聚酯的性能指标见表1。
实施例9
一种聚酯合成用钛系复合催化剂的应用,其具体步骤如下:
(1)采用二元羧酸或其衍生物(间苯二甲酸)和二元醇(丁二醇)在240℃下进行酯化反应,且在酯化反应前加入4ppm(以催化剂中钛的当量计算)实施例3所制得的聚酯合成用钛系复合催化剂,酯化反应时压力为0.20MPa,酯化反应时间为2h,得到预聚物;
(2)将预聚物在真空条件下进行缩聚反应,缩聚反应温度为275℃,缩聚反应的压力为40Pa,缩聚反应时间为3h,制得聚酯;
制得的聚酯的性能指标见表1。
实施例10
一种聚酯合成用钛系复合催化剂的应用,其具体步骤如下:
(1)采用二元羧酸或其衍生物(联苯二甲酸)和二元醇(已二醇)在250℃下进行酯化反应,且在酯化反应前加入3ppm(以催化剂中钛的当量计算)实施例4所制得的聚酯合成用钛系复合催化剂,酯化反应时压力为0.22MPa,酯化反应时间为1.5h,得到预聚物;
(2)将预聚物在真空条件下进行缩聚反应,缩聚反应温度为280℃,缩聚反应的压力为45Pa,缩聚反应时间为2h,制得聚酯;
制得的聚酯的性能指标见表1。
实施例11
一种聚酯合成用钛系复合催化剂的应用,其具体应用如下:
(1)采用二元羧酸或其衍生物(乙二酸)和二元醇(乙二醇)在235℃下进行酯化反应,且在酯化反应前加入5ppm(以催化剂中钛的当量计算)实施例5所制得的聚酯合成用钛系复合催化剂,酯化反应时压力为0.18MPa,酯化反应时间为2.5h,得到预聚物;
(2)将预聚物在真空条件下进行缩聚反应,缩聚反应温度为285℃,缩聚反应的压力为50Pa,缩聚反应时间为1.5h,制得聚酯;
制得的聚酯的性能指标见表1。
实施例12
一种聚酯合成用钛系复合催化剂的应用,其具体应用如下:
(1)采用二元羧酸或其衍生物(丁二酸)和二元醇(丙二醇)在245℃下进行酯化反应,且在酯化反应前加入4.5ppm(以催化剂中钛的当量计算)实施例6所制得的聚酯合成用钛系复合催化剂,酯化反应时压力为0.20MPa,酯化反应时间为1h,得到预聚物;
(2)将预聚物在真空条件下进行缩聚反应,缩聚反应温度为270℃,缩聚反应的压力为 55Pa,缩聚反应时间为2.5h,制得聚酯;
制得的聚酯的性能指标见表1。
实施例13
一种聚酯合成用钛系复合催化剂的应用,其具体应用如下:
(1)采用二元羧酸或其衍生物(己二酸)和二元醇(丁二醇)在255℃下进行酯化反应,且在酯化反应前加入4ppm(以催化剂中钛的当量计算)实施例1所制得的聚酯合成用钛系复合催化剂,酯化反应时压力为0.25MPa,酯化反应时间为1.2h,得到预聚物;
(2)将预聚物在真空条件下进行缩聚反应,缩聚反应温度为290℃,缩聚反应的压力为60Pa,缩聚反应时间为1h,制得聚酯;
制得的聚酯的性能指标见表1。
实施例14
一种聚酯合成用钛系复合催化剂的应用,其具体应用如下:
(1)采用二元羧酸或其衍生物(对苯二甲酸二甲酯)和二元醇(已二醇)在240℃下进行酯化反应,且在酯化反应前加入3.5ppm(以催化剂中钛的当量计算)实施例2所制得的聚酯合成用钛系复合催化剂,酯化反应时压力为0.28MPa,酯化反应时间为2h,得到预聚物;
(2)将预聚物在真空条件下进行缩聚反应,缩聚反应温度为275℃,缩聚反应的压力为80Pa,缩聚反应时间为2h,制得聚酯;
制得的聚酯的性能指标见表1。
实施例15
一种聚酯合成用钛系复合催化剂的应用,其具体应用如下:
(1)采用二元羧酸或其衍生物(对苯二甲酸二乙酯)和二元醇(乙二醇)在235℃下进行酯化反应,且在酯化反应前加入6.5ppm(以催化剂中钛的当量计算)实施例3所制得的聚酯合成用钛系复合催化剂,酯化反应时压力为0.30MPa,酯化反应时间为1.5h,得到预聚物;
(2)将预聚物在真空条件下进行缩聚反应,缩聚反应温度为280℃,缩聚反应的压力为100Pa,缩聚反应时间为2.5h,制得聚酯;
制得的聚酯的性能指标见表1。
表1制得的聚酯的性能指标
Figure PCTCN2022081847-appb-000001
Figure PCTCN2022081847-appb-000002

Claims (8)

  1. 一种聚酯合成用钛系复合催化剂的制备方法,其特征是包括如下步骤:
    (1)将硅化合物、乙醇、蒸馏水和硝酸依次加入反应器中混合,再加入钛化合物,制备钛硅催化剂前驱体;硅化合物为硅酸四甲酯、硅酸四乙酯、硅酸四丙酯和硅酸四丁酯中的一种以上;钛化合物为钛酸四乙酯、钛酸四丙酯、钛酸四异丙酯、钛酸四丁酯、钛酸四异辛酯和四氯化钛中一种以上;步骤(1)中,钛化合物的加入质量与硅化合物质量之比为4:6~6:4;
    (2)将步骤(1)得到的钛硅催化剂前驱体按照一定的质量比添加到生物质炭材料中混合均匀,经过陈化、干燥、培烧和湿法研磨,得到钛硅复合催化剂;钛硅催化剂前驱体与生物质炭材料的质量比为0.01~0.2:1;生物质炭材料中木质素含量不低于20%;
    钛硅复合催化剂由多孔结构的生物质炭及负载在所述多孔结构中的钛硅催化剂构成;
    多孔结构的生物质炭中孔的平均孔径为50~200nm;
    钛硅复合催化剂中的钛硅催化剂的平均粒径为20~100nm;
    (3)将质量比为1:0.001~0.5的钛硅复合催化剂与磷酸酯进行混合得到所述聚酯合成用钛系复合催化剂。
  2. 根据权利要求1所述的一种聚酯合成用钛系复合催化剂的制备方法,其特征在于,磷酸酯为磷酸单酯、磷酸二酯和磷酸三酯中的一种以上。
  3. 根据权利要求1所述的一种聚酯合成用钛系复合催化剂的制备方法,其特征在于,钛硅复合催化剂的平均粒径为100~400nm。
  4. 根据权利要求1所述的一种聚酯合成用钛系复合催化剂的制备方法,其特征在于,具体步骤如下:
    (1)钛硅催化剂前驱体的制备:先将硅化合物、乙醇、蒸馏水和硝酸依次加入反应器中混合;再将混合后的物质一边搅拌一边加热并回流;待硅化合物完全水解后,向其中加入钛化合物,并混合均匀;然后按一定速率滴加适量蒸馏水,滴加完后,再进行回流,制备得到钛硅催化剂前驱体;
    (2)钛硅复合催化剂的制备:先将步骤(1)得到的钛硅催化剂前驱体按照一定的质量比添加到生物质炭材料中混合均匀,然后将混合均匀后的混合物放在室温条件下陈化,陈化后进行干燥以除去反应体系中的水和乙醇;再将干燥后的混合物放入马弗炉里,设定培烧温度、升温速率与培烧时间;待培烧完成后,取出培烧物,让其自然冷却,经过湿法研磨,最后得到钛硅复合催化剂;
    (3)聚酯合成用钛系复合催化剂的制备:将钛硅复合催化剂与磷酸酯进行混合,得到所述聚酯合成用钛系复合催化剂。
  5. 根据权利要求4所述的一种聚酯合成用钛系复合催化剂的制备方法,其特征在于,步骤(1)中,将硅化合物、乙醇、蒸馏水和硝酸依次加入时,硅化合物、乙醇、蒸馏水和硝酸的摩尔比为1:1.5~2:0.1~0.5:0.01~0.1;一边搅拌一边加热并回流的参数为:加热温度为50~80℃,搅拌速度为500~1000r/min,回流时间为2~4h;一定速率滴加是指滴加速率为10~50mL/min;滴加完后,再进行回流是指滴加完后,再在50~80℃下回流2~6h。
  6. 根据权利要求4所述的一种聚酯合成用钛系复合催化剂的制备方法,其特征在于,步骤(2)中,陈化后进行干燥是指在鼓风干燥箱中100~140℃下干燥8~20h;培烧温度为400~800℃,升温速率为10℃/min,培烧时间为2~5h。
  7. 根据权利要求1~6中任一项所述的一种聚酯合成用钛系复合催化剂的制备方法制得的聚酯合成用钛系复合催化剂,其特征是:由磷酸酯和钛硅复合催化剂组成;
    磷酸酯吸附且包裹在钛硅复合催化剂的表面;磷酸酯与钛硅复合催化剂中的钛硅催化剂之间以范德华作用力相结合;
    聚酯合成用钛系复合催化剂中,钛硅复合催化剂与磷酸酯的质量比为1:0.1~1。
  8. 根据权利要求7所述的一种聚酯合成用钛系复合催化剂的应用,其特征是:先采用二元羧酸或其衍生物和二元醇进行酯化反应,且在酯化反应前加入所述聚酯合成用钛系复合催化剂,得到预聚物;再将预聚物进行缩聚反应制得聚酯;
    以催化剂中钛的当量计算,所述聚酯合成用钛系复合催化剂的加入量为1~10ppm。
PCT/CN2022/081847 2021-12-31 2022-03-19 一种聚酯合成用钛系复合催化剂及其制备和应用 WO2023123699A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111649537.7 2021-12-31
CN202111649537.7A CN113999379B (zh) 2021-12-31 2021-12-31 一种聚酯合成用钛系复合催化剂及其制备和应用

Publications (1)

Publication Number Publication Date
WO2023123699A1 true WO2023123699A1 (zh) 2023-07-06

Family

ID=79932374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081847 WO2023123699A1 (zh) 2021-12-31 2022-03-19 一种聚酯合成用钛系复合催化剂及其制备和应用

Country Status (2)

Country Link
CN (1) CN113999379B (zh)
WO (1) WO2023123699A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999379B (zh) * 2021-12-31 2022-03-15 江苏新视界先进功能纤维创新中心有限公司 一种聚酯合成用钛系复合催化剂及其制备和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019751A (ja) * 1999-07-07 2001-01-23 Toray Ind Inc ポリエステルの製造方法
JP2001288262A (ja) * 2000-04-07 2001-10-16 Toray Ind Inc ポリエステルの製造方法
CN102391490A (zh) * 2011-09-29 2012-03-28 南昌航空大学 一种负载型钛系聚酯催化剂的制备方法及其应用
CN102492121A (zh) * 2011-12-13 2012-06-13 南昌航空大学 一种稀土包裹型钛系聚酯催化剂的制备方法及其应用
CN108727575A (zh) * 2018-05-21 2018-11-02 东华大学 一种生物基2,5-呋喃二甲酸基共聚酯的制备方法
CN109265668A (zh) * 2018-09-05 2019-01-25 浙江恒澜科技有限公司 一种用于聚酯合成的硅钛复合均相催化剂的制备方法及其应用
CN113999379A (zh) * 2021-12-31 2022-02-01 江苏新视界先进功能纤维创新中心有限公司 一种聚酯合成用钛系复合催化剂及其制备和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4443648C2 (de) * 1994-12-08 1999-01-21 Akzo Nobel Nv Verfahren zur Herstellung von Polyestern und Copolyestern
CN102172538B (zh) * 2011-03-16 2013-02-20 中国科学院长春应用化学研究所 一种钛iv化合物/纳米二氧化硅负载催化剂及其制备方法
CN108660537B (zh) * 2018-05-21 2020-05-19 东华大学 一种热敏性共聚酯纤维的制备方法
CN111057226B (zh) * 2019-12-30 2022-05-03 华润化学材料科技股份有限公司 一种纳米负载钛系复合催化剂及其制备方法和在聚酯合成中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019751A (ja) * 1999-07-07 2001-01-23 Toray Ind Inc ポリエステルの製造方法
JP2001288262A (ja) * 2000-04-07 2001-10-16 Toray Ind Inc ポリエステルの製造方法
CN102391490A (zh) * 2011-09-29 2012-03-28 南昌航空大学 一种负载型钛系聚酯催化剂的制备方法及其应用
CN102492121A (zh) * 2011-12-13 2012-06-13 南昌航空大学 一种稀土包裹型钛系聚酯催化剂的制备方法及其应用
CN108727575A (zh) * 2018-05-21 2018-11-02 东华大学 一种生物基2,5-呋喃二甲酸基共聚酯的制备方法
CN109265668A (zh) * 2018-09-05 2019-01-25 浙江恒澜科技有限公司 一种用于聚酯合成的硅钛复合均相催化剂的制备方法及其应用
CN113999379A (zh) * 2021-12-31 2022-02-01 江苏新视界先进功能纤维创新中心有限公司 一种聚酯合成用钛系复合催化剂及其制备和应用

Also Published As

Publication number Publication date
CN113999379A (zh) 2022-02-01
CN113999379B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
WO2023123699A1 (zh) 一种聚酯合成用钛系复合催化剂及其制备和应用
CN112812286B (zh) 一种以溶胶-凝胶法制备聚酯钛系催化剂的方法
JP2014001257A (ja) バイオマス資源由来ポリエステルの製造方法およびバイオマス資源由来ポリエステル
CN111378105B (zh) 生物质复合催化剂的制备方法及聚对苯二甲酸己二酸丁二醇酯的制备方法
CN109400856B (zh) 一种采用金属复合催化剂催化合成高特性粘度且良好色相的聚对苯二甲酸丙二醇酯的方法
CN103724606B (zh) 一种共聚酯及其制备方法
CN111088546A (zh) 多釜熔体直纺制备钛基聚酯长丝的方法
WO2022242168A1 (zh) 一种具有抗紫外性能的涤纶纤维及其制备方法
CN111040143B (zh) 一种水溶性聚酯的制备方法
TW200401668A (en) Titanium-zirconium catalyst compositions and use thereof
CN111607074B (zh) 一种锑钛双金属催化制备对苯二甲酸-乙二醇-异山梨醇共聚酯的方法
TW561163B (en) Process for preparing polypropylene terephthalate/polyethylene terephthalate copolymers
CN111058123B (zh) 三釜熔体直纺制备钛基聚酯短纤的方法
JP7053960B2 (ja) 生分解可能なポリエステル繊維の製造方法
CN111704713B (zh) 一种用于聚酯合成的钛系催化剂及制备方法
CN109517147B (zh) 一种环保型聚酯的制备方法
CN103012764A (zh) 含噁唑结构的无规共聚酯树脂及其制备方法及高强度共聚酯纤维
Yan et al. Studies on CuCe0. 75Zr0. 25Ox preparation using bacterial cellulose and its application in toluene complete oxidation
CN113072692B (zh) 一种用于聚酯合成的高分散性钛系催化剂制备方法
CN113388100B (zh) 一种用于脂肪族-芳香族共聚酯合成的催化剂体系及其应用
CN115785409A (zh) 一种钛催化剂及其制备方法
CN111019101A (zh) 一种制备pbt共聚酯的方法
CN109722729B (zh) 带叔丁基侧基的己二醇改性聚酯纤维及其制备方法
RU2816364C1 (ru) Способ получения комплексного стабилизатора синтеза полиэтилентерефталата
KR20120084522A (ko) 폴리에스테르 중합 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913005

Country of ref document: EP

Kind code of ref document: A1