WO2023123244A1 - 一种电子雾化装置及其雾化器 - Google Patents

一种电子雾化装置及其雾化器 Download PDF

Info

Publication number
WO2023123244A1
WO2023123244A1 PCT/CN2021/143245 CN2021143245W WO2023123244A1 WO 2023123244 A1 WO2023123244 A1 WO 2023123244A1 CN 2021143245 W CN2021143245 W CN 2021143245W WO 2023123244 A1 WO2023123244 A1 WO 2023123244A1
Authority
WO
WIPO (PCT)
Prior art keywords
atomizing
channel
atomization
air intake
protrusion
Prior art date
Application number
PCT/CN2021/143245
Other languages
English (en)
French (fr)
Inventor
龚博学
杨俊�
李光辉
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2021/143245 priority Critical patent/WO2023123244A1/zh
Publication of WO2023123244A1 publication Critical patent/WO2023123244A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means

Definitions

  • the present application relates to the technical field of electronic atomizers, in particular to an electronic atomization device and its atomizer.
  • the electronic atomization device in the prior art is mainly composed of an atomizer and a power supply assembly.
  • the atomizer generally includes a liquid storage chamber and an atomization component.
  • the liquid storage cavity is used to store the substance to be atomized, and the atomization component is used to heat and atomize the substance to be atomized to form an aerosol that can be eaten by smokers;
  • the power pack is used to supply energy to the atomizer.
  • the aerosol carrying capacity of the existing atomizer is not good, and the aerosol and liquid droplets are easy to enter the air inlet, resulting in blockage and liquid leakage.
  • the technical problem mainly solved by the present application is to provide an electronic atomization device and its atomizer, which solves the problem in the prior art that the airflow of the air intake channel has poor aerosol-carrying capacity.
  • the first technical solution adopted by the present application is to provide an atomizer, the atomizer includes: an air flow channel for transmitting aerosol; the air flow channel includes an air intake channel; the atomizing core is set In the airflow channel, the atomizing core has an atomizing surface; wherein, the air inlet channel is provided with a guide structure near the port of the atomizing core, and the guide structure has an arc surface facing away from the atomizing surface; The airflow is guided to the atomization surface along the curved surface of the air guide structure, and the airflow entering from the air intake channel carries the aerosol to the end of the atomization core away from the air intake channel.
  • the guide structure guides the airflow entering from the air intake channel to the atomizing surface through the Coanda effect.
  • the atomizing surface is arranged parallel to or perpendicular to the central axis of the atomizer.
  • the air intake channel includes a first air intake channel
  • the flow guide structure is a first protrusion arranged on a side of the first air intake channel close to the atomizing core; the first protrusion has an arc surface.
  • the air intake channel includes a first air intake channel
  • the side wall forming the first air intake channel has a first extension part on the end surface close to the atomization core, and the flow guide structure is arranged on the surface of the first extension part away from the atomization core
  • the first protrusion; the first protrusion has an arc surface.
  • the end surface of the arc surface close to the atomizing surface is not higher than the end of the atomizing area close to the first air intake channel.
  • intersection point of the tangent of the arc surface near the end of the atomization area close to the first air intake channel and the extension line of the end of the atomization surface away from the plane where the port of the first air intake channel is close to the atomization core is not in the first air intake inside the channel.
  • the air intake channel also includes a second air intake channel, and the second air intake channel is arranged on the side of the first air inlet channel away from the atomizing core;
  • the guide structure also includes a second protrusion, and the second protrusion is arranged on the first The second air inlet channel is close to the port of the atomizing core; wherein, the second protrusion has an arc surface, and the arc surface of the second protrusion is used to guide the airflow of the second air inlet channel to the side close to the atomizing surface.
  • a second protrusion is provided on the inner side of the second air intake channel close to the first air intake channel, and the surface of the second protrusion away from the first air intake channel is an arc surface.
  • the side wall forming the second air inlet channel has a second extension part on the end surface close to the atomization core, and the flow guiding structure is a second protrusion arranged on the surface of the second extension part away from the atomization core; the second protrusion is away from The surface of the second extension part is an arc surface.
  • first air inlet passage and/or the second air inlet passage are rectangular holes with a rectangular cross section perpendicular to the central axis of the atomizer, and the length direction of the rectangular holes is parallel to the atomizing surface.
  • the length of the rectangular hole is the same as the size of the atomizing area of the atomizing surface in the length direction of the rectangular hole.
  • the length of the rectangular hole is 3.5 mm to 5 mm, and the width of the rectangular hole is 0.5 mm to 0.7 mm.
  • the ratio of the width of the rectangular hole to the curvature radius of the arc surface of the first protrusion/the second protrusion is less than 1:2.
  • the atomization surface cooperates with part of the inner wall surface of the airflow passage to form an atomization chamber, the atomization surface is arranged opposite to the inner surface of the airflow passage, the atomization core has a first end and a second end which are oppositely arranged, and the atomization core The first end is arranged close to the bottom wall of the atomization chamber, the second end of the atomization core is arranged near the air outlet channel of the atomization chamber, and the first air inlet passage is arranged on the bottom wall of the atomization chamber.
  • the bottom wall of the atomization chamber is provided with an air inlet
  • the bottom wall of the atomization chamber is provided with a protrusion on the surface facing the atomization core, and the air inlet penetrates through the bottom wall and the protrusion.
  • a partition is arranged in the air inlet, and the partition is arranged parallel to the atomization surface, and the atomization surface divides the air inlet into a first air inlet and a second air inlet, and the first air inlet is used as the first air inlet.
  • the air channel, the second air intake hole is used as the second air intake channel, the partition part is provided with a second extension part, and the side of the second extension part away from the atomizing surface is provided with a second protrusion, and the second protrusion is far away from the second extension part.
  • the surface of the part is arc surface.
  • the second protruding part, the second extending part and the partition part are integrally made.
  • the atomizing core includes a dense matrix, and the dense matrix has an atomizing surface and a liquid-absorbing surface opposite to the atomizing surface; the dense matrix has a microhole array area, and the microhole array area has a plurality of micropores for The substrate is guided from the liquid-absorbing surface to the atomizing surface; the microhole array area on the atomizing surface is the atomizing area on the atomizing surface.
  • the second technical solution adopted by this application is to provide an electronic atomization device, the electronic atomization device includes an atomizer and a power supply assembly, the atomizer is like the atomizer mentioned above, and the power supply assembly is The atomizer provides electrical energy.
  • the atomizer includes: an air flow channel for transporting aerosol; the air flow channel includes an air intake channel; The atomization core is arranged in the air flow channel, and the atomization core has an atomization surface; wherein, the inlet channel is provided with a diversion structure near the port of the atomization core, and the diversion structure has an arc surface facing away from the atomization surface; The airflow entering the air channel is guided to the atomizing surface along the arc surface of the flow guiding structure, and the airflow entering from the air inlet channel carries the aerosol and then is transported to the end of the atomizing core away from the air inlet channel.
  • a diversion structure is set at the port of the air inlet channel close to the atomization core, so that the airflow entering the air inlet channel can be guided to the atomization surface along the arc surface of the air guide structure, which is convenient for carrying the aerosol produced by the atomization surface, and then makes the The airflow of the air intake channel can carry more aerosols, improving the carrying capacity of the airflow to the aerosols.
  • Fig. 1 is a schematic structural diagram of an electronic atomization device provided by the present application
  • Fig. 2 is a schematic diagram of the longitudinal section structure of the atomizer provided by the present application.
  • Fig. 3 is a schematic structural diagram of the atomization core in the electronic atomization device provided by the present application.
  • Fig. 4 is a schematic structural view of the upper base in the electronic atomization device provided by the present application.
  • Fig. 5 is a schematic structural view of the connector in the electronic atomization device provided by the present application.
  • Fig. 6 is a schematic structural view of the lower seat in the electronic atomization device provided by the present application.
  • Fig. 7 is a schematic structural diagram of the first embodiment of the atomizer provided by the present application.
  • Fig. 8 is a schematic structural diagram of the second embodiment of the atomizer provided by the present application.
  • Fig. 9 is a schematic structural view of a specific embodiment of the atomizer provided in Fig. 8;
  • Fig. 10 is a schematic diagram of the simulation of the aerosol transported by the airflow channel of the nebulizer provided in Fig. 9;
  • Figure 11 is a schematic diagram of the structure of different atomizers
  • Fig. 12 is a schematic structural diagram of the third embodiment of the atomizer provided by the present application.
  • Fig. 13 is a schematic diagram of the simulation of the aerosol transported by the airflow channel of the nebulizer provided in Fig. 12;
  • Fig. 14 is a schematic structural diagram of the fourth embodiment of the atomizer provided by the present application.
  • Fig. 15 is a structural schematic diagram of a longitudinal section of the first protrusion and/or the second protrusion perpendicular to the atomizing surface provided by the present application.
  • electronic atomization device 100 atomizer 101; power supply assembly 102; housing 1; first annular side wall 11; first top wall 12; air outlet 121; air guide channel 13; installation space 14; liquid storage cavity 15; atomizing core 2; first end 21; second end 22; dense base 23; heating element 24; atomizing surface 25; atomizing area 251; liquid-absorbing surface 26; Two annular side walls 311; second top wall 312; lower liquid hole 313; air hole 314; connector 315; window 3151; Two air inlet holes 3222; rectangular hole 323; raised part 324; partition part 325; first extension part 326; second extension part 327; The first air intake channel 411; the second air intake channel 412; the guide structure 42; the first protrusion 421; the second protrusion 422; the air outlet channel 43; the air flow channel 5; .
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • the applicant of the present application found that during the transmission process of the aerosol in the nebulizer in the air channel, the design of the air inlet was unreasonable and the size and shape of the air channel changed, which caused the airflow entering from the air inlet to carry the aerosol.
  • the ability is not good, the transmission efficiency of the aerosol is reduced, the aerosol stays in the atomization chamber for a long time, and the aerosol is easy to generate droplets. Droplets enter the air inlet, causing the air inlet to block and leak.
  • the present application provides an atomizer that can improve the transmission efficiency of the aerosol in the airway and an electronic atomization device using the atomizer.
  • FIG. 1 is a schematic structural diagram of an electronic atomization device provided in this application.
  • an electronic atomization device 100 is provided, and the electronic atomization device 100 can be used for atomizing the substance to be atomized.
  • the electronic atomization device 100 includes an atomizer 101 and a power supply assembly 102 connected to each other.
  • the atomizer 101 is used to store the substrate to be atomized and atomize the substrate to be atomized to form an aerosol that can be inhaled by the user.
  • the substrate to be atomized can be a liquid substrate such as a medicinal liquid or a plant grass liquid; the atomizer 101 It can be used in different fields, such as medical treatment, beauty treatment, electronic aerosolization, etc.
  • the power supply assembly 102 includes a battery, an airflow sensor (not shown) and a controller (not shown), etc.; the power supply assembly 102 is used to supply power to the atomizer 101 and control the operation of the atomizer 101, so that the atomizer 101 can The substance to be atomized forms an aerosol; the airflow sensor is used to detect the airflow change in the electronic atomization device 100, and the controller activates the electronic atomization device 100 according to the airflow change detected by the airflow sensor.
  • the atomizer 101 and the power supply assembly 102 can be integrated or detachably connected, and can be designed according to specific needs.
  • the electronic atomization device 100 also includes other components in the existing electronic atomization device 100, such as microphones, brackets, etc. The specific structures and functions of these components are the same or similar to those of the prior art. For details, please refer to the existing technology, which will not be repeated here.
  • FIG. 2 is a schematic structural diagram of the longitudinal section of the atomizer provided by the present application.
  • the atomizer 101 includes a housing 1 , a mounting base 3 , an atomizing core 2 , a first sealing member 6 and a second sealing member 7 .
  • the casing 1 has an installation space 14 , the installation base 3 is accommodated in the installation space 14 , and is fixedly connected to the inner surface of the installation space 14 through the first sealing member 6 .
  • the installation seat 3 cooperates with the inner wall surface of part of the installation space 14 to form a liquid storage chamber 15, which is used to store the substance to be atomized.
  • the mounting base 3 has a receiving cavity 33 , the atomizing core 2 is accommodated in the receiving cavity 33 , and the atomizing core 2 is fixedly connected to the mounting base 3 through the second sealing member 7 .
  • the casing 1 includes a first annular side wall 11 and a first top wall 12 connected to one end of the first annular side wall 11 .
  • the first annular side wall 11 cooperates with the first top wall 12 to form an installation space 14 .
  • An end of the installation space 14 away from the first top wall 12 is open.
  • An air outlet hole 121 is disposed on the first top wall 12 , and edges of the air outlet hole 121 extend into the installation space 14 to form an air guide channel 13 .
  • the air guide channel 13 is integrally formed with the housing 1 .
  • the cross section of the installation space 14 may be oval or rectangular, that is to say, the cross section of the installation space 14 has a length direction and a width direction. In other optional embodiments, the cross section of the installation space 14 may be circular.
  • FIG. 3 is a schematic structural diagram of the atomization core in the electronic atomization device provided by the present application.
  • the atomizing core 2 includes a dense matrix 23 and a heating element 24 .
  • the dense matrix 23 has an atomizing surface 25 and a liquid-absorbing surface 26 opposite to the atomizing surface 25 .
  • the liquid absorbing surface 26 directly contacts the substrate to be atomized in the liquid storage chamber 15, and the atomizing surface 25 is used to atomize the substrate to be atomized to obtain an aerosol.
  • the dense substrate 23 has a micropore array area, and the microhole array area has a plurality of micropores, which are used to guide the substrate to be atomized from the liquid absorption surface 26 to the atomization surface 25; the microhole array area of the atomization surface 25 is atomized.
  • the dense substrate 23 is a glass substrate, and may also be a dense ceramic substrate.
  • the atomizing core 2 includes a porous ceramic substrate and a heating element 24, wherein the porous ceramic substrate has an atomizing surface 25 and a liquid-absorbing surface 26 opposite to the atomizing surface 25, and the heating element 24 is arranged on the atomizing surface 25 , the entire atomizing surface 25 of the heating element 24 is an atomizing area 251 .
  • Figure 4 is a schematic structural view of the upper body of the electronic atomization device provided by this application
  • Figure 5 is a schematic structural view of the connector in the electronic atomization device provided by this application
  • the mounting base 3 is mounted on a portion of the mounting space 14 away from the first top wall 12 .
  • the mounting base 3 includes an upper base body 31 and a lower base body 32 matched with the upper base body 31 , and the lower base body 32 is disposed on a side of the upper base body 31 away from the first top wall 12 .
  • the upper base body 31 is fixedly connected to a part of the inner wall of the installation space 14 , and a part of the inner wall surface of the installation space 14 close to the first top wall 12 cooperates with the outer wall of the upper base body 31 to form the liquid storage chamber 15 .
  • the liquid storage cavity 15 surrounds the periphery of the air guide channel 13 .
  • the upper seat body 31 and the lower seat body 32 are arranged in cooperation to form a receiving cavity 33 .
  • the accommodation cavity 33 is used to accommodate the atomizing core 2 .
  • the upper base body 31 is provided with a lower liquid hole 313 and a vent hole 314, and the lower liquid hole 313 and the vent hole 314 are arranged at intervals.
  • An end of the air guide channel 13 away from the air outlet hole 121 is connected to the air hole 314 .
  • the end of the air guide channel 13 away from the air outlet hole 121 is in sealing communication with the air hole 314 through the first sealing member 6 , so as to avoid air leakage between the air guide channel 13 and the air hole 314 of the upper base 31 .
  • the air guiding channel 13 communicates with the receiving cavity 33 through the vent hole 314 .
  • the atomizing core 2 covers the lower liquid hole 313 , and the periphery of the atomizing core 2 is in close contact with the inner wall of the lower liquid hole 313 through the second sealing member 7 , so as to prevent the substance to be atomized from the liquid storage chamber 15 from leaking out.
  • the second sealing member 7 is a sealing ring, and the end surface away from the liquid storage chamber 15 has a groove, the atomizing core 2 is embedded in the groove of the second sealing member 7, and the atomizing core 2
  • the atomizing surface 25 and the end surface of the second sealing member 7 away from the liquid storage chamber 15 are in the same plane.
  • the upper base body 31 further includes a connecting piece 315 for installing the atomizing core 2 on the lower liquid hole 313 , as shown in FIG. 5 .
  • the connecting piece 315 is provided with a window 3151 , and the window 3151 is arranged correspondingly to the lower liquid hole 313 , and is used to transfer the substance to be atomized to the liquid absorption surface 26 of the atomizing core 2 .
  • the atomizing core 2 is clamped in the lower liquid hole 313 through the connecting piece 315 , so that the atomizing surface 25 of the atomizing core 2 is flush with at least one inner wall surface of the receiving cavity 33 .
  • the upper seat body 31 includes a second annular side wall 311 and a second top wall 312 connected to one end of the second annular side wall 311 , and a vent hole 314 is arranged on the second top wall 312 , and the bottom The liquid hole 313 is disposed on the second top wall 312 or the second annular side wall 311 .
  • the lower base body 32 includes a bottom wall 321 , and a connecting portion is disposed on the bottom wall 321 , and the bottom wall 321 is engaged with the upper base body 31 through the connecting portion to form the above-mentioned receiving cavity 33 .
  • the atomizing surface 25 cooperates with the inner wall surface of the receiving chamber 33 to form the atomizing chamber 4 .
  • the bottom wall 321 of the lower base body 32 serves as the bottom wall 321 of the atomization chamber 4 .
  • the atomization chamber 4 has an air inlet channel 41 and an air outlet channel 43 .
  • the atomizing chamber 4 communicates with the air guiding channel 13 through the air outlet channel 43 .
  • the air inlet channel 41 is used to transmit the airflow from outside to the atomization chamber 4 so as to carry the aerosol into the air outlet channel 43 through the airflow.
  • the air inlet channel 41, the atomization chamber 4, the air outlet channel 43 and the air guide channel 13 connected in sequence constitute the air flow channel 5
  • the air inlet channel 41 is used as the inlet end of the air flow channel 5
  • the air guide channel 13 is far away from the air outlet channel 43.
  • One end serves as the air outlet of the airflow channel 5 .
  • the inlet channel 41 is provided with a guide structure 42 near the port of the atomizing core 2, and the guide structure 42 has an arc surface facing away from the atomizing surface 25;
  • the arc surface of the flow structure 42 is guided to the atomizing surface 25 , and the airflow entering from the air inlet channel 41 carries the aerosol and then transports to the end of the atomizing core 2 away from the air inlet channel 41 .
  • the air guide structure 42 guides the airflow entering from the air inlet channel 41 to the atomizing surface 25 through the Coanda effect, so as to transfer the atomized aerosol heated by the atomizing surface 25 to the outlet of the atomizing chamber 4 Channel 43.
  • the air intake passage 41 is disposed on the side wall and/or the bottom wall 321 of the atomization chamber 4 .
  • the Coanda effect refers to the tendency of the fluid (water flow or air flow) to deviate from the original flow direction and flow with the surface of the protruding object instead.
  • surface friction also known as fluid viscosity
  • the fluid will flow along the surface as long as the curvature is small.
  • the ratio of the fluid width w to the curvature radius r of the protruding part is less than 0.5, ie w/r ⁇ 0.5).
  • the atomizing core 2 may include a first end 21 and a second end 22 , the first end 21 of the atomizing core 2 is opposite to the second end 22 of the atomizing core 2 .
  • the air intake channel 41 is set close to the first end 21 of the atomizing core 2, and the airflow of the air intake channel 41 first reaches the first end 21 of the atomizing core 2 along the arc surface of the flow guiding structure 42, and then flows from the first end 21 of the atomizing core 2
  • the one end 21 is transmitted to the second end 22 to transmit the aerosol generated by the atomizing surface 25 of the atomizing core 2 to the air outlet channel 43 of the atomizing chamber 4 .
  • the atomizing surface 25 of the atomizing core 2 forms a predetermined angle with the central axis of the atomizer 101 .
  • the preset angle is along the airflow direction of the air inlet channel 41
  • the included angle between the atomizing surface 25 and the central axis of the atomizer 101 is 0° ⁇ 90°. That is to say, the central axis of the air intake passage 41 may be parallel to the atomizing surface 25 . It may also be that along the airflow direction of the air intake channel 41 , the distance between the central axis of the air intake channel 41 and the atomizing surface 25 gradually decreases.
  • the atomizing surface 25 of the atomizing core 2 is arranged parallel to or perpendicular to the central axis of the atomizer 101 .
  • the lower liquid hole 313 is arranged on the second top wall 312 of the upper base 31, and the lower liquid hole on the second top wall 312 313 and the ventilation hole 314 are arranged at intervals.
  • the intake passage 41 is disposed on the second annular sidewall 311 .
  • the first end 21 of the atomizing core 2 is disposed close to the side wall of the receiving chamber 33
  • the second end 22 of the atomizing core 2 is disposed close to the air outlet channel 43 .
  • the air intake channel 41 includes a first air intake channel 411 , and the first air intake channel 411 is disposed on the side wall of the atomization chamber 4 .
  • the air intake channel 41 is disposed on the bottom wall 321 of the lower seat body 32 .
  • the first end 21 of the atomizing core 2 is disposed close to the bottom wall 321 of the lower base 32
  • the second end 22 of the atomizing core 2 is disposed close to the vent hole 314 of the upper base 31 .
  • the air intake channel 41 includes a first air intake channel 411
  • the first air intake channel 411 is disposed on the bottom wall 321 of the atomization chamber 4 .
  • FIG. 7 is a schematic structural diagram of the first embodiment of the atomizer provided by the present application
  • Fig. 8 is a schematic structural diagram of the second embodiment of the atomizer provided by the present application
  • Fig. 9 is a diagram 8 is a schematic diagram of the structure of a specific embodiment of the atomizer
  • FIG. 10 is a schematic simulation diagram of the aerosol transported by the airflow channel of the atomizer provided in FIG. 9 .
  • the air intake channel 41 includes a first air intake channel 411 , and a guide structure 42 is provided at the port of the first air intake channel 411 near the atomizing core 2 .
  • the flow guiding structure 42 includes a first protrusion 421 having an arc surface, at least a surface of the first protrusion 421 facing away from the atomizing surface 25 is an arc surface.
  • the arc surface of the first protrusion 421 close to the end surface of the atomizing chamber 4 is not lower than the plane where the port of the first air inlet passage 411 is close to the atomizing chamber 4, and is not higher than the atomizing area 251 of the atomizing surface 25. The plane where the end of the lower seat body 32 is located.
  • the curved surface of the first protrusion 421 gives the airflow a normal direction perpendicular to the atomizing surface 25 speed, thereby inhibiting the airflow of the first air inlet channel 411 from diffusing in the atomization chamber 4, reducing the contact and collision between the aerosol carried in the airflow and the inner wall of the atomization chamber 4, so that more aerosols are transmitted to the mist through the airflow.
  • the air outlet channel 43 of the chemical chamber 4 improves the transmission efficiency of the aerosol.
  • the first protrusion 421 is disposed in the first air intake passage 411 , and the arc surface of the first protrusion 421 is disposed away from the atomizing core 2 .
  • an air inlet 322 is provided on the bottom wall 321 of the lower seat body 32, and the inner surface of the air inlet 322 near the atomizing surface 25 has a first protrusion 421, and the arc surface of the first protrusion 421 The end surface close to the atomization chamber 4 is not lower than the plane where the port of the air inlet hole 322 close to the atomization chamber 4 is located.
  • the first protrusion 421 is integrally formed with the inner wall surface forming the first air intake channel 411 .
  • the side wall forming the first air inlet channel 411 has a first extension 326 on the end surface close to the atomization core 2 , and the first extension 326 is away from the atomization core. 2 is provided with a first protrusion 421; the first protrusion 421 has an arc surface.
  • the first protrusion 421 is flush with the end surface of the first extension portion 326 away from the first air intake passage 411 .
  • the tangent line of the vertex of the arc surface of the first protrusion 421 is inside the first air intake passage 411 and is parallel to the central axis of the first air intake passage 411 .
  • the first protrusion 421 , the first extension portion 326 and the bottom wall 321 of the lower seat body 32 are integrally formed.
  • Figure 11 is a schematic diagram of the structure of different atomizers.
  • Fig. 11(a) and Fig. 11(b) are schematic structural diagrams of the atomizers in two comparative examples, and
  • Fig. 11(c) is a schematic structural diagram of the atomizer of the present application. As shown in Fig.
  • the port of the first air inlet passage 411 is not provided with the first protrusion 421 of the present application, nor is there any other structure for guiding air, the airflow entering from the first air inlet passage 11 and the atomizing core
  • the atomizing surfaces 25 of 2 are parallel to each other, and the droplets generated by the condensation of aerosol in the atomizing chamber 4 are easy to fall into the first air inlet channel 411;
  • a protrusion 421, but the side away from the atomizing surface 25 has an air guiding structure, and the air guiding structure guides the airflow entering from the first air inlet passage 11 to the atomizing surface 25, however, when the first air inlet passage 411 approaches When the end of the atomizing core 2 is provided with an air guiding structure, the droplets formed by condensation are more likely to fall into the first air inlet channel 411 .
  • the first protrusion 421 provided in this embodiment can prevent the liquid droplets generated by the condensation of the aerosol in the atomizing chamber 4 from falling into
  • the intersection of the tangent line L of the arc surface of the first protrusion 421 near the side of the atomizing surface 25 and the plane of the atomizing surface 25 does not exceed the end of the atomizing area 251 near the first air inlet channel 411 .
  • the extension of the tangent line L is located between the edge of the first air inlet channel 411 facing the port of the atomizing chamber 4 away from the atomizing core 2 or between the first air inlet channel 411 and the inner surface of the atomizing chamber 4 away from the atomizing surface 25 .
  • the intersection of the tangent line of the arc surface of the first protrusion 421 near the side of the atomizing surface 25 and the plane where the atomizing surface 25 is located does not exceed the first end of the atomizing area 251 of the atomizing surface 25 near the atomizing core 2 21 ends.
  • the intersection of the tangent line of the arc surface of the first protrusion 421 near the side of the atomizing surface 25 and the plane where the atomizing surface 25 is located can be at the end of the atomizing area 251 close to the first air inlet channel 411, or at the The position between the chemical region 251 and the bottom wall 321 of the lower seat body 32 .
  • the extension line of the tangent can be located at the edge of the first air inlet channel 411 facing the port of the atomizing chamber 4 and away from the atomizing core 2 , or between the first air inlet channel 411 and the inner surface of the atomizing chamber 4 away from the atomizing surface 25 between. That is to say, the intersection of the extension line of the tangent away from the end of the atomizing surface 25 and the plane where the port of the first air inlet channel 411 is close to the atomizing chamber 4 is not in the port of the first air inlet channel 411, so as to avoid the formation of aerosol liquefaction The droplets fall into the first air intake channel 411.
  • the first air inlet channel 411 is a rectangular hole 323 with a rectangular cross section perpendicular to the central axis of the atomizer 101 , and the length direction of the rectangular hole 323 is parallel to the atomizing surface 25 .
  • the extension line of the tangent of the arc surface of the first protrusion 421 close to the side of the atomizing surface 25 passes through the rectangular hole 323 toward the long side of the port on the side of the atomizing chamber 4 away from the atomizing surface 25, and the extension line of the tangent coincides with the rectangular hole
  • the long sides of 323 are perpendicular to each other.
  • the intersection of the extension line of the tangent of the arc surface of the first protrusion 421 near the side of the atomizing surface 25 and the plane where the port of the first air inlet channel 411 faces the atomizing chamber 4 is located in the rectangular hole 323 Between the inner surface of the atomizing chamber 4 and away from the atomizing surface 25 .
  • the bottom wall 321 of the lower seat body 32 is provided with a raised portion 324, the air inlet 322 runs through the bottom wall 321 of the lower seat body 32 and the raised portion 324, and the outer surface of the raised portion 324 is in contact with the part of the atomizing chamber 4.
  • the inner wall cooperates to form a liquid collection tank 328 to accommodate the liquid droplets formed by the liquefaction of the aerosol, so as to prevent the liquid droplets from falling into the air inlet 322 and causing the air inlet 322 to block and leak.
  • Fig. 12 is a schematic structural diagram of the third embodiment of the nebulizer provided in the present application
  • Fig. 13 is a schematic diagram of the simulation of the aerosol transported by the airflow channel of the nebulizer provided in Fig. 12 .
  • the air intake channel 41 also includes a second air intake channel 412, the second air intake channel 412 is set on the bottom wall 321 of the atomization chamber 4, and the second air intake channel 412 is set on the first air intake channel 411 The side away from the atomizing core 2.
  • the port of the second air intake channel 412 close to the atomizing core 2 is provided with a flow guide structure 42 , and the flow guide structure 42 also includes a second protrusion 422 , and the second protrusion 422 has an arc surface.
  • the arc surface of the second protrusion 422 is set away from the first air inlet passage 411, and is used to direct the airflow of the second air inlet passage 412 to the atomizing surface 25, so as to transfer the aerosol on the atomizing surface 25 to the atomizing surface.
  • the outlet channel 43 of the chamber 4 can also carry the aerosol in the low-pressure area between the first inlet channel 411 and the second inlet channel 412 to the outlet channel 43 of the atomization chamber 4, thereby improving the transmission efficiency of the aerosol.
  • the arc surface of the second protrusion 422 near the end of the atomizing chamber 4 is not lower than the plane where the port of the second air inlet channel 412 is near the atomizing chamber 4, and is not higher than the atomizing area 251 of the atomizing surface 25 The plane near the end of the lower seat body 32 is located.
  • the arc surface of the second protrusion 422 gives the airflow a normal direction perpendicular to the atomizing surface 25 The speed, so that the airflow of the second air intake channel 412 can carry the aerosol retained in the negative pressure area between the first air intake channel 411 and the second air intake channel 412, so as to increase the transmission efficiency of the aerosol.
  • the air flow of the second air inlet channel 412 can also inhibit the air flow of the first air inlet channel 411 from diffusing in the atomization chamber 4, reduce the contact and collision between the aerosol in the air flow and the inner wall of the atomization chamber 4, and make the aerosol more
  • the airflow is transmitted to the outlet channel 43 of the atomization chamber 4, further improving the transmission efficiency of the aerosol.
  • the second protrusion 422 is disposed on the inner surface of the second air intake passage 412 close to the atomizing core 2 , and the arc surface of the second protrusion 422 is disposed away from the atomizing core 2 .
  • the bottom wall 321 of the lower base 32 is provided with an air inlet 322
  • the bottom wall 321 of the atomization chamber 4 is provided with a protrusion 324 on the surface facing the atomization core 2
  • the air inlet 322 runs through The bottom wall 321 and the raised portion 324 of the lower seat body 32 .
  • the air inlet 322 is provided with a partition 325, the partition 325 is arranged parallel to the atomizing surface 25, the atomizing surface 25 divides the air inlet 322 into a first air inlet 3221 and a second air inlet 3222, the first inlet 3222
  • the air hole 3221 serves as the first air intake passage 411
  • the second air intake hole 3222 serves as the second air intake passage 412 .
  • the second air inlet 3222 is set on the side of the first air inlet 3221 away from the atomizing core 2, and only the inner surface of the second air inlet 3222 close to the first air inlet 3221 has a second protrusion 422.
  • the surface of the protrusion 422 away from the first air inlet 3221 is an arc surface.
  • the arc surface of the second protrusion 422 close to the end surface of the atomizing chamber 4 is not lower than the surface of the bottom wall 321 of the lower seat body 32 facing the atomizing chamber 4, and is not higher than the surface of the atomizing area 251 near the lower seat body 32.
  • the plane of the end is not lower than the surface of the bottom wall 321 of the lower seat body 32 facing the atomizing chamber 4, and is not higher than the surface of the atomizing area 251 near the lower seat body 32.
  • the side wall forming the second air intake channel 412 has a second extension 327 on the end surface close to the atomization core 2 , and only the second extension 327 is provided on the side away from the atomization core 2
  • the second protrusion 422 , the arc surface of the second protrusion 422 is disposed away from the second extension portion 327 .
  • the surface of the second protrusion 422 away from the second extension portion 327 is an arc perpendicular to the longitudinal section of the atomizing surface 25 .
  • the partition 325 is provided with a second extension 327
  • the second extension 327 is provided with a second protrusion 422 on the side facing the second air intake channel 412
  • the second protrusion 422 is far away from the first
  • the surface of the air intake channel 411 is an arc surface.
  • the arc surface of the second protrusion 422 away from the second air inlet 3222 is not higher than the plane where the end of the atomization area 251 close to the lower base 32 is located.
  • the second protrusion 422 , the second extension part 327 and the partition part 325 are integrally formed.
  • FIG. 14 is a schematic structural diagram of a fourth embodiment of the atomizer provided by the present application.
  • the first air inlet passage 411 is provided with a first protrusion 421 near the port of the atomizing core 2 ;
  • the second air inlet passage 412 is provided with a second protrusion 422 near the port of the atomizing core 2 .
  • the position and structure of the second protrusion 422 disposed on the second air intake passage 412 may be the same as or different from the position and structure of the first protrusion 421 disposed on the first air intake passage 411 , which is not limited here.
  • the first air inlet channel 411 and/or the second air inlet channel 412 is a rectangular hole 323 with a rectangular cross section perpendicular to the central axis of the nebulizer 101, and the length direction of the rectangular hole 323 is in line with the fog
  • the chemical planes 25 are parallel.
  • FIG. 15 is a structural schematic view of the longitudinal section of the first protrusion and/or the second protrusion perpendicular to the atomizing surface provided by the present application.
  • the longitudinal section of the first protrusion 421 and/or the second protrusion 422 perpendicular to the atomizing surface 25 is semicircular, as shown in Figure 15(b); Quadrilateral structure, as shown in Figure 15(a).
  • the longitudinal section of the first protrusion 421 and/or the second protrusion 422 perpendicular to the atomizing surface 25 is a quadrilateral structure
  • the side away from the atomizing surface 25 is an arc
  • the two sides connected to the two ends of the arc are perpendicular to the The straight line of the atomizing surface 25 and the side opposite to the arc are straight lines.
  • the length of the rectangular hole 323 is the same as the size of the atomizing area 251 of the atomizing surface 25 in the length direction of the rectangular hole 323 .
  • the length of the rectangular hole 323 is 3.5mm-5mm, and the width of the rectangular hole 323 is 0.5mm-0.7mm.
  • the width w of the rectangular hole 323 is the same as the first The ratio of the curvature r to the radius of the arc surface of the protrusion 421 or the second protrusion 422 is less than 1:2.
  • the atomizer includes: an airflow channel for transmitting aerosol; the airflow channel includes an air intake channel; an atomizing core is arranged in the airflow channel, and the atomizing core has an atomizing surface; wherein, the air inlet channel is provided with a diversion structure near the port of the atomization core, and the diversion structure has an arc surface facing away from the atomization surface; the airflow entering from the air inlet channel is guided to the mist On the atomization surface, the airflow entering from the air intake channel carries the aerosol and then transports it to the end of the atomization core away from the air intake channel.
  • a diversion structure is set at the port of the air inlet channel close to the atomization core, so that the airflow entering the air inlet channel can be guided to the atomization surface along the arc surface of the air guide structure, which is convenient for carrying the aerosol produced by the atomization surface, and then makes the The airflow of the air intake channel can carry more aerosols, improving the carrying capacity of the airflow to the aerosols.

Landscapes

  • Nozzles (AREA)

Abstract

本申请提供一种电子雾化装置及其雾化器,雾化器包括:气流通道,用于传输气溶胶;气流通道包括进气通道;雾化芯,设置于气流通道内,雾化芯具有雾化面;其中,进气通道靠近雾化芯的端口处设有导流结构,导流结构具有背向雾化面的弧面;从进气通道进入的气流沿导流结构的弧面导向至雾化面,从进气通道进入的气流携带气溶胶传输至雾化芯远离进气通道的一端。本申请在进气通道靠近雾化芯的端口设置导流结构,使进气通道进入的气流可以沿导流结构的弧面导向至雾化面,方便携带雾化面产生的气溶胶,进而使进气通道的气流可以更多的携带气溶胶,提高气流对气溶胶的携带能力。

Description

一种电子雾化装置及其雾化器 技术领域
本申请涉及电子雾化器技术领域,特别是涉及一种电子雾化装置及其雾化器。
背景技术
现有技术中电子雾化装置主要由雾化器和电源组件构成。雾化器一般包括储液腔和雾化组件,储液腔用于储存待雾化基质,雾化组件用于对待雾化基质进行加热并雾化,以形成可供吸食者食用的气溶胶;电源组件用于向雾化器提供能量。现有雾化器对气溶胶的携带能力不佳,且气溶胶及液滴容易进入进气口导致堵塞及漏液。
发明内容
本申请主要解决的技术问题是提供一种电子雾化装置及其雾化器,解决现有技术中进气通道的气流对气溶胶的携带能力不佳的问题。
为解决上述技术问题,本申请采用的第一个技术方案是:提供一种雾化器,雾化器包括:气流通道,用于传输气溶胶;气流通道包括进气通道;雾化芯,设置于气流通道内,雾化芯具有雾化面;其中,进气通道靠近雾化芯的端口处设有导流结构,导流结构具有背向雾化面的弧面;从进气通道进入的气流沿导流结构的弧面导向至雾化面,从进气通道进入的气流携带气溶胶传输至雾化芯远离进气通道的一端。
其中,导流结构通过康达效应将从进气通道进入的气流导向至雾化面。
其中,雾化面与雾化器的中轴线平行设置或垂直设置。
其中,进气通道包括第一进气通道,导流结构为设置于第一进气通道靠近雾化芯的侧面的第一凸起;第一凸起具有弧面。
其中,进气通道包括第一进气通道,形成第一进气通道的侧壁靠近雾化芯的端面具有第一延伸部,导流结构为设置于第一延伸部背离雾化芯的表面的第一凸起;第一凸起具有弧面。
其中,弧面靠近雾化面一侧的端面不高于雾化区靠近第一进气通道的端部。
其中,经过雾化区靠近第一进气通道的端部的弧面的切线远离雾化面一端的延长线与第一进气通道靠近雾化芯的端口所在平面的交点不处于第一进气通道内。
其中,进气通道还包括第二进气通道,第二进气通道设置于第一进气通道远离雾化芯的一侧;导流结构还包括第二凸起,第二凸起设置于第二进气通道靠近雾化芯的端口处;其中,第二凸起具有弧面,第二凸起的弧面用于将第二进气通道的气流引导至靠近雾化面的一侧。
其中,第二进气通道靠近第一进气通道的一侧内侧面上设置第二凸起,第二凸起远离第一进气通道的表面为弧面。
其中,形成第二进气通道的侧壁靠近雾化芯的端面具有第二延伸部,导流结构为设置于 第二延伸部背离雾化芯的表面的第二凸起;第二凸起远离第二延伸部的表面为弧面。
其中,第一进气通道和/或第二进气通道为垂直于雾化器中轴线的横截面为矩形的矩形孔,矩形孔的长度方向与雾化面平行。
其中,矩形孔的长度与雾化面的雾化区在矩形孔的长度方向的尺寸相同。
其中,矩形孔的长度为3.5毫米~5毫米,矩形孔的宽度为0.5毫米~0.7毫米。
其中,矩形孔的宽度与第一凸起/第二凸起的弧面的曲率半径之比小于1:2。
其中,雾化面与气流通道的部分内壁面配合形成雾化腔,雾化面与气流通道的内侧面相对设置,雾化芯具有相对设置的第一端和第二端,且雾化芯的第一端靠近雾化腔的底壁设置,雾化芯的第二端靠近雾化腔的出气通道设置,第一进气通道设置于雾化腔的底壁上。
其中,雾化腔的底壁上设置有进气孔,雾化腔的底壁朝向雾化芯的表面设有凸起部,进气孔贯穿底壁和凸起部。
其中,进气孔内设有分隔部,分隔部与雾化面平行设置,雾化面将进气孔分为第一进气孔和第二进气孔,第一进气孔作为第一进气通道,第二进气孔作为第二进气通道,分隔部设有第二延伸部,第二延伸部远离雾化面的一侧设有第二凸起,第二凸起远离第二延伸部的表面为弧面。
其中,第二凸起部、第二延伸部和分隔部一体制成。
其中,雾化芯包括致密基体,致密基体具有雾化面和与雾化面相对的吸液面;致密基体具有微孔阵列区,微孔阵列区具有多个微孔,用于将待雾化基质从吸液面引导至雾化面;雾化面的微孔阵列区为雾化面的雾化区。
为解决上述技术问题,本申请采用的第二个技术方案是:提供一种电子雾化装置,电子雾化装置包括雾化器和电源组件,雾化器如上述的雾化器,电源组件为雾化器提供电能。
本申请的有益效果是:区别于现有技术的情况,提供一种电子雾化装置及其雾化器,雾化器包括:气流通道,用于传输气溶胶;气流通道包括进气通道;雾化芯,设置于气流通道内,雾化芯具有雾化面;其中,进气通道靠近雾化芯的端口处设有导流结构,导流结构具有背向雾化面的弧面;从进气通道进入的气流沿导流结构的弧面导向至雾化面,从进气通道进入的气流携带气溶胶后传输至雾化芯远离进气通道的一端。本申请在进气通道靠近雾化芯的端口设置导流结构,使进气通道进入的气流可以沿导流结构的弧面导向至雾化面,方便携带雾化面产生的气溶胶,进而使进气通道的气流可以更多的携带气溶胶,提高气流对气溶胶的携带能力。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请提供的电子雾化装置的结构示意图;
图2是本申请提供的雾化器的纵切面结构示意图;
图3是本申请提供的电子雾化装置中雾化芯的结构示意图;
图4是本申请提供的电子雾化装置中上座体的结构示意图;
图5是本申请提供的电子雾化装置中连接件的结构示意图;
图6是本申请提供的电子雾化装置中下座体的结构示意图;
图7是本申请提供的雾化器第一实施例的结构简图;
图8是本申请提供的雾化器第二实施例的结构简图;
图9是图8提供的雾化器中一具体实施例的结构示意图;
图10是图9提供的雾化器的气流通道传输气溶胶的仿真示意图;
图11是不同雾化器的结构示意图;
图12是本申请提供的雾化器第三实施例的结构简图;
图13是图12提供的雾化器的气流通道传输气溶胶的仿真示意图;
图14是本申请提供的雾化器第四实施例的结构简图;
图15是本申请提供的第一凸起和/或第二凸起垂直于雾化面的纵截面的结构示意图。
图中:电子雾化装置100;雾化器101;电源组件102;壳体1;第一环形侧壁11;第一顶壁12;出气孔121;导气通道13;安装空间14;储液腔15;雾化芯2;第一端21;第二端22;致密基体23;发热元件24;雾化面25;雾化区251;吸液面26;安装座3;上座体31;第二环形侧壁311;第二顶壁312;下液孔313;通气孔314;连接件315;窗口3151;下座体32;底壁321;进气孔322;第一进气孔3221;第二进气孔3222;矩形孔323;凸起部324;分隔部325;第一延伸部326;第二延伸部327;集液槽328;收容腔33;雾化腔4;进气通道41;第一进气通道411;第二进气通道412;导流结构42;第一凸起421;第二凸起422;出气通道43;气流通道5;第一密封件6;第二密封件7。
具体实施方式
下面结合说明书附图,对本申请实施例的方案进行详细说明。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相 应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请申请人研究发现,雾化器内的气溶胶在气道内传输过程中,进气口的设计不合理及气道尺寸和形状的变化,导致从进气口进入的气流对于气溶胶的携带能力不佳,气溶胶的传输效率降低,气溶胶在雾化腔内滞留的时间较长,气溶胶容易生成液滴。液滴进入进气口,会造成进气口堵塞和漏液。为此本申请提供一种可以提高气道内气溶胶的传输效率的雾化器及采用该雾化器的电子雾化装置。
请参阅图1,图1是本申请提供的电子雾化装置的结构示意图。本实施例中提供一种电子雾化装置100,该电子雾化装置100可用于待雾化基质的雾化。电子雾化装置100包括相互连接的雾化器101和电源组件102。雾化器101用于存储待雾化基质并雾化待雾化基质以形成可供用户吸食的气溶胶,待雾化基质可以是药液、植物草叶类液体等液态基质;雾化器101可用于不同的领域,比如,医疗、美容、电子气溶胶化等。电源组件102包括电池、气流传感器(图未示)以及控制器(图未示)等;电源组件102用于为雾化器101供电并控制雾化器101工作,以使得雾化器101能够雾化待雾化基质形成气溶胶;气流传感器用于检测电子雾化装置100中气流变化,控制器根据气流传感器检测到的气流变化启动电子雾化装置100。雾化器101与电源组件102可以是一体设置,也可以是可拆卸连接,根据具体需要进行设计。当然,该电子雾化装置100还包括现有电子雾化装置100中的其它部件,比如,咪头、支架等,这些部件的具体结构和功能与现有技术相同或相似,具体可参见现有技术,在此不再赘述。
请参阅图2,图2是本申请提供的雾化器的纵切面结构示意图。雾化器101包括壳体1、安装座3、雾化芯2、第一密封件6和第二密封件7。
壳体1具有安装空间14,安装座3收容于安装空间14,且通过第一密封件6与安装空间14的内侧面固定连接。安装座3与部分安装空间14的内壁面配合形成储液腔15,储液腔15用于存储待雾化基质。安装座3具有收容腔33,雾化芯2收容于收容腔33,且雾化芯2通过第二密封件7与安装座3固定连接。
壳体1包括第一环形侧壁11以及与第一环形侧壁11一端连接的第一顶壁12。第一环形侧壁11和第一顶壁12配合形成安装空间14。安装空间14远离第一顶壁12的一端为敞口。第一顶壁12上设置有出气孔121,出气孔121的边沿向安装空间14内延伸形成导气通道13。导气通道13与壳体1一体制成。其中,安装空间14的横截面可以为椭圆形,也可以为矩形结构,也就是说,安装空间14的横截面具有长度方向和宽度方向。在其他可选实施例中,安 装空间14的横截面可以为圆形。
请参阅图3,图3是本申请提供的电子雾化装置中雾化芯的结构示意图。雾化芯2包括致密基体23和发热元件24。致密基体23具有雾化面25和与雾化面25相对的吸液面26。吸液面26直接接触储液腔15的待雾化基质,雾化面25用于雾化待雾化基质得到气溶胶。致密基体23具有微孔阵列区,微孔阵列区具有多个微孔,用于将待雾化基质从吸液面26引导至雾化面25;雾化面25的微孔阵列区为雾化面25的雾化区251。在本实施例中,致密基体23为玻璃基板,也可以为致密的陶瓷基体。在其他实施例中,雾化芯2包括多孔陶瓷基体和发热元件24,其中,多孔陶瓷基体具有雾化面25和与雾化面25相对的吸液面26,发热元件24设置于雾化面25,发热元件24的整个雾化面25均为雾化区251。
请参阅图4至图6,图4是本申请提供的电子雾化装置中上座体的结构示意图;图5是本申请提供的电子雾化装置中连接件的结构示意图;图6是本申请提供的电子雾化装置中下座体的结构示意图。安装座3安装于安装空间14远离第一顶壁12的部分。安装座3包括上座体31以及与上座体31匹配设置的下座体32,下座体32设置于上座体31远离第一顶壁12的一侧。上座体31与安装空间14的部分内侧壁固定连接,安装空间14靠近第一顶壁12的部分内壁面与上座体31的外壁配合形成储液腔15。储液腔15围绕在导气通道13的外围。上座体31和下座体32配合设置形成收容腔33。收容腔33用于收容雾化芯2。具体地,上座体31上设置有下液孔313和通气孔314,下液孔313和通气孔314间隔设置。导气通道13远离出气孔121的一端与通气孔314连接。具体地,导气通道13远离出气孔121的一端通过第一密封件6与通气孔314密封连通,避免导气通道13与上座体31的通气孔314之间漏气。导气通道13通过通气孔314与收容腔33连通。雾化芯2覆盖于下液孔313,且雾化芯2的周缘通过第二密封件7与下液孔313的内壁面紧密贴合,避免储液腔15的待雾化基质漏出。在一具体实施例中,第二密封件7为密封环,且远离储液腔15的端面具有凹槽,雾化芯2嵌设于第二密封件7的凹槽内,且雾化芯2的雾化面25与第二密封件7远离储液腔15的端面处于同一平面。在另一实施例中,上座体31还包括连接件315,连接件315用于将雾化芯2安装于下液孔313,如图5。连接件315上设有窗口3151,窗口3151与下液孔313对应设置,用于使待雾化基质传输至雾化芯2的吸液面26。雾化芯2通过连接件315卡接于下液孔313内,使雾化芯2的雾化面25与收容腔33的至少一个内壁面平齐。
在本实施例中,如图4,上座体31包括第二环形侧壁311以及与第二环形侧壁311一端连接的第二顶壁312,通气孔314设置于第二顶壁312上,下液孔313设置于第二顶壁312或第二环形侧壁311上。如图6,下座体32包括底壁321,底壁321上设置有连接部,底壁321通过连接部与上座体31卡接,以形成上述的收容腔33。
雾化面25与收容腔33的内壁面配合形成雾化腔4。在一实施例中,下座体32的底壁321作为雾化腔4的底壁321。雾化腔4具有进气通道41和出气通道43。雾化腔4通过出气通道43与导气通道13连通。其中,进气通道41用于将外界的气流传输至雾化腔4,以通过气流携带气溶胶进入出气通道43。其中,依次连通的进气通道41、雾化腔4、出气通道43和导气通道13构成气流通道5,进气通道41作为气流通道5的进气端,导气通道13远离出气通 道43的一端作为气流通道5的出气端。
在本实施例中,进气通道41靠近雾化芯2的端口处设有导流结构42,导流结构42具有背向雾化面25的弧面;从进气通道41进入的气流沿导流结构42的弧面导向至雾化面25,从进气通道41进入的气流携带气溶胶后传输至雾化芯2远离进气通道41的一端。在本实施例中,导流结构42通过康达效应将从进气通道41进入的气流导向至雾化面25,以将雾化面25加热雾化的气溶胶传输至雾化腔4的出气通道43。其中,进气通道41设置于雾化腔4的侧壁和/或底壁321上。其中,康达效应是指流体(水流或气流)有偏离原本流动方向,改为随着凸出的物体表面流动的倾向。当流体与它流过的物体表面之间存在表面摩擦时(也可以说是流体粘性),只要曲率不大,流体就会顺着该物体表面流动。在本实施例中,保证流体宽度w与凸出部分的曲率半径r之比小于0.5,即w/r<0.5)。
请参阅图3,雾化芯2可以包括第一端21和第二端22,雾化芯2的第一端21与雾化芯2的第二端22相对设置。进气通道41靠近雾化芯2的第一端21设置,进气通道41的气流沿导流结构42的弧面先到达雾化芯2的第一端21,再自雾化芯2的第一端21传输至第二端22,以将雾化芯2的雾化面25产生的气溶胶传输至雾化腔4的出气通道43。
雾化芯2的雾化面25与雾化器101的中轴线呈预设角度。其中,预设角度为沿着进气通道41的气流方向,雾化面25与雾化器101的中轴线之间的夹角为0°~90°。也就是说,进气通道41的中轴线可以与雾化面25平行。也可以是沿着进气通道41的气流方向,进气通道41的中轴线与雾化面25之间的距离逐渐缩小。
在一优选实施例中,雾化芯2的雾化面25与雾化器101的中轴线平行设置或垂直设置。
当雾化芯2的雾化面25与雾化器101的中轴线垂直设置时,下液孔313设置于上座体31的第二顶壁312上,且第二顶壁312上的下液孔313与通气孔314间隔设置。进气通道41设置于第二环形侧壁311上。具体地,雾化芯2的第一端21靠近收容腔33的侧壁设置,雾化芯2的第二端22靠近出气通道43设置。具体地,进气通道41包括第一进气通道411,第一进气通道411设置于雾化腔4的侧壁上。
当雾化芯2的雾化面25与雾化器101的中轴线平行设置时,下液孔313设置于上座体31的第二环形侧壁311上,通气孔314设置于上座体31的第二顶壁312上;进气通道41设置于下座体32的底壁321上。具体地,雾化芯2的第一端21靠近下座体32的底壁321设置,雾化芯2的第二端22靠近上座体31的通气孔314设置。具体地,进气通道41包括第一进气通道411,第一进气通道411设置于雾化腔4的底壁321上。
请参阅图7至图10,图7是本申请提供的雾化器第一实施例的结构简图;图8是本申请提供的雾化器第二实施例的结构简图;图9是图8提供的雾化器中一具体实施例的结构示意图;图10是图9提供的雾化器的气流通道传输气溶胶的仿真示意图。
具体地,进气通道41包括第一进气通道411,第一进气通道411靠近雾化芯2的端口处设有导流结构42。导流结构42包括第一凸起421,第一凸起421具有弧面,至少第一凸起421背向雾化面25的表面为弧面。其中,第一凸起421的弧面靠近雾化腔4的端面不低于第一进气通道411靠近雾化腔4的端口所在平面,且不高于雾化面25的雾化区251靠近下座体 32的端部所在平面。通过设置具有弧面的第一凸起421,使第一进气通道411的气流沿弧面向雾化面25靠近时,第一凸起421的弧面赋予气流垂直于雾化面25的法向速度,进而抑制第一进气通道411的气流在雾化腔4内扩散,减少气流中携带的气溶胶与雾化腔4的内壁面接触和碰撞,使气溶胶更多的通过气流传输至雾化腔4的出气通道43,提高气溶胶的传输效率。
在一实施例中,如图7,第一凸起421设置于第一进气通道411内,第一凸起421的弧面背向雾化芯2设置。在一具体实施例中,下座体32的底壁321上设置一进气孔322,进气孔322靠近雾化面25的内侧面具有第一凸起421,第一凸起421的弧面靠近雾化腔4的端面不低于进气孔322靠近雾化腔4的端口所在平面。其中,第一凸起421与形成第一进气通道411的内壁面一体制成。
在另一实施例中,如图6、图8和图9,形成第一进气通道411的侧壁靠近雾化芯2的端面具有第一延伸部326,第一延伸部326背离雾化芯2的表面设有第一凸起421;第一凸起421具有弧面。具体地,为了使第一进气通道411进入的气流也能将雾化区251靠近雾化芯2的第一端21生成的气溶胶携带至雾化腔4的出气通道43,第一凸起421的弧面远离进气孔322的端面不高于雾化面25的雾化区251靠近下座体32的端部所在平面。其中,第一凸起421与第一延伸部326远离第一进气通道411的端面平齐。其中,第一凸起421的弧面顶点的切线处于第一进气通道411内,且与第一进气通道411的中轴线平行。其中,第一凸起421、第一延伸部326和下座体32的底壁321一体制成。
请参阅图11,图11是不同雾化器的结构示意图。图11(a)和图11(b)是两个比较例中的雾化器的结构简图,图11(c)是本申请的雾化器的结构简图。如图11(a),第一进气通道411端口没有设置本申请的第一凸起421,也没有任何其他用于导气的结构,从第一进气通道11进入的气流与雾化芯2的雾化面25相互平行,雾化腔4中气溶胶凝结生成的液滴容易落入第一进气通道411;如图11(b),第一进气通道411端口设置本申请的第一凸起421,但远离雾化面25的一侧具有导气结构,导气结构将从第一进气通道11进入的气流引导至雾化面25,然而,当第一进气通道411靠近雾化芯2的端部设有导气结构时,凝结生成的液滴更容易落入第一进气通道411内。如图11(c),本实施例提供的第一凸起421可以避免雾化腔4中气溶胶凝结生成的液滴落入第一进气通道411。
具体地,为了使第一进气通道411中的气流携带更多的气溶胶,且避免气溶胶冷凝得到的液滴落入第一进气通道411。第一凸起421的弧面靠近雾化面25一侧的切线L与雾化面25所在平面的交点不超过雾化区251靠近第一进气通道411的端部。且切线L的延伸线处于第一进气通道411朝向雾化腔4的端口远离雾化芯2的边沿或第一进气通道411与雾化腔4远离雾化面25的内侧面之间。也就是说,第一凸起421的弧面靠近雾化面25一侧的切线与雾化面25所在平面的交点不超过雾化面25的雾化区251靠近雾化芯2的第一端21的端部。具体地,第一凸起421的弧面靠近雾化面25一侧的切线与雾化面25所在平面的交点可以处于雾化区251靠近第一进气通道411的端部,也可以处于雾化区251与下座体32的底壁321之间的位置。切线的延伸线可以处于第一进气通道411朝向雾化腔4的端口远离雾化芯2的边 沿,也可以处于第一进气通道411与雾化腔4远离雾化面25的内侧面之间。也就是说,切线远离雾化面25一端的延长线与第一进气通道411靠近雾化腔4的端口所在平面的交点不处于第一进气通道411的端口内,以避免气溶胶液化形成的液滴落入第一进气通道411。
在一具体实施例中,第一进气通道411为垂直于雾化器101的中轴线的横截面为矩形的矩形孔323,矩形孔323的长度方向与雾化面25平行。第一凸起421的弧面靠近雾化面25一侧的切线的延长线经过矩形孔323朝向雾化腔4一侧端口的远离雾化面25的长边,且切线的延长线与矩形孔323的长边相互垂直。在另一具体实施例中,第一凸起421的弧面靠近雾化面25一侧的切线的延长线与第一进气通道411朝向雾化腔4的端口所在平面的交点处于矩形孔323与雾化腔4远离雾化面25的内侧面之间。其中,下座体32的底壁321上设置凸起部324,进气孔322贯穿下座体32的底壁321和凸起部324,凸起部324的外侧面与雾化腔4的部分内壁面配合形成集液槽328,以收容气溶胶液化形成的液滴,避免液滴落入进气孔322,造成进气孔322堵塞和漏液的问题。
请参阅图12和图13,图12是本申请提供的雾化器第三实施例的结构简图;图13是图12提供的雾化器的气流通道传输气溶胶的仿真示意图。
可选的,进气通道41还包括第二进气通道412,第二进气通道412设置于雾化腔4的底壁321上,且第二进气通道412设置于第一进气通道411远离雾化芯2的一侧。第二进气通道412的靠近雾化芯2的端口处设有导流结构42,导流结构42还包括第二凸起422,第二凸起422具有弧面。第二凸起422的弧面背向第一进气通道411设置,用于将第二进气通道412的气流导向至雾化面25,以便于将雾化面25的气溶胶传输至雾化腔4的出气通道43,还可以将第一进气通道411与第二进气通道412之间的低压区域的气溶胶携带至雾化腔4的出气通道43,进而提高气溶胶的传输效率。其中,第二凸起422的弧面靠近雾化腔4的端部不低于第二进气通道412靠近雾化腔4的端口所在平面,且不高于雾化面25的雾化区251靠近下座体32的端部所在平面。通过设置具有弧面的第二凸起422,使第二进气通道412的气流沿弧面向雾化面25靠近时,第二凸起422的弧面赋予气流垂直于雾化面25的法向速度,进而使第二进气通道412的气流可以携带第一进气通道411和第二进气通道412之间的负压区域滞留的气溶胶,以增加气溶胶的传输效率。第二进气通道412的气流还可以抑制第一进气通道411的气流在雾化腔4内扩散,减少气流中的气溶胶与雾化腔4的内壁面接触和碰撞,使气溶胶更多的通过气流传输至雾化腔4的出气通道43,进一步提高气溶胶的传输效率。
在一实施例中,第二凸起422设置于第二进气通道412靠近雾化芯2的内侧面上,第二凸起422的弧面背向雾化芯2设置。在一具体实施例中,下座体32的底壁321上设置有进气孔322,雾化腔4的底壁321朝向雾化芯2的表面设置有凸起部324,进气孔322贯穿下座体32的底壁321和凸起部324。进气孔322内设有分隔部325,分隔部325与雾化面25平行设置,雾化面25将进气孔322分为第一进气孔3221和第二进气孔3222,第一进气孔3221作为第一进气通道411,第二进气孔3222作为第二进气通道412。第二进气孔3222设置于第一进气孔3221远离雾化芯2的一侧,仅第二进气孔3222靠近第一进气孔3221的内侧面上具有第二凸起422,第二凸起422远离第一进气孔3221的表面为弧面。其中,第二凸起422的弧 面靠近雾化腔4的端面不低于下座体32的底壁321朝向雾化腔4的表面,且不高于雾化区251靠近下座体32的端部所在平面。
在一具体实施例中,如图12,形成第二进气通道412的侧壁靠近雾化芯2的端面具有第二延伸部327,仅第二延伸部327远离雾化芯2的一侧设置第二凸起422,第二凸起422的弧面背向第二延伸部327设置。具体的,第二凸起422远离第二延伸部327的表面垂直于雾化面25的纵切面为弧线。在一具体实施例中,分隔部325上设置有第二延伸部327,第二延伸部327朝向第二进气通道412的一侧设置有第二凸起422,第二凸起422远离第一进气通道411的表面为弧面。其中,第二凸起422的弧面远离第二进气孔3222的表面不高于雾化区251靠近下座体32的端部所在平面。在本实施例中,第二凸起422、第二延伸部327和分隔部325一体制成。
请参阅图14,图14是本申请提供的雾化器第四实施例的结构简图。在另一实施例中,第一进气通道411靠近雾化芯2的端口设有第一凸起421;第二进气通道412靠近雾化芯2的端口设置有第二凸起422。其中,第二凸起422设置于第二进气通道412的位置、结构与第一凸起421设置于第一进气通道411的位置、结构可以相同,也可以不同,在此不做限制。
在一具体实施例中,第一进气通道411和/或第二进气通道412为垂直于雾化器101的中轴线的横截面为矩形的矩形孔323,矩形孔323的长度方向与雾化面25平行。请参阅图15,图15是本申请提供的第一凸起和/或第二凸起垂直于雾化面的纵截面的结构示意图。在一具体实施例中,第一凸起421和/或第二凸起422垂直于雾化面25的纵截面为半圆形,如图15(b);也可以为一条边为弧线的四边形结构,如图15(a)。第一凸起421和/或第二凸起422垂直于雾化面25的纵截面为四边形结构时,远离雾化面25的一边为弧线,与弧线两端连接的两边均为垂直于雾化面25的直线,与弧线相对的边为直线。
在一具体实施例中,提高气溶胶的传输效率,矩形孔323的长度与雾化面25的雾化区251在矩形孔323的长度方向的尺寸相同。矩形孔323的长度为3.5毫米~5毫米,矩形孔323的宽度为0.5毫米~0.7毫米。在本实施例中,为了便于第一进气通道411和/或第二进气通道412的气流更多的被导向至雾化芯2的雾化面25,矩形孔323的宽度w与第一凸起421或第二凸起422的弧面的曲率r半径之比小于1:2。
本实施例提供的一种电子雾化装置中,雾化器包括:气流通道,用于传输气溶胶;气流通道包括进气通道;雾化芯,设置于气流通道内,雾化芯具有雾化面;其中,进气通道靠近雾化芯的端口处设有导流结构,导流结构具有背向雾化面的弧面;从进气通道进入的气流沿导流结构的弧面导向至雾化面,从进气通道进入的气流携带气溶胶后传输至雾化芯远离进气通道的一端。本申请在进气通道靠近雾化芯的端口设置导流结构,使进气通道进入的气流可以沿导流结构的弧面导向至雾化面,方便携带雾化面产生的气溶胶,进而使进气通道的气流可以更多的携带气溶胶,提高气流对气溶胶的携带能力。
以上仅为本申请的实施方式,并非因此限制本申请的专利保护范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种雾化器,其中,所述雾化器包括:
    气流通道,用于传输气溶胶;所述气流通道包括进气通道;
    雾化芯,设置于所述气流通道内,所述雾化芯具有雾化面;
    其中,所述进气通道靠近所述雾化芯的端口处设有导流结构,所述导流结构具有背向所述雾化面的弧面;从所述进气通道进入的气流沿所述导流结构的弧面导向至所述雾化面,从所述进气通道进入的气流携带所述气溶胶传输至所述雾化芯远离所述进气通道的一端。
  2. 根据权利要求1所述的雾化器,其中,所述导流结构通过康达效应将从所述进气通道进入的气流导向至所述雾化面。
  3. 根据权利要求1所述的雾化器,其中,所述雾化面与所述雾化器的中轴线平行设置或垂直设置。
  4. 根据权利要求1所述的雾化器,其中,所述进气通道包括第一进气通道,所述导流结构为设置于所述第一进气通道靠近所述雾化芯的侧面的第一凸起;所述第一凸起具有所述弧面。
  5. 根据权利要求1所述的雾化器,其中,所述进气通道包括第一进气通道,形成所述第一进气通道的侧壁靠近所述雾化芯的端面具有第一延伸部,所述导流结构为设置于所述第一延伸部背离所述雾化芯的表面的第一凸起;所述第一凸起具有所述弧面。
  6. 根据权利要求5所述的雾化器,其中,所述弧面靠近所述雾化面一侧的端面不高于所述雾化区靠近所述第一进气通道的端部。
  7. 根据权利要求6所述的雾化器,其中,经过所述雾化区靠近所述第一进气通道的端部的所述弧面的切线远离所述雾化面一端的延长线与所述第一进气通道靠近所述雾化芯的端口所在平面的交点不处于所述第一进气通道内。
  8. 根据权利要求1所述的雾化器,其中,所述进气通道还包括第二进气通道,所述第二进气通道设置于第一进气通道远离所述雾化芯的一侧;所述导流结构还包括第二凸起,所述第二凸起设置于所述第二进气通道靠近所述雾化芯的端口处;其中,所述第二凸起具有所述弧面,所述第二凸起的弧面用于将所述第二进气通道的气流引导至靠近所述雾化面的一侧。
  9. 根据权利要求8所述的雾化器,其中,所述第二进气通道靠近所述第一进气通道的一侧内侧面上设置所述第二凸起,所述第二凸起远离所述第一进气通道的表面为所述弧面。
  10. 根据权利要求8所述的雾化器,其中,形成所述第二进气通道的侧壁靠近 所述雾化芯的端面具有第二延伸部,所述导流结构为设置于所述第二延伸部背离所述雾化芯的表面的第二凸起;所述第二凸起远离所述第二延伸部的表面为所述弧面。
  11. 根据权利要求9所述的雾化器,其中,所述第一进气通道和/或所述第二进气通道为垂直于所述雾化器中轴线的横截面为矩形的矩形孔,所述矩形孔的长度方向与所述雾化面平行。
  12. 根据权利要求11所述的雾化器,其中,所述矩形孔的长度与所述雾化面的雾化区在所述矩形孔的长度方向的尺寸相同。
  13. 根据权利要求11所述的雾化器,其中,所述矩形孔的长度为3.5毫米~5毫米,所述矩形孔的宽度为0.5毫米~0.7毫米。
  14. 根据权利要求11所述的雾化器,其中,所述矩形孔的宽度与所述第一凸起/所述第二凸起的弧面的曲率半径之比小于1:2。
  15. 根据权利要求9所述的雾化器,其中,所述雾化面与所述气流通道的部分内壁面配合形成雾化腔,所述雾化面与所述气流通道的内侧面相对设置,所述雾化芯具有相对设置的第一端和第二端,且所述雾化芯的第一端靠近所述雾化腔的底壁设置,所述雾化芯的第二端靠近所述雾化腔的出气通道设置,所述第一进气通道设置于所述雾化腔的底壁上。
  16. 根据权利要求15所述的雾化器,其中,所述雾化腔的底壁上设置有进气孔,所述雾化腔的底壁朝向所述雾化芯的表面设有凸起部,所述进气孔贯穿所述底壁和所述凸起部。
  17. 根据权利要求16所述的雾化器,其中,所述进气孔内设有分隔部,所述分隔部与所述雾化面平行设置,所述雾化面将所述进气孔分为第一进气孔和第二进气孔,所述第一进气孔作为所述第一进气通道,所述第二进气孔作为所述第二进气通道,所述分隔部设有第二延伸部,所述第二延伸部远离所述雾化面的一侧设有所述第二凸起,所述第二凸起远离所述第二延伸部的表面为所述弧面。
  18. 根据权利要求17所述的雾化器,其中,所述第二凸起部、所述第二延伸部和所述分隔部一体制成。
  19. 根据权利要求2所述的雾化器,其中,所述雾化芯包括致密基体,所述致密基体具有所述雾化面和与所述雾化面相对的吸液面;所述致密基体具有微孔阵列区,所述微孔阵列区具有多个微孔,用于将待雾化基质从所述吸液面引导至所述雾化面;所述雾化面的微孔阵列区为所述雾化面的雾化区。
  20. 一种电子雾化装置,其中,所述电子雾化装置包括雾化器和电源组件,所述雾化器如上述权利要求1所述的雾化器,所述电源组件为所述雾化器提供电能。
PCT/CN2021/143245 2021-12-30 2021-12-30 一种电子雾化装置及其雾化器 WO2023123244A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143245 WO2023123244A1 (zh) 2021-12-30 2021-12-30 一种电子雾化装置及其雾化器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143245 WO2023123244A1 (zh) 2021-12-30 2021-12-30 一种电子雾化装置及其雾化器

Publications (1)

Publication Number Publication Date
WO2023123244A1 true WO2023123244A1 (zh) 2023-07-06

Family

ID=86997005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143245 WO2023123244A1 (zh) 2021-12-30 2021-12-30 一种电子雾化装置及其雾化器

Country Status (1)

Country Link
WO (1) WO2023123244A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107106791A (zh) * 2014-08-26 2017-08-29 因诺沃科学有限责任公司 可吸入药剂的热调制
CN112790446A (zh) * 2021-02-05 2021-05-14 深圳市长能汇科科技有限公司 一种防漏油、吸油的雾化器及其用途
CN112971217A (zh) * 2021-03-12 2021-06-18 深圳麦克韦尔科技有限公司 雾化芯、雾化器及电子雾化装置
CN214710376U (zh) * 2020-12-30 2021-11-16 江门摩尔科技有限公司 雾化器及电子雾化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107106791A (zh) * 2014-08-26 2017-08-29 因诺沃科学有限责任公司 可吸入药剂的热调制
CN214710376U (zh) * 2020-12-30 2021-11-16 江门摩尔科技有限公司 雾化器及电子雾化装置
CN112790446A (zh) * 2021-02-05 2021-05-14 深圳市长能汇科科技有限公司 一种防漏油、吸油的雾化器及其用途
CN112971217A (zh) * 2021-03-12 2021-06-18 深圳麦克韦尔科技有限公司 雾化芯、雾化器及电子雾化装置

Similar Documents

Publication Publication Date Title
WO2022095771A1 (zh) 雾化组件及电子雾化装置
WO2018072676A1 (zh) 一种雾化器及其电子烟
CN112120291A (zh) 雾化芯、雾化器和电子雾化装置
CN216961539U (zh) 用于电子烟的烟弹和电子烟
WO2023123244A1 (zh) 一种电子雾化装置及其雾化器
CN214431787U (zh) 雾化芯、雾化器和电子雾化装置
CN217885111U (zh) 雾化装置及气溶胶发生装置
CN217446690U (zh) 雾化器及气溶胶发生装置
CN215347019U (zh) 一种雾化器及气溶胶生成装置
WO2023124524A1 (zh) 一种电子雾化装置及其雾化器
WO2023123248A1 (zh) 电子雾化装置及其雾化器
CN220800035U (zh) 电子雾化装置
WO2023123243A1 (zh) 电子雾化装置、雾化器及其雾化器的装配方法
WO2022236744A1 (zh) 一种雾化器及其电子雾化装置
CN116406835A (zh) 一种电子雾化装置及其雾化器
CN220756560U (zh) 电子雾化装置及其雾化器
WO2023056610A1 (zh) 雾化器及电子雾化装置
WO2022241619A1 (zh) 一种雾化器及其电子雾化装置
WO2023241125A1 (zh) 雾化器及电子雾化装置
CN221179393U (zh) 一种电子雾化装置
CN221307267U (zh) 雾化器及电子雾化装置
CN218483776U (zh) 雾化单元组件及雾化装置
CN218185183U (zh) 电子雾化装置及其雾化器
WO2024012041A1 (zh) 雾化器及电子雾化装置
CN219479229U (zh) 电子雾化装置及雾化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969605

Country of ref document: EP

Kind code of ref document: A1