WO2023077311A1 - 一种智能超表面ris的预编码方法及其装置 - Google Patents

一种智能超表面ris的预编码方法及其装置 Download PDF

Info

Publication number
WO2023077311A1
WO2023077311A1 PCT/CN2021/128457 CN2021128457W WO2023077311A1 WO 2023077311 A1 WO2023077311 A1 WO 2023077311A1 CN 2021128457 W CN2021128457 W CN 2021128457W WO 2023077311 A1 WO2023077311 A1 WO 2023077311A1
Authority
WO
WIPO (PCT)
Prior art keywords
ris
units
group
phase angle
array
Prior art date
Application number
PCT/CN2021/128457
Other languages
English (en)
French (fr)
Inventor
池连刚
杨立
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/128457 priority Critical patent/WO2023077311A1/zh
Priority to CN202180103213.5A priority patent/CN118104156A/zh
Publication of WO2023077311A1 publication Critical patent/WO2023077311A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a precoding method and device for an intelligent metasurface RIS.
  • Reconfigurable intelligence surface can reflect the signal incident on its surface to a specific direction through precoding technology, so as to enhance the signal strength of the receiving end and realize the control of the channel.
  • precoding technology different algorithms may be used to jointly design the RIS array and the precoding matrix at the network device side respectively.
  • the precoding scheme based on the far-field assumption will not hold. Therefore, how to precode RIS so that the far-field assumption is established becomes an important research direction.
  • Embodiments of the present disclosure provide a precoding method and device for an intelligent metasurface RIS, which can be applied in the field of communication technology.
  • an embodiment of the present disclosure provides a precoding method for a smart metasurface RIS, the method is configured to be executed by a terminal device, and the method includes:
  • the channel information of each group of RIS units in the RIS array determine the precoding matrix identifier PMI and the additional deflection phase angle corresponding to each group of the RIS units;
  • Sending first indication information where the first indication information is used to indicate the precoding matrix identifier and additional deflection phase angle corresponding to each group of the RIS units.
  • the second indication information is used to indicate the RIS unit groups included in the RIS array.
  • the sending the first indication information includes:
  • third indication information is used to indicate the number of rows and the number of columns of RIS units contained in the RIS array
  • the RIS array is grouped according to preset rules and the number of rows and columns of RIS units included in the RIS array.
  • the preset rule is any of the following:
  • the RIS units with intervals of F rows and intervals of R columns form a group
  • M, N, L, S, P, Q, F and R are respectively positive integers.
  • the receiving the third indication information includes:
  • the third indication information sent by the network device is received.
  • an embodiment of the present disclosure provides a method for precoding an intelligent metasurface RIS, the method is configured to be executed by a network device, and the method includes:
  • the first indication information is used to indicate the precoding matrix identifier PMI and additional deflection phase angle corresponding to each group of the RIS units;
  • the precoding matrix identifier PMI and the additional deflection phase angle corresponding to each group of RIS units are determined by the terminal device according to channel information of each group of RIS units in the RIS array.
  • the receiving the first indication information includes:
  • the RIS array is grouped according to preset rules and the number of rows and columns of RIS units included in the RIS array.
  • the preset rule is any of the following:
  • the RIS units with intervals of F rows and intervals of R columns form a group
  • M, N, L, S, P, Q, F and R are respectively positive integers.
  • the continuous deflection phase angles corresponding to each RIS unit and the additional deflection phase angles are respectively quantized to determine a final deflection phase corresponding to each RIS unit.
  • the determining the continuous deflection phase angle corresponding to each RIS unit in each group of the RIS units according to the PMI corresponding to each group of the RIS units includes:
  • the PMI corresponding to each group of the RIS units determine the horizontal dimension beamforming vector and the vertical dimension beamforming vector corresponding to each group of the RIS units;
  • the continuous deflection phase angle corresponding to each RIS unit in each group of the RIS units is determined according to the horizontal-dimensional beamforming vector and the vertical-dimensional beamforming vector corresponding to each group of the RIS units.
  • the determining the final offset phase corresponding to each of the RIS units includes:
  • the sum of the discrete deflection phase angle corresponding to each RIS unit and the quantized additional deflection phase angle is determined as the final offset phase corresponding to each RIS unit.
  • third indication information is used to indicate the number of rows and the number of columns of the RIS units included in the RIS array.
  • an embodiment of the present disclosure provides a method for precoding a smart metasurface RIS, the method is configured to be executed by an RIS array, and the method includes:
  • the first indication information is used to indicate the precoding matrix identifier PMI and additional deflection phase angle corresponding to each group of the RIS units;
  • the precoding matrix identifier PMI and the additional deflection phase angle corresponding to each group of RIS units are determined by the terminal device according to channel information of each group of RIS units in the RIS array.
  • the receiving the first indication information includes:
  • the continuous deflection phase angles corresponding to each RIS unit and the additional deflection phase angles are respectively quantized to determine a final deflection phase corresponding to each RIS unit.
  • the determining the continuous deflection phase angle corresponding to each RIS unit in each group of the RIS units according to the PMI corresponding to each group of the RIS units includes:
  • the PMI corresponding to each group of the RIS units determine the horizontal dimension beamforming vector and the vertical dimension beamforming vector corresponding to each group of the RIS units;
  • the continuous deflection phase angle corresponding to each RIS unit in each group of the RIS units is determined according to the horizontal-dimensional beamforming vector and the vertical-dimensional beamforming vector corresponding to each group of the RIS units.
  • the determining the final offset phase corresponding to each of the RIS units includes:
  • the sum of the discrete deflection phase angle corresponding to each RIS unit and the quantized additional deflection phase angle is determined as the final offset phase corresponding to each RIS unit.
  • the final offset phase corresponding to each of the RIS units is received.
  • the receiving the final offset phase corresponding to each of the RIS units includes:
  • the embodiment of the present disclosure provides a communication device, which has some or all functions of the terminal device in the method described in the first aspect above, for example, the functions of the device may have part or all of the functions in the present disclosure
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present disclosure.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the embodiment of the present disclosure provides a communication device, which has part or all of the functions of the network device in the method described in the second aspect above, for example, the functions of the device may have part or all of the functions in the present disclosure
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present disclosure.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the embodiment of the present disclosure provides a communication device, which has part or all of the functions of the RIS array in the method described in the second aspect above, for example, the functions of the device may have part or all of the functions in the present disclosure.
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present disclosure.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions
  • each of the above devices may include a transceiver module and a processing module, and the processing module is configured to support the device to perform corresponding functions in the above method.
  • the transceiver module is used to support the communication between the device and other devices.
  • the device may further include a storage module for coupling with the transceiver module and the processing module, which stores necessary computer programs and data of the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, executes the method described in the first aspect above.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, executes the method described in the third aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, the memory stores a computer program; the processor executes the computer program stored in the memory, so that the communication device performs The method described in the first aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device Execute the method described in the second aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device Execute the method described in the third aspect above.
  • an embodiment of the present disclosure provides a computer-readable storage medium for storing instructions used by the above-mentioned terminal device. When the instructions are executed, the terminal device executes the above-mentioned first aspect. method.
  • an embodiment of the present disclosure provides a computer-readable storage medium for storing instructions used by the above-mentioned network equipment, and when the instructions are executed, the network equipment executes the above-mentioned second aspect. method.
  • the embodiment of the present disclosure provides a computer-readable storage medium for storing the instructions used by the above-mentioned RIS array, and when the instructions are executed, the network device executes the above-mentioned third aspect.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the third aspect above.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal device to implement the functions involved in the first aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the network device to implement the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the RIS array to realize the functions involved in the third aspect, for example, determine or process the functions involved in the above method at least one of data and information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the third aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic flow chart of the precoding of a smart metasurface RIS provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic flow chart of the precoding of a smart metasurface RIS provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic flow chart of the precoding of a smart metasurface RIS provided by an embodiment of the present disclosure
  • Fig. 5 is a schematic flow chart of the precoding of a smart metasurface RIS provided by an embodiment of the present disclosure
  • Fig. 6 is a schematic flow chart of pre-coding of a smart metasurface RIS provided by an embodiment of the present disclosure
  • Fig. 7 is a schematic flow chart of precoding of a smart metasurface RIS provided by an embodiment of the present disclosure
  • Fig. 8 is a schematic flow chart of precoding of a smart metasurface RIS provided by an embodiment of the present disclosure
  • Fig. 9 is a schematic flow chart of precoding of a smart metasurface RIS provided by an embodiment of the present disclosure.
  • Fig. 10 is a schematic flow chart of precoding of a smart metasurface RIS provided by an embodiment of the present disclosure
  • Fig. 11 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • Fig. 12 is a schematic structural diagram of another communication device provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • Smart metasurface RIS also known as "reconfigurable smart surface” or “smart reflective surface”. From the outside, RIS is a flat sheet. However, it can be flexibly deployed in the wireless communication propagation environment, and realize the manipulation of the frequency, phase, polarization and other characteristics of reflected or refracted electromagnetic waves, so as to achieve the purpose of reshaping the wireless channel. Specifically, RIS can reflect the signal incident on its surface to a specific direction through precoding technology, thereby enhancing the signal strength at the receiving end and realizing channel control.
  • each PMI corresponds to a horizontal dimension beamforming vector and a vertical dimension beamforming vector
  • the precoding matrix can be obtained by multiplying the horizontal dimension beamforming vector and the vertical dimension beamforming vector
  • each element is a continuous deflection phase angle corresponding to one RIS unit in the RIS array.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a terminal device, a network device, and a RIS.
  • the number and shape of the devices shown in FIG. Two or more terminal devices, two or more network devices, two or more RIS devices.
  • the communication system shown in FIG. 1 includes a network device 11 , a terminal device 12 and an intelligent metasurface 13 as an example.
  • the network 13 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 13 may be an evolved base station (evolved NodeB, eNB), a next generation base station (next generation NodeB, gNB) in an NR system, a base station in other future mobile communication systems, or a wireless fidelity (Wireless Fidelity, WiFi) Access nodes in the system, etc.
  • eNB evolved NodeB
  • gNB next generation base station
  • WiFi wireless Fidelity
  • the network device 11 may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), where the CU may also be called a control unit (control unit).
  • the CU-DU structure can separate the network equipment, such as the protocol layer of the base station, and the functions of some protocol layers are placed in the CU for centralized control, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU. .
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • the smart metasurface 13 in the embodiment of the present disclosure may be a plane composed of a large number of low-cost passive passive reflection elements, and may be placed between network devices and terminal devices. Smart metasurfaces can be low-cost adaptive thin composite panels, similar to wallpaper, covering parts of walls, buildings, honeycombs, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 is a schematic flowchart of pre-coding of a smart metasurface RIS provided by an embodiment of the present disclosure.
  • the method is configured to be performed by a terminal device. As shown in Figure 2, the method may include but not limited to the following steps:
  • Step 21 according to the channel information of each group of RIS units in the RIS array, determine the precoding matrix identifier PMI and additional deflection phase angle corresponding to each group of RIS units.
  • the RIS array can perform different phase shifts on the received signal, so as to adjust the direction of the reflected beam.
  • it is necessary to configure the deflection phase angle of the RIS array that is, precode the RIS array.
  • different algorithms are used to jointly design the RIS array and the precoding matrix of the network device side. Since the scale of the RIS array is comparable to the propagation distance, the precoding scheme based on the far-field assumption will not be established.
  • the RIS arrays can be grouped first, so that the size and propagation distance of each group of RIS units are not comparable, so that the electromagnetic wave can be regarded as a plane wave, that is, to ensure that each group of RIS units conforms to the far-field assumption. Coding scheme, and then perform unified precoding for each group of RIS units and network equipment. Thus, the flexibility and reliability of using the RIS array are improved.
  • the channel information of each group of RIS units may be channel state information, such as signal scattering (Scattering), environmental fading (fading, multipath fading or shadowing fading), distance attenuation (power decay of distance) and other information.
  • signal scattering Scattering
  • environmental fading fading, multipath fading or shadowing fading
  • distance attenuation power decay of distance
  • the terminal device can perform joint design to determine the corresponding PMI identifier and additional deflection phase angle of each group of RIS units.
  • the PMIs corresponding to different groups of RIS units may be the same or different; the additional deflection phase angles corresponding to different groups of RIS units may be the same or different. This disclosure does not limit it.
  • Step 22 sending first indication information, wherein the first indication information is used to indicate the precoding matrix identifier and additional deflection phase angle corresponding to each group of RIS units.
  • the terminal device may send the first indication information to the RIS array; or, the terminal device may also send the first indication information to the network device.
  • the terminal device sends the first indication information to the RIS array or network device to indicate the precoding matrix identifier and additional deflection phase angle corresponding to each group of RIS units, so that the RIS array or network device according to each group of RIS units The corresponding PMI and the additional deflection phase angle are precoded for each group of RIS units.
  • the terminal device first determines the precoding matrix identifier PMI and the additional deflection phase angle corresponding to each group of RIS units according to the channel information of each group of RIS units in the RIS array, and then indicates to the network device or the RIS array that each group The identification of the precoding matrix corresponding to the RIS unit and the additional deflection phase angle, so that the network equipment or the RIS array performs precoding on each group of RIS units. In this way, not only the failure of the precoding scheme caused by the RIS array not satisfying the far-field assumption is avoided, but also the complexity of RIS precoding is reduced.
  • FIG. 3 is a schematic flowchart of another smart metasurface RIS precoding method provided by an embodiment of the present disclosure.
  • the method is configured to be performed by a terminal device. As shown in Figure 3, the method may include but not limited to the following steps:
  • Step 31 receiving second indication information, wherein the second indication information is used to indicate the RIS unit groups included in the RIS array.
  • the terminal device may determine the RIS unit groups contained in the RIS array by receiving the second indication information sent by the network device. That is, the grouping mode of the RIS units included in the RIS array is configured by the network device.
  • Step 32 according to the channel information of each group of RIS units in the RIS array, determine the precoding matrix identifier PMI and additional deflection phase angle corresponding to each group of RIS units.
  • Step 33 sending first indication information, wherein the first indication information is used to indicate the precoding matrix identifier and additional deflection phase angle corresponding to each group of RIS units.
  • step 32 and step 33 reference may be made to the detailed steps in other embodiments of the present disclosure, which will not be described in detail here.
  • the terminal device first receives the second indication information sent by the network device to indicate the RIS unit group contained in the RIS array, and then determines the RIS unit group of each group according to the channel information of each group of RIS units in the RIS array.
  • the corresponding precoding matrix identification PMI and additional deflection phase angle and finally indicate the precoding matrix identification and additional deflection phase angle corresponding to each group of RIS units to the network equipment or RIS array, so that the network equipment or RIS array performs each group of RIS units precoded.
  • FIG. 4 is a schematic flowchart of another smart metasurface RIS precoding method provided by an embodiment of the present disclosure.
  • the method is configured to be performed by a terminal device. As shown in Figure 4, the method may include but not limited to the following steps:
  • Step 41 receiving third indication information, wherein the third indication information is used to indicate the number of rows and columns of RIS units included in the RIS array.
  • the terminal device may receive third indication information sent by the network device, where the third indication information is used to indicate the number of rows and the number of columns of RIS units included in the RIS array.
  • the terminal device can group the RIS array according to the number of rows and columns of RIS units included in the RIS array.
  • Step 42 grouping the RIS arrays according to preset rules and the number of rows and columns of RIS units contained in the RIS arrays.
  • the preset rule can be any of the following:
  • the RIS units with intervals of F rows and intervals of R columns form a group
  • M, N, L, S, P, Q, F and R are respectively positive integers.
  • Step 43 according to the channel information of each group of RIS units in the RIS array, determine the precoding matrix identifier PMI and additional deflection phase angle corresponding to each group of RIS units.
  • Step 44 sending first indication information, wherein the first indication information is used to indicate the precoding matrix identifier and additional deflection phase angle corresponding to each group of RIS units.
  • step 43 and step 44 reference may be made to the detailed steps in other embodiments of the present disclosure, which will not be described in detail here.
  • the terminal device first receives the third indication information used to indicate the number of rows and columns of RIS units contained in the RIS array, and then according to the preset rules and the number of rows of RIS units contained in the RIS array and the number of columns, the RIS arrays are grouped, and then according to the channel information of each group of RIS units in the RIS array, the precoding matrix identifier PMI and the additional deflection phase angle corresponding to each group of RIS units are determined, and finally each group is indicated to the network device or RIS array.
  • the precoding matrix identification and the additional deflection phase angle corresponding to the group of RIS units so that the network equipment or the RIS array performs precoding on each group of RIS units. In this way, not only the problem of failure of the precoding scheme caused by the RIS array not satisfying the far-field assumption is avoided, but also the complexity of RIS precoding is reduced.
  • FIG. 5 is a schematic flowchart of precoding another smart metasurface RIS provided by an embodiment of the present disclosure.
  • the method is configured to be performed by a network device. As shown in Figure 5, the method may include but not limited to the following steps:
  • Step 51 receiving first indication information, wherein the first indication information is used to indicate the precoding matrix identification PMI and additional deflection phase angle corresponding to each group of RIS units; wherein, the precoding matrix identification PMI and additional deflection angle corresponding to each group of RIS units
  • the deflection phase angle is determined by the terminal equipment according to the channel information of each group of RIS units in the RIS array.
  • the first indication information may be sent by the terminal equipment, that is, after the terminal equipment determines the PMI and additional deflection phase angle information corresponding to each group of RIS units, it can use the first indication information to set the corresponding PMI of each group of RIS units.
  • the PMI and the additional deflection phase angle are sent to the network equipment.
  • the network device may identify the PMI and the additional deflection phase angle according to the precoding matrix identifier corresponding to each group of RIS units, Each group of RIS units is precoded.
  • the first indication information received by the network device indicates the PMI and additional deflection phase angle corresponding to each group of RIS units, and then the network device can perform precoding on each group of RIS units. In this way, not only the problem of failure of the precoding scheme caused by the RIS array not satisfying the far-field assumption is avoided, but also the complexity of RIS precoding is reduced.
  • FIG. 6 is a schematic flowchart of pre-coding of another smart metasurface RIS provided by an embodiment of the present disclosure.
  • the method is configured to be performed by a network device. As shown in Figure 6, the method may include but not limited to the following steps:
  • Step 61 determine the number of rows and columns of RIS units contained in the RIS array.
  • the RIS array may report the number of rows and columns of the RIS units it contains to the network device.
  • the network device can group the RIS arrays according to the number of rows and columns of RIS units contained in the RIS array.
  • the network device may also send third indication information to the terminal device, where the third indication information is used to indicate the number of rows and the number of columns of RIS units included in the RIS array.
  • the terminal device can group the RIS arrays according to the number of rows and columns of RIS units contained in the RIS array indicated by the network device.
  • Step 62 grouping the RIS arrays according to preset rules and the number of rows and columns of RIS units contained in the RIS arrays.
  • the preset rule can be any of the following:
  • the RIS units with intervals of F rows and intervals of R columns form a group
  • M, N, L, S, P, Q, F and R are respectively positive integers.
  • Step 63 sending second indication information, where the second indication information is used to indicate the RIS unit groups included in the RIS array.
  • the network device can send the RIS unit groups contained in the RIS array to the terminal equipment, so that the terminal equipment can determine each group according to the channel information of each group of RIS units in the RIS array.
  • the precoding matrix corresponding to the RIS unit identifies the PMI and the additional deflection phase angle.
  • Step 64 receiving first indication information sent by the terminal device.
  • the first indication information is used to indicate the precoding matrix identifier PMI and the additional deflection phase angle corresponding to each group of RIS units, wherein the precoding matrix identifier PMI and the additional deflection phase angle corresponding to each group of RIS units are determined by the terminal equipment according to the RIS array The channel information of each group of RIS units is determined.
  • step 64 for the specific implementation form of step 64, reference may be made to the detailed steps in other embodiments of the present disclosure, which will not be repeated here.
  • the network device first determines the number of rows and columns of RIS units contained in the RIS array, and then performs the RIS array according to preset rules and the number of rows and columns of RIS units contained in the RIS array. grouping, and then indicate the RIS unit groups contained in the RIS array to the terminal equipment, and then receive the precoding matrix identifier PMI corresponding to each group of RIS units indicated by the terminal equipment and the first indication information of the additional deflection phase angle, and finally, the network equipment can Each group of RIS units is precoded. In this way, not only the problem of failure of the precoding scheme caused by the RIS array not satisfying the far-field assumption is avoided, but also the complexity of RIS precoding is reduced.
  • FIG. 7 is a schematic flowchart of pre-coding of another smart metasurface RIS provided by an embodiment of the present disclosure.
  • the method is configured to be performed by a network device. As shown in Figure 7, the method may include but not limited to the following steps:
  • Step 71 receiving first indication information, wherein the first indication information is used to indicate the PMI and additional deflection phase angle corresponding to each group of RIS units; wherein, the precoding matrix identifier PMI and additional deflection phase angle corresponding to each group of RIS units are The terminal device is determined according to the channel information of each group of RIS units in the RIS array.
  • step 71 for the specific implementation form of step 71, reference may be made to the detailed steps in other embodiments of the present disclosure, which will not be repeated here.
  • Step 72 Determine the continuous deflection phase angle corresponding to each RIS unit in each group of RIS units according to the PMI corresponding to each group of RIS units.
  • the network device can first determine the horizontal dimension beamforming vector and the vertical dimension beamforming vector corresponding to each group of RIS units according to the PMI corresponding to each group of RIS units, and then according to the horizontal dimension beamforming vector corresponding to each group of RIS units The shape vector and the vertical beamforming vector determine the continuous deflection phase angle corresponding to each RIS unit in each group of RIS units.
  • the PMI corresponding to each group of RIS units is associated with a horizontal beamforming vector and a vertical beamforming vector respectively. Therefore, after determining the horizontal beamforming vector and vertical beamforming vector corresponding to each group of RIS units After the beamforming vector, the horizontal dimension beamforming vector and the vertical dimension beamforming vector corresponding to each group of RIS units can be multiplied to obtain the precoding matrix, that is, to determine the correspondence of each RIS unit in each group of RIS units The continuous deflection phase angle of .
  • Step 73 Based on the discrete deflection phase angles supported by the RIS array, respectively quantify the continuous deflection phase angle and the additional deflection phase angle corresponding to each RIS unit, and determine the final deflection phase corresponding to each RIS unit.
  • the RIS array can first report the discrete deflection angle supported by itself to the network device, or the network device can determine the discrete deflection phase angle supported by the RIS array based on the agreement or configuration information, and then based on the RIS array can support
  • the discrete deflection phase angle of each RIS unit is quantified respectively for the continuous deflection phase angle and the additional deflection phase angle corresponding to each RIS unit, and the final deflection phase corresponding to each RIS unit is determined.
  • the network device may first determine the discrete deflection phase angle with the smallest absolute value of the difference between the continuous deflection phase angles corresponding to the RIS unit as the discrete deflection phase angle corresponding to each RIS unit Angle; then the discrete deflection phase angle with the minimum absolute value of the difference between the additional deflection phase angles corresponding to the RIS unit is determined to determine the quantized additional deflection phase angle corresponding to the RIS unit; finally the discrete deflection phase angle corresponding to the RIS unit The sum of the phase angle and the quantized additional deflection phase angle is determined as the final deflection phase corresponding to each RIS unit.
  • the continuous deflection phase angle of RIS#1 unit is ⁇
  • the additional deflection phase angle is ⁇ d
  • the discrete deflection phase angles supported by the RIS array are ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4
  • the continuous deflection phase angle corresponding to RIS#1 unit The discrete deflection phase angle with the smallest absolute value of the difference between deflection phase angles ⁇ is ⁇ 1, then ⁇ 1 is the discrete deflection phase angle corresponding to RIS#1 unit; the difference between the additional deflection phase angle ⁇ d corresponding to RIS#1 unit
  • the discrete deflection phase angle with the smallest absolute value is ⁇ 3, and ⁇ 3 is the quantized additional deflection phase angle corresponding to RIS#1; then the final deflection phase corresponding to RIS#1 unit is ⁇ 1+ ⁇ 3.
  • Step 74 sending the final offset phase corresponding to each RIS unit.
  • the network device may send the final offset phase corresponding to each RIS unit to the RIS array; or, the network device may also send the final offset phase corresponding to each RIS unit to the terminal device.
  • the network device determines the final offset phase corresponding to each RIS unit, it can send the final offset phase corresponding to each RIS unit to the RIS array, or send the final offset phase corresponding to each RIS unit
  • the phase is sent to the terminal device, and the terminal device forwards it to the RIS array, so that each RIS unit group in the RIS array can reflect the incident signal based on the corresponding final offset phase, so that the terminal device can accurately receive the signal sent by the network device. information, improving the quality of communication services.
  • the network device first receives the first indication information used to indicate the precoding matrix identifier PMI and the additional deflection phase angle corresponding to each group of RIS units, and then determines each group of RIS units according to the PMI corresponding to each group of RIS units.
  • FIG. 8 is a schematic flowchart of precoding another smart metasurface RIS provided by an embodiment of the present disclosure.
  • the method is configured to be performed by a RIS array. As shown in Figure 8, the method may include but not limited to the following steps:
  • Step 81 receiving first indication information, wherein the first indication information is used to indicate the precoding matrix identification PMI and additional deflection phase angle corresponding to each group of RIS units; wherein, the precoding matrix identification PMI and additional deflection phase angle corresponding to each group of RIS units
  • the deflection phase angle is determined by the terminal equipment according to the channel information of each group of RIS units in the RIS array.
  • the RIS array may receive the first indication information sent by the network device; or, the RIS array may also receive the first indication information sent by the terminal device. That is, after the terminal device determines the precoding matrix identifier PMI and additional deflection phase angle corresponding to each group of RIS units, it can send the precoding matrix identifier PMI and additional deflection phase angle corresponding to each group of RIS units to the network device, and the network device forwarded to the RIS array. Alternatively, the terminal device may also directly send the precoding matrix identifier PMI and the additional deflection phase angle corresponding to each group of RIS units to the RIS array.
  • the RIS array receives the precoding matrix identification PMI and additional deflection phase angle corresponding to each group of RIS units sent by the terminal device or network device, it can The phase angle is precoded for each group of RIS units.
  • the first indication information received by the RIS array indicates the PMI and additional deflection phase angle corresponding to each group of RIS units, and then the RIS array can perform precoding on each group of RIS units. In this way, not only the problem of failure of the precoding scheme caused by the RIS array not satisfying the far-field assumption is avoided, but also the complexity of RIS precoding is reduced.
  • FIG. 9 is a schematic flowchart of pre-coding of another smart metasurface RIS provided by an embodiment of the present disclosure.
  • the method is configured to be performed by a RIS array. As shown in Figure 9, the method may include but not limited to the following steps:
  • Step 91 receiving first indication information, wherein the first indication information is used to indicate the precoding matrix identification PMI and additional deflection phase angle corresponding to each group of RIS units; wherein, the precoding matrix identification PMI and additional deflection angle corresponding to each group of RIS units
  • the deflection phase angle is determined by the terminal equipment according to the channel information of each group of RIS units in the RIS array.
  • step 91 for the specific implementation form of step 91, reference may be made to the detailed steps in other embodiments of the present disclosure, which will not be described in detail here.
  • Step 92 Determine the continuous deflection phase angle corresponding to each RIS unit in each group of RIS units according to the PMI corresponding to each group of RIS units.
  • the RIS array can first determine the horizontal dimension beamforming vector and the vertical dimension beamforming vector corresponding to each group of RIS units according to the PMI corresponding to each group of RIS units, and then according to the horizontal dimension beamforming vector corresponding to each group of RIS units The shape vector and the vertical dimension beamforming vector determine the continuous deflection phase angle corresponding to each RIS unit in each group of RIS units.
  • the PMI corresponding to each group of RIS units is associated with a horizontal beamforming vector and a vertical beamforming vector respectively. Therefore, after determining the horizontal beamforming vector and vertical beamforming vector corresponding to each group of RIS units After the beamforming vector, the horizontal dimension beamforming vector and the vertical dimension beamforming vector corresponding to each group of RIS units can be multiplied to obtain the precoding matrix, that is, to determine the correspondence of each RIS unit in each group of RIS units The continuous deflection phase angle of .
  • Step 93 Based on the discrete deflection phase angles supported by the RIS array, respectively quantify the continuous deflection phase angle and the additional deflection phase angle corresponding to each RIS unit, and determine the final deflection phase corresponding to each RIS unit.
  • the RIS array may first determine the discrete deflection phase angle with the smallest absolute value of the difference between the continuous deflection phase angles corresponding to the RIS unit as the discrete deflection phase angle corresponding to each RIS unit Angle; then the discrete deflection phase angle with the minimum absolute value of the difference between the additional deflection phase angles corresponding to the RIS unit is determined as the quantized additional deflection phase angle corresponding to the RIS unit; finally the corresponding RIS unit The sum of the discrete deflection phase angle and the quantized additional deflection phase angle is determined as the final deflection phase corresponding to each RIS unit.
  • the continuous deflection phase angle of RIS#1 unit is ⁇
  • the additional deflection phase angle is ⁇ d
  • the discrete deflection phase angles supported by the RIS array are ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4
  • the continuous deflection phase angle corresponding to RIS#1 unit The discrete deflection phase angle with the smallest absolute value of the difference between deflection phase angles ⁇ is ⁇ 1, then ⁇ 1 is the discrete deflection phase angle corresponding to RIS#1 unit; the difference between the additional deflection phase angle ⁇ d corresponding to RIS#1 unit
  • the discrete deflection phase angle with the smallest absolute value is ⁇ 3, and ⁇ 3 is the quantized additional deflection phase angle corresponding to RIS#1; then the final deflection phase corresponding to RIS#1 unit is ⁇ 1+ ⁇ 3.
  • the RIS array first receives the first indication information used to indicate the precoding matrix identifier PMI and the additional deflection phase angle corresponding to each group of RIS units, and then determines each group of RIS units according to the PMI corresponding to each group of RIS units.
  • FIG. 10 is a schematic flowchart of precoding another smart metasurface RIS provided by an embodiment of the present disclosure.
  • the method is configured to be performed by a RIS array. As shown in Figure 10, the method may include but not limited to the following steps:
  • Step 101 receiving the final offset phase corresponding to each RIS unit.
  • the final offset phase corresponding to each RIS unit can be determined by the network equipment, so , the RIS array can receive the final offset phase corresponding to each RIS unit determined by the network device.
  • the RIS array may receive the final offset phase corresponding to each RIS unit sent by the terminal device; or, the RIS array may also receive the final offset phase corresponding to each RIS unit sent by the network device. That is, after the network device determines the final offset phase corresponding to each RIS unit, it can directly send the final offset phase corresponding to each RIS unit to the RIS array. Alternatively, the network device may also send the final offset phase corresponding to each RIS unit to the terminal device, and the terminal device forwards it to the RIS array.
  • the network device first determines the final offset phase corresponding to each RIS unit in the RIS array according to the precoding matrix identifier PMI and the additional deflection phase angle corresponding to each group of RIS units, and then the RIS array passes through the receiving network device Determine the final offset phase corresponding to each RIS unit. In this way, not only the problem of failure of the precoding scheme caused by the RIS array not satisfying the far-field assumption is avoided, but also the complexity of RIS precoding is reduced.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of core network devices, terminal devices, and access network devices respectively.
  • the core network equipment, terminal equipment, and access network equipment may include hardware structures and software modules, in the form of hardware structures, software modules, or hardware structures plus software modules. Realize the above functions. A certain function among the above functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 11 is a schematic structural diagram of a communication device 110 provided by an embodiment of the present disclosure.
  • the communication device 110 shown in FIG. 11 may include a transceiver module 1101 and a processing module 1102 .
  • the transceiver module 1101 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 1101 can realize the sending function and/or the receiving function.
  • the communication device 110 may be a terminal device (such as the terminal device in the foregoing method embodiments), or a device in the terminal device, or a device that can be matched with the terminal device.
  • the communication device 110 may be a network device (such as the network device in the foregoing method embodiments), or a device in the network device, or a device that can be matched with the network device.
  • the communication device 110 may also be an RIS array, may also be a device in the RIS array, and may also be a device that can be matched with the RIS array.
  • the communication device 110 is a terminal device (such as the terminal device in the foregoing method embodiment):
  • the processing module 1102 is configured to determine the precoding matrix identifier PMI and the additional deflection phase angle corresponding to each group of RIS units according to the channel information of each group of RIS units in the RIS array;
  • the transceiver module 1101 is configured to send first indication information, wherein the first indication information is used to indicate the precoding matrix identifier and additional deflection phase angle corresponding to each group of RIS units.
  • the transceiver module 1101 is also specifically used for:
  • the second indication information is received, where the second indication information is used to indicate the RIS unit groups included in the RIS array.
  • the transceiver module 1101 is also specifically used for:
  • the transceiver module 1101 is further configured to receive third indication information, where the third indication information is used to indicate the number of rows and columns of RIS units contained in the RIS array;
  • the processing module 1102 is further configured to group the RIS array according to preset rules and the number of rows and columns of RIS units contained in the RIS array.
  • the default rule is any of the following:
  • the RIS units with intervals of F rows and intervals of R columns form a group
  • M, N, L, S, P, Q, F and R are respectively positive integers.
  • the transceiver module 1101 is also specifically used for:
  • the third indication information sent by the network device is received.
  • the terminal device first determines the precoding matrix identifier PMI and the additional deflection phase angle corresponding to each group of RIS units according to the channel information of each group of RIS units in the RIS array, and then indicates to the network device or RIS array that each group The identification of the precoding matrix corresponding to the RIS unit and the additional deflection phase angle, so that the network equipment or the RIS array performs precoding on each group of RIS units. In this way, not only the failure of the precoding scheme caused by the RIS array not satisfying the far-field assumption is avoided, but also the complexity of RIS precoding is reduced.
  • the communication device 110 is a network device (such as the network device in the aforementioned method embodiments):
  • the transceiver module 1101 is configured to receive first indication information, wherein the first indication information is used to indicate the precoding matrix identifier PMI and additional deflection phase angle corresponding to each group of RIS units; wherein, the precoding matrix corresponding to each group of RIS units
  • the identification PMI and the additional deflection phase angle are determined by the terminal equipment according to the channel information of each group of RIS units in the RIS array.
  • the transceiver module 1101 is also specifically used for:
  • the first indication information sent by the terminal device is received.
  • the transceiver module 1101 is also specifically used for:
  • a processing module 1102 is also included, specifically for:
  • the RIS arrays are grouped according to preset rules and the number of rows and columns of RIS units contained in the RIS arrays.
  • the default rule is any of the following:
  • the RIS units with intervals of F rows and intervals of R columns form a group
  • M, N, L, S, P, Q, F and R are respectively positive integers.
  • processing module 1102 is also specifically used for:
  • the continuous deflection phase angles and additional deflection phase angles corresponding to each RIS unit are respectively quantified to determine the final deflection phase corresponding to each RIS unit.
  • processing module 1102 is also specifically used for:
  • the continuous deflection phase angle corresponding to each RIS unit in each group of RIS units is determined.
  • processing module 1102 is also specifically used for:
  • the sum of the discrete deflection phase angle corresponding to each RIS unit and the quantized additional deflection phase angle is determined as the final offset phase corresponding to each RIS unit.
  • the transceiver module 1101 is also specifically used for:
  • Sending third indication information where the third indication information is used to indicate the number of rows and the number of columns of the RIS units included in the RIS array.
  • the transceiver module 1101 is also specifically used for:
  • the final offset phase corresponding to each RIS unit is sent to the terminal device.
  • the first indication information received by the network device indicates the PMI and additional deflection phase angle corresponding to each group of RIS units, and then the network device can perform precoding on each group of RIS units. In this way, not only the problem of failure of the precoding scheme caused by the RIS array not satisfying the far-field assumption is avoided, but also the complexity of RIS precoding is reduced.
  • the communication device 110 is an RIS array (such as the RIS array in the aforementioned method embodiment):
  • the transceiver module 1101 is configured to receive first indication information, wherein the first indication information is used to indicate the precoding matrix identifier PMI and additional deflection phase angle corresponding to each group of RIS units; wherein, the precoding matrix corresponding to each group of RIS units
  • the identification PMI and the additional deflection phase angle are determined by the terminal equipment according to the channel information of each group of RIS units in the RIS array.
  • the transceiver module 1101 is also specifically used for:
  • a processing module 1102 is also included, specifically for:
  • the continuous deflection phase angles and additional deflection phase angles corresponding to each RIS unit are respectively quantified to determine the final deflection phase corresponding to each RIS unit.
  • processing module 1102 is also specifically used for:
  • the continuous deflection phase angle corresponding to each RIS unit in each group of RIS units is determined.
  • processing module 1102 is also specifically used for:
  • the sum of the discrete deflection phase angle corresponding to each RIS unit and the quantized additional deflection phase angle is determined as the final offset phase corresponding to each RIS unit.
  • the transceiver module 1101 is also specifically used for:
  • the final offset phase corresponding to each RIS unit is received.
  • the transceiver module 1101 is also specifically used for:
  • the first indication information received by the RIS array indicates the PMI and additional deflection phase angle corresponding to each group of RIS units, and then the RIS array can perform precoding on each group of RIS units. In this way, not only the problem of failure of the precoding scheme caused by the RIS array not satisfying the far-field assumption is avoided, but also the complexity of RIS precoding is reduced.
  • FIG. 12 is a schematic structural diagram of another communication device 120 provided by an embodiment of the present disclosure.
  • the communication device 120 may be a network device, or a terminal device (such as the terminal device in the foregoing method embodiment), may also be a RIS array, or may be a chip, a chip system, or a processor that supports the network device to implement the above method, etc. , may also be a chip, a chip system, or a processor that supports the terminal device to implement the above method, or may be a chip, a chip system, or a processor that supports the RIS array to implement the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 120 may include one or more processors 1201 .
  • the processor 1201 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control and execute computer programs on communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and data processing for computer programs.
  • the communication device 120 may further include one or more memories 1202, on which a computer program 1204 may be stored, and the processor 1201 executes the computer program 1204, so that the communication device 120 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 1202 .
  • the communication device 120 and the memory 1202 can be set separately or integrated together.
  • the communication device 120 may further include a transceiver 1205 and an antenna 1206 .
  • the transceiver 1205 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1205 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 120 may further include one or more interface circuits 1207 .
  • the interface circuit 1207 is used to receive code instructions and transmit them to the processor 1201 .
  • the processor 1201 executes the code instructions to enable the communication device 120 to execute the methods described in the foregoing method embodiments.
  • the communication device 120 is a terminal device (such as the terminal device in the aforementioned method embodiment): the transceiver 1205 is used to execute step 22 in FIG. 2; step 31 and step 33 in FIG. 3; step 41 and step 44 in FIG. 4 etc.
  • the processor 1201 is used to execute step 21 in FIG. 2 ; step 32 in FIG. 3 ; step 42 and step 43 in FIG. 4 , and so on.
  • the communication device 120 is a network device: the transceiver 1205 is used to execute step 51 in FIG. 5 ; to execute steps 63 and 64 in FIG. 6 ; and to execute steps 71 and 74 in FIG. 7 , and so on.
  • the processor 1201 is configured to execute step 61 and step 62 in FIG. 6 ; step 72 and step 73 in FIG. 7 , and so on.
  • the communication device 120 is a RIS matrix: the transceiver 1205 can be used to perform step 81 in FIG. 8 , step 91 in FIG. 9 , step 101 in FIG. 10 , and so on.
  • the processor 1201 can be used to execute step 92 and step 93 in FIG. 9 and so on.
  • the processor 1201 may include a transceiver for implementing receiving and sending functions.
  • the transceiver can be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 1201 may store a computer program 1203 , and the computer program 1203 runs on the processor 1201 to enable the communication device 120 to execute the methods described in the foregoing method embodiments.
  • the computer program 1203 may be solidified in the processor 1201, and in this case, the processor 1201 may be implemented by hardware.
  • the communication device 120 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication devices described in the above embodiments may be RIS arrays, network devices, or terminal devices (such as the terminal devices in the aforementioned method embodiments), but the scope of the communication devices described in this disclosure is not limited thereto, and the structure of the communication devices It is not limited by Fig. 12 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 13 includes a processor 1301 and an interface 1302 .
  • the number of processors 1301 may be one or more, and the number of interfaces 1302 may be more than one.
  • the interface 1302 is used to execute step 22 in FIG. 2 ; step 31 and step 33 in FIG. 3 ; step 41 and step 44 in FIG. 4 , and so on.
  • the processor 1301 is used to execute step 21 in FIG. 2 ; step 32 in FIG. 3 ; step 42 and step 43 in FIG. 4 , and so on.
  • the chip is used to implement the functions of the network device in the embodiments of the present disclosure.
  • the interface 1302 is used to execute step 51 in FIG. 5 ; to execute steps 63 and 64 in FIG. 6 ; and to execute steps 71 and 74 in FIG. 7 , and so on.
  • the processor 1301 is used to execute step 61 and step 62 in FIG. 6 ; step 72 and step 73 in FIG. 7 , and so on.
  • the interface 1302 is used to execute step 81 in FIG. 8 , step 91 in FIG. 9 , step 101 in FIG. 10 , and so on.
  • the processor 1301 can be used to execute step 92 and step 93 in FIG. 9 and so on.
  • the chip further includes a memory 1303 for storing necessary computer programs and data.
  • the embodiment of the present disclosure also provides a communication system, the system includes the communication device as the terminal device and the communication device as the network device in the aforementioned embodiment of Figure 11, or the system includes the communication device as the terminal device in the aforementioned embodiment of Figure 12 devices and communication devices as network devices.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • first, second, and third may use terms such as first, second, and third to describe various information, such information should not be limited to these terms. These terms are only used to distinguish information of the same type from one another.
  • first information may also be called second information, and similarly, second information may also be called first information.
  • second information may also be called first information.
  • the words “if” and “if” may be construed as “at” or “when” or “in response to a determination” or "under circumstances”.
  • each table in the present disclosure may be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in the present disclosure.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments, such as splitting and merging can be made based on the above table.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefinition in the present disclosure can be understood as definition, predefinition, storage, prestorage, prenegotiation, preconfiguration, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请公开了一种智能超表面RIS的预编码方法及其装置,其中,所述方法被配置为由终端设备执行,所述方法包括:根据RIS阵列中每组RIS单元的信道信息,确定每组所述RIS单元对应的预编码矩阵标识PMI及附加偏转相角;发送第一指示信息,其中,所述第一指示信息用于指示每组所述RIS单元对应的预编码矩阵标识及附加偏转相角。由此,终端设备向网络设备或者RIS阵列指示每组RIS单元对应的预编码矩阵标识及附加偏转相角,以使网络设备或RIS阵列对每组RIS单元进行预编码,不仅避免了RIS阵列由于不满足远场假设,而导致预编码方案失败的问题,而且降低了RIS预编码的复杂度。

Description

一种智能超表面RIS的预编码方法及其装置 技术领域
本公开涉及通信技术领域,尤其涉及一种智能超表面RIS的预编码方法及其装置。
背景技术
智能超表面(Reconfigurable intelligence surface,RIS)可以通过预编码技术,将入射到其表面的信号反射到特定的方向,从而增强接收端信号强度,实现对信道的控制。相关预编码技术中,可以采用不同的算法分别对RIS阵列及网络设备端的预编码矩阵进行联合设计。但是,在RIS阵列的大小与传播距离具有可比性的情况下,会导致基于远场假设的预编码方案不成立。因此,如何对RIS进行预编码,以使远场假设成立成为重要的研究方向。
发明内容
本公开实施例提供一种智能超表面RIS的预编码方法及其装置,可以应用于通信技术领域。
第一方面,本公开实施例提供一种智能超表面RIS的预编码方法,该方法被配置为由终端设备执行,该方法包括:
根据RIS阵列中每组RIS单元的信道信息,确定每组所述RIS单元对应的预编码矩阵标识PMI及附加偏转相角;
发送第一指示信息,其中,所述第一指示信息用于指示每组所述RIS单元对应的预编码矩阵标识及附加偏转相角。
在一种实现方式中,还包括:
接收第二指示信息,其中,所述第二指示信息用于指示所述RIS阵列中包含的RIS单元组。
在一种实现方式中,所述发送第一指示信息,包括:
向所述RIS阵列发送所述第一指示信息;
或者,向网络设备发送所述第一指示信息。
在一种实现方式中,还包括:
接收第三指示信息,其中,所述第三指示信息用于指示所述RIS阵列中包含的RIS单元的行数和列数;
依据预设的规则及所述RIS阵列中包含的RIS单元的行数和列数,将所述RIS阵列进行分组。
在一种实现方式中,所述预设的规则为以下任一项:
连续的M行、且连续的N列的RIS单元为一组;
连续的L行、且间隔S列的RIS单元为一组;
间隔P行、且连续的Q列的RIS单元为一组;以及
间隔F行、且间隔R列的RIS单元为一组;
其中,M、N、L、S、P、Q、F以及R分别为正整数。
在一种实现方式中,所述接收第三指示信息,包括:
接收网络设备发送的第三指示信息。
第二方面,本公开实施例提供一种智能超表面RIS的预编码方法,该方法被配置为由网络设备执行,该方法包括:
接收第一指示信息,其中,所述第一指示信息用于指示每组所述RIS单元对应的预编码矩阵标识PMI及附加偏转相角;
其中,所述每组所述RIS单元对应的预编码矩阵标识PMI及附加偏转相角是终端设备根据RIS阵列中每组RIS单元的信道信息确定的。
在一种实现方式中,所述接收第一指示信息,包括:
接收终端设备发送的所述第一指示信息。
在一种实现方式中,还包括:
发送第二指示信息,其中,所述第二指示信息用于指示所述RIS阵列中包含的RIS单元组。
在一种实现方式中,还包括:
确定所述RIS阵列中包含的RIS单元的行数和列数;
依据预设的规则及所述RIS阵列中包含的RIS单元的行数和列数,将所述RIS阵列进行分组。
在一种实现方式中,所述预设的规则为以下任一项:
连续的M行、且连续的N列的RIS单元为一组;
连续的L行、且间隔S列的RIS单元为一组;
间隔P行、且连续的Q列的RIS单元为一组;以及
间隔F行、且间隔R列的RIS单元为一组;
其中,M、N、L、S、P、Q、F以及R分别为正整数。
在一种实现方式中,还包括:
根据每组所述RIS单元对应的PMI,确定每组所述RIS单元中每个RIS单元对应的连续偏转相角;
基于所述RIS阵列可支持的离散偏转相角,分别对每个RIS单元对应的连续偏转相角及所述附加偏转相角进行量化,确定每个所述RIS单元对应的最终偏移相位。
在一种实现方式中,所述根据每组所述RIS单元对应的PMI,确定每组所述RIS单元中每个RIS单元对应的连续偏转相角,包括:
根据每组所述RIS单元对应的PMI,确定每组所述RIS单元对应的水平维波束赋形向量及垂直维波束赋形向量;
根据每组所述RIS单元对应的所述水平维波束赋形向量及垂直维波束赋形向量,确定每组所述RIS单元中每个RIS单元对应的连续偏转相角。
在一种实现方式中,所述确定每个所述RIS单元对应的最终偏移相位,包括:
将与每个所述RIS单元对应的连续偏转相角间的差值的绝对值最小的离散偏转相角,确定为每个所述RIS单元对应的离散偏转相角;
将与每个所述RIS单元对应的附加偏转相角间的差值的绝对值最小的离散偏转相角,确定为每组所述RIS单元对应的量化后的附加偏转相角;
将每个所述RIS单元对应的离散偏转相角与所述量化后的附加偏转相角的和,确定为每个所述RIS单元对应的最终偏移相位。
在一种实现方式中,还包括:
发送第三指示信息,其中,所述第三指示信息用于指示所述RIS阵列中包含的RIS单元的行数和列数。
在一种实现方式中,还包括:
将每个所述RIS单元对应的最终偏移相位发送给所述RIS阵列;
或者,将每个所述RIS单元对应的最终偏移相位发送给所述终端设备。
第三方面,本公开实施例提供一种智能超表面RIS的预编码方法,该方法被配置为由RIS阵列执行,该方法包括:
接收第一指示信息,其中,所述第一指示信息用于指示每组所述RIS单元对应的预编码矩阵标识PMI及附加偏转相角;
其中,所述每组所述RIS单元对应的预编码矩阵标识PMI及附加偏转相角是终端设备根据RIS阵列中每组RIS单元的信道信息确定的。
在一种实现方式中,所述接收第一指示信息,包括:
接收网络设备发送的所述第一指示信息;
或者,接收终端设备发送的所述第一指示信息。
在一种实现方式中,还包括:
根据每组所述RIS单元对应的PMI,确定每组所述RIS单元中每个RIS单元对应的连续偏转相角;
基于所述RIS阵列可支持的离散偏转相角,分别对每个RIS单元对应的连续偏转相角及所述附加偏转相角进行量化,确定每个所述RIS单元对应的最终偏移相位。
在一种实现方式中,所述根据每组所述RIS单元对应的PMI,确定每组所述RIS单元中每个RIS单元对应的连续偏转相角,包括:
根据每组所述RIS单元对应的PMI,确定每组所述RIS单元对应的水平维波束赋形向量及垂直维波束赋形向量;
根据每组所述RIS单元对应的所述水平维波束赋形向量及垂直维波束赋形向量,确定每组所述RIS单元中每个RIS单元对应的连续偏转相角。
在一种实现方式中,所述确定每个所述RIS单元对应的最终偏移相位,包括:
将与每个所述RIS单元对应的连续偏转相角间的差值的绝对值最小的离散偏转相角,确定为每个所述RIS单元对应的离散偏转相角;
将与每个所述RIS单元对应的附加偏转相角间的差值的绝对值最小的离散偏转相角,确定为每组所述RIS单元对应的量化后的附加偏转相角;
将每个所述RIS单元对应的离散偏转相角与所述量化后的附加偏转相角的和,确定为每个所述RIS单元对应的最终偏移相位。
在一种实现方式中,还包括:
接收每个所述RIS单元对应的最终偏移相位。
在一种实现方式中,所述接收每个所述RIS单元对应的最终偏移相位,包括:
接收终端设备发送的每个所述RIS单元对应的最终偏移相位;
或者,接收网络设备发送的每个所述RIS单元对应的最终偏移相位。
第四方面,本公开实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如该装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第五方面,本公开实施例提供一种通信装置,该通信装置具有实现上述第二方面所述的方法中网络设备的部分或全部功能,比如该装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第六方面,本公开实施例提供一种通信装置,该通信装置具有实现上述第二方面所述的方法中RIS阵列的部分或全部功能,比如该装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块
在一种实现方式中,上述各装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持该装置执行上述方法中相应的功能。所述收发模块用于支持该装置与其他设备之间的通信。所述装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第三方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第十一方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第十二方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第三方面所述的方法。
第十三方面,本公开实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十四方面,本公开实施例提供一种计算机可读存储介质,用于储存为上述网络设备所用的指令, 当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十五方面,本公开实施例提供一种计算机可读存储介质,用于储存为上述RI S阵列所用的指令,当所述指令被执行时,使所述网络设备执行上述第三方面所述的方法。
第十六方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十七方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十八方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第三方面所述的方法。
第十九方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第二十方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第二十一方面,本公开提供一种芯片系统,该芯片系统包括至少一个处理器和接口,用于支持RI S阵列实现第三方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第二十二方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第二十三方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第二十四方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第三方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信系统的架构示意图;
图2是本公开实施例提供的一种智能超表面RI S的预编码的流程示意图;
图3是本公开实施例提供的一种智能超表面RI S的预编码的流程示意图;
图4是本公开实施例提供的一种智能超表面RI S的预编码的流程示意图;
图5是本公开实施例提供的一种智能超表面RI S的预编码的流程示意图;
图6是本公开实施例提供的一种智能超表面RIS的预编码的流程示意图;
图7是本公开实施例提供的一种智能超表面RIS的预编码的流程示意图;
图8是本公开实施例提供的一种智能超表面RIS的预编码的流程示意图;
图9是本公开实施例提供的一种智能超表面RIS的预编码的流程示意图;
图10是本公开实施例提供的一种智能超表面RIS的预编码的流程示意图;
图11是本公开实施例提供的一种通信装置的结构示意图;
图12是本公开实施例提供的另一种通信装置的结构示意图;
图13是本公开实施例提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
为了便于理解,首先介绍本公开涉及的术语。
1、智能超表面(Reconfigurable intelligence surface,RIS)
智能超表面RIS,也被称为“可重构智能表面”或者“智能反射表面”。从外表上看,RIS是一张平平无奇的薄板。但是,它可以灵活部署在无线通信传播环境中,并实现对反射或者折射电磁波的频率、相位、极化等特征的操控,从而达到重塑无线信道的目的。具体地说,RIS可以通过预编码技术,将入射到其表面的信号反射到特定的方向,从而增强接收端信号强度,实现对信道的控制。
2、预编码矩阵标识(Precoding Matrix Indicator,PMI)
PMI是指仅在闭环空间复用这种发射模式下,终端设备告诉网络设备使用什么类型的预编码矩阵来给该终端设备的物理下行共享信道(Physical Downlink Shared CHannel,PDSCH)进行预编码。其中,每个PMI对应一个水平维波束赋形向量和一个垂直维波束赋形向量,通过将该水平维波束赋形向量和垂直维波束赋形向量进行积运算,即可得到预编码矩阵,该预编码矩阵中,每个元素为RIS阵列中一个RIS单元对应的连续偏转相角。
为了更好的理解本公开实施例公开的一种智能超表面RIS的预编码方法,下面首先对本公开实施例适用的通信系统进行描述。
请参见图1,图1为本公开实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个终端设备、一个网络设备和一个RIS,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的终端设备、两个或两个以上的网络设备、两个或两个以上的RIS设备。图1所示的通信系统以包括一个网络设备11、一个终端设备12和一个智能超表面13为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。本公开实施例中的网络13是网络侧的一种用于发射或接收信号的实体。例如,网络设备13可以为演进型基站(evolved NodeB,eNB)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
本公开实施例提供的网络设备11可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit)。采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
本公开实施例中的智能超表面13可以是由大量低成本的被动无源反射元件组成的平面,可以放置于网络设备与终端设备之间。智能超表面可以是低成本的自适应薄复合材料板,类似墙纸,覆盖墙壁、建筑、蜂窝等部分。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信系统是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本公开所提供的智能超表面RIS的预编码及其装置进行详细地介绍。
请参见图2,图2是本公开实施例提供的一种智能超表面RIS的预编码的流程示意图。该方法被配置为由终端设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤21,根据RIS阵列中每组RIS单元的信道信息,确定每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角。
可以理解的是,RIS阵列可以对接收的信号进行不同的相位偏移,从而调节反射波束方向。为了将接收的信号反射到对应的接收端,需要对RIS阵列的偏转相角进行配置,即对RIS阵列进行预编码。相关技术中,采用不同的算法分别对RIS阵列及网络设备端的预编码矩阵进行联合设计,由于RIS阵列的规模与传播距离具有可比性时,会导致基于远场假设的预编码方案不成立。本公开中,可以首先对RIS阵列进行分组,以使每组RIS单元的大小与传播距离之间不具有可比性,从而可以将电磁波当作平面波,即保证每组RIS单元符合远场假设的预编码方案,之后对每组RIS单元及网络设备端进行统一预编码。 由此,提高了RIS阵列使用的灵活性和可靠性。
其中,每组RIS单元的信道信息可以为信道状态信息,比如信号散射(Scattering)、环境衰弱(fading,multipath fading or shadowing fading)、距离衰减(power decay of distance)等信息。
本公开中,终端设备在确定了每组RIS单元的信道信息后,即可进行联合设计,确定每组RIS单元对应的PMI标识及附加偏转相角。其中,不同组RIS单元对应的PMI可以相同,也可以不同;不同组RIS单元对应的附加偏转相角可以相同,也可以不同。本公开对此不作限定。
步骤22,发送第一指示信息,其中,第一指示信息用于指示每组RIS单元对应的预编码矩阵标识及附加偏转相角。
可选的,终端设备可以向RIS阵列发送第一指示信息;或者,终端设备也可以向网络设备发送第一指示信息。
可以理解的是,终端设备通过向RIS阵列或网络设备发送第一指示信息,以指示每组RIS单元对应的预编码矩阵标识及附加偏转相角,从而使RIS阵列或网络设备根据每组RIS单元对应的PMI及附加偏转相角,对每组RIS单元进行预编码。
通过实施本公开实施例,终端设备首先根据RIS阵列中每组RIS单元的信道信息,确定每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角,之后向网络设备或者RIS阵列指示每组RIS单元对应的预编码矩阵标识及附加偏转相角,以使网络设备或RIS阵列对每组RIS单元进行预编码。由此,不仅避免了RIS阵列由于不满足远场假设,而导致预编码方案失败的问题,而且降低了RI S预编码的复杂度。
请参见图3,图3是本公开实施例提供的另一种智能超表面RIS的预编码方法的流程示意图。该方法被配置为由终端设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤31,接收第二指示信息,其中,第二指示信息用于指示RIS阵列中包含的RIS单元组。
可选的,终端设备可以通过接收网络设备发送的第二指示信息,确定RIS阵列中包含的RIS单元组。即RIS阵列中包含的RIS单元组分组方式,是由网络设备配置的。
步骤32,根据RIS阵列中每组RIS单元的信道信息,确定每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角。
步骤33,发送第一指示信息,其中,第一指示信息用于指示每组RIS单元对应的预编码矩阵标识及附加偏转相角。
其中,步骤32及步骤33的具体实现形式,可参照本公开其他各实施例中的详细步骤,此处不再详细赘述。
通过实施本公开实施例,终端设备首先接收网络设备发送的用于指示RIS阵列中包含的RIS单元组的第二指示信息,之后根据RIS阵列中每组RIS单元的信道信息,确定每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角,最后向网络设备或者RIS阵列指示每组RIS单元对应的预编码矩阵标识及附加偏转相角,以使网络设备或RIS阵列对每组RIS单元进行预编码。由此,不仅避免了RIS阵列由于不满足远场假设,而导致预编码方案失败的问题,而且降低了RIS预编码的复杂度。
请参见图4,图4是本公开实施例提供的另一种智能超表面RIS的预编码方法的流程示意图。该方 法被配置为由终端设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤41,接收第三指示信息,其中,第三指示信息用于指示RIS阵列中包含的RIS单元的行数和列数。
可选的,终端设备可以接收网络设备发送的第三指示信息,其中,第三指示信息用于指示RIS阵列中包含的RIS单元的行数和列数。
可以理解的是,终端设备在接收到网络设备发送的第三指示信息之后,即可根据RIS阵列中包含的RIS单元的行数和列数,对RIS阵列进行分组。
步骤42,依据预设的规则及RIS阵列中包含的RIS单元的行数和列数,将RIS阵列进行分组。
可选的,预设的规则可以为以下任一项:
连续的M行、且连续的N列的RIS单元为一组;
连续的L行、且间隔S列的RIS单元为一组;
间隔P行、且连续的Q列的RIS单元为一组;以及
间隔F行、且间隔R列的RIS单元为一组;
其中,M、N、L、S、P、Q、F以及R分别为正整数。
步骤43,根据RIS阵列中每组RIS单元的信道信息,确定每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角。
步骤44,发送第一指示信息,其中,第一指示信息用于指示每组RIS单元对应的预编码矩阵标识及附加偏转相角。
其中,步骤43及步骤44的具体实现形式,可参照本公开其他各实施例中的详细步骤,此处不再详细赘述。
通过实施本公开实施例,终端设备首先接收用于指示RIS阵列中包含的RIS单元的行数和列数的第三指示信息,之后依据预设的规则及RIS阵列中包含的RIS单元的行数和列数,将RIS阵列进行分组,之后根据RIS阵列中每组RIS单元的信道信息,确定每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角,最后向网络设备或者RIS阵列指示每组RIS单元对应的预编码矩阵标识及附加偏转相角,以使网络设备或RIS阵列对每组RIS单元进行预编码。由此,不仅避免了RIS阵列由于不满足远场假设,而导致预编码方案失败的问题,而且降低了RIS预编码的复杂度。
请参见图5,图5是本公开实施例提供的另一种智能超表面RIS的预编码的流程示意图。该方法被配置为由网络设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤51,接收第一指示信息,其中,第一指示信息用于指示每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角;其中,每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角是终端设备根据RIS阵列中每组RIS单元的信道信息确定的。
其中,第一指示信息可以为终端设备发送的,即终端设备在确定了每组RIS单元对应的PMI及附加偏转相角的信息后,即可通过第一指示信息,将每组RIS单元对应的PMI及附加偏转相角发送给网络设备。
可以理解的是,网络设备在接收终端设备发送的每组RIS单元对应的预编码矩阵标识PMI及附加偏 转相角之后,可以根据每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角,对每组RIS单元进行预编码。
通过实施本公开实施例,网络设备接收的第一指示信息中,指示的是每组RIS单元对应的PMI及附加偏转相角,之后,网络设备即可对每组RIS单元进行预编码。由此,不仅避免了RIS阵列由于不满足远场假设,而导致预编码方案失败的问题,而且降低了RIS预编码的复杂度。
请参见图6,图6是本公开实施例提供的另一种智能超表面RIS的预编码的流程示意图。该方法被配置为由网络设备执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤61,确定RIS阵列中包含的RIS单元的行数和列数。
可选的,RIS阵列可以将自己包含的RIS单元的行数和列数,上报给网络设备。
可选的,RIS阵列将自己包含的RIS单元的行数和列数,上报给网络设备之后,网络设备可以根据RIS阵列中包含的RIS单元的行数和列数,对RIS阵列进行分组。
或者,网络设备也可以向终端设备发送第三指示信息,其中,第三指示信息用于指示RIS阵列中包含的RIS单元的行数和列数。之后,终端设备可以根据网络设备指示的RIS阵列中包含的RIS单元的行数和列数,对RIS阵列进行分组。
步骤62,依据预设的规则及RIS阵列中包含的RIS单元的行数和列数,将RIS阵列进行分组。
可选的,预设的规则可以为以下任一项:
连续的M行、且连续的N列的RIS单元为一组;
连续的L行、且间隔S列的RIS单元为一组;
间隔P行、且连续的Q列的RIS单元为一组;以及
间隔F行、且间隔R列的RIS单元为一组;
其中,M、N、L、S、P、Q、F以及R分别为正整数。
步骤63,发送第二指示信息,其中,第二指示信息用于指示RIS阵列中包含的RIS单元组。
可以理解的是,网络设备在对RIS阵列进行分组之后,即可将RIS阵列中包含的RIS单元组发送给终端设备,以使终端设备根据RIS阵列中每组RIS单元的信道信息,确定每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角。
步骤64,接收终端设备发送的第一指示信息。其中,第一指示信息用于指示每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角,其中,每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角是终端设备根据RIS阵列中每组RIS单元的信道信息确定的。
其中,步骤64的具体实现形式,可参照本公开其他各实施例中的详细步骤,此处不再详细赘述。
通过实施本公开实施例,网络设备首先确定RIS阵列中包含的RIS单元的行数和列数,之后依据预设的规则及RIS阵列中包含的RIS单元的行数和列数,将RIS阵列进行分组,再向终端设备指示RIS阵列中包含的RIS单元组,之后接收终端设备指示的每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角的第一指示信息,最后,网络设备即可对每组RIS单元进行预编码。由此,不仅避免了RIS阵列由于不满足远场假设,而导致预编码方案失败的问题,而且降低了RIS预编码的复杂度。
请参见图7,图7是本公开实施例提供的另一种智能超表面RIS的预编码的流程示意图。该方法被配置为由网络设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤71,接收第一指示信息,其中,第一指示信息用于指示每组RIS单元对应的PMI及附加偏转相角;其中,每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角是终端设备根据RIS阵列中每组RIS单元的信道信息确定的。
其中,步骤71的具体实现形式,可参照本公开其他各实施例中的详细步骤,此处不再详细赘述。
步骤72,根据每组RIS单元对应的PMI,确定每组RIS单元中每个RIS单元对应的连续偏转相角。
可选的,网络设备可以先根据每组RIS单元对应的PMI,确定每组RIS单元对应的水平维波束赋形向量及垂直维波束赋形向量,之后根据每组RIS单元对应的水平维波束赋形向量及垂直维波束赋形向量,确定每组RIS单元中每个RIS单元对应的连续偏转相角。
可以理解的是,每组RIS单元对应的PMI分别与一个水平维波束赋形向量及垂直维波束赋形向量关联,因此,在确定了每组RIS单元对应的水平维波束赋形向量及垂直维波束赋形向量之后,即可将每组RIS单元对应的水平维波束赋形向量及垂直维波束赋形向量进行积运算,以得到预编码矩阵,即确定每组RIS单元中每个RIS单元对应的连续偏转相角。
步骤73,基于RIS阵列可支持的离散偏转相角,分别对每个RIS单元对应的连续偏转相角及附加偏转相角进行量化,确定每个RIS单元对应的最终偏移相位。
可选的,RIS阵列可以先向网络设备上报自己可支持的离散偏转相角,或者,网络设备可以基于协议约定或者配置信息,确定RIS阵列支持的离散偏转相角,之后基于该RIS阵列可支持的离散偏转相角,分别对每个RIS单元对应的连续偏转相角及附加偏转相角进行量化,确定每个RIS单元对应的最终偏移相位。
可选的,针对每个RIS单元,网络设备可以先将与该RIS单元对应的连续偏转相角间的差值的绝对值最小的离散偏转相角,确定为每个RIS单元对应的离散偏转相角;之后将与该RIS单元对应的附加偏转相角间差值的绝对值最小的离散偏转相角,确定该RIS单元对应的量化后的附加偏转相角;最后将该RIS单元对应的离散偏转相角与量化后的附加偏转相角的和,确定为每个RIS单元对应的最终偏移相位。
举例来说,RIS#1单元的连续偏转相角为ω,附加偏转相角为ω d,RIS阵列可支持的离散偏转相角为ω1、ω2、ω3、ω4;与RIS#1单元对应的连续偏转相角ω间的差值的绝对值最小的离散偏转相角为ω1,则ω1为RIS#1单元对应的离散偏转相角;与RIS#1单元对应的附加偏转相角ω d间的差值的绝对值最小的离散偏转相角为ω3,则ω3为RIS#1对应的量化后的附加偏转相角;则RIS#1单元对应的最终偏移相位为ω1+ω3。
需要说明的是,上述示例只是简单的举例说明,不能作为本公开实施例中的每个RIS单元对应的连续偏转相角、附加偏转相角、及最终偏移相位的具体限定。
步骤74,发送每个RIS单元对应的最终偏移相位。
可选的,网络设备可以将每个RIS单元对应的最终偏移相位发送给RIS阵列;或者,网络设备也可以将每个RIS单元对应的最终偏移相位发送给终端设备。
可以理解的是,网络设备在确定每个RIS单元对应的最终偏移相位之后,可以将每个RIS单元对应的最终偏移相位发送给RIS阵列,或者,将每个RIS单元对应的最终偏移相位发送给终端设备,由终端 设备转发给RIS阵列,从而可以使RIS阵列中的每个RIS单元组基于对应的最终偏移相位对入射信号进行反射,进而使终端设备准确地接收网络设备发送的信息,提高了通信服务的质量。
通过实施本公开实施例,网络设备首先接收用于指示每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角的第一指示信息,之后根据每组RIS单元对应的PMI,确定每组RIS单元中每个RIS单元对应的连续偏转相角,再基于RIS阵列可支持的离散偏转相角,分别对每个RIS单元对应的连续偏转相角及附加偏转相角进行量化,确定每个RIS单元对应的最终偏移相位,最后再将每个RIS单元对应的最终偏移相位指示给RIS阵列。由此,通过将RIS阵列进行分组,并根据每组RIS单元对应的PMI及附加偏转相角,确定RIS阵列中每个RIS单元对应的最终偏移相位,不仅避免了RIS阵列由于不满足远场假设,而导致预编码方案失败的问题,而且降低了RIS预编码的复杂度。
请参见图8,图8是本公开实施例提供的另一种智能超表面RIS的预编码的流程示意图。该方法被配置为由RIS阵列执行。如图8所示,该方法可以包括但不限于如下步骤:
步骤81,接收第一指示信息,其中,第一指示信息用于指示每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角;其中,每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角是终端设备根据RIS阵列中每组RIS单元的信道信息确定的。
可选的,RIS阵列可以接收网络设备发送的第一指示信息;或者,RIS阵列也可以接收终端设备发送的第一指示信息。即终端设备在确定了每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角之后,可以将每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角发送给网络设备,由网络设备转发给RIS阵列。或者,终端设备也可以直接将每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角发送给RIS阵列。
可以理解的是,RIS阵列在接收终端设备或者网络设备发送的每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角之后,可以根据每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角,对每组RIS单元进行预编码。
通过实施本公开实施例,RIS阵列接收的第一指示信息中,指示的是每组RIS单元对应的PMI及附加偏转相角,之后,RIS阵列即可对每组RIS单元进行预编码。由此,不仅避免了RIS阵列由于不满足远场假设,而导致预编码方案失败的问题,而且降低了RIS预编码的复杂度。
请参见图9,图9是本公开实施例提供的另一种智能超表面RIS的预编码的流程示意图。该方法被配置为由RIS阵列执行。如图9所示,该方法可以包括但不限于如下步骤:
步骤91,接收第一指示信息,其中,第一指示信息用于指示每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角;其中,每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角是终端设备根据RIS阵列中每组RIS单元的信道信息确定的。
其中,步骤91的具体实现形式,可参照本公开其他各实施例中的详细步骤,此处不再详细赘述。
步骤92,根据每组RIS单元对应的PMI,确定每组RIS单元中每个RIS单元对应的连续偏转相角。
可选的,RIS阵列可以先根据每组RIS单元对应的PMI,确定每组RIS单元对应的水平维波束赋形向量及垂直维波束赋形向量,之后根据每组RIS单元对应的水平维波束赋形向量及垂直维波束赋形向量, 确定每组RIS单元中每个RIS单元对应的连续偏转相角。
可以理解的是,每组RIS单元对应的PMI分别与一个水平维波束赋形向量及垂直维波束赋形向量关联,因此,在确定了每组RIS单元对应的水平维波束赋形向量及垂直维波束赋形向量之后,即可将每组RIS单元对应的水平维波束赋形向量及垂直维波束赋形向量进行积运算,以得到预编码矩阵,即确定每组RIS单元中每个RIS单元对应的连续偏转相角。
步骤93,基于RIS阵列可支持的离散偏转相角,分别对每个RIS单元对应的连续偏转相角及附加偏转相角进行量化,确定每个RIS单元对应的最终偏移相位。
可选的,针对每个RIS单元,RIS阵列可以先将与该RIS单元对应的连续偏转相角间的差值的绝对值最小的离散偏转相角,确定为每个RIS单元对应的离散偏转相角;之后将与该RIS单元对应的附加偏转相角间的差值的绝对值最小的离散偏转相角,确定为该RIS单元对应的量化后的附加偏转相角;最后将该RIS单元对应的离散偏转相角与量化后的附加偏转相角的和,确定为每个RIS单元对应的最终偏移相位。
举例来说,RIS#1单元的连续偏转相角为ω,附加偏转相角为ω d,RIS阵列可支持的离散偏转相角为ω1、ω2、ω3、ω4;与RIS#1单元对应的连续偏转相角ω间的差值的绝对值最小的离散偏转相角为ω1,则ω1为RIS#1单元对应的离散偏转相角;与RIS#1单元对应的附加偏转相角ω d间的差值的绝对值最小的离散偏转相角为ω3,则ω3为RIS#1对应的量化后的附加偏转相角;则RIS#1单元对应的最终偏移相位为ω1+ω3。
需要说明的是,上述示例只是简单的举例说明,不能作为本公开实施例中的每个RIS单元对应的连续偏转相角、附加偏转相角、及最终偏移相位的具体限定。
通过实施本公开实施例,RIS阵列首先接收用于指示每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角的第一指示信息,之后根据每组RIS单元对应的PMI,确定每组RIS单元中每个RIS单元对应的连续偏转相角,再基于RIS阵列可支持的离散偏转相角,分别对每个RIS单元对应的连续偏转相角及附加偏转相角进行量化,确定每个RIS单元对应的最终偏移相位。由此,通过将RIS阵列进行分组,并根据每组RIS单元对应的PMI及附加偏转相角,确定RIS阵列中每个RIS单元对应的最终偏移相位,不仅避免了RIS阵列由于不满足远场假设,而导致预编码方案失败的问题,而且降低了RIS预编码的复杂度。
请参见图10,图10是本公开实施例提供的另一种智能超表面RIS的预编码的流程示意图。该方法被配置为由RIS阵列执行。如图10所示,该方法可以包括但不限于如下步骤:
步骤101,接收每个RIS单元对应的最终偏移相位。
需要说明的是,在终端设备将每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角发送给网络设备的情况下,每个RIS单元对应的最终偏移相位可以由网络设备确定,因此,RIS阵列可以接收网络设备确定的每个RIS单元对应的最终偏移相位。
可选的,RIS阵列可以接收终端设备发送的每个RIS单元对应的最终偏移相位;或者,RIS阵列也可以接收网络设备发送的每个RIS单元对应的最终偏移相位。即网络设备在确定了每个RIS单元对应的最终偏移相位之后,可以直接将每个RIS单元对应的最终偏移相位发送给RIS阵列。或者,网络设备也 可以将每个RIS单元对应的最终偏移相位发送给终端设备,由终端设备转发给RIS阵列。
通过实施本公开实施例,网络设备首先根据每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角,确定RIS阵列中每个RIS单元对应的最终偏移相位,之后RIS阵列通过接收网络设备确定的每个RIS单元对应的最终偏移相位。由此,不仅避免了RIS阵列由于不满足远场假设,而导致预编码方案失败的问题,而且降低了RIS预编码的复杂度。
上述本公开提供的实施例中,分别从核心网设备、终端设备、接入网设备的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,核心网设备、终端设备、接入网设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图11,为本公开实施例提供的一种通信装置110的结构示意图。图11所示的通信装置110可包括收发模块1101和处理模块1102。收发模块1101可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1101可以实现发送功能和/或接收功能。
通信装置110可以是终端设备(如前述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置110可以是网络设备(如前述方法实施例中的网络设备),也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。或者,通信装置110还可以是RIS阵列,也可以是RIS阵列中的装置,还可以是能够与RIS阵列匹配使用的装置。
具体的,若通信装置110为终端设备(如前述方法实施例中的终端设备):
则处理模块1102,用于根据RIS阵列中每组RIS单元的信道信息,确定每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角;
收发模块1101,用于发送第一指示信息,其中,第一指示信息用于指示每组RIS单元对应的预编码矩阵标识及附加偏转相角。
可选的,收发模块1101,还具体用于:
接收第二指示信息,其中,第二指示信息用于指示RIS阵列中包含的RIS单元组。
可选的,收发模块1101,还具体用于:
向RIS阵列发送第一指示信息;
或者,向网络设备发送第一指示信息。
可选的,
收发模块1101,还用于接收第三指示信息,其中,第三指示信息用于指示RIS阵列中包含的RIS单元的行数和列数;
处理模块1102,还用于依据预设的规则及RIS阵列中包含的RIS单元的行数和列数,将RIS阵列进行分组。
可选的,预设的规则为以下任一项:
连续的M行、且连续的N列的RIS单元为一组;
连续的L行、且间隔S列的RIS单元为一组;
间隔P行、且连续的Q列的RIS单元为一组;以及
间隔F行、且间隔R列的RIS单元为一组;
其中,M、N、L、S、P、Q、F以及R分别为正整数。
可选的,收发模块1101,还具体用于:
接收网络设备发送的第三指示信息。
本公开提出的通信装置,终端设备首先根据RIS阵列中每组RIS单元的信道信息,确定每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角,之后向网络设备或者RIS阵列指示每组RIS单元对应的预编码矩阵标识及附加偏转相角,以使网络设备或RIS阵列对每组RIS单元进行预编码。由此,不仅避免了RIS阵列由于不满足远场假设,而导致预编码方案失败的问题,而且降低了RI S预编码的复杂度。
或者,若通信装置110为网络设备(如前述方法实施例中的网络设备):
则收发模块1101,用于接收第一指示信息,其中,第一指示信息用于指示每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角;其中,每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角是终端设备根据RIS阵列中每组RIS单元的信道信息确定的。
可选的,收发模块1101,还具体用于:
接收终端设备发送的第一指示信息。
可选的,收发模块1101,还具体用于:
发送第二指示信息,其中,第二指示信息用于指示RIS阵列中包含的RIS单元组。
可选的,还包括处理模块1102,具体用于:
确定RIS阵列中包含的RIS单元的行数和列数;
依据预设的规则及RIS阵列中包含的RIS单元的行数和列数,将RIS阵列进行分组。
可选的,预设的规则为以下任一项:
连续的M行、且连续的N列的RIS单元为一组;
连续的L行、且间隔S列的RIS单元为一组;
间隔P行、且连续的Q列的RIS单元为一组;以及
间隔F行、且间隔R列的RIS单元为一组;
其中,M、N、L、S、P、Q、F以及R分别为正整数。
可选的,处理模块1102,还具体用于:
根据每组RIS单元对应的PMI,确定每组RIS单元中每个RIS单元对应的连续偏转相角;
基于RIS阵列可支持的离散偏转相角,分别对每个RIS单元对应的连续偏转相角及附加偏转相角进行量化,确定每个RIS单元对应的最终偏移相位。
可选的,处理模块1102,还具体用于:
根据每组RIS单元对应的PMI,确定每组RIS单元对应的水平维波束赋形向量及垂直维波束赋形向量;
根据每组RIS单元对应的水平维波束赋形向量及垂直维波束赋形向量,确定每组RIS单元中每个RIS单元对应的连续偏转相角。
可选的,处理模块1102,还具体用于:
将与每个RIS单元对应的连续偏转相角间的差值的绝对值最小的离散偏转相角,确定为每个RIS单元对应的离散偏转相角;
将与每个RIS单元对应的附加偏转相角间的差值的绝对值最小的离散偏转相角,确定为每组RIS单元对应的量化后的附加偏转相角;
将每个RIS单元对应的离散偏转相角与量化后的附加偏转相角的和,确定为每个RIS单元对应的最终偏移相位。
可选的,收发模块1101,还具体用于:
发送第三指示信息,其中,第三指示信息用于指示RIS阵列中包含的RIS单元的行数和列数。
可选的,收发模块1101,还具体用于:
将每个RIS单元对应的最终偏移相位发送给RIS阵列;
或者,将每个RIS单元对应的最终偏移相位发送给终端设备。
本公开提出的通信装置,网络设备接收的第一指示信息中,指示的是每组RIS单元对应的PMI及附加偏转相角,之后,网络设备即可对每组RIS单元进行预编码。由此,不仅避免了RIS阵列由于不满足远场假设,而导致预编码方案失败的问题,而且降低了RIS预编码的复杂度。
或者,若通信装置110为RIS阵列(如前述方法实施例中的RIS阵列):
则收发模块1101,用于接收第一指示信息,其中,第一指示信息用于指示每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角;其中,每组RIS单元对应的预编码矩阵标识PMI及附加偏转相角是终端设备根据RIS阵列中每组RIS单元的信道信息确定的。
可选的,收发模块1101,还具体用于:
接收网络设备发送的第一指示信息;
或者,接收终端设备发送的第一指示信息。
可选的,还包括处理模块1102,具体用于:
根据每组RIS单元对应的PMI,确定每组RIS单元中每个RIS单元对应的连续偏转相角;
基于RIS阵列可支持的离散偏转相角,分别对每个RIS单元对应的连续偏转相角及附加偏转相角进行量化,确定每个RIS单元对应的最终偏移相位。
可选的,处理模块1102,还具体用于:
根据每组RIS单元对应的PMI,确定每组RIS单元对应的水平维波束赋形向量及垂直维波束赋形向量;
根据每组RIS单元对应的水平维波束赋形向量及垂直维波束赋形向量,确定每组RIS单元中每个RIS单元对应的连续偏转相角。
可选的,处理模块1102,还具体用于:
将与每个RIS单元对应的连续偏转相角间的差值的绝对值最小的离散偏转相角,确定为每个RIS单元对应的离散偏转相角;
将与每个RIS单元对应的附加偏转相角间的差值的绝对值最小的离散偏转相角,确定为每组RIS单元对应的量化后的附加偏转相角;
将每个RIS单元对应的离散偏转相角与量化后的附加偏转相角的和,确定为每个RIS单元对应的最 终偏移相位。
可选的,收发模块1101,还具体用于:
接收每个RIS单元对应的最终偏移相位。
可选的,收发模块1101,还具体用于:
接收终端设备发送的每个所述RIS单元对应的最终偏移相位;
或者,接收网络设备发送的每个所述RIS单元对应的最终偏移相位。
本公开提出的通信装置,RIS阵列接收的第一指示信息中,指示的是每组RIS单元对应的PMI及附加偏转相角,之后,RIS阵列即可对每组RIS单元进行预编码。由此,不仅避免了RIS阵列由于不满足远场假设,而导致预编码方案失败的问题,而且降低了RIS预编码的复杂度。
请参见图12,图12是本公开实施例提供的另一种通信装置120的结构示意图。通信装置120可以是网络设备,也可以是终端设备(如前述方法实施例中的终端设备),还可以是RIS阵列,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等,也可以是支持RIS阵列实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置120可以包括一个或多个处理器1201。处理器1201可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片、终端设备、终端设备芯片、DU或CU等)进行控制、执行计算机程序以及处理计算机程序的数据。
可选的,通信装置120中还可以包括一个或多个存储器1202,其上可以存有计算机程序1204,处理器1201执行所述计算机程序1204,以使得通信装置120执行上述方法实施例中描述的方法。可选的,所述存储器1202中还可以存储有数据。通信装置120和存储器1202可以单独设置,也可以集成在一起。
可选的,通信装置120还可以包括收发器1205、天线1206。收发器1205可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1205可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置120中还可以包括一个或多个接口电路1207。接口电路1207用于接收代码指令并传输至处理器1201。处理器1201运行所述代码指令以使通信装置120执行上述方法实施例中描述的方法。
通信装置120为终端设备(如前述方法实施例中的终端设备):收发器1205用于执行图2中的步骤22;图3中的步骤31及步骤33;图4中的步骤41及步骤44等等。处理器1201用于执行图2中的步骤21;图3中的步骤32;图4中的步骤42及步骤43等等。
通信装置120为网络设备:收发器1205用于执行图5中的步骤51;用于执行图6中的步骤63、及步骤64;图7中的步骤71、步骤74等等。处理器1201用于执行图6中的步骤61、及步骤62;图7中的步骤72、步骤73等等。
通信装置120为RIS矩阵:收发器1205可用于执行图8中的步骤81、图9中的步骤91、图10中的步骤101等等。处理器1201可用于执行图9中的步骤92及步骤93等等。
在一种实现方式中,处理器1201中可以包括用于实现接收和发送功能的收发器。例如该收发器可 以是收发电路、或者是接口、或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1201可以存有计算机程序1203,计算机程序1203在处理器1201上运行,可使得通信装置120执行上述方法实施例中描述的方法。计算机程序1203可以固化在处理器1201中,该种情况下,处理器1201可以由硬件实现。
在一种实现方式中,通信装置120可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是RIS阵列、网络设备或者终端设备(如前述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图12的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC、或芯片、或芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据、计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图13所示的芯片的结构示意图。图13所示的芯片包括处理器1301和接口1302。其中,处理器1301的数量可以是一个或多个,接口1302的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口1302,用于执行图2中的步骤22;图3中的步骤31及步骤33;图4中的步骤41及步骤44等等。
处理器1301用于执行图2中的步骤21;图3中的步骤32;图4中的步骤42及步骤43等等。
对于芯片用于实现本公开实施例中网络设备的功能的情况。
接口1302,用于执行图5中的步骤51;用于执行图6中的步骤63及步骤64;图7中的步骤71、步骤74等等。
处理器1301用于执行图6中的步骤61及步骤62;图7中的步骤72、步骤73等等。
对于芯片用于实现本公开实施例中RIS阵列的功能的情况。
接口1302,用于执行图8中的步骤81、图9中的步骤91、图10中的步骤101等等。
处理器1301,可用于执行图9中的步骤92及步骤93等等。
可选的,芯片还包括存储器1303,存储器1303用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件、或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种通信系统,该系统包括前述图11实施例中作为终端设备的通信装置和作为网络设备的通信装置,或者,该系统包括前述图12实施例中作为终端设备的通信装置和作为网络设备的通信装置。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如,同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如,红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也不表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
应当理解,尽管在本申请实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“在……情况 下”。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分、合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种智能超表面RIS的预编码方法,其特征在于,由终端设备执行,所述方法包括:
    根据RIS阵列中每组RIS单元的信道信息,确定每组所述RIS单元对应的预编码矩阵标识PMI及附加偏转相角;
    发送第一指示信息,其中,所述第一指示信息用于指示每组所述RIS单元对应的预编码矩阵标识及附加偏转相角。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    接收第二指示信息,其中,所述第二指示信息用于指示所述RIS阵列中包含的RIS单元组。
  3. 如权利要求1所述的方法,其特征在于,所述发送第一指示信息,包括:
    向所述RIS阵列发送所述第一指示信息;
    或者,向网络设备发送所述第一指示信息。
  4. 如权利要求1所述的方法,其特征在于,还包括:
    接收第三指示信息,其中,所述第三指示信息用于指示所述RIS阵列中包含的RIS单元的行数和列数;
    依据预设的规则及所述RIS阵列中包含的RIS单元的行数和列数,将所述RIS阵列进行分组。
  5. 如权利要求4所述的方法,其特征在于,所述预设的规则为以下任一项:
    连续的M行、且连续的N列的RIS单元为一组;
    连续的L行、且间隔S列的RIS单元为一组;
    间隔P行、且连续的Q列的RIS单元为一组;以及
    间隔F行、且间隔R列的RIS单元为一组;
    其中,M、N、L、S、P、Q、F以及R分别为正整数。
  6. 如权利要求4或5所述的方法,其特征在于,所述接收第三指示信息,包括:
    接收网络设备发送的第三指示信息。
  7. 一种智能超表面RIS的预编码方法,其特征在于,由网络设备执行,所述方法包括:
    接收第一指示信息,其中,所述第一指示信息用于指示每组所述RIS单元对应的预编码矩阵标识PMI及附加偏转相角;
    其中,所述每组所述RIS单元对应的预编码矩阵标识PMI及附加偏转相角是终端设备根据RIS阵列中每组RIS单元的信道信息确定的。
  8. 如权利要求7所述的方法,其特征在于,所述接收第一指示信息,包括:
    接收终端设备发送的所述第一指示信息。
  9. 如权利要求7所述的方法,其特征在于,还包括:
    发送第二指示信息,其中,所述第二指示信息用于指示所述RIS阵列中包含的RIS单元组。
  10. 如权利要求9所述的方法,其特征在于,还包括:
    确定所述RIS阵列中包含的RIS单元的行数和列数;
    依据预设的规则及所述RIS阵列中包含的RIS单元的行数和列数,将所述RIS阵列进行分组。
  11. 如权利要求10所述的方法,其特征在于,所述预设的规则为以下任一项:
    连续的M行、且连续的N列的RIS单元为一组;
    连续的L行、且间隔S列的RIS单元为一组;
    间隔P行、且连续的Q列的RIS单元为一组;以及
    间隔F行、且间隔R列的RIS单元为一组;
    其中,M、N、L、S、P、Q、F以及R分别为正整数。
  12. 如权利要求7-11任一所述的方法,其特征在于,还包括:
    根据每组所述RIS单元对应的PMI,确定每组所述RIS单元中每个RIS单元对应的连续偏转相角;
    基于所述RIS阵列可支持的离散偏转相角,分别对每个RIS单元对应的连续偏转相角及所述附加偏转相角进行量化,确定每个所述RIS单元对应的最终偏移相位。
  13. 如权利要求12所述的方法,其特征在于,所述根据每组所述RIS单元对应的PMI,确定每组所述RIS单元中每个RIS单元对应的连续偏转相角,包括:
    根据每组所述RIS单元对应的PMI,确定每组所述RIS单元对应的水平维波束赋形向量及垂直维波束赋形向量;
    根据每组所述RIS单元对应的所述水平维波束赋形向量及垂直维波束赋形向量,确定每组所述RIS单元中每个RIS单元对应的连续偏转相角。
  14. 如权利要求12所述的方法,其特征在于,所述确定每个所述RIS单元对应的最终偏移相位,包括:
    将与每个所述RIS单元对应的连续偏转相角间的差值的绝对值最小的离散偏转相角,确定为每个所述RIS单元对应的离散偏转相角;
    将与每个所述RIS单元对应的附加偏转相角间的差值的绝对值最小的离散偏转相角,确定为每组所述RIS单元对应的量化后的附加偏转相角;
    将每个所述RIS单元对应的离散偏转相角与所述量化后的附加偏转相角的和,确定为每个所述RIS 单元对应的最终偏移相位。
  15. 如权利要求12-14任一所述的方法,其特征在于,还包括:
    发送第三指示信息,其中,所述第三指示信息用于指示所述RIS阵列中包含的RIS单元的行数和列数。
  16. 如权利要求12-14任一所述的方法,其特征在于,还包括:
    将每个所述RIS单元对应的最终偏移相位发送给所述RIS阵列;
    或者,将每个所述RIS单元对应的最终偏移相位发送给所述终端设备。
  17. 一种智能超表面RIS的预编码方法,其特征在于,由RIS阵列执行,所述方法包括:
    接收第一指示信息,其中,所述第一指示信息用于指示每组所述RIS单元对应的预编码矩阵标识PMI及附加偏转相角;
    其中,所述每组所述RIS单元对应的预编码矩阵标识PMI及附加偏转相角是终端设备根据RIS阵列中每组RIS单元的信道信息确定的。
  18. 如权利要求17所述的方法,其特征在于,所述接收第一指示信息,包括:
    接收网络设备发送的所述第一指示信息;
    或者,接收终端设备发送的所述第一指示信息。
  19. 如权利要求17所述的方法,其特征在于,还包括:
    根据每组所述RIS单元对应的PMI,确定每组所述RIS单元中每个RIS单元对应的连续偏转相角;
    基于所述RIS阵列可支持的离散偏转相角,分别对每个RIS单元对应的连续偏转相角及所述附加偏转相角进行量化,确定每个所述RIS单元对应的最终偏移相位。
  20. 如权利要求19所述的方法,其特征在于,所述根据每组所述RIS单元对应的PMI,确定每组所述RIS单元中每个RIS单元对应的连续偏转相角,包括:
    根据每组所述RIS单元对应的PMI,确定每组所述RIS单元对应的水平维波束赋形向量及垂直维波束赋形向量;
    根据每组所述RIS单元对应的所述水平维波束赋形向量及垂直维波束赋形向量,确定每组所述RIS单元中每个RIS单元对应的连续偏转相角。
  21. 如权利要求19所述的方法,其特征在于,所述确定每个所述RIS单元对应的最终偏移相位,包括:
    将与每个所述RIS单元对应的连续偏转相角间的差值的绝对值最小的离散偏转相角,确定为每个所述RIS单元对应的离散偏转相角;
    将与每个所述RIS单元对应的附加偏转相角间的差值的绝对值最小的离散偏转相角,确定为每组所述RIS单元对应的量化后的附加偏转相角;
    将每个所述RIS单元对应的离散偏转相角与所述量化后的附加偏转相角的和,确定为每个所述RIS单元对应的最终偏移相位。
  22. 如权利要求17所述的方法,其特征在于,还包括:
    接收每个所述RIS单元对应的最终偏移相位。
  23. 如权利要求22所述的方法,其特征在于,所述接收每个所述RIS单元对应的最终偏移相位,包括:
    接收终端设备发送的每个所述RIS单元对应的最终偏移相位;
    或者,接收网络设备发送的每个所述RIS单元对应的最终偏移相位。
  24. 一种智能超表面RIS的预编码装置,其特征在于,所述装置在终端设备侧,所述装置包括:
    处理模块,用于根据RIS阵列中每组RIS单元的信道信息,确定每组所述RIS单元对应的预编码矩阵标识PMI及附加偏转相角;
    收发模块,用于发送第一指示信息,其中,所述第一指示信息用于指示每组所述RIS单元对应的预编码矩阵标识及附加偏转相角。
  25. 一种智能超表面RIS的预编码装置,其特征在于,所述装置在网络设备侧,所述装置包括:
    收发模块,用于接收第一指示信息,其中,所述第一指示信息用于指示每组所述RIS单元对应的预编码矩阵标识PMI及附加偏转相角;其中,所述每组所述RIS单元对应的预编码矩阵标识PMI及附加偏转相角是终端设备根据RIS阵列中每组RIS单元的信道信息确定的。
  26. 一种智能超表面RIS的预编码装置,其特征在于,所述装置在RIS阵列侧,所述装置包括:
    收发模块,用于接收第一指示信息,其中,所述第一指示信息用于指示每组所述RIS单元对应的预编码矩阵标识PMI及附加偏转相角;其中,所述每组所述RIS单元对应的预编码矩阵标识PMI及附加偏转相角是终端设备根据RIS阵列中每组RIS单元的信道信息确定的。
  27. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1~6中任一项所述的方法。
  28. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求7~16中任一项所述的方法。
  29. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求17~23中任一项所述的方法。
  30. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1~23中任一项所述的方法被实现。
PCT/CN2021/128457 2021-11-03 2021-11-03 一种智能超表面ris的预编码方法及其装置 WO2023077311A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/128457 WO2023077311A1 (zh) 2021-11-03 2021-11-03 一种智能超表面ris的预编码方法及其装置
CN202180103213.5A CN118104156A (zh) 2021-11-03 2021-11-03 一种智能超表面ris的预编码方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/128457 WO2023077311A1 (zh) 2021-11-03 2021-11-03 一种智能超表面ris的预编码方法及其装置

Publications (1)

Publication Number Publication Date
WO2023077311A1 true WO2023077311A1 (zh) 2023-05-11

Family

ID=86240468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128457 WO2023077311A1 (zh) 2021-11-03 2021-11-03 一种智能超表面ris的预编码方法及其装置

Country Status (2)

Country Link
CN (1) CN118104156A (zh)
WO (1) WO2023077311A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050276A (zh) * 2019-12-23 2020-04-21 华中科技大学 基于角度信息的irs辅助通信系统的优化方法及设备
CN111245492A (zh) * 2020-01-10 2020-06-05 北京邮电大学 基于接收功率排序的联合波束训练和智能反射面选择方法
WO2020254031A1 (en) * 2019-06-19 2020-12-24 Sony Corporation System and method for passive reflection of rf signals
CN112153653A (zh) * 2020-09-23 2020-12-29 南京邮电大学 可重构智能表面辅助的noma下行低功耗传输方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020254031A1 (en) * 2019-06-19 2020-12-24 Sony Corporation System and method for passive reflection of rf signals
CN111050276A (zh) * 2019-12-23 2020-04-21 华中科技大学 基于角度信息的irs辅助通信系统的优化方法及设备
CN111245492A (zh) * 2020-01-10 2020-06-05 北京邮电大学 基于接收功率排序的联合波束训练和智能反射面选择方法
CN112153653A (zh) * 2020-09-23 2020-12-29 南京邮电大学 可重构智能表面辅助的noma下行低功耗传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Master's Thesis", 10 April 2020, ZHEJIANG UNIVERSITY, CN, article WANG JUNWEI: "Channel Estimation and Precoder Design for Mm Wave MIMO Systems", pages: 1 - 74, XP009545528, DOI: 10.27461/d.cnki.gzjdx.2020.003294 *

Also Published As

Publication number Publication date
CN118104156A (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023184372A1 (zh) 上行信道的发送和接收的方法及装置
WO2023077311A1 (zh) 一种智能超表面ris的预编码方法及其装置
WO2023019596A1 (zh) 基于轨道角动量oam的通信方法及其装置
WO2023216164A1 (zh) 一种智能超表面的预编码方法及装置
WO2023115577A1 (zh) 一种信道状态信息csi的反馈方法及其装置
WO2024044990A1 (zh) 基于智能超表面的预编码方法及装置
WO2023216165A1 (zh) 一种控制智能超表面ris发射参考信号的方法及装置
WO2024026798A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2023050151A1 (zh) 资源配置方法、装置及存储介质
WO2024016137A1 (zh) 一种预编码信息的接收发送方法及其装置
WO2023092494A1 (zh) 一种预编码信息的反馈方法及其装置
WO2024000179A1 (zh) 一种上行mimo传输的天线全相干传输码字的确定方法及其装置
WO2023184435A1 (zh) 一种确定波束信息的方法及装置
WO2023150918A1 (zh) 一种波束管理的方法及其装置
WO2023050152A1 (zh) 终端能力上报方法、装置及存储介质
WO2024036570A1 (zh) 基于智能超表面的预编码方法及装置
WO2023168574A1 (zh) 一种天线切换能力上报方法及其装置
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2024065333A1 (zh) 上行mimo传输8天线端口的全相干传输码本的确定方法及其装置
WO2023050235A1 (zh) 一种探测参考信号srs的发送方法及其装置
WO2024026796A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2023065326A1 (zh) 一种通信模式的确定方法及其装置
WO2024055324A1 (zh) 基于智能超表面的预编码方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962829

Country of ref document: EP

Kind code of ref document: A1