WO2023115577A1 - 一种信道状态信息csi的反馈方法及其装置 - Google Patents
一种信道状态信息csi的反馈方法及其装置 Download PDFInfo
- Publication number
- WO2023115577A1 WO2023115577A1 PCT/CN2021/141362 CN2021141362W WO2023115577A1 WO 2023115577 A1 WO2023115577 A1 WO 2023115577A1 CN 2021141362 W CN2021141362 W CN 2021141362W WO 2023115577 A1 WO2023115577 A1 WO 2023115577A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- csi
- coding mode
- sending device
- type
- target
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 137
- 238000004891 communication Methods 0.000 claims abstract description 114
- 238000004590 computer program Methods 0.000 claims description 36
- 230000015654 memory Effects 0.000 claims description 24
- 239000011159 matrix material Substances 0.000 claims description 11
- 239000013598 vector Substances 0.000 description 44
- 230000006870 function Effects 0.000 description 42
- 230000005540 biological transmission Effects 0.000 description 11
- 230000011664 signaling Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 230000004044 response Effects 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 238000010295 mobile communication Methods 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
Definitions
- the present application relates to the field of communication technologies, and in particular to a method and device for feeding back channel state information (CSI).
- CSI channel state information
- MIMO multiple-input multiple-output
- OAM orbital angular momentum
- Embodiments of the present application provide a channel state information (CSI) feedback method and an apparatus therefor, by determining a target coding mode adopted by the sending device for beam coding, and feeding back CSI to the sending device according to the target coding mode.
- CSI channel state information
- feeding back the corresponding CSI according to the target coding method can not only make the fed-back CSI adapt to the coding mode, so as to perform better beam coding.
- the problem that the coding mode and the CSI are not uniform in the OAM-MIMO communication system can be avoided.
- the sending device can be switched between multiple coding modes, so that the beam coding is more flexible, which is conducive to improving communication efficiency.
- an embodiment of the present application provides a CSI feedback method, which is applied to a receiving device.
- the method includes: determining the target coding mode used by the sending device when performing beam coding; according to the target coding mode, feedback to the sending device CSI.
- An embodiment of the present application provides a CSI feedback method, by determining a target coding mode used by the sending device when performing beam coding, and feeding back CSI to the sending device according to the target coding mode.
- feeding back the corresponding CSI according to the target coding method can not only make the fed-back CSI adapt to the coding mode, so as to perform better beam coding.
- the problem that the coding mode and the CSI are not uniform in the OAM-MIMO communication system can be avoided.
- the sending device can be switched between multiple coding modes, so that the beam coding is more flexible, which is conducive to improving communication efficiency.
- an embodiment of the present application provides a CSI feedback method, which is applied to a sending device, and the method includes: sending indication information to a receiving device, where the indication information is used to indicate the target coding mode corresponding to the beam coding of the sending device ; receiving the CSI sent by the receiving device, wherein the CSI is determined by the receiving device based on the target coding mode.
- An embodiment of the present application provides a CSI feedback method.
- the CSI fed back according to the target coding mode sent by the receiving device is obtained.
- feeding back the corresponding CSI according to the target coding method can not only make the fed-back CSI adapt to the coding mode, so as to perform better beam coding.
- the problem that the coding mode and the CSI are not uniform in the OAM-MIMO communication system can be avoided.
- the sending device can be switched between multiple coding modes, so that the beam coding is more flexible, and it is beneficial to improve communication efficiency.
- the embodiment of the present application provides a communication device, which has part or all of the functions of the receiving device in the method described in the first aspect above, for example, the communication device may have part or all of the functions in this application.
- the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present application.
- the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
- the hardware or software includes one or more units or modules corresponding to the above functions.
- the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
- the transceiver module is used to support communication between the communication device and other equipment.
- the communication device may further include a storage module for coupling with the transceiver module and the processing module, which stores necessary computer programs and data of the communication device.
- the processing module may be a processor
- the transceiver module may be a transceiver or a communication interface
- the storage module may be a memory
- the embodiment of the present application provides another communication device, which has part or all of the functions of the sending device in the method example described in the second aspect above, for example, the function of the communication device may have some of the functions in this application Or the functions in all the embodiments may also have the function of implementing any one embodiment in the present application alone.
- the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
- the hardware or software includes one or more units or modules corresponding to the above functions.
- the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
- the transceiver module is used to support communication between the communication device and other devices.
- the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
- the processing module may be a processor
- the transceiver module may be a transceiver or a communication interface
- the storage module may be a memory
- an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the first aspect above.
- an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
- the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
- the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
- the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
- the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
- the embodiment of the present application provides a communication system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device described in the sixth aspect, or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect the communication device described above.
- an embodiment of the present invention provides a computer-readable storage medium, which is used to store instructions used by the above-mentioned receiving device. When the instructions are executed, the receiving device executes the above-mentioned first aspect. method.
- an embodiment of the present invention provides a readable storage medium for storing instructions used by the above-mentioned sending device, and when the instructions are executed, the sending device executes the method described in the second aspect above .
- the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
- the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
- the present application provides a chip system
- the chip system includes at least one processor and an interface, used to support the receiving device to implement the functions involved in the first aspect, for example, determine or process the data involved in the above method and at least one of information.
- the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the receiving device.
- the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
- the present application provides a chip system
- the chip system includes at least one processor and an interface, used to support the sending device to realize the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
- the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the sending device.
- the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
- the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
- the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
- FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
- FIG. 2 is a schematic flowchart of a CSI feedback method provided by an embodiment of the present application
- FIG. 3 is a schematic flowchart of a CSI feedback method provided by an embodiment of the present application.
- FIG. 4 is a schematic flowchart of a CSI feedback method provided by an embodiment of the present application.
- FIG. 5 is a schematic flowchart of a CSI feedback method provided in an embodiment of the present application.
- FIG. 6 is a schematic flowchart of a CSI feedback method provided by an embodiment of the present application.
- FIG. 7 is a schematic flowchart of a CSI feedback method provided in an embodiment of the present application.
- FIG. 8 is a schematic flowchart of a CSI feedback method provided by an embodiment of the present application.
- FIG. 9 is a schematic flowchart of a CSI feedback method provided by an embodiment of the present application.
- FIG. 10 is a schematic flowchart of a CSI feedback method provided by an embodiment of the present application.
- FIG. 11 is a schematic structural diagram of a CSI feedback device provided by an embodiment of the present application.
- Fig. 12 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- FIG. 13 is a schematic structural diagram of a chip provided by an embodiment of the present application.
- CSI is the channel attribute of the communication link. It describes the attenuation factor of the signal on each transmission path, that is, the value of each element in the channel gain matrix H, such as signal scattering, environmental attenuation, distance attenuation and other information. CSI can make the communication system adapt to the current channel conditions, and provides a guarantee for high-reliability and high-speed communication in a multi-antenna system.
- the terminal needs to report PMI information to the network side, and the network side uses the precoding matrix corresponding to the PMI to process the downlink data and send it to the terminal.
- LTE Long Term Evolution
- OAM means that electrons rotate around the propagation axis, which is generated by the rotation of the energy flow around the optical axis. It makes the phase wave front of the electromagnetic wave vortex, which is used to expand the capacity of wireless communication; OAM can be applied in electromagnetic waves, in normal electromagnetic waves A phase rotation factor is added in , at this time, the electromagnetic wave front will no longer be a planar structure, but will rotate around the beam propagation direction, showing a spiral phase structure. Every time the vortex wave rotates around the transmission axis, the phase wave advances.
- An embodiment of the present application provides a communication system, and the communication system may include but not limited to a sending device and a receiving device.
- the sending device may be a network device
- the receiving device may be a terminal device or a relay device.
- FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
- the communication system may include, but is not limited to, a network device and a terminal device.
- the number and form of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiment of the application. In practical applications, two or more network equipment, two or more terminal equipment.
- the communication system shown in FIG. 1 includes one network device 11 and one terminal device 12 as an example.
- LTE long term evolution
- 5th generation 5th generation
- 5G new radio new radio, NR
- other future new mobile communication systems etc.
- the network device 11 in the embodiment of the present application is an entity on the network side for transmitting or receiving signals.
- the network device 11 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
- eNB evolved NodeB
- TRP transmission reception point
- gNB next generation base station
- gNB next generation NodeB
- the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
- the network device provided by the embodiment of the present application may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), using CU-DU
- the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
- the terminal device 12 in the embodiment of the present application is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
- the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
- Terminal devices can be cars with communication functions, smart cars, mobile phones, IoT devices such as NB-IoT or (e)MTC, wearable devices, tablet computers (Pad), computers with wireless transceiver functions, virtual Reality (virtual reality, VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), remote surgery ( Wireless terminal equipment in remote medical surgery, wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, smart home home) in the wireless terminal equipment and so on.
- the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
- FIG. 2 is a schematic flowchart of a CSI feedback method provided by an embodiment of the present application. As shown in FIG. 2, the method is executed by a receiving device, where the receiving device may be a terminal device or a relay device. The method may include, but is not limited to, the following steps:
- Step S21 determining a target coding mode used by the sending device when performing beam coding.
- the receiving device can be compatible with OAM and MIMO communication methods, and can use one or both of them to encode the beam when communicating with the sending device, and communicate with the sending device based on the encoded beam.
- the sending device can encode the beams using the first encoding mode based on a uniform circular array (UCA), or can encode the beams using the second encoding mode based on multiple antennas, or can simultaneously use the first encoding mode and In the second coding mode, the beams are coded.
- the coding mode adopted when performing beam coding is referred to as the target coding mode. That is to say, the target coding mode may be a UCA-based first coding mode, or a multi-antenna-based second coding mode, or a joint coding mode, that is, including the first coding mode and the second coding mode.
- the target encoding mode can be determined based on protocol conventions. For example, if the agreement stipulates that the target coding mode is the first coding mode based on UCA, it may be determined that the sending device needs to use the first coding mode when performing beam coding. For another example, if the agreement stipulates that the target coding mode is the second coding mode based on multiple antennas, it may be determined that the sending device needs to use the second coding mode when performing beam coding.
- the target encoding mode is determined based on an indication from the sending device.
- the sending device may indicate the target to the receiving device through radio resource control (radio resource control, RRC) signaling, media access control layer control element (Media Access Control Control Element, MACCE) signaling or other physical layer signaling encoding mode.
- RRC radio resource control
- MACCE Media Access Control Control Element
- the indication carries identification information of the target coding mode.
- the receiving device may determine, based on the identification information in the indication, the target coding mode used by the sending device when performing beam coding. For example, the identification information of the first encoding mode is 01, the identification information of the second encoding mode is 10, and the identification information of the joint encoding mode including the first encoding mode and the second encoding mode is 11. If the identification information carried in the indication is 11, the receiving device needs to use the first encoding mode and the second encoding mode to encode the beam at the same time.
- Step S22 according to the target coding mode, feed back the CSI to the sending device.
- the receiving device needs to feed back different CSI.
- the reported first type of CSI includes at least one of the following information: the number of modes included in the OAM mode combination selected under the current channel conditions; The index number of the OAM mode combination selected under the channel condition; the first precoding matrix index PMI; the first channel quality indicator (channel quality indicator, CQI).
- the reported second type of CSI includes at least one of the following information: rank indicator (rank indicator, RI), second PMI, and second CQI .
- the reported CSI includes at least one item of the first type of CSI and at least one item of the second type of CSI.
- the PMI and CQI reported by the receiving device are also different due to different coding methods. Therefore, when both coding methods exist, it is necessary to distinguish the first PMI, the second PMI, the first CQI, and the second CQI.
- the target coding mode used by the receiving device when performing beam coding it is possible to determine the target coding mode used by the receiving device when performing beam coding, and feed back CSI to the sending device according to the target coding mode.
- feeding back the corresponding CSI according to the target coding method can not only make the fed-back CSI adapt to the coding mode, but also facilitate better beam coding.
- the problem that the coding mode and the CSI are not uniform in the OAM-MIMO communication system can be avoided.
- the sending device can be switched between multiple coding modes, so that the beam coding is more flexible, which is conducive to improving communication efficiency.
- FIG. 3 is a schematic flowchart of a CSI feedback method provided by an embodiment of the present application. As shown in Figure 3, the method is executed by the receiving device, and may include but not limited to the following steps:
- Step S31 determining that the target encoding mode is the first encoding mode based on UCA.
- the target coding mode in response to the agreement that the target coding mode is the first UCA-based coding mode, it is determined that the target coding mode is the first UCA-based coding mode.
- the indication of the sending device is received, the identification information of the encoding mode is determined from the indication, and in response to the identification information being the identification information of the first encoding mode, it is determined that the target encoding mode is the first encoding mode based on UCA.
- the sending device can perform beam coding in the following manner:
- the following formula can be used to determine the first dimension beamforming vector and the second dimension of the OAM beam 2D beamforming vector:
- N is the number of logical antenna elements at the transmitting end
- n represents the nth logical antenna
- O 1 and O 2 represent the first dimension and the second dimension respectively oversampling factor.
- Step S32 determining that the CSI fed back to the sending device is the first type of CSI corresponding to the first coding mode, and feeding back the first type of CSI to the sending device.
- the sending device After determining to adopt the first coding mode based on UCA, in order to realize subsequent beam coding, it is necessary to report to the sending device the number of modes included in the OAM mode combination selected under the current channel condition, and the number of modes included in the mode combination selected under the current channel condition.
- the first type of CSI corresponding to the first encoding mode may include at least one item of the foregoing information.
- the number of modalities included in the OAM modal combination selected under the current channel condition, the index number of the modal combination selected under the current channel condition, the first PMI and the first CQI can be reported to the sending device at the same time ; In other implementations, parts of the above information are combined and reported to the sending device in batches, for example, the index number of the modal combination selected under the current channel condition, and the number of modalities included in the selected modal combination are reported simultaneously to the sending device, and the first PMI and the first CQI are reported to the sending device at the same time; in other implementations, the above information is reported to the sending device separately.
- a channel can correspond to multiple OAM modal combinations, and each OAM modal combination can include multiple modalities, for example [-4, -3, -2, -1, 0, 1, 2, 3] is an OAM modality combination.
- the OAM mode combination that can be selected under different channel conditions will be different. For example, if the combination of OAM modes used for actual transmission under current channel conditions is [-4, -3, -2, -1, 0, 1, 2, 3], then the number of OAM modes is 8.
- Each OAM mode combination has an index number, which can indicate a mode combination, and optionally, the index number can be an integer eigenvalue.
- Each of the four OAM mode combinations has an index code.
- the index code of OAM mode combination A can be 00
- the index code of OAM mode combination B can be 01
- the index code of OAM mode combination C can be 10
- the index code of state combination D can be 11.
- the OAM mode combination selected under the current channel condition is one of the multiple mode combinations such as the OAM mode combination B, which is indicated by the index number 01 of the selected OAM mode combination B.
- the first PMI may indicate a precoding matrix, where the precoding matrix includes beam indexes in the first dimension and beam indexes in the second dimension in different modes.
- the first channel quality indicator (Channel Quality Indicator, CQI) can be used to reflect the quality of the channel corresponding to the OAM beam, and is related to the corresponding channel signal-to-noise ratio. Generally, a high CQI value indicates good channel conditions.
- the sending device can perform downlink resource scheduling according to the CQI, so as to ensure that the receiving device obtains better downlink transmission on the channel corresponding to the OAM beam.
- the receiving device may explicitly send the CSI to the sending device; optionally, the receiving device may also implicitly send the CSI to the sending device. It should be understood that other methods may also be used to feed back the CSI to the sending device, The present disclosure does not limit this.
- the receiving device reports the CSI to the sending device
- the sending device can encode the OAM beam based on the UCA and the reported CSI to determine the first-dimensional beamforming vector and the second-dimensional beamforming vector of the OAM beam in different modes .
- the target coding mode is the first UCA-based coding mode
- the CSI fed back to the sending device is determined to be the first type of CSI corresponding to the first coding mode, and fed back to the sending device.
- the sending device can be switched to the first coding mode, and the first type of CSI corresponding to the first coding mode can be fed back, which avoids the problem of non-uniform coding modes in the OAM-MIMO communication system.
- FIG. 4 is a schematic flowchart of a CSI feedback method provided by an embodiment of the present application. As shown in Figure 4, the method is executed by the receiving device, and may include but not limited to the following steps:
- Step S41 determining that the target coding mode is the second coding mode based on multiple antennas.
- the target coding mode in response to the agreement that the target coding mode is the second multi-antenna-based coding mode, it is determined that the target coding mode is the second multi-antenna-based coding mode.
- the indication of the sending device is received, the identification information of the coding mode is determined from the indication, and in response to the identification information being the identification information of the second coding mode, it is determined that the target coding mode is the second coding mode based on multiple antennas.
- beam coding based on the second coding mode of multiple antennas, can be performed in the following manner:
- the sending device can determine the beamforming vector of the first dimension and the beamforming vector of the second dimension of the MIMO beam by using the following formula:
- N 1 and N 2 respectively denote the number of antenna ports in the first dimension and the second dimension
- O 1 and O 2 denote the first dimension and the second dimension respectively oversampling factor
- Step S42 determining that the CSI fed back to the sending device is the second type of CSI corresponding to the second coding mode, and feeding back the second type of CSI to the sending device.
- the second type of CSI corresponding to the second encoding mode may include at least one item of the foregoing information.
- the rank indication RI, the second PMI, and the second CQI can be reported to the sending device at the same time; in other implementations, parts of the above information are combined and reported to the sending device in batches, for example, the rank indication RI It is reported to the sending device separately, and the second PMI and the second CQI are reported to the sending device at the same time; in other implementations, the above information is reported to the sending device separately.
- the RI may indicate the number of data layers available for the transmission channel, and is used for downlink MIMO open-loop/closed-loop spatial multiplexing operations.
- the second PMI may indicate a precoding matrix, where the precoding matrix includes a beam index in the first dimension and a beam index in the second dimension.
- the second CQI can be used to reflect the quality of the channel corresponding to the MIMO beam, and is related to the corresponding channel signal-to-noise ratio. Generally, a high CQI value indicates good channel conditions.
- the sending device can perform downlink resource scheduling according to the CQI, so as to ensure that the receiving device obtains better downlink transmission on the channel corresponding to the MIMO beam.
- the receiving device may explicitly send the CSI to the sending device; optionally, the receiving device may also implicitly send the CSI to the sending device. It should be understood that other methods may also be used to feed back the CSI to the sending device, The present disclosure does not limit this.
- the receiving device reports the CSI to the sending device
- the sending device can encode the MIMO beam based on the multiple antennas and the reported CSI, so as to determine the first-dimensional beamforming vector and the second-dimensional beamforming vector of the MIMO beam.
- the target coding mode is the first multi-antenna-based coding mode
- the CSI fed back to the sending device is determined to be the second type of CSI corresponding to the second coding mode, and fed back to the sending device.
- the sending device can be switched to the second coding mode, and the second type of CSI corresponding to the second coding mode can be fed back, which avoids the problem of non-uniform coding modes in the OAM-MIMO communication system.
- FIG. 5 is a schematic flowchart of a CSI feedback method provided by an embodiment of the present application. As shown in Figure 5, the method is executed by the receiving device, and may include but not limited to the following steps:
- Step S51 determining that the target coding mode includes a UCA-based first coding mode and a multi-antenna-based second coding mode.
- determining the target coding mode includes a UCA-based first coding mode and a multi-antenna-based second coding mode.
- Step S52 determining the first type of CSI corresponding to the first encoding mode.
- the first type of CSI may include at least one of the following information: the number of modes included in the OAM mode combination selected under the current channel condition, the index number of the mode combination selected under the current channel condition, The first PMI and the first CQI.
- the number of modalities included in the OAM modal combination selected under the current channel condition, the index number of the modal combination selected under the current channel condition, the first PMI, and the first CQI can be simultaneously reported to the sending device; in other implementations, parts of the above information are combined and reported to the sending device in batches; in other implementations, the above information is reported to the sending device separately.
- the index number of the modal combination selected under the current channel condition, the first PMI and the first CQI you can refer to the relevant introduction in step S32, here No longer.
- Step S53 determining the second type of CSI corresponding to the second encoding mode.
- the second type of CSI may include at least one of the following information: rank indication RI, second PMI and second CQI.
- the rank indication RI, the second PMI, and the second CQI can be reported to the sending device at the same time; in other implementations, parts of the above information are combined and reported to the sending device in batches; in other implementations , the above information is reported to the sending device separately.
- step S54 the first type of CSI and the second type of CSI are used as CSI to be fed back to the sending device, and fed back to the sending device.
- the receiving device may explicitly send the first type of CSI and the second type of CSI to the sending device; optionally, the receiving device may also implicitly send the first type of CSI and the second type of CSI to the sending device , it should be understood that other methods may also be used to feed back the CSI to the sending device, which is not limited in the present disclosure.
- the receiving device reports the first type of CSI to the sending device
- the sending device can encode the OAM beam based on the UCA and the reported first type of CSI to determine the first dimension beamforming vector and The second dimension beamforming vector.
- the specific implementation of determining the first-dimension beamforming vector and the second-dimension beamforming vector of the OAM beam in different modes can be referred to the relevant introduction in step S31, and will not be repeated here.
- the receiving device reports the second type of CSI to the sending device
- the sending device can encode the MIMO beam based on multiple antennas and the reported second type of CSI to determine the first-dimensional beamforming vector and the second-dimensional beam of the MIMO beam Generate vectors.
- the sending device can encode the MIMO beam based on multiple antennas and the reported second type of CSI to determine the first-dimensional beamforming vector and the second-dimensional beam of the MIMO beam Generate vectors.
- the target coding mode includes the first coding mode based on UCA and the second coding mode based on multiple antennas, so that the CSI fed back to the sending device is determined to be the first type of CSI corresponding to the first coding mode and the first type of CSI corresponding to the first coding mode.
- the second type of CSI corresponding to the second coding mode is fed back to the sending device.
- the sending device can switch to the coexistence of the first coding mode and the second coding mode, and feed back the first type of CSI corresponding to the first coding mode and the second type of CSI corresponding to the second coding mode, avoiding OAM- The problem of non-uniform coding methods in MIMO communication systems.
- FIG. 6 is a schematic flowchart of a CSI feedback method provided by an embodiment of the present application. As shown in Figure 6, the method is executed by the receiving device, and may include but not limited to the following steps:
- Step S61 receiving indication information sent by the sending device.
- the indication information is used to indicate the target encoding mode adopted by the sending device when performing beam encoding.
- the indication information may be notified by the sending device to the receiving device through system information or signaling.
- the indication information may be radio resource control (radio resource control, RRC) signaling; in other implementations, the indication information may be Media Access Control Control Element (MAC CE) signaling ; In still some implementations, the indication information may be physical layer signaling.
- the indication information carries identification information of the target coding mode. After receiving the indication information, the receiving device may determine the target coding mode used by the sending device when performing beam coding based on the identification information in the indication information.
- the sending device may explicitly send the indication information to the receiving device; optionally, the sending device may also implicitly send the indication information to the receiving device.
- Step S62 Determine the target coding mode used by the sending device when performing beam coding according to the indication information.
- the target coding mode is determined based on the identification information of the target coding mode carried in the indication information.
- the target coding mode may be a UCA-based first coding mode, or a multi-antenna-based second coding mode, or a joint coding mode, that is, including the first coding mode and the second coding mode.
- Step S63 according to the target coding mode, feed back the CSI to the sending device.
- the receiving device needs to feed back different CSI.
- the reported first type of CSI includes at least one of the following information: the number of modalities included in the OAM modal combination selected under the current channel conditions, the current The index number of the OAM mode combination selected under the channel condition, the first PMI, and the first CQI.
- the process may adopt the implementation manner in any embodiment of the present application, and will not be repeated here.
- the reported second type of CSI includes at least one item of the following information: RI, second PMI, and second CQI.
- the reported CSI includes the first type of CSI and the second type of CSI.
- the receiving device may explicitly send the CSI to the sending device; optionally, the receiving device may also implicitly send the CSI to the sending device.
- the receiving device reports the first type of CSI and/or the second type of CSI to the sending device, and the sending device can encode the beam based on the first type of CSI and/or the second type of CSI.
- the OAM beam is encoded based on the first type of CSI, so as to determine the first-dimensional beamforming vector and the second-dimensional beamforming vector of the OAM beam in different modes.
- the specific implementation of determining the first-dimension beamforming vector and the second-dimension beamforming vector of the OAM beam in different modes can be referred to the relevant introduction in step S31, and will not be repeated here.
- the MIMO beam is encoded based on the second type of CSI, so as to determine the first-dimensional beamforming vector and the second-dimensional beamforming vector of the MIMO beam.
- the specific implementation of determining the first-dimension beamforming vector and the second-dimension beamforming vector of the MIMO beam please refer to the related introduction in step S41, which will not be repeated here.
- the receiving device can receive the indication information sent by the sending device, determine the target coding mode used for beam coding according to the indication information, and feed back CSI to the sending device according to the target coding mode. By determining the target coding mode based on the indication information, the sending device can configure a suitable target coding mode for the receiving device.
- FIG. 7 is a schematic flowchart of a CSI feedback method provided in an embodiment of the present application. As shown in FIG. 7, the method is executed by a sending device, where the sending device may be a network device. The method may include, but is not limited to, the following steps:
- the indication information is used to indicate the target encoding mode adopted by the sending device when performing beam encoding.
- the indication information may be notified by the sending device to the receiving device through system information or signaling.
- the indication information may be radio resource control (radio resource control, RRC) signaling; in other implementations, the indication information may be Media Access Control Control Element (MAC CE) signaling ; In still some implementations, the indication information may be physical layer signaling.
- RRC radio resource control
- MAC CE Media Access Control Control Element
- the sending device may explicitly send the indication information to the receiving device; optionally, the sending device may also implicitly send the indication information to the receiving device.
- the encoding mode for encoding the beams may include a UCA-based first encoding mode and a multi-antenna-based second encoding mode.
- the coding mode adopted when performing beam coding is referred to as the target coding mode. That is to say, the target coding mode may be a UCA-based first coding mode, or a multi-antenna-based second coding mode, or a joint coding mode, that is, including the first coding mode and the second coding mode.
- the indication information carries identification information of the target coding mode. After receiving the indication information, the receiving device may determine the target coding mode used by the sending device when performing beam coding based on the identification information in the indication information.
- the identification information of the first encoding mode is 01
- the identification information of the second encoding mode is 10
- the identification information of the joint encoding mode including the first encoding mode and the second encoding mode is 11. If the identification information carried in the indication information is 11, the receiving device needs to use the first encoding mode and the second encoding mode to encode the beam at the same time.
- the receiving device sends the CSI, where the CSI is determined by the receiving device based on the target coding mode.
- the receiving device needs to feed back different CSI, and correspondingly, the sending device receives different CSI information.
- the reported first type of CSI includes at least one of the following information: the number of modalities included in the OAM modal combination selected under the current channel conditions, the current The index number of the OAM mode combination selected under the channel condition, the first PMI, and the first CQI.
- the reported second type of CSI includes at least one item of the following information: RI, second PMI, and second CQI.
- the reported CSI includes the first type of CSI and the second type of CSI.
- the PMI and CQI reported by the receiving device are also different due to different coding methods. Therefore, when both coding methods exist, it is necessary to distinguish the first PMI, the second PMI, the first CQI, and the second CQI.
- the target coding mode can be indicated to the receiving device, and the CSI fed back according to the target coding mode sent by the receiving device can be obtained.
- the sending device switches to the first coding mode, it can receive the first type of CSI corresponding to the feedback of the first coding mode, and can adapt the fed-back CSI to the coding mode for better beamforming. coding.
- the problem that the coding mode and the CSI are not uniform in the OAM-MIMO communication system can be avoided.
- the sending device can switch between multiple coding modes, so that the beam coding is more flexible, and it is beneficial to improve communication efficiency.
- FIG. 8 is a schematic flowchart of a CSI feedback method provided by an embodiment of the present application. As shown in Figure 8, the method is executed by the sending device, and may include but not limited to the following steps:
- Receive the indication information of the sending device determine the identification information of the encoding mode from the indication information, and determine that the target encoding mode is the first encoding mode based on UCA in response to the identification information being the identification information of the first encoding mode.
- the receiving device sends the first type of CSI corresponding to the first coding mode.
- the first type of CSI includes at least one of the following information: the number of modes included in the OAM mode combination selected under the current channel condition, the index number of the OAM mode combination selected under the current channel condition, the first PMI and the first PMI a CQI.
- the OAM beam may be encoded based on the first type of CSI, so as to determine the first-dimensional beamforming vector and the second-dimensional beamforming vector of the OAM beam in different modes.
- the specific implementation of determining the first-dimension beamforming vector and the second-dimension beamforming vector of the OAM beam in different modes can be referred to the relevant introduction in step S31, and will not be repeated here.
- the target coding mode is the first UCA-based coding mode
- the first type of CSI corresponding to the first coding mode sent by the receiving device In this way, feeding back the corresponding first type of CSI according to the first coding mode can not only adapt the fed back CSI to the coding mode for better beam coding, but also avoid the coding mode in the OAM-MIMO communication system. Issues not aligned with CSI.
- FIG. 9 is a schematic flowchart of a CSI feedback method provided by an embodiment of the present application. As shown in Figure 9, the method is executed by the sending device, and may include but not limited to the following steps:
- Receive the indication information of the sending device determine the identification information of the encoding mode from the indication information, and determine that the target encoding mode is the second encoding mode based on multiple antennas in response to the identification information being the identification information of the second encoding mode.
- the receiving device sends the second type of CSI corresponding to the second coding mode.
- the second type of CSI includes at least one item of the following information: rank indication RI, second PMI and second CQI.
- the MIMO beam may be encoded based on the second type of CSI, so as to determine the first-dimensional beamforming vector and the second-dimensional beamforming vector of the MIMO beam.
- the specific implementation of determining the first-dimension beamforming vector and the second-dimension beamforming vector of the MIMO beam can refer to the relevant introduction in step S41 , which will not be repeated here.
- the target coding mode is the second coding mode based on multiple antennas, and obtain the second type of CSI corresponding to the second coding mode sent by the receiving device.
- the sending device switches to the second coding mode, it can receive the second type of CSI corresponding to the feedback of the second coding mode, and can adapt the fed-back CSI to the coding mode to facilitate better beamforming Coding, and can avoid the problem that the coding mode and CSI are not uniform in the OAM-MIMO communication system.
- FIG. 10 is a schematic flowchart of a CSI feedback method provided by an embodiment of the present application. As shown in Figure 10, the method is executed by the sending device, and may include but not limited to the following steps:
- S101 Send indication information indicating that a target coding mode includes a UCA-based first coding mode and a multi-antenna-based second coding mode to a receiving device.
- the receiving device sends the first type of CSI corresponding to the first coding mode and the second type of CSI corresponding to the second coding mode.
- the first type of CSI includes at least one of the following information: the number of modes included in the OAM mode combination selected under the current channel condition, the index number of the OAM mode combination selected under the current channel condition, the first PMI and the first PMI a CQI.
- the OAM beam may be encoded based on the first type of CSI, so as to determine the first-dimensional beamforming vector and the second-dimensional beamforming vector of the OAM beam in different modes.
- the specific implementation of determining the first-dimension beamforming vector and the second-dimension beamforming vector of the OAM beam in different modes can be referred to the relevant introduction in step S31, and will not be repeated here.
- the second type of CSI includes at least one item of the following information: rank indication RI, second PMI and second CQI.
- the MIMO beam may be encoded based on the second type of CSI, so as to determine the first-dimensional beamforming vector and the second-dimensional beamforming vector of the MIMO beam.
- the specific implementation of determining the first-dimension beamforming vector and the second-dimension beamforming vector of the MIMO beam can refer to the relevant introduction in step S41 , which will not be repeated here.
- the target coding mode is a joint coding mode including the first coding mode based on UCA and the second coding mode based on multi-antenna, and obtain the first coding mode corresponding to the first coding mode sent by the receiving device.
- a type of CSI and a second type of CSI corresponding to the second encoding mode are two types of CSI.
- the sending device switches to the joint coding mode, two types of CSI can be received, and the feedback CSI can be adapted to the coding mode for better beam coding, and the OAM-MIMO communication system can be avoided.
- the problem that the encoding method in the medium is not consistent with the CSI.
- the sending device and the receiving device may include a hardware structure and a software module, and realize the above-mentioned functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
- a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
- FIG. 11 is a schematic structural diagram of a communication device 110 provided by an embodiment of the present application.
- the communication device 110 shown in FIG. 11 may include a transceiver module 111 and a processing module 112 .
- the transceiver module 111 may include a sending module and/or a receiving module, the sending module is used to implement a sending function, the receiving module is used to implement a receiving function, and the transceiver module 111 may implement a sending function and/or a receiving function.
- the communication device 110 may be a receiving device (such as the receiving device in the foregoing method embodiments), may also be a device in the receiving device, and may also be a device that can be matched with the receiving device.
- the communication device 110 may be a sending device, may also be a device in the sending device, and may also be a device that can be matched with the sending device.
- the communication device 110 is a receiving device, including:
- a processing module 112 configured to determine a target coding mode adopted by the sending device when performing beam coding
- the transceiver module 111 is configured to feed back CSI to the sending device according to the target coding mode.
- the transceiver module 111 is also configured to: determine that the target coding mode is the first coding mode based on uniform circular array UCA; determine that the CSI is the first type of CSI corresponding to the first coding mode, and send the CSI to the sending equipment.
- the first type of CSI includes at least one of the following information: the number of modes included in the OAM mode combination selected under the current channel condition; the index number of the OAM mode combination selected under the current channel condition; A precoding matrix index PMI; a first channel quality indicator CQI.
- the transceiver module 111 is further configured to: determine that the target coding mode is the second coding mode based on multiple antennas; determine that the CSI is the second type of CSI corresponding to the second coding mode, and send the CSI to the sending device.
- the second type of CSI includes at least one of the following: a rank indication RI, a second PMI, and a second CQI.
- the transceiver module 111 is further configured to: determine that the target coding mode includes a first coding mode based on uniform circular array UCA and a second coding mode based on multi-antenna; The second encoding mode corresponds to the second type of CSI, which is determined as CSI and fed back to the sending device.
- the processing module 112 is further configured to: determine the target encoding mode based on the protocol agreement; or determine the target encoding mode based on the instruction of the sending device.
- the processing module 112 is further configured to: receive indication information sent by the sending device, and determine a target coding mode according to the indication information.
- the communication device 110 is a sending device, including:
- the transceiver module 111 is configured to send indication information to the receiving device, where the indication information is used to indicate the target coding mode corresponding to the beam coding of the sending device; the receiving device sends CSI, wherein the CSI is determined by the receiving device based on the target coding mode.
- the indication information indicates that the target coding mode is the first coding mode based on uniform circular array UCA, where the received CSI is the first type of CSI corresponding to the first coding mode.
- the first type of CSI includes at least one of the following information: the number of modes included in the OAM mode combination selected under the current channel condition; the index number of the OAM mode combination selected under the current channel condition; - PMI; first CQI.
- the indication information indicates that the target coding mode is the second multi-antenna-based coding mode, where the received CSI is the second type of CSI corresponding to the second coding mode.
- the second type of CSI includes at least one of the following information: rank indication RI; second PMI; second CQI.
- the indication information indicates that the target coding mode includes a UCA-based first coding mode and a multi-antenna-based second coding mode, where the received CSI includes the first type of CSI and the second coding mode corresponding to the first coding mode Corresponding to the second type of CSI.
- FIG. 12 is a schematic structural diagram of another communication device 120 provided in an embodiment of the present application.
- the communication device 120 may be a sending device, or a receiving device (such as the receiving device in the aforementioned method embodiments), or a chip, a chip system, or a processor that supports the sending device to implement the above method, or it may also be a device that supports receiving
- a device is a chip, a chip system, or a processor that implements the above method.
- the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
- Communications device 120 may include one or more processors 121 .
- the processor 121 may be a general purpose processor or a special purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
- the baseband processor can be used to process communication protocols and communication data
- the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
- the communication device 120 may further include one or more memories 122, on which a computer program 124 may be stored, and the processor 121 executes the computer program 124, so that the communication device 120 executes the method described in the foregoing method embodiments. method.
- data may also be stored in the memory 122 .
- the communication device 120 and the memory 122 can be set separately or integrated together.
- the communication device 120 may further include a transceiver 125 and an antenna 126 .
- the transceiver 125 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
- the transceiver 125 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
- the communication device 120 may further include one or more interface circuits 127 .
- the interface circuit 127 is used to receive code instructions and transmit them to the processor 121 .
- the processor 121 executes the code instructions to enable the communication device 120 to execute the methods described in the foregoing method embodiments.
- the processor 121 may include a transceiver for implementing receiving and sending functions.
- the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
- the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
- the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
- the processor 121 may store a computer program 123 , and the computer program 123 runs on the processor 121 to enable the communication device 120 to execute the methods described in the foregoing method embodiments.
- the computer program 123 may be solidified in the processor 121, and in this case, the processor 121 may be implemented by hardware.
- the communication device 120 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
- the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
- the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
- CMOS complementary metal oxide semiconductor
- NMOS nMetal-oxide-semiconductor
- PMOS P-type Metal oxide semiconductor
- BJT bipolar junction transistor
- BiCMOS bipolar CMOS
- SiGe silicon germanium
- GaAs gallium arsenide
- the communication device described in the above embodiments may be a sending device or a receiving device (such as the receiving device in the aforementioned method embodiments), but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited Figure 12 Limitations.
- a communication device may be a stand-alone device or may be part of a larger device.
- the communication device may be:
- a set of one or more ICs may also include storage components for storing data and computer programs;
- ASIC such as modem (Modem);
- the communication device may be a chip or a chip system
- the chip shown in FIG. 13 includes a processor 131 and an interface 132 .
- the number of processors 131 may be one or more, and the number of interfaces 132 may be more than one.
- the chip further includes a memory 133 for storing necessary computer programs and data.
- the embodiment of the present application also provides a CSI feedback system, which includes the communication device as the receiving device (such as the receiving device in the aforementioned method embodiment) and the communication device as the sending device in the embodiment of FIG. 11 , or, the The system includes a communication device serving as a receiving device (such as the receiving device in the foregoing method embodiment) in the aforementioned embodiment of FIG. 12 and a communication device serving as a sending device.
- a CSI feedback system which includes the communication device as the receiving device (such as the receiving device in the aforementioned method embodiment) and the communication device as the sending device in the embodiment of FIG. 11 , or, the The system includes a communication device serving as a receiving device (such as the receiving device in the foregoing method embodiment) in the aforementioned embodiment of FIG. 12 and a communication device serving as a sending device.
- the present application also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
- the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
- all or part of them may be implemented by software, hardware, firmware or any combination thereof.
- software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
- the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present application will be generated.
- the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
- the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
- the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
- the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
- a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
- an optical medium for example, a high-density digital video disc (digital video disc, DVD)
- a semiconductor medium for example, a solid state disk (solid state disk, SSD)
- At least one in this application can also be described as one or more, and multiple can be two, three, four or more, and this application does not make a limitation.
- the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
- the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
- the corresponding relationships shown in the tables in this application can be configured or predefined.
- the values of the information in each table are just examples, and may be configured as other values, which are not limited in this application.
- the corresponding relationship shown in some rows may not be configured.
- appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
- the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
- other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
- Predefined in this application can be understood as defining, predefining, storing, prestoring, prenegotiating, preconfiguring, curing, or prefiring.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
一种信道状态信息CSI的反馈方法及其装置,方法包括:确定发送设备进行波束编码时所采用的目标编码模式,根据目标编码模式,向发送设备反馈CSI。通过这种方式,根据目标编码模式反馈对应的CSI,不仅可以使得反馈的CSI与编码模式适配,以便于更好地进行波束编码,而且可以避免OAM-MIMO通信系统中编码方式与CSI不统一的问题,可以实现发送设备在多种编码方式之间进行切换,从而使得波束编码更加灵活,有利于提高通信效率。
Description
本申请涉及通信技术领域,尤其涉及一种信道状态信息CSI的反馈方法及其装置。
在现有的蜂窝网络中,多输入多输出(multiple-input multiple-output,MIMO)系统已经大范围应用,且轨道角动量(orbital angular momentum,OAM)系统可以作为MIMO的一种补充,应用到现有网络中。然而,MIMO与OAM中所使用的编码方式不统一,如何保证反馈的信道状态信息(channel state information,CSI)与编码方式适配成为需要解决的问题。
发明内容
本申请实施例提供一种信道状态信息CSI的反馈方法及其装置,通过确定发送设备进行波束编码时所采用的目标编码模式,根据目标编码模式,向发送设备反馈CSI。通过这种方式,根据目标编码方式反馈对应的CSI,不仅可以使得反馈的CSI与编码模式适配,以便于更好地进行波束编码。而且可以避免OAM-MIMO通信系统中编码方式与CSI不统一的问题。而且可以实现发送设备在多种编码方式之间进行切换,从而使得波束编码更加灵活,有利于提高通信效率。
第一方面,本申请实施例提供一种CSI的反馈方法,应用于接收设备,该方法包括:确定发送设备进行波束编码时所采用的目标编码模式;根据所述目标编码模式,向发送设备反馈CSI。
本申请实施例提供一种CSI的反馈方法,通过确定发送设备进行波束编码时所采用的目标编码模式,根据目标编码模式,向发送设备反馈CSI。通过这种方式,根据目标编码方式反馈对应的CSI,不仅可以使得反馈的CSI与编码模式适配,以便于更好地进行波束编码。而且可以避免OAM-MIMO通信系统中编码方式与CSI不统一的问题。而且可以实现发送设备在多种编码方式之间进行切换,从而使得波束编码更加灵活,有利于提高通信效率。
第二方面,本申请实施例提供一种CSI的反馈方法,应用于发送设备,该方法包括:向接收设备发送指示信息,所述指示信息用于指示所述发送设备波束编码对应的目标编码模式;接收所述接收设备发送CSI,其中,所述CSI由所述接收设备基于所述目标编码模式确定。
本申请实施例提供一种CSI的反馈方法,通过向接收设备指示目标编码模式,获取接收设备发送的根据目标编码模式反馈的CSI。通过这种方式,根据目标编码方式反馈对应的CSI,不仅可以使得反馈的CSI与编码模式适配,以便于更好地进行波束编码。而且可以避免OAM-MIMO通信系统中编码方式与CSI不统一的问题。而且可以实现发送设备在多种编码方式之间进行切换,从而使得波束编码更加灵活,有利于提供通信效率。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中接收设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通 信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第四方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中发送设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述接收设备所用的指令,当所述指令被执行时,使所述接收设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述发送设备所用的指令,当所述指令被执行时,使所述发送设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持接收设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存接收设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持发送设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存发送设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种CSI的反馈方法的流程示意图;
图3是本申请实施例提供的一种CSI的反馈方法的流程示意图;
图4是本申请实施例提供的一种CSI的反馈方法的流程示意图;
图5是本申请实施例提供的一种CSI的反馈方法的流程示意图;
图6是本申请实施例提供的一种CSI的反馈方法的流程示意图;
图7是本申请实施例提供的一种CSI的反馈方法的流程示意图;
图8是本申请实施例提供的一种CSI的反馈方法的流程示意图;
图9是本申请实施例提供的一种CSI的反馈方法的流程示意图;
图10是本申请实施例提供的一种CSI的反馈方法的流程示意图;
图11是本申请实施例提供的一种CSI的反馈装置的结构示意图;
图12是本申请实施例提供的一种通信装置的结构示意图;
图13是本申请实施例提供的一种芯片的结构示意图。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
为了便于理解,首先介绍本申请涉及的术语。
1、信道状态信息(Channel State Information,CSI)
在无线通信领域,所谓的CSI,就是通信链路的信道属性。它描述了信号在每条传输路径上的衰弱 因子,即信道增益矩阵H中每个元素的值,如信号散射,环境衰弱,距离衰减等信息。CSI可以使通信系统适应当前的信道条件,在多天线系统中为高可靠性高速率的通信提供了保障。
2、预编码矩阵索引(Precoding Matrix Indicator,PMI)
在长期演进(LTE)系统中,对于下行传输模式4,5和6,需要终端向网络侧上报PMI信息,网络侧利用该PMI对应的预编码矩阵将下行数据处理后发送给终端。
3、轨道角动量(Orbital Angular Momentum,OAM)
OAM表示电子绕传播轴旋转,是由能量流围绕光轴旋转而产生的,它使电磁波的相位波前呈涡旋状,用于扩大无线通信容量;OAM可以应用在电磁波中,在正常的电磁波中添加一个相位旋转因子,此时电磁波波前将不再是平面结构,而是绕着波束传播方向旋转,呈现出一种螺旋的相位结构。涡旋波每绕传输轴旋转一圈,相位波就前进。
为了更好的理解本申请实施例公开的一种CSI的反馈方法,下面首先对本申请实施例适用的通信系统进行描述。
本申请实施例提供的一种通信系统,该通信系统可包括但不限于一个发送设备和一个接收设备。可选地,发送设备可以为网络设备,接收设备可以为终端设备或中继设备。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信系统以包括一个网络设备11和一个终端设备12为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本申请实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备11可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、物联网设备如NB-IoT或(e)MTC、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的一种CSI的反馈方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种CSI的反馈方法的流程示意图。如图2所示,该方法由接收设备执行,其中,接收设备可以为终端设备,也可以为中继设备。该方法可以包括但不限于如下步骤:
步骤S21,确定发送设备进行波束编码时所采用的目标编码模式。
本申请实施例中,接收设备可以兼容OAM和MIMO两种通信方式,与发送设备进行通信时可以采用其中一种或者两种对波束进行编码,基于编码后的波束与发送设备之间进行通信。
发送设备可以采用基于均匀圆阵(uniform circular array,UCA)的第一编码模式对波束进行编码,也可以采用基于多天线的第二编码模式对波束进行编码,也可以同时采用第一编码模式和第二编码模式,对波束进行编码。本申请实施例中,将进行波束编码时所采用的编码模式称为目标编码模式。也就是说,目标编码模式可以为基于UCA的第一编码模式,也可以为基于多天线的第二编码模式,也可以为一种联合编码模式,即包括第一编码模式和第二编码模式。
在一些实现中,目标编码模式可以基于协议约定而确定。例如,若协议约定目标编码模式为基于UCA的第一编码模式,则可以确定出发送设备在进行波束编码时需要采用第一编码模式。再例如,若协议约定目标编码模式为基于多天线的第二编码模式,则可以确定出发送设备在进行波束编码时需要采用第二编码模式。
在另一些实现中,目标编码模式基于发送设备的指示而确定。可选地,发送设备可以通过无线资源控制(radio resource control,RRC)信令、媒体介入控制层控制单元(Media Access Control Control Element,MACCE)信令或其他物理层信令,向接收设备指示目标编码模式。其中,指示中携带目标编码模式的标识信息。接收设备接收到指示后,可以基于指示中的标识信息,确定出发送设备进行波束编码时所采用的目标编码模式。例如,第一编码模式的标识信息为01,第二编码模式的标识信息为10,联合编码模式即包括第一编码模式和第二编码模式的标识信息为11。若指示中携带的标识信息为11,则接收设备需要同时采用第一编码模式和第二编码模式对波束进行编码。
步骤S22,根据目标编码模式,向发送设备反馈CSI。
基于不同的编码模式,接收设备需要反馈的CSI不同。
比如,当目标编码模式为基于UCA的第一编码模式,上报的第一类CSI至少包括以下信息中的至少一项:当前信道条件下选用的OAM模态组合中所包括的模态数量;当前信道条件下选用的OAM模态组合的索引编号;第一预编码矩阵索引PMI;第一信道质量指示(channel quality indicator,CQI)。
又比如,当目标编码模式为基于多天线的第二编码模式,上报的第二类CSI至少包括以下信息中的至少一项:秩指示(rank indicator,RI)、第二PMI、和第二CQI。
再比如,当目标编码模式包括基于UCA的第一编码模式和基于多天线的第二编码模式,上报的CSI至少包括第一类CSI中的至少一项和第二类CSI中的至少一项。
需要说明的是,编码方式不同,接收设备上报的PMI与CQI也不同,所以当两种编码方式都存在时,需要对第一PMI、第二PMI以及第一CQI、第二CQI进行区分。
通过实施本申请实施例,可以确定接收设备进行波束编码时所采用的目标编码模式,根据目标编码模式,向发送设备反馈CSI。通过这种方式,根据目标编码方式反馈对应的CSI,不仅可以使得反馈的 CSI与编码模式适配,以便于更好地进行波束编码。而且可以避免OAM-MIMO通信系统中编码方式与CSI不统一的问题。而且可以实现发送设备在多种编码方式之间进行切换,从而使得波束编码更加灵活,有利于提高通信效率。
请参见图3,图3是本申请实施例提供的一种CSI的反馈方法的流程示意图。如图3所示,该方法由接收设备执行,可以包括但不限于如下步骤:
步骤S31,确定目标编码模式为基于UCA的第一编码模式。
在一些实现中,响应于协议约定目标编码模式为基于UCA的第一编码模式,则确定目标编码模式为基于UCA的第一编码模式。
在另一些实现中,接收发送设备的指示,从指示确定编码模式的标识信息,响应于该标识信息为第一编码模式的标识信息,则确定目标编码模式为基于UCA的第一编码模式。
本申请实施例中,基于UCA的第一编码模式,发送设备可以采用如下方式进行波束编码:
以OAM模态为l为例,其中,第一维度波束索引、第二维度波束索引分别为k
1,l,k
2,l,可以采用如下公式确定OAM波束的第一维度波束生成向量和第二维度波束生成向量:
步骤S32,确定向发送设备反馈的CSI为第一编码模式对应的第一类CSI,并将所述第一类CSI反馈给发送设备。
在确定采用基于UCA的第一编码模式,为了实现后续波束编码,需要向发送设备上报当前信道条件下选用的OAM模态组合中所包括的模态数量、当前信道条件下选用的模态组合的索引编号、第一预编码矩阵索引PMI和第一信道质量指示CQI。本申请实施例中,第一编码模式对应的第一类CSI可以包括上述信息中的至少一项。
在一些实现中,当前信道条件下选用的OAM模态组合中所包括的模态数量、当前信道条件下选用的模态组合的索引编号、第一PMI和第一CQI,可以同时上报给发送设备;在另一些实现中,上述信息中的部分组合在一起分批上报给发送设备,例如,当前信道条件下选用的模态组合的索引编号、选用的模态组合所包括的模态数量同时上报给发送设备,而第一PMI和第一CQI同时上报给发送设备;在另一些实现中,上述信息单独上报给发送设备。
在一些实现中一个信道可以对应有多个OAM模态组合,每个OAM模态组合中可以包括多个模态,例如[-4,-3,-2,-1,0,1,2,3]为一个OAM模态组合。不同的信道条件下可以选用的OAM模态组合会不同。例如,若当前信道条件下用于实际传输的OAM模态组合为[-4,-3,-2,-1,0,1,2,3],则OAM模态数量为8个。
每个OAM模态组合都有一个索引编号,该索引编号可以指示一个模态组合,可选地,索引编号可以是一个整数本征值。再例如,有4个OAM模态组合A、B、C、D,每个OAM模态组合有一个或者多个模态。4个OAM模态组合均有一个索引编码,OAM模态组合A的索引编码可以为00,OAM模态 组合B的索引编码可以为01,OAM模态组合C的索引编码可以为10;OAM模态组合D的索引编码可以为11。需要说明的是,当前信道条件下选用的OAM模态组合为多个模态组合中一个如OAM模态组合B,通过该所选用的OAM模态组合B的索引编号01来指示。
第一PMI可以指示一个预编码矩阵,该预编码矩阵中包括不同模态下的第一维度的波束索引和第二维度上的波束索引。
第一信道质量指示(Channel Quality Indicator,CQI)可以用于反映OAM波束对应信道的质量情况,与对应的信道信噪比大小相关,一般CQI值高表示信道条件好。相应地,发送设备可以根据CQI进行下行资源调度,以保证接收设备在OAM波束对应的信道上获取较好的下行传输。
可选地,接收设备可以显式地将CSI发送给发送设备;可选地,接收设备也可以隐式地将CSI发送给发送设备,应理解,也可以采用其他方法将CSI反馈给发送设备,本公开对此不做限定。
相应地,接收设备将CSI上报给发送设备,发送设备可以基于UCA和上报的CSI对OAM波束进行编码,以确定OAM波束在不同模态下的第一维度波束生成向量和第二维度波束生成向量。
通过实施本申请实施例,可以确定目标编码模式为基于UCA的第一编码模式,从而确定向发送设备反馈的CSI为第一编码模式对应的第一类CSI,并反馈给发送设备。通过这种方式,可以使发送设备切换为第一编码模式,并反馈第一编码模式对应的第一类CSI,避免了OAM-MIMO通信系统中编码方式不统一的问题。
请参见图4,图4是本申请实施例提供的一种CSI的反馈方法的流程示意图。如图4所示,该方法由接收设备执行,可以包括但不限于如下步骤:
步骤S41,确定目标编码模式为基于多天线的第二编码模式。
在一些实现中,响应于协议约定目标编码模式为基于多天线的第二编码模式,则确定目标编码模式为基于多天线的第二编码模式。
在另一些实现中,接收发送设备的指示,从指示确定编码模式的标识信息,响应于该标识信息为第二编码模式的标识信息,则确定目标编码模式为基于多天线的第二编码模式。
本申请实施例中,基于多天线的第二编码模式,可以采用如下方式进行波束编码:
以第一维度波束索引、第二维度波束索引分别为m
1,m
2为例,发送设备可以采用如下公式确定MIMO波束的第一维度波束生成向量和第二维度波束生成向量:
步骤S42,确定向发送设备反馈的CSI为第二编码模式对应的第二类CSI,并将所述第二类CSI反馈给发送设备。
在确定采用基于多天线的第二编码模式,为了实现后续波束编码,需要向发送设备上报秩指示RI、 第二PMI和第二CQI。本申请实施例中,第二编码模式对应的第二类CSI可以包括上述信息中的至少一项。
在一些实现中,秩指示RI、第二PMI和第二CQI,可以同时上报给发送设备;在另一些实现中,上述信息中的部分组合在一起分批上报给发送设备,例如,秩指示RI单独上报给发送设备,而第二PMI和第二CQI同时上报给发送设备;在另一些实现中,上述信息单独上报给发送设备。
RI可以指示传输信道可用的数据层数,用于下行MIMO开环/闭环空间复用的操作。
第二PMI可以指示一个预编码矩阵,该预编码矩阵中包括第一维度的波束索引和第二维度上的波束索引。
第二CQI可以用于反映MIMO波束对应信道的质量情况,与对应的信道信噪比大小相关,一般CQI值高表示信道条件好。相应地,发送设备可以根据CQI进行下行资源调度,以保证接收设备在MIMO波束对应的信道上获取较好的下行传输。
可选地,接收设备可以显式地将CSI发送给发送设备;可选地,接收设备也可以隐式地将CSI发送给发送设备,应理解,也可以采用其他方法将CSI反馈给发送设备,本公开对此不做限定。
相应地,接收设备将CSI上报给发送设备,发送设备可以基于多天线和上报的CSI对MIMO波束进行编码,以确定MIMO波束的第一维度波束生成向量和第二维度波束生成向量。
通过实施本申请实施例,可以确定目标编码模式为基于多天线的第一编码模式,从而确定向发送设备反馈的CSI为第二编码模式对应的第二类CSI,并反馈给发送设备。通过这种方式,可以使发送设备切换为第二编码模式,并反馈第二编码模式对应的第二类CSI,避免了OAM-MIMO通信系统中编码方式不统一的问题。
请参见图5,图5是本申请实施例提供的一种CSI的反馈方法的流程示意图。如图5所示,该方法由接收设备执行,可以包括但不限于如下步骤:
步骤S51,确定目标编码模式包括基于UCA的第一编码模式和基于多天线的第二编码模式。
可选地,基于协议约定或发送设备指示,确定目标编码模式包括基于UCA的第一编码模式和基于多天线的第二编码模式。
步骤S52,确定第一编码模式对应的第一类CSI。
需要说明的是,第一类CSI可以包括以下信息中的至少一项:当前信道条件下选用的OAM模态组合中所包括的模态数量、当前信道条件下选用的模态组合的索引编号、第一PMI和第一CQI。
在一些实现中,当前信道条件下选用的OAM模态组合中所包括的模态数量、当前信道条件下选用的模态组合的索引编号、第一PMI、和第一CQI,可以同时上报给发送设备;在另一些实现中,上述信息中的部分组合在一起分批上报给发送设备;在另一些实现中,上述信息单独上报给发送设备。
关于当前信道条件下选用的OAM模态组合中所包括的模态数量、当前信道条件下选用的模态组合的索引编号、第一PMI和第一CQI,可以参见步骤S32中相关介绍,此处不再赘述。
步骤S53,确定第二编码模式对应的第二类CSI。
需要说明的是,第二类CSI可以包括以下信息中的至少一项:秩指示RI、第二PMI和第二CQI。
在一些实现中,秩指示RI、第二PMI、和第二CQI,可以同时上报给发送设备;在另一些实现中,上述信息中的部分组合在一起分批上报给发送设备;在另一些实现中,上述信息单独上报给发送设备。
关于秩指示RI、第二PMI、和第二CQI,可以参见步骤S42中相关介绍,此处不再赘述。
步骤S54,将第一类CSI和第二类CSI,作为向发送设备反馈的CSI,并反馈给发送设备。
可选地,接收设备可以显式地将第一类CSI和第二类CSI发送给发送设备;可选地,接收设备也可以隐式地将第一类CSI和第二类CSI发送给发送设备,应理解,也可以采用其他方法将CSI反馈给发送设备,本公开对此不做限定。
需要说明的是,反馈CSI时需要区分出其中的第一PMI、第二PMI以及第一CQI、第二CQI。
相应地,接收设备将第一类CSI上报给发送设备,发送设备可以基于UCA和上报的第一类CSI对OAM波束进行编码,以确定OAM波束在不同模态下的第一维度波束生成向量和第二维度波束生成向量。其中,确定OAM波束在不同模态下的第一维度波束生成向量和第二维度波束生成向量的具体实现,可以参见步骤S31中相关介绍,此处不再赘述。
相应地,接收设备将第二类CSI上报给发送设备,发送设备可以基于多天线和上报的第二类CSI对MIMO波束进行编码,以确定MIMO波束的第一维度波束生成向量和第二维度波束生成向量。其中,确定MIMO波束的第一维度波束生成向量和第二维度波束生成向量的具体实现,可以参见步骤S41中相关介绍,此处不在赘述。
通过实施本申请实施例,可以确定目标编码模式包括基于UCA的第一编码模式和基于多天线的第二编码模式,从而确定向发送设备反馈的CSI为第一编码模式对应的第一类CSI和第二编码模式对应的第二类CSI,并反馈给发送设备。通过这种方式,可以使发送设备切换为第一编码模式和第二编码模式共存,并反馈第一编码模式对应的第一类CSI以及第二编码模式对应的第二类CSI,避免了OAM-MIMO通信系统中编码方式不统一的问题。
请参见图6,图6是本申请实施例提供的一种CSI的反馈方法的流程示意图。如图6所示,该方法由接收设备执行,可以包括但不限于如下步骤:
步骤S61,接收发送设备发送的指示信息。
指示信息用于指示发送设备进行波束编码时所采用的目标编码模式。
指示信息可以为发送设备通过系统信息或信令通知给接收设备的。在一些实现中,指示信息可以为无线资源控制(radio resource control,RRC)信令;在另一些实现中,指示信息可以为媒体介入控制层控制单元(Media Access Control Control Element,MAC CE)信令;在又一些实现中,指示信息可以为物理层信令。可选地,指示信息中携带目标编码模式的标识信息。接收设备接收到指示信息后,可以基于指示信息中的标识信息,确定出发送设备进行波束编码时所采用的目标编码模式。
可选地,发送设备可以显式地将指示信息发送给接收设备;可选地,发送设备也可以隐式地将指示信息发送给接收设备。
步骤S62,根据指示信息确定发送设备进行波束编码时所采用的目标编码模式。
基于指示信息中携带的目标编码模式的标识信息,确定目标编码模式。
可选地,目标编码模式可以为基于UCA的第一编码模式,也可以为基于多天线的第二编码模式,也可以为一种联合编码模式,即包括第一编码模式和第二编码模式。
步骤S63,根据目标编码模式,向发送设备反馈CSI。
基于不同的编码模式,接收设备需要反馈的CSI不同。
比如,当目标编码模式为基于UCA的第一编码模式,上报的第一类CSI至少包括以下信息中的至少一项:当前信道条件下选用的OAM模态组合中所包括的模态数量、当前信道条件下选用的OAM模态组合的索引编号、第一PMI、第一CQI。
关于当前信道条件下选用的OAM模态组合中所包括的模态数量、当前信道条件下选用的OAM模 态组合的索引编号、第一PMI、第一CQI的介绍,以及第一类CSI的反馈过程,可采用本申请任一实施例中的实现方式,此处不再赘述。
又比如,当目标编码模式为基于多天线的第二编码模式,上报的第二类CSI至少包括以下信息中的至少一项:RI、第二PMI、第二CQI。
关于RI、第二PMI、第二CQI的介绍,以及第二类CSI的反馈过程,可采用本申请任一实施例中的实现方式,此处不再赘述。
再比如,当目标编码模式包括基于UCA的第一编码模式和基于多天线的第二编码模式,上报的CSI包括第一类CSI和第二类CSI。
关于第一类CSI和第二类CSI的介绍,以及第一类CSI和第二类CSI的反馈过程,可采用本申请任一实施例中的实现方式,此处不再赘述。
可选地,接收设备可以显式地将CSI发送给发送设备;可选地,接收设备也可以隐式地将CSI发送给发送设备。
相应地,接收设备将第一类CSI和/或第二类CSI上报给发送设备,发送设备可以基于第一类CSI和/或第二类CSI对波束进行编码。
例如,基于第一类CSI对OAM波束进行编码,以确定OAM波束在不同模态下的第一维度波束生成向量和第二维度波束生成向量。其中,确定OAM波束在不同模态下的第一维度波束生成向量和第二维度波束生成向量的具体实现,可以参见步骤S31中相关介绍,此处不再赘述。
再例如,基于第二类CSI对MIMO波束进行编码,以确定MIMO波束的第一维度波束生成向量和第二维度波束生成向量。其中,确定MIMO波束的第一维度波束生成向量和第二维度波束生成向量的具体实现,可以参见步骤S41中相关介绍,此处不在赘述。
通过实施本申请实施例,接收设备可以接收发送设备发送的指示信息,根据指示信息确定进行波束编码时所采用的目标编码模式,并根据目标编码模式,向发送设备反馈CSI。通过基于指示信息确定目标编码模式,可以使发送设备为接收设备配置合适的目标编码模式。
请参见图7,图7是本申请实施例提供的一种CSI的反馈方法的流程示意图。如图7所示,该方法由发送设备执行,其中,发送设备可以为网络设备。该方法可以包括但不限于如下步骤:
S71,向接收设备发送指示信息,指示信息用于指示发送设备波束编码对应的目标编码模式。
指示信息用于指示发送设备进行波束编码时所采用的目标编码模式。
指示信息可以为发送设备通过系统信息或信令通知给接收设备的。在一些实现中,指示信息可以为无线资源控制(radio resource control,RRC)信令;在另一些实现中,指示信息可以为媒体介入控制层控制单元(Media Access Control Control Element,MAC CE)信令;在又一些实现中,指示信息可以为物理层信令。
可选地,发送设备可以显式地将指示信息发送给接收设备;可选地,发送设备也可以隐式地将指示信息发送给接收设备。
对波束进行编码的编码模式可以包括基于UCA的第一编码模式和基于多天线的第二编码模式。本申请实施例中,将进行波束编码时所采用的编码模式称为目标编码模式。也就是说,目标编码模式可以为基于UCA的第一编码模式,也可以为基于多天线的第二编码模式,也可以为一种联合编码模式,即包括第一编码模式和第二编码模式。其中,指示信息中携带目标编码模式的标识信息。接收设备接收到指示信息后,可以基于指示信息中的标识信息,确定出发送设备进行波束编码时所采用的目标编码模式。 例如,第一编码模式的标识信息为01,第二编码模式的标识信息为10,联合编码模式即包括第一编码模式和第二编码模式的标识信息为11。若指示信息中携带的标识信息为11,则接收设备需要同时采用第一编码模式和第二编码模式对波束进行编码。
S72,接收接收设备发送CSI,其中,CSI由接收设备基于目标编码模式确定。
基于不同的编码模式,接收设备需要反馈的CSI不同,相应地,发送设备接收到的CSI信息不同。
比如,当目标编码模式为基于UCA的第一编码模式,上报的第一类CSI至少包括以下信息中的至少一项:当前信道条件下选用的OAM模态组合中所包括的模态数量、当前信道条件下选用的OAM模态组合的索引编号、第一PMI、第一CQI。
又比如,当目标编码模式为基于多天线的第二编码模式,上报的第二类CSI至少包括以下信息中的至少一项:RI、第二PMI、第二CQI。
再比如,当目标编码模式包括基于UCA的第一编码模式和基于多天线的第二编码模式,上报的CSI包括第一类CSI和第二类CSI。
需要说明的是,编码方式不同,接收设备上报的PMI与CQI也不同,所以当两种编码方式都存在时,需要对第一PMI、第二PMI以及第一CQI、第二CQI进行区分。
通过实施本申请实施例,可以向接收设备指示目标编码模式,获取接收设备发送的根据目标编码模式反馈的CSI。通过这种方式,在发送设备切换至第一编码模式时,可以接收到与第一编码模式反馈对应的第一类CSI,可以使得反馈的CSI与编码模式适配,以便于更好地进行波束编码。而且可以避免OAM-MIMO通信系统中编码方式与CSI不统一的问题。而且可以实现发送设备可以在多种编码方式之间进行切换,从而使得波束编码更加灵活,有利于提高通信效率。
请参见图8,图8是本申请实施例提供的一种CSI的反馈方法的流程示意图。如图8所示,该方法由发送设备执行,可以包括但不限于如下步骤:
S81,向接收设备发送指示目标编码模式为基于UCA的第一编码模式的指示信息。
接收发送设备的指示信息,从指示信息确定编码模式的标识信息,响应于该标识信息为第一编码模式的标识信息,则确定目标编码模式为基于UCA的第一编码模式。
S82,接收接收设备发送第一编码模式对应的第一类CSI。
第一类CSI包括以下信息中的至少一项:当前信道条件下选用的OAM模态组合中所包括的模态数量、当前信道条件下选用的OAM模态组合的索引编号、第一PMI和第一CQI。
相应地,接收到第一类CSI后,可以基于第一类CSI对OAM波束进行编码,以确定OAM波束在不同模态下的第一维度波束生成向量和第二维度波束生成向量。其中,确定OAM波束在不同模态下的第一维度波束生成向量和第二维度波束生成向量的具体实现,可以参见步骤S31中相关介绍,此处不再赘述。
通过实施本申请实施例,可以向接收设备指示目标编码模式为基于UCA的第一编码模式,获取接收设备发送的第一编码模式对应的第一类CSI。通过这种方式,根据第一编码模式反馈对应的第一类CSI,不仅可以使得反馈的CSI与编码模式适配,以便于更好地进行波束编码,而且可以避免OAM-MIMO通信系统中编码方式与CSI不统一的问题。
请参见图9,图9是本申请实施例提供的一种CSI的反馈方法的流程示意图。如图9所示,该方法由发送设备执行,可以包括但不限于如下步骤:
S91,向接收设备发送指示目标编码模式为基于多天线的第二编码模式的指示信息。
接收发送设备的指示信息,从指示信息确定编码模式的标识信息,响应于该标识信息为第二编码模式的标识信息,则确定目标编码模式为基于多天线的第二编码模式。
S92,接收接收设备发送第二编码模式对应的第二类CSI。
第二类CSI包括以下信息中的至少一项:秩指示RI、第二PMI和第二CQI。
相应地,接收到第二类CSI后,可以基于第二类CSI对MIMO波束进行编码,以确定MIMO波束的第一维度波束生成向量和第二维度波束生成向量。其中,确定MIMO波束的第一维度波束生成向量和第二维度波束生成向量的具体实现,可以参见步骤S41中相关介绍,此处不再赘述。
通过实施本申请实施例,可以向接收设备指示目标编码模式为基于多天线的第二编码模式,获取接收设备发送的第二编码模式对应的第二类CSI。通过这种方式,在发送设备切换至第二编码模式时,可以接收到与第二编码模式反馈对应的第二类CSI,可以使得反馈的CSI与编码模式适配,以便于更好地进行波束编码,而且可以避免OAM-MIMO通信系统中编码方式与CSI不统一的问题。
请参见图10,图10是本申请实施例提供的一种CSI的反馈方法的流程示意图。如图10所示,该方法由发送设备执行,可以包括但不限于如下步骤:
S101,向接收设备发送指示目标编码模式包括基于UCA的第一编码模式和基于多天线的第二编码模式的指示信息。
接收发送设备的指示,从指示信息确定编码模式的标识信息,响应于该标识信息为联合编码模式的标识信息,则确定目标编码模式包括基于UCA的第一编码模式和基于多天线的第二编码模式。
S102,接收接收设备发送第一编码模式对应的第一类CSI和所述第二编码模式对应的第二类CSI。
第一类CSI包括以下信息中的至少一项:当前信道条件下选用的OAM模态组合中所包括的模态数量、当前信道条件下选用的OAM模态组合的索引编号、第一PMI和第一CQI。
相应地,接收到第一类CSI后,可以基于第一类CSI对OAM波束进行编码,以确定OAM波束在不同模态下的第一维度波束生成向量和第二维度波束生成向量。其中,确定OAM波束在不同模态下的第一维度波束生成向量和第二维度波束生成向量的具体实现,可以参见步骤S31中相关介绍,此处不再赘述。
第二类CSI包括以下信息中的至少一项:秩指示RI、第二PMI和第二CQI。
相应地,接收到第二类CSI后,可以基于第二类CSI对MIMO波束进行编码,以确定MIMO波束的第一维度波束生成向量和第二维度波束生成向量。其中,确定MIMO波束的第一维度波束生成向量和第二维度波束生成向量的具体实现,可以参见步骤S41中相关介绍,此处不再赘述。
通过实施本申请实施例,可以向接收设备指示目标编码模式为包括基于UCA的第一编码模式和基于多天线的第二编码模式的联合编码模式,获取接收设备发送的第一编码模式对应的第一类CSI和第二编码模式对应的第二类CSI。通过这种方式,在发送设备切换至联合编码模式时,可以接收到两类CSI,可以使得反馈的CSI与编码模式适配,以便于更好地进行波束编码,而且可以避免OAM-MIMO通信系统中编码方式与CSI不统一的问题。
上述本申请提供的实施例中,分别从发送设备、接收设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,发送设备、接收设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图11,为本申请实施例提供的一种通信装置110的结构示意图。图11所示的通信装置110 可包括收发模块111和处理模块112。收发模块111可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块111可以实现发送功能和/或接收功能。
通信装置110可以是接收设备(如前述方法实施例中的接收设备),也可以是接收设备中的装置,还可以是能够与接收设备匹配使用的装置。或者,通信装置110可以是发送设备,也可以是发送设备中的装置,还可以是能够与发送设备匹配使用的装置。
通信装置110为接收设备,包括:
处理模块112,用于确定发送设备进行波束编码时所采用的目标编码模式;
收发模块111,用于根据目标编码模式,向发送设备反馈CSI。
可选地,收发模块111,还用于:确定目标编码模式为基于均匀圆阵UCA的第一编码模式;确定CSI为第一编码模式对应的第一类CSI,并将所述CSI发送给发送设备。
可选地,第一类CSI包括以下信息中的至少一项:当前信道条件下选用的OAM模态组合中所包括的模态数量;当前信道条件下选用的OAM模态组合的索引编号;第一预编码矩阵索引PMI;第一信道质量指示CQI。
可选地,收发模块111,还用于:确定目标编码模式为基于多天线的第二编码模式;确定CSI为第二编码模式对应的第二类CSI,并将所述CSI发送给发送设备。
可选地,第二类CSI包括以下至少一项:秩指示RI、第二PMI和第二CQI。
可选地,收发模块111,还用于:确定目标编码模式包括基于均匀圆阵UCA的第一编码模式和基于多天线的第二编码模式;将第一编码模式对应的第一类CSI和第二编码模式对应第二类CSI,确定为CSI,反馈给发送设备。
可选地,处理模块112,还用于:基于协议约定确定目标编码模式;或者,基于发送设备的指示确定目标编码模式。
可选地,处理模块112,还用于:接收发送设备发送的指示信息,根据指示信息确定目标编码模式。
通信装置110为发送设备,包括:
收发模块111,用于向接收设备发送指示信息,指示信息用于指示发送设备波束编码对应的目标编码模式;接收接收设备发送CSI,其中,CSI由接收设备基于目标编码模式确定。
可选地,指示信息指示目标编码模式为基于均匀圆阵UCA的第一编码模式,其中,接收到的CSI为第一编码模式对应的第一类CSI。
可选地,第一类CSI包括以下信息中的至少一项:当前信道条件下选用的OAM模态组合中所包括的模态数量;当前信道条件下选用的OAM模态组合的索引编号;第一PMI;第一CQI。
可选地,指示信息指示目标编码模式为基于多天线的第二编码模式,其中,接收到的CSI为第二编码模式对应的第二类CSI。
可选地,第二类CSI包括以下信息中的至少一项:秩指示RI;第二PMI;第二CQI。
可选地,指示信息指示目标编码模式包括基于UCA的第一编码模式和基于多天线的第二编码模式,其中,接收到的CSI包括第一编码模式对应的第一类CSI和第二编码模式对应的第二类CSI。
请参见图12,图12是本申请实施例提供的另一种通信装置120的结构示意图。通信装置120可以是发送设备,也可以是接收设备(如前述方法实施例中的接收设备),也可以是支持发送设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持接收设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置120可以包括一个或多个处理器121。处理器121可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置120中还可以包括一个或多个存储器122,其上可以存有计算机程序124,处理器121执行所述计算机程序124,以使得通信装置120执行上述方法实施例中描述的方法。可选的,所述存储器122中还可以存储有数据。通信装置120和存储器122可以单独设置,也可以集成在一起。
可选的,通信装置120还可以包括收发器125、天线126。收发器125可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器125可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置120中还可以包括一个或多个接口电路127。接口电路127用于接收代码指令并传输至处理器121。处理器121运行所述代码指令以使通信装置120执行上述方法实施例中描述的方法。
在一种实现方式中,处理器121中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器121可以存有计算机程序123,计算机程序123在处理器121上运行,可使得通信装置120执行上述方法实施例中描述的方法。计算机程序123可能固化在处理器121中,该种情况下,处理器121可能由硬件实现。
在一种实现方式中,通信装置120可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是发送设备或者接收设备(如前述方法实施例中的接收设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图12的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图13所示的芯片的结构示意图。图13所示的芯片包括处理器131和接口132。其中,处理器131的数量可以是一个或多个,接口132的数量可以是多个。
可选的,芯片还包括存储器133,存储器133用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种CSI的反馈系统,该系统包括前述图11实施例中作为接收设备(如前述方法实施例中的接收设备)的通信装置和作为发送设备的通信装置,或者,该系统包括前述图12实施例中作为接收设备(如前述方法实施例中的接收设备)的通信装置和作为发送设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、 指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (22)
- 一种信道状态信息CSI的反馈方法,其特征在于,由接收设备执行,所述方法包括:确定发送设备进行波束编码时所采用的目标编码模式;根据所述目标编码模式,向发送设备反馈CSI。
- 根据权利要求1所述的方法,其特征在于,所述根据所述目标编码模式,向发送设备反馈CSI,包括:确定所述目标编码模式为基于均匀圆阵UCA的第一编码模式;确定所述CSI为所述第一编码模式对应的第一类CSI,并将所述CSI发送给所述发送设备。
- 根据权利要求2所述的方法,其特征在于,所述第一类CSI包括以下信息中的至少一项:当前信道条件下选用的轨道角动量OAM模态组合中所包括的模态数量;当前信道条件下选用的OAM模态组合的索引编号;第一预编码矩阵索引PMI;第一信道质量指示CQI。
- 根据权利要求1所述的方法,其特征在于,所述根据所述目标编码模式,向发送设备反馈CSI,包括:确定所述目标编码模式为基于多天线的第二编码模式;确定所述CSI为所述第二编码模式对应的第二类CSI,并将所述CSI发送给所述发送设备。
- 根据权利要求4所述的方法,其特征在于,所述第二类CSI包括以下至少一项:秩指示RI;第二PMI;第二CQI。
- 根据权利要求1所述的方法,其特征在于,所述根据所述目标编码模式,向发送设备反馈CSI,包括:确定所述目标编码模式包括基于均匀圆阵UCA的第一编码模式和基于多天线的第二编码模式;以及将所述第一编码模式对应的第一类CSI和所述第二编码模式对应第二类CSI确定为所述CSI,并将所述CSI发送给所述发送设备。
- 根据权利要求1-6中的任一项所述的方法,其特征在于,所述确定所述发送设备进行波束编码时所采用的目标编码模式,包括:基于协议约定确定所述目标编码模式;或者,基于发送设备的指示确定所述目标编码模式。
- 根据权利要求7所述的方法,其特征在于,所述基于发送设备的指示确定所述目标编码模式,包括:接收所述发送设备发送的指示信息,根据所述指示信息确定所述目标编码模式。
- 一种信道状态信息CSI的反馈方法,其特征在于,由发送设备执行,所述方法包括:向接收设备发送指示信息,所述指示信息用于指示所述发送设备波束编码对应的目标编码模式;接收所述接收设备发送的CSI,其中,所述CSI由所述接收设备基于所述目标编码模式确定。
- 根据权利要求9所述的方法,其特征在于,所述指示信息指示所述目标编码模式为基于均匀圆阵UCA的第一编码模式,其中,接收到的所述CSI为所述第一编码模式对应的第一类CSI。
- 根据权利要求10所述的方法,其特征在于,所述第一类CSI包括以下信息中的至少一项:当前信道条件下选用的OAM模态组合中所包括的模态数量;当前信道条件下选用的OAM模态组合的索引编号;第一PMI;第一CQI。
- 根据权利要求9所述的方法,其特征在于,所述指示信息指示所述目标编码模式为基于多天线的第二编码模式,其中,接收到的所述CSI为所述第二编码模式对应的第二类CSI。
- 根据权利要求12所述的方法,其特征在于,所述第二类CSI包括以下信息中的至少一项:秩指示RI;第二PMI;第二CQI。
- 根据权利要求9所述的方法,其特征在于,所述指示信息指示所述目标编码模式包括基于UCA的第一编码模式和基于多天线的第二编码模式,其中,接收到的所述CSI包括所述第一编码模式对应的第一类CSI和所述第二编码模式对应的第二类CSI。
- 一种通信装置,其特征在于,包括:处理模块,用于确定发送设备进行波束编码时所采用的目标编码模式;收发模块,用于根据所述目标编码模式,向发送设备反馈CSI。
- 一种通信装置,其特征在于,包括:收发模块,用于向接收设备发送指示信息,所述指示信息用于指示发送设备波束编码对应的目标编码模式;接收所述接收设备发送CSI,其中,所述CSI由所述接收设备基于所述目标编码模式确定。
- 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至8中任一项所述的方法。
- 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求9至14中的任一项所述的方法。
- 一种通信装置,其特征在于,包括:处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器,用于运行所述代码指令以执行如权利要求1至8中的任一项所述的方法。
- 一种通信装置,其特征在于,包括:处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器,用于运行所述代码指令以执行如权利要求9至14中的任一项所述的方法。
- 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至8中的任一项所述的方法被实现。
- 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求9至14中的任一项所述的方法被实现。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180104203.3A CN118285068A (zh) | 2021-12-24 | 2021-12-24 | 一种信道状态信息csi的反馈方法及其装置 |
PCT/CN2021/141362 WO2023115577A1 (zh) | 2021-12-24 | 2021-12-24 | 一种信道状态信息csi的反馈方法及其装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/141362 WO2023115577A1 (zh) | 2021-12-24 | 2021-12-24 | 一种信道状态信息csi的反馈方法及其装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023115577A1 true WO2023115577A1 (zh) | 2023-06-29 |
Family
ID=86901092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/141362 WO2023115577A1 (zh) | 2021-12-24 | 2021-12-24 | 一种信道状态信息csi的反馈方法及其装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118285068A (zh) |
WO (1) | WO2023115577A1 (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103560868A (zh) * | 2004-04-13 | 2014-02-05 | 英特尔公司 | 选择编码模式的方法和装置 |
CN111630788A (zh) * | 2018-02-09 | 2020-09-04 | 上海诺基亚贝尔股份有限公司 | 用于非线性预编码的装置和方法 |
-
2021
- 2021-12-24 CN CN202180104203.3A patent/CN118285068A/zh active Pending
- 2021-12-24 WO PCT/CN2021/141362 patent/WO2023115577A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103560868A (zh) * | 2004-04-13 | 2014-02-05 | 英特尔公司 | 选择编码模式的方法和装置 |
CN111630788A (zh) * | 2018-02-09 | 2020-09-04 | 上海诺基亚贝尔股份有限公司 | 用于非线性预编码的装置和方法 |
Non-Patent Citations (1)
Title |
---|
QUALCOMM INCORPORATED: "On Type I and Type II CSI parameters encoding", 3GPP DRAFT; R1-1713397 ON TYPE I AND TYPE II CSI PARAMETERS ENCODING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, Czech; 20170821 - 20170825, 20 August 2017 (2017-08-20), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051316202 * |
Also Published As
Publication number | Publication date |
---|---|
CN118285068A (zh) | 2024-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023092468A1 (zh) | 一种智能中继服务链路的波束指示方法及其装置 | |
WO2023070586A1 (zh) | 物理下行共享信道pdsch配置方法及装置 | |
WO2023050234A1 (zh) | 一种探测参考信号srs资源的调整方法及其装置 | |
WO2023184372A1 (zh) | 上行信道的发送和接收的方法及装置 | |
WO2023115577A1 (zh) | 一种信道状态信息csi的反馈方法及其装置 | |
WO2023019596A1 (zh) | 基于轨道角动量oam的通信方法及其装置 | |
WO2023077311A1 (zh) | 一种智能超表面ris的预编码方法及其装置 | |
WO2023092494A1 (zh) | 一种预编码信息的反馈方法及其装置 | |
WO2023050151A1 (zh) | 资源配置方法、装置及存储介质 | |
WO2023050235A1 (zh) | 一种探测参考信号srs的发送方法及其装置 | |
WO2023283782A1 (zh) | 一种信道状态反馈的方法及其装置 | |
WO2024026798A1 (zh) | 上行mimo传输的预编码矩阵确定方法及其装置 | |
WO2023065325A1 (zh) | 基于轨道角动量的共享信道传输及装置 | |
WO2023065326A1 (zh) | 一种通信模式的确定方法及其装置 | |
WO2023050152A1 (zh) | 终端能力上报方法、装置及存储介质 | |
WO2024044990A1 (zh) | 基于智能超表面的预编码方法及装置 | |
WO2023216164A1 (zh) | 一种智能超表面的预编码方法及装置 | |
WO2024026797A1 (zh) | 上行mimo传输的预编码矩阵确定方法及其装置 | |
WO2023168575A1 (zh) | 一种天线切换能力上报方法及其装置 | |
WO2024026796A1 (zh) | 上行mimo传输的预编码矩阵确定方法及其装置 | |
WO2024036570A1 (zh) | 基于智能超表面的预编码方法及装置 | |
WO2023184449A1 (zh) | 一种发送tri的方法及其装置、接收tri的方法及其装置 | |
WO2024050774A1 (zh) | 一种信息确定方法/装置/设备及存储介质 | |
WO2023201500A1 (zh) | 基于码本的pusch传输方法及其装置 | |
WO2023168574A1 (zh) | 一种天线切换能力上报方法及其装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21968706 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180104203.3 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |