WO2024044990A1 - 基于智能超表面的预编码方法及装置 - Google Patents

基于智能超表面的预编码方法及装置 Download PDF

Info

Publication number
WO2024044990A1
WO2024044990A1 PCT/CN2022/115967 CN2022115967W WO2024044990A1 WO 2024044990 A1 WO2024044990 A1 WO 2024044990A1 CN 2022115967 W CN2022115967 W CN 2022115967W WO 2024044990 A1 WO2024044990 A1 WO 2024044990A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
information
block
reference signal
sent
Prior art date
Application number
PCT/CN2022/115967
Other languages
English (en)
French (fr)
Inventor
池连刚
杨立
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/115967 priority Critical patent/WO2024044990A1/zh
Publication of WO2024044990A1 publication Critical patent/WO2024044990A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application relates to the field of communication technology, and in particular to a precoding method and device based on intelligent metasurfaces.
  • RIS arrays are often large and comparable to the propagation distance, and the precoding scheme based on traditional far-field assumptions may no longer be applicable.
  • the first embodiment of the present application proposes a precoding method based on intelligent metasurfaces.
  • the method is executed by a first network device.
  • the method includes:
  • Receive channel feedback information sent by the terminal device where the channel feedback information is determined by the terminal device based on the reference signal sent in each block of the second network device;
  • the second embodiment of the present application proposes a precoding method based on intelligent metasurfaces.
  • the method is executed by a second network device.
  • the method includes:
  • the third embodiment of the present application proposes a precoding method based on intelligent metasurfaces.
  • the method is executed by a terminal device.
  • the method includes:
  • the channel feedback information is sent to the first network device, where the channel feedback information is used to determine first indication information, and the first indication information is used to determine the phase shift matrix of the second network device.
  • the fourth embodiment of the present application proposes a precoding device based on an intelligent metasurface.
  • the device is applied to a first network device.
  • the device includes:
  • a transceiver unit configured to obtain unit arrangement information and block information of the second network device, where the block information is used to indicate multiple blocks of the second network device;
  • the transceiver unit is also configured to receive channel feedback information sent by a terminal device, where the channel feedback information is determined by the terminal device based on the reference signal sent in each block of the second network device;
  • a processing unit configured to determine first indication information based on the channel feedback information, the unit arrangement information and the block information, where the first indication information is used to determine the phase shift matrix of the second network device ;
  • the transceiver unit is also configured to send the first indication information to the second network device.
  • the fifth aspect embodiment of the present application proposes a precoding device based on an intelligent metasurface.
  • the device is applied to a second network device.
  • the device includes:
  • a transceiver unit configured to send unit arrangement information and block information of the second network device to the first network device, where the block information is used to indicate multiple blocks of the second network device;
  • the transceiver unit is also configured to send a reference signal to a terminal device, where the reference signal is used by the terminal device to determine channel feedback information;
  • the transceiver unit is also configured to receive first indication information sent by the first network device.
  • the first indication information is the first network device based on the channel feedback information, the unit arrangement information and the The above block information is determined;
  • a processing unit configured to determine the phase shift matrix of the second network device according to the first indication information.
  • the sixth aspect embodiment of the present application proposes a precoding device based on smart metasurfaces.
  • the device is applied to terminal equipment.
  • the device includes:
  • a transceiver unit configured to receive the reference signal sent in each block by the second network device
  • a processing unit configured to determine channel feedback information of the channel between the second network device and the terminal device according to the reference signal
  • the transceiver unit is also configured to send the channel feedback information to the first network device.
  • the channel feedback information is used to determine the first indication information.
  • the first indication information is used to determine the relative position of the second network device. shift matrix.
  • the seventh embodiment of the present application provides a communication device.
  • the device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory so that the The device executes the precoding method based on the smart metasurface described in the above embodiment of the first aspect, or executes the precoding method based on the smart metasurface described in the above embodiment of the second aspect.
  • the eighth embodiment of the present application provides a communication device.
  • the device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory so that the The device executes the precoding method based on the smart metasurface described in the embodiment of the third aspect, or executes the precoding method based on the smart metasurface described in the embodiment of the fourth aspect.
  • the ninth aspect of the present application provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to enable the The device executes the precoding method based on the smart metasurface described in the above embodiment of the first aspect, or executes the precoding method based on the smart metasurface described in the above embodiment of the second aspect.
  • the tenth embodiment of the present application provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to make the The device executes the smart metasurface-based precoding method described in the third embodiment.
  • the eleventh embodiment of the present application provides a computer-readable storage medium for storing instructions.
  • the smart metasurface-based precoding method described in the first embodiment is used. be realized, or the precoding method based on the intelligent metasurface described in the embodiment of the second aspect is realized.
  • the twelfth embodiment of the present application provides a computer-readable storage medium for storing instructions.
  • the precoding method based on the intelligent metasurface described in the third embodiment is used. be realized.
  • the thirteenth aspect embodiment of the present application proposes a computer program that, when run on a computer, causes the computer to execute the precoding method based on the intelligent metasurface described in the above-mentioned first aspect embodiment, or to execute the above-mentioned second aspect The precoding method based on intelligent metasurface described in the embodiment.
  • the fourteenth embodiment of the present application provides a computer program that, when run on a computer, causes the computer to execute the precoding method based on smart metasurfaces described in the above third embodiment.
  • the embodiments of the present application provide a precoding method and device based on an intelligent metasurface, by obtaining the unit arrangement information and block information of the second network device.
  • the block information is used to indicate multiple units of the second network device.
  • Blocking receiving the channel feedback information sent by the terminal device, and determining the first indication information according to the channel feedback information, the unit arrangement information and the blocking information, the first indication information is used to determine the relative position of the second network device.
  • Shift matrix sending the first instruction information to the second network device, can divide the units of the second network device into multiple groups, so that the far-field hypothesis is established for each group, and at the same time, it effectively reduces the precoding based on the smart metasurface.
  • the complexity improves the communication efficiency of the intelligent metasurface-assisted communication system and reduces interference.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic flowchart of a precoding method based on intelligent metasurfaces provided by an embodiment of the present application
  • Figure 3 is a schematic flowchart of a precoding method based on intelligent metasurfaces provided by an embodiment of the present application
  • Figure 4 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application
  • Figure 5 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application
  • Figure 6a is a schematic diagram of the spatial positions of a terminal device and a second network device provided by an embodiment of the present application;
  • Figure 6b is a schematic xz-axis plan view of a terminal device and a second network device provided by an embodiment of the present application;
  • Figure 6c is a schematic yz-axis plane diagram of a terminal device and a second network device provided by an embodiment of the present application;
  • Figure 7 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application.
  • Figure 8 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application.
  • Figure 9 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application.
  • Figure 10 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application.
  • Figure 11 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application.
  • Figure 12 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application.
  • Figure 13 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application.
  • Figure 14 is a schematic structural diagram of a precoding device based on a smart metasurface provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a precoding device based on a smart metasurface provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of a precoding device based on a smart metasurface provided by an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of another smart metasurface-based precoding device provided by an embodiment of the present application.
  • Figure 18 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • first, second, third, etc. may be used to describe various information in the embodiments of this application, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as "when” or "when” or “in response to determining.”
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include but is not limited to a first network device, a second network device and a terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present application. In actual applications, they may Including two or more network devices and two or more terminal devices.
  • the communication system shown in Figure 1 includes a first network device 101, a second network device 102 and a terminal device 103 as an example.
  • LTE Long Term Evolution
  • 5G new air interface system 5G new air interface system
  • other future new mobile communication systems 5G new air interface system
  • the first network device 101 in the embodiment of this application is an entity on the network side that is used to transmit or receive signals.
  • the first network device 101 may be an evolved base station (Evolved NodeB, eNB), a transmission point (Transmission Reception Point, TRP), a next generation base station (Next Generation NodeB, gNB) in an NR system, or other future mobile communication systems.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the access network equipment.
  • the access network equipment provided by the embodiments of this application may be composed of a centralized unit (Central Unit, CU) and a distributed unit (Distributed Unit, DU).
  • the CU may also be called a control unit (Control Unit).
  • Control Unit Control Unit
  • CU The structure of DU can separate the protocol layers of access network equipment, such as base stations, with some protocol layer functions placed under centralized control on the CU, while the remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU .
  • the second network device 102 in the embodiment of the present application is a device capable of regulating communication channels.
  • the second network device 102 is equipped with a large number of (electromagnetic) units, and can change the radiation characteristics of the (electromagnetic) units by adjusting the physical properties (such as capacitive reactance, impedance or inductive reactance) of the (electromagnetic) units, and thus can adjust the radiation characteristics of the (electromagnetic) units.
  • Electromagnetic waves in space are dynamically regulated to form beams in specific directions in space.
  • the second network device 102 may be a Reconfigurable Intelligent Surface (RIS) or the like.
  • the (electromagnetic) units in the second network device 102 may be active or passive; some (electromagnetic) units in the second network device 102 may be active, Some (electromagnetic) units are passive.
  • the terminal device 103 in the embodiment of this application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (Mobile Station, MS), mobile terminal equipment (Mobile Terminal, MT), etc.
  • Terminal devices can be cars with communication functions, smart cars, mobile phones, wearable devices, tablets (Pad), computers with wireless transceiver functions, virtual reality (Virtual Reality, VR) terminal devices, augmented reality ( Augmented Reality (AR) terminal equipment, wireless terminal equipment in industrial control (Industrial Control), wireless terminal equipment in self-driving (Self-Driving), wireless terminal equipment in remote surgery (Remote Medical Surgery), smart grid ( Wireless terminal equipment in Smart Grid, wireless terminal equipment in Transportation Safety, wireless terminal equipment in Smart City, wireless terminal equipment in Smart Home, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • RIS smart metasurfaces
  • RIS can use precoding technology to reflect or transmit the signal incident on its surface to a specific direction, thereby enhancing the strength of the signal at the receiving end or reducing interference, and achieving channel control.
  • the first network device 101 reflects or transmits the signal to the terminal device 103 through the second network device 102 (RIS), or the terminal device 103 passes through
  • the second network device 102 (RIS) reflects or transmits the signal to the first network device 101.
  • the second network device 102 needs to be precoded.
  • the method of determining the precoding of the second network device 102 is relatively complex.
  • precoding at RIS and base stations is jointly designed mainly through alternating optimization technology.
  • this method can achieve optimal performance, its complexity is too high and is not suitable for practical applications.
  • the size of RIS arrays is often large and comparable to the propagation distance, and the precoding scheme based on traditional far-field assumptions may no longer be applicable.
  • Figure 2 is a schematic flow chart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the first network device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 2, the method may include the following steps:
  • Step 201 Obtain unit arrangement information and block information of the second network device.
  • the block information is used to indicate multiple blocks of the second network device.
  • the second network device may be a smart metasurface RIS.
  • the first network device can obtain the unit arrangement information and block information of the second network device, where the block information of the second network device is used to indicate multiple blocks of the second network device,
  • the unit arrangement information of the second network device can indicate how the units in the second network device are arranged.
  • each block of the second network device is a continuous part of the second network device, such as a continuous RIS surface in the smart metasurface RIS.
  • the first network device can determine how the units in the second network device are arranged by acquiring the unit arrangement information of the second network device; the first network device can determine how the units in the second network device are arranged by acquiring the distribution information of the second network device. block information to determine each block of the second network device.
  • the unit arrangement information may include at least one of the following: the number of rows of the units of the second network device; the number of columns of the units of the second network device; the row spacing of the units of the second network device; The column spacing of the units of the network device; the unit in the second network device that can send the reference signal (it may also be an active unit in the second network device).
  • the block information may include at least one of the following: the number of rows of units included in each block; the number of columns of units included in each block; and the center unit of each block.
  • the unit arrangement information and block information of the second network device can be flexibly configured according to the specific shape of the second network device.
  • the unit arrangement information of the second network device may also include the radius or diameter of the second network device, etc.
  • the block information may also include other information to indicate the second network Each block of the device.
  • the first network device may receive the unit arrangement information and/or block information reported by the second network device, or the first network device may obtain the unit arrangement information of the second network device during the offline phase. and/or chunked information.
  • the first network device can also configure multiple blocks of the second network device according to the unit arrangement information of the second network device, and obtain the block information of the second network device.
  • each block of the second network device can send a reference signal.
  • Step 202 Receive channel feedback information sent by the terminal device.
  • the first network device can receive channel feedback information sent by the terminal device, where the channel feedback information is determined by the terminal device based on the reference signal sent in each block by the second network device.
  • the channel feedback information can reflect the status of the channel between each block of the second network device and the terminal device.
  • the first network device can determine the first indication information for determining the phase shift matrix of the second network device based on the channel feedback information.
  • the channel feedback information includes: a plurality of third precoding matrix indicators (Precoding Matrix Indicator, PMI) and an index of the reference signal corresponding to each third PMI.
  • PMI Precoding Matrix Indicator
  • the third PMI is used to indicate the precoding matrix of the channel between each block of the second network device and the terminal device.
  • each block of the second network device can send a reference signal
  • the terminal device receives the reference signal sent by each block and estimates it to obtain the precoding matrix of the channel between each block and the terminal device.
  • the precoding matrix of the channel between each block and the terminal device is indicated by a third PMI
  • the reference signal sent by the block is indicated by the index of the reference signal corresponding to the third PMI.
  • the first network device can send first reference signal configuration information to the second network device based on the unit arrangement information and block information.
  • the first reference signal configuration information is used to determine the second network device's configuration information. Reference signal sent in each block.
  • the first reference signal configuration information may include at least one of the following:
  • the first network device can send second reference signal configuration information to the terminal device according to the unit arrangement information and block information, and the second reference signal configuration information is used by the terminal device to receive the second network device The reference signal sent in each block.
  • the second reference signal configuration information may include at least one of the following:
  • the terminal device can receive the reference signal sent by the second network device based on the first reference signal configuration information according to the second reference signal configuration information.
  • Step 203 Determine first indication information based on the channel feedback information, the unit arrangement information and the block information.
  • the first indication information is used to determine the phase shift matrix of the second network device.
  • the first network device can determine the first indication information based on the received channel feedback information and the acquired unit arrangement information and the block information.
  • the first indication information can be used To determine the phase shift matrix of the second network device.
  • the first network device can determine the location information of the terminal device relative to the second network device based on the channel feedback information, the unit arrangement information and the block information, and then determine the location information based on the location information. the first instruction information.
  • the location information can be represented by coordinates.
  • the first network device and the second network device can establish a coordinate system through a coordinate axis establishment method specified in the protocol, and obtain the coordinates of the terminal device in the coordinate system.
  • the first network device and the second network device may also negotiate and determine the coordinate axis establishment method of the coordinate system through signaling.
  • the first indication information includes a first precoding matrix or first information, where the first information is used to indicate the first precoding matrix.
  • the first precoding matrix is determined by the first network device based on the unit arrangement information, the block information, the position information, and the angle information between the first network device and the second network device.
  • the second network device can determine the phase shift matrix according to the first precoding matrix.
  • the first information may be an index of the first precoding matrix, or may be a first PMI used to indicate the first precoding matrix, or the like.
  • the first indication information includes a second precoding matrix or second information, where the second information is used to indicate the second precoding matrix.
  • the second precoding matrix is determined by the first network device based on the unit arrangement information, the block information and the location information.
  • the second network device can determine the phase shift matrix according to the second precoding matrix and the angle information between the first network device and the second network device.
  • the second information may be an index of the second precoding matrix, or may be a second PMI used to indicate the second precoding matrix, or the like.
  • the first indication information includes the location information
  • the second network device can determine the phase shift matrix of the second network device based on the location information.
  • the angle information between the first network device and the second network device may be departure angle information or incident angle information.
  • the departure angle information refers to the departure angle information of the signal emitted by the first network device;
  • the incident angle information refers to the incident angle information of the signal emitted by the first network device incident on the surface of the second network device.
  • the first network device can send angle information between the first network device and the second network device to the second network device.
  • Step 204 Send the first indication information to the second network device.
  • the first network device after determining the first indication information, can send the first indication information to the second network device, and the second network device can determine the phase shift matrix based on the first indication information.
  • the phase shift matrix is used to configure the phase of each unit in the second network device, that is, to precode the second network device.
  • the second network device can adjust the phase of each unit of the second network device according to the phase shift matrix configuration to implement precoding of the second network device, and can reflect or transmit signals incident on the surface of the second network device.
  • the first indication information includes a first precoding matrix or first information, where the first information is used to indicate the first precoding matrix.
  • the first indication information includes a second precoding matrix or second information, where the second information is used to indicate the second precoding matrix.
  • the first indication information includes the location information of the terminal device relative to the second network device.
  • the block information is used to indicate multiple blocks of the second network device, receiving the channel feedback information sent by the terminal device, and based on the channel feedback information, the unit arrangement information and the block information, determine the first indication information, the first indication information is used to determine the phase shift matrix of the second network device, and send the first indication information to the second network device,
  • the units of the second network device can be divided into multiple groups, so that the far-field hypothesis is established for each group, while effectively reducing the complexity of precoding based on intelligent metasurfaces and improving the communication efficiency of intelligent metasurface-assisted communication systems. , reduce interference.
  • Figure 3 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the first network device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 3, the method may include the following steps:
  • Step 301 Obtain unit arrangement information and block information of the second network device.
  • the second network device may be a smart metasurface RIS.
  • the first network device can obtain the unit arrangement information and block information of the second network device, where the block information of the second network device is used to indicate multiple blocks of the second network device,
  • the unit arrangement information of the second network device can indicate how the units in the second network device are arranged.
  • each block of the second network device is a continuous part of the second network device, such as a continuous RIS surface in the smart metasurface RIS.
  • the first network device can determine how the units in the second network device are arranged by acquiring the unit arrangement information of the second network device; the first network device can determine how the units in the second network device are arranged by acquiring the distribution information of the second network device. block information to determine each block of the second network device.
  • the unit arrangement information may include at least one of the following: the number of rows of the units of the second network device; the number of columns of the units of the second network device; the row spacing of the units of the second network device; The column spacing of the units of the network device; the unit in the second network device that can send the reference signal (it may also be an active unit in the second network device).
  • the block information may include at least one of the following: the number of rows of units included in each block; the number of columns of units included in each block; and the center unit of each block.
  • the unit arrangement information and block information of the second network device can be flexibly configured according to the specific shape of the second network device.
  • the unit arrangement information of the second network device may also include the radius or diameter of the second network device, etc.
  • the block information may also include other information to indicate the second network Each block of the device.
  • the first network device may receive the unit arrangement information and/or block information reported by the second network device, or the first network device may obtain the unit arrangement information of the second network device during the offline phase. and/or chunked information.
  • the first network device can also configure multiple blocks of the second network device according to the unit arrangement information of the second network device, and obtain the block information of the second network device.
  • each block of the second network device can send a reference signal.
  • Step 302 Send the first reference signal configuration information to the second network device according to the unit arrangement information and block information.
  • the first network device can send the first reference signal configuration information to the second network device according to the unit arrangement information and the block information.
  • the first reference signal configuration information is used to determine the reference signal sent by each block of the second network device, and the second network device can determine the reference signal sent by each block according to the first reference signal configuration information.
  • the first reference signal configuration information may include at least one of the following:
  • Step 303 Send second reference signal configuration information to the terminal device according to the unit arrangement information and block information.
  • the first network device can send second reference signal configuration information to the terminal device, and the second reference signal configuration information is used by the terminal device to receive the reference signal sent in each block by the second network device.
  • the second reference signal configuration information may be the same as the first reference configuration information, or may be different (for example, the second reference signal configuration information may not include the reference signal transmitted in each block). units in the block occupied).
  • the second reference signal configuration information may include at least one of the following:
  • the terminal device can receive the reference signal sent by the second network device based on the first reference signal configuration information according to the second reference signal configuration information.
  • the channel used by the first network device to send the reference signal configuration information to the terminal device may be a channel that passes through the second network device, or it may be a direct-view channel that does not pass through the second network device. This application No limitation is made here.
  • Step 304 Receive channel feedback information sent by the terminal device.
  • the first network device can receive channel feedback information sent by the terminal device, where the channel feedback information is determined by the terminal device based on the reference signal sent in each block by the second network device.
  • the channel feedback information can reflect the status of the channel between each block of the second network device and the terminal device.
  • the first network device can determine the first indication information for determining the phase shift matrix of the second network device based on the channel feedback information.
  • the channel feedback information includes: a plurality of third precoding matrix indication PMIs and an index of a reference signal corresponding to each third PMI.
  • the third PMI is used to indicate the precoding matrix of the channel between each block of the second network device and the terminal device.
  • each block of the second network device can send a reference signal
  • the terminal device receives the reference signal sent by each block and estimates it to obtain the precoding matrix of the channel between each block and the terminal device.
  • the precoding matrix of the channel between each block and the terminal device is indicated by a third PMI
  • the reference signal sent by the block is indicated by the index of the reference signal corresponding to the third PMI.
  • the first network device can send first reference signal configuration information to the second network device based on the unit arrangement information and block information.
  • the first reference signal configuration information is used to determine the second network device's configuration information. Reference signal sent in each block.
  • the first reference signal configuration information may include at least one of the following:
  • the channel used by the first network device to receive the channel feedback information sent by the terminal device may also be a channel that passes through the second network device, or may not pass through the direct view of the second network device.
  • Channel is not limited in this application.
  • Step 305 Determine the location information of the terminal device relative to the second network device based on the channel feedback information, the unit arrangement information and the block information.
  • the first network device can determine the location information of the terminal device relative to the second network device based on the channel feedback information, the unit arrangement information and the block information, and then determine the location information based on the location information. the first instruction information.
  • the location information can be represented by coordinates.
  • the first network device and the second network device can establish a coordinate system through a coordinate axis establishment method specified in the protocol, and obtain the coordinates of the terminal device in the coordinate system.
  • the first network device and the second network device may also negotiate and determine the coordinate axis establishment method of the coordinate system through signaling.
  • the first network device may use a variety of methods to determine the location of the terminal device relative to the second network device based on channel feedback information, unit arrangement information and block information of the second network device. Location information of network devices. As an example, as shown in Figures 6a-6c, details will be described later and will not be described again here.
  • Step 306 Determine a first precoding matrix based on the unit arrangement information, the block information, the location information, and the angle information between the first network device and the second network device.
  • the first network device can use the second network device's unit arrangement information, block information, position information of the terminal device relative to the second network device, and the relationship between the first network device and the second network device. angle information between them to determine the first precoding matrix.
  • the second network device can determine the phase shift matrix based on the first precoding matrix, and then adjust the phase of each unit of the second network device to implement precoding of the second network device.
  • the first precoding matrix may be a near-field precoding matrix of the second network device.
  • the angle information between the first network device and the second network device may be departure angle information or incident angle information.
  • the departure angle information refers to the departure angle information of the signal emitted by the first network device;
  • the incident angle information refers to the incident angle information of the signal emitted by the first network device incident on the surface of the second network device.
  • Step 307 Send first indication information to the second network device, where the first indication information includes the first precoding matrix or first information.
  • the first network device after the first network device calculates the first precoding matrix in step 306, it can send first indication information to the second network device based on the first precoding matrix.
  • the first indication information includes the first precoding matrix or first information.
  • the first information is used to indicate the first precoding matrix.
  • the first indication information can be used to determine the phase shift matrix of the second network device, that is, the second network device can determine the phase shift matrix according to the first indication information.
  • the phase shift matrix is used to configure the phase of each unit in the second network device, that is, to precode the second network device.
  • the second network device can adjust the phase of each unit of the second network device according to the phase shift matrix configuration to implement precoding of the second network device, and can reflect or transmit signals incident on the surface of the second network device.
  • the first information may be an index of the first precoding matrix, or may be a first PMI used to indicate the first precoding matrix, or the like.
  • the first reference signal configuration information is sent to the second network device
  • the second reference signal configuration information is sent to the terminal device
  • the channel feedback sent by the terminal device is received.
  • Information according to the channel feedback information, the unit arrangement information and the block information, determine the position information of the terminal device relative to the second network device, according to the unit arrangement information, the block information, the position information and angle information between the first network device and the second network device, determine a first precoding matrix, and send first indication information to the second network device, where the first indication information includes the first precoding matrix or first information
  • the units of the second network device can be divided into multiple groups, so that the far-field hypothesis is established for each group, while effectively reducing the complexity of precoding based on intelligent metasurfaces and improving the communication efficiency of intelligent metasurface-assisted communication systems. , reduce interference.
  • Figure 4 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the first network device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 4, the method may include the following steps:
  • Step 401 Obtain unit arrangement information and block information of the second network device.
  • the second network device may be a smart metasurface RIS.
  • the first network device can obtain the unit arrangement information and block information of the second network device, where the block information of the second network device is used to indicate multiple blocks of the second network device,
  • the unit arrangement information of the second network device can indicate how the units in the second network device are arranged.
  • each block of the second network device is a continuous part of the second network device, such as a continuous RIS surface in the smart metasurface RIS.
  • the first network device can determine how the units in the second network device are arranged by acquiring the unit arrangement information of the second network device; the first network device can determine how the units in the second network device are arranged by acquiring the distribution information of the second network device. block information to determine each block of the second network device.
  • the unit arrangement information may include at least one of the following: the number of rows of the units of the second network device; the number of columns of the units of the second network device; the row spacing of the units of the second network device; The column spacing of the units of the network device; the unit in the second network device that can send the reference signal (it may also be an active unit in the second network device).
  • the block information may include at least one of the following: the number of rows of units included in each block; the number of columns of units included in each block; and the center unit of each block.
  • the unit arrangement information and block information of the second network device can be flexibly configured according to the specific shape of the second network device.
  • the unit arrangement information of the second network device may also include the radius or diameter of the second network device, etc.
  • the block information may also include other information to indicate the second network Each block of the device.
  • the first network device may receive the unit arrangement information and/or block information reported by the second network device, or the first network device may obtain the unit arrangement information of the second network device during the offline phase. and/or chunked information.
  • the first network device can also configure multiple blocks of the second network device according to the unit arrangement information of the second network device, and obtain the block information of the second network device.
  • each block of the second network device can send a reference signal.
  • Step 402 Send the first reference signal configuration information to the second network device according to the unit arrangement information and block information.
  • the first network device can send the first reference signal configuration information to the second network device according to the unit arrangement information and the block information.
  • the first reference signal configuration information is used to determine the reference signal sent by each block of the second network device, and the second network device can determine the reference signal sent by each block according to the first reference signal configuration information.
  • the first reference signal configuration information may include at least one of the following:
  • Step 403 Send second reference signal configuration information to the terminal device according to the unit arrangement information and block information.
  • the first network device can send second reference signal configuration information to the terminal device, and the second reference signal configuration information is used by the terminal device to receive the reference signal sent in each block by the second network device.
  • the second reference signal configuration information may be the same as the first reference configuration information, or may be different (for example, the second reference signal configuration information may not include the reference signal transmitted in each block). units in the block occupied).
  • the second reference signal configuration information may include at least one of the following:
  • the terminal device can receive the reference signal sent by the second network device based on the first reference signal configuration information according to the second reference signal configuration information.
  • the channel used by the first network device to send the reference signal configuration information to the terminal device may be a channel that passes through the second network device, or it may be a direct-view channel that does not pass through the second network device. This application No limitation is made here.
  • Step 404 Receive channel feedback information sent by the terminal device.
  • the first network device can receive channel feedback information sent by the terminal device, where the channel feedback information is determined by the terminal device based on the reference signal sent in each block by the second network device.
  • the channel feedback information can reflect the status of the channel between each block of the second network device and the terminal device.
  • the first network device can determine the first indication information for determining the phase shift matrix of the second network device based on the channel feedback information.
  • the channel feedback information includes: a plurality of third precoding matrix indication PMIs and an index of a reference signal corresponding to each third PMI.
  • the third PMI is used to indicate the precoding matrix of the channel between each block of the second network device and the terminal device.
  • each block of the second network device can send a reference signal
  • the terminal device receives the reference signal sent by each block and estimates it to obtain the precoding matrix of the channel between each block and the terminal device.
  • the precoding matrix of the channel between each block and the terminal device is indicated by a third PMI
  • the reference signal sent by the block is indicated by the index of the reference signal corresponding to the third PMI.
  • the first network device can send first reference signal configuration information to the second network device based on the unit arrangement information and block information.
  • the first reference signal configuration information is used to determine the second network device's configuration information. Reference signal sent in each block.
  • the first reference signal configuration information may include at least one of the following:
  • the channel used by the first network device to receive the channel feedback information sent by the terminal device may also be a channel that passes through the second network device, or may not pass through the direct view of the second network device.
  • Channel is not limited in this application.
  • Step 405 Determine the location information of the terminal device relative to the second network device based on the channel feedback information, the unit arrangement information and the block information.
  • the first network device can determine the location information of the terminal device relative to the second network device based on the channel feedback information, the unit arrangement information and the block information, and then determine the location information based on the location information. the first instruction information.
  • the location information can be represented by coordinates.
  • the first network device and the second network device can establish a coordinate system through a coordinate axis establishment method specified in the protocol, and obtain the coordinates of the terminal device in the coordinate system.
  • the first network device and the second network device may also negotiate and determine the coordinate axis establishment method of the coordinate system through signaling.
  • the first network device may use a variety of methods to determine the location of the terminal device relative to the second network device based on channel feedback information, unit arrangement information and block information of the second network device. Location information of network devices. As an example, as shown in Figures 6a-6c, details will be described later and will not be described again here.
  • Step 406 Determine a second precoding matrix based on the unit arrangement information, the block information and the position information.
  • the first network device can determine the second precoding matrix based on the unit arrangement information, block information, and position information of the terminal device relative to the second network device.
  • the second network device can determine the phase shift matrix based on the second precoding matrix and the angle information between the first network device and the second network device, and then adjust the phase of each unit of the second network device to achieve precoding of the second network device.
  • the second precoding matrix may be a near-field precoding matrix of the second network device.
  • Step 407 Send first indication information to the second network device, where the first indication information includes the second precoding matrix or second information.
  • the first network device after the first network device calculates the second precoding matrix in step 406, it can send first indication information to the second network device based on the second precoding matrix.
  • the first indication information includes the second precoding matrix or second information.
  • the second information is used to indicate the second precoding matrix.
  • the first indication information can be used to determine the phase shift matrix of the second network device, that is, the second network device can determine the phase shift matrix of the second network device according to the second precoding matrix and the relationship between the first network device and the second network device.
  • the angle information between them determines the phase shift matrix.
  • the phase shift matrix is used to configure the phase of each unit in the second network device, that is, to precode the second network device.
  • the second network device can adjust the phase of each unit of the second network device according to the phase shift matrix configuration to implement precoding of the second network device, and can reflect or transmit signals incident on the surface of the second network device.
  • the second information may be an index of the second precoding matrix, or may be a second PMI used to indicate the second precoding matrix, or the like.
  • the first network device may also send angle information between the first network device and the second network device to the second network device.
  • the first reference signal configuration information is sent to the second network device
  • the second reference signal configuration information is sent to the terminal device
  • the channel feedback sent by the terminal device is received.
  • Information according to the channel feedback information, the unit arrangement information and the block information, determine the position information of the terminal device relative to the second network device, according to the unit arrangement information, the block information and the position information, Determine the second precoding matrix and send first indication information to the second network device.
  • the first indication information includes the second precoding matrix or second information, which can divide the units of the second network device into multiple groups so that the remote The field assumption is established for each group, while effectively reducing the complexity of precoding based on smart metasurfaces, improving the communication efficiency of smart metasurface-assisted communication systems, and reducing interference.
  • Figure 5 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the first network device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 5, the method may include the following steps:
  • Step 501 Obtain unit arrangement information and block information of the second network device.
  • Step 502 Send the first reference signal configuration information to the second network device according to the unit arrangement information and block information.
  • Step 503 Send second reference signal configuration information to the terminal device according to the unit arrangement information and block information.
  • Step 504 Receive channel feedback information sent by the terminal device.
  • Step 505 Determine the location information of the terminal device relative to the second network device based on the channel feedback information, the unit arrangement information and the block information.
  • steps 501 to 505 can be implemented in any manner in the embodiments of the present application.
  • the embodiment of the present application does not limit this and will not be described again.
  • Step 506 Send first indication information to the second network device, where the first indication information includes the location information.
  • the first network device can send first indication information to the second network device based on the location information.
  • the first indication is included in the message.
  • the first indication information can be used to determine the phase shift matrix of the second network device, that is, the second network device can, based on the location information, its own unit arrangement information and block information, and the third The angle information between one network device and the second network device determines the phase shift matrix.
  • the phase shift matrix is used to configure the phase of each unit in the second network device, that is, to precode the second network device.
  • the second network device can adjust the phase of each unit of the second network device according to the phase shift matrix configuration to implement precoding of the second network device, and can reflect or transmit signals incident on the surface of the second network device.
  • the first network device may also send angle information between the first network device and the second network device to the second network device.
  • the first reference signal configuration information is sent to the second network device
  • the second reference signal configuration information is sent to the terminal device
  • the channel feedback sent by the terminal device is received.
  • Information according to the channel feedback information, the unit arrangement information and the block information, determine the position information of the terminal device relative to the second network device, and send the first indication information to the second network device, the first indication information Including this position information, the units of the second network device can be divided into multiple groups, so that the far-field hypothesis is established for each group, while effectively reducing the complexity of precoding based on the intelligent metasurface, and improving the efficiency of intelligent metasurface assistance. Communication efficiency of the communication system and reduction of interference.
  • the first network device can use a variety of methods to determine the location of the terminal device relative to the second network device based on the channel feedback information, the unit arrangement information and the block information of the second network device. 2. Location information of network devices.
  • Figure 6a is a schematic diagram of the spatial positions of a terminal device and a second network device provided by an embodiment of the present application.
  • Figure 6b is an xz-axis plane schematic diagram.
  • Figure 6c is a yz-axis plane schematic diagram. .
  • Figure 6a is only an example, illustrating a method of establishing a coordinate axis, and other methods of establishing a coordinate axis can also be used to establish a coordinate system.
  • an xy plane is established based on the plane where the second network device is located.
  • the normal direction of the second network device is the z-axis.
  • the second network device has four blocks.
  • the second network device Viewed from the y-axis direction in Figure 6a, the second network device is divided into two pieces in the x-axis direction, one piece on the left and right sides of the z-axis (as shown in Figure 6b).
  • the third PMI corresponding to each block of the second network device the horizontal dimension (dimension corresponding to the x-axis) direction angle ⁇ 1 , ⁇ 2 corresponding to each block of the second network device can be obtained.
  • the horizontal position of the terminal device can be determined. Assume that the distance between the two blocks of the second network device is d, and the coordinates of the terminal device in the xz plane is (d x , d z ), where,
  • the second network device is divided into two pieces in the y-axis direction, one piece on the left and right sides of the z-axis (as shown in Figure 6c).
  • the third PMI corresponding to each block of the second network device, the vertical dimension (dimension corresponding to the y-axis) direction angle ⁇ 1 , ⁇ 2 corresponding to each block of the second network device can be obtained.
  • the vertical position of the terminal device can be determined. Assume that the distance between the two blocks of the second network device is d', and the terminal device is on the yz plane The coordinates are (d y , d z ), where,
  • the coordinates of the terminal device in the xz plane and the yz plane are obtained, thereby obtaining the position of the terminal device relative to the second network device.
  • the above method of determining the location information of the terminal device relative to the second network device is only shown as an example.
  • the first network device can also adopt other methods.
  • the second network device The unit arrangement information and block information of the device are used to determine the position of the terminal device relative to the second network device.
  • FIG. 7 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the second network device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 7, the method may include the following steps:
  • Step 701 Send unit arrangement information and block information of the second network device to the first network device, where the block information is used to indicate multiple blocks of the second network device.
  • the second network device may be a smart metasurface RIS.
  • the second network device may send the unit arrangement information and block information of the second network device to the first network device, where the block information of the second network device is used to indicate the location of the second network device.
  • the unit arrangement information of the second network device can indicate how the units in the second network device are arranged.
  • each block of the second network device is a continuous part of the second network device, such as a continuous RIS surface in the smart metasurface RIS.
  • the first network device can determine how the units in the second network device are arranged by acquiring the unit arrangement information of the second network device; the first network device can determine how the units in the second network device are arranged by acquiring the distribution information of the second network device. block information to determine each block of the second network device.
  • the unit arrangement information may include at least one of the following: the number of rows of the units of the second network device; the number of columns of the units of the second network device; the row spacing of the units of the second network device; The column spacing of the units of the network device; the unit in the second network device that can send the reference signal (it may also be an active unit in the second network device).
  • the block information may include at least one of the following: the number of rows of units included in each block; the number of columns of units included in each block; and the center unit of each block.
  • the unit arrangement information and block information of the second network device can be flexibly configured according to the specific shape of the second network device.
  • the unit arrangement information of the second network device may also include the radius or diameter of the second network device, etc.
  • the block information may also include other information to indicate the second network Each block of the device.
  • Step 702 Send a reference signal to the terminal device.
  • the reference signal is used by the terminal device to determine channel feedback information.
  • the second network device can send a reference signal, which is used by the terminal device to determine channel feedback information.
  • each block of the second network device can send a reference signal. That is, the terminal device can receive the reference signal sent by each block of the second network device and determine the channel feedback information based on the received reference signal.
  • the channel feedback information can reflect the status of the channel between each block of the second network device and the terminal device.
  • the first network device can determine the first indication information for determining the phase shift matrix of the second network device based on the channel feedback information.
  • the channel feedback information includes: a plurality of third precoding matrix indication PMIs and an index of a reference signal corresponding to each third PMI.
  • the third PMI is used to indicate the precoding matrix of the channel between each block of the second network device and the terminal device.
  • each block of the second network device can send a reference signal
  • the terminal device receives the reference signal sent by each block and estimates it to obtain the precoding matrix of the channel between each block and the terminal device.
  • the precoding matrix of the channel between each block and the terminal device is indicated by a third PMI
  • the reference signal sent by the block is indicated by the index of the reference signal corresponding to the third PMI.
  • the second network device can receive the first reference signal configuration information sent by the first network device, and the second network device can determine each block of the second network device based on the first reference signal configuration information. Transmitted reference signal.
  • the first reference signal configuration information may include at least one of the following:
  • Step 703 Receive the first indication information sent by the first network device.
  • the first indication information is determined by the first network device based on the channel feedback information, unit arrangement information and block information.
  • the second network device can receive the first indication information sent by the first network device, and determine the phase shift matrix of the second network device based on the first indication information.
  • the first indication information is determined by the first network device based on the channel feedback information, unit arrangement information and block information.
  • the phase shift matrix of the second network device is used to configure the phases of each unit in the second network device, that is, to precode the second network device.
  • the second network device can adjust the phase of each unit of the second network device according to the phase shift matrix configuration to implement precoding of the second network device.
  • the first indication information is determined based on the location information of the terminal device relative to the second network device, where the location information is the unit arrangement information of the first network device based on the channel feedback information. and block information determined.
  • the first indication information includes a first precoding matrix or first information, where the first information is used to indicate the first precoding matrix.
  • the first precoding matrix is determined by the first network device based on the unit arrangement information, the block information, the position information, and the angle information between the first network device and the second network device.
  • the first information may be an index of the first precoding matrix, or may be a first PMI used to indicate the first precoding matrix, or the like.
  • the first indication information includes a second precoding matrix or second information, where the second information is used to indicate the second precoding matrix.
  • the second precoding matrix is determined by the first network device based on the unit arrangement information, the block information and the location information.
  • the second information may be an index of the second precoding matrix, or may be a second PMI used to indicate the second precoding matrix, or the like.
  • the first indication information includes the location information.
  • the angle information between the first network device and the second network device may be departure angle information or incident angle information.
  • the departure angle information refers to the departure angle information of the signal emitted by the first network device;
  • the incident angle information refers to the incident angle information of the signal emitted by the first network device incident on the surface of the second network device.
  • the second network device can receive the angle information between the first network device and the second network device sent by the first network device; the second network device can also sense the angle information by itself, Without the need for the first network device to send.
  • the second network device may determine whether the determination of the first indication information takes into account the communication between the first network device and the second network device according to the pre-provisions of the protocol or the configuration instructions of the first network device. angle information.
  • Step 704 Determine the phase shift matrix of the second network device according to the first indication information.
  • the second network device can determine the phase shift matrix based on the received first indication information, and then configure and adjust the phases of each unit of itself based on the phase shift matrix to implement precoding based on smart metasurfaces.
  • the first indication information includes a first precoding matrix or first information, where the first information is used to indicate the first precoding matrix.
  • the second network device can determine the first precoding matrix according to the first indication information, and then determine the phase shift matrix according to the first precoding matrix.
  • the first indication information includes a second precoding matrix or second information, where the second information is used to indicate the second precoding matrix.
  • the second network device can determine the second precoding matrix according to the first indication information, and then determine the phase shift matrix according to the second precoding matrix and the angle information between the first network device and the second network device.
  • the first indication information includes the location information.
  • the second network device can determine the location information based on the first indication information, and then determine the location information based on the location information, the arrangement information and block information of its own units, and the angle information between the first network device and the second network device. Phase shift matrix.
  • the second network device after determining the phase shift matrix, can configure and adjust the phase of each unit in the second network device according to the phase shift matrix, and based on the adjusted phase, the second network device can configure and adjust the phase of the unit incident on the second network device based on the adjusted phase. 2. Signals on the surface of network equipment are reflected or transmitted.
  • the first precoding matrix or the second precoding matrix is generated by the first network device based on the assumption that the phase of each unit in the second network device is continuously adjustable, that is, the corresponding configuration of the reference phase shift matrix
  • the phase of each unit in the second network device may not be supported by the second network device. Therefore, the second network device can perform quantization according to the phase offset value it supports to obtain the phase shift matrix of the second network device.
  • the block information is used to indicate multiple blocks of the second network device, and sending a reference signal to the terminal device.
  • the reference signal is The signal is used by the terminal device to determine the channel feedback information and receive the first indication information sent by the first network device.
  • the first indication information is determined by the first network device based on the channel feedback information, unit arrangement information and block information. According to The first indication information determines the phase shift matrix of the second network device, and can divide the units of the second network device into multiple groups, so that the far-field hypothesis is established for each group, and at the same time, it effectively reduces the precoding based on the smart metasurface.
  • the complexity improves the communication efficiency of the intelligent metasurface-assisted communication system and reduces interference.
  • FIG. 8 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the second network device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 8, the method may include the following steps:
  • Step 801 Send unit arrangement information and block information of the second network device to the first network device, where the block information is used to indicate multiple blocks of the second network device.
  • the second network device may be a smart metasurface RIS.
  • the second network device may send the unit arrangement information and block information of the second network device to the first network device, where the block information of the second network device is used to indicate the location of the second network device.
  • the unit arrangement information of the second network device can indicate how the units in the second network device are arranged.
  • each block of the second network device is a continuous part of the second network device, such as a continuous RIS surface in the smart metasurface RIS.
  • the first network device can determine how the units in the second network device are arranged by acquiring the unit arrangement information of the second network device; the first network device can determine how the units in the second network device are arranged by acquiring the distribution information of the second network device. block information to determine each block of the second network device.
  • the unit arrangement information may include at least one of the following: the number of rows of the units of the second network device; the number of columns of the units of the second network device; the row spacing of the units of the second network device; The column spacing of the units of the network device; the unit in the second network device that can send the reference signal (it may also be an active unit in the second network device).
  • the block information may include at least one of the following: the number of rows of units included in each block; the number of columns of units included in each block; and the center unit of each block.
  • the unit arrangement information and block information of the second network device can be flexibly configured according to the specific shape of the second network device.
  • the unit arrangement information of the second network device may also include the radius or diameter of the second network device, etc.
  • the block information may also include other information to indicate the second network Each block of the device.
  • Step 802 Send a reference signal to the terminal device.
  • the reference signal is used by the terminal device to determine channel feedback information.
  • the second network device can send a reference signal, which is used by the terminal device to determine channel feedback information.
  • each block of the second network device can send a reference signal. That is, the terminal device can receive the reference signal sent in each block by the second network device, and determine the channel feedback information according to the received reference signal.
  • the channel feedback information can reflect the status of the channel between each block of the second network device and the terminal device.
  • the first network device can determine the first indication information for determining the phase shift matrix of the second network device based on the channel feedback information.
  • the channel feedback information includes: a plurality of third precoding matrix indication PMIs and an index of a reference signal corresponding to each third PMI.
  • the third PMI is used to indicate the precoding matrix of the channel between each block of the second network device and the terminal device.
  • each block of the second network device can send a reference signal
  • the terminal device receives the reference signal sent by each block and estimates it to obtain the precoding matrix of the channel between each block and the terminal device.
  • the precoding matrix of the channel between each block and the terminal device is indicated by a third PMI
  • the reference signal sent by the block is indicated by the index of the reference signal corresponding to the third PMI.
  • the second network device can receive the first reference signal configuration information sent by the first network device, and the second network device can determine each block of the second network device based on the first reference signal configuration information. Transmitted reference signal.
  • the first reference signal configuration information may include at least one of the following:
  • Step 803 Receive first indication information sent by the first network device.
  • the first indication information includes the first precoding matrix or first information.
  • the first information is used to indicate the first precoding matrix.
  • the second network device can receive the first indication information sent by the first network device, and determine the phase shift matrix of the second network device based on the first indication information.
  • the first indication information includes a first precoding matrix or first information, where the first information is used to indicate the first precoding matrix.
  • the first information may be an index of the first precoding matrix, or may be a first PMI used to indicate the first precoding matrix, or the like.
  • the first precoding matrix may be a near-field precoding matrix of the second network device.
  • the first precoding matrix is the unit arrangement information of the first network device, the block information, the position information of the terminal device relative to the second network device, and the relationship between the first network device and the second network device.
  • the angle information between the second network devices is determined.
  • the location information is determined by the first network device based on the channel feedback information, unit arrangement information and block information.
  • the location information can be represented by coordinates.
  • the first network device and the second network device can establish a coordinate system through a coordinate axis establishment method specified in the protocol, and obtain the coordinates of the terminal device in the coordinate system.
  • the first network device and the second network device may also negotiate and determine the coordinate axis establishment method of the coordinate system through signaling.
  • the angle information between the first network device and the second network device may be departure angle information or incident angle information.
  • the departure angle information refers to the departure angle information of the signal emitted by the first network device;
  • the incident angle information refers to the incident angle information of the signal emitted by the first network device incident on the surface of the second network device.
  • Step 804 Determine the phase shift matrix of the second network device according to the first precoding matrix.
  • the second network device can determine the first precoding matrix based on the received first indication information, and then determine the phase shift matrix based on the first precoding matrix, and then based on the phase shift matrix, The configuration adjusts the phase of each unit to achieve precoding based on smart metasurfaces.
  • the first precoding matrix or the second precoding matrix is generated by the first network device based on the assumption that the phase of each unit in the second network device is continuously adjustable, that is, the corresponding configuration of the reference phase shift matrix
  • the phase of each unit in the second network device may not be supported by the second network device. Therefore, the second network device can perform quantization according to the phase offset value it supports to obtain the phase shift matrix of the second network device.
  • Step 805 Reflect or transmit the signal incident on the surface of the first network device according to the phase shift matrix.
  • the second network device after determining the phase shift matrix, can configure and adjust the phase of each unit in the second network device according to the phase shift matrix, and based on the adjusted phase, the second network device can configure and adjust the phase of the unit incident on the second network device based on the adjusted phase. 2. Signals on the surface of network equipment are reflected or transmitted.
  • the block information is used to indicate multiple blocks of the second network device, and sending a reference signal to the terminal device.
  • the reference signal is The signal is used by the terminal device to determine channel feedback information, receive first indication information sent by the first network device, the first indication information includes a first precoding matrix or first information, and determine a second precoding matrix based on the first precoding matrix.
  • the phase shift matrix of the network device can divide the units of the second network device into multiple groups, so that the far-field hypothesis is established for each group. At the same time, it effectively reduces the complexity of precoding based on smart metasurfaces and improves the efficiency of smart metasurfaces. Auxiliary communication system to improve communication efficiency and reduce interference.
  • FIG. 9 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the second network device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 9, the method may include the following steps:
  • Step 901 Send unit arrangement information and block information of the second network device to the first network device, where the block information is used to indicate multiple blocks of the second network device.
  • Step 902 Send a reference signal to the terminal device.
  • the reference signal is used by the terminal device to determine channel feedback information.
  • steps 901 to 902 can be implemented in any manner in the embodiments of the present application.
  • the embodiment of the present application does not limit this and will not be described again.
  • Step 903 Receive first indication information sent by the first network device.
  • the first indication information includes a second precoding matrix or second information.
  • the second information is used to indicate the second precoding matrix.
  • the second network device can receive the first indication information sent by the first network device, and determine the phase shift matrix of the second network device based on the first indication information.
  • the first indication information includes a second precoding matrix or second information, where the second information is used to indicate the second precoding matrix.
  • the second information may be an index of the second precoding matrix, or may be a second PMI used to indicate the second precoding matrix, or the like.
  • the second precoding matrix may be a near-field precoding matrix of the second network device.
  • the second precoding matrix is determined by the first network device based on the unit arrangement information, the block information, and the position information of the terminal device relative to the second network device.
  • the location information is determined by the first network device based on the channel feedback information, unit arrangement information and block information.
  • the location information can be represented by coordinates.
  • the first network device and the second network device can establish a coordinate system through a coordinate axis establishment method specified in the protocol, and obtain the coordinates of the terminal device in the coordinate system.
  • the first network device and the second network device may also negotiate and determine the coordinate axis establishment method of the coordinate system through signaling.
  • Step 904 Determine the phase shift matrix of the second network device based on the second precoding matrix and the angle information between the first network device and the second network device.
  • the second network device can determine the second precoding matrix according to the received first indication information, and then determine the second precoding matrix according to the second precoding matrix and the communication between the first network device and the second network device.
  • Angle information is used to determine the phase shift matrix, and then based on the phase shift matrix, the phase of each unit is configured and adjusted to achieve precoding based on smart metasurfaces.
  • the first network device after determining the phase shift matrix, can configure and adjust the phase of each unit in the first network device according to the phase shift matrix, and based on the adjusted phase, the first network device can configure and adjust the phase of the unit incident on the first network device based on the adjusted phase. Signals on the surface of a network device are reflected or transmitted.
  • the angle information between the first network device and the second network device may be departure angle information or incident angle information.
  • the departure angle information refers to the departure angle information of the signal emitted by the first network device;
  • the incident angle information refers to the incident angle information of the signal emitted by the first network device incident on the surface of the second network device.
  • the second network device can receive the angle information between the first network device and the second network device sent by the first network device; the second network device can also sense the angle information by itself without the first network device. device sends.
  • Step 905 Reflect or transmit the signal incident on the surface of the first network device according to the phase shift matrix.
  • the second network device after determining the phase shift matrix, can configure and adjust the phase of each unit in the second network device according to the phase shift matrix, and based on the adjusted phase, the second network device can configure and adjust the phase of the unit incident on the second network device based on the adjusted phase. 2. Signals on the surface of network equipment are reflected or transmitted.
  • the block information is used to indicate multiple blocks of the second network device, and sending a reference signal to the terminal device.
  • the reference signal is The signal is used by the terminal device to determine channel feedback information, receive first indication information sent by the first network device, the first indication information includes a second precoding matrix or second information, and determine the second precoding matrix based on the second precoding matrix.
  • the phase shift matrix of the network device can divide the units of the second network device into multiple groups, so that the far-field hypothesis is established for each group. At the same time, it effectively reduces the complexity of precoding based on smart metasurfaces and improves the efficiency of smart metasurfaces. Auxiliary communication system to improve communication efficiency and reduce interference.
  • FIG 10 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the second network device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 10, the method may include the following steps:
  • Step 1001 Send unit arrangement information and block information of the second network device to the first network device, where the block information is used to indicate multiple blocks of the second network device.
  • Step 1002 Send a reference signal to the terminal device.
  • the reference signal is used by the terminal device to determine channel feedback information.
  • steps 1001 to 1002 can be implemented in any manner in the embodiments of the present application.
  • the embodiment of the present application does not limit this and will not be described again.
  • Step 1003 Receive first indication information sent by the first network device, where the first indication information includes location information of the terminal device relative to the second network device.
  • the second network device can receive the first indication information sent by the first network device, and determine the phase shift matrix of the second network device based on the first indication information.
  • the first indication information includes position information of the terminal device relative to the second network device, where the position information is determined by the first network device based on the channel feedback information, unit arrangement information and block information. of.
  • the second precoding matrix is determined by the first network device based on the unit arrangement information, the block information, and the position information of the terminal device relative to the second network device.
  • the location information can be represented by coordinates.
  • the first network device and the second network device can establish a coordinate system through a coordinate axis establishment method specified in the protocol, and obtain the coordinates of the terminal device in the coordinate system.
  • the first network device and the second network device may also negotiate and determine the coordinate axis establishment method of the coordinate system through signaling.
  • the second network device can determine and use the location of the terminal device based on the coordinate system and the coordinates of the terminal device.
  • Step 1004 Determine the phase shift matrix of the second network device based on the position information, unit arrangement information and block information, and angle information between the first network device and the second network device.
  • the second network device can determine the position information of the terminal device relative to itself based on the received first indication information, and then, based on the position information, its own unit arrangement information and block information, and the third The angle information between one network device and the second network device determines the phase shift matrix, and then configures and adjusts the phase of each unit according to the phase shift matrix to achieve precoding based on smart metasurfaces.
  • the first network device after determining the phase shift matrix, can configure and adjust the phase of each unit in the first network device according to the phase shift matrix, and based on the adjusted phase, the first network device can configure and adjust the phase of the unit incident on the first network device based on the adjusted phase. Signals on the surface of a network device are reflected or transmitted.
  • the angle information between the first network device and the second network device may be departure angle information or incident angle information.
  • the departure angle information refers to the departure angle information of the signal emitted by the first network device;
  • the incident angle information refers to the incident angle information of the signal emitted by the first network device incident on the surface of the second network device.
  • the second network device can receive the angle information between the first network device and the second network device sent by the first network device; the second network device can also sense the angle information by itself without the first network device. device sends.
  • Step 1005 Reflect or transmit the signal incident on the surface of the first network device according to the phase shift matrix.
  • the second network device after determining the phase shift matrix, can configure and adjust the phase of each unit in the second network device according to the phase shift matrix, and based on the adjusted phase, the second network device can configure and adjust the phase of the unit incident on the second network device based on the adjusted phase. 2. Signals on the surface of network equipment are reflected or transmitted.
  • the block information is used to indicate multiple blocks of the second network device, and sending a reference signal to the terminal device.
  • the reference signal is The signal is used by the terminal device to determine channel feedback information, receive first indication information sent by the first network device, the first indication information includes a second precoding matrix or second information, and determine the location of the second network device based on the location information.
  • the phase shift matrix can divide the units of the second network device into multiple groups, so that the far-field hypothesis is established for each group, while effectively reducing the complexity of precoding based on smart metasurfaces and improving smart metasurface-assisted communication. Improve system communication efficiency and reduce interference.
  • FIG 11 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the terminal device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 11, the method may include the following steps:
  • Step 1101 Receive the reference signal sent by each block of the second network device.
  • the terminal device can receive the reference signal sent in each block by the second network device, and perform channel estimation based on the reference signal.
  • the reference signal is sent by the second network device based on the first reference signal configuration information sent by the first network device.
  • the second network device may be a smart metasurface RIS.
  • the terminal device can receive the second reference signal configuration information sent by the first network device, and receive the reference signal sent by the second network device according to the second reference signal configuration information.
  • the second reference signal configuration information includes at least one of the following:
  • the channel used by the terminal device to receive the reference signal configuration information sent by the first network device may be a channel that passes through the second network device, or it may be a direct-view channel that does not pass through the second network device. This application No limitation is made here.
  • Step 1102 Determine channel feedback information of the channel between the second network device and the terminal device based on the reference signal.
  • the terminal device can estimate the channel between the second network device and the terminal device based on the reference signal, and obtain channel feedback information of the channel.
  • the channel feedback information can reflect the status of the channel between each block of the second network device and the terminal device.
  • the first network device can determine the first indication information for determining the phase shift matrix of the second network device based on the channel feedback information.
  • the channel feedback information includes: a plurality of third precoding matrix indication PMIs and an index of a reference signal corresponding to each third PMI.
  • the third PMI is used to indicate the precoding matrix of the channel between each block of the second network device and the terminal device.
  • each block of the second network device can send a reference signal
  • the terminal device receives the reference signal sent by each block and estimates it to obtain the precoding matrix of the channel between each block and the terminal device.
  • the precoding matrix of the channel between each block and the terminal device is indicated by a third PMI
  • the reference signal sent by the block is indicated by the index of the reference signal corresponding to the third PMI.
  • the terminal device can estimate the channel based on the received reference signal by using the least squares (LS) method or the minimum mean square error (MMSE) method. Estimation, other estimation algorithms, etc. can also be used, and this application is not limited to this.
  • LS least squares
  • MMSE minimum mean square error
  • Step 1103 Send the channel feedback information to the first network device.
  • the channel feedback information is used to determine first indication information.
  • the first indication information is used to determine the phase shift matrix of the second network device.
  • the terminal device after the terminal device estimates the channel between the first network device and the terminal device and obtains the channel feedback information of the channel, it can send the channel feedback information to the second network device.
  • the channel feedback information is used to determine the first indication information
  • the first indication information is used to determine the phase shift matrix of the second network device.
  • the channel feedback information can be used to determine the location information of the terminal device relative to the second network device, and the first network device can determine the first indication information based on the location information.
  • the first indication information includes a first precoding matrix or first information, where the first information is used to indicate the first precoding matrix.
  • the first information may be an index of the first precoding matrix, or may be a first PMI used to indicate the first precoding matrix, or the like.
  • the first indication information includes a second precoding matrix or second information, where the second information is used to indicate the second precoding matrix.
  • the second information may be an index of the second precoding matrix, or may be a second PMI used to indicate the second precoding matrix, or the like.
  • the first indication information includes the location information.
  • the channel used by the terminal device to send channel feedback information to the first network device may be a channel that passes through the second network device, or it may be a direct-view channel that does not pass through the second network device. This application is here Not limited.
  • the channel feedback information is used to determine the first indication information
  • the first indication information is used to determine the phase shift matrix of the second network device
  • the units of the second network device can be divided into multiple groups, so that the far field hypothesis is correct for each A group was established, which effectively reduced the complexity of precoding based on smart metasurfaces, improved the communication efficiency of smart metasurface-assisted communication systems, and reduced interference.
  • Figure 12 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the terminal device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 12, the method may include the following steps:
  • Step 1201 Receive second reference signal configuration information sent by the first network device.
  • the terminal device can receive the second reference signal configuration information sent by the first network device, and receive the reference signal sent by each block of the second network device according to the second reference signal configuration information.
  • the second reference signal configuration information includes at least one of the following:
  • the channel used by the terminal device to receive the reference signal configuration information sent by the first network device may be a channel that passes through the second network device, or it may be a direct-view channel that does not pass through the second network device. This application No limitation is made here.
  • Step 1202 Receive the reference signal sent by each block of the second network device according to the second reference signal configuration information.
  • the terminal device can receive the reference signal sent by each block of the second network device according to the received second reference signal configuration information.
  • the reference signal sent by the second network device is determined based on the first reference signal configuration information.
  • the first reference signal configuration information may include at least one of the following:
  • the terminal device can receive the reference signal sent by the second network device based on the first reference signal configuration information according to the second reference signal configuration information.
  • Step 1203 Determine channel feedback information of the channel between the second network device and the terminal device based on the reference signal.
  • the terminal device can estimate the channel between the second network device and the terminal device based on the reference signal, and obtain channel feedback information of the channel.
  • the channel feedback information can reflect the status of the channel between each block of the second network device and the terminal device.
  • the first network device can determine the first indication information for determining the phase shift matrix of the second network device based on the channel feedback information.
  • the channel feedback information includes: a plurality of third precoding matrix indication PMIs and an index of a reference signal corresponding to each third PMI.
  • the third PMI is used to indicate the precoding matrix of the channel between each block of the second network device and the terminal device.
  • each block of the second network device can send a reference signal
  • the terminal device receives the reference signal sent by each block and estimates it to obtain the precoding matrix of the channel between each block and the terminal device.
  • the precoding matrix of the channel between each block and the terminal device is indicated by a third PMI
  • the reference signal sent by the block is indicated by the index of the reference signal corresponding to the third PMI.
  • the method for terminal equipment to perform channel estimation based on the received reference signal can use the least square method LS for estimation, the minimum mean square error method MMSE for estimation, and other estimation algorithms can also be used. This article There are no restrictions on this application.
  • Step 1204 Send the channel feedback information to the first network device.
  • the terminal device after the terminal device estimates the channel between the first network device and the terminal device and obtains the channel feedback information of the channel, it can send the channel feedback information to the second network device.
  • the channel feedback information is used to determine the first indication information
  • the first indication information is used to determine the phase shift matrix of the second network device.
  • the channel feedback information can be used to determine the location information of the terminal device relative to the second network device, and the first network device can determine the first indication information based on the location information.
  • the first indication information includes a first precoding matrix or first information, where the first information is used to indicate the first precoding matrix.
  • the first information may be an index of the first precoding matrix, or may be a first PMI used to indicate the first precoding matrix, or the like.
  • the first indication information includes a second precoding matrix or second information, where the second information is used to indicate the second precoding matrix.
  • the second information may be an index of the second precoding matrix, or may be a second PMI used to indicate the second precoding matrix, or the like.
  • the first indication information includes the location information.
  • the channel used by the terminal device to send channel feedback information to the first network device may be a channel that passes through the second network device, or it may be a direct-view channel that does not pass through the second network device. This application is here Not limited.
  • Channel feedback information of the channel between the network device and the terminal device, sending the channel feedback information to the first network device can divide the units of the second network device into multiple groups, so that the far-field hypothesis is established for each group and is effective at the same time It reduces the complexity of precoding based on smart metasurfaces, improves the communication efficiency of smart metasurface-assisted communication systems, and reduces interference.
  • Figure 13 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 13, the method may include the following steps:
  • the first network device obtains the unit arrangement information and block information of the second network device.
  • the block information is used to indicate multiple blocks of the second network device.
  • the first network device sends the first reference signal configuration information and the second reference signal configuration information to the second network device and the terminal device respectively.
  • the second reference signal configuration information may be the same as the first reference configuration information, or may be different (for example, the second reference signal configuration information may not include the reference signal transmitted in each block). units in the block occupied).
  • the second network device sends the reference signal to the terminal device according to the reference signal configuration information.
  • the terminal device receives the reference signal sent by the second network device according to the reference signal configuration information.
  • the terminal device estimates the channel between the second network device and the terminal device based on the reference signal, and obtains channel feedback information.
  • the first network device determines the position information of the terminal device relative to the second network device based on the channel feedback information, unit arrangement information and block information.
  • the first indication information includes a first precoding matrix or first information, where the first information is used to indicate the first precoding matrix.
  • the first precoding matrix is determined by the first network device based on the unit arrangement information, the block information, the position information, and the angle information between the first network device and the second network device.
  • the first indication information includes a second precoding matrix or second information, where the second information is used to indicate the second precoding matrix.
  • the second precoding matrix is determined by the first network device based on the unit arrangement information, the block information and the location information.
  • the first indication information includes the location information.
  • the second network device determines the phase shift matrix according to the first indication information.
  • the second network device reflects or transmits the signal incident on the surface of the second network device according to the phase shift matrix.
  • the precoding method based on smart metasurfaces provided by the embodiments of this application can divide the units of the second network device into multiple groups, so that the far-field hypothesis is established for each group, and at the same time, it effectively reduces the risk of errors based on smart metasurfaces.
  • the complexity of precoding improves the communication efficiency of the intelligent metasurface-assisted communication system and reduces interference.
  • this application also provides a precoding device based on smart metasurfaces. Since the precoding device based on smart metasurfaces provided in the embodiments of this application is consistent with The methods provided by the above embodiments correspond to each other. Therefore, the implementation of the precoding method based on smart metasurface is also applicable to the precoding device based on smart metasurface provided in the following embodiments, which will not be detailed in the following embodiments. describe.
  • Figure 14 is a schematic structural diagram of a precoding device based on a smart metasurface provided by an embodiment of the present application.
  • the smart metasurface-based precoding device 1400 includes: a transceiver unit 1410 and a processing unit 1420, wherein: the transceiver unit 1410 is used to obtain unit arrangement information and block information of the second network device, The block information is used to indicate multiple blocks of the second network device; the transceiver unit 1410 is also used to receive channel feedback information sent by the terminal device. The channel feedback information is the terminal device based on each of the second network devices.
  • the processing unit 1420 is configured to determine the first indication information based on the channel feedback information, the unit arrangement information and the block information, and the first indication information is used to determine the second The phase shift matrix of the network device; the transceiver unit 1410 is also used to send the first indication information to the second network device.
  • the processing unit 1420 is also configured to: determine the location information of the terminal device relative to the second network device according to the channel feedback information, the unit arrangement information and the block information; determine based on the location information the first instruction information.
  • the first indication information includes the location information, and the location information is used by the second network device to determine the phase shift matrix.
  • the first indication information includes a first precoding matrix or first information, the first information is used to indicate the first precoding matrix; the processing unit 1420 is specifically configured to: according to the unit arrangement information, the The blocking information, the position information, and the angle information between the first network device and the second network device determine the first precoding matrix.
  • the first indication information includes a second precoding matrix or second information, the second information is used to indicate the second precoding matrix; the processing unit 1420 is specifically configured to: according to the unit arrangement information, the The block information and the position information determine the second precoding matrix.
  • the transceiver unit 1410 is also configured to send angle information between the first network device and the second network device to the second network device.
  • the transceiver unit 1410 is further configured to: send first reference signal configuration information to the second network device according to the unit arrangement information and the block information, where the first reference signal configuration information is used to determine the third Two network devices send reference signals in each block.
  • the first reference signal configuration information includes at least one of the following: the unit in the block occupied by the reference signal sent in each block; the generation information of the reference signal sequence sent in each block; The antenna port number occupied by the reference signal sent in each block; the time-frequency resource occupied by the reference signal sent in each block.
  • the transceiver unit 1410 is also configured to: send second reference signal configuration information to the terminal device according to the unit arrangement information and the block information.
  • the second reference signal configuration information is used by the terminal device to receive the The reference signal sent by the second network device in each block.
  • the second reference signal configuration information includes at least one of the following: the generation information of the reference signal sequence sent in each block; the antenna port number occupied by the reference signal sent in each block; The time-frequency resources occupied by reference signals sent in blocks.
  • the channel feedback information includes: a plurality of third precoding matrix indication PMIs and an index of a reference signal corresponding to each third PMI; the third PMI is used to indicate each block of the second network device and The precoding matrix for the channel between the terminal devices.
  • the unit arrangement information of the second network device includes at least one of the following: the number of rows of the units of the second network device; the number of columns of the units of the second network device; row spacing; column spacing of units of the second network device; units in the second network device capable of transmitting reference signals.
  • the block information of the second network device includes at least one of the following: the number of rows of units included in each block; the number of columns of units included in each block; and the center unit of each block.
  • the second network device is an intelligent metasurface RIS.
  • the phase shift matrix is used by the second network device to reflect or transmit signals incident on the surface of the second network device.
  • the precoding device based on the intelligent metasurface of this embodiment can obtain the unit arrangement information and block information of the second network device.
  • the block information is used to indicate multiple blocks of the second network device, and the receiving terminal
  • the channel feedback information sent by the device determines the first indication information based on the channel feedback information, the unit arrangement information and the block information.
  • the first indication information is used to determine the phase shift matrix of the second network device and provide the information to the second network device.
  • the second network device sends the first instruction information, which can divide the units of the second network device into multiple groups, so that the far-field hypothesis is established for each group, while effectively reducing the complexity of precoding based on smart metasurfaces and improving It improves the communication efficiency of the intelligent metasurface-assisted communication system and reduces interference.
  • FIG. 15 is a schematic structural diagram of a precoding device based on a smart metasurface provided by an embodiment of the present application.
  • the smart metasurface-based precoding device 1500 includes: a transceiver unit 1510 and a processing unit 1520, wherein: the transceiver unit 1510 is used to send the unit arrangement information of the second network device to the first network device. and block information, the block information is used to indicate multiple blocks of the second network device; the transceiver unit 1510 is also used to send a reference signal to the terminal device, the reference signal is used by the terminal device to determine the channel feedback information ; The transceiver unit 1510 is also used to receive the first indication information sent by the first network device. The first indication information is determined by the first network device based on the channel feedback information, the unit arrangement information and the block information.
  • the processing unit 1520 is configured to determine the phase shift matrix of the second network device according to the first indication information.
  • the first indication information is determined based on the location information of the terminal device relative to the second network device; the location information is determined by the first network device based on the channel feedback information, the unit arrangement information and the distribution information. Block information is determined.
  • the first indication information includes position information of the terminal device relative to the second network device, and determining the phase shift matrix of the second network device according to the first indication information includes: according to the position information, The unit arrangement information and the block information determine the phase shift matrix of the second network device.
  • the first indication information includes a first precoding matrix or first information
  • the first information is used to indicate the first precoding matrix
  • the processing unit 1520 is specifically configured to: according to the first precoding matrix, Determine the phase shift matrix of the second network device; wherein the first precoding matrix is based on the unit arrangement information, the block information, the position information of the terminal device relative to the second network device, and the first The angle information between the network device and the second network device is determined.
  • the first indication information includes a second precoding matrix or second information
  • the second information is used to indicate the second precoding matrix
  • the processing unit 1520 is specifically configured to: according to the second precoding matrix, and the angle information between the first network device and the second network device to determine the phase shift matrix of the second network device; wherein the second precoding matrix is based on the unit arrangement information, the block information, and the location information of the terminal device relative to the second network device is determined.
  • the transceiver unit 1510 is also configured to: receive the angle information between the first network device and the second network device sent by the first network device; or sense the first angle information sent by the first network device. Angle information between the network device and the second network device.
  • the transceiver unit 1510 is also configured to: receive the first reference signal configuration information sent by the first network device; and determine, according to the first reference signal configuration information, the block sent by the second network device. reference signal.
  • the first reference signal configuration information includes at least one of the following: the unit in the block occupied by the reference signal sent in each block; the generation information of the reference signal sequence sent in each block; The antenna port number occupied by the reference signal sent in each block; the time-frequency resource occupied by the reference signal sent in each block.
  • the channel feedback information includes: a plurality of third precoding matrix indication PMIs and an index of a reference signal corresponding to each third PMI; the third PMI is used to indicate each block of the second network device and The precoding matrix for the channel between the terminal devices.
  • the unit arrangement information of the second network device includes at least one of the following: the number of rows of the units of the second network device; the number of columns of the units of the second network device; row spacing; column spacing of units of the second network device; units in the second network device capable of transmitting reference signals.
  • the block information of the second network device includes at least one of the following: the number of rows of units included in each block; the number of columns of units included in each block; and the center unit of each block.
  • the second network device is an intelligent metasurface RIS.
  • the processing unit 1520 is also configured to reflect or transmit signals incident on the surface of the second network device according to the phase shift matrix.
  • the precoding device based on the intelligent metasurface of this embodiment can send unit arrangement information and block information of the second network device to the first network device.
  • the block information is used to indicate multiple blocks of the second network device. block, sending a reference signal to the terminal device, the reference signal being used by the terminal device to determine the channel feedback information, and receiving the first indication information sent by the first network device, the first indication information being based on the channel feedback information by the first network device, unit If the arrangement information and block information are determined, the phase shift matrix of the second network device is determined according to the first indication information, and the units of the second network device can be divided into multiple groups, so that the far field hypothesis is established for each group, At the same time, it effectively reduces the complexity of precoding based on smart metasurfaces, improves the communication efficiency of smart metasurface-assisted communication systems, and reduces interference.
  • FIG. 16 is a schematic structural diagram of a precoding device based on a smart metasurface provided by an embodiment of the present application.
  • the smart metasurface-based precoding device 1600 includes: a transceiver unit 1610 and a processing unit 1620, wherein: the transceiver unit 1610 is used to receive the reference signal sent by each block of the second network device; and process The unit 1620 is configured to determine the channel feedback information of the channel between the second network device and the terminal device according to the reference signal; the transceiver unit 1610 is also configured to send the channel feedback information to the first network device.
  • the feedback information is used to determine first indication information, and the first indication information is used to determine the phase shift matrix of the second network device.
  • the transceiver unit 1610 is also configured to: receive second reference signal configuration information sent by the first network device; receive reference signals sent by each block of the second network device according to the second reference signal configuration information. .
  • the second reference signal configuration information includes at least one of the following: the generation information of the reference signal sequence sent in each block; the antenna port number occupied by the reference signal sent in each block; The time-frequency resources occupied by reference signals sent in blocks.
  • the channel feedback information includes: a plurality of third precoding matrix indication PMIs and an index of a reference signal corresponding to each third PMI; the third PMI is used to indicate each block of the second network device and The precoding matrix for the channel between the terminal devices.
  • the second network device is an intelligent metasurface RIS.
  • the precoding device based on the intelligent metasurface of this embodiment can send unit arrangement information and block information of the second network device to the first network device.
  • the block information is used to indicate multiple blocks of the second network device. block, sending a reference signal to the terminal device, the reference signal being used by the terminal device to determine channel feedback information, and receiving first indication information sent by the first network device, where the first indication information includes a second precoding matrix or second information,
  • the phase shift matrix of the second network device is determined, and the units of the second network device can be divided into multiple groups, so that the far-field hypothesis is established for each group, and at the same time, the precoding based on the smart metasurface is effectively reduced. complexity, improves the communication efficiency of intelligent metasurface-assisted communication systems and reduces interference.
  • embodiments of the present application also provide a communication device, including: a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory, so that the device executes the steps shown in Figure 2 to The method shown in the embodiment of Figure 5, or the method shown in the embodiment of Figures 7 to 10 is performed.
  • embodiments of the present application also provide a communication device, including: a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory, so that the device executes the steps shown in Figures 11 to 11.
  • embodiments of the present application also provide a communication device, including: a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to Perform the method shown in the embodiment of FIGS. 2 to 5 , or perform the method shown in the embodiment of FIGS. 7 to 10 .
  • embodiments of the present application also provide a communication device, including: a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to The method shown in the embodiment of FIG. 11 to FIG. 12 is executed.
  • FIG. 17 is a schematic structural diagram of another smart metasurface-based precoding device provided by an embodiment of the present application.
  • the smart metasurface-based precoding device 1700 may be a network device, a terminal device, a chip, a chip system, a processor, etc. that supports network devices to implement the above methods, or a terminal device that supports the implementation of the above methods. Chip, chip system, or processor, etc.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • the smart metasurface-based precoding device 1700 may include one or more processors 1701 .
  • the processor 1701 may be a general-purpose processor or a special-purpose processor, or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to process precoding devices based on smart metasurfaces (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) Control, execute computer programs, and process data from computer programs.
  • the smart metasurface-based precoding device 1700 may also include one or more memories 1702, on which a computer program 1703 may be stored, and the processor 1701 executes the computer program 1703, so that the smart metasurface-based precoding
  • the device 1700 performs the method described in the above method embodiment.
  • the computer program 1703 may be solidified in the processor 1701, in which case the processor 1701 may be implemented by hardware.
  • the memory 1702 may also store data.
  • the smart metasurface-based precoding device 1700 and the memory 1702 can be set up separately or integrated together.
  • the smart metasurface-based precoding device 1700 may also include a transceiver 1705 and an antenna 1706.
  • the transceiver 1705 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1705 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the smart metasurface-based precoding device 1700 may also include one or more interface circuits 1707.
  • the interface circuit 1707 is used to receive code instructions and transmit them to the processor 1701 .
  • the processor 1701 executes code instructions to cause the smart metasurface-based precoding device 1700 to execute the method described in the above method embodiment.
  • the processor 1701 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the smart metasurface-based precoding device 1700 may include a circuit, and the circuit may implement the sending or receiving or communication functions in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the smart metasurface-based precoding device described in the above embodiments may be a network device or a terminal device, but the scope of the smart metasurface-based precoding device described in this application is not limited to this, and the smart metasurface-based precoding device
  • the structure of the encoding device may not be limited by FIGS. 14-16.
  • the smart metasurface-based precoding device can be a stand-alone device or can be part of a larger device.
  • a precoding device based on smart metasurfaces can be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the precoding device based on the smart metasurface can be a chip or a chip system
  • the chip shown in Figure 18 includes a processor 1801 and an interface 1802.
  • the number of processors 1801 may be one or more, and the number of interfaces 1802 may be multiple.
  • Interface 1802 for code instructions and transmission to the processor
  • the processor 1801 is configured to run code instructions to perform the methods shown in Figures 2 to 5, or to perform the methods shown in Figures 7 to 10.
  • Interface 1802 for code instructions and transmission to the processor
  • the processor 1801 is used to run code instructions to perform the methods shown in Figure 11 to Figure 12.
  • the chip also includes a memory 1803, which is used to store necessary computer programs and data.
  • Embodiments of the present application also provide a communication system, which includes the smart metasurface-based precoding device as the network device and the smart metasurface-based precoding device as the terminal device in the aforementioned embodiments of FIGS. 14-16, or , the system includes the smart metasurface-based precoding device as the terminal device and the smart metasurface-based precoding device as the network device in the aforementioned embodiment of Figure 17 .
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • a computer program product includes one or more computer programs.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program may be transmitted from a website, computer, server or data center via a wireline (e.g.
  • Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless means to transmit to another website, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or other integrated media that contains one or more available media. Available media may be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks (SSD)) )wait.
  • magnetic media e.g., floppy disks, hard disks, tapes
  • optical media e.g., high-density digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • the corresponding relationships shown in each table in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种基于智能超表面的预编码方法及装置,通过获取第二网络设备的单元排布信息和分块信息,该分块信息用于指示该第二网络设备的多个分块,接收终端设备发送的信道反馈信息,根据该信道反馈信息,该单元排布信息和该分块信息,确定第一指示信息,该第一指示信息用于确定该第二网络设备的相移矩阵,向该第二网络设备发送该第一指示信息,能够将第二网络设备的单元分成多个小组,使得远场假设对每个小组成立,同时有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。

Description

基于智能超表面的预编码方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种基于智能超表面的预编码方法及装置。
背景技术
由于传统通信中无线环境的不可控性往往会降低服务质量,因此,研究将智能超表面(Reconfigurable Intelligent Surface,RIS)部署在无线传输环境中各类物体的表面,有望突破传统无线信道的不可控性,构建智能可编程无线,引入未来无线通信的新范式。
但RIS阵列的尺寸往往很大,与传播距离具有可比性,传统远场假设的预编码方案可能不再适用。
发明内容
本申请第一方面实施例提出了一种基于智能超表面的预编码方法,所述方法由第一网络设备执行,所述方法包括:
获取第二网络设备的单元排布信息和分块信息,所述分块信息用于指示所述第二网络设备的多个分块;
接收终端设备发送的信道反馈信息,所述信道反馈信息是所述终端设备基于所述第二网络设备的每个分块发送的参考信号确定的;
根据所述信道反馈信息,所述单元排布信息和所述分块信息,确定第一指示信息,所述第一指示信息用于确定所述第二网络设备的相移矩阵;
向所述第二网络设备发送所述第一指示信息。
本申请第二方面实施例提出了一种基于智能超表面的预编码方法,所述方法由第二网络设备执行,所述方法包括:
向第一网络设备发送所述第二网络设备的单元排布信息和分块信息,所述分块信息用于指示所述第二网络设备的多个分块;
向终端设备发送参考信号,所述参考信号用于所述终端设备确定信道反馈信息;
接收所述第一网络设备发送的第一指示信息,所述第一指示信息是所述第一网络设备基于所述信道反馈信息,所述单元排布信息和所述分块信息确定的;
根据所述第一指示信息,确定所述第二网络设备的相移矩阵。
本申请第三方面实施例提出了一种基于智能超表面的预编码方法,所述方法由终端设备执行,所述方法包括:
接收第二网络设备的每个分块发送的参考信号;
根据所述参考信号,确定所述第二网络设备与所述终端设备之间的信道的信道反馈信息;
向第一网络设备发送所述信道反馈信息,所述信道反馈信息用于确定第一指示信息,所述第一指示信息用于确定所述第二网络设备的相移矩阵。
本申请第四方面实施例提出了一种基于智能超表面的预编码装置,所述装置应用于第一网络设备,所述装置包括:
收发单元,用于获取第二网络设备的单元排布信息和分块信息,所述分块信息用于指示所述第二 网络设备的多个分块;
所述收发单元,还用于接收终端设备发送的信道反馈信息,所述信道反馈信息是所述终端设备基于所述第二网络设备的每个分块发送的参考信号确定的;
处理单元,用于根据所述信道反馈信息,所述单元排布信息和所述分块信息,确定第一指示信息,所述第一指示信息用于确定所述第二网络设备的相移矩阵;
所述收发单元,还用于向所述第二网络设备发送所述第一指示信息。
本申请第五方面实施例提出了一种基于智能超表面的预编码装置,所述装置应用于第二网络设备,所述装置包括:
收发单元,用于向第一网络设备发送所述第二网络设备的单元排布信息和分块信息,所述分块信息用于指示所述第二网络设备的多个分块;
所述收发单元,还用于向终端设备发送参考信号,所述参考信号用于所述终端设备确定信道反馈信息;
所述收发单元,还用于接收所述第一网络设备发送的第一指示信息,所述第一指示信息是所述第一网络设备基于所述信道反馈信息,所述单元排布信息和所述分块信息确定的;
处理单元,用于根据所述第一指示信息,确定所述第二网络设备的相移矩阵。
本申请第六方面实施例提出了一种基于智能超表面的预编码装置,所述装置应用于终端设备,所述装置包括:
收发单元,用于接收第二网络设备的每个分块发送的参考信号;
处理单元,用于根据所述参考信号,确定所述第二网络设备与所述终端设备之间的信道的信道反馈信息;
所述收发单元,还用于向第一网络设备发送所述信道反馈信息,所述信道反馈信息用于确定第一指示信息,所述第一指示信息用于确定所述第二网络设备的相移矩阵。
本申请第七方面实施例提出了一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行上述第一方面实施例所述的基于智能超表面的预编码方法,或者执行上述第二方面实施例所述的基于智能超表面的预编码方法。
本申请第八方面实施例提出了一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行上述第三方面实施例所述的基于智能超表面的预编码方法,或者执行上述第四方面实施例所述的基于智能超表面的预编码方法。
本申请第九方面实施例提出了一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面实施例所述的基于智能超表面的预编码方法,或者执行上述第二方面实施例所述的基于智能超表面的预编码方法。
本申请第十方面实施例提出了一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第三方面实施例所述的基于智能超表面的预编码方法。
本申请第十一方面实施例提出了一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使上述第一方面实施例所述的基于智能超表面的预编码方法被实现,或者使上述第二方面实施例所述的基于智能超表面的预编码方法被实现。
本申请第十二方面实施例提出了一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使上述第三方面实施例所述的基于智能超表面的预编码方法被实现。
本申请第十三方面实施例提出了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面实施例所述的基于智能超表面的预编码方法,或者执行上述第二方面实施例所述的基于智能超表面的预编码方法。
本申请第十四方面实施例提出了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第三方面实施例所述的基于智能超表面的预编码方法。
本申请实施例提供的一种基于智能超表面的预编码方法及装置,通过获取第二网络设备的单元排布信息和分块信息,该分块信息用于指示该第二网络设备的多个分块,接收终端设备发送的信道反馈信息,根据该信道反馈信息,该单元排布信息和该分块信息,确定第一指示信息,该第一指示信息用于确定该第二网络设备的相移矩阵,向该第二网络设备发送该第一指示信息,能够将第二网络设备的单元分成多个小组,使得远场假设对每个小组成立,同时有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图3是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图4是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图5是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图6a是本申请实施例提供的一种终端设备和第二网络设备的空间位置示意图;
图6b是本申请实施例提供的一种终端设备和第二网络设备的空间xz轴平面示意图;
图6c是本申请实施例提供的一种终端设备和第二网络设备的空间yz轴平面示意图;
图7是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图8是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图9是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图10是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图11是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图12是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图13是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图14是本申请实施例提供的一种基于智能超表面的预编码装置的结构示意图;
图15是本申请实施例提供的一种基于智能超表面的预编码装置的结构示意图;
图16是本申请实施例提供的一种基于智能超表面的预编码装置的结构示意图;
图17是本申请实施例提供的另一种基于智能超表面的预编码装置的结构示意图;
图18是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请实施例的一些方面相一致的装置和方法的例子。
在本申请实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
为了更好的理解本申请实施例公开的一种基于智能超表面的预编码方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个第一网络设备,一个第二网络设备和终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备和两个或两个以上的终端设备。图1所示的通信系统以包括一个第一网络设备101,一个第二网络设备102和一个终端设备103为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(Long Term Evolution,LTE)系统、第五代移动通信系统、5G新空口系统,或者其他未来的新型移动通信系统等。
本申请实施例中的第一网络设备101是网络侧的一种用于发射或接收信号的实体。例如,第一网络设备101可以为演进型基站(Evolved NodeB,eNB)、传输点(Transmission Reception Point,TRP)、NR系统中的下一代基站(Next Generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(Wireless Fidelity,WiFi)系统中的接入节点等。本申请的实施例对接入网设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的接入网络设备可以是由集中单元(Central Unit,CU) 与分布式单元(Distributed Unit,DU)组成的,其中,CU也可以称为控制单元(Control Unit),采用CU-DU的结构可以将接入网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的第二网络设备102是一种能够对通信信道进行调控的装置。第二网络设备102中配备了大量的(电磁)单元,并能够通过调整(电磁)单元的物理性质(如容抗、阻抗或感抗),来改变(电磁)单元的辐射特性,进而可以对空间中的电磁波进行动态调控,以在空间中形成特定方向的波束。例如,第二网络设备102可以为智能超表面(Reconfigurable Intelligent Surface,RIS)等。在本申请实施例中,第二网络设备102中的(电磁)单元可以是有源的,也可以是无源的;可以是第二网络设备102中的部分(电磁)单元是有源的,部分(电磁)单元是无源的。
本申请实施例中的终端设备103是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(Mobile Station,MS)、移动终端设备(Mobile Terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(Mobile Phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(Industrial Control)中的无线终端设备、无人驾驶(Self-Driving)中的无线终端设备、远程手术(Remote Medical Surgery)中的无线终端设备、智能电网(Smart Grid)中的无线终端设备、运输安全(Transportation Safety)中的无线终端设备、智慧城市(Smart City)中的无线终端设备、智慧家庭(Smart Home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
传统通信中无线环境是不可控因素,其不可控性通常对通信效率有负面作用,会降低服务质量。比如,信号衰减限制了无线信号的传播距离,多径效应导致衰落现象,大型物体的反射和折射更是主要的不可控因素。将智能超表面(RIS)部署在无线传输环境中各类物体的表面,有望突破传统无线信道的不可控性,构建智能可编程无线,引入未来无线通信的新范式。具体地说,RIS可以通过预编码技术,将入射到其表面的信号反射或透射到特定的方向,从而增强接收端信号的强度或者降低干扰,实现对信道的控制。
如图1所示,在第二网络设备102(RIS)辅助的通信系统中,第一网络设备101通过第二网络设备102(RIS)将信号反射或透射到终端设备103,或者终端设备103通过第二网络设备102(RIS)将信号反射或透射到第一网络设备101。为了增强有用信号的功率,并降低干扰,需要对第二网络设备102进行预编码。
相关技术中,确定第二网络设备102(RIS)的预编码的方法复杂度较高。在学术研究中,主要通过交替优化技术对RIS和基站处的预编码进行联合设计。虽然该方法可以获得最优的性能,但复杂度过高,并不适合实际应用。同时,RIS阵列的尺寸往往很大,与传播距离具有可比性,传统远场假设的预编码方案可能不再适用。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的基于智能超表面的预编码方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由第一网络设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图2所示,该方法可以包括如下步骤:
步骤201,获取第二网络设备的单元排布信息和分块信息,该分块信息用于指示第二网络设备的多个分块。
需要说明的是,在本申请各实施例中,第二网络设备可以为智能超表面RIS。
在本申请实施例中,第一网络设备能够获取第二网络设备的单元排布信息和分块信息,其中,第二网络设备的分块信息用于指示第二网络设备的多个分块,第二网络设备的单元排布信息能够表示第二网络设备中的单元是如何排布的。
需要说明的是,第二网络设备的每个分块都是第二网络设备中连续的一部分,比如是智能超表面RIS中一块连续的RIS表面。
可以理解的是,第一网络设备能够通过获取第二网络设备的单元排布信息,来确定第二网络设备中的单元是如何排布的;第一网络设备能够通过获取第二网络设备的分块信息,来确定第二网络设备的每个分块。
在一些实施方式中,该单元排布信息可以包括以下至少一种:第二网络设备的单元的行数;第二网络设备的单元的列数;第二网络设备的单元的行间距;第二网络设备的单元的列间距;第二网络设备中能够发送参考信号的单元(也可以是第二网络设备中的有源的单元)。
在一些实施方式中,该分块信息可以包括以下至少一种:每个分块包括的单元的行数;每个分块包括的单元的列数;每个分块的中心的单元。
可以理解的是,第二网络设备的单元排布信息和分块信息是可以根据第二网络设备的具体形状等进行灵活配置的。比如,如果第二网络设备的形状为圆形,第二网络设备的单元排布信息可能还会包括第二网络设备的半径或直径等等,分块信息也可以包括其他信息来指示第二网络设备的每个分块。
在本申请实施例中,可以是第一网络设备接收第二网络设备上报的单元排布信息和/或分块信息,也可以是在离线阶段第一网络设备获取第二网络设备单元排布信息和/或分块信息。
在一些实施方式中,第一网络设备还可以根据第二网络设备的单元排布信息,配置第二网络设备的多个分块,获得第二网络设备的分块信息。
在本申请实施例中,第二网络设备的每个分块都能够发送参考信号。
步骤202,接收终端设备发送的信道反馈信息。
在本申请实施例中,第一网络设备能够接收终端设备发送的信道反馈信息,其中,该信道反馈信息是该终端设备基于第二网络设备的每个分块发送的参考信号确定的。
该信道反馈信息,能够反映出第二网络设备的每个分块与该终端设备之间的信道的状态。第一网络设备能够基于该信道反馈信息,确定出用于确定第二网络设备的相移矩阵的第一指示信息。
在一些实施方式中,该信道反馈信息包括:多个第三预编码矩阵指示(Precoding Matrix Indicator,PMI)和每个第三PMI对应的参考信号的索引。其中,该第三PMI用于指示第二网络设备的每个分块与终端设备之间的信道的预编码矩阵。
可以理解,第二网络设备的每个分块都能够发送参考信号,终端设备接收每个分块发送的参考信号,并进行估计,得到每个分块与终端设备之间的信道的预编码矩阵。每个分块与终端设备之间的信 道的预编码矩阵都通过一个第三PMI来指示,而该分块发送的参考信号通过该第三PMI对应的参考信号的索引来指示。
在一些实施方式中,第一网络设备能够根据该单元排布信息和分块信息,向第二网络设备发送第一参考信号配置信息,该第一参考信号配置信息用于确定第二网络设备的每个分块发送的参考信号。
可选地,该第一参考信号配置信息可以包括以下至少一种:
每个分块发送的参考信号所占用的该分块中的单元;
每个分块发送的参考信号序列的生成信息;
每个分块发送的参考信号所占用的天线端口序号;
每个分块发送的参考信号所占用的时频资源。
在一些实施方式中,第一网络设备能够根据该单元排布信息和分块信息,向终端设备发送第二参考信号配置信息,该第二参考信号配置信息用于该终端设备接收第二网络设备的每个分块发送的参考信号。
可选地,该第二参考信号配置信息可以包括以下至少一种:
每个分块发送的参考信号序列的生成信息;
每个分块发送的参考信号所占用的天线端口序号;
每个分块发送的参考信号所占用的时频资源。
可以理解的是,第一参考信号配置信息和第二参考信号配置信息中每个分块发送的参考信号的基本信息(参考信号序列的生成信息,参考信号所占用的天线端口序号,参考信号所占用的时频资源)是相同的,终端设备能够根据该第二参考信号配置信息来接收第二网络设备基于该第一参考信号配置信息所发送的参考信号。
步骤203,根据该信道反馈信息,该单元排布信息和该分块信息,确定第一指示信息,该第一指示信息用于确定第二网络设备的相移矩阵。
在本申请实施例中,第一网络设备能够根据接收到的该信道反馈信息,以及获取到的该单元排布信息和该分块信息,来确定第一指示信息,该第一指示信息能够用于确定第二网络设备的相移矩阵。
在本申请实施例中,第一网络设备能够根据该信道反馈信息,该单元排布信息和该分块信息,确定该终端设备相对于该第二网络设备的位置信息,进而根据该位置信息确定该第一指示信息。
可选地,该位置信息可以通过坐标来表示。第一网络设备与第二网络设备可以通过协议规定的坐标轴建立方式来建立坐标系,并得到该终端设备在该坐标系中的坐标。第一网络设备与第二网络设备还可以通过信令来协商确定该坐标系的坐标轴建立方式。
在一些实施方式中,该第一指示信息包括第一预编码矩阵或者第一信息,其中该第一信息用于指示该第一预编码矩阵。该第一预编码矩阵是第一网络设备根据该单元排布信息,该分块信息,该位置信息,以及第一网络设备与第二网络设备之间的角度信息确定的。第二网络设备能够根据该第一预编码矩阵确定相移矩阵。
可选地,该第一信息可以为该第一预编码矩阵的索引,也可以为用于指示该第一预编码矩阵的第一PMI等等。
在一些实施方式中,该第一指示信息包括第二预编码矩阵或者第二信息,其中该第二信息用于指示该第二预编码矩阵。该第二预编码矩阵是第一网络设备根据该单元排布信息,该分块信息以及该位 置信息确定的。第二网络设备能够根据该第二预编码矩阵以及第一网络设备与第二网络设备之间的角度信息确定相移矩阵。
可选地,该第二信息可以为该第二预编码矩阵的索引,也可以为用于指示该第二预编码矩阵的第二PMI等等。
在一些实施方式中,该第一指示信息包括该位置信息,第二网络设备能够根据该位置信息确定第二网络设备的相移矩阵。
在本申请实施例中,第一网络设备与第二网络设备之间的角度信息可以是离开角信息,也可以是入射角信息。其中,离开角信息是指,第一网络设备发出的信号的离开角的信息;入射角信息是指,第一网络设备发出的信号入射到第二网络设备表面的入射角的信息。
在一些实施方式中,第一网络设备能够向第二网络设备发送该第一网络设备与第二网络设备之间的角度信息。
步骤204,向第二网络设备发送该第一指示信息。
在本申请实施例中,第一网络设备确定了第一指示信息之后,能够向第二网络设备发送该第一指示信息,第二网络设备能够根据该第一指示信息确定相移矩阵。
其中,该相移矩阵,用于配置第二网络设备中各单元的相位,也就是对第二网络设备进行预编码。第二网络设备能够根据该相移矩阵配置调整自己各单元的相位,实现对第二网络设备的预编码,并能够对入射到该第二网络设备表面的信号进行反射或者透射。
在一些实施方式中,该第一指示信息包括第一预编码矩阵或者第一信息,其中该第一信息用于指示该第一预编码矩阵。
在一些实施方式中,该第一指示信息包括第二预编码矩阵或者第二信息,其中该第二信息用于指示该第二预编码矩阵。
在一些实施方式中,该第一指示信息包括终端设备相对于第二网络设备的该位置信息。
综上,通过获取第二网络设备的单元排布信息和分块信息,该分块信息用于指示该第二网络设备的多个分块,接收终端设备发送的信道反馈信息,根据该信道反馈信息,该单元排布信息和该分块信息,确定第一指示信息,该第一指示信息用于确定该第二网络设备的相移矩阵,向该第二网络设备发送该第一指示信息,能够将第二网络设备的单元分成多个小组,使得远场假设对每个小组成立,同时有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图3,图3是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由第一网络设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图3所示,该方法可以包括如下步骤:
步骤301,获取第二网络设备的单元排布信息和分块信息。
需要说明的是,在本申请各实施例中,第二网络设备可以为智能超表面RIS。
在本申请实施例中,第一网络设备能够获取第二网络设备的单元排布信息和分块信息,其中,第二网络设备的分块信息用于指示第二网络设备的多个分块,第二网络设备的单元排布信息能够表示第二网络设备中的单元是如何排布的。
需要说明的是,第二网络设备的每个分块都是第二网络设备中连续的一部分,比如是智能超表面RIS中一块连续的RIS表面。
可以理解的是,第一网络设备能够通过获取第二网络设备的单元排布信息,来确定第二网络设备中的单元是如何排布的;第一网络设备能够通过获取第二网络设备的分块信息,来确定第二网络设备的每个分块。
在一些实施方式中,该单元排布信息可以包括以下至少一种:第二网络设备的单元的行数;第二网络设备的单元的列数;第二网络设备的单元的行间距;第二网络设备的单元的列间距;第二网络设备中能够发送参考信号的单元(也可以是第二网络设备中的有源的单元)。
在一些实施方式中,该分块信息可以包括以下至少一种:每个分块包括的单元的行数;每个分块包括的单元的列数;每个分块的中心的单元。
可以理解的是,第二网络设备的单元排布信息和分块信息是可以根据第二网络设备的具体形状等进行灵活配置的。比如,如果第二网络设备的形状为圆形,第二网络设备的单元排布信息可能还会包括第二网络设备的半径或直径等等,分块信息也可以包括其他信息来指示第二网络设备的每个分块。
在本申请实施例中,可以是第一网络设备接收第二网络设备上报的单元排布信息和/或分块信息,也可以是在离线阶段第一网络设备获取第二网络设备单元排布信息和/或分块信息。
在一些实施方式中,第一网络设备还可以根据第二网络设备的单元排布信息,配置第二网络设备的多个分块,获得第二网络设备的分块信息。
在本申请实施例中,第二网络设备的每个分块都能够发送参考信号。
步骤302,根据单元排布信息和分块信息,向第二网络设备发送第一参考信号配置信息。
在本申请实施例中,第一网络设备能够根据该单元排布信息和该分块信息,向第二网络设备发送第一参考信号配置信息。其中,该第一参考信号配置信息用于确定第二网络设备的每个分块发送的参考信号,第二网络设备能够根据该第一参考信号配置信息确定每个分块发送的参考信号。
可选地,该第一参考信号配置信息可以包括以下至少一种:
每个分块发送的参考信号所占用的该分块中的单元;
每个分块发送的参考信号序列的生成信息;
每个分块发送的参考信号所占用的天线端口序号;
每个分块发送的参考信号所占用的时频资源。
步骤303,根据单元排布信息和分块信息,向终端设备发送第二参考信号配置信息。
在本申请实施例中,第一网络设备能够向终端设备发送第二参考信号配置信息,该第二参考信号配置信息用于该终端设备接收第二网络设备的每个分块发送的参考信号。
在本申请实施例中,第二参考信号配置信息与第一参考配置信息可以是相同的,也可以是不同的(比如,第二参考信号配置信息中可以不包括每个分块发送的参考信号所占用的该分块中的单元)。
可选地,该第二参考信号配置信息可以包括以下至少一种:
每个分块发送的参考信号序列的生成信息;
每个分块发送的参考信号所占用的天线端口序号;
每个分块发送的参考信号所占用的时频资源。
可以理解的是,在步骤302中的第一参考信号配置信息和步骤303中的第二参考信号配置信息中, 每个分块发送的参考信号的基本信息(参考信号序列的生成信息,参考信号所占用的天线端口序号,参考信号所占用的时频资源)是相同的,终端设备能够根据该第二参考信号配置信息来接收第二网络设备基于该第一参考信号配置信息所发送的参考信号。
需要说明的是,第一网络设备向终端设备发送该参考信号配置信息所采用的信道,可以是经过第二网络设备的信道,也可以是不经过该第二网络设备的直视信道,本申请在此不进行限定。
步骤304,接收终端设备发送的信道反馈信息。
在本申请实施例中,第一网络设备能够接收终端设备发送的信道反馈信息,其中,该信道反馈信息是该终端设备基于第二网络设备的每个分块发送的参考信号确定的。
该信道反馈信息,能够反映出第二网络设备的每个分块与该终端设备之间的信道的状态。第一网络设备能够基于该信道反馈信息,确定出用于确定第二网络设备的相移矩阵的第一指示信息。
在一些实施方式中,该信道反馈信息包括:多个第三预编码矩阵指示PMI和每个第三PMI对应的参考信号的索引。其中,该第三PMI用于指示第二网络设备的每个分块与终端设备之间的信道的预编码矩阵。
可以理解,第二网络设备的每个分块都能够发送参考信号,终端设备接收每个分块发送的参考信号,并进行估计,得到每个分块与终端设备之间的信道的预编码矩阵。每个分块与终端设备之间的信道的预编码矩阵都通过一个第三PMI来指示,而该分块发送的参考信号通过该第三PMI对应的参考信号的索引来指示。
在一些实施方式中,第一网络设备能够根据该单元排布信息和分块信息,向第二网络设备发送第一参考信号配置信息,该第一参考信号配置信息用于确定第二网络设备的每个分块发送的参考信号。
可选地,该第一参考信号配置信息可以包括以下至少一种:
每个分块发送的参考信号所占用的该分块中的单元;
每个分块发送的参考信号序列的生成信息;
每个分块发送的参考信号所占用的天线端口序号;
每个分块发送的参考信号所占用的时频资源。
需要说明的是,类似地,第一网络设备接收终端设备发送的该信道反馈信息所采用的信道,也可以是经过第二网络设备的信道,也可以是不经过该第二网络设备的直视信道,本申请在此也不进行限定。
步骤305,根据该信道反馈信息,该单元排布信息和该分块信息,确定该终端设备相对于该第二网络设备的位置信息。
在本申请实施例中,第一网络设备能够根据该信道反馈信息,该单元排布信息和该分块信息,确定该终端设备相对于该第二网络设备的位置信息,进而根据该位置信息确定该第一指示信息。
可选地,该位置信息可以通过坐标来表示。第一网络设备与第二网络设备可以通过协议规定的坐标轴建立方式来建立坐标系,并得到该终端设备在该坐标系中的坐标。第一网络设备与第二网络设备还可以通过信令来协商确定该坐标系的坐标轴建立方式。
可选地,在本申请各实施例中,第一网络设备可以采用多种方法,来根据信道反馈信息,第二网络设备的单元排布信息和分块信息,确定该终端设备相对于第二网络设备的位置信息。作为一种示例,如图6a-6c所示,在后文进行详细说明,在此不再赘述。
步骤306,根据该单元排布信息,该分块信息,该位置信息以及第一网络设备与第二网络设备之间的角度信息,确定第一预编码矩阵。
在本申请实施例中,第一网络设备能够根据第二网络设备的单元排布信息,分块信息,终端设备相对于第二网络设备的位置信息,以及第一网络设备与第二网络设备之间的角度信息,确定第一预编码矩阵。第二网络设备能够根据该第一预编码矩阵,确定相移矩阵,进而调整自身各单元的相位,实现对第二网络设备的预编码。
可选地,该第一预编码矩阵可以为该第二网络设备的近场预编码矩阵。
在本申请实施例中,第一网络设备与第二网络设备之间的角度信息可以是离开角信息,也可以是入射角信息。其中,离开角信息是指,第一网络设备发出的信号的离开角的信息;入射角信息是指,第一网络设备发出的信号入射到第二网络设备表面的入射角的信息。
步骤307,向第二网络设备发送第一指示信息,该第一指示信息包括该第一预编码矩阵或者第一信息。
在本申请实施例中,第一网络设备在步骤306中计算出第一预编码矩阵之后,能够基于该第一预编码矩阵向第二网络设备发送第一指示信息,该第一指示信息中包括该第一预编码矩阵或者第一信息。其中,该第一信息用于指示该第一预编码矩阵。
在本申请实施例中,该第一指示信息能够用于确定第二网络设备的相移矩阵,也就是第二网络设备能够根据该第一指示信息确定相移矩阵。其中,该相移矩阵,用于配置第二网络设备中各单元的相位,也就是对第二网络设备进行预编码。第二网络设备能够根据该相移矩阵配置调整自己各单元的相位,实现对第二网络设备的预编码,并能够对入射到该第二网络设备表面的信号进行反射或者透射。
可选地,该第一信息可以为该第一预编码矩阵的索引,也可以为用于指示该第一预编码矩阵的第一PMI等等。
综上,通过获取第二网络设备的单元排布信息和分块信息,向第二网络设备发送第一参考信号配置信息,向终端设备发送第二参考信号配置信息,接收终端设备发送的信道反馈信息,根据该信道反馈信息,该单元排布信息和该分块信息,确定该终端设备相对于该第二网络设备的位置信息,根据该单元排布信息,该分块信息,该位置信息以及第一网络设备与第二网络设备之间的角度信息,确定第一预编码矩阵,向第二网络设备发送第一指示信息,该第一指示信息包括该第一预编码矩阵或者第一信息,能够将第二网络设备的单元分成多个小组,使得远场假设对每个小组成立,同时有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图4,图4是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由第一网络设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图4所示,该方法可以包括如下步骤:
步骤401,获取第二网络设备的单元排布信息和分块信息。
需要说明的是,在本申请各实施例中,第二网络设备可以为智能超表面RIS。
在本申请实施例中,第一网络设备能够获取第二网络设备的单元排布信息和分块信息,其中,第二网络设备的分块信息用于指示第二网络设备的多个分块,第二网络设备的单元排布信息能够表示第二网络设备中的单元是如何排布的。
需要说明的是,第二网络设备的每个分块都是第二网络设备中连续的一部分,比如是智能超表面RIS中一块连续的RIS表面。
可以理解的是,第一网络设备能够通过获取第二网络设备的单元排布信息,来确定第二网络设备中的单元是如何排布的;第一网络设备能够通过获取第二网络设备的分块信息,来确定第二网络设备的每个分块。
在一些实施方式中,该单元排布信息可以包括以下至少一种:第二网络设备的单元的行数;第二网络设备的单元的列数;第二网络设备的单元的行间距;第二网络设备的单元的列间距;第二网络设备中能够发送参考信号的单元(也可以是第二网络设备中的有源的单元)。
在一些实施方式中,该分块信息可以包括以下至少一种:每个分块包括的单元的行数;每个分块包括的单元的列数;每个分块的中心的单元。
可以理解的是,第二网络设备的单元排布信息和分块信息是可以根据第二网络设备的具体形状等进行灵活配置的。比如,如果第二网络设备的形状为圆形,第二网络设备的单元排布信息可能还会包括第二网络设备的半径或直径等等,分块信息也可以包括其他信息来指示第二网络设备的每个分块。
在本申请实施例中,可以是第一网络设备接收第二网络设备上报的单元排布信息和/或分块信息,也可以是在离线阶段第一网络设备获取第二网络设备单元排布信息和/或分块信息。
在一些实施方式中,第一网络设备还可以根据第二网络设备的单元排布信息,配置第二网络设备的多个分块,获得第二网络设备的分块信息。
在本申请实施例中,第二网络设备的每个分块都能够发送参考信号。
步骤402,根据单元排布信息和分块信息,向第二网络设备发送第一参考信号配置信息。
在本申请实施例中,第一网络设备能够根据该单元排布信息和该分块信息,向第二网络设备发送第一参考信号配置信息。其中,该第一参考信号配置信息用于确定第二网络设备的每个分块发送的参考信号,第二网络设备能够根据该第一参考信号配置信息确定每个分块发送的参考信号。
可选地,该第一参考信号配置信息可以包括以下至少一种:
每个分块发送的参考信号所占用的该分块中的单元;
每个分块发送的参考信号序列的生成信息;
每个分块发送的参考信号所占用的天线端口序号;
每个分块发送的参考信号所占用的时频资源。
步骤403,根据单元排布信息和分块信息,向终端设备发送第二参考信号配置信息。
在本申请实施例中,第一网络设备能够向终端设备发送第二参考信号配置信息,该第二参考信号配置信息用于该终端设备接收第二网络设备的每个分块发送的参考信号。
在本申请实施例中,第二参考信号配置信息与第一参考配置信息可以是相同的,也可以是不同的(比如,第二参考信号配置信息中可以不包括每个分块发送的参考信号所占用的该分块中的单元)。
可选地,该第二参考信号配置信息可以包括以下至少一种:
每个分块发送的参考信号序列的生成信息;
每个分块发送的参考信号所占用的天线端口序号;
每个分块发送的参考信号所占用的时频资源。
可以理解的是,在步骤302中的第一参考信号配置信息和步骤303中的第二参考信号配置信息中, 每个分块发送的参考信号的基本信息(参考信号序列的生成信息,参考信号所占用的天线端口序号,参考信号所占用的时频资源)是相同的,终端设备能够根据该第二参考信号配置信息来接收第二网络设备基于该第一参考信号配置信息所发送的参考信号。
需要说明的是,第一网络设备向终端设备发送该参考信号配置信息所采用的信道,可以是经过第二网络设备的信道,也可以是不经过该第二网络设备的直视信道,本申请在此不进行限定。
步骤404,接收终端设备发送的信道反馈信息。
在本申请实施例中,第一网络设备能够接收终端设备发送的信道反馈信息,其中,该信道反馈信息是该终端设备基于第二网络设备的每个分块发送的参考信号确定的。
该信道反馈信息,能够反映出第二网络设备的每个分块与该终端设备之间的信道的状态。第一网络设备能够基于该信道反馈信息,确定出用于确定第二网络设备的相移矩阵的第一指示信息。
在一些实施方式中,该信道反馈信息包括:多个第三预编码矩阵指示PMI和每个第三PMI对应的参考信号的索引。其中,该第三PMI用于指示第二网络设备的每个分块与终端设备之间的信道的预编码矩阵。
可以理解,第二网络设备的每个分块都能够发送参考信号,终端设备接收每个分块发送的参考信号,并进行估计,得到每个分块与终端设备之间的信道的预编码矩阵。每个分块与终端设备之间的信道的预编码矩阵都通过一个第三PMI来指示,而该分块发送的参考信号通过该第三PMI对应的参考信号的索引来指示。
在一些实施方式中,第一网络设备能够根据该单元排布信息和分块信息,向第二网络设备发送第一参考信号配置信息,该第一参考信号配置信息用于确定第二网络设备的每个分块发送的参考信号。
可选地,该第一参考信号配置信息可以包括以下至少一种:
每个分块发送的参考信号所占用的该分块中的单元;
每个分块发送的参考信号序列的生成信息;
每个分块发送的参考信号所占用的天线端口序号;
每个分块发送的参考信号所占用的时频资源。
需要说明的是,类似地,第一网络设备接收终端设备发送的该信道反馈信息所采用的信道,也可以是经过第二网络设备的信道,也可以是不经过该第二网络设备的直视信道,本申请在此也不进行限定。
步骤405,根据该信道反馈信息,该单元排布信息和该分块信息,确定该终端设备相对于该第二网络设备的位置信息。
在本申请实施例中,第一网络设备能够根据该信道反馈信息,该单元排布信息和该分块信息,确定该终端设备相对于该第二网络设备的位置信息,进而根据该位置信息确定该第一指示信息。
可选地,该位置信息可以通过坐标来表示。第一网络设备与第二网络设备可以通过协议规定的坐标轴建立方式来建立坐标系,并得到该终端设备在该坐标系中的坐标。第一网络设备与第二网络设备还可以通过信令来协商确定该坐标系的坐标轴建立方式。
可选地,在本申请各实施例中,第一网络设备可以采用多种方法,来根据信道反馈信息,第二网络设备的单元排布信息和分块信息,确定该终端设备相对于第二网络设备的位置信息。作为一种示例,如图6a-6c所示,在后文进行详细说明,在此不再赘述。
步骤406,根据该单元排布信息,该分块信息以及该位置信息,确定第二预编码矩阵。
在本申请实施例中,第一网络设备能够根据第二网络设备的单元排布信息,分块信息,以及终端设备相对于第二网络设备的位置信息,确定第二预编码矩阵。第二网络设备能够根据该第二预编码矩阵和第一网络设备与第二网络设备之间的角度信息,确定相移矩阵,进而调整自身各单元的相位,实现对第二网络设备的预编码。
可选地,该第二预编码矩阵可以为该第二网络设备的近场预编码矩阵。
步骤407,向第二网络设备发送第一指示信息,该第一指示信息包括该第二预编码矩阵或者第二信息。
在本申请实施例中,第一网络设备在步骤406中计算出第二预编码矩阵之后,能够基于该第二预编码矩阵向第二网络设备发送第一指示信息,该第一指示信息中包括该第二预编码矩阵或者第二信息。其中,该第二信息用于指示该第二预编码矩阵。
在本申请实施例中,该第一指示信息能够用于确定第二网络设备的相移矩阵,也就是第二网络设备能够根据该第二预编码矩阵和第一网络设备与第二网络设备之间的角度信息,确定相移矩阵。其中,该相移矩阵,用于配置第二网络设备中各单元的相位,也就是对第二网络设备进行预编码。第二网络设备能够根据该相移矩阵配置调整自己各单元的相位,实现对第二网络设备的预编码,并能够对入射到该第二网络设备表面的信号进行反射或者透射。
可选地,该第二信息可以为该第二预编码矩阵的索引,也可以为用于指示该第二预编码矩阵的第二PMI等等。
在一些实施方式中,第一网络设备还可以向第二网络设备发送第一网络设备与第二网络设备之间的角度信息。
综上,通过获取第二网络设备的单元排布信息和分块信息,向第二网络设备发送第一参考信号配置信息,向终端设备发送第二参考信号配置信息,接收终端设备发送的信道反馈信息,根据该信道反馈信息,该单元排布信息和该分块信息,确定该终端设备相对于该第二网络设备的位置信息,根据该单元排布信息,该分块信息以及该位置信息,确定第二预编码矩阵,向第二网络设备发送第一指示信息,该第一指示信息包括该第二预编码矩阵或者第二信息,能够将第二网络设备的单元分成多个小组,使得远场假设对每个小组成立,同时有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图5,图5是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由第一网络设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图5所示,该方法可以包括如下步骤:
步骤501,获取第二网络设备的单元排布信息和分块信息。
步骤502,根据单元排布信息和分块信息,向第二网络设备发送第一参考信号配置信息。
步骤503,根据单元排布信息和分块信息,向终端设备发送第二参考信号配置信息。
步骤504,接收终端设备发送的信道反馈信息。
步骤505,根据该信道反馈信息,该单元排布信息和该分块信息,确定该终端设备相对于该第二网络设备的位置信息。
在本申请实施例中,步骤501至步骤505可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
步骤506,向第二网络设备发送第一指示信息,该第一指示信息包括该位置信息。
在本申请实施例中,第一网络设备在步骤505中确定出终端设备相对于第二网络设备的位置信息之后,能够基于该位置信息向第二网络设备发送第一指示信息,该第一指示信息中包括该位置信息。
在本申请实施例中,该第一指示信息能够用于确定第二网络设备的相移矩阵,也就是第二网络设备能够根据该位置信息,自身的单元排布信息和分块信息,以及第一网络设备与第二网络设备之间的角度信息,确定相移矩阵。其中,该相移矩阵,用于配置第二网络设备中各单元的相位,也就是对第二网络设备进行预编码。第二网络设备能够根据该相移矩阵配置调整自己各单元的相位,实现对第二网络设备的预编码,并能够对入射到该第二网络设备表面的信号进行反射或者透射。
在一些实施方式中,第一网络设备还可以向第二网络设备发送第一网络设备与第二网络设备之间的角度信息。
综上,通过获取第二网络设备的单元排布信息和分块信息,向第二网络设备发送第一参考信号配置信息,向终端设备发送第二参考信号配置信息,接收终端设备发送的信道反馈信息,根据该信道反馈信息,该单元排布信息和该分块信息,确定该终端设备相对于该第二网络设备的位置信息,向第二网络设备发送第一指示信息,该第一指示信息包括该位置信息,能够将第二网络设备的单元分成多个小组,使得远场假设对每个小组成立,同时有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
如前所述,在本申请各实施例中,第一网络设备可以采用多种方法,来根据信道反馈信息,第二网络设备的单元排布信息和分块信息,确定该终端设备相对于第二网络设备的位置信息。
作为一种示例,请参见图6a-6c,图6a是本申请实施例提供的一种终端设备和第二网络设备的空间位置示意图,图6b为xz轴平面示意图,图6c为yz轴平面示意图。
图6a仅作为一种示例,举例说明了一种坐标轴的建立方式,还可以采用其他坐标轴建立方式来建立坐标系。如图6a所示,以第二网络设备所在平面建立xy平面,第二网络设备的法线方向为z轴,第二网络设备有四个分块。
从图6a中的y轴方向去看,第二网络设备在x轴方向分为了两块,z轴左右各一块(如图6b所示)。通过第二网络设备的每个分块对应的第三PMI,能够获取第二网络设备的每个分块对应的水平维(x轴对应的维度)方向角α 1、α 2
通过α 1、α 2及第二网络设备的各分块之间的水平距离,能够确定出终端设备的水平方向位置,设第二网络设备的两块间距为d,终端设备在xz平面的坐标为(d x,d z),其中,
Figure PCTCN2022115967-appb-000001
Figure PCTCN2022115967-appb-000002
类似地,从图6a中的x轴方向去看,第二网络设备在y轴方向分为了两块,z轴左右各一块(如图6c所示)。通过第二网络设备的每个分块对应的第三PMI,能够获取第二网络设备的每个分块对应的垂直维(y轴对应的维度)方向角β 1、β 2
通过β 1、β 2及第二网络设备的各分块之间的垂直距离,能够确定出终端设备的垂直方向位置,设第二网络设备的两块间距为d’,终端设备在yz平面的坐标为(d y,d z),其中,
Figure PCTCN2022115967-appb-000003
Figure PCTCN2022115967-appb-000004
进一步,根据终端设备在xz平面和yz平面的坐标,得到终端设备在该坐标系中的坐标,从而得到终端设备相对于该第二网络设备的位置。
可以理解的是,上述确定终端设备相对于第二网络设备的位置信息的方法仅作为一种示例示出,第一网络设备还可以采用其他方法,根据终端设备发送的信道反馈信息,第二网络设备的单元排布信息和分块信息,来确定终端设备相对于第二网络设备的位置。
请参见图7,图7是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由第二网络设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图7所示,该方法可以包括如下步骤:
步骤701,向第一网络设备发送第二网络设备的单元排布信息和分块信息,该分块信息用于指示第二网络设备的多个分块。
需要说明的是,在本申请各实施例中,第二网络设备可以为智能超表面RIS。
在本申请实施例中,第二网络设备可以向第一网络设备发送第二网络设备的单元排布信息和分块信息,其中,第二网络设备的分块信息用于指示第二网络设备的多个分块,第二网络设备的单元排布信息能够表示第二网络设备中的单元是如何排布的。
需要说明的是,第二网络设备的每个分块都是第二网络设备中连续的一部分,比如是智能超表面RIS中一块连续的RIS表面。
可以理解的是,第一网络设备能够通过获取第二网络设备的单元排布信息,来确定第二网络设备中的单元是如何排布的;第一网络设备能够通过获取第二网络设备的分块信息,来确定第二网络设备的每个分块。
在一些实施方式中,该单元排布信息可以包括以下至少一种:第二网络设备的单元的行数;第二网络设备的单元的列数;第二网络设备的单元的行间距;第二网络设备的单元的列间距;第二网络设备中能够发送参考信号的单元(也可以是第二网络设备中的有源的单元)。
在一些实施方式中,该分块信息可以包括以下至少一种:每个分块包括的单元的行数;每个分块包括的单元的列数;每个分块的中心的单元。
可以理解的是,第二网络设备的单元排布信息和分块信息是可以根据第二网络设备的具体形状等进行灵活配置的。比如,如果第二网络设备的形状为圆形,第二网络设备的单元排布信息可能还会包括第二网络设备的半径或直径等等,分块信息也可以包括其他信息来指示第二网络设备的每个分块。
步骤702,向终端设备发送参考信号,该参考信号用于该终端设备确定信道反馈信息。
在本申请实施例中,第二网络设备能够发送参考信号,该参考信号用于终端设备确定信道反馈信息。
在本申请实施例中,第二网络设备的每个分块都能够发送参考信号。也就是,终端设备能够接收 第二网络设备的每个分块发送的参考信号,并根据接收到的参考信号确定信道反馈信息。
该信道反馈信息,能够反映出第二网络设备的每个分块与该终端设备之间的信道的状态。第一网络设备能够基于该信道反馈信息,确定出用于确定第二网络设备的相移矩阵的第一指示信息。
在一些实施方式中,该信道反馈信息包括:多个第三预编码矩阵指示PMI和每个第三PMI对应的参考信号的索引。其中,该第三PMI用于指示第二网络设备的每个分块与终端设备之间的信道的预编码矩阵。
可以理解,第二网络设备的每个分块都能够发送参考信号,终端设备接收每个分块发送的参考信号,并进行估计,得到每个分块与终端设备之间的信道的预编码矩阵。每个分块与终端设备之间的信道的预编码矩阵都通过一个第三PMI来指示,而该分块发送的参考信号通过该第三PMI对应的参考信号的索引来指示。
在一些实施方式中,第二网络设备能够接收第一网络设备发送的第一参考信号配置信息,第二网络设备能够根据该第一参考信号配置信息,确定该第二网络设备的每个分块发送的参考信号。
可选地,该第一参考信号配置信息可以包括以下至少一种:
每个分块发送的参考信号所占用的该分块中的单元;
每个分块发送的参考信号序列的生成信息;
每个分块发送的参考信号所占用的天线端口序号;
每个分块发送的参考信号所占用的时频资源。
步骤703,接收第一网络设备发送的第一指示信息,该第一指示信息是第一网络设备基于该信道反馈信息,单元排布信息和分块信息确定的。
在本申请实施例中,第二网络设备能够接收第一网络设备发送的第一指示信息,并根据该第一指示信息,确定第二网络设备的相移矩阵。该第一指示信息是第一网络设备基于该信道反馈信息,单元排布信息和分块信息确定的。
其中,第二网络设备的相移矩阵,用于配置第二网络设备中各单元的相位,也就是对第二网络设备进行预编码。第二网络设备能够根据该相移矩阵配置调整自己各单元的相位,实现对第二网络设备的预编码。
在本申请实施例中,该第一指示信息是根据该终端设备相对于该第二网络设备的位置信息确定的,其中,该位置信息是第一网络设备根据该信道反馈信息,单元排布信息和分块信息确定的。
在一些实施方式中,该第一指示信息包括第一预编码矩阵或者第一信息,其中该第一信息用于指示该第一预编码矩阵。该第一预编码矩阵是第一网络设备根据该单元排布信息,该分块信息,该位置信息,以及第一网络设备与第二网络设备之间的角度信息确定的。
可选地,该第一信息可以为该第一预编码矩阵的索引,也可以为用于指示该第一预编码矩阵的第一PMI等等。
在一些实施方式中,该第一指示信息包括第二预编码矩阵或者第二信息,其中该第二信息用于指示该第二预编码矩阵。该第二预编码矩阵是第一网络设备根据该单元排布信息,该分块信息以及该位置信息确定的。
可选地,该第二信息可以为该第二预编码矩阵的索引,也可以为用于指示该第二预编码矩阵的第二PMI等等。
在一些实施方式中,该第一指示信息包括该位置信息。
在本申请实施例中,第一网络设备与第二网络设备之间的角度信息可以是离开角信息,也可以是入射角信息。其中,离开角信息是指,第一网络设备发出的信号的离开角的信息;入射角信息是指,第一网络设备发出的信号入射到第二网络设备表面的入射角的信息。
在一些实施方式中,可选地,第二网络设备可以接收第一网络设备发送的该第一网络设备与第二网络设备之间的角度信息;第二网络设备也可以自己感知该角度信息,而不需要第一网络设备发送。
在本申请实施例中,第二网络设备可以根据协议预先的规定或者第一网络设备的配置指示,来确定该第一指示信息的确定是否考虑了第一网络设备与第二网络设备之间的角度信息。
步骤704,根据该第一指示信息,确定第二网络设备的相移矩阵。
在本申请实施例中,第二网络设备能够根据接收到的第一指示信息,确定相移矩阵,进而根据该相移矩阵,配置调整自身各单元的相位,实现基于智能超表面的预编码。
在一些实施方式中,该第一指示信息包括第一预编码矩阵或者第一信息,其中该第一信息用于指示该第一预编码矩阵。第二网络设备能够根据第一指示信息确定该第一预编码矩阵,然后根据该第一预编码矩阵确定该相移矩阵。
在一些实施方式中,该第一指示信息包括第二预编码矩阵或者第二信息,其中该第二信息用于指示该第二预编码矩阵。第二网络设备能够根据第一指示信息确定该第二预编码矩阵,然后根据该第二预编码矩阵以及第一网络设备与第二网络设备之间的角度信息,确定该相移矩阵。
在一些实施方式中,该第一指示信息包括该位置信息。第二网络设备能够根据第一指示信息确定该位置信息,然后根据该位置信息,自身单元的排布信息和分块信息,以及第一网络设备与第二网络设备之间的角度信息,确定该相移矩阵。
在本申请实施例中,第二网络设备在确定该相移矩阵之后,能够根据该相移矩阵,配置调整第二网络设备中各单元的相位,并基于调整后的相位,对入射到该第二网络设备表面的信号进行反射或者透射。
需要说明的是,如果第一预编码矩阵或者第二预编码矩阵,是第一网络设备基于假定第二网络设备中各单元的相位连续可调而生成的,也就是该参考相移矩阵对应配置的第二网络设备中各单元的相位,可能是该第二网络设备不支持的。因此,第二网络设备能够根据自己支持的相位偏移值进行量化,得到该第二网络设备的相移矩阵。
综上,通过向第一网络设备发送第二网络设备的单元排布信息和分块信息,该分块信息用于指示第二网络设备的多个分块,向终端设备发送参考信号,该参考信号用于该终端设备确定信道反馈信息,接收第一网络设备发送的第一指示信息,该第一指示信息是第一网络设备基于信道反馈信息,单元排布信息和分块信息确定的,根据该第一指示信息,确定第二网络设备的相移矩阵,能够将第二网络设备的单元分成多个小组,使得远场假设对每个小组成立,同时有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图8,图8是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由第二网络设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图8所示,该方法可以包括如下步骤:
步骤801,向第一网络设备发送第二网络设备的单元排布信息和分块信息,该分块信息用于指示第二网络设备的多个分块。
需要说明的是,在本申请各实施例中,第二网络设备可以为智能超表面RIS。
在本申请实施例中,第二网络设备可以向第一网络设备发送第二网络设备的单元排布信息和分块信息,其中,第二网络设备的分块信息用于指示第二网络设备的多个分块,第二网络设备的单元排布信息能够表示第二网络设备中的单元是如何排布的。
需要说明的是,第二网络设备的每个分块都是第二网络设备中连续的一部分,比如是智能超表面RIS中一块连续的RIS表面。
可以理解的是,第一网络设备能够通过获取第二网络设备的单元排布信息,来确定第二网络设备中的单元是如何排布的;第一网络设备能够通过获取第二网络设备的分块信息,来确定第二网络设备的每个分块。
在一些实施方式中,该单元排布信息可以包括以下至少一种:第二网络设备的单元的行数;第二网络设备的单元的列数;第二网络设备的单元的行间距;第二网络设备的单元的列间距;第二网络设备中能够发送参考信号的单元(也可以是第二网络设备中的有源的单元)。
在一些实施方式中,该分块信息可以包括以下至少一种:每个分块包括的单元的行数;每个分块包括的单元的列数;每个分块的中心的单元。
可以理解的是,第二网络设备的单元排布信息和分块信息是可以根据第二网络设备的具体形状等进行灵活配置的。比如,如果第二网络设备的形状为圆形,第二网络设备的单元排布信息可能还会包括第二网络设备的半径或直径等等,分块信息也可以包括其他信息来指示第二网络设备的每个分块。
步骤802,向终端设备发送参考信号,该参考信号用于该终端设备确定信道反馈信息。
在本申请实施例中,第二网络设备能够发送参考信号,该参考信号用于终端设备确定信道反馈信息。
在本申请实施例中,第二网络设备的每个分块都能够发送参考信号。也就是,终端设备能够接收第二网络设备的每个分块发送的参考信号,并根据接收到的参考信号确定信道反馈信息。
该信道反馈信息,能够反映出第二网络设备的每个分块与该终端设备之间的信道的状态。第一网络设备能够基于该信道反馈信息,确定出用于确定第二网络设备的相移矩阵的第一指示信息。
在一些实施方式中,该信道反馈信息包括:多个第三预编码矩阵指示PMI和每个第三PMI对应的参考信号的索引。其中,该第三PMI用于指示第二网络设备的每个分块与终端设备之间的信道的预编码矩阵。
可以理解,第二网络设备的每个分块都能够发送参考信号,终端设备接收每个分块发送的参考信号,并进行估计,得到每个分块与终端设备之间的信道的预编码矩阵。每个分块与终端设备之间的信道的预编码矩阵都通过一个第三PMI来指示,而该分块发送的参考信号通过该第三PMI对应的参考信号的索引来指示。
在一些实施方式中,第二网络设备能够接收第一网络设备发送的第一参考信号配置信息,第二网络设备能够根据该第一参考信号配置信息,确定该第二网络设备的每个分块发送的参考信号。
可选地,该第一参考信号配置信息可以包括以下至少一种:
每个分块发送的参考信号所占用的该分块中的单元;
每个分块发送的参考信号序列的生成信息;
每个分块发送的参考信号所占用的天线端口序号;
每个分块发送的参考信号所占用的时频资源。
步骤803,接收第一网络设备发送的第一指示信息,该第一指示信息包括第一预编码矩阵或者第一信息,该第一信息用于指示第一预编码矩阵。
在本申请实施例中,第二网络设备能够接收第一网络设备发送的第一指示信息,并根据该第一指示信息,确定第二网络设备的相移矩阵。
在本申请实施例中,该第一指示信息包括第一预编码矩阵或者第一信息,其中该第一信息用于指示该第一预编码矩阵。
可选地,该第一信息可以为该第一预编码矩阵的索引,也可以为用于指示该第一预编码矩阵的第一PMI等等。
可选地,该第一预编码矩阵可以为该第二网络设备的近场预编码矩阵。
在本申请实施例中,该第一预编码矩阵是第一网络设备根据该单元排布信息,该分块信息,该终端设备相对于该第二网络设备的位置信息,以及第一网络设备与第二网络设备之间的角度信息确定的。
其中,该位置信息是第一网络设备根据该信道反馈信息,单元排布信息和分块信息确定的。
可选地,该位置信息可以通过坐标来表示。第一网络设备与第二网络设备可以通过协议规定的坐标轴建立方式来建立坐标系,并得到该终端设备在该坐标系中的坐标。第一网络设备与第二网络设备还可以通过信令来协商确定该坐标系的坐标轴建立方式。
在本申请实施例中,第一网络设备与第二网络设备之间的角度信息可以是离开角信息,也可以是入射角信息。其中,离开角信息是指,第一网络设备发出的信号的离开角的信息;入射角信息是指,第一网络设备发出的信号入射到第二网络设备表面的入射角的信息。
步骤804,根据该第一预编码矩阵,确定第二网络设备的相移矩阵。
在本申请实施例中,第二网络设备能够根据接收到的第一指示信息,确定该第一预编码矩阵,然后根据该第一预编码矩阵确定该相移矩阵,进而根据该相移矩阵,配置调整自身各单元的相位,实现基于智能超表面的预编码。
需要说明的是,如果第一预编码矩阵或者第二预编码矩阵,是第一网络设备基于假定第二网络设备中各单元的相位连续可调而生成的,也就是该参考相移矩阵对应配置的第二网络设备中各单元的相位,可能是该第二网络设备不支持的。因此,第二网络设备能够根据自己支持的相位偏移值进行量化,得到该第二网络设备的相移矩阵。
步骤805,根据该相移矩阵,对入射到该第一网络设备表面的信号进行反射或者透射。
在本申请实施例中,第二网络设备在确定该相移矩阵之后,能够根据该相移矩阵,配置调整第二网络设备中各单元的相位,并基于调整后的相位,对入射到该第二网络设备表面的信号进行反射或者透射。
综上,通过向第一网络设备发送第二网络设备的单元排布信息和分块信息,该分块信息用于指示第二网络设备的多个分块,向终端设备发送参考信号,该参考信号用于该终端设备确定信道反馈信息,接收第一网络设备发送的第一指示信息,该第一指示信息包括第一预编码矩阵或者第一信息,根据该第一预编码矩阵,确定第二网络设备的相移矩阵,能够将第二网络设备的单元分成多个小组,使得远 场假设对每个小组成立,同时有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图9,图9是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由第二网络设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图9所示,该方法可以包括如下步骤:
步骤901,向第一网络设备发送第二网络设备的单元排布信息和分块信息,该分块信息用于指示第二网络设备的多个分块。
步骤902,向终端设备发送参考信号,该参考信号用于该终端设备确定信道反馈信息。
在本申请实施例中,步骤901至步骤902可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
步骤903,接收第一网络设备发送的第一指示信息,该第一指示信息包括第二预编码矩阵或者第二信息,该第二信息用于指示第二预编码矩阵。
在本申请实施例中,第二网络设备能够接收第一网络设备发送的第一指示信息,并根据该第一指示信息,确定第二网络设备的相移矩阵。
在本申请实施例中,该第一指示信息包括第二预编码矩阵或者第二信息,其中该第二信息用于指示该第二预编码矩阵。
可选地,该第二信息可以为该第二预编码矩阵的索引,也可以为用于指示该第二预编码矩阵的第二PMI等等。
可选地,该第二预编码矩阵可以为该第二网络设备的近场预编码矩阵。
在本申请实施例中,该第二预编码矩阵是第一网络设备根据该单元排布信息,该分块信息,以及该终端设备相对于该第二网络设备的位置信息确定的。
其中,该位置信息是第一网络设备根据该信道反馈信息,单元排布信息和分块信息确定的。
可选地,该位置信息可以通过坐标来表示。第一网络设备与第二网络设备可以通过协议规定的坐标轴建立方式来建立坐标系,并得到该终端设备在该坐标系中的坐标。第一网络设备与第二网络设备还可以通过信令来协商确定该坐标系的坐标轴建立方式。
步骤904,根据该第二预编码矩阵以及第一网络设备与第二网络设备之间的角度信息,确定第二网络设备的相移矩阵。
在本申请实施例中,第二网络设备能够根据接收到的第一指示信息,确定该第二预编码矩阵,然后根据该第二预编码矩阵以及第一网络设备与第二网络设备之间的角度信息,确定该相移矩阵,进而根据该相移矩阵,配置调整自身各单元的相位,实现基于智能超表面的预编码。
在本申请实施例中,第一网络设备在确定该相移矩阵之后,能够根据该相移矩阵,配置调整第一网络设备中各单元的相位,并基于调整后的相位,对入射到该第一网络设备表面的信号进行反射或者透射。
在本申请实施例中,第一网络设备与第二网络设备之间的角度信息可以是离开角信息,也可以是入射角信息。其中,离开角信息是指,第一网络设备发出的信号的离开角的信息;入射角信息是指,第一网络设备发出的信号入射到第二网络设备表面的入射角的信息。
可选地,第二网络设备可以接收第一网络设备发送的该第一网络设备与第二网络设备之间的角度信息;第二网络设备也可以自己感知该角度信息,而不需要第一网络设备发送。
步骤905,根据该相移矩阵,对入射到该第一网络设备表面的信号进行反射或者透射。
在本申请实施例中,第二网络设备在确定该相移矩阵之后,能够根据该相移矩阵,配置调整第二网络设备中各单元的相位,并基于调整后的相位,对入射到该第二网络设备表面的信号进行反射或者透射。
综上,通过向第一网络设备发送第二网络设备的单元排布信息和分块信息,该分块信息用于指示第二网络设备的多个分块,向终端设备发送参考信号,该参考信号用于该终端设备确定信道反馈信息,接收第一网络设备发送的第一指示信息,该第一指示信息包括第二预编码矩阵或者第二信息,根据该第二预编码矩阵,确定第二网络设备的相移矩阵,能够将第二网络设备的单元分成多个小组,使得远场假设对每个小组成立,同时有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图10,图10是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由第二网络设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图10所示,该方法可以包括如下步骤:
步骤1001,向第一网络设备发送第二网络设备的单元排布信息和分块信息,该分块信息用于指示第二网络设备的多个分块。
步骤1002,向终端设备发送参考信号,该参考信号用于该终端设备确定信道反馈信息。
在本申请实施例中,步骤1001至步骤1002可以分别采用本申请的各实施例中的任一种方式实现,本申请实施例并不对此作出限定,也不再赘述。
步骤1003,接收第一网络设备发送的第一指示信息,该第一指示信息包括终端设备相对于第二网络设备的位置信息。
在本申请实施例中,第二网络设备能够接收第一网络设备发送的第一指示信息,并根据该第一指示信息,确定第二网络设备的相移矩阵。
在本申请实施例中,该第一指示信息包括终端设备相对于第二网络设备的位置信息,其中,该位置信息是第一网络设备根据该信道反馈信息,单元排布信息和分块信息确定的。
在本申请实施例中,该第二预编码矩阵是第一网络设备根据该单元排布信息,该分块信息,以及该终端设备相对于该第二网络设备的位置信息确定的。
可选地,该位置信息可以通过坐标来表示。第一网络设备与第二网络设备可以通过协议规定的坐标轴建立方式来建立坐标系,并得到该终端设备在该坐标系中的坐标。第一网络设备与第二网络设备还可以通过信令来协商确定该坐标系的坐标轴建立方式。第二网络设备能够根据该坐标系以及终端设备的坐标,确定并使用终端设备的位置。
步骤1004,根据该位置信息,单元的排布信息和分块信息,以及第一网络设备与第二网络设备之间的角度信息,确定第二网络设备的相移矩阵。
在本申请实施例中,第二网络设备能够根据接收到的第一指示信息,确定终端设备相对于自身的位置信息,然后根据该位置信息,自身的单元排布信息和分块信息,以及第一网络设备与第二网络设 备之间的角度信息,确定该相移矩阵,进而根据该相移矩阵,配置调整自身各单元的相位,实现基于智能超表面的预编码。
在本申请实施例中,第一网络设备在确定该相移矩阵之后,能够根据该相移矩阵,配置调整第一网络设备中各单元的相位,并基于调整后的相位,对入射到该第一网络设备表面的信号进行反射或者透射。
在本申请实施例中,第一网络设备与第二网络设备之间的角度信息可以是离开角信息,也可以是入射角信息。其中,离开角信息是指,第一网络设备发出的信号的离开角的信息;入射角信息是指,第一网络设备发出的信号入射到第二网络设备表面的入射角的信息。
可选地,第二网络设备可以接收第一网络设备发送的该第一网络设备与第二网络设备之间的角度信息;第二网络设备也可以自己感知该角度信息,而不需要第一网络设备发送。
步骤1005,根据该相移矩阵,对入射到该第一网络设备表面的信号进行反射或者透射。
在本申请实施例中,第二网络设备在确定该相移矩阵之后,能够根据该相移矩阵,配置调整第二网络设备中各单元的相位,并基于调整后的相位,对入射到该第二网络设备表面的信号进行反射或者透射。
综上,通过向第一网络设备发送第二网络设备的单元排布信息和分块信息,该分块信息用于指示第二网络设备的多个分块,向终端设备发送参考信号,该参考信号用于该终端设备确定信道反馈信息,接收第一网络设备发送的第一指示信息,该第一指示信息包括第二预编码矩阵或者第二信息,根据该位置信息,确定第二网络设备的相移矩阵,能够将第二网络设备的单元分成多个小组,使得远场假设对每个小组成立,同时有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图11,图11是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由终端设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图11所示,该方法可以包括如下步骤:
步骤1101,接收第二网络设备的每个分块发送的参考信号。
在本申请实施例中,终端设备能够接收第二网络设备的各个分块发送的参考信号,并根据该参考信号进行信道估计。该参考信号是第二网络设备基于第一网络设备发送的第一参考信号配置信息发送的。
在本申请各实施例中,第二网络设备可以为智能超表面RIS。
在一些实施方式中,终端设备能够接收第一网络设备发送的第二参考信号配置信息,并根据该第二参考信号配置信息接收第二网络设备发送的参考信号。
可选地,该第二参考信号配置信息包括以下至少一种:
每个分块发送的参考信号序列的生成信息;
每个分块发送的参考信号所占用的天线端口序号;
每个分块发送的参考信号所占用的时频资源。
需要说明的是,终端设备接收第一网络设备发送的参考信号配置信息所采用的信道,可以是经过第二网络设备的信道,也可以是不经过该第二网络设备的直视信道,本申请在此不进行限定。
步骤1102,根据该参考信号,确定第二网络设备与终端设备之间的信道的信道反馈信息。
在本申请实施例中,终端设备能够根据该参考信号对第二网络设备与终端设备之间的信道进行估计,得到该信道的信道反馈信息。
该信道反馈信息,能够反映出第二网络设备的每个分块与该终端设备之间的信道的状态。第一网络设备能够基于该信道反馈信息,确定出用于确定第二网络设备的相移矩阵的第一指示信息。
在一些实施方式中,该信道反馈信息包括:多个第三预编码矩阵指示PMI和每个第三PMI对应的参考信号的索引。其中,该第三PMI用于指示第二网络设备的每个分块与终端设备之间的信道的预编码矩阵。
可以理解,第二网络设备的每个分块都能够发送参考信号,终端设备接收每个分块发送的参考信号,并进行估计,得到每个分块与终端设备之间的信道的预编码矩阵。每个分块与终端设备之间的信道的预编码矩阵都通过一个第三PMI来指示,而该分块发送的参考信号通过该第三PMI对应的参考信号的索引来指示。
需要说明的是,终端设备根据接收到的参考信号进行信道估计的方法,可以采用最小二乘法(least squares,LS)进行估计,也可以采用最小均方误差法(minimum mean square error,MMSE)进行估计,还可以采用其他估计算法等等,本申请对此不进行限定。
步骤1103,向第一网络设备发送该信道反馈信息,该信道反馈信息用于确定第一指示信息,该第一指示信息用于确定第二网络设备的相移矩阵。
在本申请实施例中,终端设备在对第一网络设备与终端设备之间的信道进行估计,得到该信道的信道反馈信息之后,能够向第二网络设备发送该信道反馈信息。
其中,该信道反馈信息用于确定第一指示信息,该第一指示信息用于确定第二网络设备的相移矩阵。
在一些实施方式中,该信道反馈信息能够用于确定该终端设备相对于第二网络设备的位置信息,第一网络设备能够基于该位置信息确定该第一指示信息。
在一些实施方式中,该第一指示信息包括第一预编码矩阵或者第一信息,其中该第一信息用于指示该第一预编码矩阵。
可选地,该第一信息可以为该第一预编码矩阵的索引,也可以为用于指示该第一预编码矩阵的第一PMI等等。
在一些实施方式中,该第一指示信息包括第二预编码矩阵或者第二信息,其中该第二信息用于指示该第二预编码矩阵。
可选地,该第二信息可以为该第二预编码矩阵的索引,也可以为用于指示该第二预编码矩阵的第二PMI等等。
在一些实施方式中,该第一指示信息包括该位置信息。
需要说明的是,终端设备向第一网络设备发送信道反馈信息所采用的信道,可以是经过第二网络设备的信道,也可以是不经过该第二网络设备的直视信道,本申请在此不进行限定。
综上,通过接收第二网络设备的每个分块发送的参考信号,根据该参考信号,确定第二网络设备与终端设备之间的信道的信道反馈信息,向第一网络设备发送该信道反馈信息,该信道反馈信息用于确定第一指示信息,该第一指示信息用于确定第二网络设备的相移矩阵,能够将第二网络设备的单元 分成多个小组,使得远场假设对每个小组成立,同时有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图12,图12是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由终端设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图12所示,该方法可以包括如下步骤:
步骤1201,接收第一网络设备发送的第二参考信号配置信息。
在本申请实施例中,终端设备能够接收第一网络设备发送的第二参考信号配置信息,并根据该第二参考信号配置信息接收第二网络设备的每个分块发送的参考信号。
可选地,该第二参考信号配置信息包括以下至少一种:
每个分块发送的参考信号序列的生成信息;
每个分块发送的参考信号所占用的天线端口序号;
每个分块发送的参考信号所占用的时频资源。
需要说明的是,终端设备接收第一网络设备发送的参考信号配置信息所采用的信道,可以是经过第二网络设备的信道,也可以是不经过该第二网络设备的直视信道,本申请在此不进行限定。
步骤1202,根据该第二参考信号配置信息,接收第二网络设备的每个分块发送的参考信号。
在本申请实施例中,终端设备能够根据接收到的第二参考信号配置信息,来接收第二网络设备的每个分块发送的参考信号。
其中,第二网络设备发送的该参考信号是基于第一参考信号配置信息确定的。
可选地,该第一参考信号配置信息可以包括以下至少一种:
每个分块发送的参考信号所占用的该分块中的单元;
每个分块发送的参考信号序列的生成信息;
每个分块发送的参考信号所占用的天线端口序号;
每个分块发送的参考信号所占用的时频资源。
可以理解的是,第一参考信号配置信息和第二参考信号配置信息中每个分块发送的参考信号的基本信息(参考信号序列的生成信息,参考信号所占用的天线端口序号,参考信号所占用的时频资源)是相同的,终端设备能够根据该第二参考信号配置信息来接收第二网络设备基于该第一参考信号配置信息所发送的参考信号。
步骤1203,根据该参考信号,确定第二网络设备与终端设备之间的信道的信道反馈信息。
在本申请实施例中,终端设备能够根据该参考信号对第二网络设备与终端设备之间的信道进行估计,得到该信道的信道反馈信息。
该信道反馈信息,能够反映出第二网络设备的每个分块与该终端设备之间的信道的状态。第一网络设备能够基于该信道反馈信息,确定出用于确定第二网络设备的相移矩阵的第一指示信息。
在一些实施方式中,该信道反馈信息包括:多个第三预编码矩阵指示PMI和每个第三PMI对应的参考信号的索引。其中,该第三PMI用于指示第二网络设备的每个分块与终端设备之间的信道的预编码矩阵。
可以理解,第二网络设备的每个分块都能够发送参考信号,终端设备接收每个分块发送的参考信 号,并进行估计,得到每个分块与终端设备之间的信道的预编码矩阵。每个分块与终端设备之间的信道的预编码矩阵都通过一个第三PMI来指示,而该分块发送的参考信号通过该第三PMI对应的参考信号的索引来指示。
需要说明的是,终端设备根据接收到的参考信号进行信道估计的方法,可以采用最小二乘法LS进行估计,也可以采用最小均方误差法MMSE进行估计,还可以采用其他估计算法等等,本申请对此不进行限定。
步骤1204,向第一网络设备发送该信道反馈信息。
在本申请实施例中,终端设备在对第一网络设备与终端设备之间的信道进行估计,得到该信道的信道反馈信息之后,能够向第二网络设备发送该信道反馈信息。
其中,该信道反馈信息用于确定第一指示信息,该第一指示信息用于确定第二网络设备的相移矩阵。
在一些实施方式中,该信道反馈信息能够用于确定该终端设备相对于第二网络设备的位置信息,第一网络设备能够基于该位置信息确定该第一指示信息。
在一些实施方式中,该第一指示信息包括第一预编码矩阵或者第一信息,其中该第一信息用于指示该第一预编码矩阵。
可选地,该第一信息可以为该第一预编码矩阵的索引,也可以为用于指示该第一预编码矩阵的第一PMI等等。
在一些实施方式中,该第一指示信息包括第二预编码矩阵或者第二信息,其中该第二信息用于指示该第二预编码矩阵。
可选地,该第二信息可以为该第二预编码矩阵的索引,也可以为用于指示该第二预编码矩阵的第二PMI等等。
在一些实施方式中,该第一指示信息包括该位置信息。
需要说明的是,终端设备向第一网络设备发送信道反馈信息所采用的信道,可以是经过第二网络设备的信道,也可以是不经过该第二网络设备的直视信道,本申请在此不进行限定。
综上,通过接收第一网络设备发送的第二参考信号配置信息,根据该第二参考信号配置信息,接收第二网络设备的每个分块发送的参考信号,根据该参考信号,确定第二网络设备与终端设备之间的信道的信道反馈信息,向第一网络设备发送该信道反馈信息,能够将第二网络设备的单元分成多个小组,使得远场假设对每个小组成立,同时有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图13,图13是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图13所示,该方法可以包括如下步骤:
1、第一网络设备获取第二网络设备的单元排布信息和分块信息,该分块信息用于指示第二网络设备的多个分块。
2、第一网络设备向第二网络设备和终端设备分别发送第一参考信号配置信息和第二参考信号配置信息。
在本申请实施例中,第二参考信号配置信息与第一参考配置信息可以是相同的,也可以是不同的(比如,第二参考信号配置信息中可以不包括每个分块发送的参考信号所占用的该分块中的单元)。
3、第二网络设备根据该参考信号配置信息,向终端设备发送参考信号。终端设备根据该参考信号配置信息,接收第二网络设备发送的参考信号。
4、终端设备根据该参考信号,对第二网络设备与终端设备之间的信道进行估计,得到信道反馈信息。
5、向第一网络设备发送该信道反馈信息。
6、第一网络设备根据该信道反馈信息,单元排布信息和分块信息,确定该终端设备相对于该第二网络设备的位置信息。
7、根据该位置信息,确定第一指示信息,第一网络设备向第二网络设备发送该第一指示信息。
在一些实施方式中,该第一指示信息包括第一预编码矩阵或者第一信息,其中该第一信息用于指示该第一预编码矩阵。该第一预编码矩阵是第一网络设备根据该单元排布信息,该分块信息,该位置信息,以及第一网络设备与第二网络设备之间的角度信息确定的。
在一些实施方式中,该第一指示信息包括第二预编码矩阵或者第二信息,其中该第二信息用于指示该第二预编码矩阵。该第二预编码矩阵是第一网络设备根据该单元排布信息,该分块信息以及该位置信息确定的。
在一些实施方式中,该第一指示信息包括该位置信息。
8、第二网络设备根据该第一指示信息,确定相移矩阵。
9、第二网络设备根据该相移矩阵,对入射到该第二网络设备表面的信号进行反射或者透射。
综上,本申请实施例提供的基于智能超表面的预编码方法,能够将第二网络设备的单元分成多个小组,使得远场假设对每个小组成立,同时有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
与上述几种实施例提供的基于智能超表面的预编码方法相对应,本申请还提供一种基于智能超表面的预编码装置,由于本申请实施例提供的基于智能超表面的预编码装置与上述几种实施例提供的方法相对应,因此在基于智能超表面的预编码方法的实施方式也适用于下述实施例提供的基于智能超表面的预编码装置,在下述实施例中不再详细描述。
请参见图14,图14为本申请实施例提供的一种基于智能超表面的预编码装置的结构示意图。
如图14所示,该基于智能超表面的预编码装置1400包括:收发单元1410和处理单元1420,其中:收发单元1410,用于获取第二网络设备的单元排布信息和分块信息,该分块信息用于指示该第二网络设备的多个分块;该收发单元1410,还用于接收终端设备发送的信道反馈信息,该信道反馈信息是该终端设备基于该第二网络设备的每个分块发送的参考信号确定的;处理单元1420,用于根据该信道反馈信息,该单元排布信息和该分块信息,确定第一指示信息,该第一指示信息用于确定该第二网络设备的相移矩阵;该收发单元1410,还用于向该第二网络设备发送该第一指示信息。
可选地,该处理单元1420还用于:根据该信道反馈信息,该单元排布信息和该分块信息,确定该终端设备相对于该第二网络设备的位置信息;根据该位置信息,确定该第一指示信息。
可选地,该第一指示信息包括该位置信息,该位置信息用于该第二网络设备确定该相移矩阵。
可选地,该第一指示信息包括第一预编码矩阵或者第一信息,该第一信息用于指示该第一预编码矩阵;该处理单元1420具体用于:根据该单元排布信息,该分块信息,该位置信息,以及该第一网络设备与该第二网络设备之间的角度信息,确定该第一预编码矩阵。
可选地,该第一指示信息包括第二预编码矩阵或者第二信息,该第二信息用于指示该第二预编码矩阵;该处理单元1420具体用于:根据该单元排布信息,该分块信息以及该位置信息,确定该第二预编码矩阵。
可选地,该收发单元1410还用于:向该第二网络设备发送该第一网络设备与该第二网络设备之间的角度信息。
可选地,该收发单元1410还用于:根据该单元排布信息和该分块信息,向该第二网络设备发送第一参考信号配置信息,该第一参考信号配置信息用于确定该第二网络设备的每个分块发送的参考信号。
可选地,该第一参考信号配置信息包括以下至少一种:该每个分块发送的参考信号所占用的该分块中的单元;该每个分块发送的参考信号序列的生成信息;该每个分块发送的参考信号所占用的天线端口序号;该每个分块发送的参考信号所占用的时频资源。
可选地,该收发单元1410还用于:根据该单元排布信息和该分块信息,向该终端设备发送第二参考信号配置信息,该第二参考信号配置信息用于该终端设备接收该第二网络设备的每个分块发送的参考信号。
可选地,该第二参考信号配置信息包括以下至少一种:该每个分块发送的参考信号序列的生成信息;该每个分块发送的参考信号所占用的天线端口序号;该每个分块发送的参考信号所占用的时频资源。
可选地,该信道反馈信息包括:多个第三预编码矩阵指示PMI和每个第三PMI对应的参考信号的索引;该第三PMI用于指示该第二网络设备的每个分块与该终端设备之间的信道的预编码矩阵。
可选地,该第二网络设备的单元排布信息包括以下至少一种:该第二网络设备的单元的行数;该第二网络设备的单元的列数;该第二网络设备的单元的行间距;该第二网络设备的单元的列间距;该第二网络设备中能够发送参考信号的单元。
可选地,该第二网络设备的分块信息包括以下至少一种:每个分块包括的单元的行数;每个分块包括的单元的列数;每个分块的中心的单元。
可选地,该第二网络设备为智能超表面RIS。
可选地,该相移矩阵,用于该第二网络设备对入射到该第二网络设备表面的信号进行反射或者透射。
本实施例的基于智能超表面的预编码装置,可以通过获取第二网络设备的单元排布信息和分块信息,该分块信息用于指示该第二网络设备的多个分块,接收终端设备发送的信道反馈信息,根据该信道反馈信息,该单元排布信息和该分块信息,确定第一指示信息,该第一指示信息用于确定该第二网络设备的相移矩阵,向该第二网络设备发送该第一指示信息,能够将第二网络设备的单元分成多个小组,使得远场假设对每个小组成立,同时有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图15,图15为本申请实施例提供的一种基于智能超表面的预编码装置的结构示意图。
如图15所示,该基于智能超表面的预编码装置1500包括:收发单元1510和处理单元1520,其中:收发单元1510,用于向第一网络设备发送该第二网络设备的单元排布信息和分块信息,该分块信息用于指示该第二网络设备的多个分块;该收发单元1510,还用于向终端设备发送参考信号,该参考信号用于该终端设备确定信道反馈信息;该收发单元1510,还用于接收该第一网络设备发送的第一指示信息,该第一指示信息是该第一网络设备基于该信道反馈信息,该单元排布信息和该分块信息确定的;处理单元1520,用于根据该第一指示信息,确定该第二网络设备的相移矩阵。
可选地,该第一指示信息是根据该终端设备相对于该第二网络设备的位置信息确定的;该位置信息是该第一网络设备根据该信道反馈信息,该单元排布信息和该分块信息确定的。
可选地,该第一指示信息包括该终端设备相对于该第二网络设备的位置信息,该根据该第一指示信息,确定该第二网络设备的相移矩阵,包括:根据该位置信息,该单元排布信息和该分块信息,确定该第二网络设备的相移矩阵。
可选地,该第一指示信息包括第一预编码矩阵或者第一信息,该第一信息用于指示该第一预编码矩阵,该处理单元1520具体用于:根据该第一预编码矩阵,确定该第二网络设备的相移矩阵;其中,该第一预编码矩阵是根据该单元排布信息,该分块信息,该终端设备相对于该第二网络设备的位置信息,以及该第一网络设备与该第二网络设备之间的角度信息确定的。
可选地,该第一指示信息包括第二预编码矩阵或者第二信息,该第二信息用于指示该第二预编码矩阵,该处理单元1520具体用于:根据该第二预编码矩阵,以及该第一网络设备与该第二网络设备之间的角度信息,确定该第二网络设备的相移矩阵;其中,该第二预编码矩阵是根据该单元排布信息,该分块信息,以及该终端设备相对于该第二网络设备的位置信息确定的。
可选地,该收发单元1510还用于:接收该第一网络设备发送的该第一网络设备与该第二网络设备之间的角度信息;或者,感知该第一网络设备发送的该第一网络设备与该第二网络设备之间的角度信息。
可选地,该收发单元1510还用于:接收该第一网络设备发送的第一参考信号配置信息;根据该第一参考信号配置信息,确定该第二网络设备的每个分块发送的该参考信号。
可选地,该第一参考信号配置信息包括以下至少一种:该每个分块发送的参考信号所占用的该分块中的单元;该每个分块发送的参考信号序列的生成信息;该每个分块发送的参考信号所占用的天线端口序号;该每个分块发送的参考信号所占用的时频资源。
可选地,该信道反馈信息包括:多个第三预编码矩阵指示PMI和每个第三PMI对应的参考信号的索引;该第三PMI用于指示该第二网络设备的每个分块与该终端设备之间的信道的预编码矩阵。
可选地,该第二网络设备的单元排布信息包括以下至少一种:该第二网络设备的单元的行数;该第二网络设备的单元的列数;该第二网络设备的单元的行间距;该第二网络设备的单元的列间距;该第二网络设备中能够发送参考信号的单元。
可选地,该第二网络设备的分块信息包括以下至少一种:每个分块包括的单元的行数;每个分块包括的单元的列数;每个分块的中心的单元。
可选地,该第二网络设备为智能超表面RIS。
可选地,该处理单元1520还用于:根据该相移矩阵,对入射到该第二网络设备表面的信号进行反射或者透射。
本实施例的基于智能超表面的预编码装置,可以通过向第一网络设备发送第二网络设备的单元排布信息和分块信息,该分块信息用于指示第二网络设备的多个分块,向终端设备发送参考信号,该参考信号用于该终端设备确定信道反馈信息,接收第一网络设备发送的第一指示信息,该第一指示信息是第一网络设备基于信道反馈信息,单元排布信息和分块信息确定的,根据该第一指示信息,确定第二网络设备的相移矩阵,能够将第二网络设备的单元分成多个小组,使得远场假设对每个小组成立,同时有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图16,图16为本申请实施例提供的一种基于智能超表面的预编码装置的结构示意图。
如图16所示,该基于智能超表面的预编码装置1600包括:收发单元1610和处理单元1620,其中:收发单元1610,用于接收第二网络设备的每个分块发送的参考信号;处理单元1620,用于根据该参考信号,确定该第二网络设备与该终端设备之间的信道的信道反馈信息;该收发单元1610,还用于向第一网络设备发送该信道反馈信息,该信道反馈信息用于确定第一指示信息,该第一指示信息用于确定该第二网络设备的相移矩阵。
可选地,该收发单元1610还用于:接收第一网络设备发送的第二参考信号配置信息;根据该第二参考信号配置信息,接收该第二网络设备的每个分块发送的参考信号。
可选地,该第二参考信号配置信息包括以下至少一种:该每个分块发送的参考信号序列的生成信息;该每个分块发送的参考信号所占用的天线端口序号;该每个分块发送的参考信号所占用的时频资源。
可选地,该信道反馈信息包括:多个第三预编码矩阵指示PMI和每个第三PMI对应的参考信号的索引;该第三PMI用于指示该第二网络设备的每个分块与该终端设备之间的信道的预编码矩阵。
可选地,该第二网络设备为智能超表面RIS。
本实施例的基于智能超表面的预编码装置,可以通过向第一网络设备发送第二网络设备的单元排布信息和分块信息,该分块信息用于指示第二网络设备的多个分块,向终端设备发送参考信号,该参考信号用于该终端设备确定信道反馈信息,接收第一网络设备发送的第一指示信息,该第一指示信息包括第二预编码矩阵或者第二信息,根据该位置信息,确定第二网络设备的相移矩阵,能够将第二网络设备的单元分成多个小组,使得远场假设对每个小组成立,同时有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和存储器,存储器中存储有计算机程序,处理器执行所述存储器中存储的计算机程序,以使装置执行图2至图5实施例所示的方法,或者执行图7至图10实施例所示的方法。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和存储器,存储器中存储有计算机程序,处理器执行所述存储器中存储的计算机程序,以使装置执行图11至图12实施例所示的方法。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和接口电路,接口电路,用于接收代码指令并传输至处理器,处理器,用于运行所述代码指令以执行图2至图5实施例所示的 方法,或者执行图7至图10实施例所示的方法。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和接口电路,接口电路,用于接收代码指令并传输至处理器,处理器,用于运行所述代码指令以执行图11至图12实施例所示的方法。
请参见图17,图17是本申请实施例提供的另一种基于智能超表面的预编码装置的结构示意图。基于智能超表面的预编码装置1700可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
基于智能超表面的预编码装置1700可以包括一个或多个处理器1701。处理器1701可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对基于智能超表面的预编码装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,基于智能超表面的预编码装置1700中还可以包括一个或多个存储器1702,其上可以存有计算机程序1703,处理器1701执行计算机程序1703,以使得基于智能超表面的预编码装置1700执行上述方法实施例中描述的方法。计算机程序1703可能固化在处理器1701中,该种情况下,处理器1701可能由硬件实现。
可选的,存储器1702中还可以存储有数据。基于智能超表面的预编码装置1700和存储器1702可以单独设置,也可以集成在一起。
可选的,基于智能超表面的预编码装置1700还可以包括收发器1705、天线1706。收发器1705可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1705可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,基于智能超表面的预编码装置1700中还可以包括一个或多个接口电路1707。接口电路1707用于接收代码指令并传输至处理器1701。处理器1701运行代码指令以使基于智能超表面的预编码装置1700执行上述方法实施例中描述的方法。
在一种实现方式中,处理器1701中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,基于智能超表面的预编码装置1700可以包括电路,电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧 化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的基于智能超表面的预编码装置可以是网络设备或者终端设备,但本申请中描述的基于智能超表面的预编码装置的范围并不限于此,而且基于智能超表面的预编码装置的结构可以不受图14-图16的限制。基于智能超表面的预编码装置可以是独立的设备或者可以是较大设备的一部分。例如基于智能超表面的预编码装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于基于智能超表面的预编码装置可以是芯片或芯片系统的情况,可参见图18所示的芯片的结构示意图。图18所示的芯片包括处理器1801和接口1802。其中,处理器1801的数量可以是一个或多个,接口1802的数量可以是多个。
对于芯片用于实现本申请实施例中网络设备的功能的情况:
接口1802,用于代码指令并传输至处理器;
处理器1801,用于运行代码指令以执行如图2至图5的方法,或者执行如图7至图10的方法。
对于芯片用于实现本申请实施例中终端设备的功能的情况:
接口1802,用于代码指令并传输至处理器;
处理器1801,用于运行代码指令以执行如图11至图12的方法。
可选的,芯片还包括存储器1803,存储器1803用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种通信系统,该系统包括前述图14-图16实施例中作为网络设备的基于智能超表面的预编码装置和作为终端设备的基于智能超表面的预编码装置,或者,该系统包括前述图17实施例中作为终端设备的基于智能超表面的预编码装置和作为网络设备的基于智能超表面的预编码装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件 实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行计算机程序时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
应当理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本申请实施例中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。

Claims (37)

  1. 一种基于智能超表面的预编码方法,其特征在于,所述方法由第一网络设备执行,所述方法包括:
    获取第二网络设备的单元排布信息和分块信息,所述分块信息用于指示所述第二网络设备的多个分块;
    接收终端设备发送的信道反馈信息,所述信道反馈信息是所述终端设备基于所述第二网络设备的每个分块发送的参考信号确定的;
    根据所述信道反馈信息,所述单元排布信息和所述分块信息,确定第一指示信息,所述第一指示信息用于确定所述第二网络设备的相移矩阵;
    向所述第二网络设备发送所述第一指示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述信道反馈信息,所述单元排布信息和所述分块信息,确定所述终端设备相对于所述第二网络设备的位置信息;
    根据所述位置信息,确定所述第一指示信息。
  3. 根据权利要求2所述的方法,其特征在于,所述第一指示信息包括所述位置信息,所述位置信息用于所述第二网络设备确定所述相移矩阵。
  4. 根据权利要求2所述的方法,其特征在于,所述第一指示信息包括第一预编码矩阵或者第一信息,所述第一信息用于指示所述第一预编码矩阵;所述根据所述位置信息,确定所述第一指示信息,包括:
    根据所述单元排布信息,所述分块信息,所述位置信息,以及所述第一网络设备与所述第二网络设备之间的角度信息,确定所述第一预编码矩阵。
  5. 根据权利要求2所述的方法,其特征在于,所述第一指示信息包括第二预编码矩阵或者第二信息,所述第二信息用于指示所述第二预编码矩阵;所述根据所述位置信息,确定所述第一指示信息,包括:
    根据所述单元排布信息,所述分块信息以及所述位置信息,确定所述第二预编码矩阵。
  6. 根据权利要求3或5所述的方法,其特征在于,所述方法还包括:
    向所述第二网络设备发送所述第一网络设备与所述第二网络设备之间的角度信息。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    根据所述单元排布信息和所述分块信息,向所述第二网络设备发送第一参考信号配置信息,所述第一参考信号配置信息用于确定所述第二网络设备的每个分块发送的参考信号。
  8. 根据权利要求7所述的方法,其特征在于,所述第一参考信号配置信息包括以下至少一种:
    所述每个分块发送的参考信号所占用的所述分块中的单元;
    所述每个分块发送的参考信号序列的生成信息;
    所述每个分块发送的参考信号所占用的天线端口序号;
    所述每个分块发送的参考信号所占用的时频资源。
  9. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    根据所述单元排布信息和所述分块信息,向所述终端设备发送第二参考信号配置信息,所述第二参考信号配置信息用于所述终端设备接收所述第二网络设备的每个分块发送的参考信号。
  10. 根据权利要求9所述的方法,其特征在于,所述第二参考信号配置信息包括以下至少一种:
    所述每个分块发送的参考信号序列的生成信息;
    所述每个分块发送的参考信号所占用的天线端口序号;
    所述每个分块发送的参考信号所占用的时频资源。
  11. 根据权利要求9所述的方法,其特征在于,所述信道反馈信息包括:多个第三预编码矩阵指示 PMI和每个第三PMI对应的参考信号的索引;
    所述第三PMI用于指示所述第二网络设备的每个分块与所述终端设备之间的信道的预编码矩阵。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述第二网络设备的单元排布信息包括以下至少一种:
    所述第二网络设备的单元的行数;
    所述第二网络设备的单元的列数;
    所述第二网络设备的单元的行间距;
    所述第二网络设备的单元的列间距;
    所述第二网络设备中能够发送参考信号的单元。
  13. 根据权利要求1-11任一项所述的方法,其特征在于,所述第二网络设备的分块信息包括以下至少一种:
    每个分块包括的单元的行数;
    每个分块包括的单元的列数;
    每个分块的中心的单元。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述第二网络设备为智能超表面RIS。
  15. 根据权利要求1-13任一项所述的方法,其特征在于,所述相移矩阵,用于所述第二网络设备对入射到所述第二网络设备表面的信号进行反射或者透射。
  16. 一种基于智能超表面的预编码方法,其特征在于,所述方法由第二网络设备执行,所述方法包括:
    向第一网络设备发送所述第二网络设备的单元排布信息和分块信息,所述分块信息用于指示所述第二网络设备的多个分块;
    向终端设备发送参考信号,所述参考信号用于所述终端设备确定信道反馈信息;
    接收所述第一网络设备发送的第一指示信息,所述第一指示信息是所述第一网络设备基于所述信道反馈信息,所述单元排布信息和所述分块信息确定的;
    根据所述第一指示信息,确定所述第二网络设备的相移矩阵。
  17. 根据权利要求16所述的方法,其特征在于,所述第一指示信息是根据所述终端设备相对于所述第二网络设备的位置信息确定的;所述位置信息是所述第一网络设备根据所述信道反馈信息,所述单元排布信息和所述分块信息确定的。
  18. 根据权利要求17所述的方法,其特征在于,所述第一指示信息包括所述终端设备相对于所述第二网络设备的位置信息,所述根据所述第一指示信息,确定所述第二网络设备的相移矩阵,包括:
    根据所述位置信息,所述单元排布信息和所述分块信息,确定所述第二网络设备的相移矩阵。
  19. 根据权利要求17所述的方法,其特征在于,所述第一指示信息包括第一预编码矩阵或者第一信息,所述第一信息用于指示所述第一预编码矩阵,所述根据所述第一指示信息,确定所述第二网络设备的相移矩阵,包括:
    根据所述第一预编码矩阵,确定所述第二网络设备的相移矩阵;
    其中,所述第一预编码矩阵是根据所述单元排布信息,所述分块信息,所述终端设备相对于所述第二网络设备的位置信息,以及所述第一网络设备与所述第二网络设备之间的角度信息确定的。
  20. 根据权利要求17所述的方法,其特征在于,所述第一指示信息包括第二预编码矩阵或者第二信息,所述第二信息用于指示所述第二预编码矩阵,所述根据所述第一指示信息,确定所述第二网络设备的相移矩阵,包括:
    根据所述第二预编码矩阵,以及所述第一网络设备与所述第二网络设备之间的角度信息,确定所述第二网络设备的相移矩阵;
    其中,所述第二预编码矩阵是根据所述单元排布信息,所述分块信息,以及所述终端设备相对于 所述第二网络设备的位置信息确定的。
  21. 根据权利要求18或20所述的方法,其特征在于,所述方法还包括:
    接收所述第一网络设备发送的所述第一网络设备与所述第二网络设备之间的角度信息;或者,
    感知所述第一网络设备发送的所述第一网络设备与所述第二网络设备之间的角度信息。
  22. 根据权利要求16-21任一项所述的方法,其特征在于,所述方法还包括:
    接收所述第一网络设备发送的第一参考信号配置信息;
    根据所述第一参考信号配置信息,确定所述第二网络设备的每个分块发送的所述参考信号。
  23. 根据权利要求22所述的方法,其特征在于,所述第一参考信号配置信息包括以下至少一种:
    所述每个分块发送的参考信号所占用的所述分块中的单元;
    所述每个分块发送的参考信号序列的生成信息;
    所述每个分块发送的参考信号所占用的天线端口序号;
    所述每个分块发送的参考信号所占用的时频资源。
  24. 根据权利要求16所述的方法,其特征在于,所述信道反馈信息包括:多个第三预编码矩阵指示PMI和每个第三PMI对应的参考信号的索引;
    所述第三PMI用于指示所述第二网络设备的每个分块与所述终端设备之间的信道的预编码矩阵。
  25. 根据权利要求16-24任一项所述的方法,其特征在于,所述第二网络设备的单元排布信息包括以下至少一种:
    所述第二网络设备的单元的行数;
    所述第二网络设备的单元的列数;
    所述第二网络设备的单元的行间距;
    所述第二网络设备的单元的列间距;
    所述第二网络设备中能够发送参考信号的单元。
  26. 根据权利要求16-24任一项所述的方法,其特征在于,所述第二网络设备的分块信息包括以下至少一种:
    每个分块包括的单元的行数;
    每个分块包括的单元的列数;
    每个分块的中心的单元。
  27. 根据权利要求16-26任一项所述的方法,其特征在于,所述第二网络设备为智能超表面RIS。
  28. 根据权利要求16-26任一项所述的方法,其特征在于,所述方法还包括:
    根据所述相移矩阵,对入射到所述第二网络设备表面的信号进行反射或者透射。
  29. 一种基于智能超表面的预编码方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    接收第二网络设备的每个分块发送的参考信号;
    根据所述参考信号,确定所述第二网络设备与所述终端设备之间的信道的信道反馈信息;
    向第一网络设备发送所述信道反馈信息,所述信道反馈信息用于确定第一指示信息,所述第一指示信息用于确定所述第二网络设备的相移矩阵。
  30. 根据权利要求29所述的方法,其特征在于,所述方法还包括:
    接收第一网络设备发送的第二参考信号配置信息;
    根据所述第二参考信号配置信息,接收所述第二网络设备的每个分块发送的参考信号。
  31. 根据权利要求30所述的方法,其特征在于,所述第二参考信号配置信息包括以下至少一种:
    所述每个分块发送的参考信号序列的生成信息;
    所述每个分块发送的参考信号所占用的天线端口序号;
    所述每个分块发送的参考信号所占用的时频资源。
  32. 根据权利要求29所述的方法,其特征在于,所述信道反馈信息包括:多个第三预编码矩阵指 示PMI和每个第三PMI对应的参考信号的索引;
    所述第三PMI用于指示所述第二网络设备的每个分块与所述终端设备之间的信道的预编码矩阵。
  33. 根据权利要求29-32任一项所述的方法,其特征在于,所述第二网络设备为智能超表面RIS。
  34. 一种基于智能超表面的预编码装置,其特征在于,所述装置包括:
    收发单元,用于获取第二网络设备的单元排布信息和分块信息,所述分块信息用于指示所述第二网络设备的多个分块;
    所述收发单元,还用于接收终端设备发送的信道反馈信息,所述信道反馈信息是所述终端设备基于所述第二网络设备的每个分块发送的参考信号确定的;
    处理单元,用于根据所述信道反馈信息,所述单元排布信息和所述分块信息,确定第一指示信息,所述第一指示信息用于确定所述第二网络设备的相移矩阵;
    所述收发单元,还用于向所述第二网络设备发送所述第一指示信息。
  35. 一种基于智能超表面的预编码装置,其特征在于,所述装置包括:
    收发单元,用于向第一网络设备发送所述第二网络设备的单元排布信息和分块信息,所述分块信息用于指示所述第二网络设备的多个分块;
    所述收发单元,还用于向终端设备发送参考信号,所述参考信号用于所述终端设备确定信道反馈信息;
    所述收发单元,还用于接收所述第一网络设备发送的第一指示信息,所述第一指示信息是所述第一网络设备基于所述信道反馈信息,所述单元排布信息和所述分块信息确定的;
    处理单元,用于根据所述第一指示信息,确定所述第二网络设备的相移矩阵。
  36. 一种基于智能超表面的预编码装置,其特征在于,所述装置包括:
    收发单元,用于接收第二网络设备的每个分块发送的参考信号;
    处理单元,用于根据所述参考信号,确定所述第二网络设备与所述终端设备之间的信道的信道反馈信息;
    所述收发单元,还用于向第一网络设备发送所述信道反馈信息,所述信道反馈信息用于确定第一指示信息,所述第一指示信息用于确定所述第二网络设备的相移矩阵。
  37. 一种通信系统,其特征在于,所述通信系统包括:
    第一网络设备,用于执行如权利要求1至15中任一项所述的方法;
    第二网络设备,用于执行如权利要求16至28中任一项所述的方法;
    终端设备,用于执行如权利要求29至33中任一项所述的方法。
PCT/CN2022/115967 2022-08-30 2022-08-30 基于智能超表面的预编码方法及装置 WO2024044990A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115967 WO2024044990A1 (zh) 2022-08-30 2022-08-30 基于智能超表面的预编码方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/115967 WO2024044990A1 (zh) 2022-08-30 2022-08-30 基于智能超表面的预编码方法及装置

Publications (1)

Publication Number Publication Date
WO2024044990A1 true WO2024044990A1 (zh) 2024-03-07

Family

ID=90100234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115967 WO2024044990A1 (zh) 2022-08-30 2022-08-30 基于智能超表面的预编码方法及装置

Country Status (1)

Country Link
WO (1) WO2024044990A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112260739A (zh) * 2020-09-18 2021-01-22 华南理工大学 基于智能反射表面进行波束赋形的信息传输方法
WO2021092746A1 (zh) * 2019-11-12 2021-05-20 华为技术有限公司 一种信道信息获取的方法
WO2022057918A1 (zh) * 2020-09-21 2022-03-24 索尼集团公司 电子设备、无线通信方法以及计算机可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021092746A1 (zh) * 2019-11-12 2021-05-20 华为技术有限公司 一种信道信息获取的方法
CN112260739A (zh) * 2020-09-18 2021-01-22 华南理工大学 基于智能反射表面进行波束赋形的信息传输方法
WO2022057918A1 (zh) * 2020-09-21 2022-03-24 索尼集团公司 电子设备、无线通信方法以及计算机可读存储介质

Similar Documents

Publication Publication Date Title
WO2023070586A1 (zh) 物理下行共享信道pdsch配置方法及装置
WO2023184372A1 (zh) 上行信道的发送和接收的方法及装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024044990A1 (zh) 基于智能超表面的预编码方法及装置
WO2024007171A1 (zh) 一种算力负载均衡方法及装置
WO2024055324A1 (zh) 基于智能超表面的预编码方法及装置
WO2024036570A1 (zh) 基于智能超表面的预编码方法及装置
WO2023077311A1 (zh) 一种智能超表面ris的预编码方法及其装置
WO2024065130A1 (zh) 基于智能超表面的预编码方法及装置
WO2024182948A1 (zh) 一种定位方法、装置、设备及存储介质
WO2023216164A1 (zh) 一种智能超表面的预编码方法及装置
WO2024000179A1 (zh) 一种上行mimo传输的天线全相干传输码字的确定方法及其装置
WO2023115577A1 (zh) 一种信道状态信息csi的反馈方法及其装置
WO2024168915A1 (zh) 幅度约束方法和装置
WO2024027011A1 (zh) 系数指示方法及其装置
WO2024045143A1 (zh) 一种轨道角动量oam的预编码矩阵确定方法及其装置
WO2024026639A1 (zh) 一种波束赋形方法、装置、设备及存储介质
WO2023216165A1 (zh) 一种控制智能超表面ris发射参考信号的方法及装置
WO2023168575A1 (zh) 一种天线切换能力上报方法及其装置
WO2023092494A1 (zh) 一种预编码信息的反馈方法及其装置
WO2024011543A1 (zh) 基向量的选择指示上报方法和装置
WO2023184434A1 (zh) 基于码本的上行信道发送方法及装置
WO2023245683A1 (zh) 基向量类型的指示方法和装置
WO2024026796A1 (zh) 上行mimo传输的预编码矩阵确定方法及其装置
WO2023184435A1 (zh) 一种确定波束信息的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956822

Country of ref document: EP

Kind code of ref document: A1