WO2023019596A1 - 基于轨道角动量oam的通信方法及其装置 - Google Patents

基于轨道角动量oam的通信方法及其装置 Download PDF

Info

Publication number
WO2023019596A1
WO2023019596A1 PCT/CN2021/113906 CN2021113906W WO2023019596A1 WO 2023019596 A1 WO2023019596 A1 WO 2023019596A1 CN 2021113906 W CN2021113906 W CN 2021113906W WO 2023019596 A1 WO2023019596 A1 WO 2023019596A1
Authority
WO
WIPO (PCT)
Prior art keywords
oam
combination
mode
modal
target
Prior art date
Application number
PCT/CN2021/113906
Other languages
English (en)
French (fr)
Inventor
郑凤
段高明
池连刚
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180002615.6A priority Critical patent/CN115997411A/zh
Priority to PCT/CN2021/113906 priority patent/WO2023019596A1/zh
Priority to EP21953837.8A priority patent/EP4383587A4/en
Publication of WO2023019596A1 publication Critical patent/WO2023019596A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device based on orbital angular momentum OAM.
  • OAM is independent of traditional modulation dimensions such as time, phase, frequency, and polarization, and is considered a new modulation dimension. And theoretically, the number of OAM modes carried by vortex electromagnetic waves is infinite, and the OAM beams with different integer eigenvalues are orthogonal to each other, which can theoretically improve the spectrum utilization rate infinitely.
  • the most common transceiver system is the OAM communication system based on UCA (Uniform Circular Array, Uniform Circular Array), and this system requires the axes of the transceiver antennas to be aligned.
  • UCA Uniform Circular Array, Uniform Circular Array
  • the receiver Modal crosstalk will be generated, leading to an increase in the bit error rate and a decrease in system performance.
  • Intermodal interference caused by non-alignment will significantly reduce the demodulation performance of vortex electromagnetic wave reception.
  • the inter-modal interference is mainly caused by the adjacent modes.
  • SINR Signal to Interference plus Noise Ratio
  • it is usually to reduce interference and improve SINR (Signal to Interference plus Noise Ratio, Signal to Interference plus Noise Ratio) by using even mode communication.
  • SINR Signal to Interference plus Noise Ratio
  • the applicable scenario of this communication method is limited to the case of small declination, and the gain is small. If beam steering is used, the dominant mode of intermodal interference will change with the deflection angle.
  • Embodiments of the present application provide a communication method and device based on orbital angular momentum OAM, which can be applied to the Internet of Vehicles, such as vehicle to everything (V2X) communication, long term evolution-vehicle communication technology (long term evolution-vehicle , LTE-V), vehicle-to-vehicle (V2V) communication, etc., or can be used in intelligent driving, intelligent networked vehicles and other fields, or can also be applied in AR/VR, Internet of Things and other fields, through selection-based
  • V2X vehicle to everything
  • LTE-V long term evolution-vehicle
  • V2V vehicle-to-vehicle
  • the modal combination scheme communicates to maximize the system capacity, expand the applicable scenarios and increase the gain.
  • the embodiment of the present application provides a communication method based on orbital angular momentum OAM, the method is executed by the receiving end, and the method includes:
  • sending indication information where the indication information is used to instruct the sending end to determine the sending mode.
  • the receiving end can send indication information to the sending end to instruct the sending end to determine the combination of OAM modes for communication, so that the system capacity can be maximized, applicable scenarios can be expanded, and gains can be increased.
  • the indication information is used to instruct the sender to determine the sending mode, including:
  • K is a positive integer, K ⁇ N/2, and N represents the number of array elements that emit the uniform circular array UCA;
  • Sending indication information where the indication information is used to indicate to determine the sending mode of the sending end based on the target OAM mode combination.
  • a target OAM mode combination can be selected from a variety of OAM mode combinations, so that the sending end can communicate based on the selected mode combination solution, so that the system capacity can be maximized, applicable scenarios can be expanded, and gains can be increased.
  • the determining the target OAM mode combination from the preset K+1 OAM mode combinations includes:
  • a target OAM mode combination is determined from preset K+1 OAM mode combinations.
  • the determining the target OAM mode combination from the preset K+1 OAM mode combinations according to the channel information includes:
  • the target OAM modal combination is determined from the preset K+1 OAM modal combinations to determine the target OAM modal combination.
  • the mapping relationship between the channel information and the mode combination is configured based on the purpose of maximizing channel capacity or maximizing channel SINR.
  • an appropriate OAM mode combination can be selected from various OAM mode combinations through channel information, so that the system capacity can be maximized under the same transmission power.
  • the determining the target OAM mode combination from the preset K+1 OAM mode combinations includes: determining a first deflection angle between the receiving end and the transmitting end; According to the first deflection angle, the target OAM mode combination is determined from the preset K+1 OAM mode combinations; K is a positive integer, K ⁇ N/2, and N represents the array element that emits the uniform circular array UCA number.
  • an appropriate OAM mode combination can be selected from various OAM mode combinations based on the deflection angle between the receiving end and the transmitting end, so that the system capacity can be maximized under the same transmission power .
  • the determining the target OAM mode combination from the preset K+1 OAM mode combinations according to the first deflection angle includes:
  • a target OAM mode combination is determined from K+1 preset OAM mode combinations.
  • the mapping relationship between the deflection angle and the mode combination is configured based on the purpose of maximizing channel capacity or maximizing channel SINR.
  • the formula of the first modal combination among the K+1 OAM modal combinations is expressed as follows:
  • L represents the modal value of the modal combination
  • L' is a transition value for calculating the modal value L
  • n and S are related to the number of modes of L', I ⁇ [0, N)
  • I represents the initial mode selected by OAM
  • N represents the array that emits the uniform circular array UCA number of elements.
  • the sending indication information where the indication information is used to indicate to determine the sending mode of the sending end based on the target OAM mode combination, includes:
  • Sending first indication information where the first indication information is used to indicate to determine the sending mode of the sending end based on the target index number.
  • the target OAM modality combination is multiple; the target index corresponding to the target OAM modality combination is obtained according to the preset correspondence between the index number and the modality combination number, including:
  • the target index number corresponding to each target OAM modal combination is acquired.
  • the sending instruction information includes: determining the channel information of the wireless channel between the receiving end and the sending end; sending the second indication information, where the second indication information is used to instruct the sending end to determine a sending mode based on the channel information.
  • the sending instruction information includes: determining a first deflection angle between the receiving end and the sending end; sending a third indication information, the third indication information is used to instruct the sending end to determine the sending mode based on the first deflection angle.
  • the embodiment of the present application provides another communication method based on orbital angular momentum OAM, the method is executed by the sending end, and the method includes:
  • different modal combination schemes can be selected through the CSI of the wireless channel and signal reception quality, so that the sending end can communicate based on the selected modal combination scheme, so that the system capacity can be maximized, applicable scenarios can be expanded, and the gain can be increased.
  • the indication information includes a target index number; and determining the sending mode of the sending end according to the indication information includes:
  • the indication information includes a plurality of target index numbers; determining the sending mode of the sending end according to the indication information includes:
  • the indication information includes channel information; and according to the indication information, determining the transmission mode of the sending end based on the target OAM mode combination includes: determining the target OAM mode based on the channel information Combining: determining the sending mode of the sending end based on the target OAM mode combination.
  • the determining the target OAM mode combination based on the channel information includes:
  • the target OAM modal combination is determined from the preset K+1 OAM modal combinations to determine the target OAM modal combination; K is a positive integer, K ⁇ N/2, and N represents the launch of a uniform circular array The number of array elements of the UCA.
  • the target OAM mode combination is determined from the preset K+1 OAM mode combinations to determine the target OAM mode combination:
  • the target OAM modal combination is determined from the preset K+1 OAM modal combinations to determine the target OAM modal combination.
  • the mapping relationship between the channel information and the mode combination is configured based on a purpose of maximizing channel capacity or maximizing channel SINR.
  • the indication information includes a first deflection angle between the receiving end and the sending end; and determining the sending mode of the sending end according to the indication information includes:
  • the target OAM mode combination is determined from the preset K+1 OAM mode combinations; K is a positive integer, K ⁇ N/2, and N represents the array element that emits the uniform circular array UCA number.
  • the determining the target OAM mode combination from the preset K+1 OAM mode combinations according to the first deflection angle includes:
  • a target OAM mode combination is determined from K+1 preset OAM mode combinations.
  • the mapping relationship between the deflection angle and the mode combination is configured based on the purpose of maximizing channel capacity or maximizing channel SINR.
  • L represents the modal value of the modal combination
  • L' is a transition value for calculating the modal value L
  • n and S are related to the number of modes of L', I ⁇ [0, N)
  • I represents the initial mode selected by OAM
  • N represents the array that emits the uniform circular array UCA number of elements.
  • the embodiment of the present application provides a communication device, which has part or all of the functions of the receiving end in the method described in the first aspect above, for example, the functions of the communication device can have part or all of the functions in this application
  • the functions in the examples may also have the functions of independently implementing any one of the embodiments in the present application.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other equipment.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the embodiment of the present application provides another communication device, which has some or all functions of the sending end in the method example described in the second aspect above.
  • the functions in all the embodiments may also have the functions of implementing any one embodiment of the present application independently.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may also include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the first aspect above.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • the embodiment of the present application provides a communication system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device described in the sixth aspect, or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect the communication device described above.
  • the embodiment of the present invention provides a computer-readable storage medium, which is used to store instructions used by the above-mentioned terminal equipment, and when the instructions are executed, the terminal equipment executes the above-mentioned first aspect. method.
  • an embodiment of the present invention provides a readable storage medium for storing instructions used by the above-mentioned network equipment, and when the instructions are executed, the network equipment executes the method described in the above-mentioned second aspect .
  • the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • Fig. 1 is a schematic diagram of the intermodal interference between the receiving end and the transmitting end changing with the deflection angle
  • FIG. 2 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 3 is a flow chart of a communication method based on orbital angular momentum OAM provided by an embodiment of the present application
  • Fig. 4 is a flow chart of another communication method based on orbital angular momentum OAM provided by the embodiment of the present application;
  • Fig. 5 is a flow chart of another communication method based on orbital angular momentum OAM provided by the embodiment of the present application;
  • Fig. 6 is a flow chart of another communication method based on orbital angular momentum OAM provided by the embodiment of the present application.
  • Fig. 7 is a flowchart of another communication method based on orbital angular momentum OAM provided by the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • OAM OAM shifter keying
  • OFAM-DM OAM multiplexing
  • the most common transceiver system is the OAM communication system based on UCA, and this system requires the axes of the transceiver antennas to be aligned.
  • the receiver When there is an axis deviation between the transceivers, the receiver will generate modal crosstalk, resulting in bit errors. rate increases, system performance degrades.
  • Intermodal interference caused by non-alignment will significantly reduce the demodulation performance of vortex electromagnetic wave reception. Smaller magnitudes of off-axis and non-parallel cases can be resolved by beam matching, while inter-modal interference still exists for larger deflection angles. And the main interference mode will change with the change of declination angle. For typical mobile communication scenarios, there is a large off-axis, and the terminal may rotate and move rapidly. Therefore, solving the problem of OAM communication in this non-alignment situation has become a technical bottleneck for the application of OAM.
  • the interference between the different modes changes.
  • the interference between adjacent modes is the main interference
  • the interference between L ⁇ 2 and L ⁇ 4 modes is the main interference.
  • the inter-modal interference is mainly caused by the adjacent modes.
  • the interference is usually reduced and the SINR is improved by using even mode communication.
  • the applicable scenario of this communication method is limited to the case of small declination, and the gain is small. If beam steering is used, the dominant mode of intermodal interference will change with the deflection angle.
  • this application proposes a communication method based on Orbital Angular Momentum OAM.
  • the sending end can select different modal combinations to send information, so that in the case of the same transmission power, it can Maximize system capacity, expand applicable scenarios, and increase gains.
  • FIG. 2 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include, but is not limited to, a receiving end and a sending end.
  • the number and shape of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiment of the application. In practical applications, two or more receiving end, two or more sending ends.
  • the communication system shown in FIG. 2 includes one receiving end 201 and one sending end 202 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the receiving end 201 in this embodiment of the present application may be a network device, or may also be a terminal device.
  • the sending end 202 in this embodiment of the present application may be a terminal device, or may also be a network device.
  • the receiving end 201 is a network device
  • the sending end 202 may be a terminal device; or, if the receiving end 201 is a terminal device, then the sending end 202 may be a network device.
  • the network device in this embodiment of the present application is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present application may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), using CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device in the embodiment of the present application is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 3 is a flow chart of a communication method based on orbital angular momentum OAM provided by an embodiment of the present application. It should be noted that the OAM-based communication method in the embodiment of the present application is executed by the receiving end. As shown in FIG. 3 , the OAM-based communication method may include but not limited to the following steps.
  • Step 301 sending indication information, where the indication information is used to instruct the sending end to determine the sending mode.
  • the receiving end may send indication information to the sending end, and the sending end may select an appropriate target OAM modality combination as the sending modality based on content in the indication information.
  • the indication information may include a target index number.
  • the receiving end determines the target OAM mode combination from the preset K+1 OAM mode combinations, and determines the target index number corresponding to the target OAM mode combination, and sends the first indication information, and the second The indication information is used to indicate to determine the sending mode of the sending end based on the target index number.
  • the receiving end determines the target OAM mode combination from the preset K+1 OAM mode combinations, and determines the target index number corresponding to the target OAM mode combination, and sends the target index number to the sending end.
  • the sending end may determine the OAM mode combination matching the target index number as the sending mode according to the target index number.
  • the indication information may include channel information, and the channel information may be CSI (Channel State Information, channel state information) or signal reception quality.
  • the receiving end may determine channel information of the wireless channel between the receiving end and the sending end, and send second indication information to the sending end, where the second indication information is used to instruct the sending end to determine the transmission mode based on the channel information.
  • the receiving end sends channel information to the sending end through indication information.
  • the sending end may select and determine an OAM mode combination matching the channel information as a sending mode according to the channel information.
  • the indication information may further include a first deflection angle between the sending end and the receiving end.
  • the receiving end determines the first deflection angle between the receiving end and the transmitting end, and sends third indication information, where the third indication information is used to instruct the transmitting end to determine the transmission mode based on the first deflection angle.
  • the receiving end sends the first deflection angle to the sending end through indication information.
  • the transmitting end may select and determine an OAM mode combination matching the first deflection angle as the transmission mode according to the first deflection angle.
  • the receiving end can send indication information to the sending end to instruct the sending end to determine the OAM mode combination for communication, so that the system capacity can be maximized, applicable scenarios can be expanded, and gains can be increased.
  • FIG. 4 is a flowchart of a communication method based on orbital angular momentum OAM provided by an embodiment of the present application. It should be noted that the OAM-based communication method in the embodiment of the present application is executed by the receiving end. As shown in Fig. 4, the OAM-based communication method may include but not limited to the following steps.
  • a target OAM modality combination is determined from preset K+1 OAM modality combinations.
  • K is a positive integer, K ⁇ N/2, and N represents the number of elements of the transmitting uniform circular array UCA.
  • an OAM modal combination that conforms to the current channel state can be selected from the preset K+1 OAM modal combinations as the sending mode of the sending end. state.
  • an appropriate OAM modal combination can be selected from the preset K+1 OAM modal combinations as the target OAM modal combination , or, based on the deflection angle between the receiving end and the transmitting end, an appropriate OAM mode combination may be selected from preset K+1 OAM mode combinations as the target OAM mode combination.
  • the two examples given above are two examples of using the deflection angle or channel information to determine the mode combination. These two examples are only for the convenience of those skilled in the art to understand how to determine The implementation of OAM mode combination cannot be understood as the mode combination can only be determined by deflection angle or channel information. For example, the mode combination can also be determined by other variables in CSI. This application does not make specific details on this limited.
  • the K+1 OAM mode combinations in this embodiment of the present application may be preset.
  • multiple (such as K+1) modes can be set in advance )
  • the OAM mode combination scheme is used for the sending end to select different mode combinations to send information, so that the system capacity can be maximized under the same transmission power.
  • the formula of the first mode combination among the K+1 OAM mode combinations is as follows:
  • L represents the modal value of the modal combination
  • L' is a transition value for calculating the modal value L
  • n and S are related to the number of modes of L', I ⁇ [0, N)
  • I represents the initial mode selected by OAM
  • N represents the array that emits the uniform circular array UCA number of elements.
  • the first modal combination among the above K+1 OAM modal combinations can represent the corresponding modal combination when there is no inter-modal interference/small inter-modal interference; the K+1 OAM modal combinations
  • L ⁇ 1 represents the adjacent mode
  • Step 402 sending indication information, where the indication information is used to indicate to determine the sending mode of the sending end based on the target OAM mode combination.
  • the receiving end when it determines the target OAM modality combination from the preset K+1 OAM modality combinations, it may send indication information to the sending end, which is used to indicate that the target OAM modality combination is determined based on the target OAM modality combination. Send the modal.
  • the sending end may use the target OAM modality combination as the sending modality of the sending end, that is, communicate based on the target OAM modality combination.
  • the receiving end stores the above K+1 OAM mode combinations.
  • the indication information may include a formula expression of the target OAM modality combination.
  • the sending end calculates the modal value according to the target OAM modal combination formula contained in the instruction information, and then uses the modal value for communication.
  • the receiving end and the sending end store the above K+1 OAM modal combinations at the same time, and set different index numbers for different modal combinations, and the index numbers correspond to the modal combinations one-to-one, so that The corresponding modal combination scheme is retrieved according to the index number, and the receiving end and the sending end can store the index number locally.
  • the receiving end can obtain the target index number corresponding to the target OAM modality combination according to the preset correspondence between the index number and the modality combination, and send the first indication information, which is used to indicate the The target index number determines the sending mode of the sender.
  • the receiving end determines the target OAM mode combination according to the channel information or the deflection angle, it can obtain the target index corresponding to the target OAM mode combination according to the corresponding relationship between the preset index number and the mode combination number, sending first indication information to the sender, for instructing the sender to determine the sending mode based on the target index number.
  • the sending end can find the corresponding OAM mode combination according to the target index number in the first indication information, and use the OAM mode combination corresponding to the target index number as the sending mode for communication .
  • multiple modal interferences may exist at the same time.
  • the embodiment of the present application may select the intersection mode of different modal combinations as the transmission mode.
  • the deflection angle between the receiving end and the transmitting end is relatively large, there may be multiple target OAM mode combinations, and the corresponding relationship between each target OAM mode can be obtained according to the corresponding relationship between the index number and the mode combination.
  • the target index number corresponding to the state combination is used to send the first indication information to the sending end, which is used to instruct the sending end to determine the sending mode based on the multiple target index numbers.
  • the receiving end can obtain the target index corresponding to each target OAM modal combination according to the correspondence between the index number and the modal combination number, sending first indication information to the sending end, for instructing the sending end to determine the sending mode based on the multiple target index numbers.
  • the sending end can find the OAM mode combination corresponding to each target index number according to the multiple target index numbers in the first indication information, and set the OAM mode combination corresponding to each target index number The combination performs intersection processing, and the intersection mode in the OAM mode combination corresponding to each target index number is taken, and the intersection mode is used as the sending mode of the sending end.
  • the target OAM mode combination can be selected from various OAM mode combinations, so that the sending end can communicate based on the selected mode combination scheme, so that the system capacity can be maximized, the applicable scenarios can be expanded, and the gain can be improved .
  • FIG. 5 is a flow chart of another communication method based on orbital angular momentum OAM provided by an embodiment of the present application. It should be noted that the OAM-based communication method in the embodiment of the present application is executed by the receiving end. As shown in FIG. 5 , the OAM-based communication method may include but not limited to the following steps.
  • Step 501 determine the channel information of the wireless channel between the receiving end and the sending end.
  • channel estimation may be performed on the wireless channel between the receiving end and the sending end, and channel information of the wireless channel between the receiving end and the sending end may be obtained.
  • the channel information may be channel state information CSI, and/or may also be signal reception quality.
  • the receiving end can perform channel estimation based on the channel state indicator reference signal (CSI-RS) configured by the sending end, so that the distance between the receiving end and the sending end can be obtained.
  • CSI channel state indicator reference signal
  • the intersymbol interference between OFDM symbols can be eliminated in the synchronization signal to obtain an updated synchronization signal, and the reference signal received power RSRP is determined according to the updated synchronization signal, and the received signal strength indicator RSSI is calculated according to the updated synchronization signal,
  • the reference signal reception quality RSRQ is determined by RSRP and RSSI. It can be understood that other methods may also be used to obtain the CSI and signal reception quality of the wireless channel between the receiving end and the sending end, which is not specifically limited in this application.
  • Step 502 according to the channel information, determine the target OAM mode combination from the preset K+1 OAM mode combinations and determine the target OAM mode combination.
  • the target OAM modal combination can be determined from the preset K+1 OAM modal combinations according to the channel information and the preset mapping relationship between the channel information and the modal combination. Determine the target OAM Modal composition.
  • the K+1 OAM mode combinations in this embodiment of the present application may be preset.
  • multiple (such as K+1) OAM modes can be pre-set
  • the mode combination scheme is used for the sender to select different mode combinations to send information, so that the system capacity can be maximized under the same transmission power.
  • the formula of the first mode combination among the K+1 OAM mode combinations is as follows:
  • L represents the modal value of the modal combination
  • L' is a transition value for calculating the modal value L
  • n and S are related to the number of modes of L', I ⁇ [0, N)
  • I represents the initial mode selected by OAM
  • N represents the array that emits the uniform circular array UCA number of elements.
  • the first modal combination among the above K+1 OAM modal combinations can represent the corresponding modal combination when there is no inter-modal interference/small inter-modal interference; the K+1 OAM modal combinations
  • L ⁇ 1 represents the adjacent mode
  • mapping relationship between each modality combination and different channel information can be configured in advance, so that after determining the channel information between the receiving end and the sending end, according to the channel information and the mapping relationship, from A corresponding target OAM mode combination is selected from the preset K+1 OAM mode combinations. It can be understood that if the channel information is relatively poor, it may correspond to multiple OAM mode combinations, so that the intersection mode of multiple mode combinations can be used as the transmission mode of the sending end, thereby maximizing the system capacity as much as possible. It should be noted that in this embodiment of the present application, the mapping relationship between each modality combination and different channel information may be configured based on the purpose of maximizing channel capacity.
  • a modal combination that can maximize the channel capacity corresponding to the channel information may be configured.
  • the mapping relationship between each modality combination and different channel information may be configured based on the purpose of maximizing channel SINR.
  • a mode combination that can maximize the SINR of the channel corresponding to the channel information may be configured.
  • the embodiments of the present application may also configure the mapping relationship between each mode combination and different channel information based on other conditions, which is not specifically limited in the present application.
  • the mapping relationship between channel information and modality combinations may be specified by a protocol, or may also be indicated by a network device through signaling.
  • the sending end may indicate the mapping relationship between channel information and modality combinations through signaling.
  • Step 503 sending indication information, where the indication information is used to indicate to determine the sending mode of the sending end based on the target OAM mode combination.
  • step 503 may be implemented in any one of the embodiments of the present application, which is not limited in the embodiment of the present application, and will not be repeated here.
  • an appropriate OAM mode combination can be selected from various OAM mode combinations through channel information, so that the system capacity can be maximized under the same transmission power, the application can be expanded, and the gain can be improved .
  • FIG. 6 is a flowchart of another communication method based on orbital angular momentum OAM provided by an embodiment of the present application. It should be noted that the OAM-based communication method in the embodiment of the present application is executed by the receiving end. As shown in FIG. 6 , the OAM-based communication method may include but not limited to the following steps.
  • Step 601 determine a first deflection angle between a receiving end and a sending end.
  • the first deflection angle between the receiving end and the transmitting end may be determined according to AOA (Angle of Arrival, angle of arrival) estimation or beam scanning.
  • AOA Angle of Arrival, angle of arrival
  • the AOA estimation algorithm can be used, or the first deflection angle can also be determined in the manner of beam scanning.
  • the following will give Here are two examples of implementations:
  • the deflection angle is estimated by using an AOA estimation algorithm, and the obtained estimated value is used as the first deflection angle between the receiving end and the transmitting end.
  • the deflection angle can be quantized, and the beamforming vector of the corresponding angle can be encoded, and the matching beam pair for sending and receiving can be determined through beam scanning, so as to calculate the deflection angle between the receiving end and the transmitting end.
  • deflection angle is one of the variables of CSI.
  • the two ways of determining the first deflection angle given above are only for the convenience of those skilled in the art to understand how to determine the first deflection angle, but not as a specific limitation on how to determine the first deflection angle. That is to say, it is also possible to use
  • the first deflection angle can be determined in other ways, or the mode combination can also be determined through other variables in the CSI, which is not specifically limited in the present application.
  • Step 602 Determine a target OAM mode combination from preset K+1 OAM mode combinations according to the first deflection angle.
  • K is a positive integer, K ⁇ N/2, and N represents the number of elements of the transmitting uniform circular array UCA.
  • the target OAM mode combination may be determined from preset K+1 OAM mode combinations according to the mapping relationship between the first deflection angle, the preset deflection angle and the mode combinations.
  • the K+1 OAM mode combinations in this embodiment of the present application may be preset.
  • multiple (such as K+1) OAM modal combination schemes can be preset for The sender selects different mode combinations to send information, so that the system capacity can be maximized under the same transmit power.
  • the formula of the first mode combination among the K+1 OAM mode combinations is as follows:
  • L represents the modal value of the modal combination
  • L' is a transition value for calculating the modal value L
  • n and S are related to the number of modes of L', I ⁇ [0, N)
  • I represents the initial mode selected by OAM
  • N represents the array that emits the uniform circular array UCA number of elements.
  • the first modal combination among the above K+1 OAM modal combinations can represent the corresponding modal combination when there is no inter-modal interference/small inter-modal interference; the K+1 OAM modal combinations
  • L ⁇ 1 represents the adjacent mode
  • the mapping relationship between each mode combination and different deflection angles can also be pre-configured, so that after the first deflection angle between the receiving end and the sending end is determined, the first deflection angle can be Based on the mapping relationship, a corresponding target OAM mode combination is selected from the preset K+1 OAM mode combinations. Among them, if the deflection angle is relatively large, it may correspond to various OAM mode combinations. It should be noted that in this embodiment of the present application, the mapping relationship between each mode combination and different deflection angles may be configured based on the purpose of maximizing channel capacity. For example, for each deflection angle, a mode combination that can maximize the channel capacity corresponding to the deflection angle can be configured.
  • the mapping relationship between each mode combination and different deflection angles may be configured based on the purpose of maximizing channel SINR. For example, for each deflection angle, a mode combination capable of maximizing the SINR of the channel corresponding to the deflection angle may be configured.
  • the embodiments of the present application may also configure the mapping relationship between each mode combination and different deflection angles based on other conditions, which is not specifically limited in the present application.
  • the mapping relationship between the deflection angle and the mode combination may be specified through a protocol, or may also be indicated by a network device through signaling.
  • the sending end may indicate the mapping relationship between the deflection angle and the mode combination through signaling.
  • Step 603 sending indication information, where the indication information is used to indicate to determine the sending mode of the sending end based on the target OAM mode combination.
  • step 603 may be implemented in any one of the embodiments of the present application, which is not limited in the embodiment of the present application, and will not be repeated here. .
  • an appropriate OAM mode combination can be selected from a variety of OAM mode combinations based on the deflection angle between the receiving end and the transmitting end, so that the system can be maximized under the same transmission power.
  • the capacity can be expanded and applied to increase the gain.
  • FIG. 7 is a flowchart of another OAM-based communication method provided by an embodiment of the present application. It should be noted that the OAM-based communication method in the embodiment of the present application can be applied to the sending end. As shown in FIG. 7 , the OAM-based communication method may include but not limited to the following steps.
  • Step 701 receiving indication information.
  • the indication information may be sent by the receiving end after determining a target OAM mode combination from preset K+1 OAM mode combinations.
  • the receiving end can select an OAM modal combination that meets the current channel state from the preset K+1 OAM modal combinations as the sending end's Send the modal.
  • an appropriate OAM modal combination can be selected from the preset K+1 OAM modal combinations as the target OAM modal combination , or, based on the deflection angle between the receiving end and the transmitting end, an appropriate OAM mode combination may be selected from preset K+1 OAM mode combinations as the target OAM mode combination.
  • the receiving end determines the target OAM mode combination from the preset K+1 OAM mode combinations, it can send indication information to the sending end, instructing the sending end to determine the sending mode of the sending end based on the target OAM mode combination.
  • the two examples given above are two examples of using the deflection angle or channel information to determine the mode combination. These two examples are only for the convenience of those skilled in the art to understand how to determine The implementation of OAM mode combination cannot be understood as the mode combination can only be determined by deflection angle or channel information, for example, the mode can also be determined by other variables in CSI (Channel State Information, channel state information) combination, which is not specifically limited in this application.
  • CSI Channel State Information, channel state information
  • the K+1 OAM mode combinations in this embodiment of the present application may be preset.
  • multiple (such as K+1) modes can be pre-set )
  • the OAM mode combination scheme is used for the sending end to select different mode combinations to send information, so that the system capacity can be maximized under the same transmission power.
  • the formula of the first mode combination among the K+1 OAM mode combinations is as follows:
  • L represents the modal value of the modal combination
  • L' is a transition value for calculating the modal value L
  • n and S are related to the number of modes of L', I ⁇ [0, N)
  • I represents the initial mode selected by OAM
  • N represents the array that emits the uniform circular array UCA number of elements.
  • the first modal combination among the above K+1 OAM modal combinations can represent the corresponding modal combination when there is no inter-modal interference/small inter-modal interference; the K+1 OAM modal combinations
  • L ⁇ 1 represents the adjacent mode
  • Step 702 Determine the sending mode of the sending end according to the indication information.
  • the sending end may use the target OAM modality combination as the sending modality of the sending end, that is, communicate based on the target OAM modality combination.
  • the receiving end stores the above K+1 OAM mode combinations.
  • the indication information may include a formula expression of the target OAM modality combination.
  • the sending end calculates the modal value according to the target OAM modal combination formula contained in the instruction information, and then uses the modal value for communication.
  • the receiving end and the sending end store the above K+1 OAM modal combinations at the same time, and set different index numbers for different modal combinations, and the index numbers correspond to the modal combinations one-to-one, so that The corresponding modal combination scheme is retrieved according to the index number, and the receiving end and the sending end can store the index number locally.
  • the receiving end can obtain the target index number corresponding to the target OAM modal combination according to the preset correspondence between the index number and the modal combination, and send indication information, the indication information is used to indicate that the target index number is determined based on the target index number.
  • the sending mode of the sender is used to indicate that the target index number is determined based on the target index number.
  • the receiving end After the receiving end determines the target OAM modal combination according to the CSI and signal reception quality, it can obtain the target index corresponding to the target OAM modal combination according to the corresponding relationship between the preset index number and the modal combination number, send indication information to the sender, for instructing the sender to determine the sending mode based on the target index number.
  • the sending end After receiving the indication information, the sending end can find out from the preset K+1 OAM mode combinations according to the target index number in the indication information and the corresponding relationship between the preset index number and the mode combination. The corresponding OAM mode combination, and use the OAM mode combination corresponding to the target index number as the sending mode for communication.
  • multiple modal interferences may exist at the same time.
  • the embodiment of the present application may select the intersection mode of different modal combinations as the transmission mode.
  • the target corresponding to each target OAM mode combination can be obtained according to the correspondence between the index number and the mode combination
  • the index number is used to send indication information to the sender to instruct the sender to determine the sending mode based on the multiple target index numbers.
  • the receiving end can obtain the target index corresponding to each target OAM modal combination according to the correspondence between the index number and the modal combination Number, send indication information to the sender, for instructing the sender to determine the sending mode based on the multiple target index numbers.
  • the sending end can select from the preset K+1 kinds of OAM modal combinations according to the multiple target index numbers in the instruction information and the corresponding relationship between the preset index numbers and the modal combinations.
  • intersection mode is used as the sending mode of the sending end.
  • the receiving end and the sending end store the above K+1 OAM mode combinations at the same time, and the sending end stores the mapping relationship between channel information and different OAM mode combinations.
  • the sending end may receive indication information sent by the receiving end.
  • the indication information may include channel information; the sending end may determine the target OAM mode combination from the preset K+1 OAM mode combinations based on the channel information based on the indication information, and determine the sending end based on the target OAM mode combination. modal.
  • the sending end can determine the target OAM mode combination from the preset K+1 OAM mode combinations according to the channel information and the preset mapping relationship between the channel information and the mode combination. state combination.
  • the mapping relationship between each modality combination and different channel information may be configured based on the purpose of maximizing channel capacity. For example, for different channel information, a modal combination that can maximize the channel capacity corresponding to the channel information may be configured.
  • the mapping relationship between each modality combination and different channel information may be configured based on the purpose of maximizing channel SINR. For example, for different channel information, a mode combination that can maximize the SINR of the channel corresponding to the channel information may be configured.
  • the embodiments of the present application may also configure the mapping relationship between each mode combination and different channel information based on other conditions, which is not specifically limited in the present application.
  • the receiving end and the transmitting end store the aforementioned K+1 OAM mode combinations at the same time, and the transmitting end stores mapping relationships between deflection angles and different OAM mode combinations.
  • the sending end may receive indication information sent by the receiving end.
  • the indication information may include the first deflection angle between the receiving end and the transmitting end; the transmitting end may determine the target OAM mode from the preset K+1 OAM mode combinations based on the first deflection angle according to the indication information combination, and determine the sending mode of the sending end based on the target OAM mode combination.
  • the transmitting end may determine the target OAM mode combination from preset K+1 OAM mode combinations according to the mapping relationship between the first deflection angle, the preset deflection angle and the mode combinations.
  • the mapping relationship between each mode combination and different deflection angles may be configured based on the purpose of maximizing channel capacity. For example, for each deflection angle, a mode combination that can maximize the channel capacity corresponding to the deflection angle can be configured.
  • the mapping relationship between each mode combination and different deflection angles may be configured based on the purpose of maximizing channel SINR.
  • a mode combination capable of maximizing the SINR of the channel corresponding to the deflection angle may be configured.
  • the embodiments of the present application may also configure the mapping relationship between each mode combination and different deflection angles based on other conditions, which is not specifically limited in the present application.
  • multiple modal interferences may exist at the same time.
  • the embodiment of the present application may select the intersection mode of different modal combinations as the transmission mode.
  • the transmitting end may perform intersection processing on the multiple target OAM mode combinations, that is, the The intersection mode among the combination of multiple target OAM modes is used as the sending mode of the sending end.
  • the target OAM mode combination can be selected from various OAM mode combinations, so that the sending end can communicate based on the selected mode combination scheme, so that the system capacity can be maximized, the applicable scenarios can be expanded, and the gain can be improved .
  • the sending end and the receiving end may include hardware structures and software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 8 is a schematic structural diagram of a communication device 80 provided in an embodiment of the present application.
  • the communication device 80 shown in FIG. 8 may include a processing module 801 and a transceiver module 802 .
  • the transceiver module 802 may include a sending module and/or a receiving module, the sending module is used to implement a sending function, the receiving module is used to implement a receiving function, and the transceiver module 802 may implement a sending function and/or a receiving function.
  • the communication device 80 may be a receiving end, may also be a device in the receiving end, and may also be a device that can be matched with the receiving end.
  • the communication device 80 may be the sending end, or a device in the sending end, or a device that can be matched with the sending end.
  • the communication device 80 is the receiving end: in the embodiment of the present application, the transceiver module 802 is used to send indication information, and the indication information is used to instruct the sending end to determine the sending mode.
  • the processing module 801 is used to determine the target OAM mode combination from the preset K+1 OAM mode combinations; K is a positive integer, K ⁇ N/2, and N represents the emission uniform circular array The number of array elements of the UCA; the transceiver module 802 is configured to send indication information, and the indication information is used to indicate to determine the transmission mode of the transmitting end based on the target OAM mode combination.
  • the processing module 801 is used to determine the channel information of the wireless channel between the receiving end and the sending end; according to the channel information, determine the target OAM modal combination from the preset K+1 OAM modal combinations Determine the target OAM modality combination.
  • the processing module 801 is configured to: determine the target OAM modality from the preset K+1 OAM modality combinations according to the channel information, the preset mapping relationship between the channel information and the modality combinations The combination determines the target OAM modality combination.
  • the mapping relationship between the channel information and the mode combination is configured based on a purpose of maximizing channel capacity or maximizing channel SINR.
  • the processing module 801 is configured to: determine the first deflection angle between the receiving end and the transmitting end; determine the target OAM mode from the preset K+1 OAM mode combinations according to the first deflection angle Modal combination; K is a positive integer, K ⁇ N/2, and N represents the number of elements that emit the uniform circular array UCA.
  • the processing module 801 is configured to: determine from the preset K+1 OAM mode combinations according to the first deflection angle, the mapping relationship between the preset deflection angle and the mode combination Target OAM modality combination.
  • the mapping relationship between the deflection angle and the mode combination is configured based on the purpose of maximizing channel capacity or maximizing channel SINR.
  • the formula of the first modal combination among the K+1 OAM modal combinations is expressed as follows:
  • L represents the modal value of the modal combination
  • L' is a transition value for calculating the modal value L
  • n and S are related to the number of modes of L', I ⁇ [0, N)
  • I represents the initial mode selected by OAM
  • N represents the array that emits the uniform circular array UCA number of elements.
  • the processing module 801 is used to: acquire the target index number corresponding to the target OAM modal combination according to the preset correspondence between the index number and the modal combination; the transceiver module 802 is used to: send the first Indication information, the first indication information is used to indicate to determine the sending mode of the sending end based on the target index number.
  • the target OAM modal combination is multiple; the processing module 801 is configured to: obtain the target index number corresponding to each target OAM modal combination according to the correspondence between the index number and the modal combination .
  • the processing module 801 is used to determine the channel information of the wireless channel between the receiving end and the sending end; the transceiver module 802 is used to send second indication information, and the second indication information is used to indicate The sending end determines a sending mode based on the channel information.
  • the processing module 801 is used to determine the first deflection angle between the receiving end and the sending end; the transceiver module 802 is used to send third indication information, and the third indication information is used to indicate The sending end determines a sending mode based on the first deflection angle.
  • the communication device 80 is the sending end: in the embodiment of the present application, the transceiver module 802 is used to receive indication information; the processing module 801 is used to determine the sending mode of the sending end according to the indication information.
  • the indication information includes a target index number
  • the processing module 801 is configured to: according to the indication information and the preset correspondence between the index number and the mode combination, select from the preset K+1 kinds of OAM modality combinations Determine the target OAM mode combination corresponding to the target index number; K is a positive integer, K ⁇ N/2, N represents the number of array elements that emit the uniform circular array UCA; the target OAM mode corresponding to the target index number The combination is determined as the sending mode of the sending end.
  • the indication information includes a plurality of target index numbers; the processing module 801 is configured to: according to the indication information and the corresponding relationship between the preset index number and the modal combination, from the preset K+1 kinds of OAM Multiple target OAM modal combinations corresponding to multiple target index numbers are determined in the modal combination; K is a positive integer, K ⁇ N/2, N represents the number of array elements that emit the uniform circular array UCA; select multiple targets The intersection mode in the combination of OAM modes is used as the sending mode of the sending end.
  • the indication information includes channel information; the processing module 801 is configured to: determine a target OAM mode combination based on the channel information; and determine a sending mode of the sending end based on the target OAM mode combination.
  • the processing module 801 is configured to: determine the target OAM mode combination from the preset K+1 OAM mode combinations according to the channel information; K is a positive integer , K ⁇ N/2, N represents the number of array elements that transmit the uniform circular array UCA.
  • the processing module 801 is configured to: according to the channel information, the preset mapping relationship between the channel information and the modal combinations, determine from the preset K+1 OAM modal combinations The target OAM modality combination determines the target OAM modality combination.
  • the mapping relationship between the channel information and the mode combination is configured based on a purpose of maximizing channel capacity or maximizing channel SINR.
  • the indication information includes a first deflection angle between the receiving end and the transmitting end; the processing module 801 is configured to: determine from the preset K+1 OAM mode combinations according to the first deflection angle The target OAM mode combination; K is a positive integer, K ⁇ N/2, and N represents the number of elements that emit the uniform circular array UCA.
  • the processing module 801 is configured to: determine from the preset K+1 OAM mode combinations according to the first deflection angle, the mapping relationship between the preset deflection angle and the mode combination Target OAM modality combination.
  • the mapping relationship between the deflection angle and the mode combination is configured based on the purpose of maximizing channel capacity or maximizing channel SINR.
  • the formula of the first modal combination among the K+1 OAM modal combinations is expressed as follows:
  • L represents the modal value of the modal combination
  • L' is a transition value for calculating the modal value L
  • n and S are related to the number of modes of L', I ⁇ [0, N)
  • I represents the initial mode selected by OAM
  • N represents the array that emits the uniform circular array UCA number of elements.
  • FIG. 9 is a schematic structural diagram of another communication device 90 provided in an embodiment of the present application.
  • the communication device 90 may be a receiving end, may also be a sending end, may also be a chip, a chip system, or a processor that supports the receiving end to implement the above method, or may be a chip, a chip system, or a chip that supports the sending end to implement the above method. processor etc.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 90 may include one or more processors 901 .
  • the processor 901 may be a general-purpose processor or a special-purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 90 may further include one or more memories 902, on which a computer program 904 may be stored, and the processor 901 executes the computer program 904, so that the communication device 90 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 902 .
  • the communication device 90 and the memory 902 can be set separately or integrated together.
  • the communication device 90 may further include a transceiver 905 and an antenna 906 .
  • the transceiver 905 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 905 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 90 may further include one or more interface circuits 907 .
  • the interface circuit 907 is used to receive code instructions and transmit them to the processor 901 .
  • the processor 901 runs the code instructions to enable the communication device 90 to execute the methods described in the foregoing method embodiments.
  • the communication device 90 is the receiving end: the processor 901 is configured to execute step 401 in FIG. 4 ; execute step 501 and step 502 in FIG. 5 ; and execute step 601 and step 602 in FIG. 6 .
  • the transceiver 905 is used to execute step 301 in FIG. 3 ; execute step 402 in FIG. 4 ; execute step 503 in FIG. 5 ; and execute step 603 in FIG. 6 .
  • the communication device 90 is the sending end: the transceiver 905 is used to execute step 701 in FIG. 7 .
  • the processor 901 is configured to execute step 702 in FIG. 7 .
  • the processor 901 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 901 may store a computer program 903, and the computer program 903 runs on the processor 901, and may cause the communication device 90 to execute the methods described in the foregoing method embodiments.
  • the computer program 903 may be solidified in the processor 901, and in this case, the processor 901 may be implemented by hardware.
  • the communication device 90 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a receiving end or a sending end, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 9 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the embodiment of the present application also provides a communication system based on orbital angular momentum OAM.
  • the system includes the communication device as the receiving end and the communication device as the sending end in the embodiment of FIG. A communication device at the receiving end and a communication device at the sending end.
  • the present application also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present application will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in this application can also be described as one or more, and multiple can be two, three, four or more, and this application does not make a limitation.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • the corresponding relationships shown in the tables in this application can be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables can also use other names that the communication device can understand, and the values or representations of the parameters can also be other values or representations that the communication device can understand.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefined in this application can be understood as defining, predefining, storing, prestoring, prenegotiating, preconfiguring, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种基于轨道角动量OAM的通信方法及其装置,可以应用于车联网,例如车与任何事物通信、车间通信长期演进技术、车辆与车辆通信等,或可以用于智能驾驶,智能网联车等领域,或者还可以应用于AR/VR、物联网等领域中,该方法包括:接收端发送指示信息,该指示信息用于指示发送端确定发送模态。通过实施本申请实施例,可以使得系统容量最大化,可以扩大适用场景,提高增益。

Description

基于轨道角动量OAM的通信方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种基于轨道角动量OAM的通信方法及其装置。
背景技术
随着无线通信的不断发展,对通信能力的要求也越来越高。面向未来的AR(Augmented Reality,增强现实)/VR(Virtual Reality,虚拟现实)、车联网、物联网等应用场景,超高速率、超低时延、超大带宽通信成为常态。而时间、频率、空间等可用于调制信息的资源已经被广泛的应用。因此除了开发更高的频段之外,寻求更高频谱效率的通信技术成为当务之急。1992年,Allen等人首次提出电磁波轨道角动量(Orbital Angular Momentum,简称:OAM)可以携带信息。OAM独立于传统的时间、相位、频率、极化等调制维度,被认为是一个新的调制维度。并且理论上涡旋电磁波携带的OAM模态具有无限数量,不同整数本征值的OAM波束之间相互正交,理论上能无限提高频谱利用率。
OAM通信系统中,最常见收发系统是基于UCA(Uniform Circular Array,均匀圆阵列)的OAM通信系统,而该系统要求收发天线轴心对齐,当收发机之间出现轴心偏角时,接收器会产生模态串扰,导致误码率增大,系统性能下降。无线通信尤其是移动通信中存在很多非理想对准状态。这是解决涡旋电磁波在移动通信中应用的关键问题。
非对准产生的模态间干扰会使涡旋电磁波的接收解调性能显著降低。非对准情况下,若不采用波束控制的补偿措施,模态间干扰主要是由相邻模态造成的。相关技术中,通常是通过使用偶数模态通信来减小干扰,提高SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)。然而,这种通信方式适用场景仅限于小偏角的情况,且增益较小。若采用波束控制,模态间干扰的主要模态会随偏转角度的变化而发生变化。
发明内容
本申请实施例提供一种基于轨道角动量OAM的通信方法及其装置,可以应用于车联网,例如车与任何事物(vehicle to everything,V2X)通信、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车辆与车辆(vehicle to vehicle,V2V)通信等,或可以用于智能驾驶,智能网联车等领域,或者还可以应用于AR/VR、物联网等领域,通过基于选择的模态组合方案进行通信,使得系统容量最大化,可以扩大适用场景,提高增益。
第一方面,本申请实施例提供一种基于轨道角动量OAM的通信方法,所述方法由接收端执行,所述方法包括:
发送指示信息,所述指示信息用于指示发送端确定发送模态。
在该技术方案中,可以通过接收端向发送端发送指示信息,以指示发送端确定OAM模态组合进行通信,使得系统容量最大化,可以扩大适用场景,提高增益。
在一种实现方式中,所述指示信息用于指示发送端确定发送模态,包括:
从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数;
发送指示信息,所述指示信息用于指示基于所述目标OAM模态组合确定发送端的发送模态。
在该技术方案中,可以从多种OAM模态组合中选择目标OAM模态组合,,以便发送端基于选择的模态组合方案进行通信,使得系统容量最大化,可以扩大适用场景,提高增益。
在一种实现方式中,所述从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合,包括:
确定所述接收端与所述发送端之间无线信道的信道信息;
根据所述信道信息,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合。
在一种可能的实现方式中,所述根据所述信道信息,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合,包括:
根据所述信道信息、预设的信道信息与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合。
在一种实现方式中,所述信道信息与模态组合间的映射关系是基于使得信道容量最大化或信道 SINR最大化的目的来配置的。
在该技术方案中,可以通过信道信息从多种OAM模态组合中选择出合适的OAM模态组合,从而可以使得在相同发射功率的情况下,最大化系统容量。
在一种实现方式中,所述从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合,包括:确定所述接收端与所述发送端之间的第一偏转角度;根据所述第一偏转角度,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数。
在该技术方案中,可以基于接收端与发送端之间的偏转角度从多种OAM模态组合中选择出合适的OAM模态组合,从而可以使得在相同发射功率的情况下,最大化系统容量。
在一种实现方式中,所述根据所述第一偏转角度,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合,包括:
根据所述第一偏转角度、预设的偏转角度与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合。
在一种实现方式中,所述偏转角度与模态组合间的映射关系是基于使得信道容量最大化或信道SINR最大化的目的来配置的。
在一种可能的实现方式中,所述K+1种OAM模态组合之中第一种模态组合的公式表示如下:
Figure PCTCN2021113906-appb-000001
其中L′=0,1,…,N-1;
所述K+1种OAM模态组合之中第k种模态组合的公式表示如下:
Figure PCTCN2021113906-appb-000002
其中L′=I+2k*n+S;
Figure PCTCN2021113906-appb-000003
其中,L表示所述模态组合的模态值,
Figure PCTCN2021113906-appb-000004
L′为计算模态值L的一个过渡值,n、S与L′模态数量有关,I∈[0,N),I表示OAM选择的初始模态,N表示发射均匀圆阵列UCA的阵元个数。
在一种实现方式中,所述发送指示信息,所述指示信息用于指示基于所述目标OAM模态组合确定发送端的发送模态,包括:
根据预先设置的索引号与模态组合间的对应关系,获取与所述目标OAM模态组合对应的目标索引号;
发送第一指示信息,所述第一指示信息用于指示基于所述目标索引号确定所述发送端的发送模态。
在一种可能的实现方式中,所述目标OAM模态组合为多个;所述根据预先设置的索引号与模态组合间的对应关系,获取与所述目标OAM模态组合对应的目标索引号,包括:
根据所述索引号与模态组合间的对应关系,获取与每个所述目标OAM模态组合对应的目标索引号。
在一种实现方式中,所述发送指示信息,所述指示信息用于指示发送端确定发送模态,包括:确定所述接收端与所述发送端之间无线信道的信道信息;发送第二指示信息,所述第二指示信息用于指示所述发送端基于所述信道信息确定发送模态。
在一种实现方式中,所述发送指示信息,所述指示信息用于指示发送端确定发送模态,包括:确定所述接收端与所述发送端之间的第一偏转角度;发送第三指示信息,所述第三指示信息用于指示所述发送端基于所述第一偏转角度确定发送模态。
第二方面,本申请实施例提供另一种基于轨道角动量OAM的通信方法,所述方法由发送端执行,所述方法包括:
接收指示信息;
根据所述指示信息,确定所述发送端的发送模态。
在该技术方案中,可以通过无线信道的CSI和信号接收质量选择不同模态组合方案,以便发送端基于选择的模态组合方案进行通信,使得系统容量最大化,可以扩大适用场景,提高增益。
在一种实现方式中,所述指示信息包括目标索引号;所述根据所述指示信息,确定所述发送端的发送模态,包括:
根据所述指示信息和预先设置的索引号与模态组合间的对应关系,从预先设置的K+1种OAM模态组合中确定出与所述目标索引号对应的目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数;
将与所述目标索引号对应的目标OAM模态组合确定为所述发送端的发送模态。
在另一种实现方式中,所述指示信息包括多个目标索引号;所述根据所述指示信息,确定所述发送端的发送模态,包括:
根据所述指示信息和从预先设置的索引号与模态组合间的对应关系,从预先设置的K+1种OAM模态组合中确定出与所述多个目标索引号对应的多个目标OAM模态组合;K为正整数,K<N/2;
选取所述多个目标OAM模态组合之中的交集模态作为所述发送端的发送模态。
在一种实现方式中,所述指示信息包括信道信息;所述根据所述指示信息,基于目标OAM模态组合确定所述发送端的发送模态,包括:基于所述信道信息确定目标OAM模态组合;基于所述目标OAM模态组合确定所述发送端的发送模态。
在一种可能的实现方式中,所述基于所述信道信息确定目标OAM模态组合,包括:
根据所述信道信息,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数。
在一种可能的实现方式中,所述根据所述信道信息,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合:
根据所述信道信息、预设的信道信息与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合。
在一种实现方式中,所述信道信息与模态组合间的映射关系是基于使得信道容量最大化或信道SINR最大化的目的来配置的。
在一种实现方式中,所述指示信息包括所述接收端与所述发送端之间的第一偏转角度;所述根据所述指示信息,确定所述发送端的发送模态,包括:
根据所述第一偏转角度,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数。
在一种可能的实现方式中,所述根据所述第一偏转角度,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合,包括:
根据所述第一偏转角度、预设的偏转角度与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合。
在一种实现方式中,所述偏转角度与模态组合间的映射关系是基于使得信道容量最大化或信道SINR最大化的目的来配置的。
在一种实现方式中,所述K+1种OAM模态组合之中第一种模态组合的公式表示如下:
Figure PCTCN2021113906-appb-000005
其中L′=0,1,…,N-1;
所述K+1种OAM模态组合之中第k种模态组合的公式表示如下:
Figure PCTCN2021113906-appb-000006
其中L′=I+2k*n+S;
Figure PCTCN2021113906-appb-000007
其中,L表示所述模态组合的模态值,
Figure PCTCN2021113906-appb-000008
L′为计算模态值L的一个过渡值,n、S与L′模态数量有关,I∈[0,N),I表示OAM选择的初始模态,N表示发射均匀圆阵列UCA的阵元个数。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中接收端的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第四方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中发送端的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程 序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种通信系统,该系统包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该系统包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该系统包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该系统包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十七方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为接收端与发送端的模态间干扰随偏转角度变化的示意图;
图2是本申请实施例提供的一种通信系统的架构示意图;
图3是本申请实施例提供的一种基于轨道角动量OAM的通信方法的流程图;
图4是本申请实施例提供的又一种基于轨道角动量OAM的通信方法的流程图;
图5是本申请实施例提供的另一种基于轨道角动量OAM的通信方法的流程图;
图6是本申请实施例提供的又一种基于轨道角动量OAM的通信方法的流程图;
图7是本申请实施例提供的又一种基于轨道角动量OAM的通信方法的流程图;
图8是本申请实施例提供的一种通信装置的结构示意图;
图9是本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨 在用于解释本公开,而不能理解为对本公开的限制。其中,在本公开的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
随着无线通信的不断发展,对通信能力的要求也越来越高。面向未来的AR/VR、车联网、物联网等应用场景,超高速率、超低时延、超大带宽通信成为常态。而时间、频率、空间等可用于调制信息的资源已经被广泛的应用。因此除了开发更高的频段之外,寻求更高频谱效率的通信技术成为当务之急。1992年,Allen等人首次提出电磁波轨道角动量(OAM)可以携带信。OAM独立于传统的时间、相位、频率、极化等调制维度,被认为是一个新的调制维度。并且理论上涡旋电磁波携带的OAM模态具有无限数量,不同整数本征值的OAM波束之间相互正交,理论上能无限提高频谱利用率。
OAM作为6G的备选关键技术之一,被众多学者广泛的研究。最初由于OAM波束发散角的存在,在光通信中研究较多。2011年威尼斯湖实验则证明在射频通信中也可利用OAM发送信息。目前利用OAM发送信息主要有两种途径:OAM移位器键控(OAM-SK)与OAM复用(OAM-DM)。OAM通信的特点是:产生与解调方法简单,不需要复杂的接收解调算法;不同OAM波束之间相互正交,理论上有无穷多模态、超高的频谱效率。
OAM通信系统中,最常见收发系统是基于UCA的OAM通信系统,而该系统要求收发天线轴心对齐,当收发机之间出现轴心偏角时,接收器会产生模态串扰,导致误码率增大,系统性能下降。无线通信尤其是移动通信中存在很多非理想对准状态。这是解决涡旋电磁波在移动通信中应用的关键问题。
非对准产生的模态间干扰会使涡旋电磁波的接收解调性能显著降低。通过波束匹配可以解决较小幅度的离轴和非平行情况,而对于较大的偏角,仍然存在模态间干扰。并且主要的干扰模态会随着偏角的变化而变化。而对于移动通信的典型场景,则存在大幅度的离轴,终端还可能发生快速的旋转和移动。因此,解决这种非对准情况向的OAM通信问题成了OAM走向应用的技术瓶颈。
随着偏转角度的变化,不同模态之间的干扰会发生变化。如图1所示,当偏转角度较小时,相邻模态之间干扰为主要干扰,当偏转角度变大时,L±2,L±4模态间干扰为主要干扰。非对准情况下,若不采用波束控制的补偿措施,模态间干扰主要是由相邻模态造成的。相关技术中,通常是通过使用偶数模态通信来减小干扰,提高SINR。然而,这种通信方式适用场景仅限于小偏角的情况,且增益较小。若采用波束控制,模态间干扰的主要模态会随偏转角度的变化而发生变化。
基于该问题,本申请提出了一种基于轨道角动量OAM的通信方法,通过随着偏转角度的变化,使得发送端选择不同的模态组合来发送信息,这样在相同发射功率的情况下,可以最大化系统容量,扩大适用场景,提高增益。
为了更好的理解本申请实施例公开的一种基于轨道角动量OAM的通信方法,下面首先对本申请实施例使用的通信系统进行描述。
请参见图2,图2为本申请实施例提供的一种通信系统的架构示意图。该通信系统可以包括但不限于一个接收端和一个发送端,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的接收端,两个或两个以上的发送端。图2所示的通信系统以包括一个接收端201和一个发送端202为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统、5G新空口(new radio,NR)系统,或者其他未来的新型移动通信系统等。
本申请实施例中的接收端201可以是网络设备,或者还可以是终端设备。本申请实施例中的发送端202可以是终端设备,或者还可以是网络设备。例如,接收端201为网络设备,则发送端202可以是终端设备;或者,接收端201为终端设备,则发送端202可以是网络设备。
本申请实施例中的网络设备是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以 称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的基于轨道角动量OAM的通信方法及其装置进行详细地介绍。
请参见图3,图3是本申请实施例提供的一种基于轨道角动量OAM的通信方法的流程图。需要说明的是,本申请实施例的基于轨道角动量OAM的通信方法由接收端执行。如图3所示,该基于轨道角动量OAM的通信方法可以包括但不限于如下步骤。
步骤301,发送指示信息,指示信息用于指示发送端确定发送模态。
可选地,接收端可以向发送端发送指示信息,由发送端基于指示信息中的内容选择合适的目标OAM模态组合作为发送模态。
在一种实现方式中,该指示信息可以包括目标索引号。举例而言,接收端从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合,并确定该目标OAM模态组合对应的目标索引号,发送第一指示信息,所述第一指示信息用于指示基于所述目标索引号确定所述发送端的发送模态。例如,接收端从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合,并确定该目标OAM模态组合对应的目标索引号,通过指示信息将该目标索引号发送给发送端。发送端可以根据该目标索引号确定出与该目标索引号匹配的OAM模态组合作为发送模态。
在另一种实现方式中,该指示信息可以包括信道信息,该信道信息可以是CSI(Channel State Information,信道状态信息)或信号接收质量。举例而言,接收端可以确定接收端与发送端之间无线信道的信道信息,向发送端发送第二指示信息,第二指示信息用于指示发送端基于信道信息确定发送模态。例如,接收端通过指示信息将信道信息发送给发送端。发送端可以根据该信道信息选择并确定出与该信道信息匹配的OAM模态组合作为发送模态。
在又一种实现方式中,该指示信息还可以包括发送端与接收端之间的第一偏转角度。举例而言,接收端确定接收端与发送端之间的第一偏转角度,发送第三指示信息,第三指示信息用于指示发送端基于第一偏转角度确定发送模态。例如,接收端通过指示信息将第一偏转角度发送给发送端。发送端可以根据该第一偏转角度选择并确定出与该第一偏转角度匹配的OAM模态组合作为发送模态。
通过实施本申请实施例,可以通过接收端向发送端发送指示信息,以指示发送端确定OAM模态组合进行通信,使得系统容量最大化,可以扩大适用场景,提高增益。
请参见图4,图4是本申请实施例提供的一种基于轨道角动量OAM的通信方法的流程图。需要说明的是,本申请实施例的基于轨道角动量OAM的通信方法由接收端执行。如图4所示,该基于轨道角动量OAM的通信方法可以包括但不限于如下步骤。
步骤401,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合。
其中,在本实施例中,K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数。
可选地,可以基于接收端与发送端之间无线信道中的一些信息来从预先设置的K+1种OAM模态组合中选择出符合当前信道状态的OAM模态组合作为该发送端的发送模态。在一种实现方式中,可以基于接收端与发送端之间无线信道的信道信息,从预先设置的K+1种OAM模态组合中选择出合适的OAM模态组合作为该目标OAM模态组合,或者,还可以基于接收端与发送端之间的偏转角度,从预先设置的K+1种OAM模态组合中选择出合适的OAM模态组合作为该目标OAM模态组合。
需要说明的是,上述给出的是利用偏转角度或信道信息来确定模态组合的两种示例,这两种示例仅是为了方便本领域技术人员能够了解到如何根据偏转角度或信道信息来确定OAM模态组合的实现方式,并不能够理解成仅能通过偏转角度或信道信息来确定模态组合,例如,还可以通过CSI中其他的变量来 确定模态组合,本申请对此不做具体限定。
还需要说明的是,本申请实施例中的K+1种OAM模态组合可以是预先设置的。为了能够使得发送端随着信道信息或者偏转角度的变化,可以选择不同模态组合来发送信息以使得系统容量最大化,在本申请实施例中,可以通过预先设置多种(如K+1种)OAM模态组合方案,以供发送端选择不同模态组合来发送信息,使得在相同发射功率的情况下,可以最大化系统容量。
在一些实施例中,该K+1种OAM模态组合之中第一种模态组合的公式表示如下:
Figure PCTCN2021113906-appb-000009
其中L′=0,1,…,N-1;(1)
K+1种OAM模态组合之中第k种模态组合的公式表示如下:
Figure PCTCN2021113906-appb-000010
其中L′=I+2k*n+S;
Figure PCTCN2021113906-appb-000011
其中,L表示所述模态组合的模态值,
Figure PCTCN2021113906-appb-000012
L′为计算模态值L的一个过渡值,n、S与L′模态数量有关,I∈[0,N),I表示OAM选择的初始模态,N表示发射均匀圆阵列UCA的阵元个数。
可以理解,上述K+1种OAM模态组合之中第一种模态组合可表示无模态间干扰/模态间干扰较小时所对应的模态组合;K+1种OAM模态组合之中第k种模态组合可表示L±k模态间干扰较大时所对应的模态组合,其中k=1,2,3,…,K。
例如,k=1,L±1表示相邻模态,该相邻(L±1)模态的公式表示如下:
Figure PCTCN2021113906-appb-000013
Figure PCTCN2021113906-appb-000014
其中L′=I+2*n+S;I=0或1;n=0,1,2…,N-12;S=0。
又如,k=2,该L±2模态的公式表示如下:
Figure PCTCN2021113906-appb-000015
其中L′=I+4*n+S;I=0/1/2/3;
Figure PCTCN2021113906-appb-000016
S=0,1。
又例如,k=K,L±K模态的公式表示如下:
Figure PCTCN2021113906-appb-000017
其中L′=I+2K*n+S;I=0/…/2K-1;
Figure PCTCN2021113906-appb-000018
S=0,1…K-1。
步骤402,发送指示信息,指示信息用于指示基于目标OAM模态组合确定发送端的发送模态。
可选地,接收端在从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合时,可向发送端发送指示信息,用于指示基于该目标OAM模态组合确定发送端的发送模态。发送端在接收到该指示信息时,可将该目标OAM模态组合作为该发送端的发送模态,即基于该目标OAM模态组合进行通信。
在一种实现方式中,接收端存储上述K+1种OAM模态组合。例如,该接收端在向发送端发送指示信息时,该指示信息中可包括该目标OAM模态组合的公式表示。发送端在接收到该接收端发送的指示信息后,根据该指示信息中所包含的目标OAM模态组合公式表示进行模态值计算,进而利用该模态值进行通信。
在又一种实现方式中,接收端和发送端同时存储上述K+1种OAM模态组合,且对于不同的模态组合设置不同的索引号,索引号与模态组合一一对应,以便可以根据索引号检索到相应的模态组合方案,接收端和发送端可以将索引号存储在本地。例如,接收端可以根据预先设置的索引号与模态组合间的对应关系,获取与该目标OAM模态组合对应的目标索引号,并发送第一指示信息,该第一指示信息用于指示基于目标索引号确定发送端的发送模态。
也就是说,接收端在根据信道信息或偏转角度确定出目标OAM模态组合后,可根据预先设置的索引号与模态组合间的对应关系,获取与该目标OAM模态组合对应的目标索引号,发送第一指示信息给发送端,用于指示发送端基于该目标索引号确定发送模态。发送端在接收到该第一指示信息后,可根据该第一指示信息中的目标索引号找到对应的OAM模态组合,并将该目标索引号对应的OAM模态组合作为发送模态进行通信。
为了进一步最大化系统容量,提高增益,可能同时存在多种模态干扰的情况。针对同时存在多种模态干扰的情况,本申请实施例可以选取不同模态组合的交集模态作为传输模态。在一些实施例中,当接收端与发送端之间偏转角度比较大时,目标OAM模态组合可以为多个,可以根据索引号与模态组合间的对应关系,获取与每个目标OAM模态组合对应的目标索引号,发送第一指示信息给发送端,用于指示发送端基于该多个目标索引号确定发送模态。
举例而言,接收端在根据CSI和信号接收质量确定出多个目标OAM模态组合后,可以根据索引号与模态组合间的对应关系,获取与每个目标OAM模态组合对应的目标索引号,发送第一指示信息给发送端,用于指示发送端基于该多个目标索引号确定发送模态。发送端在接收到该第一指示信息后,可根据该第一指示信息中的多个目标索引号找到每个目标索引号对应的OAM模态组合,将每个目标索引号 对应的OAM模态组合进行交集处理,取每个目标索引号对应的OAM模态组合之中的交集模态,将该交集模态作为发送端的发送模态。
例如,假设N=8,I=0,并确定出目标OAM模态组合分别为L±2模态组合(即K+1种之中k=2所对应的模态组合)和L±3模态组合(即K+1种之中k=3所对应的模态组合),其中,L±2模态组合和L±3模态组合分别如下:
k=2:计算的模态过渡值L′=[0,1,4,5];
k=3:计算的模态过渡值L′=[0,1,2,6,7,8];
取这两种模态组合的交集,即L′=[0,1],基于该模态过渡值L′和模态L的公式表达,可以计算得模态值L=[0,1],最终确定模态值为0和1的OAM模态作为发送模态。
通过实施本申请实施例,可以从多种OAM模态组合中选择目标OAM模态组合,,以便发送端基于选择的模态组合方案进行通信,使得系统容量最大化,可以扩大适用场景,提高增益。
请参见图5,图5是本申请实施例提供的另一种基于轨道角动量OAM的通信方法的流程图。需要说明的是,本申请实施例的基于轨道角动量OAM的通信方法由接收端执行。如图5所示,该基于轨道角动量OAM的通信方法可以包括但不限于如下步骤。
步骤501,确定接收端与发送端之间无线信道的信道信息。
在一种实现方式中,可对接收端与发送端之间无线信道进行信道估计,获得接收端与发送端之间无线信道的信道信息。其中,该信道信息可以是信道状态信息CSI,和/或,还可以是信号接收质量。
举例而言,以接收端为终端设备,发送端为网络设备为例,接收端可基于发送端配置的信道状态指示参考信号(CSI-RS)进行信道估计,从而可以获得接收端与发送端之间无线信道的CSI。又如,可在同步信号中消除正交频分复用OFDM符号间的码间干扰得到更新同步信号,并根据更新同步信号确定参考信号接收功率RSRP,根据更新同步信号计算接收信号强度指示RSSI,由RSRP和RSSI确定参考信号接收质量RSRQ。可以理解,还可以采用其他方式来获得接收端与发送端之间无线信道的CSI和信号接收质量,本申请对此不做具体限定。
步骤502,根据信道信息,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合。
在一种实现方式中,可以根据信道信息和该预设的信道信息与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合。
需要说明的是,本申请实施例中的K+1种OAM模态组合可以是预先设置的。为了能够使得发送端随着信道信息的变化,可以选择不同模态组合来发送信息以使得系统容量最大化,在本申请实施例中,可以通过预先设置多种(如K+1种)OAM模态组合方案,以供发送端选择不同模态组合来发送信息,使得在相同发射功率的情况下,可以最大化系统容量。
在一些实施例中,该K+1种OAM模态组合之中第一种模态组合的公式表示如下:
Figure PCTCN2021113906-appb-000019
其中L′=0,1,…,N-1;(1)
K+1种OAM模态组合之中第k种模态组合的公式表示如下:
Figure PCTCN2021113906-appb-000020
其中L′=I+2k*n+S;
Figure PCTCN2021113906-appb-000021
其中,L表示所述模态组合的模态值,
Figure PCTCN2021113906-appb-000022
L′为计算模态值L的一个过渡值,n、S与L′模态数量有关,I∈[0,N),I表示OAM选择的初始模态,N表示发射均匀圆阵列UCA的阵元个数。
可以理解,上述K+1种OAM模态组合之中第一种模态组合可表示无模态间干扰/模态间干扰较小时所对应的模态组合;K+1种OAM模态组合之中第k种模态组合可表示L±k模态间干扰较大时所对应的模态组合,其中k=1,2,3,…,K。
例如,k=1,L±1表示相邻模态,该相邻(L±1)模态的公式表示如下:
Figure PCTCN2021113906-appb-000023
Figure PCTCN2021113906-appb-000024
其中L′=I+2*n+S;I=0或1;n=0,1,2…,N-12;S=0。
又如,k=2,该L±2模态的公式表示如下:
Figure PCTCN2021113906-appb-000025
其中L′=I+4*n+S;I=0/1/2/3;
Figure PCTCN2021113906-appb-000026
S=0,1。
又例如,k=K,L±K模态的公式表示如下:
Figure PCTCN2021113906-appb-000027
其中L′=I+2K*n+S;I=0/…/2K-1;
Figure PCTCN2021113906-appb-000028
S=0,1…K-1。
还需要说明的是,可以预先配置每种模态组合与不同信道信息之间的映射关系,以便在确定接收端与发送端之间的信道信息之后,可以根据该信道信息和该映射关系,从预先设置的K+1种OAM模态组合选择出对应的目标OAM模态组合。可以理解,如果信道信息比较差,可能会对应多种OAM模态组合,以便能够基于多种模态组合的交集模态作为发送端的发送模态,进而尽可能大最大化系统容量。需要说明的是,本申请实施例可以是基于使得信道容量最大化的目的来配置每种模态组合与不同信道信息之间的映射关系。例如,针对不同信道信息,可以配置能够让该信道信息所对应的信道容量达到最大化的模态组合。或者,本申请实施例还可以是基于使得信道SINR最大化的目的,来配置每种模态组合与不同信道信息之间的映射关系。例如,针对不同信道信息,可以配置能够让该信道信息所对应的信道的SINR最大化的模态组合。本申请实施例还可以基于其他条件来配置每种模态组合与不同信道信息之间的映射关系,对此本申请不做具体限定。
其中,在一种实现方式中,信道信息与模态组合间的映射关系可以是通过协议规定的,或者还可以是由网络设备通过信令进行指示的。例如,假设发送端为网络设备,接收端为终端设备,则发送端可以通过信令指示信道信息与模态组合间的映射关系。
步骤503,发送指示信息,指示信息用于指示基于目标OAM模态组合确定发送端的发送模态。
在本申请的实施例中,步骤503可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
通过实施本申请实施例,可以通过信道信息从多种OAM模态组合中选择出合适的OAM模态组合,从而可以使得在相同发射功率的情况下,最大化系统容量,可以扩大适用,提高增益。
请参见图6,图6是本申请实施例提供的另一种基于轨道角动量OAM的通信方法的流程图。需要说明的是,本申请实施例的基于轨道角动量OAM的通信方法由接收端执行。如图6所示,该基于轨道角动量OAM的通信方法可以包括但不限于如下步骤。
步骤601,确定接收端与发送端之间的第一偏转角度。
在一种实现方式中,可以根据AOA(Angle of Arrival,到达角度)估计或波束扫描确定接收端与发送端之间的第一偏转角度。
需要说明的是,在本申请实施例中,第一偏转角度的确定方式有很多种,例如,可以利用AOA估计算法,或者,还可以波束扫描的方式来确定该第一偏转角度,下面将给出这两种示例的实现方式:
作为一种可能实现方式的示例,通过AOA估计算法对偏转角进行估计,得到的估计值作为该接收端与发送端之间的第一偏转角度。
作为另一种可能实现方式的示例,可以对偏转角度进行量化,并编码相应角度的波束赋形向量,通过波束扫描确定收发匹配波束对,从而计算出接收端与发射端之间的偏转角度。
可以理解,偏转角度是CSI其中的一个变量。上述给出的第一偏转角度的两种确定方式仅是为了方便本领域技术人员理解如何确定第一偏转角度,而并不能作为如何确定第一偏转角度的具体限定,也就是说,还可以采用其他方式来确定第一偏转角度,或者还可以通过CSI中其他的变量来确定模态组合,本申请对此不做具体限定。
步骤602,根据第一偏转角度,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合。
其中,在本实施例中,K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数。
在一种实现方式中,可以根据第一偏转角度、预设的偏转角度与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合。
需要说明的是,本申请实施例中的K+1种OAM模态组合可以是预先设置的。为了能够使得发送端随着偏转角度的变化,可以选择不同模态组合来发送信息,在本申请实施例中,可以通过预先设置多种(如K+1种)OAM模态组合方案,以供发送端选择不同模态组合来发送信息,使得在相同发射功率的情况下,可以最大化系统容量。
在一些实施例中,该K+1种OAM模态组合之中第一种模态组合的公式表示如下:
Figure PCTCN2021113906-appb-000029
其中L′=0,1,…,N-1;(1)
K+1种OAM模态组合之中第k种模态组合的公式表示如下:
Figure PCTCN2021113906-appb-000030
其中L′=I+2k*n+S;
Figure PCTCN2021113906-appb-000031
其中,L表示所述模态组合的模态值,
Figure PCTCN2021113906-appb-000032
L′为计算模态值L的一个过渡值,n、S与L′模态 数量有关,I∈[0,N),I表示OAM选择的初始模态,N表示发射均匀圆阵列UCA的阵元个数。
可以理解,上述K+1种OAM模态组合之中第一种模态组合可表示无模态间干扰/模态间干扰较小时所对应的模态组合;K+1种OAM模态组合之中第k种模态组合可表示L±k模态间干扰较大时所对应的模态组合,其中k=1,2,3,…,K。
例如,k=1,L±1表示相邻模态,该相邻(L±1)模态的公式表示如下:
Figure PCTCN2021113906-appb-000033
Figure PCTCN2021113906-appb-000034
其中L′=I+2*n+S;I=0或1;n=0,1,2…,N-12;S=0。
又如,k=2,该L±2模态的公式表示如下:
Figure PCTCN2021113906-appb-000035
其中L′=I+4*n+S;I=0/1/2/3;
Figure PCTCN2021113906-appb-000036
S=0,1。
又例如,k=K,L±K模态的公式表示如下:
Figure PCTCN2021113906-appb-000037
其中L′=I+2K*n+S;I=0/…/2K-1;
Figure PCTCN2021113906-appb-000038
S=0,1…K-1。
在本申请实施例中,还可以预先配置每种模态组合与不同偏转角度之间的映射关系,以便在确定接收端与发送端之间的第一偏转角度后,可根据该第一偏转角度和该映射关系,从预先设置的K+1种OAM模态组合选择出对应的目标OAM模态组合。其中,如果偏转角度比较大,可能对应多种OAM模态组合。需要说明的是,本申请实施例可以是基于使得信道容量最大化的目的来配置每种模态组合与不同偏转角度之间的映射关系。例如,针对每种偏转角度,可以配置能够让该偏转角度所对应的信道容量达到最大化的模态组合。或者,本申请实施例还可以是基于使得信道SINR最大化的目的,来配置每种模态组合与不同偏转角度之间的映射关系。例如,针对每种偏转角度,可以配置能够让该偏转角度所对应的信道的SINR最大化的模态组合。本申请实施例还可以基于其他条件来配置每种模态组合与不同偏转角度之间的映射关系,对此本申请不做具体限定。
其中,在一种实现方式中,偏转角度与模态组合间的映射关系可以是通过协议规定的,或者还可以是由网络设备通过信令进行指示的。例如,假设发送端为网络设备,接收端为终端设备,则发送端可以通过信令指示偏转角度与模态组合间的映射关系。
步骤603,发送指示信息,指示信息用于指示基于目标OAM模态组合确定发送端的发送模态。
在本申请的实施例中,步骤603可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。。
通过实施本申请实施例,可以基于接收端与发送端之间的偏转角度从多种OAM模态组合中选择出合适的OAM模态组合,从而可以使得在相同发射功率的情况下,最大化系统容量,可以扩大适用,提高增益。
可以理解,上述实施例是从接收端侧描述本申请实施例的基于轨道角动量OAM的通信方法的实现方式。本申请实施例还提出了一种基于轨道角动量OAM的通信方法,下面将从发送端侧描述该基于轨道角动量OAM的通信方法的实现方式。请参见图7,图7是本申请实施例提供的又一种基于轨道角动量OAM的通信方法的流程图。需要说明的是,本申请实施例的基于轨道角动量OAM的通信方法可应用于发送端。如图7所示,该基于轨道角动量OAM的通信方法可以包括但不限于如下步骤。
步骤701,接收指示信息。
其中,指示信息可以是由接收端在从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合之后发送的。
可选地,接收端可以基于接收端与发送端之间无线信道中的一些信息来从预先设置的K+1种OAM模态组合中选择出符合当前信道状态的OAM模态组合作为该发送端的发送模态。在一种实现方式中,可以基于接收端与发送端之间无线信道的信道信息,从预先设置的K+1种OAM模态组合中选择出合适的OAM模态组合作为该目标OAM模态组合,或者,还可以基于接收端与发送端之间的偏转角度,从预先设置的K+1种OAM模态组合中选择出合适的OAM模态组合作为该目标OAM模态组合。接收端在从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合之后,可向发送端发送指示信息,指示发送端基于目标OAM模态组合确定发送端的发送模态。
需要说明的是,上述给出的是利用偏转角度或信道信息来确定模态组合的两种示例,这两种示例仅是为了方便本领域技术人员能够了解到如何根据偏转角度或信道信息来确定OAM模态组合的实现方式,并不能够理解成仅能通过偏转角度或信道信息来确定模态组合,例如,还可以通过CSI(Channel State Information,信道状态信息)中其他的变量来确定模态组合,本申请对此不做具体限定。
还需要说明的是,本申请实施例中的K+1种OAM模态组合可以是预先设置的。为了能够使得发送 端随着信道信息或者偏转角度的变化,可以选择不同模态组合来发送信息以使得系统容量最大化,在本申请实施例中,可以通过预先设置多种(如K+1种)OAM模态组合方案,以供发送端选择不同模态组合来发送信息,使得在相同发射功率的情况下,可以最大化系统容量。
在一些实施例中,该K+1种OAM模态组合之中第一种模态组合的公式表示如下:
Figure PCTCN2021113906-appb-000039
其中L′=0,1,…,N-1;(1)
K+1种OAM模态组合之中第k种模态组合的公式表示如下:
Figure PCTCN2021113906-appb-000040
其中L′=I+2k*n+S;
Figure PCTCN2021113906-appb-000041
其中,L表示所述模态组合的模态值,
Figure PCTCN2021113906-appb-000042
L′为计算模态值L的一个过渡值,n、S与L′模态数量有关,I∈[0,N),I表示OAM选择的初始模态,N表示发射均匀圆阵列UCA的阵元个数。
可以理解,上述K+1种OAM模态组合之中第一种模态组合可表示无模态间干扰/模态间干扰较小时所对应的模态组合;K+1种OAM模态组合之中第k种模态组合可表示L±k模态间干扰较大时所对应的模态组合,其中k=1,2,3,…,K。
例如,k=1,L±1表示相邻模态,该相邻(L±1)模态的公式表示如下:
Figure PCTCN2021113906-appb-000043
Figure PCTCN2021113906-appb-000044
其中L′=I+2*n+S;I=0或1;n=0,1,2…,N-12;S=0。
又如,k=2,该L±2模态的公式表示如下:
Figure PCTCN2021113906-appb-000045
其中L′=I+4*n+S;I=0/1/2/3;
Figure PCTCN2021113906-appb-000046
S=0,1。
又例如,k=K,L±K模态的公式表示如下:
Figure PCTCN2021113906-appb-000047
其中L′=I+2K*n+S;I=0/…/2K-1;
Figure PCTCN2021113906-appb-000048
S=0,1…K-1。
步骤702,根据指示信息,确定发送端的发送模态。
可选地,发送端在接收到该指示信息时,可将该目标OAM模态组合作为该发送端的发送模态,即基于该目标OAM模态组合进行通信。
在一种实现方式中,接收端存储上述K+1种OAM模态组合。例如,该接收端在向发送端发送指示信息时,该指示信息中可包括该目标OAM模态组合的公式表示。发送端在接收到该接收端发送的指示信息后,根据该指示信息中所包含的目标OAM模态组合公式表示进行模态值计算,进而利用该模态值进行通信。
在又一种实现方式中,接收端和发送端同时存储上述K+1种OAM模态组合,且对于不同的模态组合设置不同的索引号,索引号与模态组合一一对应,以便可以根据索引号检索到相应的模态组合方案,接收端和发送端可以将索引号存储在本地。例如,接收端可以根据预先设置的索引号与模态组合间的对应关系,获取与该目标OAM模态组合对应的目标索引号,并发送指示信息,该指示信息用于指示基于目标索引号确定发送端的发送模态。
也就是说,接收端在根据CSI和信号接收质量确定出目标OAM模态组合后,可根据预先设置的索引号与模态组合间的对应关系,获取与该目标OAM模态组合对应的目标索引号,发送指示信息给发送端,用于指示发送端基于该目标索引号确定发送模态。发送端在接收到该指示信息后,可根据该指示信息中的目标索引号、以及预先设置的索引号与模态组合间的对应关系,从预先设置的K+1种OAM模态组合中找到对应的OAM模态组合,并将该目标索引号对应的OAM模态组合作为发送模态进行通信。
为了进一步最大化系统容量,提高增益,可能同时存在多种模态干扰的情况。针对同时存在多种模态干扰的情况,本申请实施例可以选取不同模态组合的交集模态作为传输模态。在一些实施例中,当第一偏转角度比较大时,目标OAM模态组合可以为多个,可以根据索引号与模态组合间的对应关系,获取与每个目标OAM模态组合对应的目标索引号,发送指示信息给发送端,用于指示发送端基于该多个目标索引号确定发送模态。
举例而言,接收端在根据CSI和信号接收质量确定出多个目标OAM模态组合后,可以根据索引号与模态组合间的对应关系,获取与每个目标OAM模态组合对应的目标索引号,发送指示信息给发送端,用于指示发送端基于该多个目标索引号确定发送模态。发送端在接收到该指示信息后,可根据该指示信息中的多个目标索引号、以及预先设置的索引号与模态组合间的对应关系,从预先设置的K+1种OAM模态组合中找出每个目标索引号对应的OAM模态组合,将每个目标索引号对应的OAM模态组合进行交集处理,取每个目标索引号对应的OAM模态组合之中的交集模态,将该交集模态作为发送端的发送模态。
在另一种实现方式中,接收端和发送端同时存储上述K+1种OAM模态组合,且发送端存储有信道信息与不同种OAM模态组合的映射关系。举例而言,发送端可以接收到接收端发送的指示信息。该指示信息可包括信道信息;发送端可以根据该指示信息,基于信道信息从预先设置的K+1种OAM模态组合确定出目标OAM模态组合,并基于目标OAM模态组合确定发送端的发送模态。
作为一种示例,发送端可以根据信道信息和预设的信道信息与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合。需要说明的是,本申请实施例可以是基于使得信道容量最大化的目的来配置每种模态组合与不同信道信息之间的映射关系。例如,针对不同信道信息,可以配置能够让该信道信息所对应的信道容量达到最大化的模态组合。或者,本申请实施例还可以是基于使得信道SINR最大化的目的,来配置每种模态组合与不同信道信息之间的映射关系。例如,针对不同信道信息,可以配置能够让该信道信息所对应的信道的SINR最大化的模态组合。本申请实施例还可以基于其他条件来配置每种模态组合与不同信道信息之间的映射关系,对此本申请不做具体限定。
在又一种实现方式中,接收端和发送端同时存储上述K+1种OAM模态组合,且发送端存储有偏转角度与不同种OAM模态组合的映射关系。举例而言,发送端可以接收到接收端发送的指示信息。该指示信息可包括接收端与发送端之间的第一偏转角度;发送端可以根据该指示信息,基于第一偏转角度从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合,并基于目标OAM模态组合确定发送端的发送模态。
作为一种示例,发送端可以根据第一偏转角度、预设的偏转角度与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合。需要说明的是,本申请实施例可以是基于使得信道容量最大化的目的来配置每种模态组合与不同偏转角度之间的映射关系。例如,针对每种偏转角度,可以配置能够让该偏转角度所对应的信道容量达到最大化的模态组合。或者,本申请实施例还可以是基于使得信道SINR最大化的目的,来配置每种模态组合与不同偏转角度之间的映射关系。例如,针对每种偏转角度,可以配置能够让该偏转角度所对应的信道的SINR最大化的模态组合。本申请实施例还可以基于其他条件来配置每种模态组合与不同偏转角度之间的映射关系,对此本申请不做具体限定。
为了进一步最大化系统容量,提高增益,可能同时存在多种模态干扰的情况。针对同时存在多种模态干扰的情况,本申请实施例可以选取不同模态组合的交集模态作为传输模态。在一些实施例中,假设第一偏转角度比较大,当发送端基于第一偏转角度确定出多个目标OAM模态组合时,发送端可以对多个目标OAM模态组合进行交集处理,即该多个目标OAM模态组合之中的交集模态作为该发送端的发送模态。例如,假设N=8,I=0,并确定出目标OAM模态组合分别为L±2模态组合(即K+1种之中k=2所对应的模态组合)和L±3模态组合(即K+1种之中k=3所对应的模态组合),其中,L±2模态组合和L±3模态组合分别如下:
k=2:计算的模态过渡值L′=[0,1,4,5];
k=3:计算的模态过渡值L′=[0,1,2,6,7,8];
取这两种模态组合的交集,即L′=[0,1],基于该模态过渡值L′和模态L的公式表达,可以计算得模态值L=[0,1],最终确定模态值为0和1的OAM模态作为发送模态。
通过实施本申请实施例,可以从多种OAM模态组合中选择目标OAM模态组合,,以便发送端基于选择的模态组合方案进行通信,使得系统容量最大化,可以扩大适用场景,提高增益。
上述本申请提供的实施例中,分别从接收端、发送端的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,发送端和接收端可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图8,为本申请实施例提供的一种通信装置80的结构示意图。如图8所示的通信装置80可包括处理模块801和收发模块802。收发模块802可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块802可以实现发送功能和/或接收功能。
通信装置80可以是接收端,也可以是接收端中的装置,还可以是能够与接收端匹配使用的装置。或者,通信装置80可以是发送端,也可以是发送端中的装置,还可以是能够与发送端匹配使用的装置。
通信装置80为接收端:在本申请实施例中,收发模块802用于发送指示信息,指示信息用于指示发送端确定发送模态。
在一种实现方式中,处理模块801用于从预先设置的K+1种OAM模态组合中确定出目标OAM模 态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数;收发模块802用于发送指示信息,所述指示信息用于指示基于所述目标OAM模态组合确定发送端的发送模态。
在一种实现方式中,处理模块801用于确定接收端与发送端之间无线信道的信道信息;根据信道信息,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合。
在一种实现方式中,处理模块801用于:根据信道信息、预设的信道信息与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合。
在一种实现方式中,所述信道信息与模态组合间的映射关系是基于使得信道容量最大化或信道SINR最大化的目的来配置的。
在一种实现方式中,处理模块801用于:确定接收端与发送端之间的第一偏转角度;根据第一偏转角度,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数。
在一种可能的实现方式中,处理模块801用于:根据第一偏转角度、预设的偏转角度与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合。
在一种实现方式中,所述偏转角度与模态组合间的映射关系是基于使得信道容量最大化或信道SINR最大化的目的来配置的。
在一种可能的实现方式中,K+1种OAM模态组合之中第一种模态组合的公式表示如下:
Figure PCTCN2021113906-appb-000049
其中L′=0,1,…,N-1;(1)
K+1种OAM模态组合之中第k种模态组合的公式表示如下:
Figure PCTCN2021113906-appb-000050
其中L′=I+2k*n+S;
Figure PCTCN2021113906-appb-000051
其中,L表示模态组合的模态值,
Figure PCTCN2021113906-appb-000052
L′为计算模态值L的一个过渡值,n、S与L′模态数量有关,I∈[0,N),I表示OAM选择的初始模态,N表示发射均匀圆阵列UCA的阵元个数。
在一种实现方式中,处理模块801用于:根据预先设置的索引号与模态组合间的对应关系,获取与目标OAM模态组合对应的目标索引号;收发模块802用于:发送第一指示信息,第一指示信息用于指示基于目标索引号确定发送端的发送模态。
在一种可能的实现方式中,目标OAM模态组合为多个;处理模块801用于:根据索引号与模态组合间的对应关系,获取与每个目标OAM模态组合对应的目标索引号。
在一种实现方式中,处理模块801用于确定所述接收端与所述发送端之间无线信道的信道信息;收发模块802用于发送第二指示信息,所述第二指示信息用于指示所述发送端基于所述信道信息确定发送模态。
在一种实现方式中,处理模块801用于确定所述接收端与所述发送端之间的第一偏转角度;收发模块802用于发送第三指示信息,所述第三指示信息用于指示所述发送端基于所述第一偏转角度确定发送模态。
通信装置80为发送端:在本申请实施例中,收发模块802用于接收指示信息;处理模块801用于根据指示信息,确定发送端的发送模态。
在一种实现方式中,指示信息包括目标索引号;处理模块801用于:根据指示信息和预先设置的索引号与模态组合间的对应关系,从预先设置的K+1种OAM模态组合中确定出与目标索引号对应的目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数;将与目标索引号对应的目标OAM模态组合确定为发送端的发送模态。
在一种实现方式中,指示信息包括多个目标索引号;处理模块801用于:根据指示信息和从预先设置的索引号与模态组合间的对应关系,从预先设置的K+1种OAM模态组合中确定出与多个目标索引号对应的多个目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数;选取多个目标OAM模态组合之中的交集模态作为发送端的发送模态。
在一种实现方式中,指示信息包括信道信息;处理模块801用于:基于信道信息确定目标OAM模态组合;基于目标OAM模态组合确定发送端的发送模态。
在一种可能的实现方式中,处理模块801用于:根据信道信息,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数。
在一种可能的实现方式中,处理模块801用于:根据所述信道信息、预设的信道信息与模态组合间 的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合。
在一种可能的实现方式中,所述信道信息与模态组合间的映射关系是基于使得信道容量最大化或信道SINR最大化的目的来配置的。
在一种实现方式中,指示信息包括接收端与发送端之间的第一偏转角度;处理模块801用于:根据第一偏转角度,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数。
在一种可能的实现方式中,处理模块801用于:根据第一偏转角度、预设的偏转角度与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合。
在一种实现方式中,所述偏转角度与模态组合间的映射关系是基于使得信道容量最大化或信道SINR最大化的目的来配置的。
在一种可能的实现方式中,K+1种OAM模态组合之中第一种模态组合的公式表示如下:
Figure PCTCN2021113906-appb-000053
其中L′=0,1,…,N-1;(1)
K+1种OAM模态组合之中第k种模态组合的公式表示如下:
Figure PCTCN2021113906-appb-000054
其中L′=I+2k*n+S;
Figure PCTCN2021113906-appb-000055
其中,L表示模态组合的模态值,
Figure PCTCN2021113906-appb-000056
L′为计算模态值L的一个过渡值,n、S与L′模态数量有关,I∈[0,N),I表示OAM选择的初始模态,N表示发射均匀圆阵列UCA的阵元个数。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
请参见图9,图9是本申请实施例提供的另一种通信装置90的结构示意图。通信装置90可以是接收端,也可以是发送端,也可以是支持接收端实现上述方法的芯片、芯片系统、或处理器等,还可以是支持发送端实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置90可以包括一个或多个处理器901。处理器901可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置90中还可以包括一个或多个存储器902,其上可以存有计算机程序904,处理器901执行所述计算机程序904,以使得通信装置90执行上述方法实施例中描述的方法。可选的,所述存储器902中还可以存储有数据。通信装置90和存储器902可以单独设置,也可以集成在一起。
可选的,通信装置90还可以包括收发器905、天线906。收发器905可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器905可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置90中还可以包括一个或多个接口电路907。接口电路907用于接收代码指令并传输至处理器901。处理器901运行所述代码指令以使通信装置90执行上述方法实施例中描述的方法。
通信装置90为接收端:处理器901用于执行图4中的步骤401;执行图5中步骤501和步骤502;执行图6中步骤601和步骤602。收发器905用于执行图3中的步骤301;执行图4中的步骤402;执行图5中的步骤503;执行图6中步骤603。
通信装置90为发送端:收发器905用于执行图7中的步骤701。处理器901用于执行图7中的步骤702。
在一种实现方式中,处理器901中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器901可以存有计算机程序903,计算机程序903在处理器901上运行,可使得通信装置90执行上述方法实施例中描述的方法。计算机程序903可能固化在处理器901中,该种情况下,处理器901可能由硬件实现。
在一种实现方式中,通信装置90可以包括电路,所述电路可以实现前述方法实施例中发送或接收 或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是接收端或发送端,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图9的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种基于轨道角动量OAM的通信系统,该系统包括前述图8实施例中作为接收端的通信装置和作为发送端的通信装置,或者,该系统包括前述图9实施例中作为接收端的通信装置和作为发送端的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方 式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (52)

  1. 一种基于轨道角动量OAM的通信方法,其特征在于,所述方法由接收端执行,所述方法包括:
    发送指示信息,所述指示信息用于指示发送端确定发送模态。
  2. 根据权利要求1所述的方法,其特征在于,所述发送指示信息,所述指示信息用于指示发送端确定发送模态,包括:
    从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数;
    发送指示信息,所述指示信息用于指示基于所述目标OAM模态组合确定发送端的发送模态。
  3. 根据权利要求2所述的方法,其特征在于,所述从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合,包括:
    确定所述接收端与所述发送端之间无线信道的信道信息;
    根据所述信道信息,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述信道信息,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合,包括:
    根据所述信道信息、预设的信道信息与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合。
  5. 根据权利要求4所述的方法,其特征在于,所述信道信息与模态组合间的映射关系是基于使得信道容量最大化或信道SINR最大化的目的来配置的。
  6. 根据权利要求2所述的方法,其特征在于,所述从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合,包括:
    确定所述接收端与所述发送端之间的第一偏转角度;
    根据所述第一偏转角度,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述第一偏转角度,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合,包括:
    根据所述第一偏转角度、预设的偏转角度与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合。
  8. 根据权利要求7所述的方法,其特征在于,所述偏转角度与模态组合间的映射关系是基于使得 信道容量最大化或信道SINR最大化的目的来配置的。
  9. 根据权利要求2至8中任一项所述的方法,其特征在于,所述K+1种OAM模态组合之中第一种模态组合的公式表示如下:
    Figure PCTCN2021113906-appb-100001
    其中L′=0,1,…,N-1;
    所述K+1种OAM模态组合之中第k种模态组合的公式表示如下:
    Figure PCTCN2021113906-appb-100002
    其中L′=I+2k*n+S;
    I=0/…/2k-1;
    Figure PCTCN2021113906-appb-100003
    S=0,1…k-1;k=1,2,3,…,K;
    其中,L表示所述模态组合的模态值,
    Figure PCTCN2021113906-appb-100004
    L′为计算模态值L的一个过渡值,n、S与L′模态数量有关,I∈[0,N),I表示OAM选择的初始模态,N表示发射均匀圆阵列UCA的阵元个数。
  10. 根据权利要求2所述的方法,其特征在于,所述发送指示信息,所述指示信息用于指示基于所述目标OAM模态组合确定发送端的发送模态,包括:
    根据预先设置的索引号与模态组合间的对应关系,获取与所述目标OAM模态组合对应的目标索引号;
    发送第一指示信息,所述第一指示信息用于指示基于所述目标索引号确定所述发送端的发送模态。
  11. 根据权利要求10所述的方法,其特征在于,所述目标OAM模态组合为多个;所述根据预先设置的索引号与模态组合间的对应关系,获取与所述目标OAM模态组合对应的目标索引号,包括:
    根据所述索引号与模态组合间的对应关系,获取与每个所述目标OAM模态组合对应的目标索引号。
  12. 根据权利要求1所述的方法,其特征在于,所述发送指示信息,所述指示信息用于指示发送端确定发送模态,包括:
    确定所述接收端与所述发送端之间无线信道的信道信息;
    发送第二指示信息,所述第二指示信息用于指示所述发送端基于所述信道信息确定发送模态。
  13. 根据权利要求1所述的方法,其特征在于,所述发送指示信息,所述指示信息用于指示发送端确定发送模态,包括:
    确定所述接收端与所述发送端之间的第一偏转角度;
    发送第三指示信息,所述第三指示信息用于指示所述发送端基于所述第一偏转角度确定发送模态。
  14. 一种基于轨道角动量OAM的通信方法,其特征在于,所述方法由发送端执行,所述方法包括:
    接收指示信息;
    根据所述指示信息,确定所述发送端的发送模态。
  15. 根据权利要求14所述的方法,其特征在于,所述指示信息包括目标索引号;所述根据所述指 示信息,确定所述发送端的发送模态,包括:
    根据所述指示信息和预先设置的索引号与模态组合间的对应关系,从预先设置的K+1种OAM模态组合中确定出与所述目标索引号对应的目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数;
    将与所述目标索引号对应的目标OAM模态组合确定为所述发送端的发送模态。
  16. 根据权利要求14所述的方法,其特征在于,所述指示信息包括多个目标索引号;所述根据所述指示信息,确定所述发送端的发送模态,包括:
    根据所述指示信息和从预先设置的索引号与模态组合间的对应关系,从预先设置的K+1种OAM模态组合中确定出与所述多个目标索引号对应的多个目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数;
    选取所述多个目标OAM模态组合之中的交集模态作为所述发送端的发送模态。
  17. 根据权利要求14所述的方法,其特征在于,所述指示信息包括信道信息;所述根据所述指示信息,确定所述发送端的发送模态,包括:
    基于所述信道信息确定目标OAM模态组合;
    基于所述目标OAM模态组合确定所述发送端的发送模态。
  18. 根据权利要求17所述的方法,其特征在于,所述基于所述信道信息确定目标OAM模态组合,包括:
    根据所述信道信息,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数。
  19. 根据权利要求18所述的方法,其特征在于,所述根据所述信道信息,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合:
    根据所述信道信息、预设的信道信息与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合。
  20. 根据权利要求19所述的方法,其特征在于,所述信道信息与模态组合间的映射关系是基于使得信道容量最大化或信道SINR最大化的目的来配置的。
  21. 根据权利要求14所述的方法,其特征在于,所述指示信息包括所述接收端与所述发送端之间的第一偏转角度;所述根据所述指示信息,确定所述发送端的发送模态,包括:
    根据所述第一偏转角度,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数。
  22. 根据权利要求21所述的方法,其特征在于,所述根据所述第一偏转角度,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合,包括:
    根据所述第一偏转角度、预设的偏转角度与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合。
  23. 根据权利要求22所述的方法,其特征在于,所述偏转角度与模态组合间的映射关系是基于使得信道容量最大化或信道SINR最大化的目的来配置的。
  24. 根据权利要求15-16、18-23中任一项所述的方法,其特征在于,所述K+1种OAM模态组合之中第一种模态组合的公式表示如下:
    Figure PCTCN2021113906-appb-100005
    其中L′=0,1,…,N-1;
    所述K+1种OAM模态组合之中第k种模态组合的公式表示如下:
    Figure PCTCN2021113906-appb-100006
    其中L′=I+2k*n+S;
    I=0/…/2k-1;
    Figure PCTCN2021113906-appb-100007
    S=0,1…k-1;k=1,2,3,…,K;
    其中,L表示所述模态组合的模态值,
    Figure PCTCN2021113906-appb-100008
    L′为计算模态值L的一个过渡值,n、S与L′模态数量有关,I∈[0,N),I表示OAM选择的初始模态,N表示发射均匀圆阵列UCA的阵元个数。
  25. 一种通信装置,其特征在于,包括:
    收发模块,所述收发模块用于发送指示信息,所述指示信息用于指示发送端确定发送模态。
  26. 根据权利要求25所述的通信装置,其特征在于,还包括:
    处理模块,所述处理模块用于从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数;
    所述收发模块,用于发送指示信息,所述指示信息用于指示基于所述目标OAM模态组合确定发送端的发送模态。
  27. 根据权利要求26所述的通信装置,其特征在于,所述处理模块用于:
    确定所述接收端与所述发送端之间无线信道的信道信息;
    根据所述信道信息,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合。
  28. 根据权利要求27所述的通信装置,其特征在于,所述处理模块用于:
    根据所述信道信息、预设的信道信息与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合。
  29. 根据权利要求28所述的通信装置,其特征在于,所述信道信息与模态组合间的映射关系是基 于使得信道容量最大化或信道SINR最大化的目的来配置的。
  30. 根据权利要求26所述的通信装置,其特征在于,所述处理模块用于:
    确定所述接收端与所述发送端之间的第一偏转角度;
    根据所述第一偏转角度,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数。
  31. 根据权利要求30所述的通信装置,其特征在于,所述处理模块用于:
    根据所述第一偏转角度、预设的偏转角度与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合。
  32. 根据权利要求31所述的通信装置,其特征在于,所述偏转角度与模态组合间的映射关系是基于使得信道容量最大化或信道SINR最大化的目的来配置的。
  33. 根据权利要求26至32中任一项所述的通信装置,其特征在于,所述K+1种OAM模态组合之中第一种模态组合的公式表示如下:
    Figure PCTCN2021113906-appb-100009
    其中L′=0,1,…,N-1;
    所述K+1种OAM模态组合之中第k种模态组合的公式表示如下:
    Figure PCTCN2021113906-appb-100010
    其中L′=I+2k*n+S;
    I=0/…/2k-1;
    Figure PCTCN2021113906-appb-100011
    S=0,1…k-1;k=1,2,3,…,K;
    其中,L表示所述模态组合的模态值,
    Figure PCTCN2021113906-appb-100012
    L′为计算模态值L的一个过渡值,n、S与L′模态数量有关,I∈[0,N),I表示OAM选择的初始模态,N表示发射均匀圆阵列UCA的阵元个数。
  34. 根据权利要求26所述的通信装置,其特征在于,
    所述处理模块用于:根据预先设置的索引号与模态组合间的对应关系,获取与所述目标OAM模态组合对应的目标索引号;
    所述收发模块用于:发送第一指示信息,所述第一指示信息用于指示基于所述目标索引号确定所述发送端的发送模态。
  35. 根据权利要求34所述的通信装置,其特征在于,所述目标OAM模态组合为多个;所述处理模块用于:
    根据所述索引号与模态组合间的对应关系,获取与每个所述目标OAM模态组合对应的目标索引号。
  36. 根据权利要求26所述的通信装置,其特征在于,
    所述处理模块,用于确定所述接收端与所述发送端之间无线信道的信道信息;
    所述收发模块,用于发送第二指示信息,所述第二指示信息用于指示所述发送端基于所述信道信息 确定发送模态。
  37. 根据权利要求26所述的通信装置,其特征在于,
    所述处理模块,用于确定所述接收端与所述发送端之间的第一偏转角度;
    所述收发模块,用于发送第三指示信息,所述第三指示信息用于指示所述发送端基于所述第一偏转角度确定发送模态。
  38. 一种通信装置,其特征在于,包括:
    收发模块,所述收发模块用于接收指示信息;
    处理模块,所述处理模块用于根据所述指示信息,确定所述发送端的发送模态。
  39. 根据权利要求38所述的通信装置,其特征在于,所述指示信息包括目标索引号;所述处理模块用于:
    根据所述指示信息和预先设置的索引号与模态组合间的对应关系,从预先设置的K+1种OAM模态组合中确定出与所述目标索引号对应的目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数;
    将与所述目标索引号对应的目标OAM模态组合确定为所述发送端的发送模态。
  40. 根据权利要求39所述的通信装置,其特征在于,所述指示信息包括多个目标索引号;所述处理模块用于:
    根据所述指示信息和从预先设置的索引号与模态组合间的对应关系,从预先设置的K+1种OAM模态组合中确定出与所述多个目标索引号对应的多个目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数;
    选取所述多个目标OAM模态组合之中的交集模态作为所述发送端的发送模态。
  41. 根据权利要求38所述的通信装置,其特征在于,所述指示信息包括括信道信息;所述处理模块用于:
    基于所述括信道信息确定目标OAM模态组合;
    基于所述目标OAM模态组合确定所述发送端的发送模态。
  42. 根据权利要求41所述的通信装置,其特征在于,所述处理模块用于:
    根据所述信道信息,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合确定目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数。
  43. 根据权利要求42所述的通信装置,其特征在于,所述处理模块用于:
    根据所述信道信息、预设的信道信息与模态组合间的映射关系,从预先设置的K+1种OAM模态组 合中确定出目标OAM模态组合确定目标OAM模态组合。
  44. 根据权利要求43所述的通信装置,其特征在于,所述信道信息与模态组合间的映射关系是基于使得信道容量最大化或信道SINR最大化的目的来配置的。
  45. 根据权利要求38所述的通信装置,其特征在于,所述指示信息包括所述接收端与所述发送端之间的第一偏转角度;所述处理模块用于:
    根据所述第一偏转角度,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合;K为正整数,K<N/2,N表示发射均匀圆阵列UCA的阵元个数。
  46. 根据权利要求45所述的通信装置,其特征在于,所述处理模块用于:
    根据所述第一偏转角度、预设的偏转角度与模态组合间的映射关系,从预先设置的K+1种OAM模态组合中确定出目标OAM模态组合。
  47. 根据权利要求46所述的通信装置,其特征在于,所述偏转角度与模态组合间的映射关系是基于使得信道容量最大化或信道SINR最大化的目的来配置的。
  48. 根据权利要求39-40、41-47中任一项所述的通信装置,其特征在于,所述K+1种OAM模态组合之中第一种模态组合的公式表示如下:
    Figure PCTCN2021113906-appb-100013
    其中L′=0,1,…,N-1;
    所述N+1种OAM模态组合之中第k种模态组合的公式表示如下:
    Figure PCTCN2021113906-appb-100014
    其中L′=I+2k*n+S;
    I=0/…/2k-1;
    Figure PCTCN2021113906-appb-100015
    S=0,1…k-1;k=1,2,3,…,K;
    其中,L表示所述模态组合的模态值,
    Figure PCTCN2021113906-appb-100016
    L′为计算模态值L的一个过渡值,n、S与L′模态数量有关,I∈[0,N),I表示OAM选择的初始模态,N表示发射均匀圆阵列UCA的阵元个数。
  49. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1~13中任一项所述的方法。
  50. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求14~24中任一项所述的方法。
  51. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1~13中任一项所述的方法被实现。
  52. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求14~24中任一项所述的方法被实现。
PCT/CN2021/113906 2021-08-20 2021-08-20 基于轨道角动量oam的通信方法及其装置 WO2023019596A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180002615.6A CN115997411A (zh) 2021-08-20 2021-08-20 基于轨道角动量oam的通信方法及其装置
PCT/CN2021/113906 WO2023019596A1 (zh) 2021-08-20 2021-08-20 基于轨道角动量oam的通信方法及其装置
EP21953837.8A EP4383587A4 (en) 2021-08-20 2021-08-20 METHOD AND APPARATUS FOR ORBITAL ANGLE MOMENTUM (OAM) BASED COMMUNICATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113906 WO2023019596A1 (zh) 2021-08-20 2021-08-20 基于轨道角动量oam的通信方法及其装置

Publications (1)

Publication Number Publication Date
WO2023019596A1 true WO2023019596A1 (zh) 2023-02-23

Family

ID=85239369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113906 WO2023019596A1 (zh) 2021-08-20 2021-08-20 基于轨道角动量oam的通信方法及其装置

Country Status (3)

Country Link
EP (1) EP4383587A4 (zh)
CN (1) CN115997411A (zh)
WO (1) WO2023019596A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116436740A (zh) * 2023-06-15 2023-07-14 北京遥感设备研究所 一种轨道角动量模态间干扰抑制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150188660A1 (en) * 2013-12-31 2015-07-02 Electronics And Telecommunications Research Institute Apparatus and method for simultaneously transmitting and receiving orbital angular momentum (oam) modes
CN112260720A (zh) * 2020-10-16 2021-01-22 西安电子科技大学 基于索引调制的涡旋电磁波跳模-频抗干扰系统和方法
CN112803975A (zh) * 2019-11-14 2021-05-14 华为技术有限公司 确定预编码矩阵的方法、设备及系统
CN112887989A (zh) * 2019-11-30 2021-06-01 华为技术有限公司 基于oam的通信方法和相关设备及存储介质
CN112996054A (zh) * 2019-12-16 2021-06-18 华为技术有限公司 信号干扰协调方法、通信装置及计算机可读存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11202211B2 (en) * 2017-09-25 2021-12-14 Nippon Telegraph And Telephone Corporation OAM multiplexing communication system and OAM multiplexing communication method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150188660A1 (en) * 2013-12-31 2015-07-02 Electronics And Telecommunications Research Institute Apparatus and method for simultaneously transmitting and receiving orbital angular momentum (oam) modes
CN112803975A (zh) * 2019-11-14 2021-05-14 华为技术有限公司 确定预编码矩阵的方法、设备及系统
CN112887989A (zh) * 2019-11-30 2021-06-01 华为技术有限公司 基于oam的通信方法和相关设备及存储介质
CN112996054A (zh) * 2019-12-16 2021-06-18 华为技术有限公司 信号干扰协调方法、通信装置及计算机可读存储介质
CN112260720A (zh) * 2020-10-16 2021-01-22 西安电子科技大学 基于索引调制的涡旋电磁波跳模-频抗干扰系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4383587A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116436740A (zh) * 2023-06-15 2023-07-14 北京遥感设备研究所 一种轨道角动量模态间干扰抑制方法及系统
CN116436740B (zh) * 2023-06-15 2023-09-15 北京遥感设备研究所 一种轨道角动量模态间干扰抑制方法及系统

Also Published As

Publication number Publication date
EP4383587A4 (en) 2024-10-02
CN115997411A (zh) 2023-04-21
EP4383587A1 (en) 2024-06-12

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2023010473A1 (zh) 一种波束应用的方法及其装置
WO2023133821A1 (zh) 发送功率确定方法及装置
WO2023070586A1 (zh) 物理下行共享信道pdsch配置方法及装置
WO2023019596A1 (zh) 基于轨道角动量oam的通信方法及其装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023044620A1 (zh) 一种传输配置指示状态的确定方法及其装置
WO2023010428A1 (zh) 准共址配置方法、准共址qcl信息确定方法及其装置
WO2023015424A1 (zh) 一种定位方法及其装置
WO2023065325A1 (zh) 基于轨道角动量的共享信道传输及装置
WO2023092494A1 (zh) 一种预编码信息的反馈方法及其装置
WO2023065326A1 (zh) 一种通信模式的确定方法及其装置
WO2023122990A1 (zh) 物理随机接入信道prach的传输方法和装置
WO2023077311A1 (zh) 一种智能超表面ris的预编码方法及其装置
WO2024026639A1 (zh) 一种波束赋形方法、装置、设备及存储介质
WO2023115577A1 (zh) 一种信道状态信息csi的反馈方法及其装置
WO2024050777A1 (zh) 传输配置方法、装置及系统
WO2024021130A1 (zh) 一种信道估计方法及其装置
WO2022266948A1 (zh) 一种物理上行控制信道波束恢复的方法及其装置
WO2024050774A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024016137A1 (zh) 一种预编码信息的接收发送方法及其装置
WO2023230795A1 (zh) 基于波束配置的通信方法、装置及系统
US20230396296A1 (en) Phase correction method and communication apparatus
WO2023283827A1 (zh) 一种定时误差的上报方法及其装置
WO2023050151A1 (zh) 资源配置方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953837

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18684625

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021953837

Country of ref document: EP

Effective date: 20240304

WWE Wipo information: entry into national phase

Ref document number: 202447020010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE