WO2023116177A1 - 基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法 - Google Patents

基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法 Download PDF

Info

Publication number
WO2023116177A1
WO2023116177A1 PCT/CN2022/127315 CN2022127315W WO2023116177A1 WO 2023116177 A1 WO2023116177 A1 WO 2023116177A1 CN 2022127315 W CN2022127315 W CN 2022127315W WO 2023116177 A1 WO2023116177 A1 WO 2023116177A1
Authority
WO
WIPO (PCT)
Prior art keywords
gal
dmso
standard
sers
solution
Prior art date
Application number
PCT/CN2022/127315
Other languages
English (en)
French (fr)
Inventor
方家松
吴勇
张宏鸽
包天强
曹军伟
Original Assignee
上海海洋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海海洋大学 filed Critical 上海海洋大学
Publication of WO2023116177A1 publication Critical patent/WO2023116177A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Definitions

  • the invention belongs to the technical field of Raman spectroscopy detection, and in particular relates to a method for quantitatively detecting ⁇ -galactosidase in seawater based on surface-enhanced Raman spectroscopy.
  • dissolved organic matter dissolved organic matter, DOM
  • Macromolecular polymers are decomposed into small molecular monomers or polymers with a molecular weight less than 700 Daltons (Dalton, Da) before they can be absorbed by microorganisms.
  • marine microorganisms are the main players, and the enzymatic hydrolysis process of organic matter mediated by them is the key to limit the interconversion of DOM and particulate organic matter (POM).
  • POM particulate organic matter
  • the released monomeric compounds can in turn be utilized by the microorganisms themselves to maintain their metabolism, acting as decomposers and producers as well as beneficiaries. Therefore, the activity of microbial extracellular enzymes is the core driver of the whole process and plays a decisive role in the cycle rate and spatial distribution of marine carbon.
  • the study of marine extracellular enzymes is of great significance for a comprehensive understanding of the material cycle, energy cycle, and microbial life activities of marine ecosystems, as well as the assessment of water quality and ecological efficiency.
  • ⁇ -galactosidase (scientific name ⁇ -D-galactoside galactohydrolase, ⁇ -D-galactosidase, ⁇ -GAL) is a hydrolase that can specifically hydrolyze ⁇ -1,4-glycosidic bonds , can hydrolyze lactose into glucose and galactose. It widely exists in marine water bodies, among which marine plants, bacteria, fungi, etc. can produce ⁇ -GAL, and release it to the surrounding water body, decompose polysaccharides in seawater into monosaccharides or small molecule polysaccharides less than 700Da, use to maintain its own metabolism.
  • Laser Raman spectroscopy is an inelastic scattering phenomenon caused by the energy exchange between laser photons and the molecules of the material when light is irradiated on the surface of the material. It can reflect the internal energy level structure of the material molecules and characterize the molecular vibration information.
  • SERS Surface Enhanced Raman Spectroscopy
  • the present invention provides a method for quantitatively detecting ⁇ -galactosidase in seawater based on surface-enhanced Raman spectroscopy.
  • the invention provides a method for constructing a quantitative model for quantitative detection of ⁇ -galactosidase in seawater, comprising the following steps:
  • the invention provides a method for quantitatively detecting ⁇ -galactosidase in seawater based on surface-enhanced Raman spectroscopy, comprising the following steps:
  • the present invention also provides a method for quantitatively detecting ⁇ -galactosidase in seawater based on surface-enhanced Raman spectroscopy, comprising the following steps:
  • the particle size of the gold nanoparticles is 70nm.
  • the SERS signal of DMSO is the peak intensity of DMSO at a Raman shift of 677 cm ⁇ 1 .
  • the SERS signal of the ⁇ -GAL is the peak height intensity of the ⁇ -GAL at a Raman shift of 600cm -1 , and the purpose of the steps d and e is to detect the activity of the ⁇ -GAL in seawater.
  • the obtained standard curve was used to analyze the quantitative activity of ⁇ -GAL in the seawater sample to be tested, so there was no ⁇ -GAL.
  • the average relative standard deviations of the enzymatic activity data of ⁇ -GAL obtained from different ⁇ -GAL living standard solutions are all less than 15%, and the detection method has good stability.
  • the average value of the enzyme activity data of the ⁇ -GAL obtained by the different ⁇ -GAL living standard solutions is the peak height intensity at 600cm -1 Raman shift/677cm -1 peak height intensity at Raman shift (abbreviated is 600cm -1 /677cm -1 ).
  • the standard curve is linearly fitted to the concentration of ⁇ -GAL and the SERS intensity ratio using the least squares method to obtain a standard equation
  • the SERS intensity ratio is the ratio of the SERS signal to the SERS signal of DMSO.
  • the invention provides the application of the method described in the above technical solution in detecting the activity of microbial extracellular enzymes in seawater.
  • the activity of ⁇ -GAL in seawater was detected by laser Raman spectroscopy, and the sensitivity has reached the requirements for detecting ⁇ -GAL in seawater;
  • the average relative standard deviation of the method is less than 15%, which has good reliability.
  • the introduction of DMSO as an internal standard improves the stability of detection;
  • the method has the advantages of no need for sample pretreatment (only need to add substrate to react for a period of time, and then add internal standard and surface-enhanced gold nanoparticles for direct detection), non-destructive (excitation light is visible light, non-destructive to samples), rapid detection (compared to The fluorescence method requires more than ten hours or even dozens of hours of detection time, and this method only takes a few hours, which is more suitable for in-situ detection) advantages;
  • This method provides a strong scientific theoretical support for the in situ quantitative detection of extracellular enzyme activity in seawater.
  • Figure 1 is the reaction formula of ⁇ -GAL hydrolysis BCIG
  • Fig. 2 is the surface-enhanced Raman spectrum of experimental solvent and substrate
  • Figure 3 is the surface-enhanced Raman spectrum corresponding to different ⁇ -GAL activities
  • Fig. 4 is the linear equation fitting of standard curve
  • Figure 5 is the SERS diagram of the seawater sample reacted with BCIG.
  • ⁇ -GAL can specifically catalyze the hydrolysis of ⁇ -1,4-glycosidic bonds.
  • the hydrolysis principle is shown in Figure 1.
  • ⁇ -GAL hydrolyzes 5-bromo-4-chloro-3-indole- ⁇ -D-galactoside (BCIG), to obtain 5-bromo-4-chloro-3-indole (BCI), undergoes rapid oxidation to form a water-insoluble BCI oxidized dimer, which has strong SERS characteristics
  • the ⁇ -GAL activity was determined by establishing the relationship between different ⁇ -GAL activities and the peak intensity of the SERS characteristic peak of the product.
  • the characteristic peak position of the Raman spectrum of the product BCI oxidized dimer is near the wavenumber of 600cm -1 , which is verified by experiments below.
  • BCIG solution and ⁇ -GAL solution have no SERS characteristic
  • DMSO has no Raman spectrum peak near 600cm -1 wavenumber, and it has two obvious SERS characteristic peaks near 677cm -1 and 700cm -1 wavenumber, They respectively represent the peaks of CSC symmetric stretching vibration and CS stretching vibration.
  • the Raman spectrum peak at the wave number of 677cm -1 was selected as the internal standard peak for quantitative analysis of extracellular enzyme ( ⁇ -GAL) activity.
  • the Raman peaks caused by the plane vibration of are the characteristic peaks of the product.
  • Embodiment 1 quantitative model
  • Embodiment 2 seawater verification test
  • Fresh seawater samples were collected from the East China Sea (30°39′48′′N, 122°29′48′′E) in December 2020. The samples are ocean surface seawater, directly sampled by fishing boats. 900 ⁇ L fresh seawater sample was mixed with 100 ⁇ L BCIP solution with a concentration of 2 mg/mL and incubated for 4 hours, and 180 ⁇ L of the reaction solution was added to 20 ⁇ L of DMSO to measure the SERS signal. The obtained spectrum is shown in Figure 5.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种基于表面增强拉曼光谱技术定量检测β-GAL的方法,包括如下步骤:a、分别取180μL BCIG溶液,β-GAL溶液,DMSO;b、预先获取多种不同活性β-GAL样品;c、将多个不同活性标准溶液滴加等体积金纳米溶胶颗粒,分别进行SERS检测;d、将待测海水样品与BCIG孵化反应后加入DMSO和金纳米颗粒胶体,直接检测产物和DMSO的SERS信号;e、将步骤d得到的SERS信号与标准曲线比较,得到待测样品的活性。通过引入DMSO作为内标物,提升了检测的稳定性;并且具备无需样品预处理的优势。

Description

基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法
本申请要求于2021年12月22日提交中国专利局、申请号为CN202111583690.4、发明名称为“基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于拉曼光谱检测技术领域,具体涉及一种基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法。
背景技术
海洋覆盖地球表面面积的71%,海洋生态系统是地球上最大的生态系统。在海洋环境中,由初级生产力产生的溶解有机物(dissolved organic matter,DOM)以及其他来源的DOM大多以高分子有机物形式存在,对于这些高分子物质,微生物无法直接利用,只有经过胞外酶把这些高分子聚合物分解成分子量小于700道尔顿(Dalton,Da)的小分子单体或聚合物才能被微生物吸收。在这个过程中,海洋微生物是主要的参与者,其介导的有机物的酶水解过程是限制DOM和颗粒有机物(particulate organic matter,POM)相互转化的关键。在水解过程中,释放的单体化合物又可以被微生物自身利用来维持新陈代谢,它们既充当分解者和生产者,也充当受益者。所以,微生物胞外酶的活性是整个过程的核心驱动者,在海洋碳的循环速率和空间分布等方面发挥着决定性作用。海洋胞外酶的研究,对于全面理解海洋生态系统物质循环、能量循环、微生物的生命活动以及评估水域质量和生态效率具有重要意义。
β-半乳糖苷酶(学名为β-D-半乳糖苷半乳糖水解酶,β-D-galactosidase,β-GAL)是一种可以特异性水解β-1,4-糖苷键的水解酶,可以将乳糖水解为葡萄糖和半乳糖。其广泛存在于海洋水体中,其中海洋植物、细菌、真菌等都可以产成β-GAL,并将其释放到周围水体,将海水中的多糖分解成小于700Da的单糖或者小分子多糖,用来维持自身的新陈代谢。这些生物的代谢与死亡又可以为周围水体提供大量有机碳(organic carbon,OC),所以β-GAL的活性不仅反映了海洋微生物种群结构及海洋有机营养的分 布,而且对于揭开海洋微生物驱动海洋碳循环的机制具有重要意义。海水中β-GAL的活性常用检测方法有荧光模拟底物法和分光光度计法等,这些方法样品前处理复杂,检测十分耗时。然而,胞外酶的活性非常容易受到包括温度、压力、pH、氧气含量等各种因素的影响,所以亟需一种快速高效的胞外酶活性检测方法。
激光拉曼光谱是由于光照射到物质表面,激光光子与物质的分子之间发生了能量交换而引发的非弹性散射现象,其可以反应物质分子内部能级结构,表征分子振动信息。表面增强拉曼光谱(Surface Enhanced Raman Spectroscopy,SERS)利用金、银等金属纳米颗粒所具有的光学增强效应,使吸附在颗粒上的目标分子的拉曼光谱信号得到增强,从而实现对低浓度物质的快速检测。近年来,因其具有快速、样品预处理简单、无损无接触等优势,被广泛应用在食品安全、生物检测等领域。
发明内容
为了克服上述问题,本发明提供了一种基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法。
本发明提供了一种定量检测海水中β-半乳糖苷酶的定量模型的构建方法,包括以下步骤:
(1)预先获取多种不同活性的β-GAL样品,分别与BCIG溶液混合孵化一段时间后,加入DMSO作为标准溶液,得到多个不同β-GAL活性标准溶液;
(2)在所述多个不同β-GAL活性标准溶液中分别滴加等体积的金纳米颗粒胶体,分别进行SERS检测,然后依据得到的多个不同β-GAL活性标准溶液的SERS信号与DMSO的SERS信号相对强度与标准溶液活性对数值的关系绘制标准曲线,所述标准曲线为所述定量模型。
本发明提供了基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法,包括如下步骤:
S1、将待测海水样品与BCIG孵化反应后加入DMSO和金纳米颗粒胶体,直接检测产物和DMSO的SERS信号,得到产物和DMSO的SERS信号比值;所述产物为5-溴-4-氯-3-吲哚氧化二聚体;
S2、将所述步骤S1得到的产物和DMSO的SERS信号比值代入上述技术方案所述构建方法得到的定量模型,得到待测样品的β-GAL活性。
本发明还提供了基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法,包括如下步骤:
a、分别取180μL BCIG溶液,β-GAL溶液,DMSO,BCIG与β-GAL反应后的溶液加入180μL的DMSO溶解,再分别加入200μL金纳米颗粒胶体(70nm),然后分别上机检测表面增强拉曼光谱;(实验所用到的溶剂和底物的表面增强拉曼光谱作为空白组,实验证明600cm -1波数处的拉曼光谱峰为产物(为5-溴-4-氯-3-吲哚氧化二聚体)特征峰,677cm -1波数处的拉曼光谱峰为DMSO特征峰并可以作为该实验的内标峰);
b、预先获取多种不同活性的β-GAL样品,分别与BCIG溶液混合孵化一段时间后,加入DMSO作为标准溶液,得到多个不同β-GAL活性标准溶液;(配置不同活性的β-GAL溶液,建立定量标准曲线。DMSO的作用一方面可以溶解产物,使溶液更加均匀从而提高检测的稳定性和可靠性,另一方面可以将其作为内标物,使该定量模型更加稳定);
c、在所述多个不同β-GAL活性标准溶液中分别滴加等体积的金纳米颗粒胶体,分别进行SERS检测,然后依据得到的多个不同β-GAL活性标准溶液的SERS信号与DMSO的SERS信号相对强度与标准溶液活性对数值的关系绘制标准曲线;(增强产物目标峰与DMSO内表峰强度,根据它们之间的关系建立定量标准曲线);
d、将待测海水样品(通常海水中含有β-GAL)与BCIG孵化反应后加入DMSO和金纳米颗粒胶体,直接检测产物和DMSO的SERS信号,得到产物和DMSO的SERS信号比值;所述产物为5-溴-4-氯-3-吲哚氧化二聚体;(验证该方法灵敏度要求能够达到海水中β-GAL活性检测要求);
e、将所述步骤d得到的产物和DMSO的SERS信号比值与标准曲线比较,得到待测样品的活性。(应用上述标准曲线定量检测海水样品β-GAL活性)。
进一步地,所述金纳米颗粒粒径为70nm。
进一步地,所述DMSO的SERS信号,是DMSO在677cm -1拉曼位 移处的峰高强度。
进一步地,所述β-GAL的SERS信号,是β-GAL在600cm -1拉曼位移处的峰高强度,所述步骤d和步骤e目的是检测海水中β-GAL的活性,一方面需要实验验证该海水样品中是否存在β-GAL,另一方面利用得到的标准曲线做待测海水样品的β-GAL定量活性分析,所以没有出现β-GAL。
进一步地,所述不同β-GAL活标准溶液得到的β-GAL的酶活数据的平均相对标准偏差均小于15%,该检测方法具有很好的稳定性。
进一步地,所述不同β-GAL活标准溶液得到的β-GAL的酶活数据的平均值为600cm -1拉曼位移处的峰高强度/677cm -1拉曼位移处的峰高强度(简写为600cm -1/677cm -1)。
进一步地,所述标准曲线使用最小二乘法对β-GAL浓度和SERS强度比进行线性拟合得到标准方程;
所述SERS强度比为SERS信号与DMSO的SERS信号的比值。
进一步地,所述步骤c中标准曲线的拟合标准方程为y=0.784*x+0.004,相关系数R 2=0.936,其中,x为β-GAL活性标准溶液的活性对数值,y为β-GAL活性标准溶液的SERS信号与DMSO的SERS信号的比值。
本发明提供了上述技术方案所述的方法在检测海水中微生物胞外酶活性中的应用。
有益效果:
首次利用激光拉曼光谱技术检测到了海水中β-GAL的活性并且灵敏度已达到检测海水中β-GAL要求;
该方法的平均相对标准偏差均小于15%,具有很好的可靠性,引入DMSO作为内标物,提升了检测的稳定性;
该方法具备无需样品预处理(只需加入底物反应一段时间,然后加入内标和表面增强金纳米颗粒后直接检测)、无损(激发光为可见光,对样品无损)、快速检测(相比于荧光法需要十几小时甚至几十小时的检测时间,该方法只需几个小时,更加适合用于原位检测)的优势;
该方法为原位定量检测海水中胞外酶活性提供了强有力的科学理论 支撑。
附图说明
图1为β-GAL水解BCIG反应式;
图2为实验溶剂和底物的表面增强拉曼光谱;
图3为不同β-GAL活性对应的表面增强拉曼光谱;
图4为标准曲线的线性方程拟合;
图5为海水样品与BCIG反应后的SERS图。
具体实施方式
下面结合附图对本发明的实施例作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
本发明的检测原理
β-GAL可以对β-1,4-糖苷键进行特异性催化水解,其水解原理如图1所示,β-GAL通过水解无SERS特性的5-溴-4-氯-3-吲哚-β-D-半乳糖苷(BCIG),得到5-溴-4-氯-3-吲哚(BCI),经过快速氧化形成不溶于水的BCI氧化二聚体,其具有较强的SERS特性,通过建立不同β-GAL活性与产物的SERS特征峰峰强之间的关系来确定β-GAL活性。
理论上,产物BCI氧化二聚体的拉曼光谱特征峰位置在600cm -1波数附近,下面用实验对其进行了验证。
分别取200μL浓度为2mg/mL的BCIG溶液,200μL浓度为5U/L的β-GAL溶液,200μL的DMSO、BCIG溶液(20μL,2mg/mL)与β-GAL溶液(180μL,5U/L)反应4h后的溶液于4个上机样瓶中,分别加入200μL的金纳米颗粒胶体,充分混匀后检测其SERS(激发波长785nm,激发时间10s,激发频率5mW,每个样品采集5次拉曼光谱)。
如图2所示,BCIG溶液和β-GAL溶液没有SERS特征,DMSO在600cm -1波数附近没有拉曼光谱峰,其在677cm -1和700cm -1波数附近有两条明显的SERS特征峰,它们分别代表了C-S-C对称伸缩振动峰和C-S伸缩振动峰,选取677cm -1波数处的拉曼光谱峰作为定量分析胞外酶(β-GAL)活性的内标峰。其中,BCIG与β-GAL反应4h生成BCI氧化 二聚体后的SERS在600cm -1波数处出现较强的拉曼峰,此处的拉曼峰是产物化学结构中C=C-CO-C的平面振动引起的拉曼峰,即为产物的特征峰。
实施例1定量模型
将5个900μL不同活性(50U/L、10U/L、5U/L、1U/L、0.5U/L)的β-GAL溶液,每个活性取5个平行,分别与100μL浓度为2mg/mL的BCIG溶液混合孵化4h,再取180μL反应液加入20μL的DMSO后分别测定各自的SERS信号,得到的光谱如图3所示。
从图3中可以看出,产物BCI氧化二聚体的SERS特征峰强度与β-GAL浓度之间没有直接的线性关系,因为拉曼光谱的强度受到激光功率稳定性、增强试剂均匀性、溶剂的背景噪声等因素干扰,直接利用拉曼谱光谱特征峰的强度进行定量分析比较困难。因此,将加入的DMSO溶剂在677cm -1波数附近的拉曼光谱特征峰作为内标峰,使用内标法建立定量检测模型以实现对β-GAL的定量检测。表1为底物和内标物的SERS特征峰强度信息。
表1底物和内标物特征峰强度
Figure PCTCN2022127315-appb-000001
表1可以看出,总体上,产物特征峰(600cm -1)强度和内标峰(677cm -1)强度随着β-GAL活性降低逐渐减小,但它们之间不存在良好的函数关系。每一个酶活对应强度比的RSD均小于10%,说明SERS数据可信度高。使用最小二乘法对β-GAL浓度和SERS强度比(600cm -1/677cm -1)进行线性拟合。如图4所示。
引入DMSO溶剂作为内标物,以其677cm -1波数处特征峰作为内标 峰,将50U/L、10U/L、5U/L、1U/L、0.5U/L共5个β-GAL活性取对数作为横坐标,纵坐标为产物特征峰(600cm -1)与内标峰(677cm -1)比值,拟合标准方程为:y=0.784*x+0.004,相关系数R 2=0.936,β-GAL活性与拉曼光谱特征峰强度比(600cm -1/677cm -1)之间表现出很强的线性关系。该模型具有定量检测β-GAL活性的能力。
实施例2海水验证试验
新鲜海水样品于2020年12月采自中国东海(30°39′48″N,122°29′48″E)。样品为海洋表层海水,渔船直接采样。将900μL新鲜海水样品与100μL浓度为2mg/mL的BCIP溶液混合孵化4h,取180μL反应液加入20μL的DMSO后测定SERS信号,得到的光谱如图5所示。
如图5所示,图中600cm -1处出现明显的拉曼光谱峰(峰强为16779),说明利用该方法成功定性检测到海水中β-GAL存在,677cm -1波数处拉曼光谱强度达到17550,这是因为DMSO中C-S-C对称伸缩振动引起的拉曼光谱峰,两处峰值的比值为0.956,将该值代入上述模型实现对该海水样品β-GAL活性的定量检测,得到该水样β-GAL活性相当于0.824U/L的商业β-GAL活性。
以BCIG为底物,DMSO为内标物,提出了一种基于SERS检测海水中β-GAL活性的定量检测方法。结果表明,β-GAL活性和特征峰与内标峰强度比值(600cm -1/677cm -1)之间具有良好的线性关系,相关系数为0.936,利用该模型,成功定量检测了海水样品中β-GAL活性,实现了对海水中β-GAL活性的快速检测。同时,该方法还可以应用在海水中其他微生物胞外酶活性检测中,为海水中微生物胞外酶活性的原位检测奠定坚实的科学基础。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于 本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (11)

  1. 一种定量检测海水中β-半乳糖苷酶的定量模型的构建方法,包括以下步骤:
    (1)预先获取多种不同活性的β-GAL样品,分别与BCIG溶液混合孵化一段时间后,加入DMSO作为标准溶液,得到多个不同β-GAL活性标准溶液;
    (2)在所述多个不同β-GAL活性标准溶液中分别滴加等体积的金纳米颗粒胶体,分别进行SERS检测,然后依据得到的多个不同β-GAL活性标准溶液的SERS信号与DMSO的SERS信号相对强度与标准溶液活性对数值的关系绘制标准曲线,所述标准曲线为所述定量模型。
  2. 基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法,其特征在于,包括如下步骤:
    S1、将待测海水样品与BCIG孵化反应后加入DMSO和金纳米颗粒胶体,直接检测产物和DMSO的SERS信号,得到产物和DMSO的SERS信号比值;
    S2、将所述步骤S1得到的产物和DMSO的SERS信号比值代入权利要求1所述构建方法得到的定量模型,得到待测样品的β-GAL活性。
  3. 基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法,其特征在于,包括如下步骤:
    a、分别取180μL BCIG溶液,β-GAL溶液,DMSO,BCIG与β-GAL反应后的溶液加入180μL的DMSO溶解,再分别加入200μL金纳米颗粒胶体,然后分别上机检测表面增强拉曼光谱;
    b、预先获取多种不同活性的β-GAL样品,分别与BCIG溶液混合孵化一段时间后,加入DMSO作为标准溶液,得到多个不同β-GAL活性标准溶液;
    c、在所述多个不同β-GAL活性标准溶液中分别滴加等体积的金纳米颗粒胶体,分别进行SERS检测,然后依据得到的多个不同β-GAL活性标准溶液的SERS信号与DMSO的SERS信号相对强度与标准溶液活性对数值的关系绘制标准曲线;
    d、将待测海水样品与BCIG孵化反应后加入DMSO和金纳米颗粒胶体,直接检测产物和DMSO的SERS信号,得到产物和DMSO的SERS信号比值;
    e、将所述步骤d得到的产物和DMSO的SERS信号比值与标准曲线比较,得到待测样品的β-GAL活性。
  4. 根据权利要求1、2或3所述的方法,其特征在于,所述金纳米颗粒胶体的粒径为70nm。
  5. 根据权利要求1、2或3所述的方法,其特征在于,所述DMSO的SERS信号,是DMSO在677cm -1拉曼位移处的峰高强度。
  6. 根据权利要求1、2或3所述的方法,其特征在于,所述β-GAL的SERS信号,是β-GAL在600cm -1拉曼位移处的峰高强度。
  7. 根据权利要求1或3所述的方法,其特征在于,所述不同β-GAL活标准溶液得到的β-GAL的酶活数据的平均相对标准偏差均小于15%。
  8. 根据权利要求1或3所述的方法,其特征在于,所述不同β-GAL活标准溶液得到的β-GAL的酶活数据的平均值为600cm -1拉曼位移处的峰高强度/677cm -1拉曼位移处的峰高强度。
  9. 根据权利要求1或3所述的方法,其特征在于,所述标准曲线使用最小二乘法对β-GAL浓度和SERS强度比进行线性拟合得到标准方程;
    所述SERS强度比为SERS信号与DMSO的SERS信号的比值。
  10. 根据权利要求1或3所述的方法,其特征在于,所述标准曲线的拟合标准方程为y=0.784*x+0.004,相关系数R 2=0.936,其中,x为β-GAL活性标准溶液的活性对数值,y为β-GAL活性标准溶液的SERS信号与DMSO的SERS信号的比值。
  11. 权利要求1~8任一项所述的方法在检测海水中微生物胞外酶活性中的应用。
PCT/CN2022/127315 2021-12-22 2022-10-25 基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法 WO2023116177A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111583690.4 2021-12-22
CN202111583690.4A CN114235781A (zh) 2021-12-22 2021-12-22 基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法

Publications (1)

Publication Number Publication Date
WO2023116177A1 true WO2023116177A1 (zh) 2023-06-29

Family

ID=80761577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127315 WO2023116177A1 (zh) 2021-12-22 2022-10-25 基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法

Country Status (2)

Country Link
CN (1) CN114235781A (zh)
WO (1) WO2023116177A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114235781A (zh) * 2021-12-22 2022-03-25 上海海洋大学 基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09222395A (ja) * 1996-02-20 1997-08-26 Kdk Corp 表面増強ラマン散乱測定による分析方法
US20140320855A1 (en) * 2013-04-28 2014-10-30 Tsinghua University Raman spectroscopy method of measuring melamine contents in dairy products having different matrixes
US20150192590A1 (en) * 2012-08-17 2015-07-09 Japan Science And Technology Agency Method and Apparatus for Analyzing Biomolecules Using Raman Spectroscopy
CN109342391A (zh) * 2018-11-03 2019-02-15 华东理工大学 基于可循环使用sers传感器的酪氨酸酶活性检测方法
CN111593089A (zh) * 2019-02-20 2020-08-28 深圳市第二人民医院 一种β-半乳糖苷酶活力检测试剂盒和检测方法
CN113295672A (zh) * 2021-06-02 2021-08-24 上海海洋大学 基于表面增强拉曼光谱技术定量检测海水中碱性磷酸酶的方法
CN114235781A (zh) * 2021-12-22 2022-03-25 上海海洋大学 基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7767435B2 (en) * 2003-08-25 2010-08-03 University Of Washington Method and device for biochemical detection and analysis of subcellular compartments from a single cell
WO2008128352A1 (en) * 2007-04-19 2008-10-30 Axela, Inc. Methods and compositions for signal amplification
US8859256B2 (en) * 2011-10-05 2014-10-14 Genelux Corporation Method for detecting replication or colonization of a biological therapeutic
CN105154564B (zh) * 2015-09-30 2018-06-19 上海海洋大学 基于环境dna技术对鱼类dna丰度估算的联合分析法
CN106243170B (zh) * 2016-07-08 2018-10-19 赣南师范大学 具有聚集诱导荧光增强特性的β-半乳糖苷酶传感器的合成及应用
CN108872584A (zh) * 2018-05-09 2018-11-23 北京三药科技开发公司 一种α-Gal抗原快速检测试剂盒及其使用方法和应用
CN108646029B (zh) * 2018-05-14 2021-07-02 中国食品药品检定研究院 人抗-Gal-IgG抗体检测试剂盒及其制备方法和用途
US11474100B2 (en) * 2019-05-14 2022-10-18 Hong Kong Baptist University Chromophore-labeled oligosaccharide markers and methods of use thereof
CN110455769B (zh) * 2019-07-23 2021-07-09 厦门大学 壳为内标的核壳纳米粒子表面增强拉曼光谱定量分析方法
CN112798573A (zh) * 2021-02-21 2021-05-14 江苏大学 一种食品中总砷含量的表面增强拉曼光谱检测方法
CN113025488A (zh) * 2021-05-04 2021-06-25 上海海洋大学 微生物胞外酶全海深保压酶学测定装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09222395A (ja) * 1996-02-20 1997-08-26 Kdk Corp 表面増強ラマン散乱測定による分析方法
US20150192590A1 (en) * 2012-08-17 2015-07-09 Japan Science And Technology Agency Method and Apparatus for Analyzing Biomolecules Using Raman Spectroscopy
US20140320855A1 (en) * 2013-04-28 2014-10-30 Tsinghua University Raman spectroscopy method of measuring melamine contents in dairy products having different matrixes
CN109342391A (zh) * 2018-11-03 2019-02-15 华东理工大学 基于可循环使用sers传感器的酪氨酸酶活性检测方法
CN111593089A (zh) * 2019-02-20 2020-08-28 深圳市第二人民医院 一种β-半乳糖苷酶活力检测试剂盒和检测方法
CN113295672A (zh) * 2021-06-02 2021-08-24 上海海洋大学 基于表面增强拉曼光谱技术定量检测海水中碱性磷酸酶的方法
CN114235781A (zh) * 2021-12-22 2022-03-25 上海海洋大学 基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法

Also Published As

Publication number Publication date
CN114235781A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
Lu et al. An in situ generated prussian blue nanoparticle-mediated multimode nanozyme-linked immunosorbent assay for the detection of aflatoxin B1
Ahangari et al. Latest trends for biogenic amines detection in foods: Enzymatic biosensors and nanozymes applications
Zhou et al. Enzyme–nanozyme cascade reaction-mediated etching of gold nanorods for the detection of Escherichia coli
CN109266332B (zh) 一种用于定量检测血液中AChE和BChE的比率型荧光探针的制备方法
Yi et al. Smartphone-based ratiometric fluorescent definable system for phosphate by merged metal− organic frameworks
CN108918478B (zh) 一种定量检测α-葡萄糖苷酶活性的方法
Li et al. Ratiometric fluorescence and colorimetric detection for uric acid using bifunctional carbon dots
Chen et al. Fluorescence and electrochemical assay for bimodal detection of lead ions based on Metal–Organic framework nanosheets
Li et al. Ratiometric fluorescent hydrogel for point-of-care monitoring of organophosphorus pesticide degradation
WO2023116177A1 (zh) 基于表面增强拉曼光谱技术定量检测海水中β-半乳糖苷酶的方法
Wu et al. Sensitive fluorescence detection for hydrogen peroxide and glucose using biomass carbon dots: Dual-quenching mechanism insight
Dehghani et al. New colorimetric DNA sensor for detection of Campylobacter jejuni in milk sample based on peroxidase‐like activity of gold/platinium nanocluster
CN110411990B (zh) 一种基于纳米探针检测过氧化氢和相关目标物的方法
CN107607507B (zh) 一种有机磷农药残留的荧光检测方法
Liu et al. Sensitive fluorimetric assays for α‐glucosidase activity and inhibitor screening based on β‐cyclodextrin‐coated quantum dots
Liu et al. A “turn off-on” fluorescent nanoprobe consisting of CuInS 2 quantum dots for determination of the activity of β-glucosidase and for inhibitor screening
CN112730367B (zh) 一种基于便携式智能终端的多信号光谱传感平台对碱性磷酸酶的测定方法及装置
Li et al. Facile synthesis of PEG-modified fluorescent carbon dots for highly sensitive detection of Ag+
Qiao et al. A novel colorimetric and fluorometric dual-signal identification of organics and Baijiu based on nanozymes with peroxidase-like activity
US20220390377A1 (en) Technique for quantitatively detecting alkaline phosphatase activity in seawater based on surface-enhanced raman spectroscopy
Li et al. Coordination polymer nanoprobe integrated carbon dot and phenol red for turn-on fluorescence detection of urease activity
McLamore et al. Development and validation of an open source O2-sensitive gel for physiological profiling of soil microbial communities
CN113563886B (zh) 一种荧光水凝胶及其在甲萘威检测中的应用
CN110927132B (zh) 一种用于定量检测血清中alp的比率型荧光探针的制备方法
Gao et al. Assessing fresh water acute toxicity with Surface-Enhanced Raman Scattering (SERS)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909495

Country of ref document: EP

Kind code of ref document: A1