WO2023113160A1 - 광학 필름 및 이를 포함하는 표시장치 - Google Patents

광학 필름 및 이를 포함하는 표시장치 Download PDF

Info

Publication number
WO2023113160A1
WO2023113160A1 PCT/KR2022/013958 KR2022013958W WO2023113160A1 WO 2023113160 A1 WO2023113160 A1 WO 2023113160A1 KR 2022013958 W KR2022013958 W KR 2022013958W WO 2023113160 A1 WO2023113160 A1 WO 2023113160A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
light
fastness test
light fastness
present
Prior art date
Application number
PCT/KR2022/013958
Other languages
English (en)
French (fr)
Inventor
이효경
박효준
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to CN202280089013.3A priority Critical patent/CN118541420A/zh
Publication of WO2023113160A1 publication Critical patent/WO2023113160A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to an optical film and a display device including the same.
  • the optical film containing a polymer resin has a problem in that the initial yellowness is high or the color of the optical film changes as time passes and is exposed to light.
  • one embodiment of the present invention is to provide an optical film having excellent light resistance.
  • another embodiment of the present invention is to provide a display device including an optical film having excellent light resistance.
  • An embodiment of the present invention provides an optical film, including a light-transmitting substrate, having a yellowness of 5.0 or less before the light fastness test and having a color change ( ⁇ E* ab ) of 3.5 or less after the light fastness test.
  • the light resistance test was conducted for 300 hours under the conditions of a Daylight filter, 12kW 0.8W/m2 @420nm, 30 o C/30RH% Chamber, and 55 o C Black Panel using a Xenon lamp, and the color change ( ⁇ E* ab ) is calculated by Equation 1 below.
  • Equation 1 ⁇ L* is the L* difference before and after the light fastness test, ⁇ a* is the a* difference before and after the light fastness test, and ⁇ b* is the b* difference before and after the light fastness test.
  • the light-transmitting substrate may include a polymer resin; And a malonate-based (Malonate) UV absorber; may include.
  • the maximum absorbance in the UVA region may be 0.45 or more.
  • the ultraviolet absorber may include a compound represented by Chemical Formula 2 below.
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen; halogen element; phenyl group; Or a C1 ⁇ C10 linear, branched or alicyclic alkyl group; Y is a divalent aromatic or heteroorganic group having 6 to 40 carbon atoms, and a hydrogen atom in the organic group included in Formula 2 is a halogen element; hydrocarbon group; a halogen-substituted hydrocarbon group; Alternatively, it may be substituted by a halogen element, an oxygen or nitrogen substituted hydrocarbon group.
  • the UV absorber may include Tetraethyl 2,2'-(1,4-phenylenedimethylidyne)bismalonate.
  • the light-transmitting substrate may include 1 to 10 parts by weight of the ultraviolet absorber based on 100 parts by weight of the polymer resin.
  • the polymer resin may include at least one of an imide repeating unit and an amide repeating unit.
  • the optical film may have a light transmittance of 88.5% or more after a light fastness test, and a haze of 1.0 or less after a light fastness test.
  • Another embodiment of the present invention the display panel; and the optical film disposed on the display panel.
  • a display device including an optical film having excellent light resistance in the UVA region (315 to 400 nm) can be provided.
  • FIG. 1 is a cross-sectional view of an optical film 100 according to an embodiment of the present invention.
  • FIG 2 is a cross-sectional view of the optical film 101 further including a primer layer 120.
  • FIG 3 is a cross-sectional view of the optical film 102 further including a hard coat layer 130.
  • FIG 4 is a cross-sectional view of a portion of a display device 200 according to another embodiment of the present invention.
  • FIG. 5 is an enlarged cross-sectional view of part “P” in FIG. 4 .
  • spatially relative terms “below, beneath”, “lower”, “above”, “upper”, etc. refer to one element or component as shown in the drawing. It can be used to easily describe the correlation between and other elements or components. Spatially relative terms should be understood as encompassing different orientations of elements in use or operation in addition to the orientations shown in the figures. For example, when flipping elements shown in the figures, elements described as “below” or “beneath” other elements may be placed “above” the other elements. Thus, the exemplary term “below” may include directions of both below and above. Likewise, the exemplary terms “above” or “above” can include both directions of up and down.
  • first, second, etc. are used to describe various components, these components are not limited by these terms. These terms are only used to distinguish one component from another. Therefore, the first component mentioned below may also be the second component within the technical spirit of the present invention.
  • At least one should be understood to include all possible combinations from one or more related items.
  • at least one of the first item, the second item, and the third item means not only the first item, the second item, or the third item, but also two of the first item, the second item, and the third item. It may mean a combination of all items that can be presented from one or more.
  • An embodiment of the present invention provides an optical film 100 . 1 is a cross-sectional view of an optical film 100 according to an embodiment of the present invention.
  • an optical film 100 includes a light-transmitting substrate 110 .
  • the optical film 100 has a yellowness of 5.0 or less before the light fastness test, and a color change ( ⁇ E* ab ) of 3.5 or less after the light fastness test.
  • Yellowness before the light fastness test can be measured using a spectrophotometer.
  • yellowness of the optical film may be measured using a spectrophotometer according to standard ASTM E313, for example, a spectrophotometer manufactured by KONICA MINOLTA (model name: CM-3700D).
  • the light resistance test is performed using a Xenon lamp, for example, ATLAS' SUNTEST XXL + device, Daylight filter, 12kW 0.8W/m2 @420nm, 30 o C/30RH% Chamber, 55 o C Black Performed for 300 hours under panel conditions, and the color change ( ⁇ E* ab ) is calculated by the following formula 1.
  • a Xenon lamp for example, ATLAS' SUNTEST XXL + device, Daylight filter, 12kW 0.8W/m2 @420nm, 30 o C/30RH% Chamber, 55 o C Black Performed for 300 hours under panel conditions, and the color change ( ⁇ E* ab ) is calculated by the following formula 1.
  • Equation 1 ⁇ L* is the L* difference before and after the light fastness test, ⁇ a* is the a* difference before and after the light fastness test, and ⁇ b* is the b* difference before and after the light fastness test.
  • L*, a*, and b* of the optical film 100 before the light fastness test may be measured using a color difference meter.
  • the optical film 100 was measured using a color difference meter, for example, KONICA MINOLTA's color difference meter (model name: CM-3600A), using a D65 light source, viewing angle of 2 °, and L*, a*, b* in transmission mode. is measured three times, respectively, and average values of L*, a*, and b* measured three times are calculated to be L*, a*, and b* of the optical film 100.
  • L*, a*, b* after the light fastness test can be measured by the same method as the L*, a*, b* measurement method before the light fastness test.
  • the optical film 100 When the yellowness of the optical film 100 is 5.0 or less before the light fastness test and the color change ( ⁇ E* ab ) after the light fastness test is 3.5 or less, the optical film 100 has excellent visibility and light fastness, particularly UV light fastness, and thus a display device.
  • the optical film 100 having excellent UV light resistance shows little color change even when exposed to ultraviolet (UV) wavelength light, the lifespan of the cover window of the display device may be increased.
  • the light transmissive substrate 110 may include a polymer resin and an ultraviolet absorber.
  • the polymer resin has excellent bending properties and impact resistance, and is suitable for use as a cover window of a flexible display device.
  • the polymer resin may be included in various shapes and forms, such as a solid powder form in a film, a form dissolved in a solution, and a matrix form solidified after dissolving in a solution. And all can be seen as the same as the polymer resin of the present invention.
  • the polymer resin in the film may be present in the form of a matrix in which a polymer resin solution is applied and then dried and solidified.
  • the polymer resin according to an embodiment of the present invention may be any light-transmitting resin.
  • cycloolefin-based derivatives cellulose-based polymers, ethylene-vinyl acetate-based copolymers, polyester-based polymers, polystyrene-based polymers, polyamide-based polymers, polyamide-imide-based polymers, polyetherimide-based polymers, polyacrylic-based polymers, Polyimide polymer, polyethersulfone polymer, polysulfone polymer, polyethylene polymer, polypropylene polymer, polymethylpentene polymer, polyvinyl chloride polymer, polyvinylidene chloride polymer, polyvinyl alcohol polymer, Polyvinyl acetal polymer, polyether ketone polymer, polyether ether ketone polymer, polymethyl methacrylate polymer, polyethylene terephthalate polymer, polybutylene terephthalate polymer, polyethylene naphthalate polymer, polycarbonate poly
  • the polymer resin according to an embodiment of the present invention may include at least one of a polyimide-based polymer, a polyamide-based polymer, and a polyamide-imide-based polymer.
  • polyimide-based polymers, polyamide-based polymers, and polyamide-imide-based polymers have excellent optical properties such as light transmittance and haze as well as physical properties such as thermal properties, hardness, abrasion resistance, and flexibility, and thus cover windows of display devices.
  • at least one of a polyimide-based polymer, a polyamide-based polymer, and a polyamide-imide-based polymer is included as the light-transmitting substrate 110 of the optical film 100 used as the .
  • the present invention is not limited thereto.
  • the light-transmitting substrate 110 may include a polymer resin including at least one of an imide repeating unit and an amide repeating unit.
  • the imide repeating unit refers to a repeating unit generated by reacting a diamine-based compound and a dianhydride-based compound and imidating
  • the amide repeating unit is a repeating unit generated by reacting a diamine-based compound and a dicarbonyl-based compound.
  • the light-transmitting substrate 110 may be any one of a polyimide-based substrate, a polyamide-based substrate, and a polyamide-imide-based substrate.
  • one embodiment of the present invention is not limited thereto, and any substrate having light transmission may be the light transmission substrate 110 according to one embodiment of the present invention.
  • the light-transmitting substrate 110 may include a UV absorber.
  • the ultraviolet absorber may include a malonate compound. That is, the light-transmitting substrate 110 according to an embodiment of the present invention may include a malonate-based UV absorber.
  • the malonate-based compound of the present invention is a compound containing a malonate substituent, and the malonate substituent has a structure represented by Formula 1 below. That is, the malonate-based compound refers to a compound having a structure represented by Formula 1 below.
  • R 1 and R 2 are each independently hydrogen; halogen element; phenyl group; or a C1 ⁇ C10 linear, branched or alicyclic alkyl group;
  • the malonate compound minimizes the increase in the initial yellowness of the optical film 100 and has an excellent effect of improving the light resistance of the optical film 100, so when included as an ultraviolet absorber, the optical film 100 Color change upon exposure to light can be minimized.
  • the maximum absorbance in the UVA region when the UV absorber is dissolved in DAMc at a concentration of 0.001 wt%, the maximum absorbance in the UVA region (315 to 400 nm) may be 0.45 or more.
  • the maximum absorbance in the UVA region (315 to 400 nm) of the UV absorber can be measured using a UV spectrophotometer. Specifically, the UV absorber is dissolved in DMAc (N, N-Dimethylacetamide) at a concentration of 0.001 wt%, and an ultraviolet spectrometer, for example, Shimadzu's ultraviolet spectrometer (model name: UV-1800) is used to measure the UVA region (315-400 nm). ), and the maximum value of the absorbance measured in the UVA region (315 to 400 nm) is the maximum absorbance in the UVA region (315 to 400 nm) of the UV absorber.
  • DMAc N, N-Dimethylacetamide
  • UV-1800 Shimadzu's ultraviolet spectrometer
  • the maximum absorbance in the UVA region (315 to 400 nm) of the ultraviolet absorber is 0.45 or more, the initial yellowness of the optical film 100 is minimized and the light resistance is improved so that the initial yellowness is 5.0 or less, and in addition, the light resistance test is performed. After that, the color change ( ⁇ E* ab ) may be 3.5 or less.
  • the ultraviolet absorber may include at least two or more structures represented by Formula 1 above. That is, the UV absorber may include at least two or more malonate substituents.
  • the absorbance of the UV absorber increases, and the maximum absorbance in the UVA region (315 to 400 nm) may be 0.45 or more.
  • the ultraviolet absorber may include a compound represented by Chemical Formula 2 below.
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen; halogen element; phenyl group; Or a C1 ⁇ C10 linear, branched or alicyclic alkyl group; Y is a divalent aromatic organic group or heterocyclic organic group having 6 to 40 carbon atoms, and a hydrogen atom in the organic group included in Formula 2 is a halogen element; hydrocarbon group; a halogen-substituted hydrocarbon group; Alternatively, it may be substituted by a halogen element, an oxygen or nitrogen substituted hydrocarbon group.
  • Y may include, for example, a structure represented by any one of the structural formulas represented by Formula 3 below.
  • the binding position of Z to each ring is not particularly limited, the binding position of Z may be, for example, an ortho or para position to each ring.
  • the hydrogen atom in the structural formula of Formula 3 is a halogen element; hydrocarbon group; a halogen-substituted hydrocarbon group; Alternatively, it may be substituted by a halogen element, an oxygen or nitrogen substituted hydrocarbon group.
  • each structural formula may be a heterocyclic organic group in which at least one carbon in the structural formula is substituted with an element such as nitrogen (N), sulfur (S), or oxygen (O).
  • the UV absorber may include Tetraethyl 2,2'-(1,4-phenylenedimethylidyne)bismalonate.
  • the light-transmitting substrate may include 1 to 10 parts by weight of the ultraviolet absorber based on 100 parts by weight of the polymer resin.
  • the effect of improving light fastness is insignificant, so that the color change ( ⁇ E* ab ) exceeds 3.5 after the light fastness test.
  • the initial yellowness before the light resistance test exceeds 5.0, and dissolution problems may occur during long-term storage.
  • the optical film 101 may further include a primer layer 120 on the light-transmitting substrate 110 .
  • 2 is a cross-sectional view of the optical film 101 further including a primer layer 120.
  • the optical film 101 further including the primer layer 120 may be stacked with the light transmissive substrate 110 and the primer layer 120 in that order.
  • the primer layer 120 of the present invention may include a curable resin.
  • the curable resin may include at least one selected from acrylic resins, urethane-based resins, and siloxane-based resins.
  • the primer layer 120 of the present invention includes a UV absorber; and pigments; At least one of them may be further included.
  • the primer layer 120 may include the same malonate ultraviolet absorber as the light-transmitting substrate 110, or other ultraviolet rays other than the malonate ultraviolet absorber. An absorbent may also be included.
  • the present invention is not limited thereto.
  • the pigment may include a copper-phthalocyanine (Cu-phthalocyanine)-based compound.
  • Cu-phthalocyanine copper-phthalocyanine
  • the present invention is not limited thereto, and other pigments may be used in addition to the copper-phthalocyanine-based compound.
  • the primer layer 120 may have a thickness of 0.1 to 10 ⁇ m. Preferably, the primer layer 120 may have a thickness of 1 to 5 ⁇ m. However, the present invention is not limited thereto.
  • the optical film 102 may further include a hard coating layer 130 on the light transmissive substrate 110 .
  • 3 is a cross-sectional view of the optical film 102 further including a hard coat layer 130.
  • the optical film 102 further including the hard coating layer 130 may be laminated in the order of the light-transmitting substrate 110 and the hard coating layer 130 .
  • the hard coating layer 130 is a layer that protects the adherend to which the optical film 102 and the optical film 101 are attached from the external environment.
  • the hard coating layer 130 is a siloxane-based resin. , It may include at least one of an acrylic resin, a urethane-based resin, and an epoxy-based resin.
  • the hard coating layer 130 may have a thickness of 1 to 10 ⁇ m, preferably, a thickness of 1 to 5 ⁇ m.
  • the present invention is not limited thereto.
  • the optical film may include both the primer layer 120 and the hard coating layer 130 on top of the light transmissive substrate 110 (the drawing is omitted).
  • the optical film further including the primer layer 120 and the hard coat layer 130 may be stacked in the order of the light transmissive substrate 110 , the primer layer 120 , and the hard coat layer 130 .
  • the optical film 100 may have light transmissive and flexible characteristics.
  • an optical film according to an embodiment of the present invention may have bending characteristics, folding characteristics, and rollable characteristics.
  • the optical film 100 may have a light transmittance of 88.5% or more before the light fastness test, and a haze of 0.4 or less before the light fastness test.
  • the light transmittance before the light fastness test was measured using a spectrophotometer according to the standard ASTM E313, for example, a spectrophotometer manufactured by KONICA MINOLTA (model name: CM-3700D), and the average light transmittance in the wavelength range of 360 to 740 nm. can measure
  • the haze before the light fastness test was measured by cutting the manufactured optical film 100 into 50 mm x 50 mm and using a haze meter according to the standard ASTM D1003, for example, a haze meter manufactured by MURAKAMI (model name: HM-150), It is measured three times, and the average value of the three measured values can be used as the haze value.
  • the optical film 100 may have a light transmittance of 88.5% or more after the light fastness test, and a haze of 1.0 or less after the light fastness test.
  • the light transmittance and haze after the light fastness test may be measured by the same method as the light transmittance and haze measurement method before the light fastness test.
  • the optical film 100 according to an embodiment of the present invention may be applied to a display device to protect a display surface of a display panel.
  • the optical film 100 according to an embodiment of the present invention may have a thickness sufficient to protect the display panel.
  • the optical film 100 may have a thickness of 20 ⁇ m to 120 ⁇ m.
  • the present invention is not limited thereto.
  • FIGS. 4 and 5 a display device using the optical film 100 according to an embodiment of the present invention will be described with reference to FIGS. 4 and 5 .
  • FIG. 4 is a cross-sectional view of a part of a display device 200 according to another embodiment of the present invention
  • FIG. 5 is an enlarged cross-sectional view of part “P” in FIG. 4 .
  • a display device 200 includes a display panel 501 and an optical film 100 on the display panel 501 .
  • the optical film 100 of FIG. 4 may be the optical film 101 of FIG. 2 or the optical film 102 of FIG. 3 .
  • the display panel 501 includes a substrate 510 , a thin film transistor (TFT) on the substrate 510 , and an organic light emitting device 570 connected to the thin film transistor (TFT).
  • the organic light emitting device 570 includes a first electrode 571 , an organic light emitting layer 572 on the first electrode 571 , and a second electrode 573 on the organic light emitting layer 572 .
  • the display device 200 illustrated in FIGS. 4 and 5 is an organic light emitting display device.
  • Substrate 510 may be made of glass or plastic. Specifically, the substrate 510 may be made of plastic such as polyimide-based resin. Although not shown, a buffer layer may be disposed on the substrate 510 .
  • a thin film transistor is disposed on the substrate 510 .
  • the thin film transistor (TFT) includes a semiconductor layer 520, a gate electrode 530 insulated from the semiconductor layer 520 and overlapping at least a portion of the semiconductor layer 520, a source electrode 541 connected to the semiconductor layer 520, and A drain electrode 542 spaced apart from the source electrode 541 and connected to the semiconductor layer 520 is included.
  • a gate insulating layer 535 is disposed between the gate electrode 530 and the semiconductor layer 520 .
  • An interlayer insulating layer 551 may be disposed on the gate electrode 530 , and a source electrode 541 and a drain electrode 542 may be disposed on the interlayer insulating layer 551 .
  • the planarization layer 552 is disposed on the thin film transistor TFT to planarize an upper portion of the thin film transistor TFT.
  • the first electrode 571 is disposed on the planarization layer 552 .
  • the first electrode 571 is connected to the thin film transistor TFT through a contact hole provided in the planarization layer 552 .
  • the bank layer 580 is disposed on a portion of the first electrode 571 and the planarization layer 552 to define a pixel area or light emitting area. For example, since the bank layer 580 is arranged in a matrix structure in a boundary area between a plurality of pixels, a pixel area may be defined by the bank layer 580 .
  • An organic emission layer 572 is disposed on the first electrode 571 .
  • the organic emission layer 572 may also be disposed on the bank layer 580 .
  • the organic light emitting layer 572 may include one light emitting layer or may include two or more light emitting layers stacked on top and bottom. Light having one of red, green, and blue colors may be emitted from the organic emission layer 572, and white light may also be emitted.
  • the second electrode 573 is disposed on the organic light emitting layer 572 .
  • the organic light emitting element 570 may be formed by stacking the first electrode 571 , the organic light emitting layer 572 , and the second electrode 573 .
  • each pixel may include a color filter for filtering white light emitted from the organic light emitting layer 572 for each wavelength.
  • a color filter is formed on the light movement path.
  • a thin film encapsulation layer 590 may be disposed on the second electrode 573 .
  • the thin film encapsulation layer 590 may include at least one organic layer and at least one inorganic layer, and at least one organic layer and at least one inorganic layer may be alternately disposed.
  • the optical film 100 is disposed on the display panel 501 having the above-described laminated structure.
  • BPDA bisphenyl-tetracarboxylic acid dianhydride
  • 6FDA 4,4'-(Hexafluoroisopropylidene) diphthalic anhydride
  • TPC Tephthaloyl chloride
  • the polyimide-based polymer solid content prepared here is a polyamide-imide polymer solid content.
  • the obtained polyimide-based resin solution was applied to a casting substrate and cast, and dried with hot air at 130 ° C for 30 minutes to prepare a film, and then the prepared film was peeled from the casting substrate and fixed to a frame with pins.
  • the type of casting substrate there is no particular limitation on the type of casting substrate.
  • a glass substrate, a stainless (SUS) substrate, a Teflon substrate, or the like may be used as the casting substrate.
  • SUS stainless
  • Teflon substrate or the like
  • an organic substrate was used as a casting substrate. the same below
  • the frame on which the film was fixed was placed in a vacuum oven, heated slowly from 100 ° C to 280 ° C for 2 hours, and then slowly cooled and separated from the frame to obtain a polyimide-based optical film. Again, the polyimide-based optical film was heat treated at 250 ° C. for 5 minutes. As a result, a polyimide-based optical film having a thickness of 50 ⁇ m was completed.
  • Example 2 In the same manner as in Example 1, the optical film of Example 2 was prepared by varying the content of the ultraviolet absorber.
  • the content of the specific UV absorber of Example 2 is shown in Table 1 below.
  • Optical films of Comparative Examples 1 to 4 were prepared in the same manner as in Example 1, by changing the type and content of the UV absorber.
  • the maximum absorbance of the UVA region (315 to 400 nm) of the UV absorber was measured by dissolving each UV absorber in DMAc at 0.001 wt%, and then measuring the UVA region (315-400 nm) using Shimadzu's UV spectrophotometer UV-1800. The absorbance was measured, and the maximum value among the absorbances measured in the UVA range (315 to 400 nm) was set as the maximum absorbance in the UVA range (315 to 400 nm) of the UV absorber.
  • the light fastness test is performed using a Xenon lamp, specifically, ATLAS' SUNTEST XXL+ device, Daylight filter, 12kW 0.8W/m2 @420nm, 30 o C/30RH% Chamber, 55 o C Black Panel conditions was carried out for 300 hours.
  • a Xenon lamp specifically, ATLAS' SUNTEST XXL+ device, Daylight filter, 12kW 0.8W/m2 @420nm, 30 o C/30RH% Chamber, 55 o C Black Panel conditions was carried out for 300 hours.
  • Yellowness was measured using a spectrophotometer. Specifically, the yellowness of the optical film was measured using a spectrophotometer, for example, a spectrophotometer manufactured by KONICA MINOLTA (model name: CM-3700D) according to standard ASTM E313.
  • a spectrophotometer manufactured by KONICA MINOLTA (model name: CM-3700D) according to standard ASTM E313.
  • Equation 1 ⁇ L* is the L* difference before and after the light fastness test, ⁇ a* is the a* difference before and after the light fastness test, and ⁇ b* is the b* difference before and after the light fastness test.
  • L*, a*, and b* were measured using a color difference meter.
  • the optical film 100 was measured using a color difference meter, for example, KONICA MINOLTA's color difference meter (model name: CM-3600A), using a D65 light source, viewing angle of 2 °, and L*, a*, b* in transmission mode. is measured three times, respectively, and average values of L*, a*, and b* measured three times are calculated to be L*, a*, and b* of the optical film 100.
  • L*, a*, and b* were measured by the same method as the L*, a*, b* measurement method before the light fastness test.
  • optical films prepared according to Examples and Comparative Examples were measured using a spectrophotometer according to the standard ASTM E313, for example, a spectrophotometer manufactured by KONICA MINOLTA (model name: CM-3700D) in the wavelength range of 360 to 740 nm. The average light transmittance at was measured.
  • optical films prepared according to Examples and Comparative Examples were cut into 50 mm x 50 mm and measured 5 times using a haze meter according to the standard ASTM D1003, for example, a haze meter manufactured by MURAKAMI (model name: HM-150). It was measured, and the average value of 5 measurements was taken as the haze value of the optical film.
  • Example 1 7.8 95.8 -1.7 5.7 89.5 0.7 3.5
  • Example 2 7.1 95.8 -1.5 5.1 89.6 0.7 2.7
  • Comparative Example 1 9.0 95.7 -1.9 6.5 89.2 0.8 4.6
  • Comparative Example 2 8.8 95.7 -1.9 6.4 89.4 0.8 3.9
  • Comparative Example 3 8.9 95.7 -1.9 6.5 89.3 0.7 3.9
  • Comparative Example 4 9.5 95.6 -2.1 7.0 89.1 1.1 3.9
  • the optical films of Examples 1 and 2 of the present invention all had a yellowness of 5.0 or less before the light fastness test, a yellowness of 7.8 or less after the light fastness test, and a light transmittance of 88.5%. Above, the haze was 1.0 or less, and ⁇ E* ab was 3.5 or less. However, looking at the optical films of Comparative Examples 1 to 4, Comparative Examples 1 to 3 had a ⁇ E* ab of more than 3.5 after the light fastness test, indicating that the optical film It was confirmed that the visibility decreased due to the decrease in color reproducibility and sharpness.
  • Comparative Example 4 had an initial yellowness of more than 5.0 before the light fastness test, haze after the light fastness test of more than 1.0, and a ⁇ E* ab of more than 3.5, showing high initial yellowness of the optical film, color reproducibility of the optical film after the light fastness test, and It was confirmed that the visibility decreased due to the decrease in sharpness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Optical Filters (AREA)

Abstract

본 발명은 광투과성 기재를 포함하고, 내광성 테스트 전 황색도가 5.0 이하이고, 내광성 테스트 후 색상변화(ΔE*ab)가 3.5 이하인, 광학 필름 및 이를 포함하는 표시장치를 제공한다.

Description

광학 필름 및 이를 포함하는 표시장치
본 발명은 광학 필름 및 이를 포함하는 표시장치에 관한 것이다.
최근, 표시장치의 박형화, 경량화, 플렉서블화로 인하여, 커버 윈도우로 유리 대신 고분자 수지를 포함하는 광학 필름을 사용하는 것이 검토되고 있다. 광학 필름이 표시장치의 커버 윈도우로 사용되기 위해서는, 우수한 광학적 특성 및 기계적 특성을 가져야 한다.
한편, 고분자 수지를 포함하는 광학 필름은 초기 황색도가 높거나, 또는 시간이 경과하면서 빛에 노출됨에 따라 광학 필름의 색상 변화가 발생한다는 문제점이 있다.
따라서, 불용성, 내화학성 및 내열성 등과 같은 기계적 특성이 우수하면서 내광성과 같은 광학 특성이 우수한 필름을 개발하는 것이 요구된다.
이에 본 발명의 일 실시예는, 내광성이 우수한 광학 필름을 제공하고자 한다.
또한, 본 발명의 다른 일 실시예는, 내광성이 우수한 광학 필름을 포함하는 표시장치를 제공하고자 한다.
본 발명의 일 실시예는, 광투과성 기재를 포함하고, 내광성 테스트 전 황색도가 5.0 이하이고, 내광성 테스트 후 색상변화(ΔE*ab)가 3.5 이하인, 광학 필름을 제공한다.
상기 내광성 테스트는, 제논 램프(Xenon Lamp)를 사용하여 Daylight 필터, 12kW 0.8W/㎡ @420㎚, 30oC/30RH% Chamber, 55oC Black Panel 조건에서 300시간 실시하고, 상기 색상변화(ΔE*ab)는 하기 식 1로 산출된다.
< 식 1 >
ΔE*ab= [(ΔL*)2 + (Δa*)2 +(Δb*)2]1/2
상기 식 1에서, ΔL*는 내광성 테스트 전후의 L* 차이이고, Δa*는 내광성 테스트 전후의 a* 차이이며, Δb*는 내광성 테스트 전후의 b* 차이이다.
상기 광투과성 기재는, 고분자 수지; 및 말로네이트계(Malonate) 자외선 흡수제;를 포함할 수 있다.
상기 자외선 흡수제는, DAMc에 0.001wt% 농도로 용해시켰을 때, UVA영역(315 내지 400nm)의 최대 흡광도가 0.45 이상일 수 있다.
상기 자외선 흡수제는 하기 화학식 2로 표시되는 화합물을 포함할 수 있다.
< 화학식 2 >
Figure PCTKR2022013958-appb-img-000001
상기 화학식 2에서 R1, R2, R3 및 R4는 각각 독립적으로 수소; 할로겐 원소; 페닐기; 또는 C1~C10의 선형, 분지형 또는 지환형 알킬기;이고, Y는 탄소수 6 내지 40의 2가의 방향족 또는 헤테로 유기기로, 화학식 2에 포함된 유기기 중의 수소 원자는 할로겐 원소; 탄화수소기; 할로겐 치환된 탄화수소기; 또는, 할로겐 원소, 산소 또는 질소 치환된 탄화수소기;에 의해 치환될 수 있다.
상기 자외선 흡수제는 Tetraethyl 2,2'-(1,4-phenylenedimethylidyne)bismalonate를 포함할 수 있다.
상기 광투과성 기재는, 상기 고분자 수지 100 중량부에 대하여 1 내지 10 중량부의 상기 자외선 흡수제를 포함할 수 있다.
상기 고분자 수지는, 이미드 반복 단위 및 아마이드 반복 단위 중 적어도 하나 이상을 포함할 수 있다.
상기 광학 필름은 내광성 테스트 후 광투과도가 88.5% 이상일 수 있고, 내광성 테스트 후 헤이즈가 1.0 이하일 수 있다.
본 발명의 다른 일 실시예는, 표시패널; 및 상기 표시패널 상에 배치된, 상기 광학 필름;을 포함하는, 표시장치를 제공한다.
본 발명의 일 실시예에 따르면, UVA영역(315 내지 400nm)에서 내광성이 우수한 광학 필름을 제공할 수 있다.
본 발명의 다른 일 실시예에 따르면, UVA영역(315 내지 400nm)에서 내광성이 우수한 광학 필름을 포함하는 표시장치를 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 광학 필름(100)의 단면도이다.
도 2는 프라이머층(120)을 더 포함하는 광학 필름(101)의 단면도이다.
도 3은 하드코팅층(130)을 더 포함하는 광학 필름(102)의 단면도이다.
도 4는 본 발명의 다른 일 실시예에 따른 표시장치(200)의 일부에 대한 단면도이다.
도 5는 도 4의 "P" 부분에 대한 확대 단면도이다.
이하에서는 본 발명의 실시예들을 상세하게 설명한다. 다만, 아래에서 설명되는 실시예들은 본 발명의 명확한 이해를 돕기 위한 예시적 목적으로 제시되는 것일 뿐, 본 발명의 범위를 제한하지 않는다.
본 발명의 실시예들을 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로, 본 발명이 도면에 도시된 사항에 한정되는 것은 아니다. 명세서 전체에 걸쳐 동일 구성 요소는 동일 참조 부호로 지칭될 수 있다. 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명은 생략된다.
본 명세서에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이라는 표현이 사용되지 않는 이상, 다른 부분이 추가될 수 있다. 구성 요소가 단수로 표현된 경우, 특별히 명시적인 기재 사항이 없는 한 복수를 포함한다. 또한, 구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.
위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수 있다.
공간적으로 상대적인 용어인 "아래(below, beneath)", "하부 (lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 소자 또는 구성 요소들과 다른 소자 또는 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작 시 소자의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 소자를 뒤집을 경우, 다른 소자의 "아래(below)" 또는 "아래(beneath)"로 기술된 소자는 다른 소자의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 마찬가지로, 예시적인 용어인 "위" 또는 "상"은 위와 아래의 방향을 모두 포함할 수 있다.
시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간적 선후 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.
제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않는다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있다.
"적어도 하나"의 용어는 하나 이상의 관련 항목으로부터 제시 가능한 모든 조합을 포함하는 것으로 이해되어야 한다. 예를 들어, "제1 항목, 제2 항목 및 제3 항목 중 적어도 하나"의 의미는 제1 항목, 제2 항목 또는 제3 항목 각각 뿐만 아니라 제1 항목, 제2 항목 및 제3 항목 중에서 2개 이상으로부터 제시될 수 있는 모든 항목의 조합을 의미할 수 있다.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하고, 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시될 수도 있다.
*35이하에서 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술 용어 및 과학 용어는 다른 언급이 없는 한 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.
또한, 이하 본 명세서 및 청구 범위에 사용된 용어나 단어를 해석함에 있어서는, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 반드시 통상적이거나 사전적인 의미로만 한정해서 해석할 것이 아니며, 본 명세서에서 기재하는 바에 따라 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석하여야 한다.
본 발명의 일 실시예는 광학 필름(100)을 제공한다. 도 1은 본 발명의 일 실시예에 따른 광학 필름(100)의 단면도이다.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 광학 필름(100)은 광투과성 기재(110)를 포함한다.
본 발명의 일 실시예에 따른 광학 필름(100)은 내광성 테스트 전 황색도가 5.0 이하이고, 내광성 테스트 후 색상변화(ΔE*ab)가 3.5 이하이다.
내광성 테스트 전 황색도는, 분광 광도계(Spectrophotometer) 장비를 이용하여 측정할 수 있다. 구체적으로, 표준규격 ASTM E313에 따라 분광 광도계, 예를 들어 KONICA MINOLTA社의 분광 광도계(모델명: CM-3700D) 장비를 이용하여 광학 필름의 황색도를 측정할 수 있다.
상기 내광성 테스트는, 제논 램프(Xenon Lamp), 예를 들어, ATLAS社의 SUNTEST XXL+기기를 사용하여, Daylight 필터, 12kW 0.8W/㎡ @420㎚, 30oC/30RH% Chamber, 55oC Black Panel 조건에서 300시간 실시하고, 상기 색상변화(ΔE*ab)는 하기 식 1로 산출된다.
< 식 1 >
ΔE*ab = [(ΔL*)2 + (Δa*)2 + (Δb*)2]1/2
상기 식 1에서, ΔL*는 내광성 테스트 전후의 L* 차이이고, Δa*는 내광성 테스트 전후의 a* 차이이며, Δb*는 내광성 테스트 전후의 b* 차이이다.
광학 필름(100)의 내광성 테스트 전의 L*, a*, b*는 색차계 장비를 이용하여 측정할 수 있다. 구체적으로, 광학 필름(100)을 색차계, 예를 들어 KONICA MINOLTA社의 색차계 (모델명: CM-3600A) 장비를 이용하여 D65 광원, 시야각 2°, 투과모드로 L*, a*, b*를 각각 3회 측정하고, 3회 측정한 L*, a*, b* 각각의 평균 값을 계산하여 광학 필름(100)의 L*, a*, b*로 한다. 내광성 테스트 후의 L*, a*, b*은 내광성 테스트를 실시한 다음 상기 내광성 테스트 전의 L*, a*, b* 측정방법과 동일한 방법으로 측정할 수 있다.
광학 필름(100)의 내광성 테스트 전 황색도가 5.0 이하이고, 내광성 테스트 후 색상변화(ΔE*ab)가 3.5 이하인 경우, 광학 필름(100)의 시인성 및 내광성, 특히 UV 내광성이 우수하여, 표시 장치의 커버 윈도우로 사용하기 적합하다. 광학 필름(100)의 광투과성 기재(110)가 포함하는 고분자 수지는 다량의 방향족 고리를 가지고 있기 때문에 오랜 시간 자외선(UV) 파장의 빛에 노출되는 경우, 광학 필름(100)의 색 변화가 발생한다. 따라서, 시간이 경과함에 따라 광학 필름(100)의 색 재현성 및 선명도가 감소하여 시인성이 감소한다. 반면, UV 내광성이 우수한 광학 필름(100)은 자외선(UV) 파장의 빛에 노출되더라도, 색 변화가 적기 때문에 표시 장치의 커버 윈도우의 수명이 증가될 수 있다.
본 발명의 일 실시예의 광투과성 기재(110)는 고분자 수지 및 자외선 흡수제를 포함할 수 있다.
고분자 수지는 굴곡 특성 및 내충격성 등이 우수하여, 플렉서블 표시장치의 커버 윈도우로 사용하기 적합하다. 고분자 수지는 필름에 고형분 분말 형태, 용액에 용해되어 있는 형태, 용액에 용해 후 고체화한 매트릭스 형태 등 다양한 모양 및 형태로 포함될 수 있고, 본 발명과 동일한 반복단위를 포함하는 수지이면 모양 및 형태를 불문하고 모두 본 발명의 고분자 수지와 동일한 것으로 볼 수 있다. 일반적으로 필름 내에서 고분자 수지는 고분자 수지 용액을 도포 후 건조하여 고체화한 매트릭스 형태로 존재할 수 있다.
본 발명의 일 실시예에 따른 고분자 수지는 광투과성 수지면 어느 것이든 가능하다. 예를 들어, 시클로올레핀계 유도체, 셀룰로오스계 고분자, 에틸렌아세트산비닐계 공중합체, 폴리에스테르계 고분자, 폴리스티렌계 고분자, 폴리아마이드계 고분자, 폴리아마이드이미드계 고분자, 폴리에테르이미드계 고분자, 폴리아크릴계 고분자, 폴리이미드계 고분자, 폴리에테르술폰계 고분자, 폴리술폰계 고분자, 폴리에틸렌계 고분자, 폴리프로필렌계 고분자, 폴리메틸펜텐계 고분자, 폴리염화비닐계 고분자, 폴리염화비닐리덴계 고분자, 폴리비닐알콜계 고분자, 폴리비닐아세탈계 고분자, 폴리에테르케톤계 고분자, 폴리에테르에테르케톤계 고분자, 폴리메틸메타아크릴레이트계 고분자, 폴리에틸렌테레프탈레이트계 고분자, 폴리부틸렌테레프탈레이트계 고분자, 폴리에틸렌나프탈레이트계 고분자, 폴리카보네이트계 고분자, 폴리우레탄계 고분자 및 에폭시계 고분자 중 선택된 적어도 하나 이상을 포함할 수 있다. 바람직하게, 본 발명의 일 실시예에 따른 고분자 수지는 폴리이미드계 고분자, 폴리아마이드계 고분자 및 폴리아마이드-이미드계 고분자 중 적어도 하나를 포함할 수 있다. 특히 폴리이미드계 고분자, 폴리아마이드계 고분자 및 폴리아마이드-이미드계 고분자는 열적 특성, 경도, 내마모성, 굴곡성 등의 물리적 특성뿐만 아니라, 광투과율, 헤이즈와 같은 광학적 특성 역시 우수하여, 표시장치의 커버 윈도우로 사용되는 광학 필름(100)의 광투과성 기재(110)로 폴리이미드계 고분자, 폴리아마이드계 고분자 및 폴리아마이드-이미드계 고분자 중 적어도 하나를 포함되는 것이 바람직하다. 다만, 본 발명이 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따르면, 광투과성 기재(110)는 이미드 반복 단위 및 아마이드 반복 단위 중 적어도 하나 이상을 포함하는 고분자 수지를 포함할 수 있다. 본 발명에서, 이미드 반복 단위는 디아민계 화합물과 디안하이드라이드계 화합물이 반응하고, 이미드화 하여 생성되는 반복 단위를 말하고, 아마이드 반복 단위는 디아민계 화합물과 디카르보닐계 화합물이 반응하여 생성되는 반복 단위를 말한다. 광투과성 기재(110)는 폴리이미드계 기재, 폴리아마이드계 기재 및 폴리아마이드-이미드계 기재 중 어느 하나일 수 있다. 그러나, 본 발명의 일 실시예가 이에 한정되는 것은 아니며, 광투과성을 갖는 기재라면 본 발명의 일 실시예에 따른 광투과성 기재(110)가 될 수 있다.
본 발명의 일 실시예에 따르면, 광투과성 기재(110)는 자외선 흡수제를 포함할 수 있다. 상기 자외선 흡수제는 말로네이트계(Malonate) 화합물을 포함할 수 있다. 즉, 본 발명의 일 실시예에 따른 광투과성 기재(110)는 말로네이트계 자외선 흡수제을 포함할 수 있다.
본 발명의 말로네이트계 화합물은 말로네이트 치환기를 포함하는 화합물로, 말로네이트 치환기는 하기 화학식 1로 표현되는 구조이다. 즉, 말로네이트계 화합물은 하기 화학식 1로 표현되는 구조를 포함하는 화합물을 말한다.
< 화학식 1 >
Figure PCTKR2022013958-appb-img-000002
상기 화학식 1에서 R1 및 R2는 각각 독립적으로 수소; 할로겐 원소; 페닐기; 또는 C1~C10의 선형, 분지형 또는 지환형 알킬기;이다.
말로네이트계(Malonate) 화합물은 광학 필름(100)의 초기 황색도가 증가하는 것을 최소화하고, 광학 필름(100)의 내광성 개선 효과가 우수하여, 자외선 흡수제로 포함하는 경우, 광학 필름(100)이 빛에 노출 시의 색 변화를 최소화할 수 있다.
본 발명의 일 실시예에 따르면, 자외선 흡수제는, DAMc에 0.001wt% 농도로 용해시켰을 때, UVA영역(315 내지 400nm)의 최대 흡광도가 0.45 이상일 수 있다.
자외선 흡수제의 UVA영역(315 내지 400nm)의 최대 흡광도는, 자외선분광기(UV Spectrophotometer)를 이용하여 측정할 수 있다. 구체적으로, 자외선 흡수제를 DMAc(N,N-Dimethylacetamide)에 0.001wt%의 농도로 녹여서 자외선분광기, 예를 들어 Shimadzu社의 자외선분광기(모델명: UV-1800) 장비를 이용하여 UVA영역(315-400nm)에서의 흡광도를 측정하고, 상기 UVA영역(315-400nm)에서 측정한 흡광도 중 최대값이 자외선 흡수제의 UVA영역(315 내지 400nm)의 최대 흡광도다.
자외선 흡수제의 UVA영역(315 내지 400nm)의 최대 흡광도가 0.45 이상인 경우, 광학 필름(100)의 초기 황색도 향상을 최소화하고 내광성을 향상시킴으로써, 초기 황색도가 5.0 이하가 되도록 하고, 또한, 내광성 테스트 후 색상변화(ΔE*ab)가 3.5 이하가 되도록 할 수 있다.
본 발명의 일 실시예에 따르면, 자외선 흡수제는 상기 화학식 1로 표시되는 구조를 적어도 둘 이상 포함할 수 있다. 즉, 자외선 흡수제는 말로네이트 치환기를 적어도 둘 이상 포함할 수 있다.
자외선 흡수제가 둘 이상의 말로네이트 치환기를 포함하는 경우, 자외선 흡수제의 흡광도가 증가하여, UVA영역(315 내지 400nm)의 최대 흡광도가 0.45 이상일 수 있다.
본 발명의 일 실시예에 따르면, 자외선 흡수제는 하기 화학식 2로 표시되는 화합물을 포함할 수 있다.
< 화학식 2 >
Figure PCTKR2022013958-appb-img-000003
*65상기 화학식 2에서 R1, R2, R3 및 R4는 각각 독립적으로 수소; 할로겐 원소; 페닐기; 또는 C1~C10의 선형, 분지형 또는 지환형 알킬기;이고, Y는 탄소수 6 내지 40의 2가의 방향족 유기기 또는 헤테고리 유기기로, 화학식 2에 포함된 유기기 중의 수소 원자는 할로겐 원소; 탄화수소기; 할로겐 치환된 탄화수소기; 또는, 할로겐 원소, 산소 또는 질소 치환된 탄화수소기;에 의해 치환될 수 있다.
상기 화학식 2에서 Y는, 예를 들어, 하기 화학식 3으로 표시되는 구조식들 중 어느 하나로 표현되는 구조를 포함할 수 있다.
< 화학식 3 >
Figure PCTKR2022013958-appb-img-000004
상기 화학식 3의 구조식에서 *은 결합 위치를 나타낸다. 상기 구조식에서 Z는 독립적으로 단일 결합, O, S, SO2, CO 및 (C=C)n 중 어느 하나일 수 있고, n은 1 내지 5인 정수일 수 있다. Z와 각 환에 대한 결합 위치가 특별히 한정되는 것은 아니지만, Z의 결합 위치는, 예를 들어, 각 환에 대해 올쏘 또는 파라 위치일 수 있다. 상기 화학식 3의 구조식 중의 수소 원자는 할로겐 원소; 탄화수소기; 할로겐 치환된 탄화수소기; 또는, 할로겐 원소, 산소 또는 질소 치환된 탄화수소기;에 의해 치환될 수 있다. 상기 화학식 3에서 각각의 구조식은 구조식 내의 탄소 중 하나 이상이 질소(N), 황(S) 또는 산소(O)와 같은 원소로 치환된 헤테로고리 유기기일 수 있다.
본 발명의 일 실시예에 따르면, 자외선 흡수제는 Tetraethyl 2,2'-(1,4-phenylenedimethylidyne)bismalonate를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 광투과성 기재는, 고분자 수지 100 중량부에 대하여 1 내지 10 중량부의 자외선 흡수제를 포함할 수 있다.
고분자 수지 100 중량부에 대하여 1 중량부 미만의 자외선 흡수제를 포함하는 경우, 내광성 개선효과가 미미하여 내광성 테스트 후 색상변화(ΔE*ab)가 3.5를 초과하게 된다. 반대로, 고분자 수지 100 중량부에 대하여 10 중량부 초과의 자외선 흡수제를 포함하는 경우, 내광성 테스트 전 초기 황색도가 5.0를 초과하게 되고, 또한, 장기 보관 시 용출 문제가 발생할 수 있다.
본 발명의 일 실시예에 따르면, 광학 필름(101)은 광투과성 기재(110) 상부에 프라이머층(120)을 더 포함할 수 있다. 도 2는 프라이머층(120)을 더 포함하는 광학 필름(101)의 단면도이다.
도 2에 도시된 바와 같이, 프라이머층(120)을 더 포함하는 광학 필름(101)은 광투과성 기재(110), 프라이머층(120) 순으로 적층될 수 있다.
본 발명의 프라이머층(120)은 경화성 수지;를 포함할 수 있다. 본 발명의 일 실시예에 따르면, 경화성 수지는 아크릴계 수지, 우레탄계 수지 및 실록산계 수지 중 선택된 적어도 하나를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 본 발명의 프라이머층(120)은 자외선 흡수제; 및 안료; 중 적어도 어느 하나를 더 포함할 수 있다.
본 발명의 일 실시예에 따르면, 프라이머층(120)은 광투과성 기재(110)과 동일한 말로네이트계(Malonate) 자외선 흡수제를 포함할 수 있고, 또는, 말로네이트계(Malonate) 자외선 흡수제 외에 다른 자외선 흡수제를 포함할 수도 있다. 본 발명이 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따르면, 안료는, 구리-프탈로사이아닌(Cu-phthalocyanine)계 화합물을 포함할 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니고, 구리-프탈로사이아닌계 화합물 외에 다른 안료가 사용될 수도 있다.
본 발명의 일 실시예에 따르면, 프라이머층(120)은 0.1 내지 10 ㎛의 두께를 가질 수 있다. 바람직하게, 프라이머층(120)은 1 내지 5 ㎛의 두께를 가질 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
본 발명의 일 실시예에 따르면, 광학 필름(102)은 광투과성 기재(110) 상부에 하드코팅층(130)을 더 포함할 수 있다. 도 3은 하드코팅층(130)을 더 포함하는 광학 필름(102)의 단면도이다.
도 3에 도시된 바와 같이, 하드코팅층(130)을 더 포함하는 광학 필름(102)은 광투과성 기재(110), 하드코팅층(130) 순으로 적층될 수 있다.
하드코팅층(130)은 광학 필름(102), 광학 필름(101)이 부착된 피착물을 외부의 환경으로부터 보호하는 층으로, 본 발명의 일 실시예에 따르면, 하드코팅층(130)은 실록산계 수지, 아크릴계 수지, 우레탄계 수지 및 에폭시계 수지 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 하드코팅층(130)은 1 내지 10㎛의 두께를 가질 수 있고, 바람직하게는, 1 내지 5㎛의 두께를 가질 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
*84본 발명의 일 실시예에 따르면, 광학 필름은, 광투과성 기재(110) 상부에 프라이머층(120) 및 하드코팅층(130)을 모두 추가하여 포함할 수 있다(도면은 생략됨). 프라이머층(120) 및 하드코팅층(130)을 더 포함하는 광학 필름은 광투과성 기재(110), 프라이머층(120), 하드코팅층(130) 순으로 적층될 수 있다.
본 발명의 일 실시예에 따르면, 광학 필름(100)은 광투과성 및 플렉서블 특성을 가질 수 있다. 예를 들어, 본 발명의 일 실시예에 따른 광학 필름은 벤딩(bending) 특성, 폴딩(folding) 특성 및 롤러블(rollable) 특성을 가질 수 있다.
본 발명의 일 실시예에 따르면, 광학 필름(100)은 내광성 테스트 전 광투과도가 88.5% 이상일 수 있고, 내광성 테스트 전 헤이즈가 0.4 이하일 수 있다.
내광성 테스트 전 광투과도는, 표준규격 ASTM E313에 따라 분광 광도계(Spectrophotometer), 예를 들어 KONICA MINOLTA社의 분광 광도계 (모델명: CM-3700D) 장비를 이용하여, 360~740nm 파장 범위에서의 평균 광투과도를 측정할 수 있다.
내광성 테스트 전 헤이즈는, 제조된 광학 필름(100)을 50㎜ x 50㎜로 잘라 표준규격 ASTM D1003에 따라 헤이즈 미터, 예를 들어 MURAKAMI社의 헤이즈 미터 (모델명: HM-150) 장비를 이용하여, 3회 측정하고, 3회 측정값의 평균 값을 헤이즈 값으로 할 수 있다.
본 발명의 일 실시예에 따르면, 광학 필름(100)은 내광성 테스트 후 광투과도가 88.5% 이상일 수 있고, 내광성 테스트 후 헤이즈가 1.0 이하일 수 있다.
내광성 테스트 후의 광투과도 및 헤이즈는 내광성 테스트를 실시한 다음 상기 내광성 테스트 전의 광투과도 및 헤이즈 측정방법과 동일한 방법으로 측정할 수 있다.
본 발명의 일 실시예에 따른 광학 필름(100)은 표시장치에 적용되어 표시패널의 표시면을 보호할 수 있다. 본 발명의 일 실시예에 따른 광학 필름(100)은, 표시패널을 보호하기 충분한 정도의 두께를 가질 수 있다. 예를 들어, 광학 필름(100)은 20 내지 120㎛의 두께를 가질 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.
이하, 도 4 및 도 5을 참조하여, 본 발명의 일 실시예에 따른 광학 필름(100)이 사용된 표시장치에 대하여 설명한다.
도 4는 본 발명의 다른 일 실시예에 따른 표시장치(200)의 일부에 대한 단면도이고, 도 5은 도 4의 "P" 부분에 대한 확대 단면도이다.
도 4를 참조하면, 본 발명의 다른 일 실시예에 따른 표시장치(200)는 표시패널(501) 및 표시패널(501) 상의 광학 필름(100)을 포함한다. 도 4의 광학 필름(100)은 도 2의 광학 필름(101) 또는 도 3의 광학 필름(102)일 수 있다.
도 4 및 도 5을 참조하면, 표시패널(501)은 기판(510), 기판(510) 상의 박막 트랜지스터(TFT) 및 박막 트랜지스터(TFT)와 연결된 유기 발광 소자(570)를 포함한다. 유기 발광 소자(570)는 제1 전극(571), 제1 전극(571) 상의 유기 발광층(572) 및 유기 발광층(572) 상의 제2 전극(573)을 포함한다. 도 4 및 도 5에 개시된 표시장치(200)은 유기발광 표시장치이다.
기판(510)은 유리 또는 플라스틱으로 만들어질 수 있다. 구체적으로, 기판(510)은 폴리이미드계 수지와 같은 플라스틱으로 만들어질 수 있다. 도시되지 않았지만, 기판(510) 상에 버퍼층이 배치될 수 있다.
박막 트랜지스터(TFT)는 기판(510) 상에 배치된다. 박막 트랜지스터(TFT)는 반도체층(520), 반도체층(520)과 절연되어 반도체층(520)의 적어도 일부와 중첩하는 게이트 전극(530), 반도체층(520)과 연결된 소스 전극(541) 및 소스 전극(541)과 이격되어 반도체층(520)과 연결된 드레인 전극(542)을 포함한다.
도 5을 참조하면, 게이트 전극(530)과 반도체층(520) 사이에 게이트 절연막(535)이 배치된다. 게이트 전극(530) 상에 층간 절연막(551)이 배치되고, 층간 절연막(551) 상에 소스 전극(541) 및 드레인 전극(542)이 배치될 수 있다.
평탄화막(552)은 박막 트랜지스터(TFT) 상에 배치되어 박막 트랜지스터(TFT)의 상부를 평탄화시킨다.
제1 전극(571)은 평탄화막(552) 상에 배치된다. 제1 전극(571)은 평탄화막(552)에 구비된 콘택홀을 통해 박막 트랜지스터(TFT)와 연결된다.
뱅크층(580)은 제1 전극(571)의 일부 및 평탄화막(552) 상에 배치되어 화소 영역 또는 발광 영역을 정의한다. 예를 들어, 뱅크층(580)이 복수의 화소들 사이의 경계 영역에 매트릭스 구조로 배치됨으로써, 뱅크층(580)에 의해 화소 영역이 정의될 수 있다.
유기 발광층(572)은 제1 전극(571) 상에 배치된다. 유기 발광층(572)은 뱅크층(580) 상에도 배치될 수 있다. 유기 발광층(572)은 하나의 발광층을 포함할 수도 있고, 상하로 적층된 2개 이상의 발광층을 포함할 수도 있다. 이러한 유기 발광층(572)에서 적색, 녹색 및 청색 중 어느 하나의 색을 갖는 광이 방출될 수 있으며, 백색(White) 광이 방출될 수도 있다.
제2 전극(573)은 유기 발광층(572) 상에 배치된다.
제1 전극(571), 유기 발광층(572) 및 제2 전극(573)이 적층되어 유기 발광 소자(570)가 이루어질 수 있다.
도시되지 않았지만, 유기 발광층(572)이 백색(White) 광을 발광하는 경우, 개별 화소는 유기 발광층(572)에서 방출되는 백색(White) 광을 파장 별로 필터링하기 위한 컬러 필터를 포함할 수 있다. 컬러 필터는 광의 이동경로 상에 형성된다.
제2 전극(573) 상에 박막 봉지층(590)이 배치될 수 있다. 박막 봉지층(590)은 적어도 하나의 유기막 및 적어도 하나의 무기막을 포함할 수 있으며, 적어도 하나의 유기막 및 적어도 하나의 무기막이 교호적으로 배치될 수 있다.
이상 설명된 적층 구조를 갖는 표시패널(501) 상에 광학 필름(100)이 배치된다.
이하, 예시적인 실시예 및 비교예를 참조하여 본 발명을 보다 구체적으로 설명한다. 그러나, 이하 설명되는 실시예 및 비교예에 의하여 본 발명이 한정되는 것은 아니다.
< 제조예: 고분자 수지 제조 >
교반기, 질소주입장치, 적하깔때기, 온도조절기 및 냉각기를 부착한 1L 반응기에 질소를 통과시키면서, DMAc(N,N-Dimethylacetamide) 776.655g을 채운 후, 반응기의 온도를 25oC로 맞춘 후, TFDB(Bis(trifluoromethyl)benzidine) 54.439g(0.17mol)을 용해하여 이 용액을 25oC로 유지하였다. 여기에 BPDA(biphenyl-tetracarboxylic acid dianhydride) 15.005g(0.051mol)을 첨가하고 3시간 동안 교반하여 BPDA를 완전히 용해시킨 후, 6FDA(4,4'-(Hexafluoroisopropylidene)diphthalic anhydride) 22.657g(0.051mol)을 첨가하여 완전히 용해시켰다. 반응기 온도를 10oC로 내린 후 TPC(Terephthaloyl chloride) 13.805g(0.068mol)을 첨가한 후 25oC에서 12시간 반응하여 고형분의 농도가 12중량%인 중합체 용액을 얻었다.
얻어진 중합체 용액에 피리딘 17.75g, 아세틱 안하이드라이드 22.92g을 투입하여 30분 교반 후, 다시 70oC에서 1시간 교반하여 상온으로 식히고, 얻어진 중합체 용액에 메탄올 20L를 첨가하여 고형분을 침전시키고, 침전된 고형분을 여과하고 분쇄한 후, 다시 메탄올 2L로 세정한 후, 100oC에서 진공으로 6시간 건조하여 분말 상태의 폴리이미드계 중합체 고형분을 얻었다. 여기서 제조된 폴리이미드계 중합체 고형분은 폴리아마이드-이미드 중합체 고형분이다.
< 실시예 1 >
500mL 반응기에 300 중량부의 DMAc와 폴리아마이드-이미드 중합체 고형분 100 중량부 대비 2중량부의 Tetraethyl 2,2'-(1,4-phenylenedimethylidyne)bismalonate(자외선 흡수제, Cas No.: 6337-43-5, 캠피아社의 Eversorb 320)를 넣고, 실온에서 10분동안 충분히 녹인 후, 반응기의 온도를 5oC로 유지한 채 교반하였다. 이후, 제조예에서 제조된 폴리이미드계 중합체 고형분 분말 43.72 중량부를 투입한 후, 1시간 교반 후 25oC로 승온시켜서 액상의 폴리이미드계 수지 용액을 제조하였다. Tetraethyl 2,2'-(1,4-phenylenedimethylidyne)bismalonate의 최대 흡광도는 0.95(@321nm)이었다.
얻어진 폴리이미드계 수지 용액을 캐스팅 기판에 도포하여 캐스팅하고, 130oC의 열풍으로 30분 건조하여 필름을 제조한 후, 제조된 필름을 캐스팅 기판에서 박리하여 프레임에 핀으로 고정하였다. 이때, 캐스팅 기판의 종류에 특별한 제한이 있는 것은 아니다. 캐스팅 기판으로, 유리 기판, 스테인레스(SUS) 기판, 테프론 기판 등이 사용될 수 있다. 실시예 1에서는 캐스팅 기판으로 유기 기판이 사용되었다. 이하 동일하다.
필름이 고정된 프레임을 진공오븐에 넣고 100oC 부터 280oC까지 2시간 동안 천천히 가열한 후, 서서히 냉각해 프레임으로부터 분리하여 폴리이미드계 광학 필름을 수득하였다. 다시 폴리이미드계 광학 필름을 250oC에서 5분 동안 열처리하였다. 그 결과, 50㎛ 두께의 폴리이미드계 광학 필름이 완성되었다.
< 실시예 2 >
실시예 1과 동일한 방법으로, 자외선 흡수제의 함량을 달리하여, 실시예 2의 광학 필름을 제조하였다.
실시예 2의 구체적 자외선 흡수제의 함량은 하기 표 1과 같다.
< 비교예 1 내지 4 >
실시예 1과 동일한 방법으로, 자외선 흡수제의 종류 및 함량을 달리하여, 비교예 1 내지 4의 광학 필름을 제조하였다.
비교예 1 내지 4의 구체적 자외선 흡수제의 종류 및 함량은 하기 표 1과 같다.
이때, 자외선 흡수제의 UVA영역(315 내지 400nm)의 최대 흡광도는 각 자외선흡수제를 DMAc에 0.001wt%로 녹인 후 Shimadzu社의 자외선분광기(UV spectrophotometer UV-1800)를 이용하여 UVA영역(315-400nm)에서의 흡광도를 측정하고, 상기 UVA영역(315-400nm)에서 측정한 흡광도 중 최대값을 자외선 흡수제의 UVA영역(315 내지 400nm)의 최대 흡광도로 하였다.
구분 자외선 흡수제 자외선 흡수제의 UVA 영역에서 최대 흡광도 폴리이미드계 중합체 고형분 함량
(중량부)
자외선 흡수제의 함량 (중량부) 두께
(㎛)
실시예 1 Tetraethyl 2,2'-(1,4-phenylenedimethylidyne)bismalonate 0.95(@321nm) 100 2 50
실시예 2 Tetraethyl 2,2'-(1,4-phenylenedimethylidyne)bismalonate 0.95(@321nm) 100 4 50
비교예 1 - - 100 0 50
비교예 2 2Phenol,2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl) 0.32(@333nm) 100 3 50
비교예 3 2Phenol,2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl) 0.32(@333nm) 100 4 50
비교예 4 Phenol,2-(5-chloro-2H-benzotriazol-2-yl)-6-(1,1-dimethylethyl)-4-methyl 0.43(@349nm) 100 1 50
<측정예>실시예 1 내지 2 및 비교예 1 내지 4에서 제조된 광학 필름에 대하여 다음과 같은 측정을 실행하였다. 하기 측정예는 내광성 테스트 전 측정하고, 내광성 테스트 후에 다시 한번 측정하였다.
내광성 테스트는, 제논 램프(Xenon Lamp), 구체적으로, ATLAS社의 SUNTEST XXL+기기를 사용하여, Daylight 필터, 12kW 0.8W/㎡ @420㎚, 30oC/30RH% Chamber, 55oC Black Panel 조건에서 300시간 실시하였다.
1) 황색도(Y.I.)
황색도는, 분광 광도계(Spectrophotometer) 장비를 이용하여 측정하였다. 구체적으로, 표준규격 ASTM E313에 따라 분광 광도계, 예를 들어 KONICA MINOLTA社의 분광 광도계(모델명: CM-3700D) 장비를 이용하여 광학 필름의 황색도를 측정하였다.
2) L*, a*, b* 및 색상변화(ΔE*ab)
실시예 및 비교예에 따라 제조된 광학 필름의 색상변화(ΔE*ab)는 하기 식 1로 산출하였다.
< 식 1 >
ΔE*ab = [(ΔL*)2 + (Δa*)2 + (Δb*)2]½
상기 식 1에서, ΔL*는 내광성 테스트 전후의 L* 차이이고, Δa*는 내광성 테스트 전후의 a* 차이이며, Δb*는 내광성 테스트 전후의 b* 차이이다.
광학 필름(100)의 내광성 테스트 전의 L*, a*, b*는 색차계 장비를 이용하여 측정하였다. 구체적으로, 광학 필름(100)을 색차계, 예를 들어 KONICA MINOLTA社의 색차계 (모델명: CM-3600A) 장비를 이용하여 D65 광원, 시야각 2°, 투과모드로 L*, a*, b*를 각각 3회 측정하고, 3회 측정한 L*, a*, b* 각각의 평균 값을 계산하여 광학 필름(100)의 L*, a*, b*로 한다. 내광성 테스트 후의 L*, a*, b*은 내광성 테스트를 실시한 다음 상기 내광성 테스트 전의 L*, a*, b* 측정방법과 동일한 방법으로 측정하였다.
3) 광투과도
실시예 및 비교예에 따라 제조된 광학 필름을 표준규격 ASTM E313에 따라 분광 광도계(Spectrophotometer), 예를 들어 KONICA MINOLTA社의 분광 광도계 (모델명: CM-3700D) 장비를 이용하여, 360~740nm 파장 범위에서의 평균 광투과도를 측정하였다.
4) 헤이즈
실시예 및 비교예에 따라 제조된 광학 필름을 50㎜ x 50㎜로 잘라 표준규격 ASTM D1003에 따라 헤이즈 미터, 예를 들어 MURAKAMI社의 헤이즈 미터 (모델명: HM-150) 장비를 이용하여, 5회 측정하고, 5회 측정값의 평균 값을 그 광학 필름의 헤이즈 값으로 하였다.
측정결과는 다음 표 2 및 3과 같다.
구분 내광성 테스트 전
Y.I. L*(D65) a*(D65) b*(D65) 광투과도 헤이즈
실시예 1 2.9 95.6 -0.7 2.3 89.0 0.2
실시예 2 3.3 95.6 -0.8 2.5 89.0 0.2
비교예 1 2.6 95.6 -0.7 2.1 89.1 0.1
비교예 2 3.3 95.6 -0.9 2.6 88.9 0.2
비교예 3 3.4 95.6 -1.0 2.7 89.0 0.1
비교예 4 5.1 95.5 -1.1 3.2 88.9 0.2
구분 내광성 테스트 후
Y.I. L*(D65) a*(D65) b*(D65) 광투과도 헤이즈 ΔE*ab
실시예 1 7.8 95.8 -1.7 5.7 89.5 0.7 3.5
실시예 2 7.1 95.8 -1.5 5.1 89.6 0.7 2.7
비교예 1 9.0 95.7 -1.9 6.5 89.2 0.8 4.6
비교예 2 8.8 95.7 -1.9 6.4 89.4 0.8 3.9
비교예 3 8.9 95.7 -1.9 6.5 89.3 0.7 3.9
비교예 4 9.5 95.6 -2.1 7.0 89.1 1.1 3.9
상기 표 2 및 3의 측정결과에 개시된 바와 같이, 본 발명의 실시예 1 내지 2의 광학 필름은 모두 내광성 테스트 전의 황색도가 5.0 이하이고, 내광성 테스트 후의 황색도가 7.8 이하, 광투과도가 88.5% 이상, 헤이즈가 1.0 이하이며, 또한, ΔE*ab 가 3.5 이하였다.그러나, 비교예 1 내지 4의 광학 필름을 살펴보면, 비교예 1 내지 3은 내광성 테스트 후의 ΔE*ab 가 3.5 초과로 광학 필름의 색 재현성 및 선명도가 감소하여 시인성이 감소한 것을 확인하였다. 비교예 4는 내광성 테스트 전의 초기 황색도가 5.0 초과이고, 내광성 테스트 후의 헤이즈가 1.0 초과, ΔE*ab 가 3.5 초과로, 광학 필름의 초기 황색도가 높았으며, 내광성 테스트 후의 광학 필름의 색 재현성 및 선명도가 감소하여 시인성이 감소한 것을 확인하였다.
전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (9)

  1. 광투과성 기재를 포함하고,
    내광성 테스트 전 황색도가 5.0 이하이고,
    내광성 테스트 후 색상변화(ΔE*ab)가 3.5 이하인,
    광학 필름:
    상기 내광성 테스트는, 제논 램프(Xenon Lamp)를 사용하여 Daylight 필터, 12kW 0.8W/㎡ @420㎚, 30oC/30RH% Chamber, 55oC Black Panel 조건에서 300시간 실시하고,
    상기 색상변화(ΔE*ab)는 하기 식 1로 산출된다.
    < 식 1 >
    ΔE*ab = [(ΔL*)2 + (Δa*)2 +(Δb*)2]1/2
    상기 식 1에서, ΔL*는 내광성 테스트 전후의 L* 차이이고, Δa*는 내광성 테스트 전후의 a* 차이이며, Δb*는 내광성 테스트 전후의 b* 차이이다.
  2. 제1항에 있어서,
    상기 광투과성 기재는,
    고분자 수지; 및
    말로네이트계(Malonate) 자외선 흡수제;를 포함하는,
    광학 필름.
  3. 제2항에 있어서,
    상기 자외선 흡수제는, DAMc에 0.001wt% 농도로 용해시켰을 때, UVA영역(315 내지 400nm)의 최대 흡광도가 0.45 이상인,
    광학 필름.
  4. 제2항에 있어서,
    상기 자외선 흡수제는 하기 화학식 2로 표시되는 화합물을 포함하는,
    광학 필름:
    < 화학식 2 >
    Figure PCTKR2022013958-appb-img-000005
    상기 화학식 2에서 R1, R2, R3 및 R4는 각각 독립적으로 수소; 할로겐 원소; 페닐기; 또는 C1~C10의 선형, 분지형 또는 지환형 알킬기;이고, Y는 탄소수 6 내지 40의 2가의 방향족 또는 헤테로 유기기로, 화학식 2에 포함된 유기기 중의 수소 원자는 할로겐 원소; 탄화수소기; 할로겐 치환된 탄화수소기; 또는, 할로겐 원소, 산소 또는 질소 치환된 탄화수소기;에 의해 치환될 수 있다.
  5. 제2항에 있어서,
    상기 자외선 흡수제는 Tetraethyl 2,2'-(1,4-phenylenedimethylidyne)bismalonate를 포함하는,
    광학 필름.
  6. 제2항에 있어서,
    상기 광투과성 기재는, 상기 고분자 수지 100 중량부에 대하여 1 내지 10 중량부의 상기 자외선 흡수제를 포함하는,
    광학 필름.
  7. 제2항에 있어서,
    상기 고분자 수지는, 이미드 반복 단위 및 아마이드 반복 단위 중 적어도 하나 이상을 포함하는,
    광학 필름.
  8. 제1항에 있어서,
    내광성 테스트 후 광투과도가 88.5% 이상이고,
    내광성 테스트 후 헤이즈가 1.0 이하인,
    광학 필름.
  9. 표시패널; 및
    상기 표시패널 상에 배치된, 제1항 내지 제8항 중 어느 한 항의 광학 필름;을 포함하는,
    표시장치.
PCT/KR2022/013958 2021-12-16 2022-09-19 광학 필름 및 이를 포함하는 표시장치 WO2023113160A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280089013.3A CN118541420A (zh) 2021-12-16 2022-09-19 光学膜和包括该光学膜的显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0180609 2021-12-16
KR1020210180609A KR20230091472A (ko) 2021-12-16 2021-12-16 광학 필름 및 이를 포함하는 표시장치

Publications (1)

Publication Number Publication Date
WO2023113160A1 true WO2023113160A1 (ko) 2023-06-22

Family

ID=86772859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/013958 WO2023113160A1 (ko) 2021-12-16 2022-09-19 광학 필름 및 이를 포함하는 표시장치

Country Status (4)

Country Link
KR (1) KR20230091472A (ko)
CN (1) CN118541420A (ko)
TW (1) TW202328299A (ko)
WO (1) WO2023113160A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090073054A (ko) * 2006-10-27 2009-07-02 도레이 카부시키가이샤 액정 디스플레이 반사판용 백색 폴리에스테르 필름
JP2009204929A (ja) * 2008-02-28 2009-09-10 Konica Minolta Opto Inc 光学フィルム、その製造方法、偏光板、及び液晶表示装置
US20180163056A1 (en) * 2013-12-11 2018-06-14 Mitsui Chemicals, Inc. Hydrophilic curable compositions
CN110621738A (zh) * 2017-07-10 2019-12-27 宝理塑料株式会社 环状烯烃树脂组合物
JP2020002196A (ja) * 2018-06-26 2020-01-09 大日本印刷株式会社 ポリイミドフィルム、積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090073054A (ko) * 2006-10-27 2009-07-02 도레이 카부시키가이샤 액정 디스플레이 반사판용 백색 폴리에스테르 필름
JP2009204929A (ja) * 2008-02-28 2009-09-10 Konica Minolta Opto Inc 光学フィルム、その製造方法、偏光板、及び液晶表示装置
US20180163056A1 (en) * 2013-12-11 2018-06-14 Mitsui Chemicals, Inc. Hydrophilic curable compositions
CN110621738A (zh) * 2017-07-10 2019-12-27 宝理塑料株式会社 环状烯烃树脂组合物
JP2020002196A (ja) * 2018-06-26 2020-01-09 大日本印刷株式会社 ポリイミドフィルム、積層体、ディスプレイ用表面材、タッチパネル部材、液晶表示装置、及び有機エレクトロルミネッセンス表示装置

Also Published As

Publication number Publication date
CN118541420A (zh) 2024-08-23
KR20230091472A (ko) 2023-06-23
TW202328299A (zh) 2023-07-16

Similar Documents

Publication Publication Date Title
WO2017179877A1 (ko) 무색 투명한 폴리아마이드-이미드 필름 및 이의 제조방법
WO2017116171A1 (ko) 유연기판용 폴리실세스퀴녹산 수지 조성물
WO2017111289A1 (ko) 지환족 모노머가 적용된 폴리아믹산 조성물 및 이를 이용한 투명 폴리이미드 필름
WO2016175344A1 (ko) 폴리이미드 수지 및 이를 이용한 필름
WO2020027375A1 (ko) 색변환 시트 및 이를 포함하는 백라이트 유닛
WO2018117551A1 (ko) 투명 폴리이미드 필름
WO2020159183A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2023113160A1 (ko) 광학 필름 및 이를 포함하는 표시장치
WO2023054866A1 (ko) 다층구조를 가지는 광학 필름 및 이를 포함하는 표시장치
CN112204085A (zh) 基于聚酰亚胺的聚合物膜、使用其的显示装置用基底和光学装置
US20210206921A1 (en) Polyimide-based polymer film, substrate for display device, and optical device using the same
WO2022145891A1 (ko) 우수한 중합도를 갖는 고분자 수지를 포함하는 광학 필름 및 이를 포함하는 표시장치
WO2022010298A1 (ko) 우수한 필러 분산성을 갖는 폴리이미드계 필름 및 이를 포함하는 표시장치
JP7476464B2 (ja) ポリイミド系樹脂フィルムおよびそれを用いたディスプレイ装置用基板、および光学装置
WO2021117961A1 (ko) 우수한 내후성을 갖는 폴리이미드 필름
WO2023106571A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2021194317A1 (ko) 내충격성이 우수한 광학 필름 및 이를 포함하는 표시장치
KR102427759B1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
KR102427760B1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2023120862A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2023229154A1 (ko) 고분자 수지 필름의 제조방법, 고분자 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2023080369A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2023177103A1 (ko) 고분자 수지 조성물, 고분자 수지 필름의 제조방법, 고분자 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2022108063A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 회로 기판, 광학 장치 및 전자 장치
WO2021187882A1 (ko) 내흡습 및 흡수 특성을 갖는 폴리이미드 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907631

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18717066

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE