WO2023124524A1 - 一种电子雾化装置及其雾化器 - Google Patents

一种电子雾化装置及其雾化器 Download PDF

Info

Publication number
WO2023124524A1
WO2023124524A1 PCT/CN2022/129686 CN2022129686W WO2023124524A1 WO 2023124524 A1 WO2023124524 A1 WO 2023124524A1 CN 2022129686 W CN2022129686 W CN 2022129686W WO 2023124524 A1 WO2023124524 A1 WO 2023124524A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
atomization
air inlet
air
atomizing
Prior art date
Application number
PCT/CN2022/129686
Other languages
English (en)
French (fr)
Inventor
龚博学
杨俊�
李光辉
赵月阳
吕铭
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2023124524A1 publication Critical patent/WO2023124524A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present application relates to the technical field of atomization devices, in particular to an electronic atomization device and its atomizer.
  • the electronic atomization device in the prior art is mainly composed of an atomizer and a power supply assembly.
  • the atomizer generally includes a liquid storage chamber and an atomization component.
  • the liquid storage cavity is used to store the aerosol-forming substrate, and the atomization component is used to heat and atomize the aerosol-forming substrate to form an aerosol that can be consumed by smokers.
  • the power supply component is used to supply energy to the atomizer.
  • the transmission efficiency of the aerosol in the existing nebulizer is low during the transmission process in the airway.
  • the main technical problem to be solved in this application is to provide an electronic atomization device and its atomizer to solve the problem of low aerosol transmission efficiency in the prior art.
  • the atomizer includes: an air flow channel for transmitting aerosol; an atomizing core arranged in the air flow channel to atomize
  • the core has an atomizing surface; wherein, the airflow passage includes a first air inlet passage and a second air inlet passage arranged at intervals, and the airflow of the first air inlet passage is transmitted from an end of the atomization surface close to the first air inlet passage to an end far away from the first air inlet passage.
  • the other end of the air intake channel is used to carry the aerosol; the air flow of the second air intake channel forms a barrier layer between the inner wall of the air flow channel and the aerosol, so as to prevent the aerosol from contacting the inner wall of the air flow channel.
  • the atomizing surface and the central axis of the atomizer are parallel to each other.
  • the air intake direction of the first air intake channel and the air intake direction of the second air intake channel are parallel to the atomization surface, and the second air intake channel is arranged on the side of the first air intake channel away from the atomization surface.
  • the air flow velocity of the second air intake passage is greater than the air flow velocity of the first air intake passage.
  • the cross-sectional area of the first air intake passage is larger than the cross-sectional area of the second air intake passage.
  • first air inlet passage and/or the second air inlet passage are rectangular holes or multiple circular holes with a rectangular cross-section perpendicular to the central axis of the nebulizer.
  • both the first air inlet channel and the second air inlet channel are rectangular holes with a rectangular cross-section perpendicular to the central axis of the atomizer; the length direction of the rectangular holes is parallel to the atomizing surface.
  • the length of the rectangular hole is the same as the size of the atomizing area of the atomizing surface in the length direction of the rectangular hole.
  • the atomizing core includes a dense matrix, and the dense matrix has an atomizing surface and a liquid-absorbing surface opposite to the atomizing surface; the dense matrix has a microhole array area, and the microhole array area has a plurality of micropores, which are used to form the aerosol
  • the substrate is guided from the liquid-absorbing surface to the atomizing surface; the microhole array area on the atomizing surface is the atomizing area on the atomizing surface.
  • the length of the rectangular hole is 2 mm to 4 mm, and the width of the rectangular hole is 0.2 mm to 0.5 mm.
  • the width of the rectangular hole of the first air intake channel is greater than the width of the rectangular hole of the second air intake channel.
  • the atomizing surface cooperates with a part of the inner wall surface of the airflow channel to form an atomizing chamber
  • the first end of the atomizing core is arranged in close contact with the bottom wall of the atomizing chamber
  • the atomizing surface is arranged opposite to the inner surface of the atomizing chamber
  • the bottom wall of the atomization chamber is opposite to the air outlet channel of the atomization chamber
  • the first air inlet channel and the second air inlet channel are arranged on the bottom wall of the atomization chamber, and the airflow direction of the second air inlet channel is parallel to the atomization chamber. inside of the cavity.
  • the bottom wall of the atomization chamber is provided with an air inlet
  • the surface of the bottom wall of the atomization chamber facing the atomizing core is provided with a raised portion
  • the air inlet runs through the bottom wall and the raised portion
  • the air inlet is provided with a A partition
  • the partition is parallel to the atomizing surface, and the partition divides the air inlet into a first air inlet channel and a second air inlet channel.
  • first air inlet passage and the second air inlet passage have a common side wall, and the end of the common side wall close to the atomizing core is provided with an extension part, and the extension part has an air guide part, and the air guide part is used to direct the first air intake The air flow in the channel is guided to the atomizing surface.
  • the surface of the extension part facing the atomizing surface has a chamfer, and the chamfer serves as the air guiding part.
  • the chamfer is lower than the atomization area of the atomization surface, so as to guide the airflow entering from the first air inlet channel to the side of the atomization area of the atomization surface away from the air outlet.
  • the second technical solution adopted by this application is to provide an electronic atomization device, the electronic atomization device includes an atomizer and a power supply assembly, the atomizer is like the atomizer mentioned above, and the power supply assembly is The atomizer provides electrical energy.
  • an electronic atomization device and its atomizer includes: an airflow channel for transmitting aerosol; an atomizing core arranged in the airflow channel Inside, the atomizing core has an atomizing surface; wherein, the airflow channel includes a first air inlet channel and a second air inlet channel arranged at intervals.
  • the airflow in the first air intake channel will carry the aerosol produced by the atomization surface of the atomizing core; by setting the second air intake channel, the airflow in the second air intake channel will A barrier layer is formed between the aerosol carried by the airflow of the first air inlet channel and the inner wall of the airflow channel, and the barrier layer blocks the aerosol carried by the airflow of the first air inlet channel from colliding with the inner wall of the airflow channel, preventing the aerosol from being in the airflow Condensation occurs on the inner wall surface of the channel, and the carried liquid droplets are captured by the inner wall surface of the airflow channel, thereby improving the transmission efficiency of the aerosol in the airflow channel.
  • Fig. 1 is a schematic structural diagram of an electronic atomization device provided by the present application
  • Fig. 2 is a schematic structural diagram of the longitudinal section of the atomizer in the electronic atomization device provided by the present application;
  • Fig. 3 is a schematic structural diagram of the atomizing core provided by the present application.
  • Fig. 4 is a schematic structural view of an embodiment of the mounting seat provided by the present application.
  • Fig. 5 is a schematic structural diagram of the first embodiment of the atomizer provided by the present application.
  • Fig. 6 is a schematic structural diagram of the second embodiment of the atomizer provided by the present application.
  • Fig. 7 is a schematic structural diagram of the third embodiment of the atomizer provided by the present application.
  • Fig. 8 is a schematic structural view of a specific embodiment of the atomizer provided in Fig. 7;
  • Fig. 9 is a bottom view of the atomizer provided in Fig. 8.
  • Fig. 10 is a schematic diagram of the simulation of the aerosol transported by the airflow channel of the nebulizer provided in Fig. 8;
  • Fig. 11 is a schematic structural diagram of the fourth embodiment of the atomizer provided by the present application.
  • Fig. 12 is a schematic structural view of a specific embodiment of the atomizer provided in Fig. 11;
  • Fig. 13 is a schematic diagram of the simulation of the aerosol transported by the airflow channel of the nebulizer provided in Fig. 11;
  • Fig. 14 is a schematic structural diagram of the fifth embodiment of the atomizer provided by the present application.
  • Fig. 15 is a schematic structural view of a specific embodiment of the atomizer provided in Fig. 14;
  • Fig. 16 is a schematic diagram of the simulation of the aerosol transported by the airflow channel of the nebulizer provided in Fig. 14;
  • Fig. 17 is a schematic structural view of another specific embodiment of the atomizer provided by the present application.
  • Fig. 18 is a schematic diagram of simulation of aerosol transported by the airflow channel of the nebulizer provided in Fig. 17 .
  • electronic atomization device 100 atomizer 101; housing 1; first annular side wall 11; first top wall 12; air outlet 121; air guide channel 13; installation space 14; first inner side 141; Second inner surface 142; liquid storage cavity 15; atomizing core 2; first end 21; second end 22; dense matrix 23; heating element 24; atomizing surface 25; atomizing area 251; Seat 3; upper seat body 31; second annular side wall 311; second top wall 312; lower liquid hole 313; vent hole 314; tubular structure 315; lower seat body 32; bottom wall 321; Window 34; Atomization chamber 4; Air intake channel 41; First air intake channel 411; Second air intake channel 412; Rectangular hole 413; Round hole 414; ; Extension 4171; Chamfer 4172; Outlet channel 42; Airflow channel 5; Inlet end 51; Outlet end 52;
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • the present application found that during the transmission process of the aerosol in the nebulizer in the airway, the design of the air inlet was unreasonable and the size and shape of the airway changed, which caused the aerosol and the liquid droplets carried in it to hit the airway On the inner wall surface of the airway, the aerosol will condense when the inner wall surface is cold, and the liquid droplets carried by the aerosol will be captured by the inner wall surface, resulting in a decrease in the transmission efficiency of the aerosol in the airway.
  • the present application provides an atomizer that can improve the transmission efficiency of the aerosol in the airway and an electronic atomization device using the atomizer.
  • FIG. 1 is a schematic structural diagram of an electronic atomization device provided in this application.
  • an electronic atomization device 100 is provided, and the electronic atomization device 100 can be used for atomizing an aerosol-forming substrate.
  • the electronic atomization device 100 includes an atomizer 101 and a power supply assembly 102 connected to each other.
  • the atomizer 101 is used to store the aerosol-forming substrate and atomize the aerosol-forming substrate to form an aerosol that can be inhaled by the user.
  • the aerosol-forming substrate can be a liquid substrate such as a medicinal liquid or a plant grass-leaf liquid; the atomizer 101 It can be used in different fields, such as medical treatment, beauty treatment, recreational smoking, etc.
  • the power supply assembly 102 includes a battery (not shown in the figure), an airflow sensor (not shown in the figure), a controller (not shown in the figure), etc.;
  • the atomizer 101 can atomize the aerosol-forming substrate to form an aerosol;
  • the airflow sensor is used to detect the airflow change in the electronic atomization device 100, and the controller activates the electronic atomization device 100 according to the airflow change detected by the airflow sensor.
  • the atomizer 101 and the power supply assembly 102 can be integrated or detachably connected, and can be designed according to specific needs.
  • the power supply assembly 102 also includes other components such as circuit boards and brackets. The specific structures and functions of these components are the same or similar to those of the prior art. For details, please refer to the prior art and will not repeat them here.
  • FIG. 2 is a structural schematic view of the longitudinal section of the atomizer in the electronic atomization device provided by the present application.
  • the atomizer 101 includes a housing 1 , a mounting base 3 , an atomizing core 2 , a first sealing member 6 and a second sealing member 7 .
  • the casing 1 has an installation space 14 , the installation base 3 is accommodated in the installation space 14 , and is fixedly connected to the inner surface of the installation space 14 through the first sealing member 6 .
  • the installation base 3 cooperates with the inner wall surface of part of the installation space 14 to form a liquid storage chamber 15 for storing the aerosol-forming substrate.
  • the mounting base 3 has a receiving cavity 33 , the atomizing core 2 is accommodated in the receiving cavity 33 , and the atomizing core 2 is fixedly connected to the mounting base 3 through the second sealing member 7 .
  • the casing 1 includes a first annular side wall 11 and a first top wall 12 connected to one end of the first annular side wall 11 .
  • the first annular side wall 11 cooperates with the first top wall 12 to form an installation space 14 .
  • An end of the installation space 14 away from the first top wall 12 is open.
  • An air outlet hole 121 is disposed on the first top wall 12 , and edges of the air outlet hole 121 extend into the installation space 14 to form an air guide channel 13 .
  • the air guide channel 13 is integrally formed with the housing 1 .
  • the cross section of the installation space 14 may be oval or rectangular, that is to say, the cross section of the installation space 14 has a length direction and a width direction. In other optional embodiments, the cross section of the installation space 14 may be circular.
  • FIG. 3 is a schematic structural diagram of the atomizing core provided by the present application.
  • the atomizing core 2 includes a dense matrix 23 and a heating element 24 .
  • the dense matrix 23 has an atomizing surface 25 and a liquid-absorbing surface 26 opposite to the atomizing surface 25 .
  • the liquid-absorbing surface 26 directly contacts the aerosol-forming substrate of the liquid storage chamber 15, and the atomizing surface 25 is used to atomize the aerosol-forming substrate to obtain an aerosol.
  • the dense substrate 23 has a micropore array area, and the microhole array area has a plurality of micropores, which are used to guide the aerosol forming substrate from the liquid absorption surface 26 to the atomization surface 25; the microhole array area of the atomization surface 25 is atomized.
  • the dense substrate 23 is a glass substrate, and may also be a dense ceramic substrate.
  • the atomizing core 2 includes a porous ceramic substrate and a heating element 24, wherein the porous ceramic substrate has an atomizing surface 25 and a liquid-absorbing surface 26 opposite to the atomizing surface 25, and the heating element 24 is arranged on the atomizing surface 25 , the entire atomizing surface 25 of the heating element 24 is an atomizing area 251 .
  • FIG. 4 is a schematic structural diagram of an embodiment of the mounting seat provided by the present application.
  • the mounting base 3 is mounted on a portion of the mounting space 14 away from the first top wall 12 .
  • the mounting base 3 includes an upper base body 31 and a lower base body 32 matched with the upper base body 31 , and the lower base body 32 is disposed on a side of the upper base body 31 away from the first top wall 12 .
  • the upper base body 31 is fixedly connected to the inner side wall of the installation space 14 , and the inner wall surface of the installation space 14 close to the first top wall 12 cooperates with the outer wall of the upper base body 31 to form the liquid storage chamber 15 .
  • the liquid storage cavity 15 surrounds the periphery of the gas guide channel 13.
  • the upper seat body 31 and the lower seat body 32 are arranged in cooperation to form a receiving cavity 33 .
  • the accommodation cavity 33 is used to accommodate the atomizing core 2 .
  • the upper base body 31 is provided with a lower liquid hole 313 and a vent hole 314, and the lower liquid hole 313 and the vent hole 314 are arranged at intervals.
  • An end of the air guide channel 13 away from the air outlet hole 121 is connected to the air hole 314 .
  • the end of the air guide channel 13 away from the air outlet hole 121 communicates with the air hole 314 through the first sealing member 6 to avoid air leakage between the air guide channel 13 and the air hole 314 of the upper base 31 .
  • the air guiding channel 13 communicates with the receiving cavity 33 through the vent hole 314 .
  • the atomizing core 2 covers the lower liquid hole 313 , and the periphery of the atomizing core 2 is in close contact with the inner wall of the lower liquid hole 313 through the second sealing member 7 to prevent the aerosol-forming matrix in the liquid storage chamber 15 from leaking out.
  • the second sealing member 7 is a sealing ring, and the end surface away from the liquid storage chamber 15 has a groove, the atomizing core 2 is embedded in the groove of the second sealing member 7, and the atomizing core 2
  • the atomizing surface 25 is on the same plane as the end surface of the second sealing member 7 away from the liquid storage chamber 15 .
  • the lower base body 32 includes a bottom wall 321 , and a connecting portion is disposed on the bottom wall 321 , and the bottom wall 321 is engaged with the upper base body 31 through the connecting portion to form the above-mentioned receiving chamber 33 .
  • the atomizing surface 25 cooperates with the inner wall of the receiving cavity 33 to form the atomizing chamber 4 , and in one embodiment, the bottom wall 321 of the lower seat 32 serves as the bottom wall 321 of the atomizing chamber 4 .
  • the atomization chamber 4 has an air inlet channel 41 and an air outlet channel 42 .
  • the atomizing chamber 4 communicates with the air guiding channel 13 through the air outlet channel 42 .
  • the air intake channel 41 includes a first air intake channel 411 and a second air intake channel 412 arranged at intervals, and the first air intake channel 411 and the second air intake channel 412 communicate with the atomizing chamber 4 .
  • the airflow of the first air intake passage 411 is transmitted from one end of the atomization surface 25 of the atomization core 2 close to the first air intake passage 411 to the other end away from the first air intake passage 411, so that the airflow of the first air intake passage 411
  • the aerosol generated by the atomizing surface 25 is transported to the air outlet channel 42 of the atomizing chamber 4 .
  • the second air intake channel 412 is disposed on the bottom wall 321 of the lower base body 32 .
  • the air inlet channel 41, the atomization chamber 4, the air outlet channel 42 and the air guide channel 13 connected in sequence constitute the air flow channel 5
  • the air intake channel 41 is used as the inlet end 51 of the air flow channel 5
  • the air guide channel 13 is far away from the air outlet channel 42
  • One end is used as the gas outlet 52 of the airflow channel 5 .
  • the atomizing core 2 may include a first end 21 and a second end 22 , the first end 21 of the atomizing core 2 is opposite to the second end 22 of the atomizing core 2 .
  • the first air intake passage 411 is set close to the first end 21 of the atomization core 2, the airflow of the first air intake passage 411 first reaches the first end 21 of the atomization core 2 and then is transmitted from the first end 21 of the atomization core 2 to
  • the second end 22 is used to transmit the aerosol produced by the atomizing surface 25 of the atomizing core 2 to the air outlet channel 42 of the atomizing chamber 4, and then mix with the airflow of the second air inlet channel 412 to flow out of the atomization from the air outlet channel 42 Cavity 4.
  • the air flow of the second air inlet channel 412 forms a barrier layer between the inner surface of the air flow channel 5 and the aerosol, so as to prevent the aerosol carried by the air flow of the first air inlet channel 411 from contacting the inner surface of the air flow channel 5, so as to avoid aerosol Contacting the inner wall of the airflow channel 5 condenses, and the liquid droplets carried in the aerosol are captured by the inner wall of the airflow channel 5 , thereby improving the transmission efficiency of the aerosol in the airflow channel 5 .
  • Figure 5 is a schematic structural diagram of the first embodiment of the atomizer provided by the present application
  • Figure 6 is a schematic structural diagram of the second embodiment of the atomizer provided by the present application.
  • the air flow velocity of the second air intake channel 412 is greater than the air flow velocity of the first air intake channel 411, which can further block the aerosol carried by the air flow of the first air intake channel 411 and The inner wall surfaces of the airflow channel 5 are in contact.
  • the air flow velocity of the second air intake passage 412 is 1.2-1.5 times of the air flow velocity of the first air intake passage 411, if the air flow velocity of the second air intake passage 412 is too large, the concentration of the aerosol inhaled by the user is too low, if The airflow velocity of the second air intake channel 412 is too small to effectively block the aerosol carried by the air flow of the first air intake channel 411 from contacting the inner wall of the air flow channel 5 .
  • the cross-sectional area of the first air intake passage 411 is greater than that of the second air intake passage 412, so that the air flow rate of the second air intake passage 412 is greater than that of the first air intake passage 412 under the same suction pressure difference of the user.
  • An airflow velocity of the air intake channel 411 when the cross-sectional area of the first air intake passage 411 is equal to the cross-sectional area of the second air intake passage 412, on the side of the second air intake passage 412 away from the atomizing chamber 4 or on the second
  • the interior of the second intake passage 412 forms a pressurized structure, so that the airflow velocity of the second intake passage 412 is greater than that of the first intake passage 411 .
  • the longitudinal section of the second air intake channel 412 is a constricted structure. That is, the port of the second air intake passage 412 close to the atomization chamber 4 is smaller than the port of the second air intake passage 412 away from the atomization chamber 4 .
  • the longitudinal section of the second air inlet passage 412 is a right-angled trapezoid or isosceles trapezoid, and the air inlet direction of the second air inlet passage 412 forms an included angle of 10-30 degrees with the inner wall of the airflow passage 5, further enhancing the barrier effect.
  • the atomizing surface 25 of the atomizing core 2 and the inner surface of the airflow channel 5 can be set at a preset angle.
  • the preset angle between the atomizing surface 25 of the atomizing core 2 and the inner surface of the airflow channel 5 is different, and the arrangement of the first air inlet channel 411 and the second air inlet channel 412 can be set according to the atomizing surface of the atomizing core 2 25 orientation adjustments.
  • Figure 7 is a schematic structural diagram of the third embodiment of the atomizer provided by the present application
  • Figure 8 is a schematic structural diagram of a specific embodiment of the atomizer provided in Figure 7
  • Figure 9 It is a bottom view of the atomizer provided in FIG. 8
  • FIG. 10 is a schematic diagram of the simulation of the airflow channel transmission aerosol of the atomizer provided in FIG. 8
  • FIG. 11 is the structure of the fourth embodiment of the atomizer provided by the present application Simplified diagram
  • FIG. 12 is a schematic structural diagram of a specific embodiment of the atomizer provided in FIG. 11
  • FIG. 13 is a schematic diagram of the simulation of the airflow channel transporting aerosol of the atomizer provided in FIG. 11 .
  • the atomizing surface 25 is non-parallel to the inner surface of the installation space 14 . Specifically, the atomizing surface 25 is non-parallel to the inner surface of the installation space 14 . In an embodiment, the atomizing surface 25 of the atomizing core 2 may be perpendicular to the inner surface of the installation space 14 . Specifically, the atomizing surface 25 is perpendicular to the inner surface of the installation space 14 . The atomizing surface 25 is opposite to the bottom wall 321 of the lower base body 32 and parallel to each other.
  • the inner side of the installation space 14 includes a first inner side 141 and a second inner side 142 , and the first inner side 141 is opposite to the second inner side 142 .
  • the upper base body 31 connects part of the outer wall of the first end 21 of the atomizing core 2 to the first inner side surface 141 of the installation space 14; the upper base body 31 connects part of the outer wall of the second end 22 of the atomizing core 2 to the installation space
  • the second inner surface 142 of 14 is arranged at intervals to match and form the air outlet channel 42 of the atomizing chamber 4 .
  • the air outlet channel 42 communicates with the air guide channel 13 through the vent hole 314 on the upper base body 31 .
  • a window 34 is provided on the side wall of the mounting seat 3 and the first inner surface 141 or the second inner surface 142, and part of the inner surface of the installation space 14 is exposed through the window 34, that is, the exposed
  • the inner surface of the installation space 14 serves as the inner surface of the atomizing chamber 4 . That is to say, the position of the opening 34 on the side wall of the mounting seat 3 is on the same side as the position of the first end 21 or the second end 22 of the atomizing core 2 .
  • the upper base body 31 includes a second annular side wall 311 and a second top wall 312 connected to an end of the second annular side wall 311 away from the lower base body 32 .
  • the second annular side wall 311 cooperates with the top wall and the bottom wall 321 of the lower seat body 32 to form the receiving cavity 33 .
  • the second top wall 312 is provided with a lower liquid hole 313 and a vent hole 314, and the lower liquid hole 313 and the vent hole 314 are arranged at intervals.
  • the atomizing core 2 is in close contact with the periphery of the lower liquid hole 313 through the second sealing member 7 .
  • the space between the atomizing core 2 and the bottom wall 321 serves as the atomizing chamber 4 .
  • the window 34 on the mounting base 3 is disposed on the second annular side wall 311 .
  • the second air intake passage 412 is opposite to the air outlet passage 42 .
  • the second air intake passage 412 is disposed on the bottom wall 321 , and the bottom wall 321 is disposed opposite to the atomizing surface 25 of the atomizing core 2 .
  • the second air intake channel 412 is disposed in the projection area of the air outlet channel 42 on the bottom wall 321 , and the air flow direction of the second air intake channel 412 is parallel to the inner surface of the air flow channel 5 .
  • the size of the cross section of the second air inlet channel 412 is smaller than the projected area of the air outlet channel 42 on the bottom wall 321 .
  • the transverse direction of the second air inlet passage 412 is smaller than the shortest distance h2 between the side of the air outlet channel 42 away from the second inner side 142 and the second inner side 142 .
  • the longitudinal axis L2 of the second air intake passage 412 is on the side of the longitudinal axis L1 of the air outlet passage 42 away from the first air intake passage 411 .
  • the first air inlet passage 411 and the air outlet passage 42 may be arranged in a dislocation manner. Specifically, the first air inlet passage 411 is disposed on the inner wall of the atomization chamber 4 on the side of the atomization area 251 of the atomization core 2 away from the air outlet passage 42 .
  • the first air inlet channel 411 is disposed on the bottom wall 321 of the lower base body 32 , and the bottom wall 321 is disposed opposite to the atomizing surface 25 of the atomizing core 2 .
  • the first air intake channel 411 is disposed on a side of the projection area of the atomization area 251 of the atomization core 2 on the bottom wall 321 away from the second air intake channel 412 .
  • the intake direction of the first intake passage 411 is parallel to the intake direction of the second intake passage 412 .
  • the projected area of the first air inlet channel 411 on the atomizing surface 25 is on the side of the atomizing area 251 away from the air outlet channel 42 .
  • the projected area of the first air inlet channel 411 on the plane where the atomizing surface 25 is located is located on the end surface of the second sealing member 7 disposed on the side of the atomizing core 2 away from the air outlet channel 42 .
  • the first air inlet passage 411 is arranged on the side wall of the atomization chamber 4 , and the first air inlet passage 411 is arranged in the atomization chamber 4 close to the atomization core 2 on the side wall.
  • the first air intake passage 411 is disposed on the first annular side wall 11 corresponding to the first inner surface 141, and the airflow of the first air intake passage 411 disposed on the first annular side wall 11 passes through the mounting seat The window 34 provided on the side wall of 3 enters the atomization chamber 4.
  • the inner surface of the first air inlet channel 411 close to the atomizing core 2 may be slightly lower than the atomizing surface 25 of the atomizing core 2 .
  • the inner surface of the first air inlet channel 411 close to the atomizing core 2 may also be on the same plane as the atomizing surface 25 of the atomizing core 2 .
  • the air intake direction of the first air intake channel 411 is parallel to the atomizing surface 25, and the air flow direction of the first air intake channel 411 flows along the first end 21 of the atomizing core 2 to the second end 22 of the atomizing core 2, so as to pass
  • the airflow in the first air inlet channel 411 transports the aerosol atomized by the atomizing core 2 from the first end 21 of the atomizing core 2 to the second end 22 of the atomizing core 2 .
  • the first air inlet channel 411 and/or the second air inlet channel 412 may be composed of a rectangular hole 413 with a rectangular cross section or a plurality of circular holes 414 with a circular cross section perpendicular to the longitudinal axis of the atomizer 101 .
  • the atomizing core 2 has a rectangular structure, and the first end 21 and the second end 22 of the atomizing core 2 respectively correspond to two long sides of the atomizing core 2 .
  • the first air inlet passage 411 is a single rectangular hole 413 , and the length direction of the rectangular hole 413 is parallel to the first end 21 of the atomizing surface 25 .
  • the length of the rectangular hole 413 is not smaller than the size of the atomizing area 251 of the atomizing surface 25 in the length direction of the rectangular hole 413 .
  • the length of the rectangular hole 413 is not less than the size of the atomization area 251 in the length direction of the rectangular hole 413 .
  • the length of the rectangular hole 413 is 2 mm to 5 mm, and the width of the rectangular hole 413 is 0.3 mm to 0.8 mm.
  • the second air intake channel 412 includes a plurality of circular holes 414 distributed along the length direction of the rectangular hole 413 , and the distribution length H of the second air intake channel 412 is not less than the length of the rectangular hole 413 .
  • the diameter of the circular hole 414 is 0.5mm-1.5mm.
  • the second air intake channel 412 may include a plurality of round holes 414 distributed along the length direction of the rectangular hole 413 in sequence, or may include a plurality of round holes 414 formed in a matrix and distributed along the length direction of the rectangular hole 413 .
  • the width of the rectangular hole 413 of the first air inlet passage 411 is greater than the width of the second air inlet passage 412 distributed along the width direction of the rectangular hole 413, so that the airflow velocity of the second air inlet passage 412 is greater than that of the first air inlet passage. 411 air flow rate.
  • the longitudinal direction of the rectangular hole 413 is the width direction of the atomizer 101
  • the width direction of the rectangular hole 413 is the thickness direction of the atomizer 101 .
  • the first air intake channel 411 is a rectangular hole 413
  • the second air intake channel 412 includes three circular holes 414 distributed along the length direction of the rectangular hole 413 in turn. The distance between two adjacent circular holes 414 is half of the length of the rectangular hole 413 .
  • the atomization surface 25 of the atomization core 2 is arranged non-parallel to the inner surface of the airflow channel 5, and the aerosol produced by the atomization surface 25 of the atomization core 2 is carried by the airflow in the first air intake channel 411;
  • the second air inlet channel 412 is set so that the airflow in the second air inlet channel 412 forms a barrier layer between the aerosol carried by the airflow of the first air inlet channel 411 and the inner wall surface of the airflow channel 5, and the barrier layer blocks the first air inlet channel.
  • the aerosol carried by the airflow of the airflow channel 411 hits the inner wall of the airflow channel 5 to prevent the aerosol from condensing on the inner wall of the airflow channel 5, and the carried liquid droplets are captured by the inner wall of the airflow channel 5, thereby lifting the inner wall of the airflow channel 5. Aerosol transmission efficiency.
  • Figure 14 is a schematic structural diagram of the fifth embodiment of the atomizer provided by the present application
  • Figure 15 is a schematic structural diagram of a specific embodiment of the atomizer provided in Figure 14
  • Figure 16 It is a schematic diagram of the simulation of the airflow channel of the atomizer provided in Figure 14 to transport aerosol
  • Figure 17 is a schematic structural diagram of another specific embodiment of the atomizer provided by the present application
  • Figure 18 is the airflow channel of the atomizer provided in Figure 17 Schematic diagram of the simulation of the transport aerosol.
  • the atomizing surface 25 is arranged parallel to the inner surface of the installation space 14 .
  • the atomizing surface 25 of the atomizing core 2 is opposite to the first inner surface 141 of the installation space 14 , and the atomization surface 25 cooperates with the first inner surface 141 of the installation space 14 to form the atomization chamber 4 .
  • the upper base body 31 is a tubular structure 315
  • the longitudinal axis of the tubular structure 315 is parallel to or coincident with the longitudinal axis of the installation space 14, and the end of the tubular structure 315 close to the air outlet hole 121 is used as the air hole 314 and the air guide channel 13
  • the lower base body 32 covers the end of the tubular structure 315 away from the air guide channel 13 , and the lower base body 32 is engaged with the upper base body 31 to form the receiving cavity 33 .
  • a lower liquid hole 313 is provided on the side wall of the tubular structure 315 close to the second inner surface 142 of the installation space 14 , and the atomizing core 2 is in close contact with the peripheral edge of the lower liquid hole 313 through the second sealing member 7 .
  • the atomizing surface 25 of the atomizing core 2 is disposed opposite to the inner wall surface of the receiving chamber 33 close to the first inner surface 141 , and the atomizing surface 25 cooperates with the inner wall surface of the receiving cavity 33 to form the atomizing chamber 4 .
  • the atomizing core 2 has a rectangular structure, and the first end 21 and the second end 22 of the atomizing core 2 respectively correspond to the two short sides of the atomizing core 2 .
  • the first end 21 of the atomizing core 2 is arranged close to the bottom wall 321 of the lower base 32, and the second end 22 of the atomizing core 2 is on the side of the first end 21 of the atomizing core 2 away from the lower base 32, that is, the mist
  • the frontal second end 22 of the chemical core 2 is close to the air guide channel 13 .
  • the long side of the atomizing core 2 is parallel to the longitudinal axis of the installation space 14 .
  • the air outlet channel 42 of the atomization chamber 4 is the end of the tubular structure 315 close to the air guiding channel 13 .
  • the air inlet passage 41 of the atomization chamber 4 is disposed on the bottom wall 321 of the lower base body 32 .
  • the bottom wall 321 of the atomization chamber 4 is the bottom wall 321 of the lower base 32
  • the inner surface of the atomization chamber 4 is the inner wall surface of the tubular structure 315 .
  • the intake passage 41 includes a first intake passage 411 and a second intake passage 412 .
  • the air intake direction of the first air intake channel 411 and the air intake direction of the second air intake channel 412 are parallel to each other, and both are in line with the inner surface of the atomizing chamber 4 and the mist
  • the atomization surface 25 of the atomization core 2 is parallel.
  • the second air intake channel 412 is disposed on a side of the first air intake channel 411 away from the atomizing surface 25 .
  • the airflow of the first air inlet channel 411 transmits the aerosol generated by the atomizing surface 25 of the atomizing core 2 from the first end 21 of the atomizing core 2 to the second end 22 of the atomizing core 2, and then the aerosol is transported by the atomizing core 2
  • the second end 22 of the second end is transmitted to the air outlet channel 42, until the air outlet part of the housing 1 is passed into the user's mouth.
  • the first air intake channel 411 and/or the second air intake channel 412 are rectangular holes 413 or consist of a plurality of circular holes 414 .
  • both the first air inlet channel 411 and the second air inlet channel 412 are a single rectangular hole 413 ; the length direction of the rectangular hole 413 is parallel to the first end 21 of the atomizing core 2 .
  • the length of the rectangular hole 413 is not smaller than the size of the atomizing area 251 of the atomizing surface 25 in the length direction of the rectangular hole 413 .
  • the length of the rectangular hole 413 is 2 mm to 4 mm, and the width of the rectangular hole 413 is 0.2 mm to 0.5 mm.
  • the width of the rectangular hole 413 of the first air intake channel 411 is greater than the width of the rectangular hole 413 of the second air intake channel 412 , so that the air flow velocity of the second air intake channel 412 is greater than that of the first air intake channel 411 .
  • the length direction of the rectangular hole 413 is the length direction of the cross section of the airflow channel 5
  • the width direction of the rectangular hole 413 is the width direction of the cross section of the airflow channel 5 .
  • a raised portion 415 is provided on the surface of the bottom wall 321 facing the atomizing chamber 4, the air inlet 322 of the atomizing chamber 4 runs through the bottom wall 321 and the raised portion 415, and the air inlet 322 is provided with a There is a partition 416 parallel to the atomizing surface 25 , and the partition 416 divides the air inlet 322 into a first air inlet channel 411 and a second air inlet channel 412 .
  • the first air intake channel 411 and the second air intake channel 412 have a common side wall, and the end of the common side wall near the atomizing core 2 is provided with an extension part 4171, and the extension part 4171 has an air guide part 417, and the air guide part 417 is used for The airflow of the first air intake channel 411 is guided to the atomizing surface 25 .
  • the common sidewall is the partition 416 .
  • the surface of the extension portion 4171 facing the atomizing surface 25 has a chamfer 4172 , and the chamfer 4172 serves as the air guiding portion 417 .
  • the second air inlet passage 412 is arranged between the first air inlet passage 411 and the inner surface of the atomization chamber 4, so that the airflow formed by the second air inlet passage 412 can be combined with the aerosol carried by the first air inlet passage 411 and atomized.
  • a barrier layer is formed between the inner sides of the cavity 4 to prevent the aerosol carried by the first air inlet channel 411 from contacting the inner side wall of the atomizing cavity 4, thereby improving the transmission efficiency of the aerosol.
  • the top surface of the partition 416 is flush with the top surface of the raised portion 415
  • the bottom surface of the partition 416 can be flush with the bottom surface of the raised portion 415
  • the bottom surface of the partition 416 can also be higher or lower than The bottom surface of the raised portion 415 .
  • an air guiding portion 417 is formed at one end of 411 close to the atomizing surface 25 , so that more airflow of the first air intake channel 411 flows to the first end 21 of the atomizing core 2 .
  • an extension portion 4171 is provided at the end of the partition 416 close to the atomizing core 2 , that is, the top of the partition 416 extends beyond the raised portion 415 .
  • the extension part 4171 has an air guiding part 417 , and the air guiding part 417 is used to guide the airflow of the first air intake channel 411 to the atomizing surface 25 .
  • the surface of the extension part 4171 close to the atomization surface 25 has a chamfer 4172 , and the chamfer 4172 and the side of the extension part 4171 facing the atomization surface 25 cooperate to form the air guiding part 417 .
  • the chamfer 4172 is lower than the atomization area 251 of the atomization surface 25 so as to guide the airflow entering from the first air inlet channel 411 to the side of the atomization area 251 of the atomization surface 25 away from the air outlet channel 42 .
  • the projected area of the air guiding part 417 on the atomizing surface 25 is in the non-atomizing area 251 and/or the first sealing member 6 between the first end 21 of the atomizing core 2 and the bottom wall 321 faces the atomizing area. surface of chamber 4.
  • the chamfer 4172 is a bump, and the longitudinal section of the bump is a right-angled trapezoid.
  • the area of the opposite surface of the air outlet channel 42 of the atomization chamber 4 is greater than the area of the opposite surface of the protrusion and the air outlet channel 42 of the atomization chamber 4 .
  • the surface of the protrusion facing the second air inlet passage 412 is also a plane, and is in the same plane as the surface of the partition 416 facing the second air inlet passage 412, and the surface of the protrusion facing the atomizing core 2 is a slope, and the slope is close to the air outlet passage One end of 42 is closer to the atomizing core 2 than the other end of the slope.
  • the airflow of the second air inlet channel 412 can be prevented from diffusing in the atomization chamber 4, so that the formed barrier layer can better block the contact between the aerosol and the inner side wall of the atomization surface 25, and further improve the airflow channel 5. Aerosol transmission efficiency.
  • an end of the mounting seat 3 close to the air outlet channel 42 communicates with the air outlet portion of the housing 1 through the first sealing member 6 .
  • the first sealing member 6 has a through hole 61, the cross section of the through hole 61 gradually decreases from the end close to the atomization chamber 4 to the end far away from the atomization chamber 4, and the through hole 61 is close to the end surface of the atomization chamber 4
  • the size of the through hole 61 away from the end surface of the atomization chamber 4 is the same as the size of the air outlet on the housing 1 as the air outlet, so as to avoid the air carried by the airflow of the first airflow channel 5.
  • the aerosol hits the air outlet, thereby improving the transmission efficiency of the aerosol in the airflow channel 5 .
  • the atomization surface 25 of the atomization core 2 is arranged parallel to the inner surface of the airflow channel 5, and the aerosol produced by the atomization surface 25 of the atomization core 2 is carried by the airflow in the first air intake channel 411; by setting The second air intake channel 412 makes the airflow in the second air intake channel 412 form a barrier layer between the aerosol carried by the airflow of the first air intake channel 411 and the inner wall surface of the airflow channel 5, and the barrier layer blocks the first air intake
  • the aerosol carried by the airflow in the channel 411 hits the inner wall of the airflow channel 5 to prevent the aerosol from condensing on the inner wall of the airflow channel 5, and the carried liquid droplets are captured by the inner wall of the airflow channel 5, thereby improving the air flow in the airflow channel 5.
  • Sol transport efficiency is the aerosol carried by the airflow in the channel 411 hits the inner wall of the airflow channel 5 to prevent the aerosol from condensing on the inner wall of the airflow channel 5, and the carried liquid droplets

Landscapes

  • Special Spraying Apparatus (AREA)
  • Nozzles (AREA)

Abstract

一种电子雾化装置(100)及其雾化器(101),雾化器(101)包括:气流通道(5),用于传输气溶胶;雾化芯(2),设置于气流通道(5)内,雾化芯(2)具有雾化面(25);其中,气流通道(5)包括间隔设置的第一进气通道(411)和第二进气通道(412)。通过设置第一进气通道(411),使第一进气通道(411)中的气流携带雾化芯(2)的雾化面(25)产生的气溶胶;通过设置第二进气通道(412),使第二进气通道(412)中的气流在第一进气通道(411)的气流携带的气溶胶与气流通道(5)的内壁面之间形成阻隔层,阻隔层阻挡第一进气通道(411)的气流携带的气溶胶撞击气流通道(5)的内壁面,避免气溶胶在气流通道(5)的内壁面上发生凝结、携带的液滴被气流通道的内壁面捕获,进而提升气流通道(5)内气溶胶的传输效率。

Description

一种电子雾化装置及其雾化器
相关申请的交叉引用
本申请要求2021年12月30日提交的中国专利申请2021116563637的优先权,其全部内容通过引用并入本文。
技术领域
本申请涉及雾化装置技术领域,特别是涉及一种电子雾化装置及其雾化器。
背景技术
现有技术中电子雾化装置主要由雾化器和电源组件构成。雾化器一般包括储液腔和雾化组件,储液腔用于储存气溶胶形成基质,雾化组件用于对气溶胶形成基质进行加热并雾化,以形成可供吸食者食用的气溶胶;电源组件用于向雾化器提供能量。现有雾化器内的气溶胶在气道内传输过程中,传输效率较低。
发明内容
本申请主要解决的技术问题是提供一种电子雾化装置及其雾化器,解决现有技术中气溶胶传输效率较低的问题。
为解决上述技术问题,本申请采用的第一个技术方案是:提供一种雾化器,雾化器包括:气流通道,用于传输气溶胶;雾化芯,设置于气流通道内,雾化芯具有雾化面;其中,气流通道包括间隔设置的第一进气通道和第二进气通道,第一进气通道的气流从雾化面靠近第一进气通道的一端传输至远离第一进气通道的另一端,以携带气溶胶;第二进气通道的气流在气流通道的内壁与气溶胶之间形成阻隔层,以阻挡气溶胶与气流通道的内壁面接触。
其中,雾化面与雾化器的中轴线相互平行。
其中,第一进气通道的进气方向和第二进气通道的进气方向均平行于雾化面,第二进气通道设置于第一进气通道远离雾化面的一侧。
其中,第二进气通道的气流流速大于第一进气通道的气流流速。
其中,第一进气通道的横截面积大于第二进气通道的横截面积。
其中,第一进气通道和/或第二进气通道为垂直于雾化器中轴线的截面为矩形的矩形孔或圆形的多个圆形孔。
其中,第一进气通道通道和第二进气通道均为垂直于雾化器中轴线的截面为矩形的矩形孔;矩形孔的长度方向与雾化面平行。
其中,矩形孔的长度与雾化面的雾化区在矩形孔的长度方向的尺寸相同。
其中,雾化芯包括致密基体,致密基体具有雾化面和与雾化面相对的吸液面;致密基体具有微孔阵列区,微孔阵列区具有多个微孔,用于将气溶胶形成基质从吸液面引导至雾化面;雾化面的微孔阵列区为雾化面的雾化区。
其中,矩形孔的长度为2毫米~4毫米,矩形孔的宽度为0.2毫米~0.5毫米。
其中,第一进气通道的矩形孔的宽度大于第二进气通道的矩形孔的宽度。
其中,雾化面与气流通道的部分内壁面配合形成雾化腔,雾化芯的第一端与雾化腔的底壁紧贴设置,雾化面与雾化腔的内侧面相对且设置,雾化腔的底壁与雾化腔的出气通道相对设置,且第一进气通道和第二进气通道设置于雾化腔的底壁上,第二进气通道的气流方向平行于雾化腔的内侧面。
其中,雾化腔的底壁上设有进气孔,雾化腔的底壁朝向雾化芯的表面设有凸起部,进气孔贯穿底壁和凸起部,进气孔内设有分隔部,分隔部与雾化面平行,分隔部将进气孔分为第一进气通道和第二进气通道。
其中,第一进气通道和第二进气通道具有公共侧壁,公共侧壁靠近雾化芯的端部设有延伸部,延伸部具有导气部,导气部用于将第一进气通道的气流导流至雾化面。
其中,延伸部朝向雾化面的表面具有倒角,倒角作为导气部。
其中,倒角低于雾化面的雾化区,以将从第一进气通道进入的气流引向雾化面的雾化区远离出气口的一侧。
为解决上述技术问题,本申请采用的第二个技术方案是:提供一种电子雾化装置,电子雾化装置包括雾化器和电源组件,雾化器如上述的雾化器,电源组件为雾化器提供电能。
本申请的有益效果是:区别于现有技术的情况,提供一种电子雾化装置及其雾化器,雾化器包括:气流通道,用于传输气溶胶;雾化芯,设置于气流通道内,雾化芯具有雾化面;其中,气流通道包括间隔设置的第一进气通道和第二进气通道。本申请中通过设置第一进气通道,使第一进气通道中的气流携带雾化芯的雾化面产生的气溶胶;通过设置第二进气通道,使第二进气通道中的气流在第一进气通道的气流携带的气溶胶与气流通道的内壁面之间形成阻隔层,阻隔层阻挡第一进气通道的气流携带的气溶胶撞击气流通道的内壁面,避免气溶胶在气流通道的内壁面上发生凝结、携带的液滴被气流通道的内壁面捕获,进而提升气流通道内气溶胶的传输效率。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请提供的电子雾化装置的结构示意图;
图2是本申请提供的电子雾化装置中雾化器的纵切面结构示意图;
图3是本申请提供的雾化芯的结构示意图;
图4是本申请提供的安装座一实施例的结构示意图;
图5是本申请提供的雾化器中第一种实施例的结构简图;
图6是本申请提供的雾化器中第二种实施例的结构简图;
图7是本申请提供的雾化器中第三种实施例的结构简图;
图8是图7提供的雾化器中一具体实施例的结构示意图;
图9是图8提供的雾化器的仰视图;
图10是图8提供的雾化器的气流通道传输气溶胶的仿真示意图;
图11是本申请提供的雾化器中第四种实施例的结构简图;
图12是图11提供的雾化器中一具体实施例的结构示意图;
图13是图11提供的雾化器的气流通道传输气溶胶的仿真示意图;
图14是本申请提供的雾化器中第五种实施例的结构简图;
图15是图14提供的雾化器中一具体实施例的结构示意图;
图16是图14提供的雾化器的气流通道传输气溶胶的仿真示意图;
图17是本申请提供的雾化器另一具体实施例的结构示意图;
图18是图17提供的雾化器的气流通道传输气溶胶的仿真示意图。
图中:电子雾化装置100;雾化器101;壳体1;第一环形侧壁11;第一顶壁12;出气孔121;导气通道13;安装空间14;第一内侧面141;第二内侧面142;储液腔15;雾化芯2;第一端21;第二端22;致密基体23;发热元件24;雾化面25;雾化区251;吸液面26;安装座3;上座体31;第二环形侧壁311;第二顶壁312;下液孔313;通气孔314;管状结构315;下座体32;底壁321;进气孔322;收容腔33;开窗34;雾化腔4;进气通道41;第一进气通道411;第二进气通道412;矩形孔413;圆孔414;凸起部415;分隔部416;导气部417;延伸部4171;倒角4172;出气通道42;气流通道5;进气端51;出气端52;第一密封件6;通孔61;第二密封件7;电源组件102。
具体实施方式
下面结合说明书附图,对本申请实施例的方案进行详细说明。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请申请人研究发现,雾化器内的气溶胶在气道内传输过程中,进气口的设计不合理及 气道尺寸和形状的变化,导致气溶胶及其中携带的液滴撞击到气道的内壁面,气溶胶在内壁面遇冷会发生冷凝,且气溶胶携带的液滴会被内壁面捕获,导致气道内气溶胶的传输效率降低。为此本申请提供一种可以提高气道内气溶胶的传输效率的雾化器及采用该雾化器的电子雾化装置。
请参阅图1,图1是本申请提供的电子雾化装置的结构示意图。本实施例中提供一种电子雾化装置100,该电子雾化装置100可用于气溶胶形成基质的雾化。电子雾化装置100包括相互连接的雾化器101和电源组件102。雾化器101用于存储气溶胶形成基质并雾化气溶胶形成基质以形成可供用户吸食的气溶胶,气溶胶形成基质可以是药液、植物草叶类液体等液态基质;雾化器101可用于不同的领域,比如,医疗、美容、休闲吸食等。电源组件102包括电池(图未示)、气流传感器(图未示)、控制器(图未示)等;电源组件102用于为雾化器101供电并控制雾化器101工作,以使得雾化器101能够雾化气溶胶形成基质形成气溶胶;气流传感器用于检测电子雾化装置100中气流变化,控制器根据气流传感器检测到的气流变化启动电子雾化装置100。雾化器101与电源组件102可以是一体设置,也可以是可拆卸连接,根据具体需要进行设计。当然,该电源组件102还包括电路板、支架等其它部件,这些部件的具体结构和功能与现有技术相同或相似,具体可参见现有技术,在此不再赘述。
请参阅图2,图2是本申请提供的电子雾化装置中雾化器的纵切面结构示意图。雾化器101包括壳体1、安装座3、雾化芯2、第一密封件6和第二密封件7。壳体1具有安装空间14,安装座3收容于安装空间14,且通过第一密封件6与安装空间14的内侧面固定连接。安装座3与部分安装空间14的内壁面配合形成储液腔15,储液腔15用于存储气溶胶形成基质。安装座3具有收容腔33,雾化芯2收容于收容腔33,且雾化芯2通过第二密封件7与安装座3固定连接。
壳体1包括第一环形侧壁11以及与第一环形侧壁11一端连接的第一顶壁12。第一环形侧壁11和第一顶壁12配合形成安装空间14。安装空间14远离第一顶壁12的一端为敞口。第一顶壁12上设置有出气孔121,出气孔121的边沿向安装空间14内延伸形成导气通道13。导气通道13与壳体1一体制成。其中,安装空间14的横截面可以为椭圆形,也可以为矩形结构,也就是说,安装空间14的横截面具有长度方向和宽度方向。在其他可选实施例中,安装空间14的横截面可以为圆形。
请参阅图3,图3是本申请提供的雾化芯的结构示意图。雾化芯2包括致密基体23和发热元件24。致密基体23具有雾化面25和与雾化面25相对的吸液面26。吸液面26直接接触储液腔15的气溶胶形成基质,雾化面25用于雾化气溶胶形成基质得到气溶胶。致密基体23具有微孔阵列区,微孔阵列区具有多个微孔,用于将气溶胶形成基质从吸液面26引导至雾化面25;雾化面25的微孔阵列区为雾化面25的雾化区251。在本实施例中,致密基体23为玻璃基板,也可以为致密的陶瓷基体。在其他实施例中,雾化芯2包括多孔陶瓷基体和发热元件24,其中,多孔陶瓷基体具有雾化面25和与雾化面25相对的吸液面26,发热元件24设置于雾化面25,发热元件24的整个雾化面25均为雾化区251。
请参阅图4,图4是本申请提供的安装座一实施例的结构示意图。安装座3安装于安装空间14远离第一顶壁12的部分。安装座3包括上座体31以及与上座体31匹配设置的下座体32,下座体32设置于上座体31远离第一顶壁12的一侧。上座体31与安装空间14的内侧壁固定连接,安装空间14靠近第一顶壁12的部分内壁面与上座体31的外壁配合形成储液腔15。储液腔 15围绕在导气通道13的外围。上座体31和下座体32配合设置形成收容腔33。收容腔33用于收容雾化芯2。具体地,上座体31上设置有下液孔313和通气孔314,下液孔313和通气孔314间隔设置。导气通道13远离出气孔121的一端与通气孔314连接。具体地,导气通道13远离出气孔121的一端通过第一密封件6与通气孔314连通,避免导气通道13与上座体31的通气孔314之间漏气。导气通道13通过通气孔314与收容腔33连通。雾化芯2覆盖于下液孔313,且雾化芯2的周缘通过第二密封件7与下液孔313的内壁面紧密贴合,避免储液腔15的气溶胶形成基质漏出。在一具体实施例中,第二密封件7为密封环,且远离储液腔15的端面具有凹槽,雾化芯2嵌设于第二密封件7凹槽内,且雾化芯2的雾化面25与第二密封件7远离储液腔15的端面处于同一平面。在本实施例中,下座体32包括底壁321,底壁321上设置有连接部,底壁321通过连接部与上座体31卡接,以形成上述的收容腔33。
雾化面25与收容腔33的内壁面配合形成雾化腔4,在一实施例中,下座体32的底壁321作为雾化腔4的底壁321。雾化腔4具有进气通道41和出气通道42。雾化腔4通过出气通道42与导气通道13连通。进气通道41包括间隔设置的第一进气通道411和第二进气通道412,第一进气通道411和第二进气通道412与雾化腔4连通。第一进气通道411的气流从雾化芯2的雾化面25靠近第一进气通道411的一端传输至远离第一进气通道411的另一端,以通过第一进气通道411的气流携带雾化面25产生的气溶胶传输至雾化腔4的出气通道42。其中,第二进气通道412设置于下座体32的底壁321上。
其中,依次连通的进气通道41、雾化腔4、出气通道42和导气通道13构成气流通道5,进气通道41作为气流通道5的进气端51,导气通道13远离出气通道42的一端作为气流通道5的出气端52。
请参阅图3,雾化芯2可以包括第一端21和第二端22,雾化芯2的第一端21与雾化芯2的第二端22相对设置。第一进气通道411靠近雾化芯2的第一端21设置,第一进气通道411的气流先到达雾化芯2的第一端21再自雾化芯2的第一端21传输至第二端22,以将雾化芯2的雾化面25产生的气溶胶传输至雾化腔4的出气通道42,然后与第二进气通道412的气流混合后从出气通道42流出雾化腔4。第二进气通道412的气流在气流通道5的内侧面与气溶胶之间形成阻隔层,以阻挡第一进气通道411的气流携带的气溶胶与气流通道5的内侧面接触,避免气溶胶接触气流通道5的内侧壁冷凝、气溶胶中携带的液滴被气流通道5的内壁面捕获,进而提升气流通道5中气溶胶的传输效率。
请参阅图5-6,图5是本申请提供的雾化器中第一种实施例的结构简图;图6是本申请提供的雾化器中第二种实施例的结构简图。
为了进一步提高气流通道5中气溶胶的传输效率,第二进气通道412的气流流速大于第一进气通道411的气流流速,可以进一步的阻隔第一进气通道411的气流携带的气溶胶与气流通道5的内壁面接触。例如,第二进气通道412的气流流速为第一进气通道411的气流流速的1.2-1.5倍,如果第二进气通道412的气流流速过大,用户吸食的气溶胶浓度太低,如果第二进气通道412的气流流速过小,难以起到有效阻隔第一进气通道411的气流携带的气溶胶与气流通道5的内壁面接触。在一实施例中,第一进气通道411的横截面积大于第二进气通道412的横截面积,进而使得在用户的相同抽吸压差下第二进气通道412的气流流速大于第一进气通道411的气流流速。在其它可选实施例中,当第一进气通道411的横截面的面积等于第二进气通道412的横截面积时,在第二进气通道412远离雾化腔4的一侧或第二进气通道412的内部形成增压 结构,以使第二进气通道412的气流流速大于第一进气通道411的气流流速。例如,第二进气通道412的纵截面为缩口结构。即第二进气通道412靠近雾化腔4的端口小于第二进气通道412远离雾化腔4的端口。其中,第二进气通道412的纵截面为直角梯形或等腰梯形,第二进气通道412的进气方向与气流通道5的内壁面形成10-30度夹角,进一步加强阻隔效果。
其中,雾化芯2的雾化面25与气流通道5的内侧面可以呈预设角度设置。雾化芯2的雾化面25与气流通道5的内侧面所呈的预设角度不同,第一进气通道411和第二进气通道412的设置方式可以根据雾化芯2的雾化面25朝向调整。
请参阅图7至图13,图7是本申请提供的雾化器中第三种实施例的结构简图;图8是图7提供的雾化器中一具体实施例的结构示意图;图9是图8提供的雾化器的仰视图;图10是图8提供的雾化器的气流通道传输气溶胶的仿真示意图;图11是本申请提供的雾化器中第四种实施例的结构简图;图12是图11提供的雾化器中一具体实施例的结构示意图;图13是图11提供的雾化器的气流通道传输气溶胶的仿真示意图。
在一实施例中,雾化面25与安装空间14的内侧面非平行设置。具体地,雾化面25与安装空间14的内侧面非平行设置。在一实施例中,雾化芯2的雾化面25可以与安装空间14的内侧面垂直设置。具体地,雾化面25与安装空间14的内侧面垂直设置。雾化面25与下座体32的底壁321相对设置且相互平行。安装空间14的内侧面包括第一内侧面141和第二内侧面142,第一内侧面141与第二内侧面142相对设置。上座体31连接雾化芯2的第一端21的部分外侧壁与安装空间14的第一内侧面141固定连接;上座体31连接雾化芯2的第二端22的部分外侧壁与安装空间14的第二内侧面142间隔设置以配合形成雾化腔4的出气通道42。出气通道42通过上座体31上的通气孔314与导气通道13连通。
在一具体实施例中,安装座3与第一内侧面141或第二内侧面142贴合的侧壁上设有开窗34,部分安装空间14的内侧面通过开窗34裸露,即裸露的安装空间14的内侧面作为雾化腔4的内侧面。也就是说,安装座3侧壁上的开窗34位置与雾化芯2的第一端21或第二端22的位置处于同一侧。在本实施例中,上座体31包括第二环形侧壁311以及与第二环形侧壁311远离下座体32一端连接的第二顶壁312。第二环形侧壁311与顶壁和下座体32的底壁321配合形成收容腔33。第二顶壁312上设置有下液孔313和通气孔314,下液孔313和通气孔314间隔设置。雾化芯2通过第二密封件7与下液孔313的周缘紧密贴合。雾化芯2与底壁321之间的空间作为雾化腔4。安装座3上的开窗34设置于第二环形侧壁311上。
在本实施例中,第二进气通道412与出气通道42相对设置。具体地,第二进气通道412设置于底壁321上,底壁321与雾化芯2的雾化面25相对设置。第二进气通道412设置于出气通道42在底壁321上的投影区域内,且第二进气通道412的气流方向与气流通道5的内侧面平行。在一具体实施例中,第二进气通道412的横截面的尺寸小于出气通道42在底壁321上的投影区域。如图7,为了避免第二进气通道412中的气流封堵出气通道42,造成第一进气通道411的气流携带的气溶胶在雾化腔4中回流,第二进气通道412的横截面远离第二内侧面142的边线与第二内侧面142之间的最短距离h1小于出气通道42横截面远离第二内侧面142的边线与第二内侧面142之间的最短距离h2。请参阅图5和图6,在一实施例中,第二进气通道412的纵轴线L2处于出气通道42的纵轴线L1远离第一进气通道411的一侧。
第一进气通道411与出气通道42可以错位设置。具体地,第一进气通道411设置于雾化芯2的雾化区251远离出气通道42的一侧的雾化腔4的内壁上。
请参阅图7至图10,在一实施例中,第一进气通道411设置于下座体32的底壁321上,底壁321与雾化芯2的雾化面25相对设置。第一进气通道411设置于雾化芯2的雾化区251在底壁321的投影区域远离第二进气通道412的一侧。第一进气通道411的进气方向与第二进气通道412的进气方向平行。为了避免第一进气通道411的气流直接撞击雾化面25的雾化区251造成气体通过微孔回流进储液腔15,影响气溶胶形成基质的下液。第一进气通道411在雾化面25上的投影区域处于雾化区251远离出气通道42的一侧。在另一实施例中,第一进气通道411在雾化面25所处平面上的投影区域处于雾化芯2远离出气通道42的一侧设置的第二密封件7的端面上。
请参阅图11至图13,在另一实施例中,第一进气通道411设置于雾化腔4的侧壁上,且第一进气通道411设置于雾化腔4靠近雾化芯2的侧壁上。在一具体实施例中,第一进气通道411设置于第一内侧面141对应的第一环形侧壁11上,第一环形侧壁11上设置的第一进气通道411的气流通过安装座3的侧壁上设置的开窗34进入雾化腔4。其中,第一进气通道411靠近雾化芯2的内侧面可以稍低于雾化芯2的雾化面25。第一进气通道411靠近雾化芯2的内侧面也可以与雾化芯2的雾化面25处于同一平面。第一进气通道411的进气方向与雾化面25平行,且第一进气通道411的气流方向沿雾化芯2的第一端21流向雾化芯2的第二端22,以通过第一进气通道411中的气流将雾化芯2雾化的气溶胶从雾化芯2的第一端21传输至雾化芯2的第二端22。
第一进气通道411和/或第二进气通道412可以为垂直于雾化器101纵轴线的截面为矩形的矩形孔413或截面为圆形的多个圆孔414组成。在本实施例中,雾化芯2为矩形结构,雾化芯2的第一端21和第二端22分别对应雾化芯2的两个长边。在本实施例中,第一进气通道411为单个矩形孔413,矩形孔413的长度方向与雾化面25的第一端21平行。矩形孔413的长度不小于雾化面25的雾化区251在矩形孔413的长度方向的尺寸。其中,矩形孔413的长度不小于雾化区251在矩形孔413的长度方向的尺寸。其中,矩形孔413的长度为2毫米~5毫米,矩形孔413的宽度为0.3毫米~0.8毫米。请参阅图9,第二进气通道412包括多个沿着矩形孔413的长度方向分布的圆孔414,第二进气通道412的分布长度H不小于矩形孔413的长度。其中,圆孔414的直径为0.5毫米~1.5毫米。其中,第二进气通道412可以包括多个圆孔414依次沿矩形孔413的长度方向分布,也可以包括多个圆孔414形成矩阵沿矩形孔413的长度方向分布。其中,第一进气通道411的矩形孔413的宽度大于第二进气通道412的沿矩形孔413的宽度方向分布的宽度,进而使得第二进气通道412的气流流速大于第一进气通道411的气流流速。在本实施例中,矩形孔413的长度方向为雾化器101的宽度方向,矩形孔413的宽度方向为雾化器101的厚度方向。
在一具体实施例中,第一进气通道411为矩形孔413,第二进气通道412包括三个圆孔414依次沿矩形孔413的长度方向分布。相邻两个圆孔414之间的间距为矩形孔413长度尺寸的一半。
本实施中将雾化芯2的雾化面25与气流通道5的内侧面非平行设置,通过第一进气通道411中的气流携带雾化芯2的雾化面25产生的气溶胶;通过设置第二进气通道412,使第二进气通道412中的气流在第一进气通道411的气流携带的气溶胶与气流通道5的内壁面之间形成阻隔层,阻隔层阻挡第一进气通道411的气流携带的气溶胶撞击气流通道5的内壁面,避免气溶胶在气流通道5的内壁面上发生凝结、携带的液滴被气流通道5的内壁面捕获,进而提升气流通 道5内气溶胶的传输效率。
请参阅图14和图18,图14是本申请提供的雾化器中第五种实施例的结构简图;图15是图14提供的雾化器中一具体实施例的结构示意图;图16是图14提供的雾化器的气流通道传输气溶胶的仿真示意图;图17是本申请提供的雾化器另一具体实施例的结构示意图;图18是图17提供的雾化器的气流通道传输气溶胶的仿真示意图。
在另一实施例中,雾化面25与安装空间14的内侧面平行设置。雾化芯2雾化面25与安装空间14的第一内侧面141相对设置,且雾化面25与安装空间14的第一内侧面141配合形成雾化腔4。在一具体实施例中,上座体31为管状结构315,管状结构315的纵轴线与安装空间14的纵轴线平行或重合,管状结构315靠近出气孔121的一端作为通气孔314与导气通道13连接,下座体32覆盖于管状结构315远离导气通道13的一端,且下座体32与上座体31卡接,以形成收容腔33。
管状结构315靠近安装空间14的第二内侧面142的侧壁上设有下液孔313,雾化芯2通过第二密封件7与下液孔313的周缘紧密贴合。雾化芯2的雾化面25与收容腔33靠近第一内侧面141的内壁面相对设置,且雾化面25与收容腔33的内壁面配合形成雾化腔4。本实施例中,雾化芯2为矩形结构,雾化芯2的第一端21和第二端22分别对应雾化芯2的两个短边。雾化芯2的第一端21靠近下座体32的底壁321设置,雾化芯2的第二端22处于雾化芯2的第一端21远离下座体32的一侧,即雾化芯2的额第二端22靠近导气通道13。其中,雾化芯2的长边与安装空间14的纵轴线平行。
雾化腔4的出气通道42为管状结构315靠近导气通道13的端部。雾化腔4的进气通道41设置于下座体32的底壁321上。其中,雾化腔4的底壁321为下座体32的底壁321,雾化腔4的内侧面为管状结构315的内壁面。进气通道41包括第一进气通道411和第二进气通道412。
请参阅图14和图16,在本实施例中,第一进气通道411的进气方向和第二进气通道412的进气方向相互平行,且均与雾化腔4的内侧面和雾化芯2的雾化面25平行。第二进气通道412设置于第一进气通道411远离雾化面25的一侧。第一进气通道411的气流将雾化芯2的雾化面25产生的气溶胶从雾化芯2的第一端21传输至雾化芯2的第二端22,再由雾化芯2的第二端22传输至出气通道42,直至壳体1的出气部,传入用户口中。
第一进气通道411和/或第二进气通道412为矩形孔413或由多个圆孔414组成。在本实施例中,第一进气通道411通道和第二进气通道412均为单一矩形孔413;矩形孔413的长度方向与雾化芯2的第一端21平行。矩形孔413的长度不小于雾化面25的雾化区251在矩形孔413的长度方向的尺寸。其中,矩形孔413的长度为2毫米~4毫米,矩形孔413的宽度为0.2毫米~0.5毫米。其中,第一进气通道411的矩形孔413的宽度大于第二进气通道412的矩形孔413的宽度,进而使得第二进气通道412的气流流速大于第一进气通道411的气流流速。在本实施例中,矩形孔413的长度方向为气流通道5横截面的长度方向,矩形孔413的宽度方向为气流通道5横截面的宽度方向。
在一具体实施例中,底壁321朝向雾化腔4的表面上设置有凸起部415,雾化腔4的进气孔322贯穿底壁321和凸起部415,进气孔322内设置有分隔部416,分隔部416与雾化面25平行,分隔部416将进气孔322分为第一进气通道411和第二进气通道412。
第一进气通道411和第二进气通道412具有公共侧壁,公共侧壁靠近雾化芯2的端部设有延伸部4171,延伸部4171具有导气部417,导气部417用于将第一进气通道411的气流导流至 雾化面25。在本实施例中,公共侧壁为分隔部416。其中,延伸部4171朝向雾化面25的表面具有倒角4172,倒角4172作为导气部417。
第二进气通道412设置于第一进气通道411和雾化腔4的内侧面之间,以使第二进气通道412形成的气流在第一进气通道411携带的气溶胶与雾化腔4的内侧面之间形成阻隔层,以避免第一进气通道411携带的气溶胶与雾化腔4的内侧壁接触,进而提升气溶胶的传输效率。本实施例中,分隔部416的顶面与凸起部415的顶面平齐,分隔部416的底面与凸起部415的底面可以平齐,分隔部416的底面也可以高于或低于凸起部415的底面。
请参阅图17和18,在另一实施例中,为了避免第一进气通道411的气流扩散,使第一进气通道411中的气流更多的携带气溶胶,则在第一进气通道411的靠近雾化面25的一端形成导气部417,以使第一进气通道411的气流更多的流向雾化芯2的第一端21。在一具体实施例中,分隔部416靠近雾化芯2的端部设置有延伸部4171,即分隔部416的顶部延伸出凸起部415之外。延伸部4171具有导气部417,导气部417用于将第一进气通道411的气流导流至雾化面25。延伸部4171靠近雾化面25的表面具有倒角4172,倒角4172和延伸部4171朝向雾化面25的一侧配合形成导气部417。其中,倒角4172低于雾化面25的雾化区251,以将从第一进气通道411进入的气流引向雾化面25的雾化区251远离出气通道42的一侧。也就是说,导气部417在雾化面25上的投影区域处于非雾化区251和/或雾化芯2的第一端21与底壁321之间的第一密封件6朝向雾化腔4的表面。
在一实施例中,倒角4172为凸块,凸块的纵截面为直角梯形,凸块与雾化腔4的出气通道42相对和相背的表面均为平面,且凸块与雾化腔4的出气通道42相对表面的面积大于凸块与雾化腔4的出气通道42相背表面的面积。凸块朝向第二进气通道412的表面也为平面,且与分隔部416朝向第二进气通道412的表面处于同一平面,凸块朝向雾化芯2的表面为斜面,且斜面靠近出气通道42的一端比斜面的另一端更靠近雾化芯2。通过设置延伸部4171可以避免第二进气通道412的气流在雾化腔4内扩散,进而使得形成的阻隔层可以更好的阻隔气溶胶与雾化面25的内侧壁接触,进一步提升气流通道5的气溶胶的传输效率。
在一可选实施例中安装座3靠近出气通道42的一端通过第一密封件6与壳体1的出气部连通。第一密封件6上具有通孔61,沿靠近雾化腔4的端部到远离雾化腔4的端部,通孔61的横截面逐渐减小,且通孔61靠近雾化腔4端面的尺寸不小于雾化腔4横截面的尺寸,通孔61远离雾化腔4端面的尺寸与壳体1上作为出气部的出气口的尺寸相同,避免第一气流通道5的气流携带的气溶胶撞击出气口,进而提升气流通道5的气溶胶的传输效率。
本实施中将雾化芯2的雾化面25与气流通道5的内侧面平行设置,通过第一进气通道411中的气流携带雾化芯2的雾化面25产生的气溶胶;通过设置第二进气通道412,使第二进气通道412中的气流在第一进气通道411的气流携带的气溶胶与气流通道5的内壁面之间形成阻隔层,阻隔层阻挡第一进气通道411的气流携带的气溶胶撞击气流通道5的内壁面,避免气溶胶在气流通道5的内壁面上发生凝结、携带的液滴被气流通道5的内壁面捕获,进而提升气流通道5内气溶胶的传输效率。
以上所述仅为本申请的实施方式,并非因此限制本申请的专利保护范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (17)

  1. 一种雾化器,其中,所述雾化器包括:
    气流通道,用于传输气溶胶;
    雾化芯,设置于所述气流通道内,所述雾化芯具有雾化面;
    其中,所述气流通道包括间隔设置的第一进气通道和第二进气通道,所述第一进气通道的气流从所述雾化面靠近所述第一进气通道的一端传输至远离所述第一进气通道的另一端,以携带所述气溶胶;所述第二进气通道的气流在所述气流通道的内壁与所述气溶胶之间形成阻隔层,以阻挡所述气溶胶与所述气流通道的内壁面接触。
  2. 根据权利要求1所述的雾化器,其中,所述雾化面与所述雾化器的中轴线相互平行。
  3. 根据权利要求2所述的雾化器,其中,所述第一进气通道的进气方向和所述第二进气通道的进气方向均平行于所述雾化面,所述第二进气通道设置于所述第一进气通道远离所述雾化面的一侧。
  4. 根据权利要求3所述的雾化器,其中,所述第二进气通道的气流流速大于所述第一进气通道的气流流速。
  5. 根据权利要求4所述的雾化器,其中,所述第一进气通道的横截面积大于所述第二进气通道的横截面积。
  6. 根据权利要求5所述的雾化器,其中,所述第一进气通道和/或所述第二进气通道为垂直于所述雾化器中轴线的截面为矩形的矩形孔或圆形的多个圆孔。
  7. 根据权利要求6所述的雾化器,其中,所述第一进气通道和所述第二进气通道均为垂直于所述雾化器中轴线的截面为矩形的矩形孔;所述矩形孔的长度方向与所述雾化面平行。
  8. 根据权利要求7所述的雾化器,其中,所述矩形孔的长度与所述雾化面的雾化区在所述矩形孔的长度方向的尺寸相同。
  9. 根据权利要求8所述的雾化器,其中,所述雾化芯包括致密基体,所述致密基体具有所述雾化面和与所述雾化面相对的吸液面;所述致密基体具有微孔阵列区,所述微孔阵列区具有多个微孔,用于将气溶胶形成基质从所述吸液面引导至所述雾化面;所述雾化面的微孔阵列区为所述雾化面的雾化区。
  10. 根据权利要求8所述的雾化器,其中,所述矩形孔的长度为2毫米~4毫米,所述矩形孔的宽度为0.2毫米~0.5毫米。
  11. 根据权利要求8所述的雾化器,其中,所述第一进气通道的矩形孔的宽度大于所述第二进气通道的矩形孔的宽度。
  12. 根据权利要求3所述的雾化器,其中,所述雾化面与所述气流通道的部分内壁面配合形成雾化腔,所述雾化芯的第一端与所述雾化腔的底壁紧贴设置,所述雾化面与所述雾化腔的内侧面相对设置,所述雾化腔的底壁与所述雾化腔的出气通道相对设置,且所述第一进气通道和所述第二进气通道设置于所述雾化腔的底壁上,所述第二进气通道的气流方向平行于所述雾化腔的内侧面。
  13. 根据权利要求12所述的雾化器,其中,所述雾化腔的底壁上设有进气孔,所述雾化腔的底壁朝向所述雾化芯的表面设有凸起部,所述进气孔贯穿所述底壁和所述凸起部,所述进气孔内设有分隔部,所述分隔部与所述雾化面平行,所述分隔部将所述进气孔分为所述第一进气通道和所述第二进气通道。
  14. 根据权利要求1所述的雾化器,其中,所述第一进气通道和所述第二进气通道具有公共侧壁,所述公共侧壁靠近所述雾化芯的端部设有延伸部,所述延伸部具有导气部,所述导气部用于将所述第一进气通道的气流导流至所述雾化面。
  15. 根据权利要求14所述的雾化器,其中,所述延伸部朝向所述雾化面的表面具有倒角,所述倒角 作为所述导气部。
  16. 根据权利要求15所述的雾化器,其中,所述倒角低于所述雾化面的雾化区,以将从所述第一进气通道进入的气流引向所述雾化面的雾化区远离所述出气口的一侧。
  17. 一种电子雾化装置,其中,所述电子雾化装置包括雾化器和电源组件,所述雾化器如上述权利要求1所述的雾化器,所述电源组件为所述雾化器提供电能。
PCT/CN2022/129686 2021-12-30 2022-11-03 一种电子雾化装置及其雾化器 WO2023124524A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111656363.7 2021-12-30
CN202111656363.7A CN116406837A (zh) 2021-12-30 2021-12-30 一种电子雾化装置及其雾化器

Publications (1)

Publication Number Publication Date
WO2023124524A1 true WO2023124524A1 (zh) 2023-07-06

Family

ID=86997535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129686 WO2023124524A1 (zh) 2021-12-30 2022-11-03 一种电子雾化装置及其雾化器

Country Status (2)

Country Link
CN (1) CN116406837A (zh)
WO (1) WO2023124524A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210611013U (zh) * 2019-06-28 2020-05-26 深圳市合元科技有限公司 电子烟雾化器及电子烟
CN210929638U (zh) * 2019-08-09 2020-07-07 常州市派腾电子技术服务有限公司 雾化器及气溶胶发生装置
WO2020149821A1 (en) * 2019-01-14 2020-07-23 Puff Corp. Portable electronic vaporizing device
CN113274594A (zh) * 2020-02-20 2021-08-20 深圳麦克韦尔科技有限公司 雾化吸嘴、医疗雾化器以及医疗雾化电子装置
CN113317561A (zh) * 2021-05-17 2021-08-31 深圳麦克韦尔科技有限公司 一种雾化器及其电子雾化装置
CN215075497U (zh) * 2021-01-26 2021-12-10 深圳麦克韦尔科技有限公司 雾化器及电子雾化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020149821A1 (en) * 2019-01-14 2020-07-23 Puff Corp. Portable electronic vaporizing device
CN210611013U (zh) * 2019-06-28 2020-05-26 深圳市合元科技有限公司 电子烟雾化器及电子烟
CN210929638U (zh) * 2019-08-09 2020-07-07 常州市派腾电子技术服务有限公司 雾化器及气溶胶发生装置
CN113274594A (zh) * 2020-02-20 2021-08-20 深圳麦克韦尔科技有限公司 雾化吸嘴、医疗雾化器以及医疗雾化电子装置
CN215075497U (zh) * 2021-01-26 2021-12-10 深圳麦克韦尔科技有限公司 雾化器及电子雾化装置
CN113317561A (zh) * 2021-05-17 2021-08-31 深圳麦克韦尔科技有限公司 一种雾化器及其电子雾化装置

Also Published As

Publication number Publication date
CN116406837A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
WO2022095771A1 (zh) 雾化组件及电子雾化装置
WO2022188537A1 (zh) 雾化器及电子雾化装置
WO2021180061A1 (zh) 雾化器及其气溶胶发生装置
CN112120291A (zh) 雾化芯、雾化器和电子雾化装置
CN111011932A (zh) 电子雾化装置及其雾化器
WO2021208586A1 (zh) 雾化座固定于电池组件上的电子烟
WO2022161034A1 (zh) 雾化腔设于雾化芯支架内的雾化器
CN110881690A (zh) 电子雾化装置及其雾化器
WO2023279751A1 (zh) 一种电子雾化装置及其雾化器
CN112493550A (zh) 一种雾化器及其电子雾化装置
WO2021258807A1 (zh) 销售前注液的一次性电子雾化设备
CN210672087U (zh) 电子雾化装置及其雾化器
WO2022088905A1 (zh) 易装配易注液的电子雾化设备
CN214431787U (zh) 雾化芯、雾化器和电子雾化装置
CN111011930A (zh) 电子雾化装置及其雾化器
WO2023124524A1 (zh) 一种电子雾化装置及其雾化器
CN217885111U (zh) 雾化装置及气溶胶发生装置
WO2023185155A1 (zh) 一种电子雾化装置及其雾化器
WO2023123244A1 (zh) 一种电子雾化装置及其雾化器
WO2023130764A1 (zh) 横置雾化芯
WO2023123248A1 (zh) 电子雾化装置及其雾化器
WO2023123243A1 (zh) 电子雾化装置、雾化器及其雾化器的装配方法
CN116406833A (zh) 一种电子雾化装置及其雾化器
CN220756560U (zh) 电子雾化装置及其雾化器
CN221307295U (zh) 电子雾化装置及其雾化器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913787

Country of ref document: EP

Kind code of ref document: A1