WO2023230795A1 - 基于波束配置的通信方法、装置及系统 - Google Patents

基于波束配置的通信方法、装置及系统 Download PDF

Info

Publication number
WO2023230795A1
WO2023230795A1 PCT/CN2022/096083 CN2022096083W WO2023230795A1 WO 2023230795 A1 WO2023230795 A1 WO 2023230795A1 CN 2022096083 W CN2022096083 W CN 2022096083W WO 2023230795 A1 WO2023230795 A1 WO 2023230795A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
information
configuration
network device
measurement reference
Prior art date
Application number
PCT/CN2022/096083
Other languages
English (en)
French (fr)
Inventor
池连刚
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/096083 priority Critical patent/WO2023230795A1/zh
Priority to CN202280001780.4A priority patent/CN117480837A/zh
Publication of WO2023230795A1 publication Critical patent/WO2023230795A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to the field of mobile communication technology, and in particular to a communication method, device and system based on beam configuration.
  • relays can play a role in improving network coverage and reducing deployment costs.
  • radio frequency relays which can only realize the functions of receiving, converting and forwarding signals. They do not support the beamforming function and cannot carry out beamforming for specific areas. Adjustments cannot be made to track specific users, which limits system performance.
  • the present disclosure proposes a communication method, device and system based on beam configuration, provides a beam management scheme suitable for intelligent relays, realizes beam adjustment and shaping, effectively improves the flexibility and configurability of the communication system, and provides Provide support for transmission requirements in multiple business types and complex communication scenarios.
  • a first aspect embodiment of the present disclosure provides a communication method based on beam configuration.
  • the method is applied to a first network device.
  • the method includes: configuring a connection between the second network device and a terminal according to the capability information of the second network device. configure the beam, and send the configuration information of the configured beam; and generate and send beam indication information based on the beam measurement results reported by the terminal, where the beam indication information is used to assist the second network device and/or the terminal to generate a transmit beam or a receive beam .
  • the method further includes: receiving capability information of the second network device, wherein the capability information includes a beamforming capability of the second network device, an index of each unit beam, and at least one of the beam information.
  • the beam information includes direction information and/or width information of the unit beam.
  • the configuration beam is one or more configuration beams, and each configuration beam includes: a unit beam; and/or a combined beam formed by combining two or more unit beams.
  • the configuration information includes index information and/or composition information
  • sending the configuration information of the configuration beam includes: sending the index information and/or composition information of the configuration beam to the second network device.
  • the configuration information also includes measurement reference signal configuration information
  • the method further includes: configuring the measurement reference signal on the configuration beam, and sending the measurement reference signal configuration information to the terminal device and the second network device, wherein, The measurement reference signal configuration information is used to assist the second network device to generate a transmission beam of the measurement reference signal to transmit the measurement reference signal, and to assist the terminal in performing beam measurement on the measurement reference signal.
  • the measurement reference signal configuration information includes antenna port information, time and frequency At least one of resource information and generation parameters of the measurement reference signal sequence.
  • generating the beam indication information based on the beam measurement results reported by the terminal includes: determining the beam indication information based on the measurement results of the measurement reference signal reported by the terminal, where the beam indication information indicates a beam, or indicates Two or more beams and the weighting coefficient of each beam.
  • a second aspect embodiment of the present disclosure provides a communication method based on beam configuration.
  • the method is applied to a second network device.
  • the method includes: receiving beam configuration information sent by a first network device, where the beam configuration information includes the first network device.
  • Measurement reference signal configuration information of the configuration beam configured by the device based on the measurement reference signal configuration information, generate a transmission beam of the measurement reference signal to send the measurement reference signal; receive beam indication information generated by the first network device according to the measurement result of the measurement reference signal; and generating a transmit beam or a receive beam for the data channel and its demodulation reference signal according to the beam indication information.
  • the method before receiving the beam configuration information and beam indication information sent by the first network device, the method further includes: sending capability information to the first network device, where the capability information is used to assist the first network
  • the device configures a configuration beam used between the second network device and the terminal.
  • the capability information includes at least one of the beamforming capability of the second network device, the index of each unit beam, and the beam information.
  • the beam information includes the unit beam. Orientation information and/or width information.
  • generating a transmission beam of the measurement reference signal to transmit the measurement reference signal includes: transmitting the measurement reference signal to the terminal device, wherein the measurement reference signal configuration information includes antenna port information, At least one of time-frequency resource information and generation parameters of the measurement reference signal sequence.
  • generating the transmit beam or receive beam of the data channel and its demodulation reference signal according to the beam indication information includes: when the beam indication information indicates a beam, using the indicated beam as the data channel and its solution Adjust the transmitting beam or receiving beam of the reference signal; when the beam indication information indicates two or more beams and the weighting coefficient of each beam, the beam weight vector of the indicated beam is synthesized according to the weighting coefficient to obtain the composite beam, and The synthesized beam is used as the transmit beam or receive beam of the data channel and its demodulation reference signal.
  • the beam weight vector is a one-dimensional vector or a two-dimensional vector.
  • the beam configuration information includes index information and/or composition information of the configured beam.
  • a third aspect embodiment of the present disclosure provides a communication method based on beam configuration.
  • the method is applied to a terminal device.
  • the method includes: receiving configuration information of a measurement reference signal sent by a first network device; receiving configuration information sent by a second network device. a measurement reference signal; perform beam measurement on the measurement reference signal based on configuration information of the measurement reference signal, and report the beam measurement result to the first network device; and receive beam indication information sent by the first network device.
  • the configuration information of the measurement reference signal includes at least one of antenna port information, time-frequency resource information, and generation parameters of the measurement reference signal sequence.
  • the beam measurement results include at least one of signal to interference plus noise ratio SINR, reference signal received power RSRP, reference signal received quality RSRQ, and received signal strength indication RSSI.
  • the method further includes: generating a receiving beam or a transmitting beam of the data channel and its demodulation reference signal according to the beam indication information, wherein when the beam indication information indicates a beam, the indicated beam is As a transmitting beam or receiving beam of a data channel and its demodulation reference signal; when the beam indication information indicates two or more beams and the weighting coefficient of each beam, the beam weight vector of the indicated beam is synthesized according to the weighting coefficient.
  • the synthetic beam and use the synthetic beam as the transmit beam or receive beam of the data channel and its demodulation reference signal.
  • a fourth embodiment of the present disclosure provides a communication device based on beam configuration.
  • the device is applied to a first network device.
  • the device includes: a configuration unit configured to configure a second network according to the capability information of the second network device. Configuring the beam between the device and the terminal, and sending the configuration information of the configured beam; the generating unit is used to generate the beam indication information based on the beam measurement results reported by the terminal; and the sending unit is used to send the beam indication information, wherein the beam indication The information is used to assist the second network device and/or the terminal in generating a transmit beam or a receive beam.
  • a fifth aspect embodiment of the present disclosure provides a communication device based on beam configuration, which device is applied to a second network device.
  • the device includes: a first receiving unit configured to receive beam configuration information sent by the first network device, The beam configuration information includes measurement reference signal configuration information of the configuration beam configured by the first network device; the first generation unit is used to generate a transmission beam of the measurement reference signal based on the measurement reference signal configuration information to transmit the measurement reference signal; the second receiving unit , configured to receive beam indication information generated by the first network device according to the measurement result of the measurement reference signal; and a second generation unit configured to generate a transmit beam or a receive beam of the data channel and its demodulation reference signal according to the beam indication information.
  • a sixth aspect embodiment of the present disclosure provides a communication device based on beam configuration.
  • the device is applied to a terminal device.
  • the device includes: a first receiving unit configured to receive configuration information of a measurement reference signal sent by a first network device. ;
  • the second receiving unit is used to receive the measurement reference signal sent by the second network device;
  • the measurement unit is used to perform beam measurement on the measurement reference signal based on the configuration information of the measurement reference signal, and report the beam measurement result to the first network device; and a third receiving unit configured to receive beam indication information sent by the first network device.
  • a seventh embodiment of the present disclosure provides a communication system, which includes a first network device, a second network device, and a terminal device, wherein the first network device configures the second network according to the capability information of the second network device. Configure the beam between the device and the terminal, and send the configuration information of the configured beam to the second network device and/or the terminal device.
  • the configuration information includes the measurement reference signal configuration information of the configured beam; the second network device generates based on the measurement reference signal configuration information
  • the transmission beam of the measurement reference signal is used to transmit the measurement reference signal.
  • the terminal device measures the measurement reference signal based on the measurement reference signal configuration information and reports the beam measurement result to the first network device; the first network device generates beam indication information based on the beam measurement result. , and sends the beam indication information to the second network device and/or terminal device; the second network device and/or terminal device generates a receiving beam or a transmitting beam for the data channel and its demodulation reference signal according to the beam indication information.
  • An eighth embodiment of the present disclosure provides a communication device.
  • the communication device includes: a transceiver; a memory; and a processor, respectively connected to the transceiver and the memory, and configured to control the transceiver by executing computer-executable instructions on the memory.
  • wireless signal transceiver and can implement the method as in the first aspect embodiment or the second aspect embodiment or the third aspect embodiment of the present disclosure.
  • a ninth embodiment of the present disclosure provides a computer storage medium, wherein the computer storage medium stores computer-executable instructions; after the computer-executable instructions are executed by a processor, the computer-executable instructions can implement the first embodiment or the third embodiment of the present disclosure.
  • the first network device configures the configuration beam between the second network device and the terminal, sends the configuration information of the configuration beam, and based on the beam measurement results reported by the terminal, can generate and send Beam indication information.
  • the beam indication information is used to assist the second network device and/or terminal to generate transmit beams or receive beams, thereby achieving beam adjustment and shaping, effectively improving the flexibility and configurability of the communication system, and providing services for multiple business types. and provide support for transmission requirements in complex communication scenarios.
  • Figure 1 is a schematic flowchart of a communication method based on beam configuration according to an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of a communication method based on beam configuration according to an embodiment of the present disclosure
  • Figure 3 is a schematic flowchart of a communication method based on beam configuration according to an embodiment of the present disclosure
  • Figure 4 is a schematic flowchart of a communication method based on beam configuration according to an embodiment of the present disclosure
  • Figure 5 is a schematic flowchart of a communication method based on beam configuration according to an embodiment of the present disclosure
  • Figure 6 is a schematic flowchart of a communication method based on beam configuration according to an embodiment of the present disclosure
  • Figure 7 is a schematic diagram of signaling interaction of a communication method based on beam configuration according to an embodiment of the present disclosure
  • Figure 8 is a schematic block diagram of a communication device based on beam configuration according to an embodiment of the present disclosure
  • Figure 9 is a schematic block diagram of a communication device based on beam configuration according to an embodiment of the present disclosure.
  • Figure 10 is a schematic block diagram of a communication device based on beam configuration according to an embodiment of the present disclosure
  • Figure 11 is a schematic block diagram of a communication device based on beam configuration according to an embodiment of the present disclosure
  • Figure 12 is a schematic block diagram of a communication device based on beam configuration according to an embodiment of the present disclosure
  • Figure 13 is a schematic block diagram of a communication device based on beam configuration according to an embodiment of the present disclosure
  • Figure 14 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • Figure 15 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • V2V vehicle-to-vehicle communication
  • cellular mobile communication technology is in the evolutionary stage of a new generation of technology.
  • an important feature of the new generation technology is to support flexible configuration of multiple business types.
  • eMBB enhanced mobile broadband
  • URLLC Ultra Reliable Low Latency Communication
  • mMTC Massive Machine Type Communication
  • relaying is a simple, low-cost means of improving network coverage.
  • radio frequency relays are widely deployed in the second to fourth generation mobile communication technologies to supplement coverage.
  • the fifth generation mobile communication technology (Fifth Generation, 5G) implements radio frequency relays in the Rel-17 standard protocol. Were studied.
  • the Third Generation Partnership Project (3GPP) R18 standard protocol has launched research on Network-controlled Repeater (NCR), introducing certain auxiliary information and control signaling for the relay, such as, Supports beam measurement and beam steering to further improve relay performance.
  • NCR Network-controlled Repeater
  • the relays currently supported by 5G NR are radio frequency relays, which can only realize signal reception, radio frequency conversion and amplification and forwarding functions. They are not controlled by the base station and do not support operations such as beamforming. They cannot target specific areas. Beam adjustment also makes it impossible to track specific users during user movement, which limits system performance in specific scenarios or complex application environments.
  • the present disclosure proposes a communication method, device and system based on beam configuration, provides a beam management solution suitable for intelligent relays, realizes beam adjustment and shaping, and effectively improves the flexibility and configurability of the communication system. It provides support for transmission requirements in multiple business types and complex communication scenarios.
  • Figure 1 shows a schematic flowchart of a communication method based on beam configuration according to an embodiment of the present disclosure.
  • the method is applied to a first network device.
  • the first network device can be understood as a base station, specifically, in a 5G communication scenario, it is a gNB (next Generation Node B).
  • gNB next Generation Node B
  • the method may include the following steps.
  • the second network device can be understood as a relay, such as a smart repeater (Smart repeater).
  • the second network device may be a Network-controlled Repeater (NCR).
  • NCR Network-controlled Repeater
  • communication between the base station, the relay and the terminal can be divided into a configuration phase and an indication phase.
  • the configuration phase occurs between the base station and the relay
  • the indication phase occurs between the base station and the relay or the base station and the terminal.
  • the base station can configure the beams used between the relay and the terminal based on the relay's capability information.
  • the base station has control and decision-making capabilities for the beams used between the relay and the terminal.
  • the relay's capability information includes at least one of the relay's beamforming capability, an index of each unit beam, and beam information, where the beam information includes direction information and/or width information of the unit beam, for example, relative to the antenna. The normal direction of the array, the direction and angle range of each beam.
  • S102 Generate and send beam indication information based on the beam measurement results reported by the terminal.
  • the beam indication information is used to assist the relay and/or the terminal in generating a transmit beam or a receive beam.
  • the terminal can perform beam measurement based on the relevant information of the configured beam configured by the base station, thereby obtaining the measurement results and reporting them to the base station. Based on the measurement results, the base station generates a transmission beam that can assist the relay and/or the terminal in generating a transmission beam. Or the beam indication information of the receiving beam.
  • the beam measurement result is a result obtained by the terminal performing beam measurement according to the configuration information of the configured beam sent by the base station.
  • the terminal can measure the configuration beam used between the relay and the terminal based on the configuration information of the configuration beam sent by the base station.
  • the result can characterize the beam quality of the configuration beam. It can use any parameter that can measure the beam quality. No limitations are set forth in this disclosure.
  • the base station in the indication phase, can indicate the configured beam to the relay and/or the terminal, so as to use the configured beam between the relay and the terminal. It can be understood that the instructions given by the base station to the relay and the instructions given by the base station to the terminal can be independent and isolated from each other.
  • the first network device configures the configuration beam between the second network device and the terminal, sends the configuration information of the configuration beam, and measures the beam based on the beam reported by the terminal.
  • beam indication information can be generated and sent, and the beam indication information is used to assist the second network device and/or terminal to generate a transmit beam or a receive beam, thereby achieving beam adjustment and shaping, and effectively improving the flexibility and configurability of the communication system. , providing support for transmission requirements in multiple business types and complex communication scenarios.
  • FIG. 2 shows a schematic flowchart of a communication method based on beam configuration according to an embodiment of the present disclosure. The method is applied to the first network device. Based on the embodiment shown in Figure 1, as shown in Figure 2, the method may include the following steps.
  • the capability information includes beamforming capabilities of the second network device.
  • the beamforming capability of the second network device refers to whether and what kind of beamforming the relay device supports. It can be understood that beamforming capability is a relay-level concept.
  • the beamforming capability may include not supporting beamforming, supporting static beamforming, or supporting dynamic beamforming.
  • the difference between dynamic beamforming and static beamforming is that the adjustment period is different, but the signaling for beam configuration is the same, which depends on the decision-making of the base station.
  • the above capability information also includes at least one item of the index of each unit beam and beam information, and the beam information includes direction information and/or width information of the unit beam.
  • the communication link between the base station (gNB) and the network control relay (NCR) is called the first hop link, and the communication link between the relay and the terminal is called is the second hop link.
  • the relay can also report the beam information of the supported second hop link and its index to the base station.
  • each beam in the above reported capability information is called a unit beam, and the relay can report the information of each unit beam and its index to the base station.
  • the relay can report all supported unit beams, and the base station can make selections and decisions after receiving the reported capability information.
  • the relay reports information on 64 beams, and the base station can determine whether to use them directly or configure some of them to make adjustments for specific areas or specific users.
  • the direction information and/or width information of the unit beam can be understood as the direction and angular range of each beam relative to the normal direction of the array of the antenna.
  • S202 Configure a configuration beam between the second network device and the terminal according to the capability information of the second network device.
  • the base station may configure the beam used between the relay and the terminal according to the relay's capability information during the configuration phase, that is, configure the beam.
  • the configuration beam generation method used between the relay and the terminal includes: one configuration beam corresponds to one unit beam; and/or one configuration beam is formed by combining two or more unit beams.
  • a configuration beam refers to one or more configuration beams, where each configuration beam includes a unit beam and/or a combined beam formed by combining two or more unit beams.
  • the configuration described in this disclosure includes selection and combination.
  • the base station can configure one or more configuration beams according to the relay's capability information, where each configuration beam can be a certain unit beam in the reporting capability, or it can be multiple The composite beam of the unit beam.
  • the relay reports information on 64 unit beams, which can achieve 360-degree coverage.
  • the base station can select or combine based on factors such as the relay's capabilities, network coverage, terminal movement, and specific scenarios in specific areas. Beam suitable for the current scene. It should be noted that this disclosure focuses on the signaling interaction during the communication process, that is, the input and output of the base station.
  • the decision-making process of the base station and its decision-making factors are not limited here.
  • the base station can be based on factors of concern in any communication scenario. Make decisions.
  • the base station can configure the configuration beam, thereby obtaining the configuration information of the configuration beam.
  • the configuration information may include index information and/or composition information of the configuration beam and/or measurement reference signal configuration information of the measurement reference signal.
  • the step of configuring the configuration beam specifically includes: configuring index information of the configuration beam.
  • the base station can directly use the index of the unit beam reported by the relay, or re-establish the beam index for the configured beam.
  • composition information refers to which unit beam or beams the configuration beam is composed of, including index information of each unit beam.
  • the step of configuring the configuration beam further includes: configuring a measurement reference signal (ie, correlation reference signal) for the configuration beam.
  • a measurement reference signal ie, correlation reference signal
  • the configuration information also includes measurement reference signal configuration information, where the measurement reference signal configuration information is used to assist the second network device in generating a transmission beam of the measurement reference signal to transmit the measurement reference signal, and/or to assist the terminal in configuring the beam. Perform beam measurement, specifically, measure the measurement reference signal corresponding to the configured beam.
  • the measurement reference signal configuration information includes at least one of antenna port information, time-frequency resource information, and generation parameters of the measurement reference signal sequence.
  • the base station may send configuration information for configuring the beam to the relay.
  • the base station may send the measurement reference signal configuration information to the relay to assist the relay in generating a transmission beam of the measurement reference signal to transmit the measurement reference signal.
  • the relay can generate a transmission beam of the measurement reference signal based on the measurement reference signal configuration information received from the base station, thereby sending the measurement reference signal to the terminal device for the terminal device to measure the measurement reference signal of each configured beam.
  • the base station may send the measurement reference signal configuration information to the terminal to assist the terminal in performing beam measurement on the measurement reference signal based on the measurement reference signal configuration information.
  • the base station can directly send the configuration information to the terminal, or can also send the configuration information to the terminal through a relay. The specific method depends on the location of the terminal and is not limited in this disclosure.
  • the base station can configure how the relay sends the measurement reference signal, the relay can send the measurement reference signal based on the configuration of the base station, and the terminal can measure the beam (i.e., the measurement reference signal) emitted by the relay based on the configuration of the base station. ), in other words, the base station can issue commands (ie, configuration information) to the relay and terminal. Based on this, the relay sends the beam and the terminal measures the beam.
  • the measurement reference signal configuration information includes at least one of antenna port information, time-frequency resource information, and measurement reference signal sequence generation parameters. Based on this configuration information, the relay can perform the transmission beam on which port and how much time is occupied.
  • Frequency resources and how to send beams that is, the relay can send measurement reference signals using designated antenna ports and reference signal sequences on designated time-frequency resources.
  • the terminal can perform beam measurement on which port, measurement on which subcarriers, and how to perform beam measurement based on the configuration.
  • the content of the configuration information is the same for the relay and the terminal, but the purpose is different.
  • the terminal can measure the measurement reference signal received from the relay according to the measurement reference signal configuration information sent by the base station, thereby obtaining the measurement result and reporting it to the base station.
  • the beam measurement results can characterize the beam quality of the configured beam, including but not limited to Signal to Interference plus Noise Ratio (SINR), Reference Signal Receiving Power (RSRP), Reference Signal Receiving Quality ( Reference Signal Receiving Quality (RSRQ), Received Signal Strength Indication (RSSI), or any other parameters that can measure beam quality are not limited in this disclosure.
  • SINR Signal to Interference plus Noise Ratio
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • RSSI Received Signal Strength Indication
  • S205 Generate and send beam indication information based on the beam measurement results reported by the terminal.
  • the base station may generate beam indication information, where the beam indication information may indicate one beam, or may indicate two or more beams and the weighting coefficient of each beam.
  • the base station may send beam indication information to the relay.
  • the beam indication information includes index information of one or more configuration beams, which may be indicated by the index of the configuration beam, or indicated by the measurement reference signal associated with the configuration beam.
  • the beam indication information indicates two or more beams
  • the beam indication information also includes the weighting coefficient corresponding to each beam.
  • the base station may send beam indication information to the terminal.
  • the beam indication information includes index information of one or more configuration beams, which may be indicated by the index of the configuration beam, or indicated by the measurement reference signal associated with the configuration beam.
  • the beam indication information indicates two or more beams
  • the beam indication information also includes the weighting coefficient corresponding to each beam.
  • the base station's indication to the relay and the base station's indication to the terminal may be independent and isolated from each other.
  • the base station has configuration and decision-making capabilities, and the relay and terminal can transmit and receive beams according to the configuration of the base station, without making selections and judgments.
  • this disclosure does not restrict the relay and terminal to have certain decision-making capabilities.
  • the base station configures the configuration beam between the relay and the terminal, and sends the configuration information of the configuration beam to the relay and/or the terminal, so that the terminal can perform beam configuration. Measure and report the measurement results.
  • the base station can generate and send beam indication information based on the beam measurement results reported by the terminal, thereby assisting the second network device and/or the terminal to generate transmit beams or receive beams. Therefore, beam adjustment and shaping are achieved. It expands the applicable scenarios of the communication method, enhances the flexibility and configurability of the communication system, and provides effective support for transmission requirements in multiple business types and complex communication scenarios.
  • FIG 3 is a schematic flowchart of a communication method based on beam configuration according to an embodiment of the present disclosure.
  • the method is applied to the second network device.
  • the second network device can be understood as a relay, such as a smart repeater (Smart repeater).
  • the second network device may be a Network-controlled Repeater (NCR).
  • NCR Network-controlled Repeater
  • the method may include the following steps.
  • the beam configuration information includes beam configuration information configured by the first network device.
  • the beam configuration information may include measurement reference signal configuration information of a configured beam configured by the first network device.
  • the communication between the base station, the relay and the terminal can be divided into a configuration phase and an indication phase.
  • the relay may receive from the base station the information of the configuration beam configured in the configuration phase, and in the configuration phase, the relay is a configured object.
  • FIGS. 1 and 2 reference may be made to the embodiments shown in FIGS. 1 and 2 , and details will not be described again here.
  • the relay may generate a transmission beam of the measurement reference signal according to the configuration information of the measurement reference signal configured by the base station in the configuration stage to send the measurement reference signal, for example, send the measurement reference signal to the terminal device. signal to enable the terminal to measure the measurement reference signal of each configured beam.
  • the base station can configure how the relay sends the measurement reference signal, the relay can send the measurement reference signal based on the configuration of the base station, and the terminal can measure the beam (ie, the measurement reference signal) emitted by the relay based on the configuration of the base station. That is, the base station can issue commands (ie, configuration information) to the relay and the terminal. Based on this, the relay sends the beam and the terminal measures the beam.
  • the measurement reference signal configuration information includes at least one of antenna port information, time-frequency resource information, and measurement reference signal sequence generation parameters. Based on this configuration information, the relay can perform the transmission beam on which port and how much time is occupied.
  • Frequency resources and how to send beams that is, the relay can send measurement reference signals using designated antenna ports and reference signal sequences on designated time-frequency resources.
  • the terminal can perform beam measurement on which port, measurement on which subcarriers, and how to perform beam measurement based on the configuration.
  • the content of the configuration information is the same for the relay and the terminal, but the purpose is different.
  • the terminal measures the measurement reference signal of each configuration beam sent by the relay according to the measurement reference signal configuration information of each configuration beam sent by the base station, obtains the measurement results and reports them to the base station, and the base station can measure the measurement reference signal according to the measurement result.
  • beam indication information is generated and transmitted, and the relay is able to receive the beam indication information from the base station.
  • S304 Generate a transmit beam or receive beam for the data channel and its demodulation reference signal according to the beam indication information.
  • the relay in response to receiving beam indication information from the base station, may generate a receive beam or a transmit beam according to the beam indication information. Specifically, the relay may generate a transmit beam or receive beam for the data channel and its demodulation reference signal according to the beam indication information.
  • the base station has configuration and decision-making capabilities, and the relay and terminal can transmit and receive beams according to the configuration of the base station, without making selections and judgments.
  • this disclosure does not restrict the relay and terminal to have certain decision-making capabilities.
  • the relay can receive the beam measurement reference signal configuration information sent by the first network device, generate and send the transmission beam of the measurement reference signal based on the measurement reference signal configuration information.
  • the first network device receives the measurement reference signal to generate beam indication information according to the measurement result of the measurement reference signal, and generates a transmission beam or a reception beam for the data channel and its demodulation reference signal based on the beam indication information, thereby realizing beam adjustment in the communication process. and shaping, effectively improving the flexibility and configurability of communication systems, and providing support for transmission requirements in multiple business types and complex communication scenarios.
  • Figure 4 is a schematic flowchart of a communication method based on beam configuration according to an embodiment of the present disclosure. As shown in Figure 3, the method is applied to the second network device. Based on the embodiment shown in Figure 3, the method may include the following steps.
  • the capability information includes at least one of the beamforming capability of the second network device, an index of each unit beam, and beam information, and the beam information includes direction information and/or width information of the unit beam.
  • the beamforming capability of a relay refers to whether and what kind of beamforming the relay device supports. It can be understood that beamforming capability is a relay-level concept. For example, the beamforming capability may include not supporting beamforming, supporting static beamforming, or supporting dynamic beamforming.
  • the capability information is used to assist the first network device in configuring the configuration beam used between the second network device and the terminal.
  • the relay can send capability information to the base station to assist the base station in configuration.
  • the relay is the configured object.
  • the communication link between the base station (gNB) and the network control relay (NCR) is called the first hop link, and the communication link between the relay and the terminal is called is the second hop link.
  • the relay can report the supported second-hop link beam information and its index to the base station.
  • each beam in the above reported capability information is called a unit beam, and the relay can report the information of each unit beam and its index to the base station.
  • the relay can report all supported unit beams, and the base station can make selections and decisions after receiving the reported capability information.
  • the relay reports the information of 64 beams to assist the base station in configuration.
  • the direction information and/or width information of the unit beam can be understood as the direction and angular range of each beam relative to the normal direction of the array of the antenna.
  • the beam configuration information is beam configuration information configured by the first network device.
  • the configuration information may include index information and/or composition information and/or measurement reference signal configuration information.
  • the relay may receive the index information of the configuration beam configured by the base station.
  • the index information may be the index of the unit beam reported by the relay, or the index re-established by the base station for the configuration beam.
  • the relay may also receive the composition information of the configuration beam from the base station, that is, which unit beam or beams the configuration beam is composed of, including the index information of each unit beam.
  • the relay can also receive measurement reference signal configuration information from the base station, where the measurement reference signal configuration information is the configuration information of the measurement reference signal configured by the base station to configure the beam configuration, and is used to assist the second network device in sending the measurement reference signal.
  • the measurement reference signal configuration information includes at least one of antenna port information, time-frequency resource information, and generation parameters of the measurement reference signal sequence.
  • S403 Generate a transmission beam for the measurement reference signal according to the beam configuration information to transmit the measurement reference signal.
  • the relay may generate a transmission beam of the measurement reference signal to transmit the measurement reference signal.
  • the relay can use the specified antenna port and reference signal sequence to send the measurement reference signal on the specified time-frequency resource.
  • the relay can receive beam indication information generated by the base station.
  • the terminal measures the measurement reference signal of each configuration beam sent by the relay according to the measurement reference signal configuration information of each configuration beam sent by the base station, obtains the measurement results and reports them to the base station, and the base station can measure the measurement reference signal according to the measurement result.
  • beam indication information is generated and transmitted, and the relay is able to receive the beam indication information from the base station.
  • the beam indication information includes index information of one or more configured beams.
  • the beam indication information also includes the weighting coefficient corresponding to each beam.
  • S405 Generate a transmit beam or a receive beam for the data channel and its demodulation reference signal according to the beam indication information.
  • the beam indication information indicates a beam
  • the indicated beam is used as the transmitting beam or receiving beam of the data channel and its demodulation reference signal.
  • the beam weight vectors of the indicated beams are synthesized according to the weighting coefficients to obtain the synthesized beam, and the synthesized beam is The beam serves as a transmit beam or receive beam for the data channel and its demodulation reference signal.
  • the beam weight vector is a one-dimensional vector or a two-dimensional vector.
  • the relay can use the beam as a receiving beam or a transmitting beam; if two or more indication beams are received , that is, if the beam indication information indicates multiple configuration beams, the relay can generate a composite beam as a receiving beam or a transmitting beam.
  • the weight vector of the synthesized beam is obtained by weighting the weight vector of one or more beams using the weighting coefficient indicated in the beam indication information. Therefore, the relay can use the above-generated beam to operate in a specific time-frequency resource. Receive or send signals.
  • the relay can send capability information to the base station, assist the base station in beam configuration, and receive configuration information and instruction information from the base station, thereby generating a transmit beam or a receive beam, Therefore, beam adjustment and shaping of complex communication scenarios is realized, the applicable scenarios of the communication method are expanded, the flexibility and configurability of the communication system are enhanced, and effective support is provided for transmission needs in multiple business types and complex communication scenarios. .
  • FIG. 5 shows a schematic flowchart of a communication method based on beam configuration according to an embodiment of the present disclosure. This method applies to terminal equipment.
  • Terminal devices include, but are not limited to, user equipment (UE), smart terminal devices, cellular phones, wireless devices, handsets, mobile units, vehicles, vehicle-mounted devices, etc.
  • UE user equipment
  • smart terminal devices cellular phones, wireless devices, handsets, mobile units, vehicles, vehicle-mounted devices, etc.
  • the method may include the following steps.
  • the terminal can receive the configuration information of the measurement reference signal sent by the base station.
  • the configuration information of the measurement reference signal is obtained by the base station in the configuration stage by configuring the configuration beam used between the relay and the terminal. .
  • the terminal is able to receive the measurement reference signal from the relay.
  • the measurement reference signal is configured by the base station in the configuration phase for the configuration beam used between the relay and the terminal.
  • the base station may send the configuration information of the measurement reference signal to the relay, and the relay may send the measurement reference signal to the terminal according to the configuration information.
  • S503 Perform beam measurement on the measurement reference signal based on the configuration information of the measurement reference signal, and report the beam measurement result to the first network device.
  • the terminal can perform beam measurement according to the configuration information of the measurement reference signal, thereby obtaining the measurement result of the measurement reference signal configured by the base station for each configured beam, which can be understood as the beam quality of the configured beam, and report the measurement result to the base station. Report the beam measurement results, that is, the beam quality.
  • the beam quality can be characterized by any relevant parameters, including but not limited to Signal to Interference plus Noise Ratio (SINR), Reference Signal Receiving Power (RSRP), Reference Signal Receiving Quality ( Reference Signal Receiving Quality (RSRQ) and Received Signal Strength Indication (RSSI) are not limited in this disclosure.
  • SINR Signal to Interference plus Noise Ratio
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • RSSI Received Signal Strength Indication
  • the terminal may receive beam indication information from the base station, where the beam indication information is generated by the base station based on the beam measurement results reported by the terminal.
  • the beam indication information can assist the terminal in generating a transmit beam or receive beam for the data channel and its demodulation reference signal.
  • the terminal can receive the configuration information of the measurement reference signal sent by the base station, receive the measurement reference signal from the relay, obtain the beam measurement result by measuring the configured beam, and report it. to the base station, thereby receiving beam indication information from the base station, realizing beam adjustment and shaping in the communication process, effectively improving the flexibility and configurability of the communication system, and providing support for transmission requirements in multiple business types and complex communication scenarios.
  • FIG. 6 shows a schematic flowchart of a communication method based on beam configuration according to an embodiment of the present disclosure. Based on the embodiment shown in Figure 5, as shown in Figure 6, the method may include the following steps.
  • the measurement reference signal configuration information includes: at least one of antenna port information, time-frequency resource information, and generation parameters of the measurement reference signal sequence.
  • the principle of step S601 is the same as that of step S501 in FIG. 5 . Reference may be made to the relevant description of S501 or the relevant description of the embodiment shown in FIGS. 1 to 4 , which will not be described again here.
  • step S602 is the same as that of step S502 in FIG. 5 . Reference may be made to the relevant description of S502 or the relevant description of the embodiment shown in FIGS. 1 to 4 , which will not be described again here.
  • S603 Perform beam measurement on the measurement reference signal based on the configuration information of the measurement reference signal, and report the beam measurement result to the first network device.
  • the base station can configure how the relay sends the measurement reference signal, the relay can send the measurement reference signal based on the configuration of the base station, and the terminal can measure the beam (i.e., the measurement reference signal) emitted by the relay based on the configuration of the base station. ), in other words, the base station can issue commands (ie, configuration information) to the relay and the terminal. Based on this, the relay performs transmitting beams and the terminal performs measuring beams.
  • the measurement reference signal configuration information includes at least one of antenna port information, time-frequency resource information, and measurement reference signal sequence generation parameters. Based on this configuration information, the relay can perform the transmission beam on which port and how much time is occupied.
  • Frequency resources and how to send beams that is, the relay can send measurement reference signals using designated antenna ports and reference signal sequences on designated time-frequency resources.
  • the terminal can perform beam measurement on which port, measurement on which subcarriers, and how to perform beam measurement based on the configuration.
  • the content of the configuration information is the same for the relay and the terminal, but the purpose is different.
  • the terminal can perform beam measurement according to the configuration information of the measurement reference signal to obtain the beam quality of the configured beam, and report the beam measurement result, that is, the beam quality, to the base station.
  • Beam instructions include but are not limited to Signal to Interference plus Noise Ratio (SINR), Reference Signal Receiving Power (RSRP), Reference Signal Receiving Quality (RSRQ), Receiver Received Signal Strength Indication (RSSI), or any other parameter that can measure beam quality, is not limited in this disclosure.
  • SINR Signal to Interference plus Noise Ratio
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • RSSI Receiver Received Signal Strength Indication
  • step S604 is the same as that of step S504 in FIG. 5 . Reference may be made to the relevant description of S504 or the relevant description of the embodiment shown in FIGS. 1 to 4 , which will not be described again here.
  • S605 Generate a receiving beam or transmitting beam for the data channel and its demodulation reference signal according to the beam indication information.
  • the beam indication information indicates a beam
  • the indicated beam is used as the transmitting beam or receiving beam of the data channel and its demodulation reference signal.
  • the beam weight vectors of the indicated beams are synthesized according to the weighting coefficients to obtain the synthesis beam, and use the synthesized beam as the transmit beam or receive beam of the data channel and its demodulation reference signal.
  • the base station has configuration and decision-making capabilities, and the relay and terminal can transmit and receive beams according to the configuration of the base station, without making selections and judgments.
  • this disclosure does not restrict the relay and terminal to have certain decision-making capabilities.
  • the terminal can receive the configuration information of the measurement reference signal sent by the base station, receive the measurement reference signal from the relay, obtain the beam measurement result by measuring the configured beam, and report it. to the base station, thereby receiving beam indication information from the base station, thereby generating a transmit beam or a receive beam. Therefore, the beam adjustment and shaping of complex communication scenarios is realized, the applicable scenarios of the communication method are expanded, and the flexibility and availability of the communication system are enhanced. Configurable, providing effective support for transmission requirements in multiple business types and complex communication scenarios.
  • Figure 7 is a schematic diagram of signaling interaction of a communication method based on beam configuration according to an embodiment of the present disclosure, which is applied to a communication system that includes a first network device, a second network device and a terminal device.
  • the first network device can be understood as a base station, specifically, in the 5G communication scenario, it is gNB (next Generation Node B).
  • the second network device can be understood as a relay, such as a smart repeater (Smart repeater), specifically a network-controlled repeater (NCR).
  • Terminal devices include, but are not limited to, user equipment (UE), smart terminal devices, cellular phones, wireless devices, handsets, mobile units, vehicles, vehicle-mounted devices, etc.
  • the communication process may include the following steps.
  • the second network device reports the capability information of the second network device to the first network device.
  • the first network device configures a configuration beam between the second network device and the terminal according to the capability information of the second network device.
  • the first network device sends configuration information for configuring the beam to the second network device, where the configuration information includes index information.
  • the first network device sends configuration information for configuring the beam to the second network device, where the configuration information includes measurement reference signal configuration information.
  • the second network device generates a transmission beam of the measurement reference signal according to the measurement reference signal configuration information to transmit the measurement reference signal.
  • the first network device sends configuration information for configuring the beam to the terminal device, where the configuration information includes measurement reference signal configuration information.
  • S707 The terminal device performs beam measurement on the measurement reference signal according to the measurement reference signal configuration information.
  • S708 The terminal reports the beam measurement result to the first network device.
  • the first network device generates beam indication information according to the beam measurement result.
  • the first network device sends beam indication information to the second network device.
  • the second network device generates a receiving beam or a transmitting beam for the data channel and its demodulation reference signal according to the beam indication information.
  • the first network device sends beam indication information to the terminal device.
  • the terminal device generates a receiving beam or transmitting beam for the data channel and its demodulation reference signal according to the beam indication information.
  • this disclosure does not limit the execution order of the above-mentioned steps S701-S713.
  • the above-mentioned steps S703, S704, and S706 can be executed at the same time, or in the current order, or in the reverse or interspersed order of the current order.
  • the above steps SS710 and S712 are the same, and their execution order does not affect the implementation of the present disclosure.
  • network equipment and terminal equipment may include hardware structures and software modules to implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • the present disclosure also provides a communication device based on beam configuration, because the communication device based on beam configuration provided by the embodiments of the present disclosure is consistent with the communication method provided by the above embodiments.
  • the implementation of the communication method based on beam configuration is also applicable to the communication device based on beam configuration provided in this embodiment, and will not be described in detail in this embodiment.
  • FIG. 8 is a schematic structural diagram of a beam configuration-based communication device 800 provided by an embodiment of the present disclosure.
  • the beam configuration-based communication device 800 can be used for a first network device.
  • the apparatus 800 may include: a configuration unit 810, configured to configure a configuration beam between the second network device and the terminal according to the capability information of the second network device, and send the configuration information of the configuration beam; a generating unit 820, for generating beam indication information based on the beam measurement results reported by the terminal; and a sending unit 830, for sending beam indication information, where the beam indication information is used to assist the second network device and/or the terminal in generating a sending beam or receiving beam.
  • a configuration unit 810 configured to configure a configuration beam between the second network device and the terminal according to the capability information of the second network device, and send the configuration information of the configuration beam
  • a generating unit 820 for generating beam indication information based on the beam measurement results reported by the terminal
  • a sending unit 830 for sending beam indication information, where the beam indication information is used to assist the second network device and/or the terminal in generating a sending beam or receiving beam.
  • the apparatus 800 further includes a receiving unit 840, configured to receive capability information of the second network device, where the capability information includes the beamforming capability of the second network device, each unit beam index and at least one item of beam information, where the beam information includes direction information and/or width information of the unit beam.
  • the capability information includes the beamforming capability of the second network device, each unit beam index and at least one item of beam information, where the beam information includes direction information and/or width information of the unit beam.
  • configuring a beam includes: one unit beam; and/or two or more unit beams are combined to form a combined beam.
  • the configuration information includes index information and/or composition information
  • the sending unit 830 is configured to send the index information and/or composition information of the configuration beam to the second network device.
  • the configuration information also includes measurement reference signal configuration information
  • the configuration unit 810 is also used to configure the measurement reference signal for the configuration beam
  • the sending unit 830 is used to send the measurement reference signal to the terminal device and/or the second network device.
  • Configuration information wherein the measurement reference signal configuration information is used to assist the second network device in generating a transmission beam of the measurement reference signal to transmit the measurement reference signal, and/or to assist the terminal in performing beam measurement on the measurement reference signal
  • the measurement reference signal configuration information includes the antenna At least one of port information, time-frequency resource information, and generation parameters of the measurement reference signal sequence.
  • the generating unit 820 is configured to: determine the beam indication information based on the measurement result of the measurement reference signal reported by the terminal, wherein the beam indication information indicates one beam, or indicates two or more beams and each The weighting coefficient of the beam.
  • the base station configures the configuration beam between the relay and the terminal, and sends the configuration information of the configuration beam to the relay and/or the terminal, so that the terminal can perform beam configuration. Measure and report the measurement results.
  • the base station can generate and send beam indication information based on the beam measurement results reported by the terminal, thereby assisting the second network device and/or the terminal to generate transmit beams or receive beams. Therefore, beam adjustment and shaping are achieved. It expands the applicable scenarios of the communication method, enhances the flexibility and configurability of the communication system, and provides effective support for transmission requirements in multiple business types and complex communication scenarios.
  • FIG. 10 is a schematic structural diagram of a communication device 1000 based on beam configuration provided by an embodiment of the present disclosure.
  • the communication device 1000 based on beam configuration may be used in a second network device.
  • the apparatus 1000 may include: a first receiving unit 1010, configured to receive beam configuration information sent by a first network device, where the beam configuration information includes a measurement reference of a configured beam configured by the first network device. Signal configuration information; the first generating unit 1020 is used to generate a transmission beam of the measurement reference signal based on the measurement reference signal configuration information to send the measurement reference signal; the second receiving unit 1030 is used to receive the first network Beam indication information generated by the device according to the measurement result of the measurement reference signal; and a second generation unit 1040, configured to generate a transmit beam or a receive beam of the data channel and its demodulation reference signal according to the beam indication information.
  • the apparatus 1000 further includes a sending unit 1050, configured to send capability information to the first network device, where the capability information is used to assist the first network device in configuring the relationship between the second network device and the terminal.
  • the capability information includes at least one of the beam forming capability of the second network device, the index of each unit beam, and the beam information.
  • the beam information includes direction information and/or width information of the unit beam.
  • the sending unit 1050 is specifically configured to send a measurement reference signal to the terminal device, where the measurement reference signal configuration information includes at least one of antenna port information, time-frequency resource information, and generation parameters of the measurement reference signal sequence. .
  • the second generating unit 1040 is configured to: when the beam indication information indicates one beam, use the indicated beam as the transmitting beam or receiving beam of the data channel and its demodulation reference signal; when the beam indication information indicates two beams, When there are one or more beams and the weighting coefficient of each beam, the beam weight vector of the indicated beam is synthesized according to the weighting coefficient to obtain the composite beam, and the composite beam is used as the transmission beam of the data channel and its demodulation reference signal, or receive beam.
  • the beam weight vector is a one-dimensional vector or a two-dimensional vector.
  • the relay can send capability information to the base station, assist the base station in beam configuration, and receive configuration information and instruction information from the base station, thereby generating a transmit beam or a receive beam, Therefore, beam adjustment and shaping of complex communication scenarios is realized, the applicable scenarios of the communication method are expanded, the flexibility and configurability of the communication system are enhanced, and effective support is provided for transmission needs in multiple business types and complex communication scenarios. .
  • FIG. 12 is a schematic structural diagram of a communication device 1200 based on beam configuration provided by an embodiment of the present disclosure.
  • the communication device 1200 based on beam configuration can be used in terminal equipment.
  • the apparatus 1200 may include: a first receiving unit 1210, used to receive the configuration information of the measurement reference signal sent by the first network device; a second receiving unit 1220, used to receive the measurement sent by the second network device. reference signal; the measurement unit 1230 is configured to perform beam measurement on the measurement reference signal based on the configuration information of the measurement reference signal, and report the beam measurement results to the first network device; and the third receiving unit 1240 is used to receive the signal sent by the first network device beam indication information.
  • the measurement reference signal configuration information includes: at least one of antenna port information, time-frequency resource information, and generation parameters of the measurement reference signal sequence.
  • the beam measurement results include at least one of signal to interference plus noise ratio SINR, reference signal received power RSRP, reference signal received quality RSRQ, and received signal strength indicator RSSI.
  • the apparatus 1200 further includes a generating unit 1250, configured to generate a receiving beam or transmitting beam of the data channel and its demodulation reference signal according to the beam indication information, wherein when the beam indication information indicates a When the beam indication information indicates two or more beams and the weighting coefficient of each beam, the indicated beam is used as the transmitting beam or receiving beam of the data channel and its demodulation reference signal; when the beam indication information indicates two or more beams and the weighting coefficient of each beam, the indicated beam is The beam weight vectors of the beams are synthesized to obtain a synthetic beam, and the synthetic beam is used as the transmitting beam or receiving beam of the data channel and its demodulation reference signal.
  • a generating unit 1250 configured to generate a receiving beam or transmitting beam of the data channel and its demodulation reference signal according to the beam indication information, wherein when the beam indication information indicates a When the beam indication information indicates two or more beams and the weighting coefficient of each beam, the indicated beam is used as the transmitting beam or receiving beam of the data channel and
  • the terminal can receive the configuration information of the measurement reference signal sent by the base station, receive the measurement reference signal from the relay, obtain the beam measurement result by measuring the configured beam, and report it. to the base station, thereby receiving beam indication information from the base station, thereby generating a transmit beam or a receive beam. Therefore, the beam adjustment and shaping of complex communication scenarios is realized, the applicable scenarios of the communication method are expanded, and the flexibility and availability of the communication system are enhanced. Configurable, providing effective support for transmission requirements in multiple business types and complex communication scenarios.
  • Embodiments of the present application also provide a communication system, which includes the communication device based on beam configuration as shown in the embodiments of Figures 8-13, and is used to perform the communication method based on beam configuration as shown in the embodiments of Figures 1-7. .
  • FIG 14 is a schematic structural diagram of a communication device 1400 provided by an embodiment of the present application.
  • the communication device 1400 may be a network device, a user equipment, a chip, a chip system, or a processor that supports network equipment to implement the above method, or a chip, a chip system, or a processor that supports user equipment to implement the above method. Processor etc.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 1400 may include one or more processors 1401.
  • the processor 1401 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 1400 may also include one or more memories 1402, on which a computer program 1404 may be stored.
  • the processor 1401 executes the computer program 1404, so that the communication device 1400 executes the method described in the above method embodiment.
  • the memory 1402 may also store data.
  • the communication device 1400 and the memory 1402 can be provided separately or integrated together.
  • the communication device 1400 may also include a transceiver 1405 and an antenna 1406.
  • the transceiver 1405 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1405 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1400 may also include one or more interface circuits 1407.
  • the interface circuit 1407 is used to receive code instructions and transmit them to the processor 1401 .
  • the processor 1401 executes code instructions to cause the communication device 1400 to perform the method described in the above method embodiment.
  • the processor 1401 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1401 may store a computer program 1403, and the computer program 1403 runs on the processor 1401, causing the communication device 1400 to perform the method described in the above method embodiment.
  • the computer program 1403 may be solidified in the processor 1401, in which case the processor 1401 may be implemented by hardware.
  • the communication device 1400 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be network equipment or user equipment, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 14 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device can be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 15 refer to the schematic structural diagram of the chip shown in FIG. 15 .
  • the chip shown in Figure 15 includes a processor 1501 and an interface 1502.
  • the number of processors 1501 may be one or more, and the number of interfaces 1502 may be multiple.
  • the chip also includes a memory 1503, which is used to store necessary computer programs and data.
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • a computer program product includes one or more computer programs.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program may be transmitted from a website, computer, server or data center via a wireline (e.g.
  • Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless means to transmit to another website, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or other integrated media that contains one or more available media. Available media may be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks (SSD)) )wait.
  • magnetic media e.g., floppy disks, hard disks, tapes
  • optical media e.g., high-density digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or means for providing machine instructions and/or data to a programmable processor (for example, magnetic disks, optical disks, memories, programmable logic devices (PLD)), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein may be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., A user's computer having a graphical user interface or web browser through which the user can interact with implementations of the systems and technologies described herein), or including such backend components, middleware components, or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communications network). Examples of communication networks include: local area network (LAN), wide area network (WAN), and the Internet.
  • Computer systems may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact over a communications network.
  • the relationship of client and server is created by computer programs running on corresponding computers and having a client-server relationship with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种基于波束配置的通信方法、装置及系统,涉及移动通信技术领域。第一网络设备通过配置第二网络设备与终端之间的配置波束,并发送配置波束的配置信息,并基于终端上报的波束测量结果,可以生成并发送波束指示信息,该波束指示信息用于辅助第二网络设备和/或终端生成发送波束或者接收波束,从而实现波束调整和赋形,有效提高通信系统灵活性和可配置性,为多种业务类型和复杂通信场景下的传输需求提供支撑。

Description

基于波束配置的通信方法、装置及系统 技术领域
本公开涉及移动通信技术领域,特别涉及一种基于波束配置的通信方法、装置及系统。
背景技术
随着移动网络通信技术的不断演进,各应用场景对于支持多种业务类型灵活配置的要求越来越高,其中,中继能够发挥提高网络覆盖范围、降低部署成本的作用。然而,在当前移动网络通信系统中所支持的中继大部分为射频中继,其仅能够实现对信号的接收、转换和转发的功能,并不支持波束赋形功能,无法针对特定区域进行波束调整,也不能实现对特定用户的跟踪,使得系统性能受到限制。
发明内容
本公开提出了一种基于波束配置的通信方法、装置及系统,提供了一种适用于智能中继的波束管理方案,实现波束调整和赋形,有效提高通信系统灵活性和可配置性,为多种业务类型和复杂通信场景下的传输需求提供支撑。
本公开的第一方面实施例提供了一种基于波束配置的通信方法,该方法应用于第一网络设备,该方法包括:根据第二网络设备的能力信息,配置第二网络设备与终端之间的配置波束,并发送配置波束的配置信息;以及基于终端上报的波束测量结果,生成并发送波束指示信息,其中,波束指示信息用于辅助第二网络设备和/或终端生成发送波束或者接收波束。
在本公开的一些实施例中,该方法还包括:接收第二网络设备的能力信息,其中,能力信息包括第二网络设备的波束赋形能力、每个单元波束的索引以及波束信息中的至少一项,波束信息包括单元波束的方向信息和/或宽度信息。
在本公开的一些实施例中,配置波束为一个或多个配置波束,每个配置波束包括:一个单元波束;和/或,由两个及两个以上单元波束合并形成的合并波束。
在本公开的一些实施例中,配置信息包括索引信息和/或构成信息,发送配置波束的配置信息包括:向第二网络设备发送配置波束的索引信息和/或构成信息。
在本公开的一些实施例中,配置信息还包括测量参考信号配置信息,并且方法还包括:对配置波束配置测量参考信号,并向终端设备和第二网络设备发送测量参考信号配置信息,其中,测量参考信号配置信息用于辅助第二网络设备生成测量参考信号的发送波束以发送所述测量参考信号,以及辅助终端对测量参考信号进行波束测量,测量参考信号配置信息包括天线端口信息、时频资源信息、以及测量参考信号序列的产生参数中的至少一项。
在本公开的一些实施例中,基于终端上报的波束测量结果,生成波束指示信息包括:基于终端上报的对测量参考信号的测量结果,确定波束指示信息,其中波束指示信息指示一个波束,或者指示两个及两个以上波束及各个波束的加权系数。
本公开的第二方面实施例提供了一种基于波束配置的通信方法,该方法应用于第二网络设备,该方法包括:接收第一网络设备发送的波束配置信息,波束配置信息包括第一网络设备配置的配置波束的测 量参考信号配置信息;基于测量参考信号配置信息,生成测量参考信号的发送波束以发送测量参考信号;接收第一网络设备根据测量参考信号的测量结果生成的波束指示信息;以及根据波束指示信息生成数据信道及其解调参考信号的发送波束或者接收波束。
在本公开的一些实施例中,在接收第一网络设备发送的波束配置信息以及波束指示信息之前,该方法还包括:向第一网络设备发送能力信息,其中,能力信息用于辅助第一网络设备配置第二网络设备与终端之间所使用的配置波束,能力信息包括第二网络设备的波束赋形能力、每个单元波束的索引以及波束信息中的至少一项,波束信息包括单元波束的方向信息和/或宽度信息。
在本公开的一些实施例中,基于测量参考信号配置信息,生成测量参考信号的发送波束以发送测量参考信号包括:向终端设备发送测量参考信号,其中,测量参考信号配置信息包括天线端口信息、时频资源信息、以及测量参考信号序列的产生参数中的至少一项。
在本公开的一些实施例中,根据波束指示信息生成数据信道及其解调参考信号的发送波束或者接收波束包括:当波束指示信息指示一个波束时,将所指示的波束作为数据信道及其解调参考信号的发送波束或者接收波束;当波束指示信息指示两个及两个以上波束及各个波束的加权系数时,根据加权系数对所指示的波束的波束权向量进行合成以得到合成波束,并将合成波束作为数据信道及其解调参考信号的发送波束或者接收波束。
在本公开的一些实施例中,波束权向量是一维向量或二维向量。
在本公开的一些实施例中,波束配置信息包括配置波束的索引信息和/或构成信息。
本公开的第三方面实施例提供了一种基于波束配置的通信方法,该方法应用于终端设备,该方法包括:接收第一网络设备发送的测量参考信号的配置信息;接收第二网络设备发送的测量参考信号;基于测量参考信号的配置信息对所述测量参考信号进行波束测量,并向第一网络设备上报波束测量结果;以及接收第一网络设备发送的波束指示信息。
在本公开的一些实施例中,测量参考信号的配置信息包括:天线端口信息、时频资源信息、以及测量参考信号序列的产生参数中的至少一项。
在本公开的一些实施例中,波束测量结果包括信号与干扰加噪声比SINR、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收信号强度指示RSSI中的至少一项。
在本公开的一些实施例中,该方法还包括:根据波束指示信息生成数据信道及其解调参考信号的接收波束或者发送波束,其中,当波束指示信息指示一个波束时,将所指示的波束作为数据信道及其解调参考信号的发送波束或者接收波束;当波束指示信息指示两个及两个以上波束及各个波束的加权系数时,根据加权系数对所指示的波束的波束权向量进行合成以得到合成波束,并将合成波束作为数据信道及其解调参考信号的发送波束或者接收波束。
本公开的第四方面实施例提供了一种基于波束配置的通信装置,该装置应用于第一网络设备,该装置包括:配置单元,用于根据第二网络设备的能力信息,配置第二网络设备与终端之间的配置波束,并发送配置波束的配置信息;生成单元,用于基于终端上报的波束测量结果,生成波束指示信息;以及发送单元,用于发送波束指示信息,其中,波束指示信息用于辅助第二网络设备和/或终端生成发送波束或者接收波束。
本公开的第五方面实施例提供了一种基于波束配置的通信装置,该装置应用于第二网络设备,该装置包括:第一接收单元,用于接收第一网络设备发送的波束配置信息,波束配置信息包括第一网络设备 配置的配置波束的测量参考信号配置信息;第一生成单元,用于基于测量参考信号配置信息,生成测量参考信号的发送波束以发送测量参考信号,第二接收单元,用于接收第一网络设备根据测量参考信号的测量结果生成的波束指示信息;以及第二生成单元,用于根据波束指示信息生成数据信道及其解调参考信号的发送波束或者接收波束。
本公开的第六方面实施例提供了一种基于波束配置的通信装置,该装置应用于终端设备,该装置包括:第一接收单元,用于接收第一网络设备发送的测量参考信号的配置信息;第二接收单元,用于接收第二网络设备发送的测量参考信号;测量单元,用于基于测量参考信号的配置信息对测量参考信号进行波束测量,并向第一网络设备上报波束测量结果;以及第三接收单元,用于接收第一网络设备发送的波束指示信息。
本公开的第七方面实施例提供了一种通信系统,该系统包括第一网络设备、第二网络设备以及终端设备,其中,第一网络设备根据第二网络设备的能力信息,配置第二网络设备与终端之间的配置波束,并向第二网络设备和/或终端设备发送配置波束的配置信息,配置信息包括配置波束的测量参考信号配置信息;第二网络设备基于测量参考信号配置信息生成测量参考信号的发送波束以发送测量参考信号,终端设备基于测量参考信号配置信息对测量参考信号进行测量,并向第一网络设备上报波束测量结果;第一网络设备基于波束测量结果生成波束指示信息,并将波束指示信息发送至第二网络设备和/或终端设备;第二网络设备和/或终端设备根据波束指示信息生成数据信道及其解调参考信号的接收波束或者发送波束。
本公开的第八方面实施例提供了一种通信设备,该通信设备包括:收发器;存储器;处理器,分别与收发器及存储器连接,配置为通过执行存储器上的计算机可执行指令,控制收发器的无线信号收发,并能够实现如本公开第一方面实施例或第二方面实施例或第三方面实施例的方法。
本公开的第九方面实施例提供了一种计算机存储介质,其中,计算机存储介质存储有计算机可执行指令;计算机可执行指令被处理器执行后,能够实现如本公开第一方面实施例或第二方面实施例或第三方面实施例的方法。
根据本公开的基于波束配置的通信方法,第一网络设备通过配置第二网络设备与终端之间的配置波束,并发送配置波束的配置信息,并基于终端上报的波束测量结果,可以生成并发送波束指示信息,该波束指示信息用于辅助第二网络设备和/或终端生成发送波束或者接收波束,从而实现波束调整和赋形,有效提高通信系统灵活性和可配置性,为多种业务类型和复杂通信场景下的传输需求提供支撑。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本公开实施例的一种基于波束配置的通信方法的流程示意图;
图2为根据本公开实施例的一种基于波束配置的通信方法的流程示意图;
图3为根据本公开实施例的一种基于波束配置的通信方法的流程示意图;
图4为根据本公开实施例的一种基于波束配置的通信方法的流程示意图;
图5为根据本公开实施例的一种基于波束配置的通信方法的流程示意图;
图6为根据本公开实施例的一种基于波束配置的通信方法的流程示意图;
图7为根据本公开实施例的一种基于波束配置的通信方法的信令交互示意图;
图8为根据本公开实施例的一种基于波束配置的通信装置的示意框图;
图9为根据本公开实施例的一种基于波束配置的通信装置的示意框图;
图10为根据本公开实施例的一种基于波束配置的通信装置的示意框图;
图11为根据本公开实施例的一种基于波束配置的通信装置的示意框图;
图12为根据本公开实施例的一种基于波束配置的通信装置的示意框图;
图13为根据本公开实施例的一种基于波束配置的通信装置的示意框图;
图14为根据本公开实施例的一种通信装置的结构示意图;
图15为本公开实施例提供的一种芯片的结构示意图。
具体实施方式
下面详细描述本公开的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
随着无线通信技术的发展,新型互联网应用诸如车车通信(vehicle-to-vehicle communication,V2V)的涌现对于无线通信技术提出了更高的要求,驱使无线通信技术的不断演进以满足应用的需求。当下,蜂窝移动通信技术正在处于新一代技术的演进阶段。其中,新一代技术的一个重要特点就是要支持多种业务类型的灵活配置。
在具体的应用场景下,由于不同的业务类型对于无线通信技术有不同的要求,如增强移动宽带(enhanced Mobile Broad Band,eMBB)业务的需求侧重在大带宽、高速率等方面;超可靠低时延通信(Ultra Reliable Low Latency Communication,URLLC)业务的需求侧重在较高的可靠性以及低的时延方面;大规模机器式通信(massive Machine Type Communication,mMTC)业务的需求侧重在海量的连接数方面。可见,新一代的无线通信系统需要灵活、可配置的设计来支持多种业务类型的传输需求。
在相关技术中,中继是提高网络覆盖范围的简单、低成本的手段。目前,射频中继在第二代至第四代移动通信技术中进行了大量部署,用来补充覆盖,第五代移动通信技术(Fifth Generation,5G)在Rel-17标准协议中对射频中继进行了研究。第三代合作伙伴计划(Third Generation Partnership Project,3GPP)R18标准协议中启动对网络控制中继(Network-controlled Repeater,NCR)的研究,为中继引入一定的辅助信息和控制信令,比如,支持波束测量和波束控制,从而进一步提高中继的性能。
然而,目前5G NR所支持的中继为射频中继,其仅能够实现对信号的接收、射频转换和放大转发功能,不受基站控制,也并不支持波束赋形等操作,无法针对特定区域进行波束调整,也无法实现在用户移动过程中针对特定用户进行跟踪,使得系统性能在特定场景或复杂应用环境下受到限制。
为此,本公开提出了一种基于波束配置的通信方法、装置及系统,提供了一种适用于智能中继的波束管理方案,实现波束调整和赋形,有效提高通信系统灵活性和可配置性,为多种业务类型和复杂通信场景下的传输需求提供支撑。
可以理解的是,本公开提供的方案可以用于第五代移动通信技术(Fifth Generation,5G)及其后续通信技术,诸如第五代移动通信技术演进(5G-advanced)、第六代移动通信技术(SixthGeneration,6G)等,在本公开中不予限制。
下面结合附图对本申请所提供的基于波束配置的通信方法及装置进行详细地介绍。
图1示出了根据本公开实施例的一种基于波束配置的通信方法的流程示意图。如图1所示,该方法应用于第一网络设备。在本公开的实施例中,第一网络设备可以理解为基站,具体地,在5G通信场景中为gNB(next Generation Node B)。
该方法可以包括以下步骤。
S101,根据第二网络设备的能力信息,配置第二网络设备与终端之间的配置波束,并发送配置波束的配置信息。
在本公开的实施例中,第二网络设备可以理解为中继,例如智能中继(Smart repeater)。具体地,第二网络设备可以是网络控制中继(Network-controlled Repeater,NCR)。
可以理解的是,在本公开中,基站、中继以及终端之间的通信可分为配置阶段和指示阶段。其中,配置阶段发生于基站与中继之间,指示阶段发生于基站与中继或基站与终端之间。
在配置阶段,基站可以根据中继的能力信息,配置中继与终端之间所使用的波束,换言之,本方案中基站对于中继和终端之间使用的波束具有控制和决策能力。中继的能力信息包括中继的波束赋形能力、每个单元波束的索引以及波束信息中的至少一项,其中波束信息包括单元波束的方向信息和/或宽度信息,例如,相对于天线的阵列法线方向,每个波束的方向及角度范围。
S102,基于终端上报的波束测量结果,生成并发送波束指示信息。
其中,波束指示信息用于辅助中继和/或终端生成发送波束或者接收波束。
在本公开的实施例中,终端能够根据基站配置的配置波束的相关信息进行波束测量,从而获得测量结果并上报至基站,基站根据该测量结果,生成能够辅助中继和/或终端生成发送波束或接收波束的波束指示信息。
在本公开实施例中,波束测量结果为终端根据基站发送的配置波束的配置信息进行波束测量而获得的结果。例如,终端可以基于基站发送的配置波束的配置信息,对中继和终端之间使用的配置波束进行测量,该结果可以表征配置波束的波束质量,其可以使用任意能够衡量波束质量的参数,在本公开中不予限制。
换言之,在指示阶段,基站能够对所配置的波束向中继和/或终端进行指示,以在中继和终端之间使用所配置的波束。可以理解的是,基站对中继的指示与基站对终端的指示可以相互独立且隔离。
综上,根据本公开实施例提供的基于波束配置的通信方法,第一网络设备通过配置第二网络设备与终端之间的配置波束,并发送配置波束的配置信息,并基于终端上报的波束测量结果,可以生成并发送波束指示信息,该波束指示信息用于辅助第二网络设备和/或终端生成发送波束或者接收波束,从而实现波束调整和赋形,有效提高通信系统灵活性和可配置性,为多种业务类型和复杂通信场景下的传输需求提供支撑。
图2示出了根据本公开实施例的一种基于波束配置的通信方法的流程示意图。该方法应用于第一网络设备,基于图1所示实施例,如图2所示,该方法可以包括以下步骤。
S201,接收第二网络设备的能力信息。
在本公开的实施例中,能力信息包括第二网络设备的波束赋形能力。
其中,第二网络设备(中继)的波束赋形能力是指该中继设备是否支持以及支持何种波束赋形。可以理解的是,波束赋形能力是中继层级的概念,例如,该波束赋形能力可以包括不支持波束赋形、支持静态波束赋形、或者支持动态波束赋形。其中,动态波束赋形和静态波束赋形的区别在于调整周期不同,但对于波束配置的信令相同,其取决于基站的决策。
在本公开一些可选的实施例中,上述能力信息还包括每个单元波束的索引以及波束信息中的至少一项,波束信息包括单元波束的方向信息和/或宽度信息。
应当说明的是,在本公开的通信系统中,基站(gNB)与网络控制中继(NCR)之间的通信链路称为第一跳链路,中继与终端之间的通信链路称为第二跳链路。中继还可以向基站上报所支持的第二跳链路的波束信息,及其索引。换言之,上述上报的能力信息中的每个波束称为单元波束,中继可以向基站上报每个单元波束的信息及其索引。
在本公开的实施例中,中继可以对所支持的单元波束进行全量上报,基站接收到上报的能力信息后,可以进行选择和决策。例如,中继上报64条波束的信息,基站能够判断是否直接使用或对其中的某些波束进行配置,从而针对特定区域或特定用户进行调整。
在本公开中,单元波束的方向信息和/或宽度信息可以理解为每个波束相对于天线的阵列法线方向的方向及角度范围。
S202,根据第二网络设备的能力信息,配置第二网络设备与终端之间的配置波束。
在本公开的实施例中,基站可以在配置阶段根据中继的能力信息配置中继与终端之间所使用的波束,即配置波束。中继与终端之间所使用的配置波束的生成方式包括:一个配置波束对应于一个单元波束;和/或一个配置波束由两个及两个以上单元波束合并形成。
在本公开的实施例中,配置波束指的是一个或多个配置波束,其中,每个配置波束均包括一个单元波束和/或由两个及两个以上单元波束合并形成的合并波束。换言之,本公开所描述的配置包括选择和组合,基站可以根据中继的能力信息配置一个或多个配置波束,其中每一个配置波束可以是上报能力中的某一个单元波束,也可以是多个单元波束的合成波束。
举例而言,中继上报了64个单元波束的信息,其能够达到360度的覆盖,基站可以根据中继的能力、网络覆盖情况、终端移动情况以及特定区域的具体场景等因素,选择或组合适用于当前场景的波束。应当说明的是,本公开重点关注通信过程中的信令交互,即,基站的输入和输出,对于基站的决策过程及其决策因素在此不予限制,基站可以根据任何通信场景中关注的因素进行决策。
在本公开的一些可选实施例中,基站可以对配置波束进行配置,从而获得配置波束的配置信息。其中,配置信息可以包括配置波束的索引信息和/或构成信息和/或测量参考信号的测量参考信号配置信息。
具体地,在一些可选实施例中,对配置波束进行配置的步骤具体包括:配置该配置波束的索引信息。例如,基站可以直接使用中继上报的单元波束的索引,或者为配置波束重新建立波束索引。
上述构成信息指的是,该配置波束是由哪个或哪些单元波束构成,其中包括各个单元波束的索引信息。
在一些可选实施例中,对配置波束进行配置的步骤具体还包括:对该配置波束配置测量参考信号(即关联参考信号)。
可以理解的是,配置信息还包括测量参考信号配置信息,其中,测量参考信号配置信息用于辅助第二网络设备生成测量参考信号的发送波束以发送测量参考信号,和/或辅助终端对配置波束进行波束测量,具体地,对配置波束对应的测量参考信号进行测量,测量参考信号配置信息包括天线端口信息、时频资源信息、以及测量参考信号序列的产生参数中的至少一项。
S203,发送配置波束的配置信息。
在一些可选实施例中,基站可以向中继发送配置波束的配置信息。
在一些可选实施例中,基站可以向中继发送测量参考信号配置信息,以辅助中继生成测量参考信号的发送波束,以发送测量参考信号。
可以理解的是,中继可以基于从基站接收的测量参考信号配置信息,生成测量参考信号的发送波束,从而向终端设备发送测量参考信号,以供终端设备对各个配置波束的测量参考信号进行测量。
在一些可选实施例中,基站可以向终端发送测量参考信号配置信息,以辅助终端基于该测参考信号配置信息对测量参考信号进行波束测量。其中,基站可以直接向终端发送配置信息,也可以通过中继向终端发送配置信息,其具体方式取决于终端的位置,在本公开中不予限制。
应当理解,在上述描述中阐明了,基站可以配置中继如何发送测量参考信号,中继可以基于基站的配置发送测量参考信号,终端可以基于基站的配置测量中继发出的波束(即测量参考信号),换言之,基站可以向中继和终端下达命令(即配置信息),基于此,中继去发送波束,终端去测量波束。例如,测量参考信号配置信息包括天线端口信息、时频资源信息、以及测量参考信号序列的产生参数中的至少一项,中继可以基于该配置信息执行在哪个端口上发送波束、占用了多少时频资源、如何发送波束,即,中继可以在指定的时频资源上,使用指定的天线端口和参考信号序列发送测量参考信号。对应地,终端可以基于该配置执行在哪个端口上接收波束、在哪些子载波上测量、如何进行波束测量。换言之,该配置信息对于中继和终端而言,内容是相同的,目的是不同的。
S204,接收终端上报的波束测量结果。
在本公开的实施例中,终端能够根据基站发送的测量参考信号配置信息对从中继接收到的测量参考信号进行测量,从而获得测量结果并上报至基站。
波束测量结果可以表征配置波束的波束质量,包括但不限于信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)、参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)、接收信号强度指示(Received Signal Strength Indication,RSSI),或其他任意能够衡量波束质量的参数,在本公开中不予限制。
S205,基于终端上报的波束测量结果,生成并发送波束指示信息。
在本公开的实施例中,基于终端上报的测量结果,基站可以生成波束指示信息,其中,波束指示信息可以指示一个波束,也可以指示两个及两个以上波束及各个波束的加权系数。
例如,基站可以向中继发送波束指示信息,该波束指示信息包括一个或多个配置波束的索引信息,其可以通过配置波束的索引进行指示,或者通过配置波束所关联的测量参考信号进行指示。当波束指示信息指示两个及两个以上波束时,波束指示信息中还包括每个波束所对应的加权系数。
再例如,基站可以向终端发送波束指示信息,该波束指示信息包括一个或多个配置波束的索引信息,其可以通过配置波束的索引进行指示,或者通过配置波束所关联的测量参考信号进行指示。当波束指示信息指示两个及两个以上波束时,波束指示信息中还包括每个波束所对应的加权系数。
应当理解的是,在指示阶段,基站对中继的指示与基站对终端的指示可以是相互独立且隔离。本公开中,基站具有配置和决策能力,中继和终端可以根据基站的配置进行波束的收发,不再进行选择和判断,但本公开并不约束中继和终端具有一定的决策能力。
综上,根据本公开实施例提供的基于波束配置的通信方法,基站通过配置中继与终端之间的配置波束,并向中继和/或终端发送配置波束的配置信息,使得终端能够进行波束测量并上报测量结果,基站能够基于终端上报的波束测量结果,生成并发送波束指示信息,从而辅助第二网络设备和/或终端生成发送波束或者接收波束,因此,实现了波束调整和赋形,扩大了通信方法的适用场景,增强了通信系统的灵活性和可配置性,为多种业务类型和复杂通信场景下的传输需求提供有效支撑。
图3为根据本公开实施例的一种基于波束配置的通信方法的流程示意图。该方法应用于第二网络设备。在本公开的实施例中,第二网络设备可以理解为中继,例如智能中继(Smart repeater)。具体地,第二网络设备可以是网络控制中继(Network-controlled Repeater,NCR)。
如图3所示,该方法可以包括以下步骤。
S301,接收第一网络设备发送的波束配置信息。
其中,波束配置信息包括第一网络设备配置的配置波束的信息。具体地,该波束配置信息可以包括第一网络设备配置的配置波束的测量参考信号配置信息。
在本公开的实施例中,可以理解的是,基站、中继以及终端之间的通信可分为配置阶段和指示阶段。中继可以从基站接收在配置阶段配置的配置波束的信息,在该配置阶段,中继为被配置的对象。对此可以参见图1和图2所示的实施例,在此不再赘述。
S302,基于测量参考信号配置信息,生成测量参考信号的发送波束以发送测量参考信号。
在本公开的实施例中,中继可以根据基站在配置阶段对配置波束配置的测量参考信号的配置信息,生成测量参考信号的发送波束,以发送测量参考信号,例如,向终端设备发送测量参考信号,以使终端能够对各个配置波束的测量参考信号进行测量。
换言之,基站可以配置中继如何发送测量参考信号,中继可以基于基站的配置发送测量参考信号,终端可以基于基站的配置测量中继发出的波束(即测量参考信号)。即,基站可以向中继和终端下达命令(即配置信息),基于此,中继去发送波束,终端去测量波束。例如,测量参考信号配置信息包括天线端口信息、时频资源信息、以及测量参考信号序列的产生参数中的至少一项,中继可以基于该配置信息执行在哪个端口上发送波束、占用了多少时频资源、如何发送波束,即,中继可以在指定的时频资源上,使用指定的天线端口和参考信号序列发送测量参考信号。对应地,终端可以基于该配置执行在哪个端口上接收波束、在哪些子载波上测量、如何进行波束测量。也就是说,该配置信息对于中继和终端而言,内容是相同的,目的是不同的。
S303,接收第一网络设备根据测量参考信号的测量结果生成的波束指示信息。
在本公开的实施例中,终端根据基站发送的各个配置波束的测量参考信号配置信息,对中继发送的各个配置波束的测量参考信号进行测量,获得测量结果并上报基站,基站能够根据该测量结果生成并发送波束指示信息,中继能够从基站接收该波束指示信息。
S304,根据波束指示信息生成数据信道及其解调参考信号的发送波束或者接收波束。
在本公开的实施例中,响应于从基站接收波束指示信息,中继可以根据该波束指示信息生成接收波束或者发送波束。具体地,中继可以根据波束指示信息生成数据信道及其解调参考信号的发送波束或者接收波束。
本公开中,基站具有配置和决策能力,中继和终端可以根据基站的配置进行波束的收发,不再进行选择和判断,但本公开并不约束中继和终端具有一定的决策能力。
综上,根据本公开实施例提供的基于波束配置的通信方法,中继可以接收第一网络设备发送的波束测量参考信号配置信息,基于该测量参考信号配置信息生成测量参考信号的发送波束并发送该测量参考信号,接收第一网络设备根据测量参考信号的测量结果生成波束指示信息,并根据波束指示信息生成数据信道及其解调参考信号的发送波束或者接收波束,从而实现通信过程的波束调整和赋形,有效提高通信系统灵活性和可配置性,为多种业务类型和复杂通信场景下的传输需求提供支撑。
图4为根据本公开实施例的一种基于波束配置的通信方法的流程示意图。如图3所示,该方法应用于第二网络设备。基于图3所示的实施例,该方法可以包括以下步骤。
S401,向第一网络设备发送能力信息。
其中,能力信息包括第二网络设备的波束赋形能力、每个单元波束的索引以及波束信息中的至少一项,波束信息包括单元波束的方向信息和/或宽度信息。
可以理解的是,中继的波束赋形能力是指该中继设备是否支持以及支持何种波束赋形。可以理解的是,波束赋形能力是中继层级的概念,例如,该波束赋形能力可以包括不支持波束赋形、支持静态波束赋形、或者支持动态波束赋形。
本公开中,能力信息用于辅助第一网络设备配置第二网络设备与终端之间所使用的配置波束,换言之,在配置阶段,中继可以向基站发送能力信息辅助基站进行配置,在该阶段中,中继为被配置的对象。
应当说明的是,在本公开的通信系统中,基站(gNB)与网络控制中继(NCR)之间的通信链路称为第一跳链路,中继与终端之间的通信链路称为第二跳链路。中继可以向基站上报所支持的第二跳链路的波束信息,及其索引。换言之,上述上报的能力信息中的每个波束称为单元波束,中继可以向基站上报每个单元波束的信息及其索引。
在本公开的实施例中,中继可以对所支持的单元波束进行全量上报,基站接收到上报的能力信息后,可以进行选择和决策。例如,中继上报64条波束的信息,以辅助基站进行配置。
在本公开中,单元波束的方向信息和/或宽度信息可以理解为每个波束相对于天线的阵列法线方向的方向及角度范围。对此可以参见图1至图3所示的实施例,在此不再赘述。
S402,接收第一网络设备发送的波束配置信息。
可以理解的是,波束配置信息为第一网络设备配置的配置波束的信息。
在本公开的一些可选实施例中,配置信息可以包括索引信息和/或构成信息和/或测量参考信号配置信息。
具体地,中继可以接收基站对配置波束配置的索引信息,该索引信息可以是中继上报的单元波束的索引,或者基站为配置波束重新建立的索引。中继还可以从基站接收配置波束的构成信息,即,该配置波束是由那个或哪些单元波束构成,其中包括各个单元波束的索引信息。
可以理解的是,中继还可以从基站接收测量参考信号配置信息,其中,测量参考信号配置信息是基站对配置波束配置的测量参考信号的配置信息,用于辅助第二网络设备发送测量参考信号,该测量参考信号配置信息包括天线端口信息、时频资源信息、以及测量参考信号序列的产生参数中的至少一项。
S403,根据波束配置信息,生成测量参考信号的发送波束,以发送测量参考信号。
基于步骤S402接收到的测量参考信号配置信息,中继可以生成测量参考信号的发送波束,以发送测量参考信号。具体地,按照上述配置信息,中继可以在指定的时频资源上,使用指定的天线端口和参考信号序列发送测量参考信号。
S404,接收第一网络设备发送的波束指示信息。
在指示阶段,中继可以接收基站生成的波束指示信息。在本公开的实施例中,终端根据基站发送的各个配置波束的测量参考信号配置信息,对中继发送的各个配置波束的测量参考信号进行测量,获得测量结果并上报基站,基站能够根据该测量结果生成并发送波束指示信息,中继能够从基站接收该波束指示信息。
例如,该波束指示信息包括一个或多个配置波束的索引信息,当波束指示信息指示两个及两个以上波束时,波束指示信息中还包括每个波束所对应的加权系数。
S405,根据波束指示信息生成数据信道及其解调参考信号的发送波束或者接收波束。
在一些可选实施例中,当波束指示信息指示一个波束时,将所指示的波束作为数据信道及其解调参考信号的发送波束或者接收波束。
在一些可选实施例中,当波束指示信息指示两个及两个以上波束及各个波束的加权系数时,根据加权系数对所指示的波束的波束权向量进行合成以得到合成波束,并将合成波束作为数据信道及其解调参考信号的发送波束或者接收波束。其中,波束权向量是一维向量或二维向量。
换言之,如果中继收到一个指示波束,即,波束指示信息中仅指示了一个配置波束,则中继可以使用该波束作为接收波束或者发送波束;如果收到两个及两个以上的指示波束,即,波束指示信息中指示了多个配置波束,则中继可以生成合成波束作为接收波束或者发送波束。其中,合成波束的权向量是利用波束指示信息中指示的加权系数对一个或多个波束的权向量进行加权求和得到的,因此,中继可以利用上述生成的波束,在特定的时频资源接收或发送信号。
综上,根据本公开实施例提供的基于波束配置的通信方法,中继可以向基站发送能力信息,辅助基站进行波束配置,并从基站接收配置信息以及指示信息,从而生成发送波束或者接收波束,因此,实现了复杂通信场景的波束调整和赋形,扩大了通信方法的适用场景,增强了通信系统的灵活性和可配置性,为多种业务类型和复杂通信场景下的传输需求提供有效支撑。
图5示出了根据本公开实施例的一种基于波束配置的通信方法的流程示意图。该方法应用于终端设备。终端设备包括但不限于用户设备(UE)、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车辆、车载设备等。
如图5所示,该方法可以包括以下步骤。
S501,接收第一网络设备发送的测量参考信号的配置信息。
在本公开的实施例中,终端可以接收基站发送的测量参考信号的配置信息,该测量参考信号的配置信息是基站在配置阶段通过对中继和终端之间所使用的配置波束进行配置得到的。
S502,接收第二网络设备发送的测量参考信号。
在本公开的实施例中,终端能够从中继接收测量参考信号。该测量参考信号是基站在配置阶段对中继和终端之间所使用的配置波束所配置的。基站可以向中继发送该测量参考信号的配置信息,中继可以根据该配置信息向终端发送该测量参考信号。
S503,基于测量参考信号的配置信息对测量参考信号进行波束测量,并向第一网络设备上报波束测量结果。
在本公开的实施例中,终端可以根据测量参考信号的配置信息进行波束测量,从而得到基站对各个配置波束配置的测量参考信号的测量结果,即可以理解为配置波束的波束质量,并向基站上报波束测量的结果,即波束质量。
该波束质量可以通过任何相关参数进行表征,包括但不限于信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)、参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)、接收信号强度指示(Received Signal Strength Indication,RSSI),在本公开中不予限制。
S504,接收第一网络设备发送的波束指示信息。
在本公开的实施例中,终端可以从基站接收波束指示信息,该波束指示信息是基站根据终端上报的波束测量结果而生成的。该波束指示信息能够辅助终端生成数据信道及其解调参考信号的发送波束或者接收波束。
综上,根据本公开实施例提供的基于波束配置的通信方法,终端可以接收基站发送的测量参考信号的配置信息,并从中继接收测量参考信号,通过对配置波束进行测量获得波束测量结果并上报给基站,从而从基站接收波束指示信息,实现了通信过程的波束调整和赋形,有效提高通信系统灵活性和可配置性,为多种业务类型和复杂通信场景下的传输需求提供支撑。
图6示出了根据本公开实施例的一种基于波束配置的通信方法的流程示意图。基于图5所示的实施例,如图6所示,该方法可以包括以下步骤。
S601,接收第一网络设备发送的测量参考信号的配置信息。
在本公开的实施例中,测量参考信号配置信息包括:天线端口信息、时频资源信息、以及测量参考信号序列的产生参数中的至少一项。该步骤S601与图5中步骤S501原理相同,可参照S501的相关描述,或参照图1至图4所示实施例的相关描述,在此不再赘述。
S602,接收第二网络设备发送的测量参考信号。
该步骤S602与图5中步骤S502原理相同,可参照S502的相关描述,或参照图1至图4所示实施例的相关描述,在此不再赘述。
S603,基于测量参考信号的配置信息对测量参考信号进行波束测量,并向第一网络设备上报波束测量结果。
应当理解,在上述描述中阐明了,基站可以配置中继如何发送测量参考信号,中继可以基于基站的配置发送测量参考信号,终端可以基于基站的配置测量中继发出的波束(即测量参考信号),换言之,基站可以向中继和终端下达命令(即配置信息),基于此,中继执行发送波束,终端执行测量波束。例如,测量参考信号配置信息包括天线端口信息、时频资源信息、以及测量参考信号序列的产生参数中的 至少一项,中继可以基于该配置信息执行在哪个端口上发送波束、占用了多少时频资源、如何发送波束,即,中继可以在指定的时频资源上,使用指定的天线端口和参考信号序列发送测量参考信号。对应地,终端可以基于该配置执行在哪个端口上接收波束、在哪些子载波上测量、如何进行波束测量。换言之,该配置信息对于中继和终端而言,内容是相同的,目的是不同的。
在本公开的实施例中,终端可以根据测量参考信号的配置信息进行波束测量,从而得到配置波束的波束质量,并向基站上报波束测量的结果,即波束质量。波束指令包括但不限于信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)、参考信号接收功率(Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)、接收信号强度指示(Received Signal Strength Indication,RSSI),或其他任意能够衡量波束质量的参数,在本公开中不予限制。
S604,接收第一网络设备发送的波束指示信息。
该步骤S604与图5中步骤S504原理相同,可参照S504的相关描述,或参照图1至图4所示实施例的相关描述,在此不再赘述。
S605,根据波束指示信息生成数据信道及其解调参考信号的接收波束或者发送波束。
在本公开的可选实施例中,当波束指示信息指示一个波束时,将所指示的波束作为数据信道及其解调参考信号的发送波束或者接收波束。
在本公开的另一种可选实施例中,当波束指示信息指示两个及两个以上波束及各个波束的加权系数时,根据加权系数对所指示的波束的波束权向量进行合成以得到合成波束,并将合成波束作为数据信道及其解调参考信号的发送波束或者接收波束。
本公开中,基站具有配置和决策能力,中继和终端可以根据基站的配置进行波束的收发,不再进行选择和判断,但本公开并不约束中继和终端具有一定的决策能力。
综上,根据本公开实施例提供的基于波束配置的通信方法,终端可以接收基站发送的测量参考信号的配置信息,并从中继接收测量参考信号,通过对配置波束进行测量获得波束测量结果并上报给基站,从而从基站接收波束指示信息,从而生成发送波束或者接收波束,因此,实现了复杂通信场景的波束调整和赋形,扩大了通信方法的适用场景,增强了通信系统的灵活性和可配置性,为多种业务类型和复杂通信场景下的传输需求提供有效支撑。
图7为根据本公开实施例的一种基于波束配置的通信方法的信令交互示意图,其应用于一种通信系统,该通信系统中包括第一网络设备、第二网络设备和终端设备。第一网络设备可以理解为基站,具体地,在5G通信场景中为gNB(next Generation Node B)。第二网络设备可以理解为中继,例如智能中继(Smart repeater),具体可以是网络控制中继(Network-controlled Repeater,NCR)。终端设备包括但不限于用户设备(UE)、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车辆、车载设备等。
如图7所示,该通信过程可以包括以下步骤。
S701,第二网络设备向第一网络设备上报第二网络设备的能力信息。
S702,第一网络设备根据第二网络设备的能力信息,配置第二网络设备与终端之间的配置波束。
S703,第一网络设备向第二网络设备发送配置波束的配置信息,该配置信息包括索引信息。
S704,第一网络设备向第二网络设备发送配置波束的配置信息,该配置信息包括测量参考信号配置信息。
S705,第二网络设备根据测量参考信号配置信息,生成测量参考信号的发送波束以发送测量参考信号。
S706,第一网络设备向终端设备发送配置波束的配置信息,该配置信息包括测量参考信号配置信息。
S707,终端设备根据测量参考信号配置信息,对测量参考信号进行波束测量。
S708,终端将波束测量结果上报至第一网络设备。
S709,第一网络设备根据波束测量结果生成波束指示信息。
S710,第一网络设备向第二网络设备发送波束指示信息。
S711,第二网络设备根据波束指示信息生成数据信道及其解调参考信号的接收波束或者发送波束。
S712,第一网络设备向终端设备发送波束指示信息。
S713,终端设备根据波束指示信息生成数据信道及其解调参考信号的接收波束或者发送波束。
上述步骤S701-S713的原理与本公开图1至图6所示实施例中的步骤原理相同,可参见图1至图6所示实施例的相关描述,在此不再赘述。
可以理解是,本公开并不限制上述步骤S701-S713的执行顺序,例如,上述步骤S703、S704、S706可以同时执行,或可以按照当前顺序执行,也可以按照与当前顺序相反或穿插的顺序进行;上述步骤SS710、S712同理,其执行顺序并不影响本公开的实现。
上述本申请提供的实施例中,分别从第一网络设备、第二网络设备、终端设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
与上述几种实施例提供的基于波束配置的通信方法相对应,本公开还提供一种基于波束配置的通信装置,由于本公开实施例提供的基于波束配置的通信装置与上述几种实施例提供的基于波束配置的通信方法相对应,因此基于波束配置的通信方法的实施方式也适用于本实施例提供的基于波束配置的通信装置,在本实施例中不再详细描述。
图8为本公开实施例提供的一种基于波束配置的通信装置800的结构示意图,该基于波束配置的通信装置800可用于第一网络设备。
如图8所示,该装置800可以包括:配置单元810,用于根据第二网络设备的能力信息,配置第二网络设备与终端之间的配置波束,并发送配置波束的配置信息;生成单元820,用于基于终端上报的波束测量结果,生成波束指示信息;以及发送单元830,用于发送波束指示信息,其中,波束指示信息用于辅助第二网络设备和/或终端生成发送波束或者接收波束。
在一些实施例中,如图9所示,装置800还包括接收单元840,用于接收第二网络设备的能力信息,其中,能力信息包括第二网络设备的波束赋形能力、每个单元波束的索引以及波束信息中的至少一项,波束信息包括单元波束的方向信息和/或宽度信息。
在一些实施例中,配置波束包括:一个单元波束;和/或由两个及两个以上单元波束合并形成合并波束。
在一些实施例中,配置信息包括索引信息和/或构成信息,发送单元830用于向第二网络设备发送配置波束的索引信息和/或构成信息。
在一些实施例中,配置信息还包括测量参考信号配置信息,并且配置单元810还用于对配置波束配置测量参考信号,发送单元830用于向终端设备和/或第二网络设备发送测量参考信号配置信息,其中,测量参考信号配置信息用于辅助第二网络设备生成测量参考信号的发送波束以发送测量参考信号,和/或辅助终端对测量参考信号进行波束测量,测量参考信号配置信息包括天线端口信息、时频资源信息、以及测量参考信号序列的产生参数中的至少一项。
在一些实施例中,生成单元820用于:基于终端上报的对测量参考信号的的测量结果,确定波束指示信息,其中,波束指示信息指示一个波束,或者指示两个及两个以上波束及各个波束的加权系数。
综上,根据本公开实施例提供的基于波束配置的通信装置,基站通过配置中继与终端之间的配置波束,并向中继和/或终端发送配置波束的配置信息,使得终端能够进行波束测量并上报测量结果,基站能够基于终端上报的波束测量结果,生成并发送波束指示信息,从而辅助第二网络设备和/或终端生成发送波束或者接收波束,因此,实现了波束调整和赋形,扩大了通信方法的适用场景,增强了通信系统的灵活性和可配置性,为多种业务类型和复杂通信场景下的传输需求提供有效支撑。
图10为本公开实施例提供的一种基于波束配置的通信装置1000的结构示意图。该基于波束配置的通信装置1000可用于第二网络设备。
如图10所示,该装置1000可以包括:第一接收单元1010,用于接收第一网络设备发送的波束配置信息,所述波束配置信息包括所述第一网络设备配置的配置波束的测量参考信号配置信息;第一生成单元1020,用于基于所述测量参考信号配置信息,生成测量参考信号的发送波束以发送所述测量参考信号;第二接收单元1030,用于接收所述第一网络设备根据所述测量参考信号的测量结果生成的波束指示信息;以及第二生成单元1040,用于根据所述波束指示信息生成数据信道及其解调参考信号的发送波束或者接收波束。
在一些实施例中,如图11所示,装置1000还包括发送单元1050,用于向第一网络设备发送能力信息,其中,能力信息用于辅助第一网络设备配置第二网络设备与终端之间所使用的配置波束,能力信息包括第二网络设备的波束赋形能力、每个单元波束的索引以及波束信息中的至少一项,波束信息包括单元波束的方向信息和/或宽度信息。
在一些实施例中,发送单元1050具体用于向终端设备发送测量参考信号,其中,测量参考信号配置信息包括天线端口信息、时频资源信息、以及测量参考信号序列的产生参数中的至少一项。
在一些实施例中,第二生成单元1040用于:当波束指示信息指示一个波束时,将所指示的波束作为数据信道及其解调参考信号的发送波束或者接收波束;当波束指示信息指示两个及两个以上波束及各个波束的加权系数时,根据加权系数对所指示的波束的波束权向量进行合成以得到合成波束,并将合成波束作为数据信道及其解调参考信号的发送波束或者接收波束。
在一些实施例中,波束权向量是一维向量或二维向量。
综上,根据本公开实施例提供的基于波束配置的通信装置,中继可以向基站发送能力信息,辅助基站进行波束配置,并从基站接收配置信息以及指示信息,从而生成发送波束或者接收波束,因此,实现 了复杂通信场景的波束调整和赋形,扩大了通信方法的适用场景,增强了通信系统的灵活性和可配置性,为多种业务类型和复杂通信场景下的传输需求提供有效支撑。
图12为本公开实施例提供的一种基于波束配置的通信装置1200的结构示意图。该基于波束配置的通信装置1200可用于终端设备。
如图12所示,该装置1200可以包括:第一接收单元1210,用于接收第一网络设备发送的测量参考信号的配置信息;第二接收单元1220,用于接收第二网络设备发送的测量参考信号;测量单元1230,用于基于测量参考信号的配置信息对测量参考信号进行波束测量,并向第一网络设备上报波束测量结果;以及第三接收单元1240,用于接收第一网络设备发送的波束指示信息。
在一些实施例中,测量参考信号配置信息包括:天线端口信息、时频资源信息、以及测量参考信号序列的产生参数中的至少一项。
在一些实施例中,波束测量结果包括信号与干扰加噪声比SINR、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收信号强度指示RSSI中的至少一项。
在一些实施例中,如图13所示,装置1200还包括生成单元1250,用于根据波束指示信息生成数据信道及其解调参考信号的接收波束或者发送波束,其中,当波束指示信息指示一个波束时,将所指示的波束作为数据信道及其解调参考信号的发送波束或者接收波束;当波束指示信息指示两个及两个以上波束及各个波束的加权系数时,根据加权系数对所指示的波束的波束权向量进行合成以得到合成波束,并将合成波束作为数据信道及其解调参考信号的发送波束或者接收波束。
综上,根据本公开实施例提供的基于波束配置的通信装置,终端可以接收基站发送的测量参考信号的配置信息,并从中继接收测量参考信号,通过对配置波束进行测量获得波束测量结果并上报给基站,从而从基站接收波束指示信息,从而生成发送波束或者接收波束,因此,实现了复杂通信场景的波束调整和赋形,扩大了通信方法的适用场景,增强了通信系统的灵活性和可配置性,为多种业务类型和复杂通信场景下的传输需求提供有效支撑。
本申请实施例还提供一种通信系统,该系统包括前述图8-13实施例所示的基于波束配置的通信设备,用于执行如图1-7实施例所示的基于波束配置的通信方法。
请参见图14,图14是本申请实施例提供的一种通信装置1400的结构示意图。通信装置1400可以是网络设备,也可以是用户设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持用户设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1400可以包括一个或多个处理器1401。处理器1401可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1400中还可以包括一个或多个存储器1402,其上可以存有计算机程序1404,处理器1401执行计算机程序1404,以使得通信装置1400执行上述方法实施例中描述的方法。可选的,存储器1402中还可以存储有数据。通信装置1400和存储器1402可以单独设置,也可以集成在一起。
可选的,通信装置1400还可以包括收发器1405、天线1406。收发器1405可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1405可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1400中还可以包括一个或多个接口电路1407。接口电路1407用于接收代码指令并传输至处理器1401。处理器1401运行代码指令以使通信装置1400执行上述方法实施例中描述的方法。
在一种实现方式中,处理器1401中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1401可以存有计算机程序1403,计算机程序1403在处理器1401上运行,可使得通信装置1400执行上述方法实施例中描述的方法。计算机程序1403可能固化在处理器1401中,该种情况下,处理器1401可能由硬件实现。
在一种实现方式中,通信装置1400可以包括电路,该电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者用户设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图14的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如该通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图15所示的芯片的结构示意图。图15所示的芯片包括处理器1501和接口1502。其中,处理器1501的数量可以是一个或多个,接口1502的数量可以是多个。
可选的,芯片还包括存储器1503,存储器1503用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行计算机程序时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系 统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
此外,应该理解,本申请的各种实施例可以单独实施,也可以在方案允许的情况下与其他实施例组合实施。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种基于波束配置的通信方法,其特征在于,所述方法被第一网络设备执行,所述方法包括:
    根据第二网络设备的能力信息,配置所述第二网络设备与终端之间的配置波束,并发送所述配置波束的配置信息;以及
    基于所述终端上报的波束测量结果,生成并发送波束指示信息,
    其中,所述波束指示信息用于辅助所述第二网络设备和/或所述终端生成发送波束或者接收波束。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述第二网络设备的能力信息,
    其中,所述能力信息包括所述第二网络设备的波束赋形能力、每个单元波束的索引以及波束信息中的至少一项,所述波束信息包括所述单元波束的方向信息和/或宽度信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述配置波束为一个或多个配置波束,其中,每个配置波束包括:
    一个单元波束;和/或
    由两个及两个以上单元波束合并形成的合并波束。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述配置信息包括配置波束的索引信息和/或构成信息,所述发送所述配置波束的配置信息包括:
    向所述第二网络设备发送所述配置波束的索引信息和/或构成信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述配置信息还包括测量参考信号配置信息,并且所述方法还包括:
    对所述配置波束配置测量参考信号,并向所述终端设备和/或所述第二网络设备发送所述测量参考信号配置信息,
    其中,所述测量参考信号配置信息用于辅助所述第二网络设备生成所述测量参考信号的发送波束以发送所述测量参考信号,和/或辅助所述终端对所述测量参考信号进行波束测量,所述测量参考信号配置信息包括天线端口信息、时频资源信息、以及测量参考信号序列的产生参数中的至少一项。
  6. 根据权利要求5所述的方法,其特征在于,所述基于所述终端上报的波束测量结果,生成波束指示信息包括:
    基于所述终端上报的对所述测量参考信号的测量结果,确定波束指示信息,其中,所述波束指示信息指示一个波束,或者指示两个及两个以上波束及各个波束的加权系数。
  7. 一种基于波束配置的通信方法,其特征在于,所述方法被第二网络设备执行,所述方法包括:
    接收第一网络设备发送的波束配置信息,所述波束配置信息包括所述第一网络设备配置的配置波束的测量参考信号配置信息;以及
    基于所述测量参考信号配置信息,生成测量参考信号的发送波束以发送所述测量参考信号;
    接收所述第一网络设备根据所述测量参考信号的测量结果生成的波束指示信息;以及
    根据所述波束指示信息生成数据信道及其解调参考信号的发送波束或者接收波束。
  8. 根据权利要求7所述的方法,其特征在于,在接收所述第一网络设备发送的波束配置信息以及波束指示信息之前,所述方法还包括:
    向所述第一网络设备发送能力信息,
    其中,所述能力信息用于辅助所述第一网络设备配置所述第二网络设备与终端之间所使用的所述配置波束,所述能力信息包括所述第二网络设备的波束赋形能力、每个单元波束的索引以及波束信息中的至少一项,所述波束信息包括所述单元波束的方向信息和/或宽度信息。
  9. 根据权利要求7或8所述的方法,其特征在于,所述基于所述测量参考信号配置信息,生成测量参考信号的发送波束以发送所述测量参考信号包括:
    向所述终端设备发送所述测量参考信号,
    其中,所述测量参考信号配置信息包括天线端口信息、时频资源信息、以及测量参考信号序列的产生参数中的至少一项。
  10. 根据权利要求7至9中任一项所述的方法,其特征在于,所述根据所述波束指示信息生成数据信道及其解调参考信号的发送波束或者接收波束包括:
    当所述波束指示信息指示一个波束时,将所指示的波束作为所述数据信道及其解调参考信号的发送波束或者接收波束;
    当所述波束指示信息指示两个及两个以上波束及各个波束的加权系数时,根据所述加权系数对所指示的波束的波束权向量进行合成以得到合成波束,并将所述合成波束作为所述数据信道及其解调参考信号的发送波束或者接收波束。
  11. 根据权利要求10所述的方法,其特征在于,所述波束权向量是一维向量或二维向量。
  12. 根据权利要求7至11中任一项所述的方法,其特征在于,所述波束配置信息包括所述配置波束的索引信息和/或构成信息。
  13. 一种基于波束配置的通信方法,其特征在于,所述方法被终端设备执行,所述方法包括:
    接收第一网络设备发送的测量参考信号的配置信息;
    接收第二网络设备发送的所述测量参考信号;
    基于所述测量参考信号的配置信息对所述测量参考信号进行波束测量,并向第一网络设备上报波束测量结果;以及
    接收第一网络设备发送的波束指示信息。
  14. 根据权利要求13所述的方法,其特征在于,所述测量参考信号的配置信息包括:天线端口信息、时频资源信息、以及测量参考信号序列的产生参数中的至少一项。
  15. 根据权利要求14所述的方法,其特征在于,所述波束测量结果包括信号与干扰加噪声比SINR、参考信号接收功率RSRP、参考信号接收质量RSRQ、接收信号强度指示RSSI中的至少一项。
  16. 根据权利要求13至15中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述波束指示信息生成数据信道及其解调参考信号的接收波束或者发送波束,其中,
    当所述波束指示信息指示一个波束时,将所指示的波束作为所述数据信道及其解调参考信号的发送 波束或者接收波束;
    当所述波束指示信息指示两个及两个以上波束及各个波束的加权系数时,根据所述加权系数对所指示的波束的波束权向量进行合成以得到合成波束,并将所述合成波束作为所述数据信道及其解调参考信号的发送波束或者接收波束。
  17. 一种基于波束配置的通信装置,其特征在于,所述装置应用于第一网络设备,所述装置包括:
    配置单元,用于根据第二网络设备的能力信息,配置所述第二网络设备与终端之间的配置波束,并发送所述配置波束的配置信息;
    生成单元,用于基于所述终端上报的波束测量结果,生成波束指示信息;以及
    发送单元,用于发送所述波束指示信息,
    其中,所述波束指示信息用于辅助所述第二网络设备和/或所述终端生成发送波束或者接收波束。
  18. 一种基于波束配置的通信装置,其特征在于,所述装置应用于第二网络设备,所述装置包括:
    第一接收单元,用于接收第一网络设备发送的波束配置信息,所述波束配置信息包括所述第一网络设备配置的配置波束的测量参考信号配置信息;
    第一生成单元,用于基于所述测量参考信号配置信息,生成测量参考信号的发送波束以发送所述测量参考信号;
    第二接收单元,用于接收所述第一网络设备根据所述测量参考信号的测量结果生成的波束指示信息;以及
    第二生成单元,用于根据所述波束指示信息生成数据信道及其解调参考信号的发送波束或者接收波束。
  19. 一种基于波束配置的通信装置,其特征在于,所述装置应用于终端设备,所述装置包括:
    第一接收单元,用于接收第一网络设备发送的测量参考信号的配置信息;
    第二接收单元,用于接收第二网络设备发送的所述测量参考信号;
    测量单元,用于基于所述测量参考信号的配置信息对所述测量参考信号进行波束测量,并向第一网络设备上报波束测量结果;以及
    第三接收单元,用于接收第一网络设备发送的波束指示信息。
  20. 一种通信系统,其特征在于,所述系统包括第一网络设备、第二网络设备以及终端设备,其中,
    所述第一网络设备根据第二网络设备的能力信息,配置所述第二网络设备与终端之间的配置波束,并向所述第二网络设备和/或终端设备发送所述配置波束的配置信息,所述配置信息包括所述配置波束的测量参考信号配置信息;
    所述第二网络设备基于所述测量参考信号配置信息生成测量参考信号的发送波束以发送所述测量参考信号;
    所述终端设备基于所述测量参考信号配置信息对所述测量参考信号进行测量,并向所述第一网络设备上报波束测量结果;
    所述第一网络设备基于所述波束测量结果生成波束指示信息,并将所述波束指示信息发送至所述第二网络设备和/或所述终端设备;
    所述第二网络设备和/或所述终端设备根据所述波束指示信息生成数据信道及其解调参考信号的接收波束或者发送波束。
  21. 一种通信设备,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1-16中任一项所述的方法。
  22. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1-16中任一项所述的方法。
PCT/CN2022/096083 2022-05-30 2022-05-30 基于波束配置的通信方法、装置及系统 WO2023230795A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/096083 WO2023230795A1 (zh) 2022-05-30 2022-05-30 基于波束配置的通信方法、装置及系统
CN202280001780.4A CN117480837A (zh) 2022-05-30 2022-05-30 基于波束配置的通信方法、装置及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096083 WO2023230795A1 (zh) 2022-05-30 2022-05-30 基于波束配置的通信方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2023230795A1 true WO2023230795A1 (zh) 2023-12-07

Family

ID=89026583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096083 WO2023230795A1 (zh) 2022-05-30 2022-05-30 基于波束配置的通信方法、装置及系统

Country Status (2)

Country Link
CN (1) CN117480837A (zh)
WO (1) WO2023230795A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282321A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信息指示的方法、网络设备和终端设备
US20200366363A1 (en) * 2019-05-16 2020-11-19 Qualcomm Incorporated Joint beam management for backhaul links and access links
CN113286366A (zh) * 2020-02-20 2021-08-20 上海华为技术有限公司 波束管理方法,波束管理系统以及相关设备
US20220053433A1 (en) * 2020-08-14 2022-02-17 Qualcomm Incorporated Information for wireless communication repeater device
WO2022082774A1 (zh) * 2020-10-23 2022-04-28 华为技术有限公司 一种波束管理方法及通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282321A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种信息指示的方法、网络设备和终端设备
US20200366363A1 (en) * 2019-05-16 2020-11-19 Qualcomm Incorporated Joint beam management for backhaul links and access links
CN113286366A (zh) * 2020-02-20 2021-08-20 上海华为技术有限公司 波束管理方法,波束管理系统以及相关设备
US20220053433A1 (en) * 2020-08-14 2022-02-17 Qualcomm Incorporated Information for wireless communication repeater device
WO2022082774A1 (zh) * 2020-10-23 2022-04-28 华为技术有限公司 一种波束管理方法及通信装置

Also Published As

Publication number Publication date
CN117480837A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
US11201651B2 (en) Electronic apparatus and server in wireless communication system, and wireless communication method
WO2021164592A1 (zh) 波束管理方法,波束管理系统以及相关设备
WO2023197226A1 (zh) 波束选择方法和装置
CN114514781B (zh) 发送功率确定方法及装置
JP2022539974A (ja) ビーム構成方法および装置
CN110475257A (zh) 通信方法及装置
WO2023230795A1 (zh) 基于波束配置的通信方法、装置及系统
WO2023019596A1 (zh) 基于轨道角动量oam的通信方法及其装置
WO2024050777A1 (zh) 传输配置方法、装置及系统
WO2023245681A1 (zh) 基于轨道角动量的上行传输配置方法、装置及系统
WO2024082194A1 (zh) 预编码方法及装置
WO2024000527A1 (zh) 轨道角动量oam模态指示方法及装置
WO2023092494A1 (zh) 一种预编码信息的反馈方法及其装置
WO2023184435A1 (zh) 一种确定波束信息的方法及装置
WO2023283843A1 (zh) 终端设备的控制方法及装置
WO2024060144A1 (zh) 终端位置信息的验证方法、装置、通信设备及存储介质
WO2023065325A1 (zh) 基于轨道角动量的共享信道传输及装置
WO2023197187A1 (zh) 一种信道状态信息的处理方法及装置
WO2024016137A1 (zh) 一种预编码信息的接收发送方法及其装置
WO2023155166A1 (zh) 测量配置方法及装置
WO2024031278A1 (zh) 终端配置方法及装置
WO2023092495A1 (zh) 参考信号配置方法及装置
WO2024000526A1 (zh) 预编码方法及装置
WO2023138503A1 (zh) 信道特征获取方法及相关装置
WO2023245498A1 (zh) 一种al/ml模型的数据采集方法及其装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001780.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944135

Country of ref document: EP

Kind code of ref document: A1