WO2023123645A1 - 一种新型结构的高速传输线缆及其加工方法 - Google Patents

一种新型结构的高速传输线缆及其加工方法 Download PDF

Info

Publication number
WO2023123645A1
WO2023123645A1 PCT/CN2022/077676 CN2022077676W WO2023123645A1 WO 2023123645 A1 WO2023123645 A1 WO 2023123645A1 CN 2022077676 W CN2022077676 W CN 2022077676W WO 2023123645 A1 WO2023123645 A1 WO 2023123645A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
core
shielding layer
cable
wrapping
Prior art date
Application number
PCT/CN2022/077676
Other languages
English (en)
French (fr)
Inventor
王德全
周端希
耽有帅
倪冬华
沈福良
Original Assignee
浙江兆龙互连科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江兆龙互连科技股份有限公司 filed Critical 浙江兆龙互连科技股份有限公司
Publication of WO2023123645A1 publication Critical patent/WO2023123645A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/1875Multi-layer sheaths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • H01B13/14Insulating conductors or cables by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/24Sheathing; Armouring; Screening; Applying other protective layers by extrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/22Sheathing; Armouring; Screening; Applying other protective layers
    • H01B13/26Sheathing; Armouring; Screening; Applying other protective layers by winding, braiding or longitudinal lapping
    • H01B13/2613Sheathing; Armouring; Screening; Applying other protective layers by winding, braiding or longitudinal lapping by longitudinal lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/32Filling or coating with impervious material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0275Disposition of insulation comprising one or more extruded layers of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/186Sheaths comprising longitudinal lapped non-metallic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/187Sheaths comprising extruded non-metallic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/1895Internal space filling-up means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/22Metal wires or tapes, e.g. made of steel
    • H01B7/221Longitudinally placed metal wires or tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • H01B7/22Metal wires or tapes, e.g. made of steel
    • H01B7/228Metal braid

Definitions

  • the invention belongs to the technical field of high-speed transmission cables, in particular to a high-speed transmission cable with a new structure and a processing method thereof.
  • High-speed transmission cables have a high transmission frequency and support high transmission rate channels. They are mainly used in communication transmission, data centers, information services and other fields to meet the high-speed transmission and exchange of large-capacity audio, video, image and other data signals. , such as connecting cables between cluster servers in large data centers, such as gateway switches, 10 Gigabit Ethernet switches, providing cloud computing for users, connecting cables such as data center switches, routers, and host adapters in large communication rooms, can also be used in high-speed and high-speed In the high-density pluggable I/O interface solution, with the multi-channel interconnector, it can communicate with other types of 100G modules.
  • the existing high-speed transmission line is a symmetrical double-core parallel twinaxial cable.
  • the conventional symmetrical double-core parallel twinaxial cable structure is that the two parallel insulated single wires are directly coated with a layer of tape material with a smaller dielectric coefficient.
  • the disadvantages are: since the two single wires are directly coated with a layer of EPTFE tape material, the structural stability of the single pair is deviated; when multiple pairs are cabled, the structure is prone to deformation, which in turn affects the echo performance of the wire.
  • the purpose of the present invention is to overcome the defects in the above-mentioned prior art, and provide a high-speed transmission cable with a new structure and a processing method thereof, which have a stable structure, small deformation of the wire pairs during cable formation, and stable transmission performance.
  • the technical solution adopted in the present invention is: a high-speed transmission cable with a new structure, which is composed of a single core wire, including two single wires and a wrapping material layer covering the two single wires, and the two single wires There is a gap between the wrapping material layer;
  • the single wire includes a central conductor and an insulating layer covering the central conductor, the insulating layer is covered with an inner sheath layer, the inner sheath layer is covered with a shielding layer, and the shielding layer
  • the outer covering is covered with a tape; a drain line is arranged between the shielding layer and the tape, and the drain line is relatively arranged on both sides of the shielding layer.
  • the packaging material layer is wrapped and arranged outside the two single wires, and the overlapping ratio of the packaging material layer is greater than 25%.
  • the inner sheath layer is a hollow oval structure.
  • the present invention includes multiple pairs of core wires, the multiple pairs of core wires are twisted to form an inner cable core and an outer cable core, and the outer cable core is covered outside the inner cable core; the inner cable core is provided with a guarantee The roundness filler of the inner cable core, the outer cable core is covered with a general shielding layer, the general shielding layer is covered with a braided shielding layer, and the braided shielding layer is covered with a sheath layer.
  • the inner cable core is covered with a protective layer, and the filler is located in the protective layer.
  • the outer cable core is also covered with a protective layer, and the protective layer is located between the outer cable core and the overall shielding layer.
  • a method for processing a high-speed transmission cable with a novel structure comprising the following steps:
  • Step A Single wire extrusion, using a high-temperature extruder to coat the insulating layer on the central conductor through an extrusion die to form a single wire;
  • Step B Wrapping the packaging material layer, using a wrapping machine, pulling out the two single wires in a fixed arrangement under the action of the mold, and wrapping the pulled single wires with the packaging material layer;
  • Step C extruding the inner sheath layer, using an extruder to extrude through a mold, so as to wrap the inner sheath layer outside the packaging material layer;
  • Step D Wrapping process, use a wrapping machine to put the drain wire, inner sheath layer and shielding layer into the mold, and ensure that the drain wire, inner sheath layer and shielding layer are pulled out in a fixed arrangement under the action of the mold, so that the shielding The layer gradually wraps the inner sheath layer, and the drain wire is fixed on both sides of the shielding layer and parallel to each other;
  • Step E Wrap the drain wire and tape on the outside of the shielding layer during wrapping to form the required core wire
  • Step F When multiple pairs of core wires need to be set, the core wires are divided into inner core and outer core, wherein the inner core is formed by twisting two pairs of core wires and fillers in a certain direction, and outside the inner core. Covered by the protective layer of the inner layer, the wrapping direction of the protective layer of the inner layer is opposite or the same as the twisting direction of the inner cable core;
  • Step G The outer cable core is formed by arranging and twisting multiple pairs of core wires in sequence, and the inner wall of the outer cable core is attached to the protective layer of the inner layer, and the twisting direction of the outer cable core is opposite to that of the inner cable core or The same, and outside the outer cable core is covered by the outer protective layer, the wrapping direction of the outer protective layer is opposite or the same as the twisting direction of the outer cable core;
  • Step H the overall shielding layer is wound on the outer protective layer, and the overall shielding layer is wrapped outside the outer protective layer;
  • Step I braiding, adopting a vertical braiding machine, twisting and covering a layer of braided shielding layer on the outer strands of the multiple pairs of core wires obtained in step H;
  • Step J Extrude the sheath, use a sheath machine, pass through an extrusion mold, coat the sheath layer on the braided shielding layer, and form the required cable after cooling;
  • Step K The cable is formed into a loop, and the cable is cut by using a loop forming machine, and the cut cable is tested, and the cable is stored after passing the test.
  • both the shielding layer and the overall shielding layer are metal foils, and the aluminum side of the shielding layer and the overall shielding layer is set outward during use.
  • the protective layer of the inner layer wraps around the inner cable core in Z or S direction
  • the protective layer of the outer layer wraps around the outer cable core in Z or S direction
  • the single wire is extruded twice to cover and fix the single wire, so that the single wire has better stability during use, and the deformation of the cable during use The amount is small, so it has more stable output performance;
  • the outer core is twisted and closely attached to the inner core, so that the distance between the inner core and the outer core
  • the space has better stability, so that the deformation of the cable during use is small, and thus has a more stable output performance
  • Fillers are set in the inner cable core to make the inner cable core structure relatively round, which facilitates the bonding between the outer cable core and the inner cable core, and the twisting direction of the inner cable core is opposite to the twisting direction of the inner protective layer Or the same, and the twisting direction of the outer cable core is opposite or the same as that of the inner protective layer, which is convenient for output, and the protective layer also increases the stability between the outer cable core and the inner cable core.
  • Fig. 1 is a schematic flow sheet of the present invention
  • Fig. 3 is a structural schematic diagram of many pairs of new types
  • central conductor 1 insulating layer 2, wrapping material layer 3, gap 4, inner sheath layer 5, shielding layer 6, drain wire 7, wrapping tape 8, protective layer 9, total shielding layer 10, Braided shielding layer 11, jacket layer 12, filler 13.
  • a high-speed transmission cable with a new structure including multiple pairs of core wires, the multiple pairs of core wires are twisted to form an inner core and an outer core, and the outer core is covered outside the inner core; the inner core is equipped with The filler 13 to ensure the roundness of the inner cable core, the outer cable core is covered with a general shielding layer 10, the general shielding layer 10 is covered with a braided shielding layer 11, and the braided shielding layer 11 is covered with a sheath layer 12,
  • the number of core wires can be set according to actual needs, and the structure can be 8 pairs of core wires.
  • the inner cable core is covered with a protective layer 9
  • the filler 13 is located in the protective layer 9
  • the outer cable core is also covered with a protective layer 9
  • the protective layer 9 is located between the outer cable core and the overall shielding layer 10 .
  • the integrated inner cable core and outer cable core are formed by twisting, and the inner cable core is relatively rounded under the action of the filler 13 , so that the inner cable core has better stability in the outer cable core.
  • the insulating layer 2 is a hose-packed structure, and the material can be FEP (fluoroethylene propylene copolymer), which has good flame-retardant effect and ductility.
  • FEP fluoroethylene propylene copolymer
  • Packaging material layer 3 is formed by wrapping two relatively parallel insulated single wires along the S direction, with an overlapping rate of ⁇ 25%. Tensile strength ⁇ 12 N/mm 2 .
  • the gap 4 is a gap formed by two relatively parallel insulated single wires and the wrapping material layer 3 wrapped in the S direction, which can reduce the dielectric coefficient of the insulation layer of the core wire.
  • the inner sheath layer 5 is in the shape of an elliptical extruded tube, which is tightly wrapped around the packaging material layer 3, and the material can be PE.
  • the shielding layer 6 is parallel and longitudinally overlapped with respect to the insulated single wire, and has a metal glued plastic film.
  • the shielding layer can be metal foil, and the aluminum side of the metal foil is facing outward.
  • the drainage wire 7 is parallel to the insulating single wire, and is arranged outside the shielding layer 6 and inside the tape 8.
  • the fluctuation range of the drainage wire 7 is ⁇ 0.003 mm in diameter, the thickness of the coating is ⁇ 0.5 ⁇ m, and the elongation is generally ⁇ 15%.
  • the drain wire 7 can be a tinned copper round wire.
  • Hot-melt polyester tape material covered with hot-melt polyester tape material, hot-melt PET tensile strength ⁇ 150 MPa, heating shrinkage rate (150°C, 15min) ⁇ 3.5 %.
  • the overall shielding layer 10 is made of metal foil, and the aluminum side of the metal foil is wrapped around the outer layer of the core wire, and the width tolerance of the metal foil is ⁇ 0.5 mm, tensile strength ⁇ 45 MPa, bonding strength between metal foil and plastic film ⁇ 2.6 N/cm. Conductivity ⁇ 52 %LACS.
  • the braided shielding layer 11 can be tinned copper wire, the wire diameter fluctuation range is ⁇ 0.003 mm, the coating thickness is ⁇ 0.3 ⁇ m, and the elongation is generally ⁇ 15%.
  • the sheath layer 12 is in a circular shape, closely surrounding the braided shielding layer, and is generally made of plastic material.
  • Filler 13 can be cotton thread.
  • a high-speed transmission cable with a new structure the structure of a single core wire: including two single wires and a wrapping material layer 3 covering the two single wires;
  • the insulating layer 2 is covered with an inner sheath layer 5, the inner sheath layer 5 is covered with a shielding layer 6, and the shielding layer 6 is covered with a tape 8; the shielding layer 6 and the tape 8
  • a drain line 7 is arranged between them, and the drain line 7 is relatively arranged on both sides of the shielding layer 6 .
  • a gap 4 can be set according to actual needs or a dense structure can be realized.
  • the inner sheath layer 5 can also be set according to actual needs, and the inner sheath layer 5 can be selected or directly placed on the insulating layer 2.
  • the packaging material layer 3 is wrapped around the two single wires, the overlapping ratio of the packaging material layer 3 is greater than 25%, and the inner sheath layer 5 is a hollow oval structure.
  • the central conductor 1 is silver-plated copper wire in electroplating mode
  • the wire diameter fluctuation range is ⁇ 0.003 mm
  • the coating thickness is ⁇ 1 ⁇ m
  • the elongation is generally 20% ⁇ 30%.
  • Alternative materials include: tinned copper, bare copper , alloy copper, etc.
  • the insulating layer 2 is a hose-packed structure, and the material can be FEP (fluoroethylene propylene copolymer), which has good flame retardant effect and ductility.
  • FEP fluoroethylene propylene copolymer
  • Alternative materials include: PE (polyethylene), PP (polypropylene), PTFE ( Polytetrafluoroethylene), foamed PP and foamed PE (the degree of foaming is 20% ⁇ 60%), etc.
  • Packaging material layer 3 is formed by wrapping two relatively parallel insulated single wires along the S direction, with an overlapping rate of ⁇ 25%. Tensile strength ⁇ 12 N/mm 2 .
  • the gap 4 is a gap formed by two relatively parallel insulated single wires and the wrapping material layer 3 wrapped in the S direction, which can reduce the dielectric coefficient of the insulation layer of the core wire.
  • the inner sheath layer 5 is in the shape of an elliptical extruded tube, which is tightly wrapped around the outer packaging material layer 3.
  • the material can be PE, and alternative materials include: FEP, PP, foamed PP, and foamed PE.
  • the drainage wire 7 is parallel to the insulating single wire, and is arranged outside the shielding layer 6 and inside the tape 8.
  • the fluctuation range of the drainage wire 7 is ⁇ 0.003 mm in diameter, the thickness of the coating is ⁇ 0.5 ⁇ m, and the elongation is generally ⁇ 15%.
  • the drain wire 7 can be a tinned copper round wire, and alternative materials include: bare copper, alloy copper, silver-plated copper, etc., and flat ground wires of the above materials can also be used.
  • Hot-melt polyester tape material covered with hot-melt polyester tape material, can be replaced by hot-melt PI tape or plastic material to extrude a layer of sheath, such as FEP extrusion, PE extrusion, PP extrusion, PVC extrusion etc., hot-melt PET tensile strength ⁇ 150 MPa, heating shrinkage rate (150 °C, 15min) ⁇ 3.5%.
  • the protective layer 9 uses polyester tape to wrap the core wire.
  • Alternative materials include PI tape, foamed PI tape, non-woven fabric, etc.
  • the nominal width tolerance of PET is ⁇ 0.5 mm, and the tensile strength is ⁇ 150 MPa.
  • the overall shielding layer 10 is made of metal foil, and the aluminum side of the metal foil is wrapped around the outer layer of the core wire.
  • Alternative materials include: copper foil tape, copper-aluminum composite tape, etc.
  • the braided shielding layer 11 can be tinned copper wire, and alternative materials include: aluminum-magnesium wire, tinned copper-clad steel wire, and the like. Wire diameter fluctuation range is ⁇ 0.003 mm, coating thickness ⁇ 0.3 ⁇ m, and elongation generally ⁇ 15%.
  • the sheath layer 12 is in a circular shape and is tightly wrapped around the braided shielding layer. It is generally extruded from plastic materials such as PVC (polyvinyl chloride) extruded, FEP extruded, PE extruded, PP extruded, etc.
  • plastic materials such as PVC (polyvinyl chloride) extruded, FEP extruded, PE extruded, PP extruded, etc.
  • Filler 13 can be cotton thread, and alternative materials include: PP rope, hemp rope, polypropylene mesh rope, fiberglass rope, etc.
  • Step A Single wire extrusion, using a high-temperature extruder, extruding the tube mold by vacuuming, coating the insulating layer 2 on the central conductor 1 to form a single wire.
  • a high-temperature extruder is used, and the heating temperature of the host is generally 300 °C to 380 °C.
  • the tension of the center conductor 1 is set according to the diameter range of the center conductor 1, which is 200 g to 350 g.
  • the tension of the take-up wire is generally 50 g greater than the tension of the wire. ⁇ 100 g, extruded by vacuum extrusion mold (mold ratio DBR close to 1, DDR greater than 100), cone range 10 mm ⁇ 20 mm, 400 type take-up reel, line distance 3.0 mm take-up, guarantee single line Concentricity ⁇ 95%, smooth appearance.
  • Step B the wrapping material layer 3 is wrapped, and the wrapping machine is used to pull out the two single wires in a fixed arrangement under the action of the mold, and the wrapping material layer 3 wraps the pulled out single wires.
  • the wrapping adopts a wrapping machine, and the tension of the two single wires is generally 200 g ⁇ 400 g.
  • the two single wires are pulled out in a fixed arrangement through the mold, and wrapped in S direction through the fixed guide wheel.
  • the overlap rate must be ⁇ 25%.
  • the 400-type reel is used to take up the wires to ensure that the appearance of the wrapped wires is smooth and clean, the impedance is stable, and the wrapped wires are neatly arranged on the take-up reel.
  • Step C Extrude the inner sheath layer 5 by using a single-line extruder to extrude through a mold, so that the inner sheath layer 5 is wrapped around the outer sheath layer 5 by the packaging material layer 3 .
  • the heating temperature of the main machine is generally 160 °C ⁇ 230 °C
  • the tension of the take-up line is generally 50 g greater than the tension of the take-off line, and it is extruded by a mold. Ensure that the thickness of the inner sheath layer extruded by the parallel core wire is consistent and the wrapping material layer is tightly covered.
  • the fluctuation range of width and thickness wire diameter is ⁇ 0.01 mm, and the appearance is smooth.
  • Step D Wrapping process, use a wrapping machine, put the drainage line 7, the inner sheath layer 5 and the shielding layer 6 into the mold in parallel, and ensure the drainage line 7, the inner sheath layer 5 and the shielding layer under the action of the longitudinal wrapping mold 6. Pull out according to a fixed arrangement, so that the shielding layer 6 gradually wraps the inner sheath layer 5, and the drain wire 7 is fixed on both sides of the shielding layer 6 and parallel to each other;
  • the tension of the two drain wires 7 is 200 g to 300 g, and the tension of the inner sheath layer 5 is generally 400 g to 500 g.
  • the drain wire 7, the inner sheath layer 5 and the shielding layer 6 are mutually Parallel into the mold, after positioning through the wire hole, the drain wire 7 is fixed on the shielding layer 6 and parallel to each other, and then through the shielding layer 6 preforming device, the shielding layer 6 is gradually wrapped around the core wire, and the drain wire 7 is fixed on the Both sides of the shielding layer 6 are parallel to each other, and finally the two drain wires 7 , the inner sheath layer 5 and the shielding layer 6 are pulled out in parallel through the mold.
  • the shielding layer 6 is bonded to the inner sheath layer 5 through an oven at 100°C ⁇ 150°C, and the wire is taken up by a 400-type reel with a tension of 400g ⁇ 500g. Ensure that the appearance of the wrapped wire is smooth and clean, and the impedance is stable at 100 ohm ⁇ 5 ohm, the wrapped wires are neatly arranged on the take-up reel.
  • Step E Wrap the drain wire 7 and the wrapping tape 8 on the outside of the shielding layer 6 during wrapping to form the required core wire.
  • Step F When it is necessary to set multiple pairs of core wires, divide the core wires into an inner cable core and an outer cable core, wherein the inner cable core is formed by twisting two pairs of core wires and fillers 13 in a certain direction, and the inner cable core The outside is covered by the protective layer 9 of the inner layer, and the wrapping direction of the protective layer 9 of the inner layer is opposite to or the same as the twisting and releasing direction of the inner cable core.
  • the protective layer 9 of the inner layer has a certain tensile force, and the core wire is wrapped and wrapped along the Z direction of the core wire with the protective layer 9 of the inner layer under the action of the fixed guide wheel and the wrapping mold, and the overlapping rate will be ⁇ 25%.
  • Step G The outer cable core is formed by arranging and twisting multiple pairs of core wires in sequence, and the inner wall of the outer cable core is attached to the protective layer 9 of the inner layer, and the twisting direction of the outer cable core is opposite to that of the inner cable core Or the same, and outside the outer cable core, it is covered by an outer protective layer 9, and the wrapping direction of the outer protective layer 9 is opposite or the same as the twisting direction of the outer cable core.
  • Step H The overall shielding layer 10 is wound around the outer protective layer 9 , and the overall shielding layer 10 is wrapped around the outer protective layer 9 .
  • the pay-off tension of the 8 pairs of core wires is generally above 12, and they are placed and pulled out at symmetrical positions in the pay-off frame of the cable forming machine, and the center 2 pairs are wound
  • the cored wire and the filler 13 are twisted in a certain direction to form the middle core wire, and the tension of the filler 13 is relatively small at 3 N to 5 N, making the core wire structure relatively round.
  • the wrapping direction of the protective layer 9 is opposite to or the same as that of the core wire twisting and unwinding, and the core wire structure is fixed.
  • the 6 pairs of core wires on the outer side are closely attached to the 2 pairs of core wires on the inner layer in a certain order, and twisted in the opposite direction or in the same direction to form an outer twisted layer.
  • the unwinding tension of the protective layer 9 of the outer layer and the total shielding layer 10 is above 3 N
  • the wrapping direction of the protective layer 9 of the inner layer is opposite to or the same as the twisting direction of the core wires of the 6 pairs of the outer layer, and passes through the protective layer of the outer layer 9.
  • the outer layer 6 wraps the core wires, the overall shielding layer 10 and the protective layer 9 of the inner layer are wound in the opposite or the same direction, and the metal layer faces outward, and the overlap rate must be ⁇ 25%.
  • the wire is taken up by the 800 type reel, and the tension of the wire is 15 N ⁇ 20 N. Ensure that the appearance of the cabled core wire is flat and clean, and the wrapped wires are neatly arranged on the take-up reel.
  • Step I braiding, using a vertical braiding machine, twisting and covering a layer of braided shielding layer 11 on the multiple pairs of core wires obtained in step H.
  • the voltage of the cabled core wire is generally 4 V ⁇ 8 V.
  • the braided wire After passing through a specific mold, the braided wire is twisted in a certain direction and covered on the outside of the cabled core wire to form a braided shielding layer, and the core wire is taken up.
  • the voltage is generally 4 V ⁇ 8 V.
  • Step J extruding the sheath, using a sheathing machine, passing through a pipe extrusion die, coating the sheath layer 12 on the braided shielding layer 11, and forming the required cable after cooling;
  • the heating temperature of the host is generally 130 °C ⁇ 180 °C
  • the core wire release voltage is generally 3 V ⁇ 9 V according to the core wire diameter range
  • the take-up tension voltage is generally 0.7 V ⁇ 1.3V.
  • the mold sleeve the diameter of the inner mold * the outer diameter ⁇ the diameter of the core wire)
  • the first water tank and the second water tank are cooled by normal temperature water
  • the voltage of the electric spark machine is 3.0 V, 800 type take-up reel. Guaranteed sheath concentricity ⁇ 85%, skin thickness 0.6 mm ⁇ 0.1 mm, pull-out force ⁇ 12 N, wire diameter fluctuation range ⁇ 0.2 mm, smooth appearance.
  • Step K The cable is formed into a loop, and the cable is cut by using a loop forming machine, and the cut cable is tested, and the cable is stored after passing the test.
  • the voltage of the sheath core wire is generally 4 V ⁇ 8 V, and the voltage of the electric spark machine is 3.0 V, and the length is cut into about 200 meters.
  • Test conduction, withstand voltage, S parameters, internal delay difference and differential impedance, etc. meet the design requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Insulated Conductors (AREA)
  • Communication Cables (AREA)

Abstract

一种新型结构的高速传输线缆,由单个芯线构成,包括两根单线和包覆于两根单线外的包材层;所述单线包括中心导体和包覆于中心导体上的绝缘层,绝缘层外包覆有内护套层,内护套层外包覆有屏蔽层,屏蔽层外包覆有包带;所述屏蔽层与包带之间设有排流线,排流线相对设置于屏蔽层两侧;与现有技术相比,通过内护套层和包带的设置,使得单线通过两次空管挤出成型,对单线进行包覆固定,从而使得单线在使用过程中具有更好的稳定性,在多对芯线的结构中,通过将多对芯线分为中部的内部缆芯和外部的外部缆芯,外部缆芯绞合并与内部缆芯紧贴,使得线缆在使用过程中的变形量小,从而具有更稳定的输出性能。

Description

一种新型结构的高速传输线缆及其加工方法 技术领域
本发明属于高速传输线缆技术领域,尤其是一种新型结构的高速传输线缆及其加工方法。
背景技术
高速传输线缆具有较高的传输频率,支撑较高的传输速率通道,主要用于通信传输、数据中心、信息服务等领域,满足超大容量的音频、视频、图像等数据信号的高速传输与交换,例如大型数据中心的集群服务器间连接电缆,如网关交换机、万兆以太网交换机、为用户提供云计算,大型通讯机房的数据中心交换机、路由器、主机适配器等连接电缆,也可应用在高速高密度的可插拔I/O接口解决方案中,配合多通道互连器,可与其他类型的100G模块互通。
技术问题
现有的高速传输线为对称双芯平行双轴电缆,常规对称双芯平行双轴电缆结构为所用的两根平行绝缘单线外面直接包覆一层介电系数更小的包带材料,该结构的缺点在于:由于两根单线外面直接包覆一层EPTFE包带材料,导致单对线结构稳定性偏差;多对成缆时容易出现结构变形,进而影响线材回波性能。
技术解决方案
本发明是为了克服上述现有技术中的缺陷,提供一种结构稳定,成缆时线对变形小,传输性能稳定的新型结构的高速传输线缆及其加工方法。
为了达到以上目的,本发明所采用的技术方案是:一种新型结构的高速传输线缆,由单个芯线构成,包括两根单线和包覆于两根单线外的包材层,两根单线与包材层之间存在空隙;所述单线包括中心导体和包覆于中心导体上的绝缘层,绝缘层外包覆有内护套层,内护套层外包覆有屏蔽层,屏蔽层外包覆有包带;所述屏蔽层与包带之间设有排流线,排流线相对设置于屏蔽层两侧。
作为本发明的一种优选方案,所述包材层绕包设置于两根单线外,包材层的重叠率大于25%。
作为本发明的一种优选方案,所述内护套层为中空的椭圆形结构。
作为本发明的一种优选方案,包括多对芯线,多对芯线绞合形成内部缆芯和外部缆芯,外部缆芯包覆于内部缆芯外;所述内部缆芯内设有保证内部缆芯圆整性的填充物,外部缆芯外包覆有总屏蔽层,总屏蔽层外包覆有编织屏蔽层,编织屏蔽层外包覆有护套层。
作为本发明的一种优选方案,所述内部缆芯外包覆有保护层,填充物位于保护层内。
作为本发明的一种优选方案,所述外部缆芯外也包覆有保护层,保护层位于外部缆芯与总屏蔽层之间。
一种新型结构的高速传输线缆的加工方法,包括以下步骤:
步骤A:单线挤出,采用高温压出机,通过挤管模具将绝缘层包覆于中心导体上,形成单线;
步骤B:包材层绕包,采用绕包机,将两根单线在模具的作用下按固定排列拉出,包材层对拉出的单线进行绕包包覆;
步骤C:内护套层挤出,采用挤出机通过模具压出,实现在包材层外包裹内护套层;
步骤D:绕包工序,采用绕包机将排流线、内护套层和屏蔽层入模,在模具作用下保证排流线、内护套层和屏蔽层按固定排列方式拉出,使屏蔽层逐渐包裹内护套层,排流线固定在屏蔽层两侧且相互平行;
步骤E:在绕包时将排流线和包带包覆于屏蔽层外,形成所需芯线;
步骤F:当需要设置多对芯线时,将芯线分为内部缆芯和外部缆芯,其中内部缆芯由两对芯线和填充物按照一定方向扭绞形成,并在内部缆芯外通过内层的保护层包覆,内层的保护层的绕包方向与内部缆芯的扭绞放线方向相反或相同;
步骤G:外部缆芯由多对芯线依次排列绞合而成,且外部缆芯内壁与内层的保护层相贴合,外部缆芯的扭绞方向与内部缆芯的扭绞方向相反或相同,并且在外部缆芯外通过外部的保护层包覆,外层的保护层的绕包方向与外部缆芯的扭绞放线方向相反或相同;
步骤H:总屏蔽层绕设于外层保护层上,总屏蔽层包覆于外层的保护层外;
步骤I:编织,采用立式编织机,在步骤H得到的多对芯线外绞合覆盖一层编织屏蔽层;
步骤J:护套挤出,采用护套机,通过挤塑模具,在编织屏蔽层外包覆护套层,冷却后形成所需线缆;
步骤K:线缆成圈,采用成圈机,对线缆进行切割,并对切割后的线缆进行检测,检测合格后入库存储。
作为本发明的一种优选方案,所述屏蔽层和总屏蔽层均为金属箔,且屏蔽层和总屏蔽层在使用过程中铝面朝外设置。
作为本发明的一种优选方案,所述包带为热熔聚酯带材料。
作为本发明的一种优选方案,内层的保护层Z或S向绕包包覆于内部缆芯外,外层的保护层Z或S向绕包包覆于外部缆芯外。
有益效果
通过内护套层和包带的设置,使得单线通过两次挤出成型,对单线进行包覆固定,从而使得单线在使用过程中具有更好的稳定性,使得线缆在使用过程中的变形量小,从而具有更稳定的输出性能;
在多对芯线的结构中,通过将多对芯线分为中部的内部缆芯和外部的外部缆芯,外部缆芯绞合并与内部缆芯紧贴,使得内部缆芯与外部缆芯之间具有更好的稳定性,使得线缆在使用过程中的变形量小,从而具有更稳定的输出性能;
在内部缆芯中设置填充物,使得内部缆芯结构相对圆整,便于外部缆芯与内部缆芯之间的贴合,同时内部缆芯的扭绞方向与内层的保护层扭绞方向相反或相同,且外部缆芯的扭绞方向与内部的保护层扭绞方向相反或相同,便于输出,同时保护层也增加了外部缆芯与内部缆芯之间的稳定性。
附图说明
图1是本发明的流程示意图;
图2是单个芯线的结构示意图;
图3是多对新型的结构示意图;
图中附图标记:中心导体1,绝缘层2,包材层3,空隙4,内护套层5,屏蔽层6,排流线7,包带8,保护层9,总屏蔽层10,编织屏蔽层11,护套层12,填充物13。
本发明的最佳实施方式
一种新型结构的高速传输线缆, 包括多对芯线,多对芯线绞合形成内部缆芯和外部缆芯,外部缆芯包覆于内部缆芯外;所述内部缆芯内设有保证内部缆芯圆整性的填充物13,外部缆芯外包覆有总屏蔽层10,总屏蔽层10外包覆有编织屏蔽层11,编织屏蔽层11外包覆有护套层12,在多对芯线的结构中,芯线的数量根据实际需要进行设置,可8对芯线结构。
内部缆芯外包覆有保护层9,填充物13位于保护层9内,外部缆芯外也包覆有保护层9,保护层9位于外部缆芯与总屏蔽层10之间。
通过绞合形成一体的内部缆芯和外部缆芯,并在填充物13的作用下使得内部缆芯相对圆整,从而使得内部缆芯在外部缆芯内具有更好的稳定性。
其中中心导体1为电镀方式的镀银铜丝,线径波动范围在±0.003 mm,镀层厚度≥1 μm,伸长率一般为20 %~30 %。
绝缘层2为软管装结构,材料可为FEP(氟乙烯丙烯共聚物),具有良好的阻燃效果与延展性。
包材层3,在两根相对平行的绝缘单线沿S向绕包形成,重叠率≥25 %,包覆材料可为EPTFE(膨体聚四氟乙烯),断裂伸长率≥70 %,抗拉强度≥12 N/mm 2
空隙4,为两根相对平行的绝缘单线与S向绕包的包材层3所形成的间隙,能够降低芯线绝缘层介电系数。
内护套层5,为椭圆型挤管形状,紧贴环绕在包材层3外,材料可为PE。
屏蔽层6,屏蔽层6相对于绝缘单线平行纵向交叠,具有经金属胶合的塑料膜,该屏蔽层可用金属箔,并将金属箔的铝面朝外。
排流线7与绝缘单线平行,且设置于屏蔽层6外,包带8内,排流线7线径波动范围在±0.003 mm,镀层厚度≥0.5 μm,伸长率一般为≥15 %,排流线7可为镀锡铜圆线。
包带8,采用热熔聚酯带材料包覆,热熔PET抗拉强度≥150 MPa,加热收缩率(150℃,15min)≤3.5 %。
保护层9,采用聚酯带材料绕包包覆芯线,PET标称宽度公差:±0.5 mm,抗拉强度≥150 MPa。
总屏蔽层10,采用金属箔,且金属箔的铝面朝外绕包包覆芯线外层,金属箔宽度公差:±0.5 mm,抗拉强度≥45 MPa,金属箔与塑料薄膜间粘合强度≥2.6 N/cm。导电率≥52 %LACS。
编织屏蔽层11,可为镀锡铜丝,线径波动范围在±0.003 mm,镀层厚度≥0.3 μm,伸长率一般为≥15 %。
护套层12,为圆型形状,紧贴环绕在编织屏蔽层,一般为可塑性材料。
填充物13,可为棉线。
本发明的实施方式
一种新型结构的高速传输线缆,单个芯线的结构:包括两根单线和包覆于两根单线外的包材层3;所述单线包括中心导体1和包覆于中心导体1上的绝缘层2,绝缘层2外包覆有内护套层5,内护套层5外包覆有屏蔽层6,屏蔽层6外包覆有包带8;所述屏蔽层6与包带8之间设有排流线7,排流线7相对设置于屏蔽层6两侧。
两根单线与包材层3之间可根据实际需要设置空隙4或实现密实结构,其中内护套层5也可根据实际需要进行设置,可选择设置内护套层5或直接在绝缘层2外包覆屏蔽层6。
包材层3绕包设置于两根单线外,包材层3的重叠率大于25%,内护套层5为中空的椭圆形结构。
其中中心导体1为电镀方式的镀银铜丝,线径波动范围在±0.003 mm,镀层厚度≥1 μm,伸长率一般为20 %~30 %,可替代材料有:镀锡铜、裸铜、合金铜等。
绝缘层2为软管装结构,材料可为FEP(氟乙烯丙烯共聚物),具有良好的阻燃效果与延展性,可替代材料有:PE(聚乙烯)、PP(聚丙烯)、PTFE(聚四氟乙烯)、发泡PP及发泡PE(发泡度为20 %~60 %)等。
包材层3,在两根相对平行的绝缘单线沿S向绕包形成,重叠率≥25 %,包覆材料可为EPTFE(膨体聚四氟乙烯),断裂伸长率≥70 %,抗拉强度≥12 N/mm 2
空隙4,为两根相对平行的绝缘单线与S向绕包的包材层3所形成的间隙,能够降低芯线绝缘层介电系数。
内护套层5,为椭圆型挤管形状,紧贴环绕在包材层3外,材料可为PE,可替代材料有:FEP、PP、发泡PP及发泡PE等。
屏蔽层6,屏蔽层6相对于绝缘单线平行纵向交叠,具有经金属胶合的塑料膜,该屏蔽层可用金属箔,并将金属箔的铝面朝外,可替代材料有:铜箔带、铜铝复合带等,金属箔抗拉强度≥45 MPa,金属箔与塑料薄膜间粘合强度≥2.6 N/cm,导电率≥52 %。
排流线7与绝缘单线平行,且设置于屏蔽层6外,包带8内,排流线7线径波动范围在±0.003 mm,镀层厚度≥0.5 μm,伸长率一般为≥15 %,排流线7可为镀锡铜圆线,可替代的材料有:裸铜、合金铜、镀银铜等,也可采用上述材料的扁平地线。
包带8,采用热熔聚酯带材料包覆,可替代材料有热熔PI带包覆也可用可塑性材料挤出一层护套如FEP挤出、PE挤出、PP挤出、PVC挤出等,热熔PET抗拉强度≥150 MPa,加热收缩率(150℃,15min)≤3.5 %。
保护层9,采用聚酯带材料绕包包覆芯线,可替代材料有PI带、发泡PI带、无纺布等, PET标称宽度公差:±0.5 mm,抗拉强度≥150 MPa。
总屏蔽层10,采用金属箔,且金属箔的铝面朝外绕包包覆芯线外层,可替代材料有:铜箔带、铜铝复合带等。金属箔宽度公差:±0.5 mm,抗拉强度≥45 MPa,金属箔与塑料薄膜间粘合强度≥2.6 N/cm。导电率≥52 %LACS。
编织屏蔽层11,可为镀锡铜丝,可替代材料有:铝镁丝、镀锡铜包钢丝等。线径波动范围在±0.003 mm,镀层厚度≥0.3 μm,伸长率一般为≥15 %。
护套层12,为圆型形状,紧贴环绕在编织屏蔽层,一般为可塑性材料挤出如PVC(聚氯乙烯)挤出、FEP挤出、PE挤出、PP挤出等。
填充物13,可为棉线,可替代材料有:PP绳、麻绳、聚丙烯网状绳、玻璃纤维上绳等。
在实际生产过程中,包括以下步骤:
步骤A:单线挤出,采用高温压出机,通过抽真空方式挤管模具,将绝缘层2包覆于中心导体1上,形成单线。
采用高温压出机,将主机加热温度一般为300 ℃~380 ℃,中心导体1放线张力根据中心导体1直径范围设置,为200 g~350 g,收线张力比放线张力普遍大50 g~100 g,采用抽真空方式挤管模具(模具配比DBR接近1,DDR大于100)压出,锥体范围10 mm~20 mm,400型收线盘,排距3.0 mm收线,保证单线同心度≥95 %,外观光洁。
步骤B:包材层3绕包,采用绕包机,将两根单线在模具的作用下按固定排列拉出,包材层3对排列拉出的单线进行绕包包覆。
包覆采用绕包机,两根单线放线张力一般为200 g~400 g,通过模具保证两根单线按固定排列拉出,通过固定导轮S向绕包包覆,重叠率要≥25 %。通过400型盘收线,保证绕包线外观平整光洁,阻抗稳定,绕包线整齐排列在收线盘上。
步骤C:内护套层5挤出,采用单线挤出机,通过模具压出,实现包材层3外包裹内护套层5。
采用PE单线挤出机,将主机加热温度一般为160 ℃~230 ℃,收线张力比放线张力普遍大50 g,采用模具压出,一段、二段水槽常温水冷,500型盘收线,保证平行芯线挤出内护套层厚度一致且将包材层紧密包覆,宽度、厚度线径波动范围±0.01 mm,外观光洁。
步骤D:绕包工序,采用绕包机,将排流线7、内护套层5和屏蔽层6平行入模,在纵包模具作用下保证排流线7、内护套层5和屏蔽层6按固定排列拉出,使屏蔽层6逐渐包裹内护套层5,排流线7固定在屏蔽层6两侧且相互平行;
采用绕包机,两根排流线7放线张力为200 g~300 g,内护套层5放线张力一般400 g~500 g,排流线7、内护套层5和屏蔽层6相互平行入模,经过定位过线孔,使排流线7固定在屏蔽层6上且相互平行,然后通过屏蔽层6预成型装置,使其屏蔽层6逐渐包裹芯线,排流线7固定在屏蔽层6两侧且相互平行,最后通过模具保证两根排流线7、内护套层5和屏蔽层6平行拉出。
通过烤箱100 ℃~150 ℃使屏蔽层6与内护套层5粘结,通过400型盘收线,收线张力400 g~500 g。保证绕包线外观平整光洁,阻抗稳定100 ohm±5 ohm,绕包线整齐排列在收线盘上。
步骤E:绕包时将排流线7和包带8包覆于屏蔽层6外,形成所需芯线。
步骤F:当需要设置多对芯线时,将芯线分为内部缆芯和外部缆芯,其中内部缆芯由两对芯线和填充物13按照一定方向扭绞形成,并在内部缆芯外通过内层的保护层9包覆,内层的保护层9的绕包方向与内部缆芯的扭绞放线方向相反或相同。
内层的保护层9带有一定拉力,芯线在固定导轮与绕包模具的作用下,将内层的保护层9沿芯线的Z向绕包包覆,重叠率要≥25 %。
步骤G:外部缆芯由多对芯线依次排列绞合而成,且外部缆芯内壁与内层的保护层9相贴合,外部缆芯的扭绞方向与内部缆芯的扭绞方向相反或相同,并在在外部缆芯外通过外部的保护层9包覆,外层的保护层9的绕包方向与外部缆芯的扭绞放线方向相反或相同。
步骤H:总屏蔽层10绕设于外层保护层9上,总屏蔽层10包覆于外层的保护层9外。
采用多头放线笼绞机,当选用8对芯线的结构是,8对芯线的放线张力一般为12以上,在成缆机放线架中对称位置放置拉出,其中中心2对绕包芯线与填充物13按照一定方向扭绞形成中间芯线,填充物13放线张力相对较小3 N~5 N,使芯线结构相对圆整。保护层9绕包方向与芯线扭绞放线相反或相同,固定芯线结构。
外侧6对芯线按照一定顺序紧贴内层2对芯线,且与之相反或相同方向扭绞,形成靠外的扭绞层。外层的保护层9和总屏蔽层10的放带张力3 N以上,内层的保护层9绕包方向与外层6对芯线的扭绞方向相反或相同,并通过外层的保护层9对外层6对芯线进行绕包包覆,总屏蔽层10与内层的保护层9带绕向相反或相同,且金属层面朝外,重叠率要≥25 %。通过800型盘收线,收线张力15 N~20 N。保证成缆芯线外观平整光洁,绕包线整齐排列在收线盘上。
步骤I:编织,采用立式编织机,在步骤H得到的多对芯线外绞合覆盖一层编织屏蔽层11。
采用立式编织机,成缆芯线放线电压一般为4 V~8 V,穿过特定模具,编织丝以一定方向绞合覆盖在成缆芯线外部,形成编织屏蔽层,芯线收线电压一般为4 V~8 V。
步骤J:护套挤出,采用护套机,通过挤管模具,在编织屏蔽层11外包覆护套层12,冷却后形成所需线缆;
采用护套机,将主机加热温度一般为130 ℃~180 ℃,芯线放线电压根据芯线直径范围电压一般为3 V~9 V,收线张力电压一般为0.7 V~1.3 V。采用挤管模具(内模:芯线直径放大0.2 mm~0.3 mm,模套:内模口径*外径÷芯线线径)压出,一段水箱、二段水箱常温水冷,电火花机电压3.0 V,800型收线盘。保证护套同心度≥85 %,皮厚0.6 mm±0.1 mm,引拔力≥12 N,线径波动范围±0.2 mm,外观光洁。
步骤K:线缆成圈,采用成圈机,对线缆进行切割,并对切割后的线缆进行检测,检测合格后入库存储。
采用成圈机,护套芯线放线电压一般为4 V~8 V,通过电火花机电压3.0 V,分切成200米左右长度。测试导通、耐压、S参数、对内延迟差及差分阻抗等符合设计要求。

Claims (10)

  1. 一种新型结构的高速传输线缆,由单个芯线构成,其特征在于,包括两根单线和包覆于两根单线外的包材层(3);所述单线包括中心导体(1)和包覆于中心导体(1)上的绝缘层(2),绝缘层(2)外包覆有内护套层(5),内护套层(5)外包覆有屏蔽层(6),屏蔽层(6)外包覆有包带(8);所述屏蔽层(6)与包带(8)之间设有排流线(7),排流线(7)相对设置于屏蔽层(6)两侧。
  2. 根据权利要求1所述的一种新型结构的高速传输线缆,其特征在于,所述包材层(3)绕包设置于两根单线外,包材层(3)的重叠率大于25%。
  3. 根据权利要求1所述的一种新型结构的高速传输线缆,其特征在于,所述内护套层(5)为中空的椭圆形结构。
  4. 一种新型结构的高速传输线缆,包括如权利要求1-3所述的芯线,其特征在于,包括多对芯线,多对芯线绞合形成内部缆芯和外部缆芯,外部缆芯包覆于内部缆芯外;所述内部缆芯内设有保证内部缆芯圆整性的填充物(13),外部缆芯外包覆有总屏蔽层(10),总屏蔽层(10)外包覆有编织屏蔽层(11),编织屏蔽层(11)外包覆有护套层(12)。
  5. 根据权利要求1所述的一种新型结构的高速传输线缆,其特征在于,所述内部缆芯外包覆有保护层(9),填充物(13)位于保护层(9)内。
  6. 根据权利要求1所述的一种新型结构的高速传输线缆,其特征在于,所述外部缆芯外也包覆有保护层(9),保护层(9)位于外部缆芯与总屏蔽层(10)之间。
  7. 一种新型结构的高速传输线缆的加工方法,其特征在于,包括以下步骤:
    步骤A:单线挤出,采用高温压出机,通过挤管模具将绝缘层(2)包覆于中心导体(1)上,形成单线;
    步骤B:包材层(3)绕包,采用绕包机,将两根单线在模具的作用下按固定排列拉出,包材层(3)对拉出的单线进行绕包包覆;
    步骤C:内护套层(5)挤出,采用挤出机通过模具压出,实现在包材层(3)外包裹内护套层(5);
    步骤D:绕包工序,采用绕包机将排流线(7)、内护套层(5)和屏蔽层(6)按固定排列方式入模,使屏蔽层(6)逐渐包裹内护套层(5),排流线(7)固定在屏蔽层(6)两侧且相互平行;
    步骤E:在绕包时将排流线(7)和包带(8)包覆于屏蔽层(6)外,形成所需芯线;
    步骤F:当需要设置多对芯线时,将芯线分为内部缆芯和外部缆芯,其中内部缆芯由两对芯线和填充物(13)按照一定方向扭绞形成,并在内部缆芯外通过内层的保护层(9)包覆,内层的保护层(9)的绕包方向与内部缆芯的扭绞放线方向相反或相同;
    步骤G:外部缆芯由多对芯线依次排列绞合而成,且外部缆芯内壁与内层的保护层(9)相贴合,外部缆芯的扭绞方向与内部缆芯的扭绞方向相反或相同,并且在外部缆芯外通过外部的保护层(9)包覆,外层的保护层(9)的绕包方向与外部缆芯的扭绞放线方向相反或相同;
    步骤H:总屏蔽层(10)绕设于外层保护层(9)上,总屏蔽层(10)包覆于外层的保护层(9)外;
    步骤I:编织,采用立式编织机,在步骤H得到的多对芯线外绞合覆盖一层编织屏蔽层(11);
    步骤J:护套挤出,采用护套机,通过挤塑模具,在编织屏蔽层(11)外包覆护套层(12),冷却后形成所需线缆;
    步骤K:线缆成圈,采用成圈机,对线缆进行切割,并对切割后的线缆进行检测,检测合格后入库存储。
  8. 根据权利7所述的一种新型结构的高速传输线缆的加工方法,其特征在于,所述屏蔽层(6)和总屏蔽层(10)均为金属箔,且屏蔽层(6)和总屏蔽层(10)在使用过程中铝面朝外设置。
  9. 根据权利7所述的一种新型结构的高速传输线缆的加工方法,其特征在于,所述包带(8)为热熔聚酯带材料。
  10. 根据权利7所述的一种新型结构的高速传输线缆的加工方法,其特征在于,内层的保护层(9)Z或S向绕包包覆于内部缆芯外,外层的保护层(9)Z或S向绕包包覆于外部缆芯外。
PCT/CN2022/077676 2021-12-31 2022-02-24 一种新型结构的高速传输线缆及其加工方法 WO2023123645A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111656636.8 2021-12-31
CN202111656636.8A CN114446529A (zh) 2021-12-31 2021-12-31 一种新型结构的高速传输线缆及其加工方法

Publications (1)

Publication Number Publication Date
WO2023123645A1 true WO2023123645A1 (zh) 2023-07-06

Family

ID=81364952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077676 WO2023123645A1 (zh) 2021-12-31 2022-02-24 一种新型结构的高速传输线缆及其加工方法

Country Status (2)

Country Link
CN (1) CN114446529A (zh)
WO (1) WO2023123645A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286480A (ja) * 2005-04-01 2006-10-19 Swcc Showa Device Technology Co Ltd 差動信号伝送ケーブル
CN101494098A (zh) * 2008-12-15 2009-07-29 安徽滨江电缆股份有限公司 耐高温补偿电缆
JP2010244931A (ja) * 2009-04-08 2010-10-28 Junkosha Co Ltd 高速差動ケーブル
CN106471586A (zh) * 2014-07-25 2017-03-01 莱尼电缆有限公司 用于高速数据传输的数据线缆
CN208796687U (zh) * 2018-08-31 2019-04-26 浙江兆龙互连科技股份有限公司 一种低延迟差高速传输电缆
CN211125161U (zh) * 2019-09-30 2020-07-28 富士康(昆山)电脑接插件有限公司 线缆
CN211455381U (zh) * 2020-01-02 2020-09-08 浙江兆龙互连科技股份有限公司 高速线缆及其单元结构
JP2021073657A (ja) * 2017-04-12 2021-05-13 住友電気工業株式会社 二芯平行ケーブル
CN214541682U (zh) * 2021-02-07 2021-10-29 深圳金信诺高新技术股份有限公司 一种多层包带绝缘数据传输线

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231299A (zh) * 2011-04-22 2011-11-02 浙江兆龙线缆有限公司 双对双轴平行高速传输电缆及其制造方法
CN212967159U (zh) * 2020-06-09 2021-04-13 浙江兆龙互连科技股份有限公司 一种具备稳定缆芯结构的线缆

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286480A (ja) * 2005-04-01 2006-10-19 Swcc Showa Device Technology Co Ltd 差動信号伝送ケーブル
CN101494098A (zh) * 2008-12-15 2009-07-29 安徽滨江电缆股份有限公司 耐高温补偿电缆
JP2010244931A (ja) * 2009-04-08 2010-10-28 Junkosha Co Ltd 高速差動ケーブル
CN106471586A (zh) * 2014-07-25 2017-03-01 莱尼电缆有限公司 用于高速数据传输的数据线缆
JP2021073657A (ja) * 2017-04-12 2021-05-13 住友電気工業株式会社 二芯平行ケーブル
CN208796687U (zh) * 2018-08-31 2019-04-26 浙江兆龙互连科技股份有限公司 一种低延迟差高速传输电缆
CN211125161U (zh) * 2019-09-30 2020-07-28 富士康(昆山)电脑接插件有限公司 线缆
CN211455381U (zh) * 2020-01-02 2020-09-08 浙江兆龙互连科技股份有限公司 高速线缆及其单元结构
CN214541682U (zh) * 2021-02-07 2021-10-29 深圳金信诺高新技术股份有限公司 一种多层包带绝缘数据传输线

Also Published As

Publication number Publication date
CN114446529A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
KR100686678B1 (ko) 발포 동축 케이블 및 그 제조 방법
CN107731416B (zh) 一种特种聚氯乙烯绝缘电子线的制造方法及电子线
JP2001126551A (ja) 電気ケーブル装置とその製造方法
JP2016072196A (ja) 2芯平行電線
CN107230525A (zh) 超高频数字通信电缆及其制备方法
CN108231256A (zh) 一种承重光电复合缆及其制造工艺
JP6750325B2 (ja) 発泡同軸ケーブル及びその製造方法並びに多芯ケーブル
WO2018076686A1 (zh) 一种航空用高强度低重量光电复合缆的制造方法
WO2023123645A1 (zh) 一种新型结构的高速传输线缆及其加工方法
CN111627612A (zh) 一种大功率光电复合直流海缆的生产方法
CN203617034U (zh) 高层及超高层大厦用中压吊装电力电缆
CN212516681U (zh) 一种高可靠性监控信号线
CN211455381U (zh) 高速线缆及其单元结构
CN214541682U (zh) 一种多层包带绝缘数据传输线
CN113421719A (zh) 一种中压电缆三层共挤连续挤出生产套模装置及方法
CN108806834B (zh) 一种数据电缆、线缆绞合机及数据电缆的绞合制备方法
CN107240744B (zh) 低损耗编织型电缆及其制作方法
JPH03219505A (ja) 同軸ケーブル
CN112071500B (zh) 一种用于航空航天的超轻型高速传输六类以太网网线及制造方法
CN217113951U (zh) 一种复合绝缘柔软低损耗电缆
CN220651681U (zh) 一种包覆新型屏蔽材质的高速传输电缆
CN220731232U (zh) 一种高柔性耐寒数据电缆
CN205621487U (zh) 一种医疗设备用电缆
CN214753009U (zh) 一种用于以太网供电的数据传输线
CN210489271U (zh) 一种高空气间隙低损耗电缆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22912951

Country of ref document: EP

Kind code of ref document: A1