WO2023123227A1 - 一种酚醛树脂复合塑料及其制备方法 - Google Patents

一种酚醛树脂复合塑料及其制备方法 Download PDF

Info

Publication number
WO2023123227A1
WO2023123227A1 PCT/CN2021/143155 CN2021143155W WO2023123227A1 WO 2023123227 A1 WO2023123227 A1 WO 2023123227A1 CN 2021143155 W CN2021143155 W CN 2021143155W WO 2023123227 A1 WO2023123227 A1 WO 2023123227A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenolic resin
modified
nano
hydrotalcite
solution
Prior art date
Application number
PCT/CN2021/143155
Other languages
English (en)
French (fr)
Inventor
王顺方
Original Assignee
王顺方
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王顺方 filed Critical 王顺方
Publication of WO2023123227A1 publication Critical patent/WO2023123227A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols

Definitions

  • the invention belongs to the technical field of polymer materials, and in particular relates to a phenolic resin composite plastic and a preparation method thereof.
  • Phenolic resin also known as bakelite, is obtained by polycondensation of phenol formaldehyde or its derivatives. Compared with other resin systems, phenolic resin system has the advantages of low smoke and low toxicity. In the case of combustion, the smoke produced during the decomposition process is relatively small, and the toxicity is relatively low. These characteristics make phenolic resins suitable for public transportation and areas with very strict safety requirements, such as mines, guardrails and construction industries. Crosslinking The final phenolic resin can resist the decomposition of any chemical substances, such as gasoline, petroleum, alcohol, glycol, grease and various hydrocarbons.
  • Polymer resin materials have a wide range of uses in modern industry. When used in many environments, they need to be modified such as reinforcement and toughening in order to achieve better results, so that polymer resin materials can be used in more environments. It can be used.
  • the material used for toughening and strengthening is directly co-extruded with phenolic resin for granulation. Although it can play a certain effect, due to the poor dispersion of the material in the phenolic resin, It will lead to the uniformity of the effect of strengthening and toughening the material. On the one hand, it will lead to poor quality of the prepared material. To solve the above problems, the present invention provides the following technical solutions.
  • the object of the present invention is to provide a kind of phenolic resin composite plastic and its preparation method.
  • Polymer resin materials have a wide range of uses in modern industry. When used in many environments, they need to be modified such as reinforcement and toughening in order to achieve better results, so that polymer resin materials can be used in more environments. It can be used.
  • the material used for toughening and strengthening is directly co-extruded with phenolic resin for granulation. Although it can play a certain effect, due to the poor dispersion of the material in the phenolic resin, It will lead to the uniformity of the effect of strengthening and toughening the material. On the one hand, it will lead to poor quality of the prepared material, and on the other hand, it will cause waste of toughened and reinforced materials, making it impossible to achieve the maximum utilization effect.
  • a preparation method of phenolic resin composite plastics comprising the steps of:
  • Step 1 Add nano-hydrotalcite to ethanol and let it stand for 30-60 minutes to wet, then ultrasonically treat it at 65-75°C and 60-100kHz for 3-5 minutes, and then stir at a speed of 2000-3800r/min Treat for 15-18 minutes to obtain a dispersion of nano-hydrotalcite, then add stearic acid to the dispersion of nano-hydrotalcite, stir, mix and dissolve, adjust the pH of the dispersion of nano-talc powder to 3-4.5, and adjust the reaction temperature Reflux at 65-70°C, stirring at 300-600r/min for 3-5h, filter and wash the nano-hydrotalcite with deionized water until the surface is neutral, and then dry at 70-90°C.
  • stearic acid is used as an intercalation agent to modify the nano-hydrotalcite to increase the interlayer spacing of the nano-hydrotalcite and improve the dispersion effect of the nano-hydrotalcite in organic matter.
  • step S12 Heat-treat the coated modification solution prepared in step S11 to heat-cure the phenolic resin in it.
  • the specific heating method is: first heat-preserve at 65-80° C. for 2-5 hours, and then heat-cure at 80-80° C. Insulation treatment at 85°C for 2-3.5h, then at 95-100°C for 0.5-2h, and finally at 100-120°C for 0.5-2h;
  • step S13 After filtering the product in step S12, wash the solid phase product with ethanol and deionized water for 2-5 times respectively, and then dry it at a temperature of 50-65° C. to obtain a modified filler;
  • organically modified nano-hydrotalcite and non-volatile hexadecane are mixed by ultrasonic and high-speed stirring, and then the mixture and the emulsion of phenolic resin are subjected to high-speed shearing treatment, thereby forming a phenolic resin-wrapped organic modification.
  • the composite structure of nano-hydrotalcite, and then through the heating treatment, the phenolic resin is cured, so that the phenolic resin is cured and wrapped on the surface of the organically modified nano-hydrotalcite, and finally the organic solvent wrapped on the surface of the phenolic resin is removed by heating and drying.
  • Hexadecane and water are used to obtain modified fillers.
  • the surface of the modified fillers is evenly coated with a layer of phenolic resin, which is beneficial to the dispersion of organically modified nano-hydrotalcites as fillers in the resin;
  • the oxidation solution is a mixed solution of potassium permanganate and sulfuric acid or a nitric acid solution
  • step S22 Process the oxidized carbon fibers prepared in step S21 with a coupling agent solution to obtain modified carbon fibers;
  • the coupling agent is a mixture of one or at least two of titanate coupling agents, aluminate coupling agents and silane coupling agents;
  • the carbon fiber is first soaked in acetone to remove the organic impurities on the carbon fiber, and then the carbon fiber is oxidized by an oxidation solution to increase the roughness of the carbon fiber surface and the number of active groups on the carbon fiber surface, thereby Improve the connection effect between carbon fiber and phenolic resin;
  • the dosage ratio of ethyl orthosilicate, silane coupling agent and ethanol is 1g: 0.01-0.08g: 3-7mL;
  • weight ratio of tetraethyl orthosilicate, modified carbon fiber and modified filler is 1: 3-5: 6-13;
  • the volume ratio of the intermediate solution to the modified additive solution is 1:0.05-0.3;
  • the added amount of the oxalic acid is 0.5%-0.9% of the phenol weight
  • tetraethyl orthosilicate, ethanol and silane coupling agent are added into the reaction kettle according to the weight ratio and mixed to prepare a dispersion of tetraethyl orthosilicate, and then phenol and formaldehyde or paraformaldehyde are used as raw materials, Mixing and heating for pre-polymerization, and then mixing the pre-polymerization product with the dispersion of tetraethyl orthosilicate, modified carbon fiber, ammonia water and modified fillers, etc., and then heating for polymerization, so as to ensure that the raw materials are in phenolic formaldehyde. Dispersion in resin.
  • the invention also discloses a phenolic resin composite plastic, which is processed and prepared by the above-mentioned processing method.
  • a phenolic resin composite plastic according to the present invention is obtained by compounding modified carbon fiber, nano-silicon dioxide, modified filler and phenolic resin, and uniformly disperses the modified carbon fiber, modified filler and nano-silicon dioxide in the phenolic resin
  • stearic acid is used as an intercalation agent to organically modify the nano-hydrotalcite to increase the interlayer spacing of the nano-hydrotalcite, and then Organically modified nano-hydrotalcite and non-volatile hexadecane are mixed by ultrasonic and high-speed stirring, and then the mixture is subjected to high-speed shearing treatment with the emulsion of phenolic resin to form a composite of organically modified nano-hydrotalcite coated with phenolic resin.
  • the phenolic resin is cured, so that the phenolic resin is cured and wrapped on the surface of the organically modified nano-hydrotalcite, and finally the organic solvent hexadecane and water wrapped on the surface of the phenolic resin are removed by heating and drying.
  • the modified filler is obtained, and the surface of the modified filler is evenly coated with a layer of phenolic resin, which is beneficial to the dispersion of organically modified nano-hydrotalcite as a filler in the resin.
  • the carbon fiber is first soaked in acetone treatment to remove the organic impurities on the carbon fiber, and then oxidize the carbon fiber through an oxidation solution to increase the roughness of the carbon fiber surface and the number of active groups on the carbon fiber surface, thereby improving the connection between the carbon fiber and the phenolic resin.
  • tetraethyl orthosilicate, ethanol and silane coupling agent are added into the reactor according to the weight ratio and mixed to prepare a dispersion of tetraethyl orthosilicate, and then phenol and formaldehyde or paraformaldehyde As a raw material, mix and heat for pre-polymerization, and then mix the pre-polymerization product with a dispersion of tetraethyl orthosilicate, modified carbon fiber, ammonia water, and modified fillers, and then heat for polymerization.
  • the dispersibility of raw materials in phenolic resin avoids the limited dispersibility of various materials in phenolic resin due to the high viscosity of phenolic resin itself, so that various materials can be uniformly dispersed in phenolic resin, thereby improving the strength of the obtained phenolic resin and resilience.
  • a preparation method of phenolic resin composite plastics comprising the steps of:
  • Step 1 Add nano-hydrotalcite to ethanol and let it stand for wetting for 40 minutes, then ultrasonically treat it at 70°C and 80kHz for 4 minutes, and then stir it at a speed of 3200r/min for 16 minutes to obtain a dispersion of nano-hydrotalcite , then add stearic acid to the dispersion of nano-hydrotalcite, stir, mix and dissolve, adjust the pH value of the dispersion of nano-talc powder to 3.5-4, adjust the reaction temperature to 70°C, and stir at a speed of 400r/min Reflux treatment for 4 hours, after filtering, rinse the nano-hydrotalcite with deionized water until the surface is neutral, and then dry at a temperature of 80°C to obtain organically modified nano-hydrotalcite;
  • step S12 Heat-treat the coating modification solution prepared in step S11 to heat-cure the phenolic resin in it.
  • the specific heating method is: first heat-preserve at 70°C for 4 hours, and then heat-preserve at 85°C 3h, then heat preservation treatment at 98°C for 1h, and finally heat preservation treatment at 110°C for 1h;
  • step S13 after filtering the product in step S12, washing the solid-phase product with ethanol and deionized water for 4 times, drying and drying at a temperature of 60° C. to obtain a modified filler;
  • the oxidation solution is a nitric acid solution with a mass fraction of 68%;
  • step S22 Process the oxidized carbon fibers prepared in step S21 with a coupling agent solution to obtain modified carbon fibers;
  • the coupling agent is a titanate coupling agent
  • the consumption ratio of ethyl orthosilicate, silane coupling agent and ethanol is 1g: 0.02g: 5mL;
  • weight ratio of ethyl orthosilicate, modified carbon fiber and modified filler is 1: 3.6: 8;
  • the volume ratio of the intermediate solution to the modified additive solution is 1:0.13;
  • the addition amount of described oxalic acid is 0.7% of phenol weight.
  • a preparation method of phenolic resin composite plastics comprising the steps of:
  • Step 1 Add nano hydrotalcite to ethanol and let it stand for wetting for 40 minutes, then ultrasonically treat it at 70°C and 80kHz for 4 minutes, and then stir it at a speed of 3400r/min for 16 minutes to obtain a dispersion of nano hydrotalcite , then add stearic acid to the dispersion of nano-hydrotalcite, after stirring, mixing and dissolving, adjust the pH value of the dispersion of nano-talc powder to 3.5, adjust the reaction temperature to 70°C, and reflux treatment under the condition of stirring speed 400r/min 4h, after filtering, rinse the nano-hydrotalcite with deionized water until the surface is neutral, and then dry it at a temperature of 80°C to obtain organically modified nano-hydrotalcite;
  • step S12 Heat-treat the coating modification solution prepared in step S11 to heat-cure the phenolic resin in it.
  • the specific heating method is: first heat-preserve at 70°C for 4 hours, and then heat-preserve at 85°C 2.5h, then heat preservation treatment at 100°C for 1.5h, and finally heat preservation treatment at 110°C for 1.5h;
  • step S13 after filtering the product in step S12, washing the solid-phase product with ethanol and deionized water for 4 times, drying and drying at a temperature of 55° C. to obtain a modified filler;
  • the oxidation solution is a nitric acid solution with a mass fraction of 68%;
  • step S22 Process the oxidized carbon fibers prepared in step S21 with a coupling agent solution to obtain modified carbon fibers;
  • the coupling agent is a titanate coupling agent
  • the consumption ratio of ethyl orthosilicate, silane coupling agent and ethanol is 1g: 0.05g: 5mL;
  • weight ratio of ethyl orthosilicate, modified carbon fiber and modified filler is 1: 3.5: 8.5;
  • the volume ratio of the intermediate solution to the modified additive solution is 1:0.1;
  • the addition amount of described oxalic acid is 0.75% of phenol weight.
  • a preparation method of phenolic resin composite plastics comprising the steps of:
  • Step 1 Add nano-hydrotalcite to ethanol and let it stand for wetting for 40 minutes, then ultrasonically treat it at 70°C and 80kHz for 4 minutes, and then stir it at a speed of 3200r/min for 16 minutes to obtain a dispersion of nano-hydrotalcite , then add stearic acid to the dispersion of nano-hydrotalcite, stir, mix and dissolve, adjust the pH value of the dispersion of nano-talc powder to 3.5-4, adjust the reaction temperature to 70°C, and stir at a speed of 400r/min Reflux treatment for 4 hours, after filtering, rinse the nano-hydrotalcite with deionized water until the surface is neutral, and then dry at a temperature of 80°C to obtain organically modified nano-hydrotalcite;
  • the oxidation solution is a nitric acid solution with a mass fraction of 68%;
  • step S22 Process the oxidized carbon fibers prepared in step S21 with a coupling agent solution to obtain modified carbon fibers;
  • the coupling agent is a titanate coupling agent
  • the consumption ratio of ethyl orthosilicate, silane coupling agent and ethanol is 1g: 0.02g: 5mL;
  • weight ratio of tetraethyl orthosilicate, modified carbon fiber and organically modified nanometer hydrotalcite is 1: 3.6: 8;
  • the volume ratio of the intermediate solution to the modified additive solution is 1:0.13;
  • the addition amount of described oxalic acid is 0.7% of phenol weight.
  • a preparation method of phenolic resin composite plastics comprising the steps of:
  • Step 1 Add nano-hydrotalcite to ethanol and let it stand for wetting for 40 minutes, then ultrasonically treat it at 70°C and 80kHz for 4 minutes, and then stir it at a speed of 3200r/min for 16 minutes to obtain a dispersion of nano-hydrotalcite , then add stearic acid to the dispersion of nano-hydrotalcite, stir, mix and dissolve, adjust the pH value of the dispersion of nano-talc powder to 3.5-4, adjust the reaction temperature to 70°C, and stir at a speed of 400r/min Reflux treatment for 4 hours, after filtering, rinse the nano-hydrotalcite with deionized water until the surface is neutral, and then dry at a temperature of 80°C to obtain organically modified nano-hydrotalcite;
  • step S12 Heat-treat the coating modification solution prepared in step S11 to heat-cure the phenolic resin in it.
  • the specific heating method is: first heat-preserve at 70°C for 4 hours, and then heat-preserve at 85°C 3h, then heat preservation treatment at 98°C for 1h, and finally heat preservation treatment at 110°C for 1h;
  • step S13 after filtering the product in step S12, washing the solid phase product with ethanol and deionized water for 4 times, drying and drying at a temperature of 60° C. to obtain a modified filler;
  • the oxidation solution is a nitric acid solution with a mass fraction of 68%;
  • step S22 Process the oxidized carbon fibers prepared in step S21 with a coupling agent solution to obtain modified carbon fibers;
  • the coupling agent is a titanate coupling agent
  • the consumption ratio of ethyl orthosilicate, silane coupling agent and ethanol is 1g: 0.02g: 5mL;
  • weight ratio of ethyl orthosilicate, modified carbon fiber and modified filler is 1: 3.6: 8;
  • the weight ratio of the phenolic resin to the dehydrated solid phase product is 1:0.11.
  • a kind of phenolic resin composite plastic according to the present invention has good bending strength and tensile strength, its bending strength can reach more than 100MPa, its tensile strength can reach more than 70MPa, and its notched impact strength It can reach about 2.5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

一种酚醛树脂复合塑料及其制备方法,该复合塑料通过将改性碳纤维、纳米二氧化硅、改性填料与酚醛树脂复合得到;在复合处理的过程中,首先以正硅酸乙酯、乙醇与硅烷偶联剂按照重量比加入反应釜中混合制备正硅酸乙酯的分散液,然后再以苯酚与甲醛或多聚甲醛为原料,混合加热进行预聚合,再将预聚合产物与正硅酸乙酯的分散液、改性碳纤维、氨水以及改性填料等多种材料混合后,再加热进行聚合反应,从而保证了各原料在酚醛树脂中的分散性,避免由于酚醛树脂自身的高粘度导致各种材料在酚醛树脂中的分散性有限,使各种物料能够在酚醛树脂中均匀分散,从而提升所得的酚醛树脂的强度与韧性。

Description

一种酚醛树脂复合塑料及其制备方法 技术领域
本发明属于高分子材料技术领域,具体的,涉及一种酚醛树脂复合塑料及其制备方法。
背景技术
酚醛树脂,又名电木,由苯酚醛或其衍生物缩聚而得,与其他树脂系统相比,酚醛树脂系统具有低烟低毒的优势。在燃烧的情况下,分解过程中所产生的烟相对少,毒性也相对低,这些特点使酚醛树脂适用于公共运输和安全要求非常严格的领域,如矿山,防护栏和建筑业等,交联后的酚醛树脂可以抵制任何化学物质的分解,例如汽油,石油,醇,乙二醇,油脂和各种碳氢化合物。因其抗化学稳定性,适合用于制作厨卫用具、饮用水净化设备(酚醛碳纤维)、电木茶盘茶具、并广泛用于罐头及易拉罐(国家标准GB 05009.069-2003)、液体容器等食品饮料包装材料中。
高分子树脂材料在现代工业中具有广泛的用途,在很多环境下进行使用时,还需要进行增强、增韧等改性,以期达到更优异的效果,使高分子树脂材料在更多的环境中能够进行使用,现有技术中是将用于增韧、增强的材料直接与酚醛树脂进行共挤出造粒,虽然能够起到一定的效果,但是由于材料在酚醛树脂中的分散性较差,会导致对材料增强增韧等效果的均匀性,一方面会导致制备的材料质量较差,另一方面也会对增韧、增强的材料造成浪费,使其无法达到最大的利用效果,为了解决上述问题,本发明提供了以下技术方案。
发明内容
本发明的目的在于提供一种酚醛树脂复合塑料及其制备方法。
本发明需要解决的技术问题为:
高分子树脂材料在现代工业中具有广泛的用途,在很多环境下进行使用时,还需要进行增强、增韧等改性,以期达到更优异的效果,使高分子树脂材料在更多的环境中能够进行使用,现有技术中是将用于增韧、增强的材料直接与酚醛树脂进行共挤出造粒,虽然能够起到一定的效果,但是由于材料在酚醛树脂中的分散性较差,会导致对材料增强增韧等效果的均匀性,一方面会导致制备的材料质量较差,另一方面也会对增韧、增强的材料造成浪费,使其无法达到最大的利用效果。
本发明的目的可以通过以下技术方案实现:
一种酚醛树脂复合塑料的制备方法,包括如下步骤:
步骤一,将纳米水滑石加入乙醇中静置润湿30-60min后,在65-75℃、60-100kHz的条件下超声处理3-5min,然后在转速2000-3800r/min的转速条件下搅拌处理15-18min,得到纳米水滑石的分散液,然后向纳米水滑石的分散液中加入硬脂酸,搅拌混合溶解后,调节纳米滑石粉的分散液的pH值为3-4.5,调节反应温度为65-70℃,搅拌转速300-600r/min的条件下回流处理3-5h,过滤后用去离子水冲洗纳米水滑石至表面为中性,然后在70-90℃的温度下烘干,得到有机改性纳米水滑石;
在该步骤中,以硬脂酸作为插层剂,对纳米水滑石进行改性处理,提升纳米水滑石的层间距,提升纳米水滑石在有机物中的分散效果。
步骤二,制备改性填料
S11、配制固含量为30%-45%的水溶性酚醛树脂乳液待用,然后再将步骤一中制备得到的有机改性纳米水滑石加入十六烷中,有机改性纳米水滑石与十六烷的用量比为1g∶1.6-4mL,在频率60-100KHz的条件下超声处理12-16min得到有机分散液,然后将有机分散液与水溶性酚醛树脂乳液按照体积比1∶0.8-1.4均匀混合后,在转速大于等于3000r/min的条件下高速剪切至少40min后,得到包覆改性液,包覆改性液中形成有酚醛树脂包裹有机改性纳米水滑石的复合结构;
S12、对步骤S11中制备得到的包覆改性液加热处理,使其中的酚醛树脂热固化,其具体的加热方法为,首先在65-80℃温度下保温处理2-5h,然后在80-85℃温度下保温处理2-3.5h,再在95-100℃温度下保温处理0.5-2h,最后在100-120℃温度下保温处理0.5-2h;
S13、将步骤S12中的产物过滤后,用乙醇与去离子水分别洗涤固相产物2-5次后,在50-65℃温度下烘干干燥,得到改性填料;
在上述步骤中,首先将有机改性的纳米水滑石与难挥发的十六烷通过超声与高速搅拌混合,再将其混合物与酚醛树脂的乳液进行高速剪切处理,从而形成酚醛树脂包裹有机改性纳米水滑石的复合结构,然后再通过升温处理,对酚醛树脂进行固化处理,使酚醛树脂固化包裹在有机改性纳米水滑石的表面,最后通过加热烘干处理除去酚醛树脂表面包裹的有机溶剂十六烷与水分,得到改性填料,改性填料的表面均匀包覆有一层酚醛树脂,有利于有机改性纳米水滑石作为填料在树脂中的分散;
步骤三,制备改性碳纤维
具体步骤如下:
S21、将碳纤维加入丙酮中,静置浸泡处理20-30min后,在频率40-80KHz的条件下超声处理10-14min,用水或乙醇冲洗2-5遍后烘干,将得到碳纤维加入氧化溶液中静置浸泡25-40min后取出,用去离子水或乙醇冲洗2-5遍后烘干得到氧化碳纤维;
其中氧化溶液为高锰酸钾与硫酸的混合溶液或硝酸溶液;
S22、通过偶联剂溶液处理步骤S21中制备得到的氧化碳纤维,得到改性碳纤维;
其中偶联剂为钛酸酯偶联剂、铝酸酯偶联剂与硅烷偶联剂中的一种或至少两种的任意比混合物;
在该步骤中,首先通过丙酮对碳纤维进行浸泡处理,从而除去碳纤维上的有机杂质,然后通过氧化溶液对碳纤维进行氧化处理,从而提升了碳纤维表面的粗糙度以及碳纤维表面的活性基团数量,从而提升了碳纤维与酚醛树脂之间的连接效果;
步骤四、复合处理
S31、将正硅酸乙酯、乙醇与硅烷偶联剂按照重量比加入反应釜中,在转速360-600r/min的条件下搅拌处理15-20min后,提升转速至2000-4000r/min,继续搅拌处理后得到正硅酸乙酯的乙醇溶液,然后向其中加入步骤S22中制备的改性碳纤维以及步骤二中制备得到的改性填料,在转速400-600r/min的条件下搅拌处理15-30min后,在频率60-100KHz的条件下超声处理20-40min,得到改性添加液;
其中正硅酸乙酯、硅烷偶联剂与乙醇的用量比为1g∶0.01-0.08g∶3-7mL;
其中正硅酸乙酯、改性碳纤维与改性填料的重量比为1∶3-5∶6-13;
S32、将苯酚与甲醛或多聚甲醛按照摩尔比1∶0.5-1混合后加入反应釜中,向其中加入乙二酸,混合均匀后,保持转速为200-360r/min对混合物进行搅拌,并升温至90-100℃,保温反应1.5-3h后,自然降温至50-60℃后得到中间体溶液,向其中加入改性添加液,在转速600-1000r/min的条件下保温搅拌处理60-120min后,向其中加入氨水,调节pH至5-6,在130-170℃温度下减压脱水,得到酚醛树脂复合塑料。
中间体溶液与改性添加液的体积比为1∶0.05-0.3;
所述乙二酸的添加量为苯酚重量的0.5%-0.9%;
在该步骤中,首先以正硅酸乙酯、乙醇与硅烷偶联剂按照重量比加入反应釜中混合制备正硅酸乙酯的分散液,然后再以苯酚与甲醛或多聚甲醛为原料,混合加热进行预聚合,再将预聚合产物与正硅酸乙酯的分散液、改性碳纤维、氨水以及改性填料等多种材料混合后,再加热进行聚合反应,从而保证了各原料在酚醛树脂中的分散性。
本发明还公开有一种酚醛树脂复合塑料,该酚醛树脂复合塑料由上述加工方法加工制备而成。
本发明的有益效果:
本发明所述的一种酚醛树脂复合塑料通过将改性碳纤维、纳米二氧化硅、改性填料与酚醛树脂复合得到,通过将改性碳纤维、改性填料以及纳米二氧化硅均匀分散在酚醛树脂中,从而提升酚醛树脂的强度与韧性;具体的,在改性填料的制备过程中,首先以硬脂酸作为插层剂对纳米水滑石进行有机改性,提升纳米水滑石的层间距,然后将有机改性的纳米水滑石与难挥发的十六烷通过超声与高速搅拌混合,再将其混合物与酚醛树脂的乳液进行高速剪切处理,从 而形成酚醛树脂包裹有机改性纳米水滑石的复合结构,然后再通过升温处理,对酚醛树脂进行固化处理,使酚醛树脂固化包裹在有机改性纳米水滑石的表面,最后通过加热烘干处理除去酚醛树脂表面包裹的有机溶剂十六烷与水分,得到改性填料,改性填料的表面均匀包覆有一层酚醛树脂,有利于有机改性纳米水滑石作为填料在树脂中的分散,在改性碳纤维的制备过程中,首先通过丙酮对碳纤维进行浸泡处理,从而除去碳纤维上的有机杂质,然后通过氧化溶液对碳纤维进行氧化处理,从而提升了碳纤维表面的粗糙度以及碳纤维表面的活性基团数量,从而提升了碳纤维与酚醛树脂之间的连接效果,而在复合处理的过程中,首先以正硅酸乙酯、乙醇与硅烷偶联剂按照重量比加入反应釜中混合制备正硅酸乙酯的分散液,然后再以苯酚与甲醛或多聚甲醛为原料,混合加热进行预聚合,再将预聚合产物与正硅酸乙酯的分散液、改性碳纤维、氨水以及改性填料等多种材料混合后,再加热进行聚合反应,从而保证了各原料在酚醛树脂中的分散性,避免由于酚醛树脂自身的高粘度导致各种材料在酚醛树脂中的分散性有限,使各种物料能够在酚醛树脂中均匀分散,从而提升所得的酚醛树脂的强度与韧性。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
一种酚醛树脂复合塑料的制备方法,包括如下步骤:
步骤一,将纳米水滑石加入乙醇中静置润湿40min后,在70℃、80kHz的条件下超声处理4min,然后在转速3200r/min的转速条件下搅拌处理16min,得到纳米水滑石的分散液,然后向纳米水滑石的分散液中加入硬脂酸,搅拌混合溶解后,调节纳米滑石粉的分散液的pH值为3.5-4,调节反应温度为70℃,搅拌转速400r/min的条件下回流处理4h,过滤后用去离子水冲洗纳米水滑石至表面为中性,然后在80℃的温度下烘干,得到有机改性纳米水滑石;
步骤二,制备改性填料
S11、配制固含量为40%的水溶性酚醛树脂乳液待用,然后再将步骤一中制备得到的有机改性纳米水滑石加入十六烷中,有机改性纳米水滑石与十六烷的用量比为1g∶2.5mL,在频率80KHz的条件下超声处理14min得到有机分散液,然后将有机分散液与水溶性酚醛树脂乳液按照体积比1∶1均匀混合后,在转速4200r/min的条件下高速剪切1h后,得到包覆改性液,包覆改性液中形成有酚醛树脂包裹有机改性纳米水滑石的复合结构;
S12、对步骤S11中制备得到的包覆改性液加热处理,使其中的酚醛树脂热固化,其具体的加热方法为,首先在70℃温度下保温处理4h,然后在85℃温度下保温处理3h,再在98℃温度下保温处理1h,最后在110℃温度下保温处理1h;
S13、将步骤S12中的产物过滤后,用乙醇与去离子水分别洗涤固相产物4次后,在60℃温度下烘干干燥,得到改性填料;
步骤三,制备改性碳纤维
具体步骤如下:
S21、将碳纤维加入丙酮中,静置浸泡处理25min后,在频率60KHz的条件下超声处理10min,用水或乙醇冲洗4遍后烘干,将得到碳纤维加入氧化溶液中 静置浸泡25min后取出,用乙醇冲洗4遍后烘干得到氧化碳纤维;
其中氧化溶液为质量分数68%的硝酸溶液;
S22、通过偶联剂溶液处理步骤S21中制备得到的氧化碳纤维,得到改性碳纤维;
其中偶联剂为钛酸酯偶联剂;
步骤四、复合处理
S31、将正硅酸乙酯、乙醇与硅烷偶联剂按照重量比加入反应釜中,在转速480r/min的条件下搅拌处理20min后,提升转速至3600r/min,继续搅拌处理后得到正硅酸乙酯的乙醇溶液,然后向其中加入步骤S22中制备的改性碳纤维以及步骤二中制备得到的改性填料,在转速500r/min的条件下搅拌处理20min后,在频率80KHz的条件下超声处理30min,得到改性添加液;
其中正硅酸乙酯、硅烷偶联剂与乙醇的用量比为1g∶0.02g∶5mL;
其中正硅酸乙酯、改性碳纤维与改性填料的重量比为1∶3.6∶8;
S32、将苯酚与甲醛或多聚甲醛按照摩尔比1∶0.8混合后加入反应釜中,向其中加入乙二酸,混合均匀后,保持转速为300r/min对混合物进行搅拌,并升温至100℃,保温反应2h后,自然降温至55℃后得到中间体溶液,向其中加入改性添加液,在转速800r/min的条件下保温搅拌处理80min后,向其中加入氨水,调节pH至5-5.5,在145℃温度下减压脱水,得到酚醛树脂复合塑料。
中间体溶液与改性添加液的体积比为1∶0.13;
所述乙二酸的添加量为苯酚重量的0.7%。
实施例2
一种酚醛树脂复合塑料的制备方法,包括如下步骤:
步骤一,将纳米水滑石加入乙醇中静置润湿40min后,在70℃、80kHz的条件下超声处理4min,然后在转速3400r/min的转速条件下搅拌处理16min,得到纳米水滑石的分散液,然后向纳米水滑石的分散液中加入硬脂酸,搅拌混合溶解后,调节纳米滑石粉的分散液的pH值为3.5,调节反应温度为70℃,搅拌转速400r/min的条件下回流处理4h,过滤后用去离子水冲洗纳米水滑石至表面为中性,然后在80℃的温度下烘干,得到有机改性纳米水滑石;
步骤二,制备改性填料
S11、配制固含量为40%的水溶性酚醛树脂乳液待用,然后再将步骤一中制备得到的有机改性纳米水滑石加入十六烷中,有机改性纳米水滑石与十六烷的用量比为1g∶2mL,在频率80KHz的条件下超声处理14min得到有机分散液,然后将有机分散液与水溶性酚醛树脂乳液按照体积比1∶1均匀混合后,在转速大于等于3000r/min的条件下高速剪切至少40min后,得到包覆改性液,包覆改性液中形成有酚醛树脂包裹有机改性纳米水滑石的复合结构;
S12、对步骤S11中制备得到的包覆改性液加热处理,使其中的酚醛树脂热固化,其具体的加热方法为,首先在70℃温度下保温处理4h,然后在85℃温度下保温处理2.5h,再在100℃温度下保温处理1.5h,最后在110℃温度下保温处理1.5h;
S13、将步骤S12中的产物过滤后,用乙醇与去离子水分别洗涤固相产物4次后,在55℃温度下烘干干燥,得到改性填料;
步骤三,制备改性碳纤维
具体步骤如下:
S21、将碳纤维加入丙酮中,静置浸泡处理25min后,在频率80KHz的条件 下超声处理11min,用水或乙醇冲洗4遍后烘干,将得到碳纤维加入氧化溶液中静置浸泡30min后取出,用去离子水或乙醇冲洗4遍后烘干得到氧化碳纤维;
其中氧化溶液为质量分数68%硝酸溶液;
S22、通过偶联剂溶液处理步骤S21中制备得到的氧化碳纤维,得到改性碳纤维;
其中偶联剂为钛酸酯偶联剂;
步骤四、复合处理
S31、将正硅酸乙酯、乙醇与硅烷偶联剂按照重量比加入反应釜中,在转速460r/min的条件下搅拌处理20min后,提升转速至3600r/min,继续搅拌处理后得到正硅酸乙酯的乙醇溶液,然后向其中加入步骤S22中制备的改性碳纤维以及步骤二中制备得到的改性填料,在转速500r/min的条件下搅拌处理20min后,在频率80KHz的条件下超声处理32min,得到改性添加液;
其中正硅酸乙酯、硅烷偶联剂与乙醇的用量比为1g∶0.05g∶5mL;
其中正硅酸乙酯、改性碳纤维与改性填料的重量比为1∶3.5∶8.5;
S32、将苯酚与甲醛或多聚甲醛按照摩尔比1∶0.7混合后加入反应釜中,向其中加入乙二酸,混合均匀后,保持转速为300r/min对混合物进行搅拌,并升温至100℃,保温反应2.5h后,自然降温至55℃后得到中间体溶液,向其中加入改性添加液,在转速850r/min的条件下保温搅拌处理100min后,向其中加入氨水,调节pH至5.5,在150℃温度下减压脱水,得到酚醛树脂复合塑料。
中间体溶液与改性添加液的体积比为1∶0.1;
所述乙二酸的添加量为苯酚重量的0.75%。
对比例1
一种酚醛树脂复合塑料的制备方法,包括如下步骤:
步骤一,将纳米水滑石加入乙醇中静置润湿40min后,在70℃、80kHz的条件下超声处理4min,然后在转速3200r/min的转速条件下搅拌处理16min,得到纳米水滑石的分散液,然后向纳米水滑石的分散液中加入硬脂酸,搅拌混合溶解后,调节纳米滑石粉的分散液的pH值为3.5-4,调节反应温度为70℃,搅拌转速400r/min的条件下回流处理4h,过滤后用去离子水冲洗纳米水滑石至表面为中性,然后在80℃的温度下烘干,得到有机改性纳米水滑石;
步骤三,制备改性碳纤维
具体步骤如下:
S21、将碳纤维加入丙酮中,静置浸泡处理25min后,在频率60KHz的条件下超声处理10min,用水或乙醇冲洗4遍后烘干,将得到碳纤维加入氧化溶液中静置浸泡25min后取出,用乙醇冲洗4遍后烘干得到氧化碳纤维;
其中氧化溶液为质量分数68%的硝酸溶液;
S22、通过偶联剂溶液处理步骤S21中制备得到的氧化碳纤维,得到改性碳纤维;
其中偶联剂为钛酸酯偶联剂;
步骤四、复合处理
S31、将正硅酸乙酯、乙醇与硅烷偶联剂按照重量比加入反应釜中,在转速480r/min的条件下搅拌处理20min后,提升转速至3600r/min,继续搅拌处理后得到正硅酸乙酯的乙醇溶液,然后向其中加入步骤S22中制备的改性碳纤维以及步骤二中制备得到的有机改性纳米水滑石,在转速500r/min的条件下搅拌处理20min后,在频率80KHz的条件下超声处理30min,得到改性添加液;
其中正硅酸乙酯、硅烷偶联剂与乙醇的用量比为1g∶0.02g∶5mL;
其中正硅酸乙酯、改性碳纤维与有机改性纳米水滑石的重量比为1∶3.6∶8;
S32、将苯酚与甲醛或多聚甲醛按照摩尔比1∶0.8混合后加入反应釜中,向其中加入乙二酸,混合均匀后,保持转速为300r/min对混合物进行搅拌,并升温至100℃,保温反应2h后,自然降温至55℃后得到中间体溶液,向其中加入改性添加液,在转速800r/min的条件下保温搅拌处理80min后,向其中加入氨水,调节pH至5-5.5,在145℃温度下减压脱水,得到酚醛树脂复合塑料。
中间体溶液与改性添加液的体积比为1∶0.13;
所述乙二酸的添加量为苯酚重量的0.7%。
对比例2
一种酚醛树脂复合塑料的制备方法,包括如下步骤:
步骤一,将纳米水滑石加入乙醇中静置润湿40min后,在70℃、80kHz的条件下超声处理4min,然后在转速3200r/min的转速条件下搅拌处理16min,得到纳米水滑石的分散液,然后向纳米水滑石的分散液中加入硬脂酸,搅拌混合溶解后,调节纳米滑石粉的分散液的pH值为3.5-4,调节反应温度为70℃,搅拌转速400r/min的条件下回流处理4h,过滤后用去离子水冲洗纳米水滑石至表面为中性,然后在80℃的温度下烘干,得到有机改性纳米水滑石;
步骤二,制备改性填料
S11、配制固含量为40%的水溶性酚醛树脂乳液待用,然后再将步骤一中制备得到的有机改性纳米水滑石加入十六烷中,有机改性纳米水滑石与十六烷的用量比为1g∶2.5mL,在频率80KHz的条件下超声处理14min得到有机分散液,然后将有机分散液与水溶性酚醛树脂乳液按照体积比1∶1均匀混合后,在转速 4200r/min的条件下高速剪切1h后,得到包覆改性液,包覆改性液中形成有酚醛树脂包裹有机改性纳米水滑石的复合结构;
S12、对步骤S11中制备得到的包覆改性液加热处理,使其中的酚醛树脂热固化,其具体的加热方法为,首先在70℃温度下保温处理4h,然后在85℃温度下保温处理3h,再在98℃温度下保温处理1h,最后在110℃温度下保温处理1h;
S13、将步骤S12中的产物过滤后,用乙醇与去离子水分别洗涤固相产物4次后,在60℃温度下烘干干燥,得到改性填料;
步骤三,制备改性碳纤维
具体步骤如下:
S21、将碳纤维加入丙酮中,静置浸泡处理25min后,在频率60KHz的条件下超声处理10min,用水或乙醇冲洗4遍后烘干,将得到碳纤维加入氧化溶液中静置浸泡25min后取出,用乙醇冲洗4遍后烘干得到氧化碳纤维;
其中氧化溶液为质量分数68%的硝酸溶液;
S22、通过偶联剂溶液处理步骤S21中制备得到的氧化碳纤维,得到改性碳纤维;
其中偶联剂为钛酸酯偶联剂;
步骤四、复合处理
S31、将正硅酸乙酯、乙醇与硅烷偶联剂按照重量比加入反应釜中,在转速480r/min的条件下搅拌处理20min后,提升转速至3600r/min,继续搅拌处理后得到正硅酸乙酯的乙醇溶液,然后向其中加入步骤S22中制备的改性碳纤维以及步骤二中制备得到的改性填料,在转速500r/min的条件下搅拌处理20min后,在频率80KHz的条件下超声处理30min,得到改性添加液;
其中正硅酸乙酯、硅烷偶联剂与乙醇的用量比为1g∶0.02g∶5mL;
其中正硅酸乙酯、改性碳纤维与改性填料的重量比为1∶3.6∶8;
S32、向改性添加液中加入氨水,调节pH至5-5.5,在145℃温度下减压脱水后与酚醛树脂混合后挤出造粒,得到酚醛树脂复合塑料。
酚醛树脂与脱水后固相产物的重量比为1∶0.11。
实验数据与结果分析
对实施例1至实施例2以及对比例1至对比例2中制备得到的酚醛树脂复合塑料的弯曲强度(MPa)、拉伸强度(MPa)以及缺口冲击强度进行检测,具体结果见表1;
表1
  弯曲强度 拉伸强度 缺口冲击强度
实施例1 102 76 2.6
实施例2 107 77 2.7
对比例1 92 65 2.0
对比例2 81 52 1.6
由上述表1可知,本发明所述的一种酚醛树脂复合塑料,具有良好的弯曲强度与拉伸强度,其弯曲强度能够达到100MPa以上,其拉伸强度能够达到70MPa以上,且其缺口冲击强度能够达到2.5左右。
以上内容仅仅是对本发明结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (9)

  1. 一种酚醛树脂复合塑料的制备方法,其特征在于,包括如下步骤:
    步骤一,对纳米水滑石进行有机改性;
    步骤二,制备改性填料;
    步骤三,制备改性碳纤维;
    步骤四、复合处理
    S31、将正硅酸乙酯、乙醇与硅烷偶联剂按照重量比加入反应釜中,在转速360-600r/min的条件下搅拌处理15-20min后,提升转速至2000-4000r/min,继续搅拌处理后得到正硅酸乙酯的乙醇溶液,然后向其中加入步骤三中制备的改性碳纤维以及步骤二中制备得到的改性填料,在转速400-600r/min的条件下搅拌处理15-30min后,在频率60-100KHz的条件下超声处理20-40min,得到改性添加液;
    S32、将苯酚与甲醛或多聚甲醛按照摩尔比1∶0.5-1混合后加入反应釜中,向其中加入乙二酸,混合均匀后,保持转速为200-360r/min对混合物进行搅拌,并升温至90-100℃,保温反应1.5-3h后,自然降温至50-60℃后得到中间体溶液,向其中加入改性添加液,在转速600-1000r/min的条件下保温搅拌处理60-120min后,向其中加入氨水,调节pH至5-6,在130-170℃温度下减压脱水,得到酚醛树脂复合塑料。
  2. 根据权利要求1所述的一种酚醛树脂复合塑料的制备方法,其特征在于,步骤S31中正硅酸乙酯、硅烷偶联剂与乙醇的用量比为1g∶0.01-0.08g∶3-7mL;正硅酸乙酯、改性碳纤维与改性填料的重量比为1∶3-5∶6-13。
  3. 根据权利要求1所述的一种酚醛树脂复合塑料的制备方法,其特征在于, 步骤S32中中间体溶液与改性添加液的体积比为1∶0.05-0.3;乙二酸的添加量为苯酚重量的0.5%-0.9%。
  4. 根据权利要求1所述的一种酚醛树脂复合塑料的制备方法,其特征在于,步骤一中对纳米水滑石进行有机改性的具体方法为:
    将纳米水滑石加入乙醇中静置润湿30-60min后,在65-75℃、60-100kHz的条件下超声处理3-5min,然后在转速2000-3800r/min的条件下搅拌处理15-18min,得到纳米水滑石的分散液,然后向纳米水滑石的分散液中加入硬脂酸,搅拌混合溶解后,调节纳米滑石粉的分散液的pH值为3-4.5,调节反应温度为65-70℃,搅拌转速300-600r/min的条件下回流处理3-5h,过滤后用去离子水冲洗纳米水滑石至表面为中性,然后在70-90℃的温度下烘干,得到有机改性纳米水滑石。
  5. 根据权利要求1所述的一种酚醛树脂复合塑料的制备方法,其特征在于,步骤二中制备改性填料的具体方法为:
    S11、配制固含量为30%-45%的水溶性酚醛树脂乳液待用,然后再将步骤一中制备得到的有机改性纳米水滑石加入十六烷中,有机改性纳米水滑石与十六烷的用量比为1g∶1.6-4mL,在频率60-100KHz的条件下超声处理12-16min得到有机分散液,然后将有机分散液与水溶性酚醛树脂乳液按照体积比1∶0.8-1.4均匀混合后,在转速大于等于3000r/min的条件下高速剪切至少40min后,得到包覆改性液,包覆改性液中形成有酚醛树脂包裹有机改性纳米水滑石的复合结构;
    S12、对步骤S11中制备得到的包覆改性液加热处理,使其中的酚醛树脂热固化,其具体的加热方法为,首先在65-80℃温度下保温处理2-5h,然后在 80-85℃温度下保温处理2-3.5h,再在95-100℃温度下保温处理0.5-2h,最后在100-120℃温度下保温处理0.5-2h;
    S13、将步骤S12中的产物过滤后,用乙醇与去离子水分别洗涤固相产物2-5次后,在50-65℃温度下烘干干燥,得到改性填料。
  6. 根据权利要求1所述的一种酚醛树脂复合塑料的制备方法,其特征在于,步骤三中制备改性碳纤维的具体步骤如下:
    S21、将碳纤维加入丙酮中,静置浸泡处理20-30min后,在频率40-80KHz的条件下超声处理10-14min,用水或乙醇冲洗2-5遍后烘干,将得到的碳纤维加入氧化溶液中静置浸泡25-40min后取出,用去离子水或乙醇冲洗2-5遍后烘干得到氧化碳纤维;
    S22、通过偶联剂溶液处理步骤S21中制备得到的氧化碳纤维,得到改性碳纤维。
  7. 根据权利要求6所述的一种酚醛树脂复合塑料的制备方法,其特征在于,氧化溶液为高锰酸钾与硫酸的混合溶液或硝酸溶液。
  8. 根据权利要求6所述的一种酚醛树脂复合塑料的制备方法,其特征在于,偶联剂为钛酸酯偶联剂、铝酸酯偶联剂与硅烷偶联剂中的一种或至少两种的任意比混合物。
  9. 一种酚醛树脂复合塑料,其特征在于,该酚醛树脂复合塑料根据权利要求1至8任一所述的制备方法加工制备而成。
PCT/CN2021/143155 2021-12-28 2021-12-30 一种酚醛树脂复合塑料及其制备方法 WO2023123227A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111626599.6A CN114316508A (zh) 2021-12-28 2021-12-28 一种酚醛树脂复合塑料及其制备方法
CN202111626599.6 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023123227A1 true WO2023123227A1 (zh) 2023-07-06

Family

ID=81015382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143155 WO2023123227A1 (zh) 2021-12-28 2021-12-30 一种酚醛树脂复合塑料及其制备方法

Country Status (2)

Country Link
CN (1) CN114316508A (zh)
WO (1) WO2023123227A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115850905A (zh) * 2022-12-23 2023-03-28 重庆云天化天聚新材料有限公司 一种碳纤维增强的导电型聚甲醛复合材料及其制备方法
CN117534396A (zh) * 2023-10-31 2024-02-09 广东合睿智造新材料有限公司 一种大尺寸瓷砖粘贴用的双组份基粘合剂及其制备方法
CN117962430A (zh) * 2024-01-03 2024-05-03 寿光市发达布业有限公司 一种复合型高强度隔热玻璃纤维毡及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024839A (ja) * 2006-07-21 2008-02-07 Akebono Brake Ind Co Ltd 熱硬化性樹脂複合材料とその製造方法
CN103214786A (zh) * 2013-05-09 2013-07-24 沙县宏盛塑料有限公司 一种酚醛树脂-二氧化硅有机无机杂化材料及其制备方法
CN105754056A (zh) * 2016-03-04 2016-07-13 沙县宏盛塑料有限公司 一种碳纤维改性酚醛树脂及酚醛模塑料的制备方法
CN112280171A (zh) * 2020-10-29 2021-01-29 蔡美英 一种耐划伤pp塑料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024839A (ja) * 2006-07-21 2008-02-07 Akebono Brake Ind Co Ltd 熱硬化性樹脂複合材料とその製造方法
CN103214786A (zh) * 2013-05-09 2013-07-24 沙县宏盛塑料有限公司 一种酚醛树脂-二氧化硅有机无机杂化材料及其制备方法
CN105754056A (zh) * 2016-03-04 2016-07-13 沙县宏盛塑料有限公司 一种碳纤维改性酚醛树脂及酚醛模塑料的制备方法
CN112280171A (zh) * 2020-10-29 2021-01-29 蔡美英 一种耐划伤pp塑料及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115850905A (zh) * 2022-12-23 2023-03-28 重庆云天化天聚新材料有限公司 一种碳纤维增强的导电型聚甲醛复合材料及其制备方法
CN115850905B (zh) * 2022-12-23 2024-07-05 重庆云天化天聚新材料有限公司 一种碳纤维增强的导电型聚甲醛复合材料及其制备方法
CN117534396A (zh) * 2023-10-31 2024-02-09 广东合睿智造新材料有限公司 一种大尺寸瓷砖粘贴用的双组份基粘合剂及其制备方法
CN117534396B (zh) * 2023-10-31 2024-04-19 广东合睿智造新材料有限公司 一种大尺寸瓷砖粘贴用的双组份基粘合剂及其制备方法
CN117962430A (zh) * 2024-01-03 2024-05-03 寿光市发达布业有限公司 一种复合型高强度隔热玻璃纤维毡及其制备方法

Also Published As

Publication number Publication date
CN114316508A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2023123227A1 (zh) 一种酚醛树脂复合塑料及其制备方法
CN104672495B (zh) 一种有机‑无机复合导热填料及其制备方法及其应用
CN101381514B (zh) 改善纳米二氧化硅颗粒在聚酰亚胺树脂内分散性的方法
CN107236249A (zh) 一种苯并噁嗪树脂基复合材料及其制备方法
CN106590226A (zh) 一种添加埃洛石纳米管耐磨型可剥性高分子防锈膜
CN102766333A (zh) 铝卷涂布用硅树脂复合物及其制备和在铝卷上的涂布方法
CN109971047B (zh) 一种天然橡胶-白炭黑复合材料及其制备方法和应用
CN107227093B (zh) 一种环氧聚吡咯金属防腐涂料及其制备方法
CN112375255B (zh) 一种纳米填料和环氧复合绝缘材料及其制备方法和环氧复合绝缘部件
CN103433988A (zh) 一种利用多元羧酸对木材进行功能改良的方法
CN115073785B (zh) 一种邻苯二甲腈树脂薄膜及其制备方法
CN110628357B (zh) 一种富含纳米粒子的壁纸胶用变性淀粉的半干制备方法
CN108018617B (zh) 一种吸湿抗静电涤纶的制备方法
CN103467682B (zh) 沉淀法循环生产热塑性硫酸钡酚醛树脂的工艺
CN105038228A (zh) 一种电容器用掺混纳米碳化硼负载石墨烯的聚酰亚胺高介电复合薄膜及其制备方法
CN107400342A (zh) 一种防翘曲玻纤增强阻燃pbt粒子的制备方法
CN108250648A (zh) 一种尼龙共混聚丙烯腈材料
US2524042A (en) Curing prolamine fibers with aldehyde in liquid organic medium
CN106117376A (zh) 一种环保型变性淀粉的制备方法
CN106634277A (zh) 一种添加焦磷酸钛抗紫外线型可剥性高分子防锈膜
CN106192548B (zh) 高强度复合云母纸及其制备方法
CN106320098B (zh) 树脂复合云母纸及其制备方法
CN108610612A (zh) 一种食品包装材料
CN105037765A (zh) 一种电容器用掺混纳米二硫化钼负载氧化石墨烯的聚酰亚胺高介电复合薄膜及其制备方法
CN106435554A (zh) 一种汽车金属表面处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21969588

Country of ref document: EP

Kind code of ref document: A1