WO2023120411A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2023120411A1
WO2023120411A1 PCT/JP2022/046383 JP2022046383W WO2023120411A1 WO 2023120411 A1 WO2023120411 A1 WO 2023120411A1 JP 2022046383 W JP2022046383 W JP 2022046383W WO 2023120411 A1 WO2023120411 A1 WO 2023120411A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
aqueous electrolyte
dielectric
active material
secondary battery
Prior art date
Application number
PCT/JP2022/046383
Other languages
English (en)
French (fr)
Inventor
貴之 石川
峻 野村
Original Assignee
パナソニックエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックエナジー株式会社 filed Critical パナソニックエナジー株式会社
Priority to CN202280081610.1A priority Critical patent/CN118402085A/zh
Priority to JP2023569393A priority patent/JPWO2023120411A1/ja
Publication of WO2023120411A1 publication Critical patent/WO2023120411A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to non-aqueous electrolyte secondary batteries.
  • a non-aqueous electrolyte secondary battery has a positive electrode, a negative electrode, and a non-aqueous electrolyte, and charges and discharges by moving lithium ions etc. between the positive electrode and the negative electrode. Batteries are widely used.
  • Patent Document 1 discloses a non-aqueous electrolyte secondary battery having a positive electrode material in which barium titanate, which is a dielectric, is present on the surface of the positive electrode active material.
  • Patent document 1 describes that the interfacial resistance of the non-aqueous electrolyte secondary battery disclosed in Patent Document 1 is reduced due to the presence of barium titanate on the surface of the positive electrode active material.
  • the dielectric when a dielectric and a positive electrode active material are mixed in manufacturing a positive electrode, the dielectric may agglomerate and not be uniformly dispersed. Since the dielectric itself has insulating properties, for example, a battery having a positive electrode in which the dielectric is unevenly distributed may have a high charge transfer resistance.
  • an object of the present disclosure is to provide a non-aqueous electrolyte secondary battery with low charge transfer resistance.
  • a non-aqueous electrolyte secondary battery that is one aspect of the present disclosure includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the positive electrode mixture layer includes a positive electrode active material and a dielectric, and the volume-based median diameter (D50) of the dielectric relative to the volume-based median diameter (D50) of the positive electrode active material ) (D50 of dielectric material/D50 of positive electrode active material) is 0.15 or more and 0.6 or less.
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery that is an example of an embodiment
  • FIG. FIG. 3 is a diagram showing relative values of charge transfer resistance of batteries of Examples and other comparative examples when the charge transfer resistance of the battery of Comparative Example 1 is set to 1;
  • FIG. 1 is a cross-sectional view of a non-aqueous electrolyte secondary battery that is an example of an embodiment.
  • the non-aqueous electrolyte secondary battery 10 shown in FIG. A battery case having insulating plates 18 and 19 arranged, and a case main body 16 and a sealing member 17 for accommodating the above members is provided.
  • the wound electrode body 14 another form of electrode body such as a stacked electrode body in which positive and negative electrodes are alternately stacked via a separator may be applied.
  • the battery case include cylindrical, square, coin-shaped, button-shaped metal cases, and resin cases formed by laminating resin sheets (so-called laminated type).
  • the case body 16 is, for example, a bottomed cylindrical metal container.
  • a gasket 28 is provided between the case body 16 and the sealing member 17 to ensure hermeticity inside the battery.
  • the case main body 16 has an overhanging portion 22 that supports the sealing member 17, for example, a portion of the side surface overhanging inward.
  • the protruding portion 22 is preferably annularly formed along the circumferential direction of the case body 16 and supports the sealing member 17 on the upper surface thereof.
  • the sealing body 17 has a structure in which a filter 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are layered in order from the electrode body 14 side.
  • Each member constituting the sealing member 17 has, for example, a disk shape or a ring shape, and each member except for the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected to each other at their central portions, and an insulating member 25 is interposed between their peripheral edge portions.
  • the lower valve body 24 deforms and breaks so as to push the upper valve body 26 upward toward the cap 27, thereby breaking the lower valve body 24 and the upper valve.
  • the current path between bodies 26 is interrupted.
  • the upper valve body 26 is broken and the gas is discharged from the opening of the cap 27 .
  • the positive electrode lead 20 attached to the positive electrode 11 extends through the through hole of the insulating plate 18 toward the sealing member 17, and the negative electrode lead 21 attached to the negative electrode 12 is insulated. It extends to the bottom side of the case body 16 through the outside of the plate 19 .
  • the positive electrode lead 20 is connected to the lower surface of the filter 23, which is the bottom plate of the sealing member 17, by welding or the like, and the cap 27, which is the top plate of the sealing member 17 electrically connected to the filter 23, serves as a positive electrode terminal.
  • the negative lead 21 is connected to the inner surface of the bottom of the case body 16 by welding or the like, and the case body 16 serves as a negative terminal.
  • the positive electrode 11 includes a positive electrode current collector and a positive electrode mixture layer arranged on the positive electrode current collector. In addition, it is desirable that the positive electrode mixture layers are arranged on both sides of the positive electrode current collector.
  • the positive electrode current collector a foil of a metal such as aluminum or an aluminum alloy that is stable in the potential range of the positive electrode, or a film in which the metal is placed on the surface can be used.
  • the positive electrode current collector has a thickness of, for example, about 10 ⁇ m to 100 ⁇ m.
  • the positive electrode mixture layer contains a positive electrode active material and a dielectric.
  • the positive electrode mixture layer preferably contains a binder in order to bind the positive electrode active materials together and ensure the mechanical strength of the positive electrode mixture layer.
  • the positive electrode mixture layer preferably contains a conductive material in that the conductivity of the layer can be improved.
  • the positive electrode 11 is produced, for example, as follows. First, a positive electrode active material, a dielectric, a binder, a conductive material, and the like are mixed, and the mixture is dispersed in a solvent to prepare a positive electrode mixture slurry. Then, the positive electrode 11 can be manufactured by applying this positive electrode mixture slurry onto a positive electrode current collector, drying the coating film, and then rolling the coating film.
  • the ratio of the volume-based median diameter (D50) of the dielectric to the volume-based median diameter (D50) of the positive electrode active material (D50 of the dielectric/D50 of the positive electrode active material) is 0.15 or more and 0.6 or less. , preferably 0.26 or more and 0.45 or less.
  • the dielectric may be unevenly distributed. Since the dielectric itself has insulating properties, if the dielectric is unevenly distributed in the positive electrode mixture layer, the charge transfer resistance of the battery may increase.
  • the D50 of the dielectric/D50 of the positive electrode active material within the above range, the uneven distribution of the dielectric is suppressed compared to the case where it is outside the above range, and the dielectric is distributed to some extent in the positive electrode mixture layer. is presumed to be distributed in As a result, for example, the dielectric polarization of the dielectric attracts the lithium ions in the non-aqueous electrolyte to the vicinity of the positive electrode active material, promoting the absorption and release of lithium ions in the positive electrode active material, thereby increasing the battery charge. It is believed that movement resistance is reduced.
  • the volume-based median diameter (D50) means a particle size at which the cumulative frequency is 50% from the smaller particle size in the volume-based particle size distribution, and is also called the median diameter.
  • the particle size and particle size distribution of the positive electrode active material and dielectric can be measured with a laser diffraction particle size distribution analyzer (for example, MT3000II manufactured by Microtrack Bell Co., Ltd.).
  • the volume-based median diameter (D50) of the positive electrode active material is preferably 5 ⁇ m or more and 20 ⁇ m or less, more preferably 8 ⁇ m or more and 18 ⁇ m or less, in order to further reduce the charge transfer resistance of the battery.
  • the composition of the lithium composite oxide can be measured by inductively coupled plasma (ICP) emission spectrometry.
  • a dielectric is a substance that is superior in dielectric properties to conductivity and can be said to be an insulator against a DC voltage.
  • Dielectrics include, for example, composite oxides having any one of XYO 3 type, X 2 Y 2 O 7 type, and XX' 3 Y 4 O 12 type crystal structures.
  • X is an alkali metal element (e.g., Group 1 element such as Na, K, Rb, Cs), alkaline earth metal element (e.g., Ca, Sr, Ba, etc. Group 2 element), rare earth metal element (e.g., La , Ce, Nd, Sm, Gd, Yb, etc.), Cu, Pb and Bi.
  • X' is, for example, one or more elements among transition metal elements, and is an element different from X.
  • Y is one or more elements selected from transition metal elements and Sn.
  • Transition metal elements are, for example, elements belonging to Groups 3-11 of the IUPAC classification.
  • Group 4 elements such as Ti, Zr, Hf, etc.
  • Group 5 elements such as V, Nb, Ta, etc.
  • Group 6 elements such as V, Nb, Ta, etc.
  • Group 6 elements such as V, Nb, Ta, etc.
  • Group 6 elements such as V, Nb, Ta, etc.
  • Group 6 elements such as V, Nb, Ta, etc.
  • Group 6 elements such as V, Nb, Ta, etc.
  • Group 6 elements Group 6 elements (Cr, Mo, W, etc.)
  • Group 7 elements Mn, Tc, etc.
  • Group 8 elements Fe, Ru, Os, etc.
  • Group 9 elements Co, Rh, Ir, etc.
  • Group 10 elements Ni, Pd, Pt, etc.
  • Group 11 elements Cu, Ag, Au, etc.
  • rare earth metals Elements La, Ce, Sm, etc.
  • Y preferably contains an element different from X, and more preferably consists of an element different from X.
  • Particularly preferred dielectrics include,
  • the dielectric constant of the dielectric is preferably 8 or more and 500 or less, more preferably 50 or more and 500 or less.
  • the volume resistivity at 20° C. is preferably 1 ⁇ 10 5 ⁇ m or more, more preferably 1 ⁇ 10 6 ⁇ m or more, and 1 ⁇ 10 10 ⁇ m or more. is more preferred.
  • the content of the dielectric is, for example, preferably 2% by mass or less, preferably 1% by mass or less, relative to the mass of the positive electrode active material.
  • the lower limit of the content of the dielectric is not particularly limited, but from the viewpoint of effectively reducing the charge transfer resistance of the battery, it may be, for example, 0.1% by mass or more with respect to the mass of the positive electrode active material.
  • Carbon materials such as carbon black, acetylene black, ketjen black, and graphite can be exemplified as the conductive material contained in the positive electrode mixture layer. These may be used alone or in combination of two or more.
  • the content of the conductive material in the positive electrode mixture layer is, for example, preferably 0.5% by mass or more and 4% by mass or less, and more preferably 0.5% by mass or more and 1.5% by mass or less.
  • the binder contained in the positive electrode mixture layer includes fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), polyimide resins, acrylic resins, polyolefin resins, styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC) or salts thereof, polyacrylic acid (PAA) or salts thereof (PAA-Na, PAA-K, etc., may also be partially neutralized salts), polyethylene oxide (PEO), polyvinyl alcohol (PVA) and the like. These may be used alone or in combination of two or more.
  • the content of the binder in the positive electrode mixture layer is, for example, preferably 0.5% by mass or more and 4% by mass or less, and more preferably 0.5% by mass or more and 1.5% by mass or less. .
  • the negative electrode 12 is composed of, for example, a negative electrode current collector and a negative electrode mixture layer formed on the current collector.
  • a negative electrode current collector a foil of a metal such as copper that is stable in the potential range of the negative electrode, a film having the metal on the surface layer, or the like can be used.
  • the negative electrode mixture layer includes, for example, a negative electrode active material, a binder, and the like.
  • the negative electrode 12 can be produced, for example, as follows. First, a negative electrode active material, a binder, etc. are mixed, and this mixture is dispersed in a solvent to prepare a negative electrode mixture slurry. The negative electrode 12 can be produced by applying this negative electrode mixture slurry onto a negative electrode current collector, drying the coating film, and then rolling the coating film.
  • the negative electrode active material is not particularly limited as long as it is a material capable of intercalating and deintercalating lithium ions.
  • Lithium alloys such as tin alloys, graphite, coke, carbon materials such as organic sintered bodies, metal oxides such as SnO 2 , SnO, TiO 2 and the like. These may be used singly or in combination of two or more.
  • the negative electrode mixture layer may contain a conductive material as in the case of the positive electrode.
  • the separator 13 for example, a porous sheet or the like having ion permeability and insulation is used. Specific examples of porous sheets include microporous thin films, woven fabrics, and non-woven fabrics.
  • the separator 13 is made of, for example, polyolefin such as polyethylene or polypropylene, or cellulose.
  • the separator 13 may be a laminate having a cellulose fiber layer and a thermoplastic resin fiber layer such as polyolefin.
  • the separator 13 may be a multilayer separator including a polyethylene layer and a polypropylene layer, and may have a surface layer composed of an aramid resin or a surface layer containing an inorganic filler.
  • the non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt.
  • non-aqueous solvents examples include esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and mixed solvents of two or more thereof.
  • the non-aqueous solvent may contain a halogen-substituted product obtained by substituting at least part of the hydrogen atoms of these solvents with halogen atoms such as fluorine.
  • esters examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), methylethyl carbonate (MEC), diethyl carbonate (DEC), methylpropyl carbonate. , Ethyl propyl carbonate, methyl isopropyl carbonate and other chain carbonates, ⁇ -butyrolactone, ⁇ -valerolactone and other cyclic carboxylic acid esters, methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP), ethyl propionate, etc. and chain carboxylic acid esters of.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), methylethyl carbonate (MEC), diethyl carbonate (DEC), methylpropyl carbonate.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 -dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, cyclic ethers such as crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, cycl
  • nitriles examples include acetonitrile, propionitrile, butyronitrile, valeronitrile, n-heptanirile, succinonitrile, glutaronitrile, adibonitrile, pimeronitrile, 1,2,3-propanetricarbonitrile, 1,3 , 5-pentanetricarbonitrile and the like.
  • halogen-substituted compounds include fluorinated cyclic carbonates such as fluoroethylene carbonate (FEC), fluorinated chain carbonates, and fluorinated chain carboxylates such as methyl fluoropropionate (FMP). .
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylates
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylates
  • electrolyte salts examples include LiBF4 , LiClO4 , LiPF6 , LiAsF6 , LiSbF6 , LiAlCl4 , LiSCN, LiCF3SO3 , LiCF3CO2 , Li(P( C2O4 ) F4 ) , LiPF 6-x (C n F 2n+1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lithium lower aliphatic carboxylate, Li 2 B 4O7 , borates such as Li(B( C2O4 ) F2 ) , LiN( SO2CF3 ) 2 , LiN( ClF2l + 1SO2 )( CmF2m + 1SO2 ) ⁇ l , where m is an integer of 1 or more ⁇ . Electrolyte salts may be used singly or in combination of two or more. The concentration of the electrolyte
  • Example 1 [Preparation of positive electrode active material] Particles of lithium composite oxide A having a layered structure represented by LiNi 0.91 Co 0.04 Al 0.05 O 2 and tungsten oxide (WO 3 ) are mixed in a predetermined ratio and then heat-treated to obtain A lithium composite oxide B containing a tungsten compound was obtained. This lithium composite oxide B was used as a positive electrode active material. The volume-based median diameter (D50) of this positive electrode active material was 12.0 ⁇ m. The amount of the tungsten compound added was 0.08 atomic % in terms of tungsten element with respect to the total molar amount of the metal elements excluding lithium in the lithium composite oxide A.
  • D50 volume-based median diameter
  • a negative electrode mixture slurry was prepared by mixing 95 parts by mass of a negative electrode active material composed of graphite powder and silicon oxide, 3 parts by mass of carboxymethyl cellulose (CMC), 2 parts by mass of styrene-butadiene rubber (SBR), and an appropriate amount of water. This slurry is applied to both sides of a negative electrode current collector made of copper foil, the coating film is dried, and then rolled with rolling rollers to obtain a negative electrode having negative electrode mixture layers formed on both sides of the negative electrode current collector. rice field.
  • CMC carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • a non-aqueous electrolyte was obtained by dissolving LiPF 6 at a concentration of 1.0 mol/L in a mixed non-aqueous solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC).
  • EC ethylene carbonate
  • MEC methyl ethyl carbonate
  • a positive electrode lead was attached to the positive electrode prepared above, and a negative electrode lead was attached to the negative electrode prepared above.
  • a wound-type electrode assembly was produced by placing a polyethylene microporous membrane as a separator between these electrodes and spirally winding the membrane. After the electrode assembly and the non-aqueous electrolyte were arranged in an aluminum laminate outer package, the periphery of the outer package was heated and welded to obtain a non-aqueous electrolyte secondary battery.
  • Example 2 A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that 0.5 parts by mass of barium titanate (BaTiO 3 ) was used.
  • Example 3 A non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 1, except that barium titanate (BaTiO 3 ) having a volume-based median diameter (D50) of 5.4 ⁇ m was used.
  • barium titanate (BaTiO 3 ) having a volume-based median diameter (D50) of 5.4 ⁇ m was used.
  • Example 4 A non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 1, except that barium titanate (BaTiO 3 ) having a volume-based median diameter (D50) of 3.1 ⁇ m was used.
  • barium titanate (BaTiO 3 ) having a volume-based median diameter (D50) of 3.1 ⁇ m was used.
  • Example 5 A non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 1, except that barium titanate (BaTiO 3 ) having a volume-based median diameter (D50) of 2.2 ⁇ m was used.
  • barium titanate (BaTiO 3 ) having a volume-based median diameter (D50) of 2.2 ⁇ m was used.
  • Example 1 A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that barium titanate (BaTiO 3 ) was not added.
  • barium titanate BaTiO 3
  • Example 2 A non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 1, except that barium titanate (BaTiO 3 ) having a volume-based median diameter (D50) of 10.0 ⁇ m was used.
  • barium titanate (BaTiO 3 ) having a volume-based median diameter (D50) of 10.0 ⁇ m was used.
  • Example 3 A non-aqueous electrolyte secondary battery was fabricated in the same manner as in Example 1, except that barium titanate (BaTiO 3 ) having a volume-based median diameter (D50) of 1.2 ⁇ m was used.
  • barium titanate (BaTiO 3 ) having a volume-based median diameter (D50) of 1.2 ⁇ m was used.
  • the ratio of the volume-based median diameter (D50) of the dielectric to the volume-based median diameter (D50) of the positive electrode active material (D50 of the dielectric/D50 of the positive electrode active material) was 0. When it was within the range of 0.6 to 0.6, the charge transfer resistance of the battery could be kept lower than in Comparative Example 1.
  • the ratio of the volume-based median diameter (D50) of the dielectric to the volume-based median diameter (D50) of the positive electrode active material (D50 of the dielectric/D50 of the positive electrode active material (D50 of the dielectric/D50 of the positive electrode active material) was , outside the range of 0.15 to 0.6, the charge transfer resistance of the battery was higher than in Comparative Example 1.
  • Non-aqueous electrolyte secondary battery 11 Positive electrode, 12 Negative electrode, 13 Separator, 14 Electrode body, 16 Case body, 17 Sealing body, 18, 19 Insulating plate, 20 Positive electrode lead, 21 Negative electrode lead, 22 Overhang, 23 Filter, 24 lower valve body, 25 insulating member, 26 upper valve body, 27 cap, 28 gasket.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

非水電解質二次電池は、正極と、負極と、非水電解質とを有し、前記正極は、正極集電体と、正極集電体上に設けられた正極合材層とを有し、前記正極合材層は、正極活物質と、誘電体とを含み、前記正極活物質の体積基準のメジアン径(D50)に対する前記誘電体の体積基準のメジアン径(D50)の比(誘電体のD50/正極活物質のD50)は、0.15以上0.6以下であることを特徴とする。

Description

非水電解質二次電池
 本開示は、非水電解質二次電池に関する。
 近年、高出力、高エネルギー密度の二次電池として、正極と、負極と、非水電解質とを備え、正極と負極との間でリチウムイオン等を移動させて充放電を行う非水電解質二次電池が広く利用されている。
 例えば特許文献1では、誘電体であるチタン酸バリウムが正極活物質の表面に存在する形態の正極材料を備えた非水電解質二次電池が開示されている。そして、特許文献1に開示される非水電解質二次電池は、正極活物質の表面上のチタン酸バリウムの存在によって界面抵抗が低下したことが記載されている。
特開2014-116129号公報
 ところで、正極を作製するにあたって、誘電体と正極活物質とを混合すると、誘電体が凝集して、均一に分散しない場合がある。そして、誘電体自体は絶縁性を有するため、例えば、誘電体が偏在した正極を有する電池では、電荷移動抵抗が高くなる場合がある。
 そこで、本開示は、電荷移動抵抗が低い非水電解質二次電池を提供することを目的とする。
 本開示の一態様である非水電解質二次電池は、正極と、負極と、非水電解質とを有し、前記正極は、正極集電体と、正極集電体上に設けられた正極合材層とを有し、前記正極合材層は、正極活物質と、誘電体とを含み、前記正極活物質の体積基準のメジアン径(D50)に対する前記誘電体の体積基準のメジアン径(D50)の比(誘電体のD50/正極活物質のD50)は、0.15以上0.6以下であることを特徴とする。
 本開示の一態様によれば、電荷移動抵抗が低い非水電解質二次電池を提供することができる。
実施形態の一例である非水電解質二次電池の断面図である。 比較例1の電池の電荷移動抵抗を1とした時の各実施例及びその他の比較例の電池の電荷移動抵抗の相対値を示す図である
 以下、実施形態の一例について詳細に説明する。実施形態の説明で参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。
 図1は、実施形態の一例である非水電解質二次電池の断面図である。図1に示す非水電解質二次電池10は、正極11及び負極12がセパレータ13を介して巻回されてなる巻回型の電極体14と、非水電解質と、電極体14の上下にそれぞれ配置された絶縁板18,19と、上記部材を収容するケース本体16及び封口体17を有する電池ケースと、を備える。なお、巻回型の電極体14の代わりに、正極及び負極がセパレータを介して交互に積層されてなる積層型の電極体など、他の形態の電極体が適用されてもよい。また、電池ケースとしては、円筒形、角形、コイン形、ボタン形等の金属製ケース、樹脂シートをラミネートして形成された樹脂製ケース(所謂ラミネート型)などが例示できる。
 ケース本体16は、例えば有底円筒形状の金属製容器である。ケース本体16と封口体17との間にはガスケット28が設けられ、電池内部の密閉性が確保される。ケース本体16は、例えば側面部の一部が内側に張出した、封口体17を支持する張り出し部22を有する。張り出し部22は、ケース本体16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。
 封口体17は、電極体14側から順に、フィルタ23、下弁体24、絶縁部材25、上弁体26、及びキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材25が介在している。内部短絡等による発熱で非水電解質二次電池10の内圧が上昇すると、例えば下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断し、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 図1に示す非水電解質二次電池10では、正極11に取り付けられた正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極12に取り付けられた負極リード21が絶縁板19の外側を通ってケース本体16の底部側に延びている。正極リード20は封口体17の底板であるフィルタ23の下面に溶接等で接続され、フィルタ23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21はケース本体16の底部内面に溶接等で接続され、ケース本体16が負極端子となる。
[正極]
 正極11は、正極集電体と、正極集電体上に配置される正極合材層とを備える。なお、正極合材層は正極集電体の両面に配置されることが望ましい。
 正極集電体には、アルミニウムやアルミニウム合金などの正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極集電体は、例えば、10μm~100μm程度の厚みを有する。
 正極合材層は、正極活物質と誘電体を含む。正極合材層は、正極活物質同士を結着して正極合材層の機械的強度を確保する等の点で、結着材を含むことが好適である。また、正極合材層は、当該層の導電性を向上させることができる等の点で、導電材を含むことが好適である。
 正極11は、例えば、以下のようにして作製される。まず、正極活物質、誘電体、結着材、導電材等を混合し、この混合物を溶媒中に分散させて、正極合材スラリーを調製する。そして、この正極合材スラリーを正極集電体上に塗布し、塗膜を乾燥させた後、この塗膜を圧延することにより、正極11を作製することができる。
 正極活物質の体積基準のメジアン径(D50)に対する誘電体の体積基準のメジアン径(D50)の比(誘電体のD50/正極活物質のD50)は、0.15以上0.6以下であり、好ましくは0.26以上0.45以下である。前述したように、正極を作製するにあたって、誘電体と正極活物質とを混合すると、誘電体が偏在する場合がある。誘電体自体は絶縁性を有するため、正極合材層中に誘電体が偏在すると、電池の電荷移動抵抗が高くなる場合がある。しかし、誘電体のD50/正極活物質のD50を上記範囲とすることで、上記範囲外の場合と比較して、誘電体の偏在が抑制され、誘電体が正極合材層中にある程度平均的に分散されると推察される。その結果、例えば、誘電体の誘電分極によって、非水電解質中のリチウムイオンが正極活物質の近傍に誘引され、正極活物質におけるリチウムイオンの吸蔵および放出が促進される等して、電池の電荷移動抵抗が低減されると考えられる。
 本開示において、体積基準のメジアン径(D50)とは、体積基準の粒度分布において頻度の累積が粒径の小さい方から50%となる粒径を意味し、中位径とも呼ばれる。正極活物質や誘電体の粒径、粒度分布は、レーザ回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製、MT3000II)により測定できる。
 正極活物質の体積基準のメジアン径(D50)は、電池の電荷移動抵抗をより低減させる点で、5μm以上20μm以下であることが好ましく、8μm以上18μm以下であることがより好ましい。
 正極活物質は、可逆的にリチウムを挿入・脱離可能なリチウム複合酸化物であれば特に限定されないが、例えば、電池の高容量化、優れた充放電サイクル特性等の点で、以下の一般式(1)で表されるリチウム複合酸化物を含むことが好ましい。
 LiNiCo(1-b-c)Al    (1)
 式中、0.9<a≦1.2、0.88≦b≦0.96、0.04≦c≦0.12、1.9≦e≦2.1であり、W/(Ni+Co+Al+W)=dとした時に、0.0003≦d≦0.002であることが好ましい。リチウム複合酸化物の組成は、誘導結合プラズマ(ICP)発光分光分析により測定することができる。
 誘電体は、導電性よりも誘電性に優れ、直流電圧に対して絶縁体といえる物質である。 誘電体としては、例えば、XYO型、X型、および、XX’12型のうちのいずれかの結晶構造を有する複合酸化物等が挙げられる。Xは、アルカリ金属元素(例えば、Na,K,Rb,Cs等の1族元素)、アルカリ土類金属元素(例えば、Ca,Sr,Ba等の2族元素)、希土類金属元素(例えば、La,Ce,Nd,Sm,Gd,Yb等)、Cu,PbおよびBiのうちの1種または2種以上の元素である。X’は、例えば、遷移金属元素のうちの1種または2種以上の元素であり、Xと異なる元素である。Yは、遷移金属元素およびSnのうちの1種または2種以上の元素である。遷移金属元素は例えば、IUPAC分類の第3~11族に属する元素である。例えば、4族元素(例えばTi,Zr,Hf等)、5族元素(例えばV,Nb,Ta等)、6族元素(Cr,Mo,W等)、7族元素(Mn,Tc等)、8族元素(Fe,Ru,Os等)、9族元素(Co,Rh,Ir等)、10族元素(Ni,Pd,Pt等)、11族元素(Cu,Ag,Au等)、希土類金属元素(La,Ce,Sm等)が挙げられる。また、Yは、Xと異なる元素を含むことが好ましく、Xと異なる元素からなることがより好ましい。特に好ましい誘電体としては、例えば、BaTiO等が挙げられる。なお、誘電体の結晶構造は、CuKα線を用いたXRD測定によって確認することができる。
 誘電体の比誘電率は、8以上500以下であることが好ましく、50以上500以下であることがより好ましい。また、20℃における体積抵抗率は、1×10Ω・m以上であることが好ましく、1×10Ω・m以上であることがより好ましく、1×1010Ω・m以上であることがより好ましい。
 誘電体の含有量は、例えば、正極活物質の質量に対して2質量%以下であることが好ましく、1質量%以下であることが好ましい。誘電体の含有量が正極活物質の質量に対して2質量%を超える場合、2質量%以下の場合と比較して、電池の容量低下に繋がる場合がある。誘電体の含有量の下限値は、特に限定されないが、電池の電荷移動抵抗を効果的に低減させる点で、例えば、正極活物質の質量に対して0.1質量%以上でよい。
 正極合材層に含まれる導電材としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、黒鉛等の炭素材料が例示できる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。正極合材層中の導電材の含有量は、例えば、0.5質量%以上4質量%以下であることが好ましく、0.5質量%以上1.5質量%以下であることがより好ましい。
 正極合材層に含まれる結着材としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)等のフッ素樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、スチレン-ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)又はその塩、ポリアクリル酸(PAA)又はその塩(PAA-Na、PAA-K等、また部分中和型の塩であってもよい)、ポリエチレンオキシド(PEO)、ポリビニルアルコール(PVA)等が挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。正極合材層中の結着材の含有量は、例えば、0.5質量%以上4質量%以下であることが好ましく、0.5質量%以上1.5質量%以下であることがより好ましい。
[負極]
 負極12は、例えば、負極集電体と、当該集電体上に形成された負極合材層とで構成される。負極集電体には、銅などの負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極合材層は、例えば、負極活物質及び結着材等を含む。負極12は、例えば、以下のようにして作製することができる。まず、負極活物質、結着材等を混合し、この混合物を溶媒に分散して、負極合材スラリーを調製する。この負極合材スラリーを負極集電体上に塗布し、塗膜を乾燥させた後、この塗膜を圧延することより、負極12を作製することができる。
 負極活物質は、リチウムイオンを吸蔵・放出することが可能な材料であれば特に制限されるものではなく、例えば、金属リチウム、リチウム-アルミニウム合金、リチウム-鉛合金、リチウム-シリコン合金、リチウム-スズ合金等のリチウム合金、黒鉛、コークス、有機物焼成体等の炭素材料、SnO、SnO、TiO等の金属酸化物等が挙げられる。これらは、1種単独でもよいし、2種以上を組み合わせて使用してもよい。
 負極合材層に含まれる結着材としては、正極の場合と同様に、フッ素系樹脂、PAN、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、SBR、CMC又はその塩、PAA又はその塩、PEO、PVA等が挙げられる。なお、負極合材層は、正極の場合と同様に、導電材を含んでいてもよい。
[セパレータ]
 セパレータ13には、例えば、イオン透過性及び絶縁性を有する多孔性シート等が用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータ13は、例えばポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどで構成される。セパレータ13は、セルロース繊維層及びポリオレフィン等の熱可塑性樹脂繊維層を有する積層体であってもよい。また、セパレータ13は、ポリエチレン層及びポリプロピレン層を含む多層セパレータであってもよく、アラミド樹脂で構成される表面層又は無機物フィラーを含有する表面層を有していてもよい。
[非水電解質]
 非水電解質は、非水溶媒と、電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン、γ-バレロラクトン等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテル類などが挙げられる。
 上記ニトリル類の例としては、アセトニトリル、プロピオニトリル、ブチロニトリル、バレロニトリル、n-ヘプタニトリル、スクシノニトリル、グルタロニトリル、アジボニトリル、ピメロニトリル、1,2,3-プロパントリカルボニトリル、1,3,5-ペンタントリカルボニトリル等が挙げられる。
 上記ハロゲン置換体の例としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステルなどが挙げられる。
 電解質塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは1以上の整数}等のイミド塩類などが挙げられる。電解質塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。電解質塩の濃度は、例えば非水溶媒1L当り0.8~1.8モルである。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
<実施例1>
[正極活物質の作製]
 LiNi0.91Co0.04Al0.05で表される層状構造のリチウム複合酸化物Aの粒子、酸化タングステン(WO)を所定の割合で混合した後、熱処理をすることにより、タングステン化合物を含むリチウム複合酸化物Bを得た。このリチウム複合酸化物Bを正極活物質とした。この正極活物質の体積基準のメジアン径(D50)は、12.0μmであった。なお、タングステン化合物の添加量は、リチウム複合酸化物Aのリチウムを除く金属元素の総モル量に対して、タングステン元素換算で0.08原子%とした。
[正極の作製]
 正極活物質100質量部、導電材としてのアセチレンブラック1質量部、結着材としてのポリフッ化ビニリデン1質量部、体積基準のメジアン径(D50)が3.8μmのチタン酸バリウム(BaTiO)0.3質量部を混合した後、N-メチル-2-ピロリドン(NMP)を適量加えて、正極合材スラリーを調製した。このスラリーをアルミニウム箔からなる正極集電体の両面に塗布し、塗膜を乾燥した後、圧延ローラにより圧延することにより、正極集電体の両面に正極合材層が形成された正極を得た。
[負極の作製]
 黒鉛粉末と酸化ケイ素からなる負極活物質95質量部、カルボキシメチルセルロース(CMC)3質量部、スチレンブタジエンゴム(SBR)2質量部、適量の水とを混合して、負極合材スラリーを調製した。このスラリーを銅箔からなる負極集電体の両面に塗布し、塗膜を乾燥した後、圧延ローラにより圧延することにより、負極集電体の両面に負極合材層が形成された負極を得た。
[非水電解質の作製]
 エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)との混合非水溶媒に、LiPFを1.0モル/Lの濃度で溶解させることにより、非水電解質を得た。
[非水電解質二次電池の作製]
 上記作製した正極に正極リードを取り付け、上記作製した負極に負極リードを取り付けた。これら両極間にセパレータとしてのポリエチレン製微多孔膜を配置して、渦巻状に巻回することにより、巻回型の電極体を作製した。電極体と上記非水電解質とをアルミニウム製のラミネートの外装体内に配置した後、外装体の周縁部を加熱して溶着することにより、非水電解質二次電池を得た。
<実施例2>
 チタン酸バリウム(BaTiO)0.5質量部としたこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
<実施例3>
 体積基準のメジアン径(D50)が5.4μmのチタン酸バリウム(BaTiO)を使用したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
<実施例4>
 体積基準のメジアン径(D50)が3.1μmのチタン酸バリウム(BaTiO)を使用したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
<実施例5>
 体積基準のメジアン径(D50)が2.2μmのチタン酸バリウム(BaTiO)を使用したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
<比較例1>
 チタン酸バリウム(BaTiO)を添加しなかったこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
 <比較例2>
 体積基準のメジアン径(D50)が10.0μmのチタン酸バリウム(BaTiO)を使用したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
 <比較例3>
 体積基準のメジアン径(D50)が1.2μmのチタン酸バリウム(BaTiO)を使用したこと以外は、実施例1と同様にして、非水電解質二次電池を作製した。
[電荷移動抵抗の測定]
 各実施例及び各比較例の非水電解質二次電池を、25℃の温度環境下、0.2Cの定電流で電池電圧が4.2Vになるまで定電流充電を行った。これらの非水電解質二次電池に対して、0.1Hz~1kHzの範囲で、交流インピーダンス測定を行い、Cole-Coleプロットを作成した。得られたCole-Coleプロットに現れる略半円の直径から、電池の電荷移動抵抗を求めた。比較例1の電池の電荷移動抵抗を1として、各実施例及びその他の比較例の電池の電荷移動抵抗を相対値(INDEX)として算出した。その結果を、表1及び図2に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~5のように、正極活物質の体積基準のメジアン径(D50)に対する誘電体の体積基準のメジアン径(D50)の比(誘電体のD50/正極活物質のD50)が、0.15以上0.6以下の範囲内である場合には、比較例1より、電池の電荷移動抵抗を低く抑えることができた。一方、比較例2~3のように、正極活物質の体積基準のメジアン径(D50)に対する誘電体の体積基準のメジアン径(D50)の比(誘電体のD50/正極活物質のD50)が、0.15以上0.6以下の範囲外である場合には、比較例1より、電池の電荷移動抵抗が高くなった。
 10 非水電解質二次電池、11 正極、12 負極、13 セパレータ、14 電極体、16 ケース本体、17 封口体、18,19 絶縁板、20 正極リード、21 負極リード、22 張り出し部、23 フィルタ、24 下弁体、25 絶縁部材、26 上弁体、27 キャップ、28 ガスケット。

Claims (7)

  1.  正極と、負極と、非水電解質とを有する非水電解質二次電池であって、
     前記正極は、正極集電体と、正極集電体上に設けられた正極合材層とを有し、
     前記正極合材層は、正極活物質と、誘電体とを含み、
     前記正極活物質の体積基準のメジアン径(D50)に対する前記誘電体の体積基準のメジアン径(D50)の比(誘電体のD50/正極活物質のD50)は、0.15以上0.6以下である、非水電解質二次電池。
  2.  前記誘電体の含有量は、前記正極活物質の質量に対して2質量%以下である、請求項1に記載の非水電解質二次電池。
  3.  前記正極活物質の体積基準のメジアン径(D50)に対する前記誘電体の体積基準のメジアン径(D50)の比(誘電体のD50/正極活物質のD50)は、0.26以上0.45以下である、請求項1又は2に記載の非水電解質二次電池。
  4.  前記誘電体の含有量は、前記正極活物質の質量に対して1質量%以下である、請求項2に記載の非水電解質二次電池。
  5.  前記誘電体は、BaTiOを含む、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記正極活物質の体積基準のメジアン径(D50)は、5μm以上20μm以下である、請求項1~5のいずれか1項に記載の非水電解質二次電池。
  7.  前記正極活物質は、一般式LiNiCo(1-b-c)Al(式中、0.9<a≦1.2、0.88≦b≦0.96、0.04≦c≦0.12、1.9≦e≦2.1であり、W/(Ni+Co+Al+W)=dとした時に、0.0003≦d≦0.002)で表されるリチウム複合酸化物を含む、請求項1~6のいずれか1項に記載の非水電解質二次電池。
PCT/JP2022/046383 2021-12-20 2022-12-16 非水電解質二次電池 WO2023120411A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280081610.1A CN118402085A (zh) 2021-12-20 2022-12-16 非水电解质二次电池
JP2023569393A JPWO2023120411A1 (ja) 2021-12-20 2022-12-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-206170 2021-12-20
JP2021206170 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023120411A1 true WO2023120411A1 (ja) 2023-06-29

Family

ID=86902615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046383 WO2023120411A1 (ja) 2021-12-20 2022-12-16 非水電解質二次電池

Country Status (3)

Country Link
JP (1) JPWO2023120411A1 (ja)
CN (1) CN118402085A (ja)
WO (1) WO2023120411A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210694A (ja) * 2010-03-12 2011-10-20 Sanyo Electric Co Ltd 非水電解質二次電池
JP2014116129A (ja) 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd リチウムイオン二次電池及びリチウム二次電池用正極活物質合材の製造方法
JP2018160344A (ja) * 2017-03-22 2018-10-11 ソニー株式会社 正極、電池およびその製造方法、電池パック、電子機器、電動車両、蓄電装置ならびに電力システム
JP2019121605A (ja) * 2017-12-28 2019-07-22 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極活物質材料、非水電解質二次電池用正極、非水電解質二次電池及び正極活物質材料の製造方法
JP2019121607A (ja) * 2017-12-28 2019-07-22 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極活物質材料、非水電解質二次電池用正極及び非水電解質二次電池
JP2020136115A (ja) * 2019-02-21 2020-08-31 トヨタ自動車株式会社 リチウム二次電池の正極材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011210694A (ja) * 2010-03-12 2011-10-20 Sanyo Electric Co Ltd 非水電解質二次電池
JP2014116129A (ja) 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd リチウムイオン二次電池及びリチウム二次電池用正極活物質合材の製造方法
JP2018160344A (ja) * 2017-03-22 2018-10-11 ソニー株式会社 正極、電池およびその製造方法、電池パック、電子機器、電動車両、蓄電装置ならびに電力システム
JP2019121605A (ja) * 2017-12-28 2019-07-22 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極活物質材料、非水電解質二次電池用正極、非水電解質二次電池及び正極活物質材料の製造方法
JP2019121607A (ja) * 2017-12-28 2019-07-22 三星エスディアイ株式会社Samsung SDI Co., Ltd. 正極活物質材料、非水電解質二次電池用正極及び非水電解質二次電池
JP2020136115A (ja) * 2019-02-21 2020-08-31 トヨタ自動車株式会社 リチウム二次電池の正極材料

Also Published As

Publication number Publication date
CN118402085A (zh) 2024-07-26
JPWO2023120411A1 (ja) 2023-06-29

Similar Documents

Publication Publication Date Title
JP7289058B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
JP7209303B2 (ja) 非水電解質二次電池
JP7142258B2 (ja) 二次電池用正極、及び二次電池
US20230207794A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP7522109B2 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
US10910631B2 (en) Non-aqueous electrolyte secondary battery
JP7270155B2 (ja) 非水電解質二次電池
WO2022070649A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
US20230187629A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2020262100A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
JP7236657B2 (ja) 非水電解質二次電池
WO2023053625A1 (ja) 非水電解質二次電池
WO2022158375A1 (ja) 非水電解質二次電池
US20230290941A1 (en) Positive-electrode active material for nonaqueous-electrolyte secondary cell, and nonaqueous-electrolyte secondary cell
WO2023120411A1 (ja) 非水電解質二次電池
US20230072002A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP7153890B2 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
CN110402515B (zh) 非水电解质二次电池
WO2023068221A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
EP4456167A1 (en) Non-aqueous electrolyte secondary battery
WO2023145608A1 (ja) 非水電解質二次電池
WO2023053626A1 (ja) 非水電解質二次電池
JP7203360B2 (ja) 電極構造体及び非水電解質二次電池
WO2024004686A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004626A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911115

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023569393

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022911115

Country of ref document: EP

Effective date: 20240722