WO2024036570A1 - 基于智能超表面的预编码方法及装置 - Google Patents

基于智能超表面的预编码方法及装置 Download PDF

Info

Publication number
WO2024036570A1
WO2024036570A1 PCT/CN2022/113378 CN2022113378W WO2024036570A1 WO 2024036570 A1 WO2024036570 A1 WO 2024036570A1 CN 2022113378 W CN2022113378 W CN 2022113378W WO 2024036570 A1 WO2024036570 A1 WO 2024036570A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
reference signal
pmi
indication information
phase shift
Prior art date
Application number
PCT/CN2022/113378
Other languages
English (en)
French (fr)
Inventor
池连刚
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/113378 priority Critical patent/WO2024036570A1/zh
Publication of WO2024036570A1 publication Critical patent/WO2024036570A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding

Definitions

  • the present application relates to the field of communication technology, and in particular to a precoding method and device based on intelligent metasurfaces.
  • RIS Reconfigurable Intelligent Surface
  • the first embodiment of the present application proposes a precoding method based on intelligent metasurfaces.
  • the method is executed by a first network device.
  • the method includes:
  • the reference signal is used by the terminal device to determine channel feedback information
  • the channel feedback information is used by the second network device to determine the first indication information
  • the second embodiment of the present application proposes a precoding method based on intelligent metasurfaces.
  • the method is executed by a second network device.
  • the method includes:
  • Receive channel feedback information sent by the terminal device the channel feedback information is determined by the terminal device based on the reference signal sent by the first network device, and the channel feedback information is used to determine the first indication information;
  • the first indication information is sent to the first network device, where the first indication information is used to determine a phase shift matrix of the first network device.
  • the third embodiment of the present application proposes a precoding method based on intelligent metasurfaces.
  • the method is executed by a terminal device.
  • the method includes:
  • the channel feedback information is sent to a second network device, where the channel feedback information is used to determine first indication information, and the first indication information is used to determine a phase shift matrix of the first network device.
  • the fourth embodiment of the present application proposes a precoding device based on an intelligent metasurface.
  • the device is applied to a first network device.
  • the device includes:
  • a transceiver unit configured to send a reference signal to the terminal device, the reference signal is used by the terminal device to determine channel feedback information, and the channel feedback information is used by the second network device to determine the first indication information;
  • the transceiver unit is also configured to receive the first indication information sent by the second network device, where the first indication information is used to determine the phase shift matrix of the first network device;
  • a processing unit configured to determine the phase shift matrix of the first network device according to the first indication information.
  • the fifth aspect embodiment of the present application proposes a precoding device based on an intelligent metasurface.
  • the device is applied to a second network device.
  • the device includes:
  • a transceiver unit configured to receive channel feedback information sent by the terminal device, where the channel feedback information is determined by the terminal device based on the reference signal sent by the first network device, and the channel feedback information is used to determine the first indication information;
  • the transceiver unit is further configured to send the first indication information to the first network device, where the first indication information is used to determine the phase shift matrix of the first network device.
  • the sixth aspect embodiment of the present application proposes a precoding device based on smart metasurfaces.
  • the device is applied to terminal equipment.
  • the device includes:
  • a transceiver unit configured to receive the reference signal sent by the first network device
  • a processing unit configured to estimate the channel between the first network device and the terminal device according to the reference signal to obtain channel feedback information
  • the transceiver unit is also configured to send the channel feedback information to a second network device, where the channel feedback information is used to determine first indication information, and the first indication information is used to determine the relative position of the first network device. shift matrix.
  • the seventh embodiment of the present application provides a communication device.
  • the device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory so that the The device executes the precoding method based on the smart metasurface described in the above embodiment of the first aspect, or executes the precoding method based on the smart metasurface described in the above embodiment of the second aspect.
  • the eighth embodiment of the present application provides a communication device.
  • the device includes a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory so that the The device executes the precoding method based on the smart metasurface described in the embodiment of the third aspect, or executes the precoding method based on the smart metasurface described in the embodiment of the fourth aspect.
  • the ninth aspect of the present application provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to enable the The device executes the precoding method based on the smart metasurface described in the above embodiment of the first aspect, or executes the precoding method based on the smart metasurface described in the above embodiment of the second aspect.
  • the tenth embodiment of the present application provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to make the The device executes the smart metasurface-based precoding method described in the third embodiment.
  • the eleventh embodiment of the present application provides a computer-readable storage medium for storing instructions.
  • the smart metasurface-based precoding method described in the first embodiment is used. be realized, or the precoding method based on the intelligent metasurface described in the embodiment of the second aspect is realized.
  • the twelfth embodiment of the present application provides a computer-readable storage medium for storing instructions.
  • the precoding method based on the intelligent metasurface described in the third embodiment is used. be realized.
  • the thirteenth aspect embodiment of the present application proposes a computer program that, when run on a computer, causes the computer to execute the precoding method based on the intelligent metasurface described in the above-mentioned first aspect embodiment, or to execute the above-mentioned second aspect The precoding method based on intelligent metasurface described in the embodiment.
  • the fourteenth embodiment of the present application provides a computer program that, when run on a computer, causes the computer to execute the precoding method based on smart metasurfaces described in the above third embodiment.
  • the embodiments of the present application provide a precoding method and device based on an intelligent metasurface.
  • the reference signal is used for the terminal device to determine channel feedback information.
  • the channel feedback information is used for the second network device to determine
  • the first indication information is received from the second network device.
  • the first indication information is used to determine the phase shift matrix of the first network device. According to the first indication information, the phase shift matrix of the first network device is determined.
  • the phase shift matrix enables the base station to control the precoding of smart metasurfaces based on channel information, effectively reducing the complexity of precoding based on smart metasurfaces, improving the communication efficiency of smart metasurface-assisted communication systems, and reducing interference.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application
  • Figure 3 is a schematic flowchart of a precoding method based on intelligent metasurfaces provided by an embodiment of the present application
  • Figure 4 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application
  • Figure 5 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application
  • Figure 6 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application
  • Figure 7 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application.
  • Figure 8 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application.
  • Figure 9 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application.
  • Figure 10 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a precoding device based on a smart metasurface provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a precoding device based on a smart metasurface provided by an embodiment of the present application
  • Figure 13 is a schematic structural diagram of a precoding device based on a smart metasurface provided by an embodiment of the present application
  • Figure 14 is a schematic structural diagram of another smart metasurface-based precoding device provided by an embodiment of the present application.
  • Figure 15 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • first, second, third, etc. may be used to describe various information in the embodiments of this application, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as "when” or "when” or “in response to determining.”
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include but is not limited to a first network device, a second network device and a terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present application. In actual applications, they may Including two or more network devices and two or more terminal devices.
  • the communication system shown in Figure 1 includes a first network device 101, a second network device 102 and a terminal device 103 as an example.
  • LTE Long Term Evolution
  • 5G new air interface system 5G new air interface system
  • other future new mobile communication systems 5G new air interface system
  • the first network device 101 in the embodiment of this application is a device capable of regulating communication channels.
  • the first network device 101 is equipped with a large number of (electromagnetic) units, and can change the radiation characteristics of the (electromagnetic) units by adjusting the physical properties (such as capacitive reactance, impedance or inductive reactance) of the (electromagnetic) units, and then can adjust the radiation characteristics of the (electromagnetic) units.
  • Electromagnetic waves in space are dynamically regulated to form beams in specific directions in space.
  • the first network device 101 may be a Reconfigurable Intelligent Surface (RIS) or the like.
  • the (electromagnetic) units in the first network device 101 may be active or passive; some of the (electromagnetic) units in the first network device 101 may be active, Some (electromagnetic) units are passive.
  • the second network device 102 in the embodiment of this application is an entity on the network side that is used to transmit or receive signals.
  • the second network device 102 may be an evolved base station (Evolved NodeB, eNB), a transmission point (Transmission Reception Point, TRP), a next generation base station (Next Generation NodeB, gNB) in an NR system, or other future mobile communication systems.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the access network equipment.
  • the access network equipment provided by the embodiments of this application may be composed of a centralized unit (Central Unit, CU) and a distributed unit (Distributed Unit, DU).
  • the CU may also be called a control unit (Control Unit).
  • Control Unit Control Unit
  • CU The structure of DU can separate the protocol layers of access network equipment, such as base stations, with some protocol layer functions placed under centralized control on the CU, while the remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU .
  • the terminal device 103 in the embodiment of this application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (Mobile Station, MS), mobile terminal equipment (Mobile Terminal, MT), etc.
  • Terminal devices can be cars with communication functions, smart cars, mobile phones, wearable devices, tablets (Pad), computers with wireless transceiver functions, virtual reality (Virtual Reality, VR) terminal devices, augmented reality ( Augmented Reality (AR) terminal equipment, wireless terminal equipment in industrial control (Industrial Control), wireless terminal equipment in self-driving (Self-Driving), wireless terminal equipment in remote surgery (Remote Medical Surgery), smart grid ( Wireless terminal equipment in Smart Grid, wireless terminal equipment in Transportation Safety, wireless terminal equipment in Smart City, wireless terminal equipment in Smart Home, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal equipment.
  • RIS smart metasurfaces
  • RIS can use precoding technology to reflect or transmit the signal incident on its surface to a specific direction, thereby enhancing the strength of the signal at the receiving end or reducing interference, and achieving channel control.
  • the second network device 102 reflects or transmits the signal to the terminal device 103 through the first network device 101 (RIS), or the terminal device 103 passes through
  • the first network device 101 (RIS) reflects or transmits the signal to the second network device 102.
  • the first network device 101 needs to be precoded.
  • the method of determining the precoding of the first network device 101 (RIS) is relatively complex.
  • Figure 2 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the first network device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 2, the method may include the following steps:
  • Step 201 Send a reference signal to the terminal device.
  • the first network device may be a smart metasurface RIS.
  • the first network device can send a reference signal
  • the reference signal is used by the terminal device to determine channel feedback information
  • the channel feedback information is used by the second network device to determine the first indication information
  • the reference signal is used by the terminal device to estimate the channel between the first network device and the terminal device to obtain channel feedback information. That is, after receiving the reference signal sent by the first network device, the terminal device can perform channel estimation based on the reference signal to obtain channel feedback information of the channel between the first network device and the terminal device.
  • the channel feedback information is used by the second network device to determine the first indication information based on the channel feedback information.
  • the first indication information is determined by the second network device based on the incident angle information between the second network device and the first network device and the channel feedback information sent by the terminal device.
  • the incident angle information between the second network device and the first network device refers to the incident angle information of the signal emitted by the second network device incident on the surface of the first network device.
  • the channel feedback information sent by the terminal device is sent by the terminal device to the second network device and can feed back the information of the channel between the first network device and the terminal device.
  • the first indication information is determined by the second network device based on channel feedback information sent by the terminal device.
  • the channel feedback information includes at least one of the following:
  • the second indication information includes a second PMI, the second PMI is used to indicate the precoding matrix of the channel between the first network device and the terminal device;
  • RSRP Reference Signal Receiving Power
  • RSSI Received Singnal Strength Indicator
  • SINR Signal to Interference plus Noise Ratio
  • the first network device can receive the reference signal configuration information sent by the second network device, and send the reference signal according to the reference signal configuration information.
  • the reference signal can be used by the terminal device to determine the channel feedback information.
  • the reference signal configuration information includes at least one of the following:
  • the time-frequency resources occupied by the reference signal are the time-frequency resources occupied by the reference signal.
  • the reference signal may also be sent to the second network device and so on.
  • Step 202 Receive first indication information sent by the second network device, where the first indication information is used to determine the phase shift matrix of the first network device.
  • the first network device can receive the first indication information sent by the second network device, and determine the phase shift matrix of the first network based on the first indication information, and then based on the phase shift matrix, the incident on the The signal on the surface of the first network device is reflected or projected to realize precoding based on the intelligent metasurface.
  • the phase shift matrix of the first network device is used to configure the phases of each unit in the first network device, that is, to precode the first network device.
  • the first network device can adjust the phases of each of its units according to the phase shift matrix configuration to implement precoding of the first network device.
  • the first network device can determine a reference phase shift matrix based on the first indication information. Furthermore, the first network device can quantize the reference phase shift matrix according to the phase offset value it supports to obtain the phase shift matrix of the first network device (that is, the phase shift matrix actually used in the end).
  • phase offset values supported by the first network device are several discrete values rather than continuous, and the phases of each unit in the first network device are not continuously adjustable.
  • the reference phase shift matrix is determined based on the first indication information sent by the second network device.
  • the first indication information is determined by the second network device based on the assumption that the phases of each unit in the first network device are continuously adjustable.
  • the generated phase of each unit in the first network device configured corresponding to the reference phase shift matrix may not be supported by the first network device. Therefore, the first network device can quantize the reference phase shift matrix according to the phase offset value supported by the first network device to obtain the phase shift matrix of the first network device.
  • the first indication information includes at least one first precoding matrix indicator (Percoding Matrix Indicator, PMI), and weighting coefficients corresponding to each first PMI.
  • PMI Percoding Matrix Indicator
  • the weighting coefficient corresponding to the first PMI is 1.
  • the first PMI included in the first indication information is used to determine the phase shift matrix of the first network device.
  • the weighting coefficient can be a real number or a complex number.
  • the weighting coefficient is a complex number, indicating that the weighting coefficient includes amplitude and phase information.
  • the first indication information is determined by the second network device based on the incident angle information between the second network device and the first network device and the channel feedback information sent by the terminal device.
  • the incident angle information between the second network device and the first network device refers to the incident angle information of the signal emitted by the second network device incident on the surface of the first network device.
  • the channel feedback information sent by the terminal device is sent by the terminal device to the second network device and can feed back the information of the channel between the first network device and the terminal device.
  • the first indication information is determined by the second network device based on channel feedback information sent by the terminal device.
  • the first network device may determine whether the determination of the first indication information takes into account the communication between the second network device and the first network device according to the pre-provisions of the protocol or the configuration instructions of the second network device. Angle of incidence information.
  • Step 203 Determine the phase shift matrix of the first network device according to the first indication information.
  • the first network device can determine the phase shift matrix of the first network device according to the received first indication information, and then adjust the phase of each unit according to the phase shift matrix configuration, so as to adjust the phase of each unit incident on the first network device.
  • Signals on the surface of network equipment are reflected or transmitted.
  • the first indication information is determined by the second network device based on the incident angle information between the second network device and the first network device and the channel feedback information sent by the terminal device.
  • the first indication information is determined by the second network device based on the incident angle information between the second network device and the first network device and the channel feedback information sent by the terminal device, and the first indication information includes A first precoding matrix indicates PMI, and the first network device determines that the precoding matrix corresponding to the first PMI is indicated as the reference phase shift matrix.
  • the first indication information is determined by the second network device based on the incident angle information between the second network device and the first network device and the channel feedback information sent by the terminal device, where the first indication information including a plurality of first precoding matrix indication PMIs and weighting coefficients corresponding to each first PMI, and the first network device can perform weighted merging of the precoding matrices indicated corresponding to each first PMI according to the weighting coefficients corresponding to each first PMI, Get the reference phase shift matrix.
  • the first indication information is determined by the second network device based on channel feedback information sent by the terminal device.
  • the first indication information is determined by the second network device based on the channel feedback information sent by the terminal device.
  • the first indication information includes a first precoding matrix indication PMI, and the first network device can determine the PMI according to the first indication information.
  • the first network device can adjust the precoding matrix corresponding to the first PMI based on the incident angle information between the second network device and the first network device to obtain the reference phase shift matrix.
  • the first indication information is determined by channel feedback information sent by the terminal device.
  • the first indication information includes a plurality of first precoding matrix indication PMIs and weighting coefficients corresponding to each first PMI.
  • a network device can determine the reference phase shift matrix based on the precoding matrix and weighting coefficient corresponding to each first PMI in the plurality of first PMIs, and the incident angle information between the second network device and the first network device.
  • the first network device can weight and combine the precoding matrices indicated by each first PMI according to the weighting coefficient corresponding to each first PMI to obtain the first matrix, and based on the relationship between the second network device and the first network device The first matrix is adjusted based on the incident angle information to obtain the reference phase shift matrix.
  • the incident angle information between the second network device and the first network device may be sent by the second network device to the first network device, or may be obtained by sensing and measuring by the first network device itself.
  • the weighting coefficient used by the precoding matrix corresponding to each first PMI is the weighting coefficient corresponding to the first PMI indicating the precoding matrix.
  • the first network device after determining the phase shift matrix, can configure and adjust the phase of each unit in the first network device according to the phase shift matrix, and based on the adjusted phase, the first network device can configure and adjust the phase of the unit incident on the first network device based on the adjusted phase. Signals on the surface of a network device are reflected or transmitted.
  • the first indication information sent by the second network device is received.
  • the first indication information is used to determine the phase shift matrix of the first network device.
  • the phase shift matrix is determined.
  • the phase shift matrix of the first network device enables the base station to control the precoding of the smart metasurface based on channel information, effectively reducing the complexity of precoding based on the smart metasurface and improving the communication efficiency of the smart metasurface-assisted communication system. Reduce distractions.
  • Figure 3 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the first network device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 3, the method may include the following steps:
  • Step 301 Receive reference signal configuration information sent by the second network device.
  • the first network device may be a smart metasurface RIS.
  • the first network device can receive the reference signal configuration information sent by the second network device, and determine the reference signal to be sent based on the reference signal configuration information.
  • the reference signal configuration information includes at least one of the following:
  • the time-frequency resources occupied by the reference signal are the time-frequency resources occupied by the reference signal.
  • the first network device can determine the reference signal to send based on the reference signal configuration information.
  • Step 302 Send a reference signal to the terminal device according to the reference signal configuration information.
  • the first network device may determine the reference signal based on the received reference signal configuration information, and send the reference signal to the terminal device.
  • the reference signal is used by the terminal device to estimate the channel between the first network device and the terminal device to obtain channel feedback information. That is, after receiving the reference signal sent by the first network device, the terminal device can perform channel estimation based on the reference signal to obtain channel feedback information of the channel between the first network device and the terminal device.
  • the channel feedback information includes at least one of the following:
  • the second indication information includes a second PMI, the second PMI is used to indicate the precoding matrix of the channel between the first network device and the terminal device;
  • SINR Signal to interference plus noise ratio
  • Step 303 Receive the first indication information sent by the second network device.
  • the first network device can receive the first indication information sent by the second network device.
  • the first indication information includes at least one first PMI and the weighting coefficient corresponding to each first PMI.
  • the weighting coefficient corresponding to the first PMI is 1.
  • the first PMI included in the first indication information is used to determine the phase shift matrix of the first network device.
  • the weighting coefficient can be a real number or a complex number.
  • the weighting coefficient is a complex number, indicating that the weighting coefficient includes amplitude and phase information.
  • the first indication information is determined by the second network device based on the incident angle information between the second network device and the first network device and the channel feedback information sent by the terminal device.
  • the incident angle information between the second network device and the first network device refers to the incident angle information of the signal emitted by the second network device incident on the surface of the first network device.
  • the channel feedback information sent by the terminal device is determined by the terminal device based on the received reference signal and sent to the second network device, and can feed back information about the channel between the first network device and the terminal device.
  • the first network device may determine that the determination of the first indication information takes into account the incident between the second network device and the first network device according to the predetermined provisions of the protocol or the configuration instruction of the second network device. Angle information, the first network device can directly determine the phase shift matrix based on the first indication information without considering the incident angle information.
  • Step 304 Determine a reference phase shift matrix according to the first indication information.
  • the first network device can determine a reference phase shift matrix based on the received first indication information.
  • the reference phase shift matrix is determined based on the first indication information sent by the second network device.
  • the first indication information is based on the assumption that the phase of each unit in the first network device can be continuously determined by the second network device. generated by tuning.
  • the phase offset values supported by the first network device are several discrete values rather than continuous.
  • the phases of each unit in the first network device are not continuously adjustable. That is, the phase of each unit in the first network device configured corresponding to the reference phase shift matrix may not be supported by the first network device.
  • the first indication information is determined by the second network device based on the incident angle information between the second network device and the first network device and the channel feedback information sent by the terminal device.
  • the first network device receives
  • the obtained first indication information may include at least one first PMI and a weighting coefficient corresponding to each first PMI.
  • the weighting coefficient corresponding to the first PMI is 1.
  • the first indication information includes a first PMI
  • the first network device determines that the precoding matrix corresponding to the first PMI is the reference phase shift matrix.
  • the first indication information includes a plurality of first PMIs and weighting coefficients corresponding to each first PMI.
  • the first network device can, based on the weighting coefficients corresponding to each first PMI, adjust the preset indication corresponding to each PMI.
  • the coding matrices are weighted and combined to obtain the reference phase shift matrix.
  • the weighting coefficient used by the precoding matrix corresponding to each first PMI is the weighting coefficient corresponding to the first PMI indicating the precoding matrix.
  • Step 305 Quantize the reference phase shift matrix according to the phase offset value supported by the first network device to obtain the phase shift matrix of the first network device.
  • the reference phase shift matrix corresponds to the phase of each unit in the configured first network device, It may be that the first network device does not support it. Therefore, the first network device can quantize the reference phase shift matrix according to the phase offset value it supports to obtain the phase shift matrix of the first network device (that is, the phase shift matrix actually used in the end).
  • the phase shift matrix of the first network device is used to configure the phases of each unit in the first network device, that is, to precode the first network device.
  • the first network device can adjust the phases of each of its units according to the phase shift matrix configuration to implement precoding of the first network device.
  • Step 306 Reflect or transmit the signal incident on the surface of the first network device according to the phase shift matrix.
  • the first network device after determining the phase shift matrix, can configure and adjust the phase of each unit in the first network device according to the phase shift matrix, and based on the adjusted phase, the first network device can configure and adjust the phase of the unit incident on the first network device based on the adjusted phase. Signals on the surface of a network device are reflected or transmitted.
  • the base station can control the precoding of the smart metasurface based on channel information.
  • Figure 4 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the first network device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 4, the method may include the following steps:
  • Step 401 Receive reference signal configuration information sent by the second network device.
  • the first network device may be a smart metasurface RIS.
  • the first network device can receive the reference signal configuration information sent by the second network device, and determine the reference signal to send to the terminal device based on the reference signal configuration information.
  • the reference signal configuration information includes at least one of the following:
  • the time-frequency resources occupied by the reference signal are the time-frequency resources occupied by the reference signal.
  • the first network device can determine the reference signal to send to the terminal device according to the reference signal configuration information.
  • Step 402 Send a reference signal to the terminal device according to the reference signal configuration information.
  • the first network device may determine the reference signal based on the received reference signal configuration information, and send the reference signal to the terminal device.
  • the reference signal is used by the terminal device to estimate the channel between the first network device and the terminal device to obtain channel feedback information. That is, after receiving the reference signal sent by the first network device, the terminal device can perform channel estimation based on the reference signal to obtain channel feedback information of the channel between the first network device and the terminal device.
  • the channel feedback information includes at least one of the following:
  • the second indication information includes a second PMI, the second PMI is used to indicate the precoding matrix of the channel between the first network device and the terminal device;
  • SINR Signal to interference plus noise ratio
  • Step 403 Receive the first indication information sent by the second network device.
  • the first network device can receive the first indication information sent by the second network device.
  • the first indication information includes at least one first PMI and the weighting coefficient corresponding to each first PMI.
  • the weighting coefficient corresponding to the first PMI is 1.
  • the first PMI included in the first indication information is used to determine the phase shift matrix of the first network device.
  • the weighting coefficient can be a real number or a complex number.
  • the weighting coefficient is a complex number, indicating that the weighting coefficient includes amplitude and phase information.
  • the first indication information is determined by the second network device based on the channel feedback information sent by the terminal device.
  • the channel feedback information sent by the terminal device is determined by the terminal device based on the received reference signal and sent to the second network device, and can feed back information about the channel between the first network device and the terminal device.
  • the first network device may determine that the determination of the first indication information does not take into account the communication between the second network device and the first network device according to the pre-provisions of the protocol or the configuration instructions of the second network device.
  • the first network device needs to determine the phase shift matrix based on the incident angle information and the first indication information.
  • Step 404 Determine a reference phase shift matrix based on the first indication information and the incident angle information between the second network device and the first network device.
  • the first network device can determine a reference phase shift matrix based on the received first indication information and the incident angle information between the second network device and the first network device.
  • the reference phase shift matrix is determined based on the first indication information sent by the second network device.
  • the first indication information is based on the assumption that the phase of each unit in the first network device can be continuously determined by the second network device. generated by tuning.
  • the phase offset values supported by the first network device are several discrete values rather than continuous.
  • the phases of each unit in the first network device are not continuously adjustable. That is, the phase of each unit in the first network device configured corresponding to the reference phase shift matrix may not be supported by the first network device.
  • the incident angle information may be sent by the second network device to the first network device, or may be measured by the first network device itself.
  • the first network device is also capable of receiving the incident angle information sent by the second network device.
  • the first indication information is determined by the second network device based on the channel feedback information sent by the terminal device.
  • the first indication information received by the first network device may include at least one first PMI, and each third A weighting coefficient corresponding to PMI.
  • the weighting coefficient corresponding to the first PMI is 1.
  • the first indication information includes a first PMI
  • the first network device can use the precoding matrix and weighting coefficient corresponding to the first PMI, and the incident signal between the second network device and the first network device to angle information to determine the reference phase shift matrix.
  • the first network device can adjust the precoding matrix corresponding to the first PMI based on the incident angle information to obtain the reference phase shift matrix.
  • the first indication information includes a plurality of first PMIs and weighting coefficients corresponding to each first PMI
  • the first network device can use the precoding matrix corresponding to each first PMI in the plurality of first PMIs to and weighting coefficients, as well as incident angle information between the second network device and the first network device, to determine the reference phase shift matrix.
  • the first network device can first perform a weighted combination of the precoding matrices indicated by each first PMI according to the weighting coefficient corresponding to each first PMI to obtain the first matrix, and then weight the weighted matrix based on the incident angle information.
  • the first matrix obtained by merging is adjusted to finally obtain the reference phase shift matrix.
  • the weighting coefficient used by the precoding matrix corresponding to each first PMI is the weighting coefficient corresponding to the first PMI indicating the precoding matrix.
  • Step 405 Quantize the reference phase shift matrix according to the phase offset value supported by the first network device to obtain the phase shift matrix of the first network device.
  • the reference phase shift matrix corresponds to the phase of each unit in the configured first network device, It may be that the first network device does not support it. Therefore, the first network device can quantize the reference phase shift matrix according to the phase offset value it supports to obtain the phase shift matrix of the first network device (that is, the phase shift matrix actually used in the end).
  • the phase shift matrix of the first network device is used to configure the phases of each unit in the first network device, that is, to precode the first network device.
  • the first network device can adjust the phases of each of its units according to the phase shift matrix configuration to implement precoding of the first network device.
  • Step 406 Reflect or transmit the signal incident on the surface of the first network device according to the phase shift matrix.
  • the first network device after determining the phase shift matrix, can configure and adjust the phase of each unit in the first network device according to the phase shift matrix, and based on the adjusted phase, the first network device can configure and adjust the phase of the unit incident on the first network device based on the adjusted phase. Signals on the surface of a network device are reflected or transmitted.
  • the reference phase shift matrix is quantized to obtain the phase shift matrix of the first network device.
  • the shift matrix enables the base station to control the precoding of smart metasurfaces based on channel information, effectively reducing the complexity of precoding based on smart metasurfaces, improving the communication efficiency of smart metasurface-assisted communication systems, and reducing interference.
  • Figure 5 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the second network device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 5, the method may include the following steps:
  • Step 501 Receive channel feedback information sent by the terminal device.
  • the second network device can receive channel feedback information sent by the terminal device.
  • the channel feedback information is determined by the terminal device based on the reference signal sent by the first network device.
  • the channel feedback information is used to determine the first network device. Instructions.
  • the channel feedback information is obtained by the terminal device estimating the channel between the first network device and the terminal device based on the received reference signal, and can feed back the channel between the first network device and the terminal device. channel information.
  • the first network device may be a smart metasurface RIS.
  • the channel feedback information includes at least one of the following:
  • the second indication information includes a second PMI, the second PMI is used to indicate the precoding matrix of the channel between the first network device and the terminal device;
  • SINR Signal to interference plus noise ratio
  • the second network device may receive channel feedback information sent by at least one terminal device.
  • the second network device can also send the reference signal configuration information to the first network device and the terminal device.
  • the first network device can send a reference signal to the terminal device according to the reference signal configuration information, and the terminal device can receive the reference signal sent by the first network device according to the reference signal configuration information.
  • the reference signal configuration information includes at least one of the following:
  • the time-frequency resources occupied by the reference signal are the time-frequency resources occupied by the reference signal.
  • the channel used by the second network device to send the reference signal configuration information to the terminal device may be through the first network device.
  • the channel may also be a direct-view channel that does not pass through the first network device, which is not limited in this application.
  • the second network device may determine the first indication information based on the channel feedback information sent by the terminal device and the incident angle information between the second network device and the first network device.
  • the incident angle information between the second network device and the first network device refers to the incident angle information of the signal emitted by the second network device incident on the surface of the first network device.
  • the second network device may determine the first indication information based on the channel feedback information sent by the terminal device.
  • the first indication information determined by the second network device is used to determine the phase shift matrix of the first network device.
  • Step 502 Send first indication information to the first network device, where the first indication information is used to determine the phase shift matrix of the first network device.
  • the second network device can send first indication information to the first network device, and the first indication information is used to determine the phase shift matrix of the first network device.
  • the phase shift matrix of the first network device is used to configure the phases of each unit in the first network device, that is, to precode the first network device.
  • the first network device can adjust the phases of each of its units according to the phase shift matrix configuration to implement precoding of the first network device, and can reflect or transmit signals incident on the surface of the first network device.
  • the first indication information is used to determine a reference phase shift matrix.
  • the phase shift matrix of the first network device (that is, the phase shift matrix actually used in the end) is based on the phase shift matrix supported by the first network device.
  • the phase offset value is obtained by quantizing the reference phase shift matrix.
  • phase offset values supported by the first network device are several discrete values rather than continuous, and the phases of each unit in the first network device are not continuously adjustable.
  • the reference phase shift matrix is determined based on the first indication information sent by the second network device.
  • the first indication information is determined by the second network device based on the assumption that the phases of each unit in the first network device are continuously adjustable.
  • the generated phase of each unit in the first network device configured corresponding to the reference phase shift matrix may not be supported by the first network device. Therefore, the first network device can quantize the reference phase shift matrix according to the phase offset value supported by the first network device to obtain the phase shift matrix of the first network device.
  • the first indication information includes at least one first PMI and a weighting coefficient corresponding to each first PMI.
  • the weighting coefficient corresponding to the first PMI is 1.
  • the first PMI included in the first indication information is used to determine the phase shift matrix of the first network device.
  • the weighting coefficient can be a real number or a complex number.
  • the weighting coefficient is a complex number, indicating that the weighting coefficient includes amplitude and phase information.
  • the second network device may determine the first indication information based on the channel feedback information sent by the terminal device and the incident angle information between the second network device and the first network device.
  • the first indication information includes a first PMI
  • the reference phase shift matrix is a precoding matrix corresponding to the indication of the first PMI
  • the first indication information includes a plurality of first PMIs and weighting coefficients corresponding to each PMI.
  • the reference phase shift matrix is the first network device based on the weighting coefficients corresponding to each first PMI.
  • Each first PMI is obtained by weighted combination of the corresponding indicated precoding matrices.
  • the second network device may determine the first indication information based on the channel feedback information sent by the terminal device.
  • the first indication information includes a first PMI
  • the reference phase shift matrix is the precoding matrix and weighting coefficient corresponding to the first network device according to the first PMI
  • the second network device and the first A network device is determined by angle of incidence information.
  • the reference phase shift matrix is obtained by the first network device adjusting the precoding matrix corresponding to the first PMI based on the incident angle information between the second network device and the first network device.
  • the first indication information includes a plurality of first PMIs and weighting coefficients corresponding to each first PMI
  • the reference phase shift matrix is obtained by the first network device according to each of the plurality of first PMIs.
  • the precoding matrix and weighting coefficient corresponding to a PMI are determined as well as the incident angle information between the second network device and the first network device.
  • the reference phase shift matrix is obtained by the first network device adjusting the first matrix based on the incident angle information between the second network device and the first network device.
  • the first matrix is obtained by weighting and combining the precoding matrices indicated by each first PMI according to the weighting coefficient corresponding to each first PMI by the first network device.
  • the second network device may send the incident angle information to the first network device.
  • the weighting coefficient used by the precoding matrix corresponding to each first PMI is the weighting coefficient corresponding to the first PMI indicating the precoding matrix.
  • the incident angle information between the second network device and the first network device refers to the incident angle information of the signal emitted by the second network device incident on the surface of the first network device.
  • the first indication information is sent to the first network device.
  • the first indication information is used to determine the phase shift matrix of the first network device, so that the base station can control the intelligence based on the channel information.
  • Metasurface precoding effectively reduces the complexity of precoding based on smart metasurfaces, improves the communication efficiency of smart metasurface-assisted communication systems, and reduces interference.
  • FIG. 6 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the second network device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 6, the method may include the following steps:
  • Step 601 Send reference signal configuration information to the first network device.
  • the second network device can send reference signal configuration information to the first network device.
  • the reference signal configuration information is used by the first network device to send a reference signal.
  • the reference signal is used by the terminal device to determine the first Channel feedback information of the channel between the network device and the terminal device.
  • the first network device can determine the reference signal according to the reference signal configuration information, and send the reference signal to the terminal device, and the terminal device can determine the channel feedback information according to the received reference signal.
  • the first network device may be a smart metasurface RIS.
  • the reference signal configuration information includes at least one of the following:
  • the time-frequency resources occupied by the reference signal are the time-frequency resources occupied by the reference signal.
  • Step 602 Send the reference signal configuration information to the terminal device.
  • the second network device can also send the reference signal configuration information to the terminal device, and the reference signal configuration information is used by the terminal device to receive the reference signal sent by the first network device.
  • the reference signal sent by the first network device is also determined based on the reference signal configuration information. That is, the reference signal configuration information sent in step 601 and step 602 is the same.
  • the channel used by the second network device to send the reference signal configuration information to the terminal device may be a channel that passes through the first network device, or it may be a direct-view channel that does not pass through the first network device. This application No limitation is made here.
  • Step 603 Receive channel feedback information sent by the terminal device.
  • the second network device can receive channel feedback information sent by the terminal device.
  • the channel feedback information is obtained by the terminal device estimating the channel between the first network device and the terminal device based on the received reference signal sent by the first network device, and can feed back the first network device and the terminal device. Information about the channel between devices.
  • the channel feedback information includes at least one of the following:
  • the second indication information includes a second PMI, the second PMI is used to indicate the precoding matrix of the channel between the first network device and the terminal device;
  • SINR Signal to interference plus noise ratio
  • the channel used by the second network device to receive the channel feedback information sent by the terminal device may be a channel that passes through the first network device, or a direct-view channel that does not pass through the first network device. This application is This is not limited.
  • Step 604 Determine first indication information based on the channel feedback information and the incident angle information between the second network device and the first network device.
  • the second network device can determine the first indication information based on the received channel feedback information and the incident angle information between the second network device and the first network device.
  • the first indication information is used to determine the phase shift matrix of the first network device.
  • the phase shift matrix of the first network device is used to configure the phases of each unit in the first network device, that is, to precode the first network device.
  • the first network device can adjust the phases of each of its units according to the phase shift matrix configuration to implement precoding of the first network device, and can reflect or transmit signals incident on the surface of the first network device.
  • the incident angle information between the second network device and the first network device refers to the incident angle information of the signal emitted by the second network device incident on the surface of the first network device.
  • the first indication information includes at least one first PMI and a weighting coefficient corresponding to each first PMI.
  • the weighting coefficient corresponding to the first PMI is 1.
  • the first PMI included in the first indication information is used to determine the phase shift matrix of the first network device.
  • the weighting coefficient can be a real number or a complex number.
  • the weighting coefficient is a complex number, indicating that the weighting coefficient includes amplitude and phase information.
  • the first indication information is used to determine a reference phase shift matrix.
  • the phase shift matrix of the first network device (that is, the phase shift matrix actually used in the end) is based on the phase shift matrix supported by the first network device.
  • the phase offset value is obtained by quantizing the reference phase shift matrix.
  • phase offset values supported by the first network device are several discrete values rather than continuous, and the phases of each unit in the first network device are not continuously adjustable.
  • the reference phase shift matrix is determined based on the first indication information sent by the second network device.
  • the first indication information is determined by the second network device based on the assumption that the phases of each unit in the first network device are continuously adjustable.
  • the generated phase of each unit in the first network device configured corresponding to the reference phase shift matrix may not be supported by the first network device. Therefore, the first network device can quantize the reference phase shift matrix according to the phase offset value supported by the first network device to obtain the phase shift matrix of the first network device.
  • the second network device may receive channel feedback information sent by at least one terminal device.
  • Step 605 Send the first indication information to the first network device.
  • the second network device can send the first indication information to the first network device.
  • the first indication information is used to determine the phase shift matrix of the first network device.
  • the first indication information is used to determine a reference phase shift matrix.
  • the phase shift matrix of the first network device (that is, the phase shift matrix actually used in the end) is based on the phase shift matrix supported by the first network device.
  • the phase offset value is obtained by quantizing the reference phase shift matrix.
  • the first indication information includes a first PMI
  • the reference phase shift matrix is a precoding matrix corresponding to the indication of the first PMI
  • the first indication information includes a plurality of first PMIs and weighting coefficients corresponding to each first PMI.
  • the reference phase shift matrix is the first network device based on the weighting coefficient corresponding to each PMI.
  • a PMI is obtained by weighted combination of the corresponding indicated precoding matrices.
  • the weighting coefficient used by the precoding matrix corresponding to each first PMI is the weighting coefficient corresponding to the first PMI indicating the precoding matrix.
  • the base station by sending the reference signal configuration information to the first network device, sending the reference signal configuration information to the terminal device, receiving the channel feedback information sent by the terminal device, according to the channel feedback information, and the second network device and the first network device.
  • the incident angle information between the two determines the first indication information and sends the first indication information to the first network device, so that the base station can control the precoding of the smart metasurface based on the channel information, effectively reducing the cost of precoding based on the smart metasurface. complexity, improves the communication efficiency of the intelligent metasurface-assisted communication system and reduces interference.
  • FIG. 7 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the second network device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 7, the method may include the following steps:
  • Step 701 Send reference signal configuration information to the first network device.
  • the second network device can send reference signal configuration information to the first network device.
  • the reference signal configuration information is used by the first network device to send a reference signal to the terminal device.
  • the reference signal is used by the terminal device to determine Channel feedback information of the channel between the first network device and the terminal device.
  • the first network device can determine the reference signal according to the reference signal configuration information, and send the reference signal to the terminal device, and the terminal device can determine the channel feedback information according to the received reference signal.
  • the first network device may be a smart metasurface RIS.
  • the reference signal configuration information includes at least one of the following:
  • the time-frequency resources occupied by the reference signal are the time-frequency resources occupied by the reference signal.
  • Step 702 Send the reference signal configuration information to the terminal device.
  • the second network device can also send the reference signal configuration information to the terminal device, and the reference signal configuration information is used by the terminal device to receive the reference signal sent by the first network device.
  • the reference signal sent by the first network device is also determined based on the reference signal configuration information. That is, the reference signal configuration information sent in step 701 and step 702 is the same.
  • the channel used by the second network device to send the reference signal configuration information to the terminal device may be a channel that passes through the first network device, or it may be a direct-view channel that does not pass through the first network device. This application No limitation is made here.
  • Step 703 Receive channel feedback information sent by the terminal device.
  • the second network device can receive channel feedback information sent by the terminal device.
  • the channel feedback information is obtained by the terminal device estimating the channel between the first network device and the terminal device based on the received reference signal sent by the first network device, and can feed back the first network device and the terminal device. Information about the channel between devices.
  • the channel feedback information includes at least one of the following:
  • the second indication information includes a second PMI, the second PMI is used to indicate the precoding matrix of the channel between the first network device and the terminal device;
  • SINR Signal to interference plus noise ratio
  • the channel used by the second network device to receive the channel feedback information sent by the terminal device may be a channel that passes through the first network device, or a direct-view channel that does not pass through the first network device. This application is This is not limited.
  • Step 704 Determine first indication information based on the channel feedback information.
  • the second network device can determine the first indication information based on the received channel feedback information.
  • the first indication information is used to determine the phase shift matrix of the first network device.
  • the phase shift matrix of the first network device is used to configure the phases of each unit in the first network device, that is, to precode the first network device.
  • the first network device can adjust the phases of each of its units according to the phase shift matrix configuration to implement precoding of the first network device, and can reflect or transmit signals incident on the surface of the first network device.
  • the first indication information includes at least one first PMI and a weighting coefficient corresponding to each first PMI.
  • the weighting coefficient corresponding to the first PMI is 1.
  • the first PMI included in the first indication information is used to determine the phase shift matrix of the first network device.
  • the weighting coefficient can be a real number or a complex number.
  • the weighting coefficient is a complex number, indicating that the weighting coefficient includes amplitude and phase information.
  • the first indication information is used to determine a reference phase shift matrix.
  • the phase shift matrix of the first network device (that is, the phase shift matrix actually used in the end) is based on the phase shift matrix supported by the first network device.
  • the phase offset value is obtained by quantizing the reference phase shift matrix.
  • phase offset values supported by the first network device are several discrete values rather than continuous, and the phases of each unit in the first network device are not continuously adjustable.
  • the reference phase shift matrix is determined based on the first indication information sent by the second network device.
  • the first indication information is determined by the second network device based on the assumption that the phases of each unit in the first network device are continuously adjustable.
  • the generated phase of each unit in the first network device configured corresponding to the reference phase shift matrix may not be supported by the first network device. Therefore, the first network device can quantize the reference phase shift matrix according to the phase offset value supported by the first network device to obtain the phase shift matrix of the first network device.
  • the second network device may receive channel feedback information sent by at least one terminal device, and determine the first indication information based on the received channel feedback information.
  • Step 705 Send the first indication information to the first network device.
  • the second network device can send the first indication information to the first network device.
  • the first indication information is used to determine the phase shift matrix of the first network device.
  • the first indication information is used to determine a reference phase shift matrix.
  • the phase shift matrix of the first network device (that is, the phase shift matrix actually used in the end) is based on the phase shift matrix supported by the first network device.
  • the phase offset value is obtained by quantizing the reference phase shift matrix.
  • the first indication information includes a first PMI
  • the reference phase shift matrix is a precoding matrix and weighting coefficient corresponding to the first network device according to the first PMI
  • the second network device and the first Determined by angle of incidence information between network devices are configured to be a precoding matrix and weighting coefficient corresponding to the first network device according to the first PMI
  • the second network device and the first Determined by angle of incidence information between network devices are configured to be a precoding matrix and weighting coefficient corresponding to the first network device according to the first PMI
  • the reference phase shift matrix is obtained by the first network device adjusting the precoding matrix corresponding to the first PMI based on the incident angle information between the second network device and the first network device.
  • the first indication information includes a plurality of first PMIs and weighting coefficients corresponding to each first PMI
  • the reference phase shift matrix is obtained by the first network device according to each first PMI in the plurality of first PMIs.
  • the corresponding precoding matrix and weighting coefficient are determined as well as the incident angle information between the second network device and the first network device.
  • the reference phase shift matrix is obtained by the first network device adjusting the first matrix based on the incident angle information between the second network device and the first network device.
  • the first matrix is obtained by weighting and combining the precoding matrices indicated by each first PMI according to the weighting coefficient corresponding to each first PMI by the first network device.
  • the weighting coefficient used by the precoding matrix corresponding to each first PMI is the weighting coefficient corresponding to the first PMI indicating the precoding matrix.
  • the incident angle information between the second network device and the first network device refers to the incident angle information of the signal emitted by the second network device incident on the surface of the first network device.
  • the second network device may also send the incident angle information to the first network device.
  • the device sends the first instruction information, enabling the base station to control the precoding of the smart metasurface based on the channel information, effectively reducing the complexity of the precoding based on the smart metasurface, improving the communication efficiency of the smart metasurface-assisted communication system, and reducing interference.
  • FIG. 8 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the terminal device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 8, the method may include the following steps:
  • Step 801 Receive a reference signal sent by the first network device.
  • the terminal device can receive the reference signal sent by the first network device and perform channel estimation based on the reference signal.
  • the reference signal is sent by the first network device based on the reference signal configuration information sent by the second network device.
  • the first network device may be a smart metasurface RIS.
  • the terminal device can receive the reference signal configuration information sent by the second network device, and receive the reference signal sent by the first network device according to the reference signal configuration information.
  • the reference signal configuration information includes at least one of the following:
  • the time-frequency resources occupied by the reference signal are the time-frequency resources occupied by the reference signal.
  • the reference signal configuration information sent by the second network device received by the terminal device is the same as the reference signal configuration information used by the first network device to send the reference signal.
  • the channel used by the terminal device to receive the reference signal configuration information sent by the second network device may be a channel that passes through the first network device, or it may be a direct-view channel that does not pass through the first network device. This application No limitation is made here.
  • Step 802 Estimate the channel between the first network device and the terminal device based on the reference signal to obtain channel feedback information.
  • the second network device can estimate the channel between the first network device and the terminal device based on the reference signal, and obtain channel feedback information of the channel.
  • the channel feedback information includes at least one of the following:
  • the second indication information includes a second PMI, the second PMI is used to indicate the precoding matrix of the channel between the first network device and the terminal device;
  • SINR Signal to interference plus noise ratio
  • the terminal device can estimate the channel based on the received reference signal by using the least squares (LS) method or the minimum mean square error (MMSE) method. Estimation, other estimation algorithms, etc. can also be used, and this application is not limited to this.
  • LS least squares
  • MMSE minimum mean square error
  • Step 803 Send the channel feedback information to the second network device.
  • the terminal device after the terminal device estimates the channel between the first network device and the terminal device and obtains the channel feedback information of the channel, it can send the channel feedback information to the second network device.
  • the channel feedback information is used to determine the first indication information
  • the first indication information is used to determine the phase shift matrix of the first network device.
  • the first indication information includes at least one first PMI and a weighting coefficient corresponding to each first PMI.
  • the weighting coefficient corresponding to the first PMI is 1.
  • the first PMI included in the first indication information is used to determine the phase shift matrix of the first network device.
  • the weighting coefficient can be a real number or a complex number.
  • the weighting coefficient is a complex number, indicating that the weighting coefficient includes amplitude and phase information.
  • the channel used by the terminal device to send channel feedback information to the second network device may be a channel that passes through the first network device, or it may be a direct-view channel that does not pass through the first network device. This application is here Not limited.
  • the base station can control the precoding of smart metasurfaces based on channel information, effectively reducing the complexity of precoding based on smart metasurfaces, improving the communication efficiency of smart metasurface-assisted communication systems, and reducing interference.
  • FIG. 9 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. It should be noted that the smart metasurface-based precoding method in the embodiment of the present application is executed by the terminal device. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 9, the method may include the following steps:
  • Step 901 Receive reference signal configuration information sent by the second network device.
  • the terminal device can receive the reference signal configuration information sent by the second network device, and receive the reference signal sent by the first network device according to the reference signal configuration information.
  • the reference signal configuration information includes at least one of the following:
  • the time-frequency resources occupied by the reference signal are the time-frequency resources occupied by the reference signal.
  • the channel used by the terminal device to receive the reference signal configuration information sent by the second network device may be a channel that passes through the first network device, or it may be a direct-view channel that does not pass through the first network device. This application No limitation is made here.
  • Step 902 Receive the reference signal sent by the first network device according to the reference signal configuration information.
  • the terminal device can receive the reference signal sent by the first network device according to the received reference signal configuration information.
  • the reference signal sent by the first network device is determined based on the same reference signal configuration information. That is, the reference signal configuration information sent by the second network device received by the terminal device is the same as the reference signal configuration information used by the first network device to send the reference signal.
  • Step 903 Estimate the channel between the first network device and the terminal device based on the reference signal to obtain channel feedback information.
  • the second network device can estimate the channel between the first network device and the terminal device based on the reference signal, and obtain channel feedback information of the channel.
  • the channel feedback information can feed back relevant information of the channel between the first network device and the terminal device to the second network device.
  • the channel feedback information includes at least one of the following:
  • the second indication information includes a second PMI, the second PMI is used to indicate the precoding matrix of the channel between the first network device and the terminal device;
  • SINR Signal to interference plus noise ratio
  • the method for terminal equipment to perform channel estimation based on the received reference signal can use the least square method LS for estimation, the minimum mean square error method MMSE for estimation, and other estimation algorithms can also be used. This article There are no restrictions on this application.
  • Step 904 Send the channel feedback information to the second network device.
  • the terminal device after the terminal device estimates the channel between the first network device and the terminal device and obtains the channel feedback information of the channel, it can send the channel feedback information to the second network device.
  • the channel feedback information is used to determine the first indication information
  • the first indication information is used to determine the phase shift matrix of the first network device.
  • the first indication information includes at least one first PMI and a weighting coefficient corresponding to each first PMI.
  • the weighting coefficient corresponding to the first PMI is 1.
  • the first PMI included in the first indication information is used to determine the phase shift matrix of the first network device.
  • the weighting coefficient can be a real number or a complex number.
  • the weighting coefficient is a complex number, indicating that the weighting coefficient includes amplitude and phase information.
  • the channel used by the terminal device to send channel feedback information to the second network device may be a channel that passes through the first network device, or it may be a direct-view channel that does not pass through the first network device. This application is here Not limited.
  • the base station by receiving the reference signal configuration information sent by the second network device, receiving the reference signal sent by the first network device according to the reference signal configuration information, and performing the channel between the first network device and the terminal device based on the reference signal. It is estimated that the channel feedback information is obtained, and the channel feedback information is sent to the second network device, so that the base station can control the precoding of the intelligent metasurface based on the channel information, effectively reducing the complexity of the precoding based on the intelligent metasurface, and improving the efficiency of the intelligent metasurface.
  • Surface-assisted communication systems improve communication efficiency and reduce interference.
  • Figure 10 is a schematic flowchart of a precoding method based on smart metasurfaces provided by an embodiment of the present application. This method can be executed independently or in conjunction with any other embodiment of the present application. As shown in Figure 10, the method may include the following steps:
  • the second network device sends the reference signal configuration information to the first network device and the terminal device.
  • the first network device sends the reference signal to the terminal device according to the reference signal configuration information.
  • the terminal device receives the reference signal sent by the first network device according to the reference signal configuration information.
  • the terminal device estimates the channel between the first network device and the terminal device based on the reference signal, and obtains channel feedback information.
  • the second network device determines the first indication information based on the channel feedback information.
  • the second network device determines the first indication information directly based on the channel feedback information.
  • the second network device can also send the incident angle information between the second network device and the first network device to the first network device.
  • the second network device determines the first indication information based on the channel feedback information and the incident angle information between the second network device and the first network device.
  • the second network device sends the first indication information to the first network device.
  • the first network device determines the phase shift matrix according to the first indication information.
  • the first network device determines a reference phase shift matrix based on the first indication information and the incident angle information between the second network device and the first network device, and then quantizes the reference phase shift matrix to obtain the phase shift matrix.
  • the first network device determines a reference phase shift matrix directly according to the first indication information, and then quantizes the reference phase shift matrix to obtain the phase shift matrix.
  • the first network device reflects or transmits the signal incident on the surface of the first network device according to the phase shift matrix.
  • the precoding method based on smart metasurfaces provided by the embodiments of this application can enable the base station to control the precoding of smart metasurfaces based on channel information, effectively reducing the complexity of precoding based on smart metasurfaces and improving the intelligence Metasurface-assisted communication system improves communication efficiency and reduces interference.
  • this application also provides a precoding device based on smart metasurfaces. Since the precoding device based on smart metasurfaces provided in the embodiments of this application is consistent with The methods provided by the above embodiments correspond to each other. Therefore, the implementation of the precoding method based on smart metasurface is also applicable to the precoding device based on smart metasurface provided in the following embodiments, which will not be detailed in the following embodiments. describe.
  • Figure 11 is a schematic structural diagram of a precoding device based on a smart metasurface provided by an embodiment of the present application.
  • the smart metasurface-based precoding device 1100 includes: a transceiver unit 1110 and a processing unit 1120, where:
  • the transceiver unit 1110 is configured to send a reference signal to the terminal device, the reference signal is used by the terminal device to determine channel feedback information, and the channel feedback information is used by the second network device to determine the first indication information;
  • the transceiver unit 1110 is also configured to receive the first indication information sent by the second network device, where the first indication information is used to determine the phase shift matrix of the first network device;
  • the processing unit 1120 is configured to determine the phase shift matrix of the first network device according to the first indication information.
  • the processing unit 1120 is specifically configured to: determine the reference phase shift matrix of the first network device according to the first indication information; and determine the reference phase shift matrix according to the phase offset value supported by the first network device. Perform quantization to obtain the phase shift matrix of the first network device.
  • the first indication information includes: at least one first precoding matrix indication PMI and a weighting coefficient corresponding to each first precoding matrix indication PMI.
  • the first indication information is determined by the second network device based on the incident angle information between the second network device and the first network device and the channel feedback information.
  • the first indication information includes a first PMI
  • the reference phase shift matrix is a precoding matrix corresponding to the first PMI
  • the first indication information includes a plurality of first PMIs and a weighting coefficient corresponding to each first PMI.
  • the processing unit 1120 is specifically configured to: according to the weighting coefficient corresponding to each first PMI, weight each first PMI.
  • the precoding matrices corresponding to the first PMI are weighted and combined to obtain the reference phase shift matrix.
  • the first indication information is determined by the second network device based on the channel feedback information.
  • the first indication information includes a first PMI
  • the processing unit 1120 is specifically configured to: according to the precoding matrix corresponding to the first PMI, and the incident signal between the second network device and the first network device. angle information to determine the reference phase shift matrix.
  • the processing unit 1120 is specifically configured to adjust the precoding matrix corresponding to the first PMI based on the incident angle information to obtain the reference phase shift matrix.
  • the first indication information includes a plurality of first PMIs and a weighting coefficient corresponding to each first PMI
  • the processing unit 1120 is specifically configured to: according to the predetermined weight coefficient corresponding to each first PMI in the plurality of first PMIs.
  • the processing unit 1120 is specifically configured to: perform weighted merging of the precoding matrices corresponding to each first PMI according to the weighting coefficient corresponding to each first PMI to obtain a first matrix; based on the incident angle information , adjust the first matrix to obtain the reference phase shift matrix.
  • the transceiver unit 1110 is also configured to: receive the incident angle information sent by the second network device; or sense the incident angle information.
  • the transceiver unit 1110 is also configured to: receive the reference signal configuration information sent by the second network device; and send the reference signal according to the reference signal configuration information.
  • the reference signal configuration information includes at least one of the following: the unit in the first network device occupied by the reference signal; the generation information of the reference signal sequence; the antenna port number occupied by the reference signal; the reference The time-frequency resources occupied by the signal.
  • the channel feedback information includes at least one of the following: second indication information, the second indication information includes a second PMI, the second PMI is used to indicate the channel between the first network device and the terminal device.
  • Precoding matrix reference signal received power RSRP; reference signal received quality RSRQ; reference signal received strength RSSI; signal to interference plus noise ratio SINR.
  • the first network device is an intelligent metasurface RIS.
  • the transceiver unit 1110 is also configured to reflect or transmit signals incident on the surface of the first network device according to the phase shift matrix.
  • the precoding device based on the smart metasurface of this embodiment can receive the first indication information sent by the second network device by sending a reference signal to the terminal device.
  • the first indication information is used to determine the phase shift of the first network device.
  • the matrix determines the phase shift matrix of the first network device according to the first indication information, so that the base station can control the precoding of the intelligent metasurface based on the channel information, effectively reducing the complexity of the precoding based on the intelligent metasurface, and improving the efficiency of the precoding.
  • Intelligent metasurface-assisted communication system improves communication efficiency and reduces interference.
  • Figure 12 is a schematic structural diagram of a precoding device based on a smart metasurface provided by an embodiment of the present application.
  • the smart metasurface-based precoding device 1200 includes: a transceiver unit 1210, where:
  • the transceiver unit 1210 is configured to receive channel feedback information sent by the terminal device.
  • the channel feedback information is determined by the terminal device based on the reference signal sent by the first network device.
  • the channel feedback information is used to determine the first indication information;
  • the transceiver unit 1210 is also configured to send the first indication information to the first network device, where the first indication information is used to determine the phase shift matrix of the first network device.
  • the first indication information is used to determine a reference phase shift matrix of the first network device; the phase shift matrix of the first network device is based on the phase offset value supported by the first network device.
  • the phase shift matrix is quantized.
  • the first indication information includes: at least one first precoding matrix indication PMI and a weighting coefficient corresponding to each first precoding matrix indication PMI.
  • the transceiver unit 1210 is also configured to: send reference signal configuration information to the first network device; the reference signal configuration information is used to determine the reference signal sent by the first network device; the reference signal is used to determine the Channel feedback information of the channel between the terminal device and the first network device.
  • the reference signal configuration information includes at least one of the following: the unit in the first network device occupied by the reference signal; the generation information of the reference signal sequence; the antenna port number occupied by the reference signal; the reference The time-frequency resources occupied by the signal.
  • the device further includes a processing unit (not shown in the figure), the processing unit being configured to determine, based on the channel feedback information and the incident angle information between the second network device and the first network device, the first instruction information.
  • a processing unit (not shown in the figure), the processing unit being configured to determine, based on the channel feedback information and the incident angle information between the second network device and the first network device, the first instruction information.
  • the first indication information includes a first PMI
  • the reference phase shift matrix is a precoding matrix corresponding to the first PMI
  • the first indication information includes a plurality of first PMIs and a weighting coefficient corresponding to each first PMI.
  • the reference phase shift matrix is based on the weighting coefficient corresponding to each first PMI.
  • the precoding matrices corresponding to PMI are obtained by weighted merging.
  • the device further includes a processing unit (not shown in the figure), the processing unit being configured to determine the first indication information according to the channel feedback information.
  • the first indication information includes a first PMI
  • the reference phase shift matrix is a precoding matrix corresponding to the first network device according to the first PMI
  • the reference phase shift matrix between the second network device and the first network device. determined by the incident angle information.
  • the reference phase shift matrix is obtained by adjusting the precoding matrix corresponding to the first PMI based on the incident angle information.
  • the first indication information includes a plurality of first PMIs and a weighting coefficient corresponding to each first PMI
  • the reference phase shift matrix is a parameter calculated by the first network device according to each first PMI in the plurality of first PMIs.
  • the corresponding precoding matrix and weighting coefficient are determined as well as the incident angle information between the second network device and the first network device.
  • the reference phase shift matrix is obtained by adjusting the first matrix based on the incident angle information by the first network device; the first matrix is the weighting coefficient corresponding to each first PMI of the first network device. , obtained by weighted merging of the precoding matrices corresponding to each first PMI.
  • the transceiver unit 1210 is also configured to send the incident angle information to the first network device.
  • the channel feedback information includes at least one of the following: second indication information, the second indication information includes a second PMI, the second PMI is used to indicate the channel between the first network device and the terminal device.
  • Precoding matrix reference signal received power RSRP; reference signal received quality RSRQ; reference signal received strength RSSI; signal to interference plus noise ratio SINR.
  • the first network device is an intelligent metasurface RIS.
  • the phase shift matrix is used by the first network device to reflect or transmit signals incident on the surface of the first network device.
  • the precoding device based on the intelligent metasurface of this embodiment can send first indication information to the first network device by receiving channel feedback information sent by the terminal device.
  • the first indication information is used to determine the relative position of the first network device.
  • the shift matrix enables the base station to control the precoding of smart metasurfaces based on channel information, effectively reducing the complexity of precoding based on smart metasurfaces, improving the communication efficiency of smart metasurface-assisted communication systems, and reducing interference.
  • Figure 13 is a schematic structural diagram of a precoding device based on a smart metasurface provided by an embodiment of the present application.
  • the smart metasurface-based precoding device 1300 includes: a transceiver unit 1310 and a processing unit 1320, where:
  • Transceiver unit 1310 configured to receive the reference signal sent by the first network device
  • the processing unit 1320 is configured to estimate the channel between the first network device and the terminal device according to the reference signal to obtain channel feedback information
  • the transceiver unit 1310 is also configured to send the channel feedback information to the second network device.
  • the channel feedback information is used to determine the first indication information.
  • the first indication information is used to determine the phase shift matrix of the first network device.
  • the transceiver unit 1310 is also configured to: receive reference signal configuration information sent by the second network device; receive the reference signal according to the reference signal configuration information, wherein the reference signal is generated by the first network device based on the Sent by reference signal configuration information.
  • the first indication information includes: at least one first precoding matrix indication PMI and a weighting coefficient corresponding to each first precoding matrix indication PMI.
  • the reference signal configuration information includes at least one of the following: the unit in the first network device occupied by the reference signal; the generation information of the reference signal sequence; the antenna port number occupied by the reference signal; the reference The time-frequency resources occupied by the signal.
  • the channel feedback information includes at least one of the following: second indication information, the second indication information includes a second PMI, the second PMI is used to indicate the channel between the first network device and the terminal device.
  • Precoding matrix reference signal received power RSRP; reference signal received quality RSRQ; reference signal received strength RSSI; signal to interference plus noise ratio SINR.
  • the first network device is an intelligent metasurface RIS.
  • the precoding device based on the intelligent metasurface of this embodiment can receive the reference signal sent by the first network device, estimate the channel between the first network device and the terminal device based on the reference signal, and obtain channel feedback information to provide The second network device sends the channel feedback information, allowing the base station to control the precoding of the smart metasurface based on the channel information, effectively reducing the complexity of the precoding based on the smart metasurface, and improving the communication efficiency of the smart metasurface-assisted communication system. , reduce interference.
  • embodiments of the present application also provide a communication device, including: a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory, so that the device executes the steps shown in Figure 2 to The method shown in the embodiment of FIG. 4, or the method shown in the embodiment of FIGS. 5 to 7 is performed.
  • embodiments of the present application also provide a communication device, including: a processor and a memory.
  • a computer program is stored in the memory.
  • the processor executes the computer program stored in the memory, so that the device executes the steps shown in Figure 8 to The method shown in the embodiment of Figure 9.
  • embodiments of the present application also provide a communication device, including: a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to The method shown in the embodiment of FIGS. 2 to 6 is executed, or the method shown in the embodiment of FIGS. 5 to 7 is executed.
  • embodiments of the present application also provide a communication device, including: a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to The method shown in the embodiment of FIG. 8 to FIG. 9 is executed.
  • FIG 14 is a schematic structural diagram of another smart metasurface-based precoding device provided by an embodiment of the present application.
  • the smart metasurface-based precoding device 1400 may be a network device, a terminal device, a chip, a chip system, a processor, etc. that supports network devices to implement the above methods, or a terminal device that supports the implementation of the above methods.
  • Chip, chip system, or processor, etc. The device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • the smart metasurface-based precoding device 1400 may include one or more processors 1401 .
  • the processor 1401 may be a general-purpose processor or a special-purpose processor, or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to process precoding devices based on smart metasurfaces (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) Control, execute computer programs, and process data from computer programs.
  • the smart metasurface-based precoding device 1400 may also include one or more memories 1402, on which a computer program 1403 may be stored, and the processor 1401 executes the computer program 1403, so that the smart metasurface-based precoding The device 1400 performs the method described in the above method embodiment.
  • the computer program 1403 may be solidified in the processor 1401, in which case the processor 1401 may be implemented by hardware.
  • the memory 1402 may also store data.
  • the smart metasurface-based precoding device 1400 and the memory 1402 can be set up separately or integrated together.
  • the smart metasurface-based precoding device 1400 may also include a transceiver 1405 and an antenna 1406.
  • the transceiver 1405 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1405 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the smart metasurface-based precoding device 1400 may also include one or more interface circuits 1407.
  • the interface circuit 1407 is used to receive code instructions and transmit them to the processor 1401 .
  • the processor 1401 executes code instructions to cause the smart metasurface-based precoding device 1400 to execute the method described in the above method embodiment.
  • the processor 1401 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the smart metasurface-based precoding device 1400 may include a circuit, and the circuit may implement the sending or receiving or communication functions in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the smart metasurface-based precoding device described in the above embodiments may be a network device or a terminal device, but the scope of the smart metasurface-based precoding device described in this application is not limited to this, and the smart metasurface-based precoding device
  • the structure of the encoding device may not be limited by FIGS. 11-13.
  • the smart metasurface-based precoding device can be a stand-alone device or can be part of a larger device.
  • a precoding device based on smart metasurfaces can be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the precoding device based on the smart metasurface can be a chip or a chip system
  • the chip shown in Figure 15 includes a processor 1501 and an interface 1502.
  • the number of processors 1501 may be one or more, and the number of interfaces 1502 may be multiple.
  • Interface 1502 for code instructions and transmission to the processor
  • the processor 1501 is configured to run code instructions to perform the methods shown in Figures 2 to 4, or to perform the methods shown in Figures 5 to 7.
  • Interface 1502 for code instructions and transmission to the processor
  • the processor 1501 is configured to run code instructions to perform the methods shown in Figures 8 to 9.
  • the chip also includes a memory 1503, which is used to store necessary computer programs and data.
  • Embodiments of the present application also provide a communication system, which includes the smart metasurface-based precoding device as the network device and the smart metasurface-based precoding device as the terminal device in the aforementioned embodiments of FIGS. 11-13, or , the system includes the smart metasurface-based precoding device as the terminal device and the smart metasurface-based precoding device as the network device in the aforementioned embodiment of Figure 14 .
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • a computer program product includes one or more computer programs.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program may be transmitted from a website, computer, server or data center via a wireline (e.g.
  • Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless means to transmit to another website, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or other integrated media that contains one or more available media. Available media may be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks (SSD)) )wait.
  • magnetic media e.g., floppy disks, hard disks, tapes
  • optical media e.g., high-density digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • the corresponding relationships shown in each table in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种基于智能超表面的预编码方法及装置,该方法包括:通过向终端设备发送参考信号,该参考信号用于终端设备确定信道反馈信息,该信道反馈信息用于第二网络设备确定第一指示信息,接收第二网络设备发送的第一指示信息,该第一指示信息用于确定该第一网络设备的相移矩阵,根据该第一指示信息,确定该第一网络设备的相移矩降,使得基站能够基于信道信息控制智能超表面的预编码。

Description

基于智能超表面的预编码方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种基于智能超表面的预编码方法及装置。
背景技术
传统通信中无线环境是不可控因素,其不可控性通常对通信效率有负面作用,会降低服务质量。比如,信号衰减限制了无线信号的传播距离,多径效应导致衰落现象,大型物体的反射和折射更是主要的不可控因素。将智能超表面(Reconfigurable Intelligent Surface,RIS)部署在无线传输环境中各类物体的表面,有望突破传统无线信道的不可控性,构建智能可编程无线,引入未来无线通信的新范式。
发明内容
本申请第一方面实施例提出了一种基于智能超表面的预编码方法,所述方法由第一网络设备执行,所述方法包括:
向终端设备发送参考信号,所述参考信号用于所述终端设备确定信道反馈信息,所述信道反馈信息用于第二网络设备确定第一指示信息;
接收所述第二网络设备发送的所述第一指示信息,所述第一指示信息用于确定所述第一网络设备的相移矩阵;
根据所述第一指示信息,确定所述第一网络设备的相移矩阵。
本申请第二方面实施例提出了一种基于智能超表面的预编码方法,所述方法由第二网络设备执行,所述方法包括:
接收终端设备发送的信道反馈信息,所述信道反馈信息是所述终端设备基于第一网络设备发送的参考信号确定的,所述信道反馈信息用于确定第一指示信息;
向所述第一网络设备发送所述第一指示信息,所述第一指示信息用于确定所述第一网络设备的相移矩阵。
本申请第三方面实施例提出了一种基于智能超表面的预编码方法,所述方法由终端设备执行,所述方法包括:
接收第一网络设备发送的参考信号;
根据所述参考信号对所述第一网络设备与所述终端设备之间的信道进行估计,得到信道反馈信息;
向第二网络设备发送所述信道反馈信息,所述信道反馈信息用于确定第一指示信息,所述第一指示信息用于确定所述第一网络设备的相移矩阵。
本申请第四方面实施例提出了一种基于智能超表面的预编码装置,所述装置应用于第一网络设备,所述装置包括:
收发单元,用于向终端设备发送参考信号,所述参考信号用于所述终端设备确定信道反馈信息,所述信道反馈信息用于第二网络设备确定第一指示信息;
所述收发单元,还用于接收所述第二网络设备发送的所述第一指示信息,所述第一指示信息用于确定所述第一网络设备的相移矩阵;
处理单元,用于根据所述第一指示信息,确定所述第一网络设备的相移矩阵。
本申请第五方面实施例提出了一种基于智能超表面的预编码装置,所述装置应用于第二网络设备,所述装置包括:
收发单元,用于接收终端设备发送的信道反馈信息,所述信道反馈信息是所述终端设备基于第一网络设备发送的参考信号确定的,所述信道反馈信息用于确定第一指示信息;
所述收发单元,还用于向所述第一网络设备发送所述第一指示信息,所述第一指示信息用于确定所述第一网络设备的相移矩阵。
本申请第六方面实施例提出了一种基于智能超表面的预编码装置,所述装置应用于终端设备,所述装置包括:
收发单元,用于接收第一网络设备发送的参考信号;
处理单元,用于根据所述参考信号对所述第一网络设备与所述终端设备之间的信道进行估计,得到信道反馈信息;
所述收发单元,还用于向第二网络设备发送所述信道反馈信息,所述信道反馈信息用于确定第一指示信息,所述第一指示信息用于确定所述第一网络设备的相移矩阵。
本申请第七方面实施例提出了一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行上述第一方面实施例所述的基于智能超表面的预编码方法,或者执行上述第二方面实施例所述的基于智能超表面的预编码方法。
本申请第八方面实施例提出了一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行上述第三方面实施例所述的基于智能超表面的预编码方法,或者执行上述第四方面实施例所述的基于智能超表面的预编码方法。
本申请第九方面实施例提出了一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面实施例所述的基于智能超表面的预编码方法,或者执行上述第二方面实施例所述的基于智能超表面的预编码方法。
本申请第十方面实施例提出了一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第三方面实施例所述的基于智能超表面的预编码方法。
本申请第十一方面实施例提出了一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使上述第一方面实施例所述的基于智能超表面的预编码方法被实现,或者使上述第二方面实施例所述的基于智能超表面的预编码方法被实现。
本申请第十二方面实施例提出了一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使上述第三方面实施例所述的基于智能超表面的预编码方法被实现。
本申请第十三方面实施例提出了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面实施例所述的基于智能超表面的预编码方法,或者执行上述第二方面实施例所述的基于智能超表面的预编码方法。
本申请第十四方面实施例提出了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第三方面实施例所述的基于智能超表面的预编码方法。
本申请实施例提供的一种基于智能超表面的预编码方法及装置,通过向终端设备发送参考信号,该参考信号用于终端设备确定信道反馈信息,该信道反馈信息用于第二网络设备确定第一指示信息,接收第二网络设备发送的该第一指示信息,该第一指示信息用于确定该第一网络设备的相移矩阵,根据该第一指示信息,确定该第一网络设备的相移矩阵,使得基站能够基于信道信息控制智能超表面的预编码,有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1为本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图3是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图4是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图5是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图6是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图7是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图8是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图9是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图10是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图;
图11是本申请实施例提供的一种基于智能超表面的预编码装置的结构示意图;
图12是本申请实施例提供的一种基于智能超表面的预编码装置的结构示意图;
图13是本申请实施例提供的一种基于智能超表面的预编码装置的结构示意图;
图14是本申请实施例提供的另一种基于智能超表面的预编码装置的结构示意图;
图15是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请实施例的一些方面相一致的装置和方法的例子。
在本申请实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
为了更好的理解本申请实施例公开的一种基于智能超表面的预编码方法,下面首先对本申请实施例适用的通信系统进行描述。
请参见图1,图1为本申请实施例提供的一种通信系统的架构示意图。该通信系统可包括但不限于一个第一网络设备,一个第二网络设备和终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备和两个或两个以上的终端设备。图1所示的通信系统以包括一个第一网络设备101,一个第二网络设备102和一个终端设备103为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信系统。例如:长期演进(Long Term Evolution,LTE)系统、第五代移动通信系统、5G新空口系统,或者其他未来的新型移动通信系统等。
本申请实施例中的第一网络设备101是一种能够对通信信道进行调控的装置。第一网络设备101中配备了大量的(电磁)单元,并能够通过调整(电磁)单元的物理性质(如容抗、阻抗或感抗),来改变(电磁)单元的辐射特性,进而可以对空间中的电磁波进行动态调控,以在空间中形成特定方向的波束。例如,第一网络设备101可以为智能超表面(Reconfigurable Intelligent Surface,RIS)等。在本申请实施例中,第一网络设备101中的(电磁)单元可以是有源的,也可以是无源的;可以是第一网络设备101中的部分(电磁)单元是有源的,部分(电磁)单元是无源的。
本申请实施例中的第二网络设备102是网络侧的一种用于发射或接收信号的实体。例如,第二网络设备102和可以为演进型基站(Evolved NodeB,eNB)、传输点(Transmission Reception Point,TRP)、NR系统中的下一代基站(Next Generation NodeB,gNB)、其他未来移动通信系统中的基站或无线保真(Wireless Fidelity,WiFi)系统中的接入节点等。本申请的实施例对接入网设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的接入网络设备可以是由集中单元(Central Unit, CU)与分布式单元(Distributed Unit,DU)组成的,其中,CU也可以称为控制单元(Control Unit),采用CU-DU的结构可以将接入网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备103是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(Mobile Station,MS)、移动终端设备(Mobile Terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(Mobile Phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(Industrial Control)中的无线终端设备、无人驾驶(Self-Driving)中的无线终端设备、远程手术(Remote Medical Surgery)中的无线终端设备、智能电网(Smart Grid)中的无线终端设备、运输安全(Transportation Safety)中的无线终端设备、智慧城市(Smart City)中的无线终端设备、智慧家庭(Smart Home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
传统通信中无线环境是不可控因素,其不可控性通常对通信效率有负面作用,会降低服务质量。比如,信号衰减限制了无线信号的传播距离,多径效应导致衰落现象,大型物体的反射和折射更是主要的不可控因素。将智能超表面(RIS)部署在无线传输环境中各类物体的表面,有望突破传统无线信道的不可控性,构建智能可编程无线,引入未来无线通信的新范式。具体地说,RIS可以通过预编码技术,将入射到其表面的信号反射或透射到特定的方向,从而增强接收端信号的强度或者降低干扰,实现对信道的控制。
如图1所示,在第一网络设备101(RIS)辅助的通信系统中,第二网络设备102通过第一网络设备101(RIS)将信号反射或透射到终端设备103,或者终端设备103通过第一网络设备101(RIS)将信号反射或透射到第二网络设备102。为了增强有用信号的功率,并降低干扰,需要对第一网络设备101进行预编码。
相关技术中,确定第一网络设备101(RIS)的预编码的方法复杂度较高。
可以理解的是,本申请实施例描述的通信系统是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的基于智能超表面的预编码方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由第一网络设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图2所示,该方法可以包括如下步骤:
步骤201,向终端设备发送参考信号。
在本申请各实施例中,第一网络设备可以为智能超表面RIS。
在本申请实施例中,第一网络设备能够发送参考信号,该参考信号用于终端设备确定信道反馈信息,该信道反馈信息用于第二网络设备确定第一指示信息。
其中,该参考信号用于终端设备对该第一网络设备与该终端设备之间的信道进行估计得到信道反馈信息。也就是,终端设备在接收到第一网络设备发送的参考信号之后,能够根据该参考信号进行信道估计,得到该第一网络设备与该终端设备之间的信道的信道反馈信息。
其中,该信道反馈信息用于第二网络设备基于该信道反馈信息确定第一指示信息。
在一些实施方式中,该第一指示信息是第二网络设备基于第二网络设备与第一网络设备之间的入射角信息,和终端设备发送的信道反馈信息确定的。
其中,第二网络设备与第一网络设备之间的入射角信息,是指第二网络设备发出的信号入射到第一网络设备表面的入射角的信息。终端设备发送的信道反馈信息,是终端设备发送给第二网络设备的,能够反馈第一网络设备与该终端设备之间的信道的信息。
在一些实施方式中,该第一指示信息是第二网络设备基于终端设备发送的信道反馈信息确定的。
在本申请实施例中,可选地,该信道反馈信息包括以下至少一种:
第二指示信息,该第二指示信息包括第二PMI,该第二PMI用于指示第一网络设备与终端设备之 间的信道的预编码矩阵;
参考信号接收功率(Reference Signal Receiving Power,RSRP);
参考信号接收质量(Reference Signal Received Quality,RSRQ);
信号接收强度指示(Received Singnal Strengthen Indicator,RSSI);
信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)。
在一些实施方式中,第一网络设备能够接收第二网络设备发送的参考信号配置信息,并根据该参考信号配置信息,发送该参考信号。该参考信号能够用于该终端设备确定该信道反馈信息。
可选地,该参考信号配置信息包括以下至少一种:
参考信号所占用的第一网络设备中的单元;
参考信号序列的生成信息;
参考信号所占用的天线端口序号;
参考信号所占用的时频资源。
在一些实施方式中,可选地,该参考信号还可以是发送给第二网络设备的等等。
可以理解的是,在本申请实施例中,第一网络设备中可以存在部分有源的单元,能够按照该参考信号配置信息,向终端设备发送该参考信号。
步骤202,接收第二网络设备发送的第一指示信息,该第一指示信息用于确定该第一网络设备的相移矩阵。
在本申请实施例中,第一网络设备能够接收第二网络设备发送的第一指示信息,并根据该第一指示信息确定第一网络的相移矩阵,进而根据该相移矩阵,对入射到第一网络设备表面的信号进行反射或者投射,实现基于智能超表面的预编码。
其中,第一网络设备的相移矩阵,用于配置第一网络设备中各单元的相位,也就是对第一网络设备进行预编码。第一网络设备能够根据该相移矩阵配置调整自己各单元的相位,实现对第一网络设备的预编码。
在本申请实施例中,第一网络设备能够根据该第一指示信息,确定一个参考相移矩阵。进而,第一网络设备能够根据自己支持的相位偏移值,对该参考相移矩阵进行量化,得到该第一网络设备的相移矩阵(也就是最终实际使用的相移矩阵)。
可以理解的是,第一网络设备所支持的相位偏移值,是几个离散的值,而不是连续的,第一网络设备中各单元的相位并非连续可调。
需要说明的是,该参考相移矩阵是根据第二网络设备发送的该第一指示信息确定的,第一指示信息是第二网络设备基于假定第一网络设备中各单元的相位连续可调而生成的,也就是该参考相移矩阵对应配置的第一网络设备中各单元的相位,可能是该第一网络设备不支持的。因此,第一网络设备能够根据自己支持的相位偏移值,对该参考相移矩阵进行量化,得到该第一网络设备的相移矩阵。
在本申请实施例中,该第一指示信息包括至少一个第一预编码矩阵指示(PercodingMatrixIndicator,PMI),以及各第一PMI对应的加权系数。
可以理解的是,如果该第一指示信息中仅包括一个第一PMI,则该第一PMI对应的加权系数为1。
可以理解的是,该第一指示信息中包括的第一PMI,用于确定该第一网络设备的相移矩阵。
可选地,该加权系数可以是实数,也可以复数。其中,加权系数为复数,说明该加权系数中包括了幅度和相位的信息。
在一些实施方式中,该第一指示信息是第二网络设备基于第二网络设备与第一网络设备之间的入射角信息,和终端设备发送的信道反馈信息确定的。
其中,第二网络设备与第一网络设备之间的入射角信息,是指第二网络设备发出的信号入射到第一网络设备表面的入射角的信息。终端设备发送的信道反馈信息,是终端设备发送给第二网络设备的,能够反馈第一网络设备与该终端设备之间的信道的信息。
在一些实施方式中,该第一指示信息是第二网络设备基于终端设备发送的信道反馈信息确定的。
在本申请实施例中,第一网络设备可以根据协议预先的规定或者第二网络设备的配置指示,来确定该第一指示信息的确定是否考虑了第二网络设备与第一网络设备之间的入射角信息。
步骤203,根据该第一指示信息,确定该第一网络设备的相移矩阵。
在本申请实施例中,第一网络设备能够根据接收到的第一指示信息,确定第一网络设备的相移矩阵,进而根据该相移矩阵配置调整各单元的相位,对入射到该第一网络设备表面的信号进行反射或者透射。
在一些实施方式中,该第一指示信息是第二网络设备基于第二网络设备与第一网络设备之间的入射角信息,和终端设备发送的信道反馈信息确定的。
作为一种可能的实现,第一指示信息是第二网络设备基于第二网络设备与第一网络设备之间的入射角信息和终端设备发送的信道反馈信息确定的,该第一指示信息中包括一个第一预编码矩阵指示PMI,第一网络设备确定该第一PMI对应指示的预编码矩阵为该参考相移矩阵。
作为另一种可能的实现,第一指示信息是第二网络设备基于第二网络设备与第一网络设备之间的入射角信息和终端设备发送的信道反馈信息确定的,该第一指示信息中包括多个第一预编码矩阵指示PMI以及各第一PMI对应的加权系数,第一网络设备能够根据各第一PMI对应的加权系数,对各第一PMI对应指示的预编码矩阵进行加权合并,得到该参考相移矩阵。
在一些实施方式中,该第一指示信息是第二网络设备基于终端设备发送的信道反馈信息确定的。
作为一种可能的实现,第一指示信息是第二网络设备基于终端设备发送的信道反馈信息确定的,该第一指示信息中包括一个第一预编码矩阵指示PMI,第一网络设备能够根据该第一PMI对应的预编码矩阵和加权系数,以及第二网络设备与第一网络设备之间的入射角信息,确定该参考相移矩阵。
可选地,第一网络设备能够基于第二网络设备与第一网络设备之间的入射角信息,对该第一PMI对应指示的预编码矩阵进行调整,得到该参考相移矩阵。
作为另一种可能的实现,第一指示信息是终端设备发送的信道反馈信息确定的,该第一指示信息中包括多个第一预编码矩阵指示PMI以及各第一PMI对应的加权系数,第一网络设备能够根据该多个第一PMI中各第一PMI对应的预编码矩阵和加权系数,以及第二网络设备与第一网络设备之间的入射角信息,确定该参考相移矩阵。
可选地,第一网络设备能够按照各第一PMI对应的加权系数,对各第一PMI对应指示的预编码矩阵进行加权合并得到第一矩阵,并基于第二网络设备与第一网络设备之间的入射角信息,对该第一矩阵进行调整,得到该参考相移矩阵。
可选地,该第二网络设备与第一网络设备之间的入射角信息,可以是第二网络设备发送给第一网络设备的,也可以是第一网络设备自己感知测量得到的。
可以理解的是,在进行加权合并时,各第一PMI对应指示的预编码矩阵采用的加权系数,就是指示该预编码矩阵的第一PMI所对应的加权系数。
在本申请实施例中,第一网络设备在确定该相移矩阵之后,能够根据该相移矩阵,配置调整第一网络设备中各单元的相位,并基于调整后的相位,对入射到该第一网络设备表面的信号进行反射或者透射。
综上,通过向终端设备发送参考信号,接收第二网络设备发送的第一指示信息,该第一指示信息用于确定该第一网络设备的相移矩阵,根据该第一指示信息,确定该第一网络设备的相移矩阵,使得基站能够基于信道信息控制智能超表面的预编码,有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图3,图3是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由第一网络设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图3所示,该方法可以包括如下步骤:
步骤301,接收第二网络设备发送的参考信号配置信息。
在本申请各实施例中,第一网络设备可以为智能超表面RIS。
在本申请实施例中,第一网络设备能够接收第二网络设备发送的参考信号配置信息,并根据该参考信号配置信息,确定发送的参考信号。
可选地,该参考信号配置信息包括以下至少一种:
参考信号所占用的第一网络设备中的单元;
参考信号序列的生成信息;
参考信号所占用的天线端口序号;
参考信号所占用的时频资源。
第一网络设备能够根据该参考信号配置信息,确定发送的参考信号。
步骤302,根据该参考信号配置信息,向终端设备发送参考信号。
在本申请实施例中,第一网络设备可以根据接收到的参考信号配置信息,确定参考信号,并向终端设备发送该参考信号。
其中,该参考信号用于终端设备对该第一网络设备与该终端设备之间的信道进行估计得到信道反馈信息。也就是,终端设备在接收到第一网络设备发送的参考信号之后,能够根据该参考信号进行信道估计,得到该第一网络设备与该终端设备之间的信道的信道反馈信息。
在本申请实施例中,可选地,该信道反馈信息包括以下至少一种:
第二指示信息,该第二指示信息包括第二PMI,该第二PMI用于指示第一网络设备与终端设备之间的信道的预编码矩阵;
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信号接收强度指示RSSI;
信号与干扰加噪声比SINR。
另外可以理解的是,在本申请实施例中,第一网络设备中可以存在部分有源的单元,能够按照该参考信号配置信息,向终端设备发送该参考信号。
步骤303,接收第二网络设备发送的第一指示信息。
在本申请实施例中,第一网络设备能够接收第二网络设备发送的第一指示信息,该第一指示信息包括至少一个第一PMI,以及各第一PMI对应的加权系数。
可以理解的是,如果该第一指示信息中仅包括一个第一PMI,则该第一PMI对应的加权系数为1。
可以理解的是,该第一指示信息中包括的第一PMI,用于确定该第一网络设备的相移矩阵。
可选地,该加权系数可以是实数,也可以复数。其中,加权系数为复数,说明该加权系数中包括了幅度和相位的信息。
在本申请实施例中,该第一指示信息是第二网络设备基于第二网络设备与第一网络设备之间的入射角信息,和终端设备发送的信道反馈信息确定的。
其中,第二网络设备与第一网络设备之间的入射角信息,是指第二网络设备发出的信号入射到第一网络设备表面的入射角的信息。终端设备发送的信道反馈信息,是终端设备根据接收到的该参考信号确定并发送给第二网络设备的,能够反馈第一网络设备与该终端设备之间的信道的信息。
在本申请实施例中,第一网络设备可以根据协议预先的规定或者第二网络设备的配置指示,来确定该第一指示信息的确定考虑了第二网络设备与第一网络设备之间的入射角信息,第一网络设备可以直接根据该第一指示信息确定相移矩阵,而无需再考虑入射角信息。
步骤304,根据该第一指示信息,确定参考相移矩阵。
在本申请实施例中,第一网络设备能够根据接收到的第一指示信息,确定一个参考相移矩阵。
其中,需要说明的是,该参考相移矩阵是根据第二网络设备发送的该第一指示信息确定的,第一指示信息是第二网络设备基于假定第一网络设备中各单元的相位连续可调而生成的。而第一网络设备所支持的相位偏移值,是几个离散的值,而不是连续的,第一网络设备中各单元的相位并非连续可调。也就是该参考相移矩阵对应配置的第一网络设备中各单元的相位,可能是该第一网络设备不支持的。
在本申请实施例中,该第一指示信息是第二网络设备基于第二网络设备与第一网络设备之间的入射角信息,和终端设备发送的信道反馈信息确定的,第一网络设备接收到的第一指示信息可以包括至少一个第一PMI,以及各第一PMI对应的加权系数。
可以理解的是,如果该第一指示信息中仅包括一个第一PMI,则该第一PMI对应的加权系数为1。
在一些实施方式中,该第一指示信息包括一个第一PMI,第一网络设备确定该第一PMI对应指示的预编码矩阵为该参考相移矩阵。
在一些实施方式中,该第一指示信息中包括多个第一PMI以及各第一PMI对应的加权系数,第一网络设备能够根据各第一PMI对应的加权系数,对各PMI对应指示的预编码矩阵进行加权合并,得到 该参考相移矩阵。
可以理解的是,在进行加权合并时,各第一PMI对应指示的预编码矩阵采用的加权系数,就是指示该预编码矩阵的第一PMI所对应的加权系数。
步骤305,根据第一网络设备支持的相位偏移值,对该参考相移矩阵进行量化,得到该第一网络设备的相移矩阵。
在本申请实施例中,由于第一网络设备所支持的相位偏移值,是几个离散的值,而不是连续的,该参考相移矩阵对应配置的第一网络设备中各单元的相位,可能是该第一网络设备不支持的。因此,第一网络设备能够根据自己支持的相位偏移值,对该参考相移矩阵进行量化,得到该第一网络设备的相移矩阵(也就是最终实际使用的相移矩阵)。
其中,第一网络设备的相移矩阵,用于配置第一网络设备中各单元的相位,也就是对第一网络设备进行预编码。第一网络设备能够根据该相移矩阵配置调整自己各单元的相位,实现对第一网络设备的预编码。
步骤306,根据该相移矩阵,对入射到该第一网络设备表面的信号进行反射或者透射。
在本申请实施例中,第一网络设备在确定该相移矩阵之后,能够根据该相移矩阵,配置调整第一网络设备中各单元的相位,并基于调整后的相位,对入射到该第一网络设备表面的信号进行反射或者透射。
综上,通过接收第二网络设备发送的参考信号配置信息,根据该参考信号配置信息,向终端设备发送参考信号,接收第二网络设备发送的第一指示信息,根据该第一指示信息,确定参考相移矩阵,根据第一网络设备支持的相位偏移值,对该参考相移矩阵进行量化,得到该第一网络设备的相移矩阵,使得基站能够基于信道信息控制智能超表面的预编码,有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图4,图4是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由第一网络设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图4所示,该方法可以包括如下步骤:
步骤401,接收第二网络设备发送的参考信号配置信息。
在本申请各实施例中,第一网络设备可以为智能超表面RIS。
在本申请实施例中,第一网络设备能够接收第二网络设备发送的参考信号配置信息,并根据该参考信号配置信息,确定向终端设备发送的参考信号。
可选地,该参考信号配置信息包括以下至少一种:
参考信号所占用的第一网络设备中的单元;
参考信号序列的生成信息;
参考信号所占用的天线端口序号;
参考信号所占用的时频资源。
第一网络设备能够根据该参考信号配置信息,确定向终端设备发送的参考信号。
步骤402,根据该参考信号配置信息,向终端设备发送参考信号。
在本申请实施例中,第一网络设备可以根据接收到的参考信号配置信息,确定参考信号,并向终端设备发送该参考信号。
其中,该参考信号用于终端设备对该第一网络设备与该终端设备之间的信道进行估计得到信道反馈信息。也就是,终端设备在接收到第一网络设备发送的参考信号之后,能够根据该参考信号进行信道估计,得到该第一网络设备与该终端设备之间的信道的信道反馈信息。
在本申请实施例中,可选地,该信道反馈信息包括以下至少一种:
第二指示信息,该第二指示信息包括第二PMI,该第二PMI用于指示第一网络设备与终端设备之间的信道的预编码矩阵;
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信号接收强度指示RSSI;
信号与干扰加噪声比SINR。
另外可以理解的是,在本申请实施例中,第一网络设备中可以存在部分有源的单元,能够按照该参考信号配置信息,向终端设备发送该参考信号。
步骤403,接收第二网络设备发送的第一指示信息。
在本申请实施例中,第一网络设备能够接收第二网络设备发送的第一指示信息,该第一指示信息包括至少一个第一PMI,以及各第一PMI对应的加权系数。
可以理解的是,如果该第一指示信息中仅包括一个第一PMI,则该第一PMI对应的加权系数为1。
可以理解的是,该第一指示信息中包括的第一PMI,用于确定该第一网络设备的相移矩阵。
可选地,该加权系数可以是实数,也可以复数。其中,加权系数为复数,说明该加权系数中包括了幅度和相位的信息。
在本申请实施例中,该第一指示信息是第二网络设备基于终端设备发送的该信道反馈信息确定的。
其中,终端设备发送的信道反馈信息,是终端设备根据接收到的该参考信号确定并发送给第二网络设备的,能够反馈第一网络设备与该终端设备之间的信道的信息。
在本申请实施例中,第一网络设备可以根据协议预先的规定或者第二网络设备的配置指示,来确定该第一指示信息的确定并未考虑第二网络设备与第一网络设备之间的入射角信息,第一网络设备需要根据该入射角信息和该第一指示信息来确定相移矩阵。
步骤404,根据该第一指示信息以及第二网络设备与第一网络设备之间的入射角信息,确定参考相移矩阵。
在本申请实施例中,第一网络设备能够根据接收到的第一指示信息,以及第二网络设备与第一网络设备之间的入射角信息,确定一个参考相移矩阵。
其中,需要说明的是,该参考相移矩阵是根据第二网络设备发送的该第一指示信息确定的,第一指示信息是第二网络设备基于假定第一网络设备中各单元的相位连续可调而生成的。而第一网络设备所支持的相位偏移值,是几个离散的值,而不是连续的,第一网络设备中各单元的相位并非连续可调。也就是该参考相移矩阵对应配置的第一网络设备中各单元的相位,可能是该第一网络设备不支持的。
在本申请实施例中,该入射角信息可以是第二网络设备发送给第一网络设备的,也可以是第一网络设备自己测量得到的。
在一些实施方式中,第一网络设备还能够接收第二网络设备发送的该入射角信息。
在本申请实施例中,该第一指示信息是第二网络设备基于终端设备发送的信道反馈信息确定的,第一网络设备接收到的第一指示信息可以包括至少一个第一PMI,以及各第一PMI对应的加权系数。
可以理解的是,如果该第一指示信息中仅包括一个第一PMI,则该第一PMI对应的加权系数为1。
在一些实施方式中,该第一指示信息包括一个第一PMI,第一网络设备能够根据该第一PMI对应的预编码矩阵和加权系数,以及第二网络设备与第一网络设备之间的入射角信息,确定该参考相移矩阵。
可选地,第一网络设备能够基于该入射角信息,对该第一PMI对应指示的预编码矩阵进行调整,得到该参考相移矩阵。
在一些实施方式中,该第一指示信息中包括多个第一PMI以及各第一PMI对应的加权系数,第一网络设备能够根据该多个第一PMI中各第一PMI对应的预编码矩阵和加权系数,以及第二网络设备与第一网络设备之间的入射角信息,确定该参考相移矩阵。
可选地,第一网络设备能够先按照各第一PMI对应的加权系数,对各第一PMI对应指示的预编码矩阵进行加权合并,得到第一矩阵,再基于该入射角信息,对该加权合并得到的第一矩阵进行调整,最终得到该参考相移矩阵。
可以理解的是,在进行加权合并时,各第一PMI对应指示的预编码矩阵采用的加权系数,就是指示该预编码矩阵的第一PMI所对应的加权系数。
步骤405,根据第一网络设备支持的相位偏移值,对该参考相移矩阵进行量化,得到该第一网络设备的相移矩阵。
在本申请实施例中,由于第一网络设备所支持的相位偏移值,是几个离散的值,而不是连续的,该参考相移矩阵对应配置的第一网络设备中各单元的相位,可能是该第一网络设备不支持的。因此, 第一网络设备能够根据自己支持的相位偏移值,对该参考相移矩阵进行量化,得到该第一网络设备的相移矩阵(也就是最终实际使用的相移矩阵)。
其中,第一网络设备的相移矩阵,用于配置第一网络设备中各单元的相位,也就是对第一网络设备进行预编码。第一网络设备能够根据该相移矩阵配置调整自己各单元的相位,实现对第一网络设备的预编码。
步骤406,根据该相移矩阵,对入射到该第一网络设备表面的信号进行反射或者透射。
在本申请实施例中,第一网络设备在确定该相移矩阵之后,能够根据该相移矩阵,配置调整第一网络设备中各单元的相位,并基于调整后的相位,对入射到该第一网络设备表面的信号进行反射或者透射。
综上,通过接收第二网络设备发送的参考信号配置信息,根据该参考信号配置信息,向终端设备发送参考信号,接收第二网络设备发送的第一指示信息,根据该第一指示信息以及第二网络设备与第一网络设备之间的入射角信息,确定参考相移矩阵,根据第一网络设备支持的相位偏移值,对该参考相移矩阵进行量化,得到该第一网络设备的相移矩阵,使得基站能够基于信道信息控制智能超表面的预编码,有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图5,图5是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由第二网络设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图5所示,该方法可以包括如下步骤:
步骤501,接收终端设备发送的信道反馈信息。
在本申请实施例中,第二网络设备能够接收终端设备发送的信道反馈信息,该信道反馈信息是该终端设备基于第一网络设备发送的参考信号确定的,该信道反馈信息用于确定第一指示信息。
其中,该信道反馈信息是该终端设备根据接收到的参考信号,对第一网络设备与该终端设备之间的信道进行估计得到的,是能够反馈该第一网络设备与该终端设备之间的信道的信息。
在本申请各实施例中,第一网络设备可以为智能超表面RIS。
可选地,该信道反馈信息包括以下至少一种:
第二指示信息,该第二指示信息包括第二PMI,该第二PMI用于指示第一网络设备与终端设备之间的信道的预编码矩阵;
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信号接收强度指示RSSI;
信号与干扰加噪声比SINR。
在一些实施方式中,第二网络设备可以接收至少一个终端设备发送的信道反馈信息。
在本申请实施例中,第二网络设备还能够向第一网络设备和终端设备发送参考信号配置信息。第一网络设备能够根据该参考信号配置信息向终端设备发送参考信号,终端设备能够根据该参考信号配置信息接收第一网络设备发送的参考信号。
可选地,该参考信号配置信息包括以下至少一种:
参考信号所占用的第一网络设备中的单元;
参考信号序列的生成信息;
参考信号所占用的天线端口序号;
参考信号所占用的时频资源。
需要说明的是,第二网络设备向终端设备发送该参考信号配置信息所采用的信道,以及第二网络设备接收终端设备发送的信道反馈信息所采用的信道,分别都可以是经过第一网络设备的信道,也可以是不经过该第一网络设备的直视信道,本申请在此不进行限定。
在一些实施方式中,第二网络设备可以根据终端设备发送的该信道反馈信息,以及第二网络设备与第一网络设备之间的入射角信息,确定第一指示信息。
其中,第二网络设备与第一网络设备之间的入射角信息,是指第二网络设备发出的信号入射到第 一网络设备表面的入射角的信息。
在一些实施方式中,第二网络设备可以根据终端设备发送的该信道反馈信息,确定第一指示信息。
在本申请实施例中,第二网络设备确定的该第一指示信息,用于确定第一网络设备的相移矩阵。
步骤502,向第一网络设备发送第一指示信息,该第一指示信息用于确定该第一网络设备的相移矩阵。
在本申请实施例中,第二网络设备能够向第一网络设备发送第一指示信息,该第一指示信息用于确定第一网络设备的相移矩阵。
其中,第一网络设备的相移矩阵,用于配置第一网络设备中各单元的相位,也就是对第一网络设备进行预编码。第一网络设备能够根据该相移矩阵配置调整自己各单元的相位,实现对第一网络设备的预编码,并能够对入射到该第一网络设备表面的信号进行反射或者透射。
在一些实施方式中,该第一指示信息用于确定一个参考相移矩阵,该第一网络设备的相移矩阵(也就是最终实际使用的相移矩阵),是根据该第一网络设备支持的相位偏移值,对该参考相移矩阵进行量化得到的。
可以理解的是,第一网络设备所支持的相位偏移值,是几个离散的值,而不是连续的,第一网络设备中各单元的相位并非连续可调。
需要说明的是,该参考相移矩阵是根据第二网络设备发送的该第一指示信息确定的,第一指示信息是第二网络设备基于假定第一网络设备中各单元的相位连续可调而生成的,也就是该参考相移矩阵对应配置的第一网络设备中各单元的相位,可能是该第一网络设备不支持的。因此,第一网络设备能够根据自己支持的相位偏移值,对该参考相移矩阵进行量化,得到该第一网络设备的相移矩阵。
在本申请实施例中,该第一指示信息包括至少一个第一PMI,以及各第一PMI对应的加权系数。
可以理解的是,如果该第一指示信息中仅包括一个第一PMI,则该第一PMI对应的加权系数为1。
可以理解的是,该第一指示信息中包括的第一PMI,用于确定该第一网络设备的相移矩阵。
可选地,该加权系数可以是实数,也可以复数。其中,加权系数为复数,说明该加权系数中包括了幅度和相位的信息。
在一些实施方式中,第二网络设备可以根据终端设备发送的该信道反馈信息,以及第二网络设备与第一网络设备之间的入射角信息,确定该第一指示信息。
作为一种可能的实现,该第一指示信息中包括一个第一PMI,该参考相移矩阵是该第一PMI对应指示的预编码矩阵。
作为另一种可能的实现,该第一指示信息中包括多个第一PMI以及各PMI对应的加权系数,该参考相移矩阵是第一网络设备按照该各第一PMI对应的加权系数,对各第一PMI对应指示的预编码矩阵进行加权合并得到的。
在一些实施方式中,第二网络设备可以根据终端设备发送的该信道反馈信息,确定该第一指示信息。
作为一种可能的实现,该第一指示信息中包括一个第一PMI,该参考相移矩阵是第一网络设备根据该第一PMI对应的预编码矩阵和加权系数,以及第二网络设备与第一网络设备之间的入射角信息确定的。
可选地,该参考相移矩阵是第一网络设备基于第二网络设备与第一网络设备之间的入射角信息,对该第一PMI对应的预编码矩阵进行调整得到的。
作为另一种可能的实现,该第一指示信息中包括多个第一PMI以及各第一PMI对应的加权系数,该参考相移矩阵是第一网络设备根据该多个第一PMI中各第一PMI对应的预编码矩阵和加权系数,以及第二网络设备与第一网络设备之间的入射角信息确定的。
可选地,该参考相移矩阵是第一网络设备基于第二网络设备与第一网络设备之间的入射角信息,对第一矩阵进行调整得到的。其中,该第一矩阵是第一网络设备按照各第一PMI对应的加权系数,对各第一PMI对应指示的预编码矩阵进行加权合并得到的。
可选地,该第二网络设备可以向该第一网络设备发送该入射角信息。
可以理解的是,在进行加权合并时,各第一PMI对应指示的预编码矩阵采用的加权系数,就是指示该预编码矩阵的第一PMI所对应的加权系数。
其中,在本申请实施例中,第二网络设备与第一网络设备之间的入射角信息,是指第二网络设备发出的信号入射到第一网络设备表面的入射角的信息。
综上,通过接收终端设备发送的信道反馈信息,向第一网络设备发送第一指示信息,该第一指示信息用于确定该第一网络设备的相移矩阵,使得基站能够基于信道信息控制智能超表面的预编码,有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图6,图6是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由第二网络设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图6所示,该方法可以包括如下步骤:
步骤601,向第一网络设备发送参考信号配置信息。
在本申请实施例中,第二网络设备能够向第一网络设备发送参考信号配置信息,该参考信号配置信息用于该第一网络设备发送参考信号,该参考信号用于终端设备确定该第一网络设备与该终端设备之间的信道的信道反馈信息。第一网络设备能够根据该参考信号配置信息,确定参考信号,并向终端设备发送该参考信号,终端设备能够根据接收到的参考信号确定信道反馈信息。
在本申请各实施例中,第一网络设备可以为智能超表面RIS。
可选地,该参考信号配置信息包括以下至少一种:
参考信号所占用的第一网络设备中的单元;
参考信号序列的生成信息;
参考信号所占用的天线端口序号;
参考信号所占用的时频资源。
步骤602,向终端设备发送该参考信号配置信息。
在本申请实施例中,第二网络设备还能够向终端设备发送该参考信号配置信息,该参考信号配置信息用于该终端设备接收第一网络设备发送的参考信号。
可以理解的是,第一网络设备发送的参考信号也是基于该参考信号配置信息确定的。也就是,步骤601和步骤602中发送的参考信号配置信息是相同的。
需要说明的是,第二网络设备向终端设备发送该参考信号配置信息所采用的信道,可以是经过第一网络设备的信道,也可以是不经过该第一网络设备的直视信道,本申请在此不进行限定。
步骤603,接收终端设备发送的信道反馈信息。
在本申请实施例中,第二网络设备能够接收终端设备发送的信道反馈信息。
其中,该信道反馈信息,是终端设备基于接收到的第一网络设备发送的参考信号,对第一网络设备与该终端设备之间的信道进行估计得到的,能够反馈第一网络设备与该终端设备之间的信道的相关信息。
可选地,该信道反馈信息包括以下至少一种:
第二指示信息,该第二指示信息包括第二PMI,该第二PMI用于指示第一网络设备与终端设备之间的信道的预编码矩阵;
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信号接收强度指示RSSI;
信号与干扰加噪声比SINR。
需要说明的是,第二网络设备接收终端设备发送的信道反馈信息所采用的信道,可以是经过第一网络设备的信道,也可以是不经过该第一网络设备的直视信道,本申请在此不进行限定。
步骤604,根据该信道反馈信息,以及第二网络设备与第一网络设备之间的入射角信息,确定第一指示信息。
在本申请实施例中,第二网络设备能够根据接收到的该信道反馈信息,以及该第二网络设备与第一网络设备之间的入射角信息,确定第一指示信息。该第一指示信息用于确定第一网络设备的相移矩阵。
其中,第一网络设备的相移矩阵,用于配置第一网络设备中各单元的相位,也就是对第一网络设备进行预编码。第一网络设备能够根据该相移矩阵配置调整自己各单元的相位,实现对第一网络设备的预编码,并能够对入射到该第一网络设备表面的信号进行反射或者透射。
在本申请实施例中,第二网络设备与第一网络设备之间的入射角信息,是指第二网络设备发出的信号入射到第一网络设备表面的入射角的信息。
在本申请实施例中,该第一指示信息包括至少一个第一PMI,以及各第一PMI对应的加权系数。
可以理解的是,如果该第一指示信息中仅包括一个第一PMI,则该第一PMI对应的加权系数为1。
可以理解的是,该第一指示信息中包括的第一PMI,用于确定该第一网络设备的相移矩阵。
可选地,该加权系数可以是实数,也可以复数。其中,加权系数为复数,说明该加权系数中包括了幅度和相位的信息。
在一些实施方式中,该第一指示信息用于确定一个参考相移矩阵,该第一网络设备的相移矩阵(也就是最终实际使用的相移矩阵),是根据该第一网络设备支持的相位偏移值,对该参考相移矩阵进行量化得到的。
可以理解的是,第一网络设备所支持的相位偏移值,是几个离散的值,而不是连续的,第一网络设备中各单元的相位并非连续可调。
需要说明的是,该参考相移矩阵是根据第二网络设备发送的该第一指示信息确定的,第一指示信息是第二网络设备基于假定第一网络设备中各单元的相位连续可调而生成的,也就是该参考相移矩阵对应配置的第一网络设备中各单元的相位,可能是该第一网络设备不支持的。因此,第一网络设备能够根据自己支持的相位偏移值,对该参考相移矩阵进行量化,得到该第一网络设备的相移矩阵。
在一些实施方式中,第二网络设备可以接收至少一个终端设备发送的信道反馈信息。
步骤605,向第一网络设备发送该第一指示信息。
在本申请实施例中,第二网络设备能够向第一网络设备发送该第一指示信息。该第一指示信息用于确定第一网络设备的相移矩阵。
在一些实施方式中,该第一指示信息用于确定一个参考相移矩阵,该第一网络设备的相移矩阵(也就是最终实际使用的相移矩阵),是根据该第一网络设备支持的相位偏移值,对该参考相移矩阵进行量化得到的。
在一些实施方式中,该第一指示信息中包括一个第一PMI,该参考相移矩阵是该第一PMI对应指示的预编码矩阵。
在一些实施方式中,该第一指示信息中包括多个第一PMI以及各第一PMI对应的加权系数,该参考相移矩阵是第一网络设备按照该各PMI对应的加权系数,对各第一PMI对应指示的预编码矩阵进行加权合并得到的。
可以理解的是,在进行加权合并时,各第一PMI对应指示的预编码矩阵采用的加权系数,就是指示该预编码矩阵的第一PMI所对应的加权系数。
综上,通过向第一网络设备发送参考信号配置信息,向终端设备发送该参考信号配置信息,接收终端设备发送的信道反馈信息,根据该信道反馈信息,以及第二网络设备与第一网络设备之间的入射角信息,确定第一指示信息,向第一网络设备发送该第一指示信息,使得基站能够基于信道信息控制智能超表面的预编码,有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图7,图7是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由第二网络设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图7所示,该方法可以包括如下步骤:
步骤701,向第一网络设备发送参考信号配置信息。
在本申请实施例中,第二网络设备能够向第一网络设备发送参考信号配置信息,该参考信号配置信息用于该第一网络设备向终端设备发送参考信号,该参考信号用于终端设备确定该第一网络设备与该终端设备之间的信道的信道反馈信息。第一网络设备能够根据该参考信号配置信息,确定参考信号,并向终端设备发送该参考信号,终端设备能够根据接收到的参考信号确定信道反馈信息。
在本申请各实施例中,第一网络设备可以为智能超表面RIS。
可选地,该参考信号配置信息包括以下至少一种:
参考信号所占用的第一网络设备中的单元;
参考信号序列的生成信息;
参考信号所占用的天线端口序号;
参考信号所占用的时频资源。
步骤702,向终端设备发送该参考信号配置信息。
在本申请实施例中,第二网络设备还能够向终端设备发送该参考信号配置信息,该参考信号配置信息用于该终端设备接收第一网络设备发送的参考信号。
可以理解的是,第一网络设备发送的参考信号也是基于该参考信号配置信息确定的。也就是,步骤701和步骤702中发送的参考信号配置信息是相同的。
需要说明的是,第二网络设备向终端设备发送该参考信号配置信息所采用的信道,可以是经过第一网络设备的信道,也可以是不经过该第一网络设备的直视信道,本申请在此不进行限定。
步骤703,接收终端设备发送的信道反馈信息。
在本申请实施例中,第二网络设备能够接收终端设备发送的信道反馈信息。
其中,该信道反馈信息,是终端设备基于接收到的第一网络设备发送的参考信号,对第一网络设备与该终端设备之间的信道进行估计得到的,能够反馈第一网络设备与该终端设备之间的信道的相关信息。
可选地,该信道反馈信息包括以下至少一种:
第二指示信息,该第二指示信息包括第二PMI,该第二PMI用于指示第一网络设备与终端设备之间的信道的预编码矩阵;
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信号接收强度指示RSSI;
信号与干扰加噪声比SINR。
需要说明的是,第二网络设备接收终端设备发送的信道反馈信息所采用的信道,可以是经过第一网络设备的信道,也可以是不经过该第一网络设备的直视信道,本申请在此不进行限定。
步骤704,根据该信道反馈信息,确定第一指示信息。
在本申请实施例中,第二网络设备能够根据接收到的该信道反馈信息,确定第一指示信息。该第一指示信息用于确定第一网络设备的相移矩阵。
其中,第一网络设备的相移矩阵,用于配置第一网络设备中各单元的相位,也就是对第一网络设备进行预编码。第一网络设备能够根据该相移矩阵配置调整自己各单元的相位,实现对第一网络设备的预编码,并能够对入射到该第一网络设备表面的信号进行反射或者透射。
在本申请实施例中,该第一指示信息包括至少一个第一PMI,以及各第一PMI对应的加权系数。
可以理解的是,如果该第一指示信息中仅包括一个第一PMI,则该第一PMI对应的加权系数为1。
可以理解的是,该第一指示信息中包括的第一PMI,用于确定该第一网络设备的相移矩阵。
可选地,该加权系数可以是实数,也可以复数。其中,加权系数为复数,说明该加权系数中包括了幅度和相位的信息。
在一些实施方式中,该第一指示信息用于确定一个参考相移矩阵,该第一网络设备的相移矩阵(也就是最终实际使用的相移矩阵),是根据该第一网络设备支持的相位偏移值,对该参考相移矩阵进行量化得到的。
可以理解的是,第一网络设备所支持的相位偏移值,是几个离散的值,而不是连续的,第一网络设备中各单元的相位并非连续可调。
需要说明的是,该参考相移矩阵是根据第二网络设备发送的该第一指示信息确定的,第一指示信息是第二网络设备基于假定第一网络设备中各单元的相位连续可调而生成的,也就是该参考相移矩阵对应配置的第一网络设备中各单元的相位,可能是该第一网络设备不支持的。因此,第一网络设备能够根据自己支持的相位偏移值,对该参考相移矩阵进行量化,得到该第一网络设备的相移矩阵。
在一些实施方式中,第二网络设备可以接收至少一个终端设备发送的信道反馈信息,并根据接收到的信道反馈信息,确定该第一指示信息。
步骤705,向第一网络设备发送该第一指示信息。
在本申请实施例中,第二网络设备能够向第一网络设备发送该第一指示信息。该第一指示信息用于确定第一网络设备的相移矩阵。
在一些实施方式中,该第一指示信息用于确定一个参考相移矩阵,该第一网络设备的相移矩阵(也就是最终实际使用的相移矩阵),是根据该第一网络设备支持的相位偏移值,对该参考相移矩阵进行量化得到的。
在一些实施方式中,该第一指示信息中包括一个第一PMI,该参考相移矩阵是第一网络设备根据该第一PMI对应的预编码矩阵和加权系数,以及第二网络设备与第一网络设备之间的入射角信息确定的。
可选地,该参考相移矩阵是第一网络设备基于第二网络设备与第一网络设备之间的入射角信息,对该第一PMI对应的预编码矩阵进行调整得到的。
在一些实施方式中,该第一指示信息中包括多个第一PMI以及各第一PMI对应的加权系数,该参考相移矩阵是第一网络设备根据该多个第一PMI中各第一PMI对应的预编码矩阵和加权系数,以及第二网络设备与第一网络设备之间的入射角信息确定的。
可选地,该参考相移矩阵是第一网络设备基于第二网络设备与第一网络设备之间的入射角信息,对第一矩阵进行调整得到的。其中,该第一矩阵是第一网络设备按照各第一PMI对应的加权系数,对各第一PMI对应指示的预编码矩阵进行加权合并得到的。
可以理解的是,在进行加权合并时,各第一PMI对应指示的预编码矩阵采用的加权系数,就是指示该预编码矩阵的第一PMI所对应的加权系数。
在本申请实施例中,第二网络设备与第一网络设备之间的入射角信息,是指第二网络设备发出的信号入射到第一网络设备表面的入射角的信息。
在一些实施方式中,该第二网络设备还可以向该第一网络设备发送该入射角信息。
综上,通过向第一网络设备发送参考信号配置信息,向终端设备发送该参考信号配置信息,接收终端设备发送的信道反馈信息,根据该信道反馈信息,确定第一指示信息,向第一网络设备发送该第一指示信息,使得基站能够基于信道信息控制智能超表面的预编码,有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图8,图8是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由终端设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图8所示,该方法可以包括如下步骤:
步骤801,接收第一网络设备发送的参考信号。
在本申请实施例中,终端设备能够接收第一网络设备发送的参考信号,并根据该参考信号进行信道估计。该参考信号是第一网络设备基于第二网络设备发送的参考信号配置信息发送的。
在本申请各实施例中,第一网络设备可以为智能超表面RIS。
在一些实施方式中,终端设备能够接收第二网络设备发送的参考信号配置信息,并根据该参考信号配置信息接收第一网络设备发送的参考信号。
可选地,该参考信号配置信息包括以下至少一种:
参考信号所占用的第一网络设备中的单元;
参考信号序列的生成信息;
参考信号所占用的天线端口序号;
参考信号所占用的时频资源。
可以理解的是,终端设备接收的第二网络设备发送的该参考信号配置信息,与第一网络设备用于发送该参考信号的参考信号配置信息,是相同的。
需要说明的是,终端设备接收第二网络设备发送的参考信号配置信息所采用的信道,可以是经过第一网络设备的信道,也可以是不经过该第一网络设备的直视信道,本申请在此不进行限定。
步骤802,根据该参考信号对第一网络设备与终端设备之间的信道进行估计,得到信道反馈信息。
在本申请实施例中,第二网络设备能够根据该参考信号对第一网络设备与终端设备之间的信道进行估计,得到该信道的信道反馈信息。
可选地,该信道反馈信息包括以下至少一种:
第二指示信息,该第二指示信息包括第二PMI,该第二PMI用于指示第一网络设备与终端设备之间的信道的预编码矩阵;
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信号接收强度指示RSSI;
信号与干扰加噪声比SINR。
需要说明的是,终端设备根据接收到的参考信号进行信道估计的方法,可以采用最小二乘法(least squares,LS)进行估计,也可以采用最小均方误差法(minimum mean square error,MMSE)进行估计,还可以采用其他估计算法等等,本申请对此不进行限定。
步骤803,向第二网络设备发送该信道反馈信息。
在本申请实施例中,终端设备在对第一网络设备与终端设备之间的信道进行估计,得到该信道的信道反馈信息之后,能够向第二网络设备发送该信道反馈信息。
其中,该信道反馈信息用于确定第一指示信息,该第一指示信息用于确定第一网络设备的相移矩阵。
在本申请实施例中,该第一指示信息包括至少一个第一PMI,以及各第一PMI对应的加权系数。
可以理解的是,如果该第一指示信息中仅包括一个第一PMI,则该第一PMI对应的加权系数为1。
可以理解的是,该第一指示信息中包括的第一PMI,用于确定该第一网络设备的相移矩阵。
可选地,该加权系数可以是实数,也可以复数。其中,加权系数为复数,说明该加权系数中包括了幅度和相位的信息。
需要说明的是,终端设备向第二网络设备发送信道反馈信息所采用的信道,可以是经过第一网络设备的信道,也可以是不经过该第一网络设备的直视信道,本申请在此不进行限定。
综上,通过接收第一网络设备发送的参考信号,根据该参考信号对第一网络设备与终端设备之间的信道进行估计,得到信道反馈信息,向第二网络设备发送该信道反馈信息,使得基站能够基于信道信息控制智能超表面的预编码,有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图9,图9是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。需要说明的是,本申请实施例的基于智能超表面的预编码方法由终端设备执行。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图9所示,该方法可以包括如下步骤:
步骤901,接收第二网络设备发送的参考信号配置信息。
在本申请实施例中,终端设备能够接收第二网络设备发送的参考信号配置信息,并根据该参考信号配置信息接收第一网络设备发送的参考信号。
可选地,该参考信号配置信息包括以下至少一种:
参考信号所占用的第一网络设备中的单元;
参考信号序列的生成信息;
参考信号所占用的天线端口序号;
参考信号所占用的时频资源。
需要说明的是,终端设备接收第二网络设备发送的参考信号配置信息所采用的信道,可以是经过第一网络设备的信道,也可以是不经过该第一网络设备的直视信道,本申请在此不进行限定。
步骤902,根据该参考信号配置信息,接收第一网络设备发送的参考信号。
在本申请实施例中,终端设备能够根据接收到的参考信号配置信息,来接收第一网络设备发送的参考信号。
其中,第一网络设备发送的该参考信号是基于同样的参考信号配置信息确定的。也就是,终端设 备接收的第二网络设备发送的该参考信号配置信息,与第一网络设备用于发送该参考信号的参考信号配置信息,是相同的。
步骤903,根据该参考信号对第一网络设备与终端设备之间的信道进行估计,得到信道反馈信息。
在本申请实施例中,第二网络设备能够根据该参考信号对第一网络设备与终端设备之间的信道进行估计,得到该信道的信道反馈信息。该信道反馈信息能够向第二网络设备反馈第一网络设备与终端设备之间的信道的相关信息。
可选地,该信道反馈信息包括以下至少一种:
第二指示信息,该第二指示信息包括第二PMI,该第二PMI用于指示第一网络设备与终端设备之间的信道的预编码矩阵;
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信号接收强度指示RSSI;
信号与干扰加噪声比SINR。
需要说明的是,终端设备根据接收到的参考信号进行信道估计的方法,可以采用最小二乘法LS进行估计,也可以采用最小均方误差法MMSE进行估计,还可以采用其他估计算法等等,本申请对此不进行限定。
步骤904,向第二网络设备发送该信道反馈信息。
在本申请实施例中,终端设备在对第一网络设备与终端设备之间的信道进行估计,得到该信道的信道反馈信息之后,能够向第二网络设备发送该信道反馈信息。
其中,该信道反馈信息用于确定第一指示信息,该第一指示信息用于确定第一网络设备的相移矩阵。
在本申请实施例中,该第一指示信息包括至少一个第一PMI,以及各第一PMI对应的加权系数。
可以理解的是,如果该第一指示信息中仅包括一个第一PMI,则该第一PMI对应的加权系数为1。
可以理解的是,该第一指示信息中包括的第一PMI,用于确定该第一网络设备的相移矩阵。
可选地,该加权系数可以是实数,也可以复数。其中,加权系数为复数,说明该加权系数中包括了幅度和相位的信息。
需要说明的是,终端设备向第二网络设备发送信道反馈信息所采用的信道,可以是经过第一网络设备的信道,也可以是不经过该第一网络设备的直视信道,本申请在此不进行限定。
综上,通过接收第二网络设备发送的参考信号配置信息,根据该参考信号配置信息,接收第一网络设备发送的参考信号,根据该参考信号对第一网络设备与终端设备之间的信道进行估计,得到信道反馈信息,向第二网络设备发送该信道反馈信息,使得基站能够基于信道信息控制智能超表面的预编码,有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图10,图10是本申请实施例提供的一种基于智能超表面的预编码方法的流程示意图。该方法可以独立执行,也可以结合本申请任意一个其他实施例一起被执行。如图10所示,该方法可以包括如下步骤:
1、第二网络设备向第一网络设备和终端设备发送参考信号配置信息。
2、第一网络设备根据该参考信号配置信息,向终端设备发送参考信号。终端设备根据该参考信号配置信息,接收第一网络设备发送的参考信号。
3、终端设备根据该参考信号,对第一网络设备与终端设备之间的信道进行估计,得到信道反馈信息。
4、向第二网络设备发送该信道反馈信息。
5、第二网络设备根据该信道反馈信息,确定第一指示信息。
在一些实施方式中,第二网络设备直接根据该信道反馈信息,确定该第一指示信息。
可选地,第二网络设备还能够向第一网络设备发送第二网络设备与第一网络设备之间的入射角信息。
在一些实施方式中,第二网络设备根据该信道反馈信息,以及第二网络设备与第一网络设备之间的入射角信息,确定该第一指示信息。
6、第二网络设备向第一网络设备发送该第一指示信息。
7、第一网络设备根据该第一指示信息,确定相移矩阵。
在一些实施方式中,第一网络设备根据该第一指示信息,以及第二网络设备与第一网络设备之间的入射角信息,确定参考相移矩阵,进而对该参考相移矩阵进行量化得到该相移矩阵。
在一些实施方式中,第一网络设备直接根据该第一指示信息,确定参考相移矩阵,进而对该参考相移矩阵进行量化得到该相移矩阵。
8、第一网络设备根据该相移矩阵,对入射到该第一网络设备表面的信号进行反射或者透射。
综上,本申请实施例提供的基于智能超表面的预编码方法,可以使得基站能够基于信道信息控制智能超表面的预编码,有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
与上述几种实施例提供的基于智能超表面的预编码方法相对应,本申请还提供一种基于智能超表面的预编码装置,由于本申请实施例提供的基于智能超表面的预编码装置与上述几种实施例提供的方法相对应,因此在基于智能超表面的预编码方法的实施方式也适用于下述实施例提供的基于智能超表面的预编码装置,在下述实施例中不再详细描述。
请参见图11,图11为本申请实施例提供的一种基于智能超表面的预编码装置的结构示意图。
如图11所示,该基于智能超表面的预编码装置1100包括:收发单元1110和处理单元1120,其中:
收发单元1110,用于向终端设备发送参考信号,该参考信号用于该终端设备确定信道反馈信息,该信道反馈信息用于第二网络设备确定第一指示信息;
该收发单元1110,还用于接收该第二网络设备发送的该第一指示信息,该第一指示信息用于确定该第一网络设备的相移矩阵;
处理单元1120,用于根据该第一指示信息,确定该第一网络设备的相移矩阵。
可选地,该处理单元1120具体用于:根据该第一指示信息,确定该第一网络设备的参考相移矩阵;根据该第一网络设备支持的相位偏移值,对该参考相移矩阵进行量化,得到该第一网络设备的相移矩阵。
可选地,该第一指示信息包括:至少一个第一预编码矩阵指示PMI和每个第一预编码矩阵指示PMI对应的加权系数。
可选地,该第一指示信息是该第二网络设备基于该第二网络设备与该第一网络设备之间的入射角信息和该信道反馈信息确定的。
可选地,该第一指示信息包括一个第一PMI,该参考相移矩阵为该第一PMI对应的预编码矩阵。
可选地,该第一指示信息包括多个第一PMI和每个第一PMI对应的加权系数,该处理单元1120具体用于:按照该每个第一PMI对应的加权系数,对该每个第一PMI对应的预编码矩阵进行加权合并,得到该参考相移矩阵。
可选地,该第一指示信息是该第二网络设备基于该信道反馈信息确定的。
可选地,该第一指示信息包括一个第一PMI,该处理单元1120具体用于:根据该第一PMI对应的预编码矩阵,以及该第二网络设备与该第一网络设备之间的入射角信息,确定该参考相移矩阵。
可选地,该处理单元1120具体用于:基于该入射角信息,对该第一PMI对应的预编码矩阵进行调整,得到该参考相移矩阵。
可选地,该第一指示信息包括多个第一PMI和每个第一PMI对应的加权系数,该处理单元1120具体用于:根据该多个第一PMI中每个第一PMI对应的预编码矩阵和加权系数,以及该第二网络设备与该第一网络设备之间的入射角信息,确定该参考相移矩阵。
可选地,该处理单元1120具体用于:按照该每个第一PMI对应的加权系数,对该每个第一PMI对应的预编码矩阵进行加权合并,得到第一矩阵;基于该入射角信息,对该第一矩阵进行调整,得到该参考相移矩阵。
可选地,该收发单元1110还用于:接收该第二网络设备发送的该入射角信息;或者,感知该入射 角信息。
可选地,该收发单元1110还用于:接收该第二网络设备发送的参考信号配置信息;根据该参考信号配置信息,发送该参考信号。
可选地,该参考信号配置信息包括以下至少一种:该参考信号所占用的该第一网络设备中的单元;该参考信号序列的生成信息;该参考信号所占用的天线端口序号;该参考信号所占用的时频资源。
可选地,该信道反馈信息包括以下至少一种:第二指示信息,该第二指示信息包括第二PMI,该第二PMI用于指示该第一网络设备与该终端设备之间的信道的预编码矩阵;参考信号接收功率RSRP;参考信号接收质量RSRQ;参考信号接收强度RSSI;信号与干扰加噪声比SINR。
可选地,该第一网络设备为智能超表面RIS。
可选地,该收发单元1110还用于:根据该相移矩阵,对入射到该第一网络设备表面的信号进行反射或者透射。
本实施例的基于智能超表面的预编码装置,可以通过向终端设备发送参考信号,接收第二网络设备发送的第一指示信息,该第一指示信息用于确定该第一网络设备的相移矩阵,根据该第一指示信息,确定该第一网络设备的相移矩阵,使得基站能够基于信道信息控制智能超表面的预编码,有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图12,图12为本申请实施例提供的一种基于智能超表面的预编码装置的结构示意图。
如图12所示,该基于智能超表面的预编码装置1200包括:收发单元1210,其中:
收发单元1210,用于接收终端设备发送的信道反馈信息,该信道反馈信息是该终端设备基于第一网络设备发送的参考信号确定的,该信道反馈信息用于确定第一指示信息;
该收发单元1210,还用于向该第一网络设备发送该第一指示信息,该第一指示信息用于确定该第一网络设备的相移矩阵。
可选地,该第一指示信息用于确定该第一网络设备的参考相移矩阵;该第一网络设备的相移矩阵,是根据该第一网络设备支持的相位偏移值,对该参考相移矩阵进行量化得到的。
可选地,该第一指示信息包括:至少一个第一预编码矩阵指示PMI和每个第一预编码矩阵指示PMI对应的加权系数。
可选地,该收发单元1210还用于:向该第一网络设备发送参考信号配置信息;该参考信号配置信息,用于确定该第一网络设备发送的参考信号;该参考信号用于确定该终端设备和该第一网络设备之间的信道的信道反馈信息。
可选地,该参考信号配置信息包括以下至少一种:该参考信号所占用的该第一网络设备中的单元;该参考信号序列的生成信息;该参考信号所占用的天线端口序号;该参考信号所占用的时频资源。
可选地,该装置还包括处理单元(图中未示出),该处理单元用于:根据该信道反馈信息,以及该第二网络设备与该第一网络设备之间的入射角信息,确定该第一指示信息。
可选地,该第一指示信息包括一个第一PMI,该参考相移矩阵为该第一PMI对应的预编码矩阵。
可选地,该第一指示信息包括多个第一PMI和每个第一PMI对应的加权系数,该参考相移矩阵是按照该每个第一PMI对应的加权系数,对该每个第一PMI对应的预编码矩阵进行加权合并得到的。
可选地,该装置还包括处理单元(图中未示出),该处理单元用于:根据该信道反馈信息,确定该第一指示信息。
可选地,该第一指示信息包括一个第一PMI,该参考相移矩阵是该第一网络设备根据该第一PMI对应的预编码矩阵,以及该第二网络设备与该第一网络设备之间的入射角信息确定的。
可选地,该参考相移矩阵是该第一网络设备基于该入射角信息,对该第一PMI对应的预编码矩阵进行调整得到的。
可选地,该第一指示信息包括多个第一PMI和每个第一PMI对应的加权系数,该参考相移矩阵是该第一网络设备根据该多个第一PMI中每个第一PMI对应的预编码矩阵和加权系数,以及该第二网络设备与该第一网络设备之间的入射角信息确定的。
可选地,该参考相移矩阵是该第一网络设备基于该入射角信息对第一矩阵进行调整得到的;该第一矩阵是该第一网络设备按照该每个第一PMI对应的加权系数,对该每个第一PMI对应的预编码矩阵 进行加权合并得到的。
可选地,该收发单元1210还用于:向该第一网络设备发送该入射角信息。
可选地,该信道反馈信息包括以下至少一种:第二指示信息,该第二指示信息包括第二PMI,该第二PMI用于指示该第一网络设备与该终端设备之间的信道的预编码矩阵;参考信号接收功率RSRP;参考信号接收质量RSRQ;参考信号接收强度RSSI;信号与干扰加噪声比SINR。
可选地,该第一网络设备为智能超表面RIS。
可选地,该相移矩阵,用于该第一网络设备对入射到该第一网络设备表面的信号进行反射或者透射。
本实施例的基于智能超表面的预编码装置,可以通过接收终端设备发送的信道反馈信息,向第一网络设备发送第一指示信息,该第一指示信息用于确定该第一网络设备的相移矩阵,使得基站能够基于信道信息控制智能超表面的预编码,有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
请参见图13,图13为本申请实施例提供的一种基于智能超表面的预编码装置的结构示意图。
如图13所示,该基于智能超表面的预编码装置1300包括:收发单元1310和处理单元1320,其中:
收发单元1310,用于接收第一网络设备发送的参考信号;
处理单元1320,用于根据该参考信号对该第一网络设备与该终端设备之间的信道进行估计,得到信道反馈信息;
该收发单元1310,还用于向第二网络设备发送该信道反馈信息,该信道反馈信息用于确定第一指示信息,该第一指示信息用于确定该第一网络设备的相移矩阵。
可选地,该收发单元1310还用于:接收该第二网络设备发送的参考信号配置信息;根据该参考信号配置信息,接收该参考信号,其中,该参考信号是该第一网络设备基于该参考信号配置信息发送的。
可选地,该第一指示信息包括:至少一个第一预编码矩阵指示PMI和每个第一预编码矩阵指示PMI对应的加权系数。
可选地,该参考信号配置信息包括以下至少一种:该参考信号所占用的该第一网络设备中的单元;该参考信号序列的生成信息;该参考信号所占用的天线端口序号;该参考信号所占用的时频资源。
可选地,该信道反馈信息包括以下至少一种:第二指示信息,该第二指示信息包括第二PMI,该第二PMI用于指示该第一网络设备与该终端设备之间的信道的预编码矩阵;参考信号接收功率RSRP;参考信号接收质量RSRQ;参考信号接收强度RSSI;信号与干扰加噪声比SINR。
可选地,该第一网络设备为智能超表面RIS。
本实施例的基于智能超表面的预编码装置,可以通过接收第一网络设备发送的参考信号,根据该参考信号对第一网络设备与终端设备之间的信道进行估计,得到信道反馈信息,向第二网络设备发送该信道反馈信息,使得基站能够基于信道信息控制智能超表面的预编码,有效降低了基于智能超表面的预编码的复杂度,提高了智能超表面辅助的通信系统的通信效率,降低干扰。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和存储器,存储器中存储有计算机程序,处理器执行所述存储器中存储的计算机程序,以使装置执行图2至图4实施例所示的方法,或者执行图5至图7实施例所示的方法。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和存储器,存储器中存储有计算机程序,处理器执行所述存储器中存储的计算机程序,以使装置执行图8至图9实施例所示的方法。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和接口电路,接口电路,用于接收代码指令并传输至处理器,处理器,用于运行所述代码指令以执行图2至图6实施例所示的方法,或者执行图5至图7实施例所示的方法。
为了实现上述实施例,本申请实施例还提出一种通信装置,包括:处理器和接口电路,接口电路,用于接收代码指令并传输至处理器,处理器,用于运行所述代码指令以执行图8至图9实施例所示的 方法。
请参见图14,图14是本申请实施例提供的另一种基于智能超表面的预编码装置的结构示意图。基于智能超表面的预编码装置1400可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
基于智能超表面的预编码装置1400可以包括一个或多个处理器1401。处理器1401可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对基于智能超表面的预编码装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,基于智能超表面的预编码装置1400中还可以包括一个或多个存储器1402,其上可以存有计算机程序1403,处理器1401执行计算机程序1403,以使得基于智能超表面的预编码装置1400执行上述方法实施例中描述的方法。计算机程序1403可能固化在处理器1401中,该种情况下,处理器1401可能由硬件实现。
可选的,存储器1402中还可以存储有数据。基于智能超表面的预编码装置1400和存储器1402可以单独设置,也可以集成在一起。
可选的,基于智能超表面的预编码装置1400还可以包括收发器1405、天线1406。收发器1405可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1405可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,基于智能超表面的预编码装置1400中还可以包括一个或多个接口电路1407。接口电路1407用于接收代码指令并传输至处理器1401。处理器1401运行代码指令以使基于智能超表面的预编码装置1400执行上述方法实施例中描述的方法。
在一种实现方式中,处理器1401中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,基于智能超表面的预编码装置1400可以包括电路,电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的基于智能超表面的预编码装置可以是网络设备或者终端设备,但本申请中描述的基于智能超表面的预编码装置的范围并不限于此,而且基于智能超表面的预编码装置的结构可以不受图11-图13的限制。基于智能超表面的预编码装置可以是独立的设备或者可以是较大设备的一部分。例如基于智能超表面的预编码装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于基于智能超表面的预编码装置可以是芯片或芯片系统的情况,可参见图15所示的芯片的结构示意图。图15所示的芯片包括处理器1501和接口1502。其中,处理器1501的数量可以是一个或多个,接口1502的数量可以是多个。
对于芯片用于实现本申请实施例中终端设备的功能的情况:
接口1502,用于代码指令并传输至处理器;
处理器1501,用于运行代码指令以执行如图2至图4的方法,或者执行如图5至图7的方法。
对于芯片用于实现本申请实施例中网络设备的功能的情况:
接口1502,用于代码指令并传输至处理器;
处理器1501,用于运行代码指令以执行如图8至图9的方法。
可选的,芯片还包括存储器1503,存储器1503用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种通信系统,该系统包括前述图11-图13实施例中作为网络设备的基于智能超表面的预编码装置和作为终端设备的基于智能超表面的预编码装置,或者,该系统包括前述图14实施例中作为终端设备的基于智能超表面的预编码装置和作为网络设备的基于智能超表面的预编码装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行计算机程序时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
应当理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本申请实施例中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。

Claims (41)

  1. 一种基于智能超表面的预编码方法,其特征在于,所述方法由第一网络设备执行,所述方法包括:
    向终端设备发送参考信号,所述参考信号用于所述终端设备确定信道反馈信息,所述信道反馈信息用于第二网络设备确定第一指示信息;
    接收所述第二网络设备发送的所述第一指示信息,所述第一指示信息用于确定所述第一网络设备的相移矩阵;
    根据所述第一指示信息,确定所述第一网络设备的相移矩阵。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一指示信息,确定所述第一网络设备的相移矩阵,包括:
    根据所述第一指示信息,确定所述第一网络设备的参考相移矩阵;
    根据所述第一网络设备支持的相位偏移值,对所述参考相移矩阵进行量化,得到所述第一网络设备的相移矩阵。
  3. 根据权利要求2所述的方法,其特征在于,所述第一指示信息包括:至少一个第一预编码矩阵指示PMI和每个第一预编码矩阵指示PMI对应的加权系数。
  4. 根据权利要求3所述的方法,其特征在于,所述第一指示信息是所述第二网络设备基于所述第二网络设备与所述第一网络设备之间的入射角信息和所述信道反馈信息确定的。
  5. 根据权利要求4所述的方法,其特征在于,所述第一指示信息包括一个第一PMI,所述参考相移矩阵为所述第一PMI对应的预编码矩阵。
  6. 根据权利要求4所述的方法,其特征在于,所述第一指示信息包括多个第一PMI和每个第一PMI对应的加权系数,所述根据所述第一指示信息,确定所述第一网络设备的参考相移矩阵,包括:
    按照所述每个第一PMI对应的加权系数,对所述每个第一PMI对应的预编码矩阵进行加权合并,得到所述参考相移矩阵。
  7. 根据权利要求3所述的方法,其特征在于,所述第一指示信息是所述第二网络设备基于所述信道反馈信息确定的。
  8. 根据权利要求7所述的方法,其特征在于,所述第一指示信息包括一个第一PMI,所述根据所述第一指示信息,确定所述第一网络设备的参考相移矩阵,包括:
    根据所述第一PMI对应的预编码矩阵,以及所述第二网络设备与所述第一网络设备之间的入射角信息,确定所述参考相移矩阵。
  9. 根据权利要求8所述的方法,其特征在于,所述根据所述第一PMI对应的预编码矩阵,以及所述第二网络设备与所述第一网络设备之间的入射角信息,确定所述参考相移矩阵,包括:
    基于所述入射角信息,对所述第一PMI对应的预编码矩阵进行调整,得到所述参考相移矩阵。
  10. 根据权利要求7所述的方法,其特征在于,所述第一指示信息包括多个第一PMI和每个第一PMI对应的加权系数,所述根据所述第一指示信息,确定所述第一网络设备的参考相移矩阵,包括:
    根据所述多个第一PMI中每个第一PMI对应的预编码矩阵和加权系数,以及所述第二网络设备与所述第一网络设备之间的入射角信息,确定所述参考相移矩阵。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述多个第一PMI中每个第一PMI对应的预编码矩阵和加权系数,以及所述第二网络设备与所述第一网络设备之间的入射角信息,确定所述参考相移矩阵,包括:
    按照所述每个第一PMI对应的加权系数,对所述每个第一PMI对应的预编码矩阵进行加权合并,得到第一矩阵;
    基于所述入射角信息,对所述第一矩阵进行调整,得到所述参考相移矩阵。
  12. 根据权利要求8-11任一项所述的方法,其特征在于,所述方法还包括:
    接收所述第二网络设备发送的所述入射角信息;或者,
    感知所述入射角信息。
  13. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述第二网络设备发送的参考信号配置信息;
    根据所述参考信号配置信息,发送所述参考信号。
  14. 根据权利要求13所述的方法,其特征在于,所述参考信号配置信息包括以下至少一种:
    所述参考信号所占用的所述第一网络设备中的单元;
    所述参考信号序列的生成信息;
    所述参考信号所占用的天线端口序号;
    所述参考信号所占用的时频资源。
  15. 根据权利要求13所述的方法,其特征在于,所述信道反馈信息包括以下至少一种:
    第二指示信息,所述第二指示信息包括第二PMI,所述第二PMI用于指示所述第一网络设备与所述终端设备之间的信道的预编码矩阵;
    参考信号接收功率RSRP;
    参考信号接收质量RSRQ;
    参考信号接收强度RSSI;
    信号与干扰加噪声比SINR。
  16. 根据权利要求1-15任一项所述的方法,其特征在于,所述第一网络设备为智能超表面RIS。
  17. 根据权利要求1-15任一项所述的方法,其特征在于,所述方法还包括:
    根据所述相移矩阵,对入射到所述第一网络设备表面的信号进行反射或者透射。
  18. 一种基于智能超表面的预编码方法,其特征在于,所述方法由第二网络设备执行,所述方法包括:
    接收终端设备发送的信道反馈信息,所述信道反馈信息是所述终端设备基于第一网络设备发送的参考信号确定的,所述信道反馈信息用于确定第一指示信息;
    向所述第一网络设备发送所述第一指示信息,所述第一指示信息用于确定所述第一网络设备的相移矩阵。
  19. 根据权利要求18所述的方法,其特征在于,所述第一指示信息用于确定所述第一网络设备的参考相移矩阵;
    所述第一网络设备的相移矩阵,是根据所述第一网络设备支持的相位偏移值,对所述参考相移矩阵进行量化得到的。
  20. 根据权利要求19所述的方法,其特征在于,所述第一指示信息包括:至少一个第一预编码矩阵指示PMI和每个第一预编码矩阵指示PMI对应的加权系数。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    向所述第一网络设备发送参考信号配置信息;
    所述参考信号配置信息,用于确定所述第一网络设备发送的所述参考信号;所述参考信号用于确定所述终端设备和所述第一网络设备之间的信道的所述信道反馈信息。
  22. 根据权利要求21所述的方法,其特征在于,所述参考信号配置信息包括以下至少一种:
    所述参考信号所占用的所述第一网络设备中的单元;
    所述参考信号序列的生成信息;
    所述参考信号所占用的天线端口序号;
    所述参考信号所占用的时频资源。
  23. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    根据所述信道反馈信息,以及所述第二网络设备与所述第一网络设备之间的入射角信息,确定所述第一指示信息。
  24. 根据权利要求23所述的方法,其特征在于,所述第一指示信息包括一个第一PMI,所述参考相移矩阵为所述第一PMI对应的预编码矩阵。
  25. 根据权利要求23所述的方法,其特征在于,所述第一指示信息包括多个第一PMI和每个第一PMI对应的加权系数,所述参考相移矩阵是按照所述每个第一PMI对应的加权系数,对所述每个第一PMI对应的预编码矩阵进行加权合并得到的。
  26. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    根据所述信道反馈信息,确定所述第一指示信息。
  27. 根据权利要求26所述的方法,其特征在于,所述第一指示信息包括一个第一PMI,所述参考相移矩阵是所述第一网络设备根据所述第一PMI对应的预编码矩阵,以及所述第二网络设备与所述第一网络设备之间的入射角信息确定的。
  28. 根据权利要求27所述的方法,其特征在于,所述参考相移矩阵是所述第一网络设备基于所述入射角信息,对所述第一PMI对应的预编码矩阵进行调整得到的。
  29. 根据权利要求26所述的方法,其特征在于,所述第一指示信息包括多个第一PMI和每个第一PMI对应的加权系数,所述参考相移矩阵是所述第一网络设备根据所述多个第一PMI中每个第一PMI对应的预编码矩阵和加权系数,以及所述第二网络设备与所述第一网络设备之间的入射角信息确定的。
  30. 据权利要求29所述的方法,其特征在于,所述参考相移矩阵是所述第一网络设备基于所述入射角信息对第一矩阵进行调整得到的;所述第一矩阵是所述第一网络设备按照所述每个第一PMI对应的加权系数,对所述每个第一PMI对应的预编码矩阵进行加权合并得到的。
  31. 根据权利要求27-30任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一网络设备发送所述入射角信息。
  32. 根据权利要求18所述的方法,其特征在于,所述信道反馈信息包括以下至少一种:
    第二指示信息,所述第二指示信息包括第二PMI,所述第二PMI用于指示所述第一网络设备与所述终端设备之间的信道的预编码矩阵;
    参考信号接收功率RSRP;
    参考信号接收质量RSRQ;
    参考信号接收强度RSSI;
    信号与干扰加噪声比SINR。
  33. 根据权利要求18-32任一项所述的方法,其特征在于,所述第一网络设备为智能超表面RIS。
  34. 根据权利要求18-32任一项所述的方法,其特征在于,所述相移矩阵,用于所述第一网络设备对入射到所述第一网络设备表面的信号进行反射或者透射。
  35. 一种基于智能超表面的预编码方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    接收第一网络设备发送的参考信号;
    根据所述参考信号对所述第一网络设备与所述终端设备之间的信道进行估计,得到信道反馈信息;
    向第二网络设备发送所述信道反馈信息,所述信道反馈信息用于确定第一指示信息,所述第一指示信息用于确定所述第一网络设备的相移矩阵。
  36. 根据权利要求35所述的方法,其特征在于,所述方法还包括:
    接收所述第二网络设备发送的参考信号配置信息;
    根据所述参考信号配置信息,接收所述参考信号,其中,所述参考信号是所述第一网络设备基于所述参考信号配置信息发送的。
  37. 根据权利要求36所述的方法,其特征在于,所述第一指示信息包括:至少一个第一预编码矩阵指示PMI和每个第一预编码矩阵指示PMI对应的加权系数。
  38. 根据权利要求36所述的方法,其特征在于,所述参考信号配置信息包括以下至少一种:
    所述参考信号所占用的所述第一网络设备中的单元;
    所述参考信号序列的生成信息;
    所述参考信号所占用的天线端口序号;
    所述参考信号所占用的时频资源。
  39. 根据权利要求36所述的方法,其特征在于,所述信道反馈信息包括以下至少一种:
    第二指示信息,所述第二指示信息包括第二PMI,所述第二PMI用于指示所述第一网络设备与所述终端设备之间的信道的预编码矩阵;
    参考信号接收功率RSRP;
    参考信号接收质量RSRQ;
    参考信号接收强度RSSI;
    信号与干扰加噪声比SINR。
  40. 根据权利要求35-39任一项所述的方法,其特征在于,所述第一网络设备为智能超表面RIS。
  41. 一种通信系统,其特征在于,所述通信系统包括:
    第一网络设备,用于执行如权利要求1至17中任一项所述的方法;
    第二网络设备,用于执行如权利要求18至34中任一项所述的方法;
    终端设备,用于执行如权利要求35至40中任一项所述的方法。
PCT/CN2022/113378 2022-08-18 2022-08-18 基于智能超表面的预编码方法及装置 WO2024036570A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113378 WO2024036570A1 (zh) 2022-08-18 2022-08-18 基于智能超表面的预编码方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/113378 WO2024036570A1 (zh) 2022-08-18 2022-08-18 基于智能超表面的预编码方法及装置

Publications (1)

Publication Number Publication Date
WO2024036570A1 true WO2024036570A1 (zh) 2024-02-22

Family

ID=89940332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113378 WO2024036570A1 (zh) 2022-08-18 2022-08-18 基于智能超表面的预编码方法及装置

Country Status (1)

Country Link
WO (1) WO2024036570A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111917448A (zh) * 2020-08-13 2020-11-10 深圳大学 一种毫米波通信的波束训练方法、装置、系统及存储介质
CN113853018A (zh) * 2021-08-11 2021-12-28 北京邮电大学 基于irs辅助的无人机安全通信方法、系统及电子设备
CN113906689A (zh) * 2019-06-19 2022-01-07 索尼集团公司 用于rf信号的无源反射的系统和方法
CN114257475A (zh) * 2020-09-21 2022-03-29 索尼公司 电子设备、无线通信方法以及计算机可读存储介质
WO2022151128A1 (en) * 2021-01-14 2022-07-21 Qualcomm Incorporated Communicating reconfigurable intelligent surface (ris) information to support ris-division multiple access
US20220239010A1 (en) * 2021-01-27 2022-07-28 Qualcomm Incorporated Multi-beam routing using a lens antenna

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113906689A (zh) * 2019-06-19 2022-01-07 索尼集团公司 用于rf信号的无源反射的系统和方法
CN111917448A (zh) * 2020-08-13 2020-11-10 深圳大学 一种毫米波通信的波束训练方法、装置、系统及存储介质
CN114257475A (zh) * 2020-09-21 2022-03-29 索尼公司 电子设备、无线通信方法以及计算机可读存储介质
WO2022151128A1 (en) * 2021-01-14 2022-07-21 Qualcomm Incorporated Communicating reconfigurable intelligent surface (ris) information to support ris-division multiple access
US20220239010A1 (en) * 2021-01-27 2022-07-28 Qualcomm Incorporated Multi-beam routing using a lens antenna
CN113853018A (zh) * 2021-08-11 2021-12-28 北京邮电大学 基于irs辅助的无人机安全通信方法、系统及电子设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BANSAL ANKUR; SINGH KESHAV; LI CHIH-PENG: "Analysis of Hierarchical Rate Splitting for Intelligent Reflecting Surfaces-Aided Downlink Multiuser MISO Communications", IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, IEEE, vol. 2, 1 April 2021 (2021-04-01), pages 785 - 798, XP011849138, DOI: 10.1109/OJCOMS.2021.3070340 *
NADEEM QURRAT-UL-AIN, ABLA KAMMOUN, ANAS CHAABAN, MEROUANE DEBBAH, MOHAMED-SLIM ALOUINI: "Intelligent Reflecting Surface Assisted Wireless Communication: Modeling and Channel Estimation", ARXIV.ORG, 13 December 2019 (2019-12-13), XP093139991, Retrieved from the Internet <URL:https://arxiv.org/pdf/1906.02360.pdf> [retrieved on 20240311], DOI: 10.48550/arXiv.1906.02360 *

Similar Documents

Publication Publication Date Title
WO2024036570A1 (zh) 基于智能超表面的预编码方法及装置
WO2023184372A1 (zh) 上行信道的发送和接收的方法及装置
WO2024055324A1 (zh) 基于智能超表面的预编码方法及装置
WO2024044990A1 (zh) 基于智能超表面的预编码方法及装置
WO2023216164A1 (zh) 一种智能超表面的预编码方法及装置
WO2024065130A1 (zh) 基于智能超表面的预编码方法及装置
WO2023077311A1 (zh) 一种智能超表面ris的预编码方法及其装置
WO2023184435A1 (zh) 一种确定波束信息的方法及装置
WO2024020904A1 (zh) 智能反射表面irs的相移配置的发送、接收方法及装置
WO2023092494A1 (zh) 一种预编码信息的反馈方法及其装置
WO2023115577A1 (zh) 一种信道状态信息csi的反馈方法及其装置
WO2024045143A1 (zh) 一种轨道角动量oam的预编码矩阵确定方法及其装置
WO2023184449A1 (zh) 一种发送tri的方法及其装置、接收tri的方法及其装置
WO2024082194A1 (zh) 预编码方法及装置
WO2023184434A1 (zh) 基于码本的上行信道发送方法及装置
WO2023184451A1 (zh) 一种基于非码本的pusch发送、接收信息的方法及其装置
WO2024026639A1 (zh) 一种波束赋形方法、装置、设备及存储介质
WO2024011543A1 (zh) 基向量的选择指示上报方法和装置
WO2023184450A1 (zh) 一种基于非码本的pusch接收/发送信息的方法及其装置
WO2023245683A1 (zh) 基向量类型的指示方法和装置
WO2023197187A1 (zh) 一种信道状态信息的处理方法及装置
WO2024000526A1 (zh) 预编码方法及装置
WO2023201500A1 (zh) 基于码本的pusch传输方法及其装置
WO2023150918A1 (zh) 一种波束管理的方法及其装置
WO2023201501A1 (zh) Mimo上行传输部分天线相干传输码字的确定方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22955350

Country of ref document: EP

Kind code of ref document: A1