WO2022010298A1 - 우수한 필러 분산성을 갖는 폴리이미드계 필름 및 이를 포함하는 표시장치 - Google Patents

우수한 필러 분산성을 갖는 폴리이미드계 필름 및 이를 포함하는 표시장치 Download PDF

Info

Publication number
WO2022010298A1
WO2022010298A1 PCT/KR2021/008763 KR2021008763W WO2022010298A1 WO 2022010298 A1 WO2022010298 A1 WO 2022010298A1 KR 2021008763 W KR2021008763 W KR 2021008763W WO 2022010298 A1 WO2022010298 A1 WO 2022010298A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide
filler
density
based film
film
Prior art date
Application number
PCT/KR2021/008763
Other languages
English (en)
French (fr)
Inventor
박효준
정학기
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to JP2023500353A priority Critical patent/JP2023533275A/ja
Priority to US18/002,318 priority patent/US20230257532A1/en
Priority to CN202180048975.XA priority patent/CN115803385A/zh
Priority claimed from KR1020210090033A external-priority patent/KR20220007548A/ko
Publication of WO2022010298A1 publication Critical patent/WO2022010298A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a polyimide-based film having excellent filler dispersibility and a display device including the same.
  • Polyimide (PI)-based resins are excellent in insolubility, chemical resistance, heat resistance, radiation resistance and low temperature characteristics, and are used as automobile materials, aviation materials, spacecraft materials, insulating coatings, insulating films, protective films, and the like.
  • the use of a polyimide-based film instead of glass as a cover window of the display device has been studied.
  • the polyimide-based film needs to have excellent mechanical properties such as hardness, abrasion resistance, and flexibility, and optical properties such as excellent visibility and light transmittance.
  • a filler may be added to the polyimide-based film.
  • An embodiment of the present invention is to provide a polyimide-based film, in which the filler is uniformly dispersed in the polyimide-based resin.
  • One embodiment of the present invention is to provide a polyimide-based film having a true density ratio (Density Ratio, DR) of 1.10 or less to the density of the density gradient tube.
  • DR Density Ratio
  • An embodiment of the present invention is to provide a polyimide-based film having a particle volume concentration (PVC) of 5 to 38%.
  • PVC particle volume concentration
  • An embodiment of the present invention includes a polyimide-based matrix and a filler dispersed in the polyimide-based matrix, and has a density gradient tube density to true density ratio (DR) of 1.10 or less, A polyimide-based film is provided.
  • DR density gradient tube density to true density ratio
  • the true density ratio (DR) to the density gradient tube density is calculated by Equation 1 below.
  • Density Ratio (DR) true density / density gradient tube density
  • the polyimide-based film may have a particle volume concentration (PVC) of 5 to 38%.
  • the particle volume concentration (PVC) is calculated by Equation 2 below.
  • V 1 is the volume of the filler
  • V 2 is the volume of the matrix
  • the filler may include silica (SiO 2 ).
  • At least a portion of the silica (SiO 2 ) may be surface-treated with an organic compound having an alkoxy group.
  • the average particle diameter of the filler may be 5 to 50 nm.
  • the content of the filler may be 5 to 50% by weight based on the total weight of the polyimide-based film.
  • the polyimide-based film may have a Young's Modulus of 5.0 GPa or more.
  • the polyimide-based film may have an elongation of 15% or more.
  • the polyimide-based film may have an indentation hardness of 45 or more.
  • the polyimide-based film may have a yellowness of 3 or less.
  • the polyimide-based film may have a haze of 1% or less.
  • the polyimide-based film may have a light transmittance of 85% or more.
  • Another embodiment of the present invention provides a display device including a display panel and the polyimide-based film disposed on the display panel.
  • a polyimide-based film having excellent filler dispersibility may be manufactured.
  • the filler when the filler is dispersed in the polyimide-based film, the haze of the polyimide-based film may be reduced, but according to an embodiment of the present invention, the filler dispersibility is excellent in the polyimide-based film, and thus 1.10 or less may have a true density ratio (DR) to the density gradient tube density of As a result, the polyimide-based film of the present invention may have excellent optical properties and excellent mechanical properties.
  • DR true density ratio
  • the polyimide-based film according to an embodiment of the present invention has excellent optical and mechanical properties, and when used as a cover window of a display device, can effectively protect the display surface of the display device.
  • FIG. 1 is a schematic view of a polyimide-based film according to an embodiment of the present invention.
  • Figure 2 shows the difference in pores (pores) inside the film according to the true density ratio (DR) to the density gradient tube density of the film.
  • FIG. 4 is a schematic diagram illustrating a dispersed state of a filler in a polyimide-based film according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a portion of a display device according to another exemplary embodiment of the present invention.
  • FIG. 6 is an enlarged cross-sectional view of a portion “P” of FIG. 5 .
  • Spatially relative terms “below, beneath”, “lower”, “above”, “upper”, etc. are one element or component as shown in the drawings. and can be used to easily describe the correlation with other devices or components. Spatially relative terms should be understood as terms including different directions of the device during use or operation in addition to the directions shown in the drawings. For example, when an element shown in the figures is turned over, an element described as “beneath” or “beneath” another element may be placed “above” the other element. Accordingly, the exemplary term “below” may include both directions below and above. Likewise, the exemplary terms “above” or “on” may include both directions above and below.
  • first, second, etc. are used to describe various elements, these elements are not limited by these terms. These terms are only used to distinguish one component from another. Accordingly, the first component mentioned below may be the second component within the spirit of the present invention.
  • At least one should be understood to include all possible combinations from one or more related items.
  • the meaning of “at least one of the first, second, and third items” means each of the first, second, or third items as well as two of the first, second, and third items. It may mean a combination of all items that can be presented from more than one.
  • each feature of the various embodiments of the present invention may be partially or wholly combined or combined with each other, technically various interlocking and driving are possible, and each of the embodiments may be implemented independently of each other or may be implemented together in a related relationship. may be
  • FIG. 1 is a schematic diagram of a polyimide-based film 100 according to an embodiment of the present invention.
  • the polyimide-based film 100 includes a polyimide-based matrix 110 and a filler 120 dispersed in the polyimide-based matrix.
  • the true density to the density-gradient tube density of the film 100 (density ratio, DR) is 1.10 is below.
  • a true density ratio (Density Ratio, DR) to the density gradient tube density of the film 100 is calculated by Equation 1 below.
  • Density Ratio (DR) true density / density gradient tube density
  • True density refers to the solid density, and refers to the density of only the portion completely filled with material excluding the voids between the particles. According to an embodiment of the present invention, the true density is the density of only the portion filled with the polyimide-based matrix 110 and the filler 120 excluding the pores.
  • the true density may have a different value depending on the size of the measurement film 100 specimen during measurement. Therefore, according to an embodiment of the present invention, the true density of the film 100 may be obtained through powder analysis.
  • the film 100 specimen (10 X 10cm 2 ) is finely cut to a size of 1 X 1cm 2 or less and put in a sample holder together with an iron bead (pulverizer).
  • pulverizer iron bead
  • the true density of the pulverized film 100 specimen was measured 7 times using Micromeritics' AccuPyc 1340 Pycnometer equipment (using helium gas). Except for the highest and lowest values among the measured true density values of the film 100 , the average of the remaining true density values is the true density of the film 100 in the present invention.
  • Density-gradient tube Density refers to a density measured using a density-gradient tube.
  • a density gradient tube is also called a density gradient tube as a method of measuring density.
  • the density of the density gradient tube of the film 100 can be obtained using a density gradient tube according to the standard ASTM D1505.
  • the density gradient pipe is a liquid with a large specific gravity in the lower part of the glass cylinder and a small liquid in the upper part to create a density gradient between them. It stops hanging at the same location as the density, and the density gradient tube density of the film 100 specimen can be known through the density gradient of the location.
  • the gradient of the density of the density gradient tube is determined by placing a glass spherical float with known specific gravity, measuring the specific gravity of various concentrations of zinc chloride aqueous solution in advance and fixing it in the density gradient tube, or if the specific gravity of the density gradient tube is mutually This can be known through colorimetric methods using dyes that are soluble in only one of the other liquids.
  • 2 is a graph showing the difference in pores (pores) inside the film 100 according to the true density ratio (DR) to the density gradient tube density of the film 100 .
  • the true density ratio (DR) to the density gradient tube density of the film 100 is the degree of pores (porosity) present in the film 100 , the density gradient tube density and the true density of the film 100 . It is expressed using the ratio of The true density is the density of the matrix 110 and the filler 120 excluding the pores in the film 100, and the density gradient tube density is the density of the film 100 including the pores, the ratio of the true density to the density gradient tube density. It can represent the porosity of the film 100 through.
  • the true density ratio (DR) to the density gradient tube density of the film 100 increases, the voids in the film 100 increase, and conversely, the true density ratio to the density gradient tube density ( DR) decreases as the voids of the film 100 decrease.
  • a gap in the voids of the film 100 may occur depending on the degree of dispersion of the filler 120 .
  • the fillers 120 are agglomerated because the dispersibility of the fillers 120 is small, the space between the fillers and the fillers may not be sufficiently filled by the matrix 110, so that voids may occur.
  • the matrix 110 can be sufficiently filled in the space between the filler and the filler 120 in a state in which the matrix 110 and the filler 120 are sufficiently well mixed, so that the voids are formed. decreases.
  • the voids in the film 100 decrease, the tensile strength, Young's modulus, elongation, indentation hardness and light transmittance of the film 100 increase, and yellowness and haze decrease. Accordingly, mechanical properties such as abrasion resistance and flexibility of the film 100 and optical properties such as light transmittance and visibility are excellent.
  • the true density ratio (DR) to the density gradient tube density of the film 100 is 1.10 or less.
  • the true density ratio (DR) to the density gradient tube density is more than 1.10
  • the filling effect of the filler 120 in the film 100 is reduced, and the effect of improving the hardness and Young's Modulus of the film 100 is decreases.
  • a problem occurs in that the elongation and indentation hardness of the film 100 decrease.
  • the haze of the film 100 is increased.
  • the particle volume concentration (PVC) of the film 100 is 5 to 38%.
  • the particle volume concentration (PVC) of the film 100 is calculated by Equation 2 below.
  • V 1 is the volume of the filler
  • V 2 is the volume of the matrix
  • 3 is a graph showing the difference in voids inside the film 100 according to the particle volume concentration (PVC) of the film 100 .
  • the particle volume concentration (PVC) represents the ratio of the volume occupied by the filler 120 to the total volume of the matrix 110 and the filler 120 in the film 100 as a percentage (%).
  • the particle volume concentration (PVC) of the film 100 increases, the volume occupied by the filler 120 in the film 100 increases, and the average distance between the filler and the filler decreases.
  • the average distance between the filler and the filler is shortened, the matrix 110 is difficult to fill in the space between the filler and the filler, and the voids increase.
  • the volume (V 1 ) of the filler can be calculated by dividing the mass of the filler by the density. Specifically, the volume (V 1 ) of the filler may be calculated by measuring the mass and density of the filler included in the film 100 , respectively. For example, the mass of the filler can be found by measuring the weight of the filler added when the film 100 is manufactured. The density of the filler may be measured using the above-described true density measuring method or density gradient tube density measuring method.
  • the volume (V 2 ) of the matrix can be calculated by dividing the mass of the matrix by the density. Specifically, the volume (V 2 ) of the matrix may be calculated by measuring the mass and density of the matrix included in the film 100 , respectively. For example, the mass of the matrix can be found by weighing the matrix added when the film 100 is manufactured. The density of the matrix may be measured using the above-described true density measurement method or density gradient tube density measurement method.
  • the particle volume concentration (PVC) of the film 100 is 5 to 38%.
  • the particle volume concentration (PVC) is less than 5%, the effect of improving the mechanical properties of the film 100 by the filler 120 is insignificant.
  • the particle volume concentration (PVC) is more than 38%, a discontinuity occurs between the contact surface of the filler 120 and the matrix 110 , thereby reducing elongation and indentation hardness.
  • the polyimide-based matrix 110 has light transmittance.
  • the polyimide-based matrix 110 has a flexible characteristic.
  • the polyimide-based matrix 110 has a bending property, a folding property, and a rollable property.
  • the polyimide-based matrix 110 includes a polyimide-based resin.
  • the polyimide-based matrix 110 may be made of, for example, a polyimide-based resin.
  • the polyimide-based matrix 110 may be prepared from monomer components including dianhydride and diamine.
  • the polyimide-based matrix 110 has an imide repeating unit formed by dianhydride and diamine.
  • the polyimide-based matrix 110 according to an embodiment of the present invention is not limited thereto.
  • the polyimide-based matrix 110 according to an embodiment of the present invention may be prepared from monomer components further including a dicarbonyl compound in addition to dianhydride and diamine. Accordingly, the polyimide-based matrix 110 according to an embodiment of the present invention may have an imide repeating unit and an amide repeating unit.
  • As the polyimide-based matrix 110 having an imide repeating unit and an amide repeating unit for example, there is a polyamide-imide resin.
  • the polyimide-based matrix 110 may include a polyimide resin or a polyamide-imide resin.
  • the polyimide-based resin used as the polyimide-based matrix 110 may have excellent mechanical and optical properties.
  • the polyimide-based matrix 110 may have a thickness sufficient for the polyimide-based film 100 to protect the display panel.
  • the polyimide-based matrix 110 may have a thickness of 10 to 100 ⁇ m.
  • the polyimide-based matrix 110 may have an average light transmittance of 85% or more and a yellowness of 5 or less in a visible light region measured by a UV spectrophotometer based on a thickness of 10 to 100 ⁇ m.
  • the filler 120 may be an inorganic material or an organic material.
  • the filler 120 may have a particle shape.
  • an inorganic filler may be used.
  • the filler 120 is silica (silica, SiO 2 ), zirconia (zirconia, ZrO 2 ), alumina (alumina, Al 2 O 3 ), titanium dioxide (titanium dioxide, TiO 2 ), It may include at least one of styrene and acrylic.
  • silica silica
  • zirconia zirconia, ZrO 2
  • alumina alumina, Al 2 O 3
  • titanium dioxide titanium dioxide
  • TiO 2 titanium dioxide
  • It titanium dioxide (titanium dioxide, TiO 2 )
  • inorganic silica (SiO 2 ) particles may be used as the filler 120 .
  • At least a portion of the silica (SiO 2 ) used as the filler 120 may be surface-treated. More specifically, surface-treated silica (SiO 2 ) particles may be used as the filler 120 .
  • At least a portion of silica (SiO 2 ) used as the filler 120 may be surface-treated by an organic compound having an alkoxy group.
  • silica (SiO 2 ) particles surface-treated with at least one of substituted or unsubstituted alkylalkoxysilane and phenylalkoxysilane may be used as the filler 120 .
  • silica (SiO 2 ) particles surface-treated by methylalkoxysilane, ethylalkoxysilane, or phenylalkoxysilane may be used as the filler 120 . More specifically, silica (SiO 2 ) particles surface-treated with trimethoxy(methyl)silane and phenyltrimethoxysilane may be used as the filler 120 .
  • the filler 120 may have a unit structure represented by the following Chemical Formulas 1 to 7.
  • R may each independently be at least one of an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, and a phenyl group having 6 to 18 carbon atoms.
  • the polyimide-based film 100 according to an embodiment of the present invention has excellent mechanical and optical properties.
  • the polyimide-based film 100 according to an embodiment of the present invention may have a yellowness of 3 or less.
  • the polyimide-based film 100 according to an embodiment of the present invention may have a haze of 1% or less.
  • the polyimide-based film 100 according to an embodiment of the present invention may have a light transmittance of 85% or more.
  • the polyimide-based film 100 according to an embodiment of the present invention may have a Young's modulus of 5.0 GPa or more.
  • the polyimide-based film 100 according to an embodiment of the present invention may have an elongation of 15% or more.
  • the polyimide-based film 100 according to an embodiment of the present invention may have an indentation hardness of 45 or more.
  • the particle size of the filler 120, the content of the filler 120, and the inter-particle spacing are adjusted.
  • an embodiment of the present invention provides a polyimide A novel mixing method of the polyimide-based polymer constituting the matrix 110 and the filler 120 is provided.
  • the filler 120 may have an average particle diameter of 5 to 50 nm.
  • the average particle diameter of the filler 120 is less than 5 nm, the dispersibility of the filler 120 may be reduced, and the fillers 120 may be aggregated.
  • the average particle diameter of the filler 120 exceeds 50 nm, the optical properties of the polyimide-based film 100 including the filler 120 may be deteriorated. For example, when the filler 120 having an average particle diameter of more than 50 nm is included in excess, the haze of the polyimide-based film 100 may increase.
  • the average particle diameter of the filler 120 is less than 5 nm, due to the aggregation of the filler 120, the mechanical strength of the polyimide film 100 is lowered in the portion where the aggregation of the filler 120 is generated, Tensile strength, Young's modulus, and indentation hardness of the polyimide film 100 may be reduced.
  • the average particle diameter of the filler 120 exceeds 50 nm, the elongation of the polyimide-based film 100 may be less than 15%.
  • the true density ratio (DR) to the density gradient tube density may exceed 1.10.
  • the filler 120 may have an average particle diameter of 10 to 20 nm, or may have an average particle diameter of 10 to 15 nm.
  • the polyimide film 100 includes the filler 120 having a particle size of nanometers
  • optical properties of the polyimide film 100 may be improved by light scattering by the filler 120 .
  • mechanical properties of the polyimide film 100 may be improved.
  • the content of the filler 120 may be in the range of 5 to 50% by weight based on the total weight of the polyimide-based film 100 .
  • the content of the filler 120 is less than 5% by weight based on the total weight of the polyimide-based film 100, the light scattering effect by the filler 120 is insignificant, and the light transmittance improvement effect of the polyimide-based film 100 is reduced. It may almost never appear.
  • the content of the filler 120 is less than 5% by weight based on the total weight of the polyimide-based film 100, the effect of improving the tensile strength, Young's modulus, elongation and hardness of the polyimide-based film 100 is can be insignificant.
  • the content of the filler 120 exceeds 50 wt% with respect to the total weight of the polyimide-based film 100, the dispersibility of the filler 120 is lowered, and the haze of the polyimide-based film 100 ( Haze) may be reduced, and the excess filler 120 may block light, so that the light transmittance of the polyimide-based film 100 may be reduced.
  • FIG. 4 is a schematic diagram illustrating a dispersed state of the filler 120 in the polyimide-based film 100 according to an embodiment of the present invention.
  • some of the fillers 120 are spaced apart from each other and dispersed, while some form an aggregation.
  • “Group A” indicates the fillers 120 forming a cluster.
  • the pillars 120 other than the pillars 120 of “Group A” indicate the pillars 120 (parts other than Group A) that are not clustered and are dispersed.
  • the fillers 120 are uniformly dispersed in the polyimide-based film 100 .
  • the true density ratio (DR) to the density gradient tube density becomes 1.10 or less, and the polyimide-based film 100 is excellent. It may have tensile strength, Young's modulus, elongation and indentation hardness.
  • the particle volume concentration (PVC) is in the range of 5 to 38%, and the polyimide-based film 100 has excellent tensile strength and It can have Young's Modulus.
  • the filler 120 when the filler 120 is included, if the filler 120 is not sufficiently uniformly dispersed, the tensile strength, Young's modulus, elongation, indentation hardness and light transmittance of the polyimide-based film 100 are lowered.
  • the mechanical properties and optical properties of the polyimide-based film 100 may be deteriorated, such as increasing yellowness and haze.
  • the tensile strength, Young's modulus, elongation, and press fit of the polyimide-based film 100 by making the true density ratio (DR) to the density gradient tube density be 1.10 or less. It is possible to prevent a decrease in hardness and light transmittance, and to prevent an increase in yellowness and haze.
  • DR true density ratio
  • the particle volume concentration (PVC) by setting the particle volume concentration (PVC) to be 5 to 38%, it is possible to prevent a decrease in tensile strength and Young's modulus of the polyimide-based film 100 .
  • the true density ratio (DR) to the density gradient tube density of the polyimide-based film 100 is 1.10 or less, and the polyimide-based film 100 has a Young's Modulus (Young's Modulus) of 5.0 GPa or more. ) can have
  • the polyimide-based film 100 may have an elongation of 15% or more.
  • the polyimide-based film 100 may have an indentation hardness of 45 or more.
  • the polyimide-based film 100 may have a light transmittance of 85% or more.
  • the polyimide-based film 100 may have a haze of 1% or less.
  • the polyimide-based film 100 may have a yellowness of 3.0 or less.
  • FIG. 5 is a cross-sectional view of a portion of the display device 200 according to another exemplary embodiment
  • FIG. 6 is an enlarged cross-sectional view of a portion “P” of FIG. 5 .
  • a display device 200 includes a display panel 501 and a polyimide-based film 100 on the display panel 501 .
  • the display panel 501 includes a substrate 510 , a thin film transistor TFT on the substrate 510 , and an organic light emitting diode 570 connected to the thin film transistor TFT.
  • the organic light emitting device 570 includes a first electrode 571 , an organic emission layer 572 on the first electrode 571 , and a second electrode 573 on the organic emission layer 572 .
  • the display device 200 illustrated in FIGS. 5 and 6 is an organic light emitting display device.
  • the substrate 510 may be made of glass or plastic. Specifically, the substrate 510 may be made of a plastic such as a polyimide-based resin or a polyimide-based film. Although not shown, a buffer layer may be disposed on the substrate 510 .
  • the thin film transistor TFT is disposed on the substrate 510 .
  • the thin film transistor TFT includes a semiconductor layer 520 , a gate electrode 530 that is insulated from the semiconductor layer 520 and overlaps at least a portion of the semiconductor layer 520 , a source electrode 541 connected to the semiconductor layer 520 , and A drain electrode 542 is spaced apart from the source electrode 541 and connected to the semiconductor layer 520 .
  • a gate insulating layer 535 is disposed between the gate electrode 530 and the semiconductor layer 520 .
  • An interlayer insulating layer 551 may be disposed on the gate electrode 530 , and a source electrode 541 and a source electrode 541 may be disposed on the interlayer insulating layer 551 .
  • the planarization layer 552 is disposed on the thin film transistor TFT to planarize an upper portion of the thin film transistor TFT.
  • the first electrode 571 is disposed on the planarization layer 552 .
  • the first electrode 571 is connected to the thin film transistor TFT through a contact hole provided in the planarization layer 552 .
  • the bank layer 580 is disposed on a portion of the first electrode 571 and the planarization layer 552 to define a pixel area or a light emitting area. For example, since the bank layer 580 is disposed in a matrix structure in a boundary region between a plurality of pixels, a pixel region may be defined by the bank layer 580 .
  • the organic emission layer 572 is disposed on the first electrode 571 .
  • the organic emission layer 572 may also be disposed on the bank layer 580 .
  • the organic emission layer 572 may include one emission layer or two emission layers stacked vertically. Light having any one of red, green, and blue may be emitted from the organic emission layer 572 , and white light may be emitted.
  • the second electrode 573 is disposed on the organic emission layer 572 .
  • a first electrode 571 , an organic emission layer 572 , and a second electrode 573 may be stacked to form an organic light emitting diode 270 .
  • each pixel may include a color filter for filtering the white light emitted from the organic emission layer 572 for each wavelength.
  • the color filter is formed on the path of light.
  • a thin film encapsulation layer 590 may be disposed on the second electrode 573 .
  • the thin film encapsulation layer 590 may include at least one organic layer and at least one inorganic layer, and at least one organic layer and at least one inorganic layer may be alternately disposed.
  • the polyimide-based film 100 is disposed on the display panel 501 having the above-described laminated structure.
  • the polyimide-based film 100 includes a polyimide-based matrix 110 and a filler 120 dispersed in the polyimide-based matrix 110 .
  • the polyimide-based film 100 according to an embodiment of the present invention may be manufactured by a hybrid mixing method in which solution-to-solution mixing and solution-to-powder mixing are performed in parallel.
  • the method of manufacturing the polyimide-based film 100 includes the steps of preparing a polyimide-based resin powder, dissolving a first content of the polyamide-based resin powder in a first solvent to obtain a polyimide-based resin powder. Preparing a resin solution, preparing a filler dispersion by dispersing a filler in a second solvent, preparing a first mixture by mixing the filler dispersion and a polyimide-based resin solution, and polyimide-based resin powder in the first mixture and adding and dissolving a second content of to prepare a second mixed solution.
  • the polyimide-based resin powder is divided at least twice and mixed with the filler dispersion.
  • the first content of the polyimide-based resin powder is dissolved in the first solvent and mixed with the filler dispersion in the form of a polyimide-based resin solution.
  • the first content may be 0.5 to 10% by weight of the filler, preferably 1 to 5%.
  • the second content of the polyimide-based resin powder is added in a powder state.
  • the second content of the polyimide-based resin powder may be added as a powder to the first mixed solution formed by mixing the filler dispersion and the polyimide-based resin solution.
  • the second content of the polyimide-based resin powder may be 10 to 200 times the first content. More specifically, the second content of the polyimide-based resin powder may be 60 to 200 times the first content.
  • the method may further include adding a third solvent to the first mixed solution.
  • the third solvent may be the same as or different from the first solvent.
  • the same solvent as the first solvent may be used as the third solvent.
  • DMAc N,N-Dimethylacetamide
  • DMAc N,N-Dimethylacetamide
  • DMAc (N,N-dimethylacetamide) or methyl ethyl ketone (Methyl Ethyl Ketone, MEK) may be used as the second solvent.
  • DMAc (N,N-Dimethylacetamide) may be used as the third solvent.
  • one embodiment of the present invention is not limited thereto, and other known solvents may be used as the first solvent, the second solvent, and the third solvent.
  • a part (first content) of the polyimide-based resin powder is dissolved in a solvent and then mixed with the filler dispersion. Accordingly, the dispersibility of the filler is improved.
  • the solvent instantly penetrates the inside of the powder from the surface of the powder, and at this time, the concentration around the surface of the powder rises momentarily, so that the filler agglomeration may occur.
  • the polymer chains of the polyimide-based resin distributed between the fillers can prevent aggregation between the fillers by first adding the polyimide-based resin dissolved in the filler dispersion including the solvent. can After that, even if the polyimide-based resin powder is added again (addition of the second content), aggregation between fillers does not occur. Accordingly, aggregation of the filler is prevented, and the dispersibility of the filler is improved.
  • the polyimide-based film 100 including uniformly dispersed fillers may be manufactured by the hybrid mixing method in which solution-to-solution mixing and solution-to-powder mixing are performed in parallel according to an embodiment of the present invention.
  • a high degree of freedom of the filler 120 and the polyimide-based resin can be maintained, so that an environment in which dispersibility is easy can be created. Accordingly, the filler 120 and the polyimide-based resin can be combined in a high degree of freedom, and the polyimide-based film ( 100) can be prepared.
  • silica particles may be used as the filler 120 .
  • Silica particles can be prepared, for example, from tetraethyltriethoxysilane.
  • tetraethyltriethoxysilane tetraethylthoxysilane, TEOS, Si(OC 2 H 5 ) 4
  • TEOS tetraethylthoxysilane
  • Si(OC 2 H 5 ) 4 tetraethylthoxysilane
  • a silica dispersion may be used as the filler 120 dispersion.
  • the silica dispersion may be prepared, for example, by adding dimethylacetamide (DMAc) and silica particles to a reactor and stirring.
  • DMAc dimethylacetamide
  • the polyimide-based polymer solid content prepared herein is a polyamide-imide polymer solid content.
  • silica dispersion A (SSD_330T, Ranco) comprising silica particles having an average particle diameter of 10 nm in a DMAc (N,N-dimethylacetamide) solution (second solvent) dispersed in an amount of 30% by weight in another 1L reactor, while maintaining the temperature of the reactor at 25° C., the prepared liquid polyimide-based resin solution was slowly introduced for 1 hour using a cylinder pump, and the silica dispersion solution and the polyimide-based resin solution were mixed with the first mixed solution. prepared.
  • DMAc N,N-dimethylacetamide
  • the second mixed solution is a polyimide-based resin solution in which silica particles are dispersed.
  • a casting substrate is used for casting.
  • the type of the casting substrate There is no particular limitation on the type of the casting substrate.
  • a glass substrate, a stainless (SUS) substrate, a Teflon substrate, or the like may be used.
  • an organic substrate may be used as the casting substrate.
  • the obtained second liquid mixture was applied to a glass substrate, cast, and dried with hot air at 120° C. for 30 minutes to prepare a film, and then the prepared film was peeled off the glass substrate and fixed to the frame with a pin.
  • the frame to which the film was fixed was placed in a vacuum oven and slowly heated from 100° C. to 280° C. for 2 hours, then cooled slowly and separated from the frame to obtain a polyimide-based film. Again, the polyimide-based film was heat-treated at 250° C. for 5 minutes.
  • a polyimide-based film 100 having a thickness of 50 ⁇ m including the polyimide-based matrix 110 and the silica-based filler 120 dispersed in the polyimide-based matrix was completed.
  • the polyimide-based films of Examples 2 to 7 were prepared by changing only the silica dispersion, the silica dispersion content, the first content, the second content, the first solvent content, and the third solvent content. .
  • a polyimide-based film 100 was prepared by varying the silica dispersion, the silica dispersion content, the first content, the second content, the first solvent content, and the third solvent content.
  • silica dispersion C 50nmSP-AD1, Admatechs
  • silica particles having an average particle diameter of 50nm dispersed in a content of 20% by weight in DMAc (N,N-dimethylacetamide) solution (second solvent)
  • DMAc N,N-dimethylacetamide
  • third solvent 371.73 parts by weight of DMAc (third solvent) was added and stirred.
  • 64.40 parts by weight (second content) of the polyamide-imide (polyimide-based resin powder) of the solid powder prepared in Preparation Example 1 was added to the stirred solution and stirred, followed by a mixture of silica dispersion and polyimide-based resin was prepared.
  • the mixed solution is a polyimide-based resin solution in which silica particles are dispersed.
  • the obtained mixed solution was cast. Casting and subsequent processes were performed in the same manner as in Example 1 to prepare a polyimide-based film 100 .
  • Silica Dispersion D (DMAc-ST-ZL, Nissan) 35.80 weight, in which silica particles having an average particle diameter of 70 nm are dispersed in an amount of 20 wt% in DMAc (N,N-dimethylacetamide) solution (second solvent) in a 1L reactor After charging, 371.06 parts by weight of DMAc (third solvent) was added and stirred. 64.40 parts by weight (second content) of the polyamide-imide (polyimide-based resin powder) of the solid powder prepared in Preparation Example 1 was added to the stirred solution and stirred, followed by a mixture of silica dispersion and polyimide-based resin was prepared.
  • the mixed solution is a polyimide-based resin solution in which silica particles are dispersed.
  • the obtained mixed solution was cast. Casting and subsequent processes were performed in the same manner as in Example 1 to prepare a polyimide-based film 100 .
  • the polyimide-based film 100 of Comparative Examples 4 to 7 by varying the silica dispersion, the silica dispersion content, the first content, the second content, the first solvent content, and the third solvent content. was prepared.
  • silica dispersion content of silica dispersion (parts by weight) first content (parts by weight) first solvent content (parts by weight) second content (parts by weight) Third solvent content (parts by weight)
  • Example 1 Silica Dispersion A (SSD_330T, Ranco) Average particle size: 10nm Content of silica particles in dispersion: 30% by weight 23.85 0.36 35.42 64.04 348.23
  • Example 3 Silica Dispersion A (SSD_330T, Ranco) Average particle size: 11nm Content of silica particles in dispersion: 30% by weight 175.70 2.64 260.91 61.76 241.94
  • Example 4 Silica Dispersion C (50nmSP-AD1, Admatechs) Average particle size: 50nm Content
  • the true density and density gradient tube density of the polyimide-based film are measured as follows, and the measured true density and density gradient tube density are calculated as in Equation 1 below, and the ratio of true density to the density gradient tube density of the polyimide-based film (DR) was calculated.
  • a polyimide-based film 100 specimen (10 X 10 cm 2 ) was finely cut to a size of 1 X 1 cm 2 or less and put in a sample holder together with an iron bead (pulverizer).
  • the true density of the specimen was measured 7 times using the Micromeritics AccuPyc 1340 Pycnometer equipment (using helium gas).
  • the true density of the polyimide-based film 100 was calculated by calculating an average with the remaining true density values except for the highest and lowest values among the measured true density values of the film 100 .
  • the density of the density gradient tube of the polyimide-based film 100 was measured using a density gradient tube.
  • the particle volume concentration (PVC) of the polyimide-based film was calculated according to Equation 2 below.
  • V 1 is the volume of the filler
  • V 2 is the volume of the matrix
  • the volume (V 1 ) of the filler can be calculated by dividing the mass of the filler by the density. Specifically, the volume (V 1 ) of the filler may be calculated by measuring the mass and density of the filler included in the film 100 , respectively. For example, the mass of the filler can be found by measuring the weight of the filler added when the film 100 is manufactured. The density of the filler may be measured using the above-described true density measuring method or density gradient tube density measuring method.
  • the volume (V 2 ) of the matrix can be calculated by dividing the mass of the matrix by the density. Specifically, the volume (V 2 ) of the matrix may be calculated by measuring the mass and density of the matrix included in the film 100 , respectively. For example, the mass of the matrix can be found by weighing the matrix added when the film 100 is manufactured. The density of the matrix may be measured using the above-described true density measurement method or density gradient tube density measurement method.
  • Light transmittance (%) Using a spectrophotometer (CM-3700D, KONICA MINOLTA) according to standard ASTM E313, average optical transmittance at a wavelength of 360 to 740 nm was measured.
  • Yellowness The yellowness was measured using a Spectrophotometer (CM-3700D, KONICA MINOLTA) in accordance with the standard ASTM E313.
  • Haze The prepared polyimide-based film was cut into 50 mm ⁇ 50 mm and measured 5 times according to ASTM D1003 using MURAKAMI's haze meter (model name: HM-150), and the average value was used as the haze value. .
  • Example 1 1.615 1.475 1.095 7.4
  • Example 2 1.719 1.608 1.069 27.92
  • Example 3 1.782 1.694 1.052 37.07
  • Example 4 1.619 1.480 1.094 7.4
  • Example 5 1.692 1.573 1.076 23.6
  • Example 6 1.718 1.607 1.069 27.92
  • Example 7 1.631 1.571 1.038 23.58
  • Comparative Example 1 1.880 1.702 1.105 46.8 Comparative Example 2 1.619 1.460 1.109 7.4
  • Comparative Example 3 1.617 1.461 1.107 7.4
  • Comparative Example 6 1.63 1.47 1.109 23.58
  • Comparative Example 7 1.604 1.45 1.106 2.91
  • Example 1 5.1 28 46 89.6 2.7 0.2 Example 2 5.7 25 51 90.4 2.3 0.2 Example 3 5.8 20 53 90.6 2.1 0.3 Example 4 5.1 17 46 89.7 2.8 0.3 Example 5 5.5 16 49 90.1 2.5 0.3 Example 6 5.7 24 52 90.5 2.2 0.2 Example 7 5.6 17 50 90.4 2.2 0.3 Comparative Example 1 4.9 7 41 88.8 3.1 0.6 Comparative Example 2 4.9 10 41 88.5 3.2 0.8 Comparative Example 3 4.9 13 40 88.3 3.5 1.2 Comparative Example 4 4.7 11 41 88.2 3.9 1.8 Comparative Example 5 4.8 14 42 88.7 3.2 0.8 Comparative Example 6 4.9 13 41 88.7 3.1 0.8 Comparative Example 7 4.7 14 43 88.6 3.4 0.7
  • the polyimide-based film 100 according to the embodiment of the present invention has a true density ratio (DR) to the density gradient tube density of 1.10 or less, Young's modulus, elongation, and press-fitting. It can be seen that not only mechanical properties such as hardness are excellent, but also optical properties are excellent due to excellent light transmittance, low yellowness, and low haze.
  • DR true density ratio
  • the amount of filler When the content exceeds 50% by weight, the true density ratio (DR) to the density gradient tube density exceeds 1.10, the particle volume concentration (PVC) exceeds 38%, and the Young's modulus of the polyimide-based film is less than 5.0 GPa , the elongation was less than 15%, the indentation hardness was less than 45%, and the yellowness exceeded 3.0.
  • the polyimide-based resin powder was mixed with a filler dispersion without dividing the first content and the second content, and the density The true density ratio (DR) to the gradient tube density exceeded 1.10, the Young's modulus of the polyimide-based film was less than 5.0 GPa, the elongation was less than 15%, the indentation hardness was less than 45%, and the yellowness exceeded 3.0.
  • the polyimide-based resin powder was mixed with the filler dispersion without dividing into the first content and the second content, and the average particle diameter of the filler was greater than 50 nm, and the true density ratio to the density gradient tube density (DR) ) exceeded 1.10, the Young's modulus of the polyimide-based film was less than 5.0 GPa, the elongation was less than 15%, the indentation hardness was less than 45%, the yellowness was more than 3.0, and the haze was more than 1%.
  • DR density gradient tube density
  • the average particle diameter of the filler was greater than 50 nm, the true density ratio (DR) to the density gradient tube density exceeded 1.10, the Young's modulus of the polyimide-based film was less than 5.0 GPa, the elongation was less than 15%, and the indentation The hardness was less than 45%, the yellowness was more than 3.0, and the haze was more than 1%.
  • the first content of the polyimide-based resin powder with respect to the filler weight was less than 0.5%
  • the true density ratio (DR) to the density gradient tube density exceeded 1.10
  • the Young's modulus of the polyimide-based film was 5.0 GPa Less than
  • the elongation was less than 15%
  • the indentation hardness was less than 45%
  • the yellowness exceeded 3.0.
  • the first content of the polyimide-based resin powder with respect to the filler weight was more than 10%
  • the true density ratio (DR) to the density gradient tube density exceeded 1.10
  • the Young's modulus of the polyimide-based film was 5.0 Less than GPa
  • the elongation was less than 15%
  • the indentation hardness was less than 45%
  • the yellowness exceeded 3.0.
  • the filler content was less than 5% by weight based on the total weight of the polyimide-based film, the true density ratio to the density gradient tube density (DR) exceeded 1.10, and the polyimide-based film had a Young's modulus of 5.0 Less than GPa, the elongation was less than 15%, the indentation hardness was less than 45%, and the yellowness exceeded 3.0.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

본 발명은 폴리이미드계 매트릭스 및 상기 폴리이미드계 매트릭스에 분산된 필러(filler)를 포함하며, 1.10 이하의 밀도 구배관 밀도에 대한 진밀도 비율(DR)을 갖는 폴리이미드계 필름 및 이러한 폴리이미드계 필름을 포함하는 표시장치를 제공한다.

Description

우수한 필러 분산성을 갖는 폴리이미드계 필름 및 이를 포함하는 표시장치
본 발명은 우수한 필러 분산성을 갖는 폴리이미드계 필름 및 이를 포함하는 표시장치에 대한 것이다.
폴리이미드(PI)계 수지는 불용성, 내화학성, 내열성, 내방사선성 및 저온특성 등이 우수하여, 자동차 재료, 항공소재, 우주선 소재, 절연코팅제, 절연막, 보호필름 등으로 사용되고 있다.
최근, 표시장치의 박형화, 경량화, 플렉서블화로 인하여, 표시장치의 커버 윈도우로 유리 대신 폴리이미드계 필름을 사용하는 것이 검토되고 있다. 폴리이미드계 필름이 표시장치의 커버 윈도우로 사용되기 위해서는, 폴리이미드계 필름이 우수한 경도, 내마모성, 굴곡성 등의 기계적 특성 및 우수한 시인성, 광투과성 등의 광학 특성을 가질 필요가 있다. 목적하는 물성을 부여하기 위하여, 폴리이미드계 필름에 필러가 첨가되기도 한다.
본 발명의 일 실시예는, 폴리이미드계 수지 내에서 필러가 균일하게 분산되어 있는, 폴리이미드계 필름을 제공하고자 한다.
본 발명의 일 실시예는, 밀도 구배관 밀도에 대한 진밀도 비율(Density Ratio, DR)이 1.10 이하인, 폴리이미드계 필름을 제공하고자 한다.
본 발명의 일 실시예는, 입자 체적 농도(PVC)가 5 내지 38%인, 폴리이미드계 필름을 제공하고자 한다.
본 발명의 일 실시예는, 폴리이미드계 매트릭스 및 상기 폴리이미드계 매트릭스에 분산된 필러(filler)를 포함하며, 1.10 이하의 밀도 구배관 밀도에 대한 진밀도 비율(Density Ratio, DR)을 갖는, 폴리이미드계 필름을 제공한다.
상기 밀도 구배관 밀도에 대한 진밀도 비율(DR)은 하기 식 1로 산출된다.
<식 1>
Density Ratio (DR) = 진밀도 / 밀도 구배관 밀도
상기 폴리이미드계 필름은 5 내지 38%의 입자 체적 농도(PVC)를 가질 수 있다.
상기 입자 체적 농도(PVC)는 하기 식 2로 산출된다.
<식 2>
PVC(%) = [V1 / (V1 + V2)]*100
상기 식 2에서 V1은 상기 필러의 부피이며, V2는 상기 매트릭스의 부피이다.
상기 필러는 실리카(SiO2)를 포함할 수 있다.
상기 실리카(SiO2)의 적어도 일부는 알콕시기를 갖는 유기 화합물에 의하여 표면 처리될 수 있다.
상기 필러의 평균 입경은 5 내지 50nm일 수 있다.
상기 필러의 함량은 상기 폴리이미드계 필름의 전체 중량에 대하여 5 내지 50중량%일 수 있다.
상기 폴리이미드계 필름은 5.0 GPa 이상의 영률(Young's Modulus)을 가질 수 있다.
상기 폴리이미드계 필름은 15% 이상의 신율을 가질 수 있다.
상기 폴리이미드계 필름은 45 이상의 압입 경도를 가질 수 있다.
상기 폴리이미드계 필름은 3 이하의 황색도를 가질 수 있다.
상기 폴리이미드계 필름은 1% 이하의 헤이즈(haze)를 가질 수 있다.
상기 폴리이미드계 필름은 85% 이상의 광투과도를 가질 수 있다.
본 발명의 다른 일 실시예는, 표시패널 및 상기 표시패널 상에 배치된 상기의 폴리이미드계 필름을 포함하는 표시장치를 제공한다.
본 발명의 일 실시예에 따르면, 우수한 필러 분산성을 갖는 폴리이미드계 필름이 제조될 수 있다.
일반적으로, 폴리이미드계 필름에 필러가 분산되어 있는 경우, 폴리이미드계 필름의 헤이즈가 저하될 수 있지만, 본 발명의 일 실시예에 따르면, 폴리이미드계 필름에서 필러 분산성이 우수하여, 1.10 이하의 밀도 구배관 밀도에 대한 진밀도 비율(DR)을 가질 수 있다. 그 결과, 본 발명의 폴리이미드계 필름은 우수한 광학 특성 및 우수한 기계적 특성을 가질 수 있다.
본 발명의 일 실시예에 따른 폴리이미드계 필름은 우수한 광학적 특성 및 기계적 특성을 가져, 표시장치의 커버 윈도우로 사용되는 경우, 표시장치의 표시면을 효과적으로 보호할 수 있다.
도 1은 본 발명의 일 실시예에 따른 폴리이미드계 필름의 개략도이다.
도 2는 필름의 밀도 구배관 밀도에 대한 진밀도 비율(DR)에 따른 필름 내부의 공극(pore)의 차이를 표시한 것이다.
도 3은 필름의 입자 체적 농도(PVC)에 따른 필름 내부의 공극(pore)의 차이를 표시한 것이다.
도 4는 본 발명의 일 실시예에 따른 폴리이미드계 필름에서 필러의 분산 상태를 설명하는 개략도이다.
도 5는 본 발명의 다른 일 실시예에 따른 표시장치의 일부에 대한 단면도이다.
도 6은 도 5의 "P" 부분에 대한 확대 단면도이다.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예들을 상세하게 설명한다. 다만, 아래에서 설명되는 실시예들은 본 발명의 명확한 이해를 돕기 위한 예시적 목적으로 제시되는 것일 뿐, 본 발명의 범위를 제한하지 않는다.
본 발명의 실시예들을 설명하기 위한 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로, 본 발명이 도면에 도시된 사항에 한정되는 것은 아니다. 명세서 전체에 걸쳐 동일 구성 요소는 동일 참조 부호로 지칭될 수 있다. 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그 상세한 설명은 생략된다.
본 명세서에서 언급된 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이라는 표현이 사용되지 않는 이상, 다른 부분이 추가될 수 있다. 구성 요소가 단수로 표현된 경우, 특별히 명시적인 기재 사항이 없는 한 복수를 포함한다. 또한, 구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.
위치 관계에 대한 설명일 경우, 예를 들어, '~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수 있다.
공간적으로 상대적인 용어인 "아래(below, beneath)", "하부 (lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 소자 또는 구성 요소들과 다른 소자 또는 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작 시 소자의 서로 다른 방향을 포함하는 용어로 이해 되어야 한다. 예를 들면, 도면에 도시되어 있는 소자를 뒤집을 경우, 다른 소자의 "아래(below)" 또는 "아래(beneath)"로 기술된 소자는 다른 소자의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 마찬가지로, 예시적인 용어인 "위" 또는 "상"은 위와 아래의 방향을 모두 포함할 수 있다.
시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간적 선후 관계가 설명되는 경우, '바로' 또는 '직접'이라는 표현이 사용되지 않는 이상 연속적이지 않은 경우도 포함할 수 있다.
제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않는다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있다.
"적어도 하나"의 용어는 하나 이상의 관련 항목으로부터 제시 가능한 모든 조합을 포함하는 것으로 이해되어야 한다. 예를 들어, "제1 항목, 제2 항목 및 제3 항목 중 적어도 하나"의 의미는 제1 항목, 제2 항목 또는 제3 항목 각각 뿐만 아니라 제1 항목, 제2 항목 및 제3 항목 중에서 2개 이상으로부터 제시될 수 있는 모든 항목의 조합을 의미할 수 있다.
본 발명의 여러 실시예들의 각각 특징들이 부분적으로 또는 전체적으로 서로 결합 또는 조합 가능하고, 기술적으로 다양한 연동 및 구동이 가능하며, 각 실시예들이 서로에 대하여 독립적으로 실시 가능할 수도 있고 연관 관계로 함께 실시될 수도 있다.
도 1은 본 발명의 일 실시예에 따른 폴리이미드계 필름(100)의 개략도이다.
도 1에 도시된 바와 같이, 발명의 일 실시예에 따른 폴리이미드계 필름(100)은 폴리이미드계 매트릭스(110) 및 폴리이미드계 매트릭스에 분산된 필러(filler)(120)를 포함한다.
본 발명의 일 실시예에 따른 폴리이미드계 필름(100)에 있어서, 필름(100)의 밀도 구배관(density-gradient tube) 밀도에 대한 진밀도 (true density) 비율(density ratio, DR)은 1.10 이하이다.
필름(100)의 밀도 구배관 밀도에 대한 진밀도 비율(Density Ratio, DR)은 하기 식 1로 산출된다.
<식 1>
Density Ratio (DR) = 진밀도 / 밀도 구배관 밀도
진밀도 (true density)는 고체밀도를 말하는 것으로, 입자와 입자 사이의 공극을 제외한 완전히 재료로 채워진 부분만의 밀도를 말한다. 본 발명의 일 실시예에 따르면, 진밀도는 공극을 제외한 폴리이미드계 매트릭스(110) 및 필러(120)로 채워진 부분만의 밀도이다.
진밀도는, 측정 시 측정 필름(100) 시편의 크기에 따라 그 값이 달라질 수 있다. 따라서, 본 발명의 일 실시예에 따르면, 분말화 분석을 통해 필름 (100)의 진밀도를 구할 수 있다.
구체적으로, 필름(100) 시편(10 X 10cm2)을 1 X 1cm2 이하의 크기로 잘게 절단하여 샘플 홀더에 쇠구슬(분쇄기)과 함께 넣어준다. 냉동분쇄기(Japan Analytical Industry사, JFC-300)에 2/3 이상 액체질소를 채우고, 잘린 시편이 들은 샘플 홀더를 냉동분쇄기와 결합한 후 챔버를 닫는다. 냉동분쇄기를 이용하여 pre-cool 15분 / run 15분 이상 시편을 분쇄한다. Micromeritics社 AccuPyc 1340 Pycnometer 장비(헬륨 가스 사용)를 이용하여 분쇄된 필름(100) 시편의 진밀도를 7회 측정한다. 측정된 필름(100)의 진밀도 값 중 최고 및 최저 값을 제외하고, 나머지 진밀도 값의 평균이 본 발명에서 필름(100)의 진밀도이다.
밀도 구배관 (density-gradient tube) 밀도는, 밀도 구배관을 이용하여 측정한 밀도를 말한다. 밀도 구배관은 밀도를 측정하는 하나의 방법으로, 밀도 기울기관이라고도 한다.
본 발명의 일 실시예에 따르면, 필름(100)의 밀도 구배관 밀도는 표준규격 ASTM D1505에 따라 밀도 구배관을 이용하여 구할 수 있다.
구체적으로, 밀도 구배관은 유리 원통의 아랫부분에 비중이 큰 액체를, 윗부분에 작은 액체를 넣고 그 사이에 밀도의 기울기를 만든 것으로, 이와 같은 밀도 구배관에 필름(100) 시편 조각을 넣으면 그 밀도와 같은 위치에 매달려 정지하고, 해당 위치의 밀도 기울기를 통해 필름(100) 시편의 밀도 구배관 밀도를 알 수 있다. 밀도 구배관의 밀도의 기울기는, 비중을 알고 있는 유리 구형 플로트를 넣는 방법, 여러 가지 농도의 염화아연 수용액의 비중을 미리 측정한 뒤 밀도 구배관 안에 고정시키는 방법, 또는 밀도 구배관의 비중이 서로 다른 액체 중 하나의 액체에만 녹는 염료를 이용한 비색법을 통해 알 수 있다.
이하, 도 2를 참조하여, 필름(100)의 밀도 구배관 밀도에 대한 진밀도 비율(DR)에 대하여 자세히 설명한다. 도 2는 필름(100)의 밀도 구배관 밀도에 대한 진밀도 비율(DR)에 따른 필름(100) 내부의 공극(pore)의 차이를 표시한 것이다.
필름(100)의 밀도 구배관 밀도에 대한 진밀도 비율(DR)은, 필름(100)에 존재하는 공극(pore)의 정도(공극률, porosity)를 필름(100)의 밀도 구배관 밀도와 진밀도의 비를 이용하여 나타낸 것이다. 진밀도는 필름(100)에서 공극을 제외한 매트릭스(110) 및 필러(120)의 밀도이고, 밀도 구배관 밀도는 공극을 포함한 필름(100)의 밀도로, 진밀도와 밀도 구배관 밀도의 비를 통해 필름(100)의 공극률을 나타낼 수 있다.
도 2에 도시된 바와 같이, 필름(100)의 밀도 구배관 밀도에 대한 진밀도 비율(DR)이 증가할수록 필름(100)의 공극이 증가하고, 반대로, 밀도 구배관 밀도에 대한 진밀도 비율(DR)이 감소할수록 필름(100)의 공극이 감소한다.
일반적으로, 필름(100)이 필러(120)을 포함하는 경우, 필러(120)의 분산 정도에 따라, 필름(100)의 공극 차이가 발생할 수 있다. 필러(120)의 분산성이 작아 필러(120)들이 뭉쳐 있는 경우에는, 필러와 필러 사이의 공간이 매트릭스(110)에 의해 충분히 채워지지 못하여, 공극이 발생할 수 있다. 반대로, 필러(120)가 잘 분산되어 있는 경우, 매트릭스(110)와 필러(120)가 충분히 잘 혼합되어 있는 상태로, 필러와 필러 사이의 공간에 매트릭스(110)가 충분히 채워질 수 있으므로, 공극이 감소한다.
필름(100) 내 공극이 감소할수록, 필름(100)의 인장강도, 영률(Young's modulus), 신율, 압입 경도 및 광투과도가 증가하고, 황색도 및 헤이즈는 감소한다. 그에 따라, 필름(100)의 내마모성, 굴곡성과 같은 기계적 특성 및 광투과성, 시인성과 같은 광학 특성이 우수해진다.
본 발명의 일 실시예에 따르면, 필름(100)의 밀도 구배관 밀도에 대한 진밀도 비율(DR)은 1.10 이하이다.
밀도 구배관 밀도에 대한 진밀도 비율(DR)이 1.10 초과인 경우, 필러(120)의 필름(100) 내 충진 효과가 감소하여, 필름(100)의 경도 및 영률(Young's Modulus)의 향상 효과가 감소한다. 또한, 필러(120)의 뭉침에 의한 필름(100) 내 공극의 증가로 인하여, 필름(100)의 신율 및 압입 경도가 감소하는 문제가 발생한다. 또한, 필러(120)의 뭉침에 의하여, 필름(100)의 헤이즈가 증가하게 된다.
본 발명의 일 실시예에 따른 폴리이미드계 필름(100)에 있어서, 필름(100)의 입자 체적 농도(PVC)는 5 내지 38%이다.
필름(100)의 입자 체적 농도(PVC)는 하기 식 2로 산출된다.
<식 2>
PVC(%) = [V1 / (V1 + V2)]*100
상기 식 2에서 V1은 상기 필러의 부피이며, V2는 상기 매트릭스의 부피이다.
이하, 도 3을 참조하여, 입자 체적 농도(PVC)를 구체적으로 설명한다. 도 3은 필름(100)의 입자 체적 농도(PVC)에 따른 필름(100) 내부의 공극의 차이를 표시한 것이다.
입자 체적 농도(PVC)는, 필름(100) 내 매트릭스(110)와 필러(120)의 전체 부피에 대하여 필러(120)가 차지하는 부피의 비율을 퍼센트(%)로 나타낸 것이다.
도 3에 도시된 바와 같이, 필름(100)의 입자 체적 농도(PVC)가 감소하는 경우, 필름(100)의 공극이 감소하고, 입자 체적 농도(PVC)가 증가하는 경우, 필름(100)의 공극이 증가한다.
필름(100)의 입자 체적 농도(PVC)가 증가하면, 필름(100) 내 필러(120)가 차지하는 체적이 증가하고, 필러와 필러 사이의 평균 거리가 짧아진다. 필러와 필러 사이의 평균 거리가 짧아지면, 매트릭스(110)가 필러와 필러 사이의 공간에 채워지기 어려워, 공극이 증가한다.
필러의 부피(V1)는 필러의 질량을 밀도로 나누어서 산출할 수 있다. 구체적으로, 필름(100)에 포함되는 필러의 질량 및 밀도를 각각 측정하여 필러의 부피(V1)를 산출할 수 있다. 예를 들어, 필러의 질량은 필름(100) 제조 시 첨가되는 필러의 무게를 재서 알 수 있다. 필러의 밀도는 전술한 진밀도 측정 방법 또는 밀도 구배관 밀도 측정방법을 이용하여 필러의 밀도를 측정할 수 있다.
매트릭스의 부피(V2)는 매트릭스의 질량을 밀도로 나누어서 산출할 수 있다. 구체적으로, 필름(100)에 포함되는 매트릭스의 질량 및 밀도를 각각 측정하여 매트릭스의 부피(V2)를 산출할 수 있다. 예를 들어, 매트릭스의 질량은 필름(100) 제조 시 첨가되는 매트릭스의 무게를 재서 알 수 있다. 매트릭스의 밀도는 전술한 진밀도 측정 방법 또는 밀도 구배관 밀도 측정방법을 이용하여 매트릭스의 밀도를 측정할 수 있다.
본 발명의 일 실시예에 따르면, 필름(100)의 입자 체적 농도(PVC)는 5 내지 38%이다.
입자 체적 농도(PVC)이 5% 미만인 경우, 필러(120)에 의한 필름(100)의 기계적 물성 개선 효과가 미미하다. 또한, 입자 체적 농도(PVC)이 38% 초과인 경우, 필러(120)와 매트릭스(110) 접촉면의 불연속이 발생하여, 신율 및 압입 경도가 감소하게 된다.
본 발명의 일 실시예에 따르면, 폴리이미드계 매트릭스(110)은 광투과성을 갖는다. 또한, 폴리이미드계 매트릭스(110)은 플렉서블 특성을 갖는다. 예를 들어, 폴리이미드계 매트릭스(110)은 벤딩(bending) 특성, 폴딩(folding) 특성 및 롤러블(rollable) 특성을 갖는다.
폴리이미드계 매트릭스(110)는 폴리이미드계 수지를 포함한다. 폴리이미드계 매트릭스(110)는, 예를 들어, 폴리이미드계 수지로 이루어질 수 있다.
본 발명의 일 실시예에 따른 폴리이미드계 매트릭스(110)는 디안하이드라이드 및 디아민을 포함하는 모노머 성분들로부터 제조될 수 있다.
보다 구체적으로, 본 발명의 일 실시예에 따른 폴리이미드계 매트릭스(110)는 디안하이드라이드와 디아민에 의하여 형성된 이미드 반복 단위를 갖는다.
그러나, 본 발명의 일 실시예에 따른 폴리이미드계 매트릭스(110)가 이에 한정되는 것은 아니다. 본 발명의 일 실시예에 따른 폴리이미드계 매트릭스(110)는 디안하이드라이드 및 디아민에 더하여 디카르보닐 화합물을 더 포함하는 모노머 성분들로부터 제조될 수 있다. 따라서, 본 발명의 일 실시예에 따른 폴리이미드계 매트릭스(110)는 이미드 반복단위와 아마이드 반복단위를 가질 수 있다. 이미드 반복단위와 아마이드 반복단위를 갖는 폴리이미드계 매트릭스(110)로, 예를 들어, 폴리아마이드-이미드 수지가 있다.
따라서, 본 발명의 일 실시예에 따른 폴리이미드계 매트릭스(110)는 폴리이미드 수지를 포함할 수도 있고, 폴리아마이드-이미드 수지를 포함할 수도 있다.
본 발명의 일 실시예에 따라, 폴리이미드계 매트릭스(110)으로 사용되는 폴리이미드계 수지는 우수한 기계적 특성 및 광학적 특성을 가질 수 있다.
폴리이미드계 매트릭스(110)는, 폴리이미드계 필름(100)이 표시패널을 보호하기 충분한 정도의 두께를 가질 수 있다. 예를 들어, 폴리이미드계 매트릭스(110)은 10 내지 100㎛의 두께를 가질 수 있다.
폴리이미드계 매트릭스(110)는, 두께 10 내지 100㎛를 기준으로, UV 분광광도계로 측정된 가시광선 영역에서 85% 이상의 평균 광투과도, 5 이하의 황색도를 가질 수 있다.
본 발명의 일 실시예에 따르면, 필러(120)는 무기물일수도 있고 유기물일수도 있다. 필러(120)는 입자의 형상을 가질 수 있다. 본 발명의 일 실시예에 따르면, 무기물 필러가 사용될 수 있다.
본 발명의 일 실시예에 따르면, 필러(120)는 실리카(silica, SiO2), 지르코니아(zirconia, ZrO2), 알루미나(alumina, Al2O3), 이산화 타이타늄(titanium dioxide, TiO2), 스티렌(Styrene) 및 아크릴(Acrylic) 중 적어도 하나를 포함할 수 있다. 예를 들어, 무기물인 실리카(SiO2) 입자가 필러(120)로 사용될 수 있다.
본 발명의 일 실시예에 따르면, 필러(120)로 사용되는 실리카(SiO2)의 적어도 일부는 표면 처리될 수 있다. 보다 구체적으로, 표면 처리된 실리카(SiO2) 입자가 필러(120)로 사용될 수 있다.
본 발명의 일 실시예에 따르면, 필러(120)로 사용되는 실리카(SiO2)의 적어도 일부는 알콕시기를 갖는 유기 화합물에 의하여 표면 처리될 수 있다. 예를 들어, 치환되거나 치환되지 않은 알킬알콕시실란 및 페닐알콕시실란 중 적어도 하나에 의하여 표면 처리된 실리카(SiO2) 입자가 필러(120)로 사용될 수 있다.
구체적으로, 메틸알콕시실란, 에틸알콕시실란 또는 페닐알콕시실란에 의하여 표면 처리된 실리카(SiO2) 입자가 필러(120)로 사용될 수 있다. 보다 구체적으로, 트리메톡시(메틸)실란[trimethoxy(methyl)silane], 페닐트리메톡시실란[phenyltrimethoxysilane]으로 표면 처리된 실리카(SiO2) 입자가 필러(120)로 사용될 수 있다.
본 발명의 일 실시예에 따르면, 필러(120)는 하기 화학식 1 내지 화학식 7로 표현되는 단위 구조를 가질 수 있다.
[화학식 1]
Figure PCTKR2021008763-appb-I000001
[화학식 2]
Figure PCTKR2021008763-appb-I000002
[화학식 3]
Figure PCTKR2021008763-appb-I000003
[화학식 4]
Figure PCTKR2021008763-appb-I000004
[화학식 5]
Figure PCTKR2021008763-appb-I000005
[화학식 6]
Figure PCTKR2021008763-appb-I000006
화학식 1 내지 화학식 6에서, R은 각각 독립적으로, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기, 탄소수 3 내지 10의 시클로알킬기, 탄소수 6 내지 18의 페닐기 중 적어도 하나일 수 있다.
본 발명의 일 실시예에 따른 폴리이미드계 필름(100)은 우수한 기계적 특성 및 광학적 특성을 갖는다.
광학적 특성과 관련하여, 본 발명의 일 실시예에 따른 폴리이미드계 필름(100)은 3 이하의 황색도를 가질 수 있다. 또한, 본 발명의 일 실시예에 따른 폴리이미드계 필름(100)은 1% 이하의 헤이즈(haze)를 가질 수 있다. 본 발명의 일 실시예에 따른 폴리이미드계 필름(100)은 85% 이상의 광투과도를 가질 수 있다.
또한, 기계적 특성과 관련하여, 본 발명의 일 실시예에 따른 폴리이미드계 필름(100)은 5.0 GPa 이상의 영률(Young's modulus)을 가질 수 있다. 또한, 본 발명의 일 실시예에 따른 폴리이미드계 필름(100)은 15% 이상의 신율을 가질 수 있다. 또한, 본 발명의 일 실시예에 따른 폴리이미드계 필름(100)은 45 이상의 압입 경도를 가질 수 있다.
본 발명의 일 실시예에 따르면, 폴리이미드계 필름(100)이 우수한 광학적 특성 및 기계적 특성을 가지도록 하기 위하여, 필러(120)의 입자 크기, 필러(120)의 함량, 및 입자간 간격이 조정될 수 있다.
또한, 필러(120)가 폴리이미드계 매트릭스(110)에 균일하게 혼합되어, 폴리이미드계 필름(100)이 우수한 광학적 특성 및 기계적 특성을 가지도록 하기 위하여, 본 발명의 일 실시예는, 폴리이미드계 매트릭스(110)를 구성하는 폴리이미드계 중합체와 필러(120)의 새로운 혼합 방법을 제공한다.
본 발명의 일 실시예에 따르면, 필러(120)는 5 내지 50nm의 평균 입경을 가질 수 있다. 필러(120)의 평균 입경이 5nm 미만이면, 필러(120)의 분산성이 저하되어, 필러(120)들이 군집(aggregate)될 수 있다. 반면, 필러(120)의 평균 입경이 50nm를 초과하면, 필러(120)를 포함하는 폴리이미드계 필름(100)의 광학 특성이 저하될 수 있다. 예를 들어, 평균 입경이 50nm를 초과하는 필러(120)가 과량으로 포함되는 경우, 폴리이미드계 필름(100)의 헤이즈가 증가될 수 있다.
또한, 필러(120)의 평균 입경이 5nm 미만이면, 필러(120)의 군집(aggregate)에 의해, 필러(120)의 군집이 발생된 부분에서 폴리이미드 필름(100)의 기계적 강도가 저하되어, 폴리이미드 필름(100)의 인장강도, 영률(Young's Modulus) 및 압입 경도가 저하될 수 있다. 필러(120)의 평균 입경이 50nm를 초과하면, 폴리이미드계 필름(100)의 신율이 15% 미만이 될 수 있다.
또한, 필러(120)의 평균 입경이 5nm 미만인 경우 필러(120)의 분산성이 저하될 수 있고, 필러(120)의 평균 입경이 50nm를 초과하는 경우 필러(120) 사이의 간격이 충분히 확보되지 않아, 밀도 구배관 밀도에 대한 진밀도 비율(DR)이 1.10 초과할 수 있다.
본 발명의 다른 일 실시예에 따르면, 필러(120)는 10 내지 20nm의 평균 입경을 가질 수 있으며, 또는, 10 내지 15nm의 평균 입경을 가질 수도 있다.
폴리이미드 필름(100)이 나노미터 단위의 입경을 갖는 필러(120)를 포함하는 경우, 필러(120)에 의한 광 산란에 의하여 폴리이미드 필름(100)의 광학 특성이 향상될 수 있다. 또한, 폴리이미드 필름(100)이 필러(120)를 포함하는 경우, 폴리이미드 필름(100)의 기계적 특성이 향상될 수 있다.
본 발명의 일 실시예에 따르면, 필러(120)의 함량은 폴리이미드계 필름(100)의 전체 중량에 대하여 5 내지 50 중량% 범위일 수 있다.
필러(120)의 함량이 폴리이미드계 필름(100)의 전체 중량에 대하여 5 중량% 미만인 경우, 필러(120)에 의한 광 산란 효과가 미미하여, 폴리이미드계 필름(100)의 광투과도 개선 효과가 거의 나타나지 않을 수 있다. 또한, 필러(120)의 함량이 폴리이미드계 필름(100)의 전체 중량에 대하여 5 중량% 미만인 경우, 폴리이미드계 필름(100)의 인장강도, 영률(Young's modulus), 신율 및 경도 개선 효과가 미미할 수 있다.
반면, 필러(120)의 함량이 폴리이미드계 필름(100)의 전체 중량에 대하여 50 중량%를 초과하는 경우, 필러(120)의 분산성이 저하되어, 폴리이미드계 필름(100)의 헤이즈(Haze)가 저하될 수 있고, 과량의 필러(120)가 광을 차단하여 폴리이미드계 필름(100)의 광투과도가 저하될 수 있다.
도 4는 본 발명의 일 실시예에 따른 폴리이미드계 필름(100)에서 필러(120)의 분산 상태를 설명하는 개략도이다.
도 4에 도시된 바와 같이, 필러(120)들 중 일부는 서로 이격되어 분산되어 있는 반면, 일부는 군집(aggregation)을 형성하고 있다. 도 4에서 "Group A"는 군집을 이루고 있는 필러(120)를 나타낸다. "Group A"의 필러(120)들 이외의 필러(120)들은 군집되지 않고 분산되어 있는 필러(120)들(Group A 이외의 부분)을 나타낸다. 도 4의"Group A"와 같은 군집을 이루고 있는 필러(120)의 수가 적을수록 폴리이미드계 필름(100) 내에서 필러(120)가 균일하게 분산되어 있는 것이다.
도 4의"Group A"와 같은 군집을 이루고 있는 필러(120)의 양이 적은 경우, 밀도 구배관 밀도에 대한 진밀도 비율(DR)이 1.10 이하가 되어, 폴리이미드계 필름(100)이 우수한 인장강도, 영률(Young's Modulus), 신율 및 압입 경도를 가질 수 있다. 또한, "Group A"와 같은 군집을 이루고 있는 필러(120)의 양이 적은 경우, 입자 체적 농도(PVC)가 5 내지 38%의 범위가 되어, 폴리이미드계 필름(100)이 우수한 인장강도 및 영률(Young's Modulus)을 가질 수 있다.
일반적으로, 필러(120)가 포함되는 경우, 필러(120)가 충분히 균일하게 분산되지 못하면, 폴리이미드계 필름(100)의 인장강도, 영률(Young's modulus), 신율, 압입 경도 및 광투과도가 저하되고 황색도 및 헤이즈는 증가하는 등, 폴리이미드계 필름(100)의 기계적 특성 및 광학적 특성이 저하될 수 있다. 그러나, 본 발명의 일 실시예에 따르면, 밀도 구배관 밀도에 대한 진밀도 비율(DR)이 1.10 이하가 되도록 함으로써, 폴리이미드계 필름(100)의 인장강도, 영률(Young's modulus), 신율, 압입 경도 및 광투과도 저하를 방지할 수 있고, 황색도 및 헤이즈 증가를 방지할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 입자 체적 농도(PVC)가 5 내지 38%가 되도록 함으로써, 폴리이미드계 필름(100)의 인장강도 및 영률(Young's Modulus)의 저하를 방지할 수 있다.
본 발명의 일 실시예에 따르면, 폴리이미드계 필름(100)의 밀도 구배관 밀도에 대한 진밀도 비율(DR)이 1.10 이하가 되어, 폴리이미드계 필름(100)은 5.0 GPa 이상의 영률(Young's Modulus)을 가질 수 있다.
또한, 본 발명의 일 실시예에 따르면, 폴리이미드계 필름(100)은 15% 이상의 신율을 가질 수 있다.
또한, 본 발명의 일 실시예에 따르면, 폴리이미드계 필름(100)은 45 이상의 압입 경도를 가질 수 있다.
또한, 본 발명의 일 실시예에 따르면, 폴리이미드계 필름(100)은 85% 이상의 광투과도를 가질 수 있다.
또한, 본 발명의 일 실시예에 따르면, 폴리이미드계 필름(100)은 1% 이하의 헤이즈를 가질 수 있다.
또한, 본 발명의 일 실시예에 따르면, 폴리이미드계 필름(100)은 3.0 이하의 황색도를 가질 수 있다.
도 5는 본 발명의 다른 일 실시예에 따른 표시장치(200)의 일부에 대한 단면도이고, 도 6은 도 5의 "P" 부분에 대한 확대 단면도이다.
도 5를 참조하면, 본 발명의 다른 일 실시예에 따른 표시장치(200)는 표시패널(501) 및 표시패널(501) 상의 폴리이미드계 필름(100)을 포함한다.
도 5 및 도 6을 참조하면, 표시패널(501)은 기판(510), 기판(510) 상의 박막 트랜지스터(TFT) 및 박막 트랜지스터(TFT)와 연결된 유기 발광 소자(570)를 포함한다. 유기 발광 소자(570)는 제1 전극(571), 제1 전극(571) 상의 유기 발광층(572) 및 유기 발광층(572) 상의 제2 전극(573)을 포함한다. 도 5 및 도 6에 개시된 표시장치(200)은 유기발광 표시장치이다.
기판(510)은 유리 또는 플라스틱으로 만들어질 수 있다. 구체적으로, 기판(510)은 폴리이미드계 수지 또는 폴리이미드계 필름과 같은 플라스틱으로 만들어질 수 있다. 도시되지 않았지만, 기판(510) 상에 버퍼층이 배치될 수 있다.
박막 트랜지스터(TFT)는 기판(510) 상에 배치된다. 박막 트랜지스터(TFT)는 반도체층(520), 반도체층(520)과 절연되어 반도체층(520)의 적어도 일부와 중첩하는 게이트 전극(530), 반도체층(520)과 연결된 소스 전극(541) 및 소스 전극(541)과 이격되어 반도체층(520)과 연결된 드레인 전극(542)을 포함한다.
도 6을 참조하면, 게이트 전극(530)과 반도체층(520) 사이에 게이트 절연막(535)이 배치된다. 게이트 전극(530) 상에 층간 절연막(551)이 배치되고, 층간 절연막(551) 상에 소스 전극(541) 및 소스 전극(541)이 배치될 수 있다.
평탄화막(552)은 박막 트랜지스터(TFT) 상에 배치되어 박막 트랜지스터(TFT)의 상부를 평탄화시킨다.
제1 전극(571)은 평탄화막(552) 상에 배치된다. 제1 전극(571)은 평탄화막(552)에 구비된 콘택홀을 통해 박막 트랜지스터(TFT)와 연결된다.
뱅크층(580)은 제1 전극(571)의 일부 및 평탄화막(552) 상에 배치되어 화소 영역 또는 발광 영역을 정의한다. 예를 들어, 뱅크층(580)이 복수의 화소들 사이의 경계 영역에 매트릭스 구조로 배치됨으로써, 뱅크층(580)에 의해 화소 영역이 정의될 수 있다.
유기 발광층(572)은 제1 전극(571) 상에 배치된다. 유기 발광층(572)은 뱅크층(580) 상에도 배치될 수 있다. 유기 발광층(572)은 하나의 발광층을 포함할 수도 있고, 상하로 적층된 2개의 발광층을 포함할 수도 있다. 이러한 유기 발광층(572)에서는 적색, 녹색 및 청색 중 어느 하나의 색을 갖는 광이 방출될 수 있으며, 백색(White) 광이 방출될 수도 있다.
제2 전극(573)은 유기 발광층(572) 상에 배치된다.
제1 전극(571), 유기 발광층(572) 및 제2 전극(573)이 적층되어 유기 발광 소자(270)가 이루어질 수 있다.
도시되지 않았지만, 유기 발광층(572)이 백색(White) 광을 발광하는 경우, 개별 화소는 유기 발광층(572)에서 방출되는 백색(White) 광을 파장 별로 필터링하기 위한 컬러 필터를 포함할 수 있다. 컬러 필터는 광의 이동경로 상에 형성된다.
제2 전극(573) 상에 박막 봉지층(590)이 배치될 수 있다. 박막 봉지층(590)은 적어도 하나의 유기막 및 적어도 하나의 무기막을 포함할 수 있으며, 적어도 하나의 유기막 및 적어도 하나의 무기막이 교호적으로 배치될 수 있다.
이상 설명된 적층 구조를 갖는 표시패널(501) 상에 폴리이미드계 필름(100)이 배치된다. 폴리이미드계 필름(100)은 폴리이미드계 매트릭스(110) 및 폴리이미드계 매트릭스(110)에 분산된 필러(120)를 포함한다.
본 발명의 일 실시예에 따른 폴리이미드계 필름(100)은 용액 대 용액 혼합 및 용액 대 분말 혼합을 병행하는 하이브리드 혼합법에 의하여 제조될 수 있다.
본 발명의 일 실시예에 따르면, 폴리이미드계 필름(100)의 제조방법은, 폴리이미드계 수지 분말을 제조하는 단계, 폴리아미드계 수지 분말의 제1 함량을 제1 용매에 용해시켜 폴리이미드계 수지 용액을 제조하는 단계, 필러를 제2 용매에 분산시켜 필러 분산액을 제조하는 단계, 필러 분산액과 폴리이미드계 수지 용액을 혼합하여 제1 혼합액을 제조하는 단계 및 제1 혼합액에 폴리이미드계 수지 분말의 제2 함량을 첨가하고 용해시켜 제2 혼합액을 제조하는 단계를 포함한다.
본 발명의 일 실시예에 따르면, 폴리이미드계 수지 분말은 적어도 2회에 걸쳐 나누어져 필러 분산액과 혼합된다.
구체적으로, 폴리이미드계 수지 분말 중 제1 함량은 제1 용매에 용해되어 폴리이미드계 수지 용액 형태로 필러 분산액과 혼합된다. 제1 함량은, 필러 중량의 0.5 내지 10%이고, 바람직하게 1 내지 5%일 수 있다.
또한, 폴리이미드계 수지 분말 중 제2 함량은 분말 상태로 첨가된다. 구체적으로, 폴리이미드계 수지 분말 중 제2 함량은, 필러 분산액과 폴리이미드계 수지 용액이 혼합되어 이루어진 제1 혼합액에 분말 상태로 첨가될 수 있다.
폴리이미드계 수지 분말의 제2 함량은 제1 함량의 10배 내지 200배가 될 수 있다. 보다 구체적으로, 폴리이미드계 수지 분말의 제2 함량은 제1 함량의 60배 내지 200배가 될 수 있다.
본 발명의 일 실시에에 따르면, 폴리이미드계 수지 분말의 제2 함량을 제1 혼합액에 첨가하기 전에, 제1 혼합액에 제3 용매를 첨가하는 단계를 더 포함할 수 있다. 제3 용매는 제1 용매와 동일할 수도 있고, 다를 수도 있다. 본 발명의 일 실시예에 따르면, 제3 용매로 제1 용매와 동일한 용매가 사용될 수 있다.
제1 용매로 DMAc(N,N-Dimethylacetamide)가 사용될 수 있다. 제2 용매로 DMAc(N,N-Dimethylacetamide) 또는 메틸에틸케톤(Methyl Ethyl Ketone, MEK)이 사용될 수 있다. 제3 용매로 DMAc(N,N-Dimethylacetamide)가 사용될 수 있다. 그러나, 본 발명의 일 실시예가 이에 한정되는 것은 아니며, 제1 용매, 제2 용매 및 제3 용매로, 공지된 다른 용매가 사용될 수도 있다.
본 발명의 일 실시예에 따르면, 먼저, 폴리이미드계 수지 분말 중 일부(제1 함량)가 용매에 용해된 후, 필러 분산액과 혼합된다. 그에 따라, 필러의 분산성이 향상된다.
참고로, 필러가 분산되어 있는 필러 분산액에 직접 폴리이미드계 수지 분말이 투입되는 경우, 분말의 표면에서 용매가 순간적으로 분말 안쪽으로 침투되며, 이 때 분말 표면 주위의 농도가 순간적으로 상승하게 되어 필러의 뭉침 현상이 발생될 수 있다.
반면, 본 발명의 일 실시예에 따르면, 용매를 포함하는 필러 분산액에, 이미 용해된 폴리이미드계 수지를 먼저 첨가함으로써, 필러 사이에 분포된 폴리이미드계 수지의 고분자 사슬이 필러 간의 뭉칭을 방지할 수 있다. 그 후, 폴리이미드계 수지 분말이 다시 첨가되더라도(제2 함량 첨가), 필러 간의 뭉침은 발생되지 않는다. 그에 따라, 필러의 뭉침 현상이 방지되고, 필러의 분산성이 향상된다.
본 발명의 일 실시예에 따른 용액 대 용액 혼합 및 용액 대 분말 혼합을 병행하는 하이브리드 혼합법에 의하여, 균일하게 분산된 필러를 포함하는 폴리이미드계 필름(100)이 제조될 수 있다.
본 발명의 일 실시예에 따르면, 필러(120)와 폴리이미드계 수지의 자유도가 높은 상태가 유지될 수 있어, 분산성이 용이한 환경이 만들어질 수 있다. 그에 따라, 높은 자유도 상태에서 필러(120)와 폴리이미드계 수지가 결합될 수 있으며, 필러(120)가 폴리이미드계 수지에 의하여 형성된 매트릭스(110)에 균일하게 분산되어 있는 폴리이미드계 필름(100)이 제조될 수 있다.
본 발명의 일 실시예에 따르면, 필러(120)로 실리카 입자가 사용될 수 있다. 실리카 입자는, 예를 들어, 테트라에틸트리에톡시실란으로부터 제조될 수 있다.
구체적으로, 반응기에 에탄올과 테트라에틸트리에톡시실란(tetraethylthoxysilane, TEOS, Si(OC2H5)4)을 첨가하여 상온에서 교반하고, 여기에 NH4OH를 첨가한 후 교반하여 얻어진 반응물을 여과하고, 에탄올로 세척한 다음, 감압 하에 건조하여, 평균 입경이 20nm 정도인 실리카 입자[SiO2]를 제조할 수 있다.
필러(120) 분산액으로 실리카 분산액이 사용될 수 있다. 실리카 분산액은, 예를 들어, 반응기에 디메틸아세트아마이드(Dimethylacetamide, DMAc) 및 실리카 입자를 첨가하고, 교반하여 제조될 수 있다.
이하, 예시적인 제조예 및 실시예를 참조하여 본 발명을 보다 구체적으로 설명한다. 그러나, 이하 설명되는 제조예나 실시예에 의하여 본 발명이 한정되는 것은 아니다.
<제조예 1: 폴리이미드계 중합체 고형분 제조>
교반기, 질소주입장치, 적하깔때기, 온도조절기 및 냉각기를 부착한 1L 반응기에 질소를 통과시키면서, DMAc(N,N-Dimethylacetamide) 776.655g을 채운 후, 반응기의 온도를 25℃로 맞춘 후, TFDB 54.439g(0.17mol)을 용해하여 이 용액을 25℃로 유지하였다. 여기에 BPDA 15.005g(0.051mol)을 첨가하고 3시간 동안 교반하여 BPDA를 완전히 용해시킨 후, 6FDA 22.657g(0.051mol)을 첨가하여 완전히 용해시켰다. 반응기 온도를 10℃로 내린 후 TPC 13.805g(0.068mol)을 첨가한 후 25℃에서 12시간 반응하여 고형분의 농도가 12중량%인 중합체 용액을 얻었다.
얻어진 중합체 용액에 피리딘 17.75g, 아세틱 안하이드라이드 22.92g을 투입하여 30분 교반 후, 다시 70℃에서 1시간 교반하여 상온으로 식히고, 얻어진 중합체 용액에 메탄올 20L를 첨가하여 고형분을 침전시키고, 침전된 고형분을 여과하고 분쇄한 후, 다시 메탄올 2L로 세정한 후, 100℃에서 진공으로 6시간 건조하여 분말 상태의 폴리이미드계 중합체 고형분을 얻었다. 여기서 제조된 폴리이미드계 중합체 고형분은 폴리아마이드-이미드 중합체 고형분이다.
<실시예 1>
1L 반응기에 35.42 중량부의 DMAc(제1 용매)를 채운 후, 반응기의 온도를 10 oC로 유지한 채 일정시간 교반하였다. 이후, 제조예 1에서 제조된 고형분 분말의 폴리아마이드-이미드(폴리이미드계 수지 분말) 0.36 중량부(제1 함량)를 투입한 후, 1시간 교반 후 25℃로 승온시켜서 액상의 폴리이미드계 수지 용액을 제조하였다.
DMAc(N,N-디메틸아세트아마이드) 용액(제2 용매)에 평균 입경 10nm인 실리카 입자가 30중량%의 함량으로 분산되어 이루어진 실리카 분산액 A(SSD_330T, Ranco) 23.85 중량부를 다른 1L 반응기에 채운 후, 반응기의 온도를 25℃로 유지한 채, 상기 제조된 액상의 폴리이미드계 수지 용액을 실린더 펌프를 이용하여 1시간 동안 천천히 투입시켜, 실리카 분산액과 폴리이미드계 수지 용액이 혼합된 제1 혼합액을 제조하였다.
제1 혼합액에 제3 용매인 DMAc 348.23 중량부를 첨가하여 교반하고, 제조예 1에서 제조된 고형분 분말의 폴리아마이드-이미드(폴리이미드계 수지 분말) 64.04 중량부(제2 함량)를 첨가하고 교반하여, 제2 혼합액을 제조하였다. 제2 혼합액은 실리카 입자가 분산된 폴리이미드계 수지 용액이다.
얻어진 제2 혼합액을 캐스팅하였다. 캐스팅을 위해 캐스팅 기판이 사용된다. 캐스팅 기판의 종류에 특별한 제한이 있는 것은 아니다. 캐스팅 기판으로, 유리 기판, 스테인레스(SUS) 기판, 테프론 기판 등이 사용될 수 있다. 본 발명의 일 실시예에 따르면, 캐스팅 기판으로 유기 기판이 사용될 수 있다.
구체적으로, 얻어진 제2 혼합액을 유리 기판에 도포하여, 캐스팅하고 120℃의 열풍으로 30분 건조하여 필름을 제조한 후, 제조된 필름을 유리 기판에서 박리하여 프레임에 핀으로 고정하였다.
필름이 고정된 프레임을 진공오븐에 넣고 100℃부터 280℃까지 2시간 동안 천천히 가열한 후, 서서히 냉각해 프레임으로부터 분리하여 폴리이미드계 필름을 수득하였다. 다시 폴리이미드계 필름을 250℃에서 5분 동안 열처리하였다.
그 결과, 폴리이미드계 매트릭스(110) 및 폴리이미드계 매트릭스에 분산된 실리카계 필러(120)를 포함하는, 50㎛ 두께의 폴리이미드계 필름(100)이 완성되었다.
<실시예 2 내지 7>
실시예 1과 동일한 방법으로, 실리카 분산액, 실리카 분산액의 함량, 제1 함량, 제2 함량, 제1 용매 함량 및 제3 용매의 함량만 달리하여 실시예 2 내지 7의 폴리이미드계 필름을 제조하였다.
실시예 1 내지 7의 구체적 실리카 분산액, 실리카 분산액의 함량, 제1 함량, 제2 함량, 제1 용매 함량 및 제3 용매의 함량은 하기 표 1과 같다.
<비교예 1>
실시예 1과 동일한 방법으로, 실리카 분산액, 실리카 분산액의 함량, 제1 함량, 제2 함량, 제1 용매 함량 및 제3 용매의 함량을 달리하여 폴리이미드계 필름(100)을 제조하였다.
비교예 1의 구체적 실리카 분산액, 실리카 분산액의 함량, 제1 함량, 제2 함량, 제1 용매 함량 및 제3 용매의 함량은 하기 표 1과 같다.
<비교예 2>
1L 반응기에 DMAc(N,N-디메틸아세트아마이드) 용액(제2 용매)에 평균 입경 50nm인 실리카 입자가 20중량%의 함량으로 분산되어 이루어진 실리카 분산액 C(50nmSP-AD1, Admatechs) 35.80 중량부를 채운 후, 371.73 중량부의 DMAc(제3 용매)를 첨가하여 교반하였다. 교반한 용액에 제조예 1에서 제조된 고형분 분말의 폴리아마이드-이미드(폴리이미드계 수지 분말) 64.40 중량부(제2 함량)를 첨가하고 교반하여, 실리카 분산액과 폴리이미드계 수지가 혼합된 혼합액을 제조하였다. 혼합액은 실리카 입자가 분산된 폴리이미드계 수지 용액이다.
얻어진 혼합액을 캐스팅하였다. 캐스팅 및 그 이후 과정은 실시예 1과 동일한 방법으로 폴리이미드계 필름(100)을 제조하였다.
<비교예 3>
1L 반응기에 DMAc(N,N-디메틸아세트아마이드) 용액(제2 용매)에 평균 입경 70nm인 실리카 입자가 20중량%의 함량으로 분산되어 이루어진 실리카 분산액 D(DMAc-ST-ZL, Nissan) 35.80 중량부를 채운 후, 371.06 중량부의 DMAc(제3 용매)를 첨가하여 교반하였다. 교반한 용액에 제조예 1에서 제조된 고형분 분말의 폴리아마이드-이미드(폴리이미드계 수지 분말) 64.40 중량부(제2 함량)를 첨가하고 교반하여, 실리카 분산액과 폴리이미드계 수지가 혼합된 혼합액을 제조하였다. 혼합액은 실리카 입자가 분산된 폴리이미드계 수지 용액이다.
얻어진 혼합액을 캐스팅하였다. 캐스팅 및 그 이후 과정은 실시예 1과 동일한 방법으로 폴리이미드계 필름(100)을 제조하였다.
<비교예 4 내지 7>
실시예 1과 동일한 방법으로, 실리카 분산액, 실리카 분산액의 함량, 제1 함량, 제2 함량, 제1 용매 함량 및 제3 용매의 함량을 달리하여 비교예 4 내지 7의 폴리이미드계 필름(100)을 제조하였다.
비교예 4 내지 7의 구체적 실리카 분산액, 실리카 분산액의 함량, 제1 함량, 제2 함량, 제1 용매 함량 및 제3 용매의 함량은 하기 표 1과 같다.
구분 실리카 분산액 실리카 분산액의 함량
(중량부)
제1 함량
(중량부)
제1 용매 함량
(중량부)
제2 함량
(중량부)
제3 용매 함량
(중량부)
실시예 1 실리카 분산액 A
(SSD_330T, Ranco)
평균 입경: 10nm
분산액 내 실리카 입자의 함량: 30중량%
23.85 0.36 35.42 64.04 348.23
실시예 2 실리카 분산액 A(SSD_330T, Ranco)
평균 입경: 10nm
분산액 내 실리카 입자의 함량: 30중량%
115.60 1.73 171.67 62.67 284.01
실시예 3 실리카 분산액 A(SSD_330T, Ranco)
평균 입경: 11nm
분산액 내 실리카 입자의 함량: 30중량%
175.70 2.64 260.91 61.76 241.94
실시예 4 실리카 분산액 C
(50nmSP-AD1, Admatechs)
평균 입경: 50nm
분산액 내 실리카 입자의 함량: 20중량%
35.80 0.36 35.44 64.04 336.29
실시예 5 실리카 분산액 B
(SSK230U2, Ranco)
평균 입경: 30nm
분산액 내 실리카 입자의 함량: 30중량%
92.00 1.38 136.62 63.02 300.53
실시예 6 실리카 분산액 A(SSD_330T, Ranco)
평균 입경: 10nm
분산액 내 실리카 입자의 함량: 30중량%
115.60 0.35 34.33 64.05 284.01
실시예 7 실리카 분산액 A(SSD_330T, Ranco)
평균 입경: 10nm
분산액 내 실리카 입자의 함량: 30중량%
92.0 2.76 273.24 61.64 300.53
비교예 1 실리카 분산액 A
(SSD_330T, Ranco)
평균 입경: 10nm
분산액 내 실리카 입자의 함량: 30중량%
262.40 3.94 389.66 60.46 181.25
비교예 2 실리카 분산액 C(50nmSP-AD1, Admatechs)
평균 입경: 50nm
분산액 내 실리카 입자의 함량: 20중량%
35.80 0.00 0.00 64.40 371.73
비교예 3 실리카 분산액 D
(DMAc-ST-ZL, Nissan)
평균 입경: 70nm
분산액 내 실리카 입자의 함량: 20중량%
35.80 0.00 0.00 64.40 371.06
비교예 4 실리카 분산액 E
(Y100SP-CD1, Admatechs)
평균 입경: 100nm
분산액 내 실리카 입자의 함량: 20중량%
35.80 0.36 35.44 64.04 336.29
비교예 5 실리카 분산액 A(SSD_330T, Ranco)
평균 입경: 10nm
분산액 내 실리카 입자의 함량: 30중량%
92.0 0.11 10.93 64.29 300.53
비교예 6 실리카 분산액 A(SSD_330T, Ranco)
평균 입경: 10nm
분산액 내 실리카 입자의 함량: 30중량%
92 3.04 300.56 61.36 300.53
비교예 7 실리카 분산액 A(SSD_330T, Ranco)
평균 입경: 10nm
분산액 내 실리카 입자의 함량: 30중량%
8.93 0.27 26.53 64.13 358.68
<측정예>
실시예 1 내지 7 및 비교예 1 내지 7에서 제조된 폴리이미드계 필름에 대하여 다음과 같은 측정을 실행하였다.
1) 밀도 구배관 밀도에 대한 진밀도 비율(DR)의 측정
폴리이미드계 필름의 진밀도 및 밀도 구배관 밀도를 하기와 같이 측정하고, 측정한 진밀도 및 밀도 구배관 밀도를 하기 식 1과 같이 계산하여 폴리이미드계 필름의 밀도 구배관 밀도에 대한 진밀도 비율(DR)을 산출하였다.
<식 1>
DR = 진밀도 / 밀도 구배관 밀도
(1) 진밀도 측정
폴리이미드계 필름(100) 시편(10 X 10cm2)을 1 X 1cm2 이하의 크기로 잘게 절단하여 샘플 홀더에 쇠구슬(분쇄기)과 함께 넣어주었다. 냉동분쇄기(Japan Analytical Industry사, JFC-300)에 2/3 이상 액체질소를 채우고, 잘린 시편이 들은 샘플 홀더를 냉동분쇄기와 결합한 후 챔버를 닫고, 냉동분쇄기를 이용하여 pre-cool 15분 / run 15분 이상 시편을 분쇄하였다. 분쇄된 필름(100) 시편을 Micromeritics社 AccuPyc 1340 Pycnometer 장비(헬륨 가스 사용)를 이용하여 시편의 진밀도를 7회 측정하였다. 측정한 필름(100)의 진밀도 값 중 최고 및 최저 값을 제외하고, 나머지 진밀도 값으로 평균을 계산하여 폴리이미드계 필름(100)의 진밀도를 산출하였다.
(2) 밀도 구배관 밀도 측정
표준규격 ASTM D1505에 따라, 밀도 구배관을 이용하여 폴리이미드계 필름(100)의 밀도 구배관 밀도를 측정하였다.
2) 입자 체적 농도(PVC)의 측정
폴리이미드계 필름의 필러의 부피(V1) 및 매트릭스의 부피(V2)를 각각 측정 후, 하기 식 2에 따라 폴리이미드계 필름의 입자 체적 농도(PVC)을 산출하였다.
<식 2>
PVC(%) = [V1 / (V1 + V2)]*100
상기 식 2에서 V1은 상기 필러의 부피이며, V2는 상기 매트릭스의 부피이다.
필러의 부피(V1)는 필러의 질량을 밀도로 나누어서 산출할 수 있다. 구체적으로, 필름(100)에 포함되는 필러의 질량 및 밀도를 각각 측정하여 필러의 부피(V1)를 산출할 수 있다. 예를 들어, 필러의 질량은 필름(100) 제조 시 첨가되는 필러의 무게를 재서 알 수 있다. 필러의 밀도는 전술한 진밀도 측정 방법 또는 밀도 구배관 밀도 측정방법을 이용하여 필러의 밀도를 측정할 수 있다.
매트릭스의 부피(V2)는 매트릭스의 질량을 밀도로 나누어서 산출할 수 있다. 구체적으로, 필름(100)에 포함되는 매트릭스의 질량 및 밀도를 각각 측정하여 매트릭스의 부피(V2)를 산출할 수 있다. 예를 들어, 매트릭스의 질량은 필름(100) 제조 시 첨가되는 매트릭스의 무게를 재서 알 수 있다. 매트릭스의 밀도는 전술한 진밀도 측정 방법 또는 밀도 구배관 밀도 측정방법을 이용하여 매트릭스의 밀도를 측정할 수 있다.
3) 영률(Young's modulus) 및 신율: ASTM D885 방법에 따라, 인스트론사의 만능인장시험기를 이용하여 폴리이미드계 필름의 영률(Young's modulus) 및 신율을 측정하였다.
4) 압입 경도: 제조된 폴리이미드계 필름을 2cm X 10cm로 잘라 Fischerscope HM2000 (HELMUT FISCHER社) 장비를 이용하여(측정 조건: F = 12.000 mN/12s, C = 5.0s), HV 값을 측정하였다. 총 7회 측정하여, 최고 및 최저 값을 제외하고, 나머지 HV 값의 평균을 산출하여 폴리이미드계 필름의 압입 경도를 산출하였다.
5) 광투과도(%): 표준규격 ASTM E313으로 Spectrophotometer (CM-3700D, KONICA MINOLTA)를 이용하여, 파장 360~740nm 에서의 평균 광학투과도를 측정하였다.
6) 황색도: 표준규격 ASTM E313으로 Spectrophotometer (CM-3700D, KONICA MINOLTA)를 이용하여 황색도를 측정하였다.
7) 헤이즈: 제조된 폴리이미드계 필름을 50㎜ Х 50㎜로 잘라 MURAKAMI社의 헤이즈 미터(모델명: HM-150) 장비를 이용하여 ASTM D1003에 따라 5회 측정하여 그 평균 값을 헤이즈 값으로 하였다.
측정결과는 다음 표 2 및 표 3과 같다.
구분 진밀도 밀도 구배관 밀도 밀도 구배관 밀도에 대한 진밀도 비율(DR) 입자 체적 농도(PVC)
(%)
실시예 1 1.615 1.475 1.095 7.4
실시예 2 1.719 1.608 1.069 27.92
실시예 3 1.782 1.694 1.052 37.07
실시예 4 1.619 1.480 1.094 7.4
실시예 5 1.692 1.573 1.076 23.6
실시예 6 1.718 1.607 1.069 27.92
실시예 7 1.631 1.571 1.038 23.58
비교예 1 1.880 1.702 1.105 46.8
비교예 2 1.619 1.460 1.109 7.4
비교예 3 1.617 1.461 1.107 7.4
비교예 4 1.618 1.459 1.109 7.4
비교예 5 1.629 1.47 1.108 23.58
비교예 6 1.63 1.47 1.109 23.58
비교예 7 1.604 1.45 1.106 2.91
구분 영률
(Young's modulus)
(GPa)
신율
(%)
압입 경도 광투과도
(%)
황색도 헤이즈
실시예 1 5.1 28 46 89.6 2.7 0.2
실시예 2 5.7 25 51 90.4 2.3 0.2
실시예 3 5.8 20 53 90.6 2.1 0.3
실시예 4 5.1 17 46 89.7 2.8 0.3
실시예 5 5.5 16 49 90.1 2.5 0.3
실시예 6 5.7 24 52 90.5 2.2 0.2
실시예 7 5.6 17 50 90.4 2.2 0.3
비교예 1 4.9 7 41 88.8 3.1 0.6
비교예 2 4.9 10 41 88.5 3.2 0.8
비교예 3 4.9 13 40 88.3 3.5 1.2
비교예 4 4.7 11 41 88.2 3.9 1.8
비교예 5 4.8 14 42 88.7 3.2 0.8
비교예 6 4.9 13 41 88.7 3.1 0.8
비교예 7 4.7 14 43 88.6 3.4 0.7
상기 표 2 및 3의 측정결과에 개시된 바와 같이, 본 발명의 실시예에 따른 폴리이미드계 필름(100)은 밀도 구배관 밀도에 대한 진밀도 비율(DR)이 1.10 이하로, 영률, 신율 및 압입 경도와 같은 기계적 특성이 우수할 뿐만 아니라, 우수한 광투과도, 낮은 황색도 및 낮은 헤이즈를 가져 광학특성 역시 우수하다는 것을 확인할 수 있다.그러나, 비교예 1은 폴리이미드계 필름의 전체 중량에 대하여 필러의 함량이 50중량%를 초과하는 것으로, 밀도 구배관 밀도에 대한 진밀도 비율(DR)이 1.10을 초과하였으며, 입자 체적 농도(PVC)이 38% 초과하였고, 폴리이미드계 필름의 영률이 5.0 GPa 미만, 신율이 15% 미만, 압입 경도가 45% 미만, 황색도가 3.0 초과하였다.비교예 2는 폴리이미드계 수지 분말을 제1 함량 및 제2 함량으로 구분하지 않고 필러 분산액과 혼합한 것으로, 밀도 구배관 밀도에 대한 진밀도 비율(DR)이 1.10을 초과하였고, 폴리이미드계 필름의 영률이 5.0 GPa 미만, 신율이 15% 미만, 압입 경도가 45% 미만, 황색도가 3.0 초과하였다.
비교예 3은 폴리이미드계 수지 분말을 제1 함량 및 제2 함량으로 구분하지 않고 필러 분산액과 혼합하고, 또한, 필러의 평균 입경이 50nm 초과인 것으로, 밀도 구배관 밀도에 대한 진밀도 비율(DR)이 1.10을 초과하였고, 폴리이미드계 필름의 영률이 5.0 GPa 미만, 신율이 15% 미만, 압입 경도가 45% 미만, 황색도가 3.0 초과, 헤이즈가 1% 초과하였다.
비교예 4는 필러의 평균 입경이 50nm 초과인 것으로, 밀도 구배관 밀도에 대한 진밀도 비율(DR)이 1.10을 초과하였고, 폴리이미드계 필름의 영률이 5.0 GPa 미만, 신율이 15% 미만, 압입 경도가 45% 미만, 황색도가 3.0 초과, 헤이즈가 1% 초과하였다.
비교예 5는 필러 중량에 대한 폴리이미드계 수지 분말의 제1 함량이 0.5% 미만인 것으로, 밀도 구배관 밀도에 대한 진밀도 비율(DR)이 1.10을 초과하였고, 폴리이미드계 필름의 영률이 5.0 GPa 미만, 신율이 15% 미만, 압입 경도가 45% 미만, 황색도가 3.0 초과하였다..
비교예 6은 필러 중량에 대한 폴리이미드계 수지 분말의 제1 함량이 10% 초과인 것으로, 밀도 구배관 밀도에 대한 진밀도 비율(DR)이 1.10을 초과하였고, 폴리이미드계 필름의 영률이 5.0 GPa 미만, 신율이 15% 미만, 압입 경도가 45% 미만, 황색도가 3.0 초과하였다.
비교예 7은 폴리이미드계 필름의 전체 중량에 대하여 필러의 함량이 5 중량%를 미만인 것으로, 밀도 구배관 밀도에 대한 진밀도 비율(DR)이 1.10을 초과하였고, 폴리이미드계 필름의 영률이 5.0 GPa 미만, 신율이 15% 미만, 압입 경도가 45% 미만, 황색도가 3.0 초과하였다.
[부호의 설명]
100: 폴리이미드계 필름
110: 폴리이미드계 매트릭스
120: 필러
200: 표시장치
501: 표시패널

Claims (13)

  1. 폴리이미드계 매트릭스; 및
    상기 폴리이미드계 매트릭스에 분산된 필러(filler);를 포함하며,
    1.10 이하의 밀도 구배관 밀도에 대한 진밀도 비율(DR)을 갖는, 폴리이미드계 필름:
    상기 밀도 구배관 밀도에 대한 진밀도 비율(Density Ratio, DR)은 하기 식 1로 산출된다.
    <식 1>
    Density Ratio (DR) = 진밀도 / 밀도 구배관 밀도
  2. 제1항에 있어서,
    5 내지 38%의 입자 체적 농도(PVC)를 갖는, 폴리이미드계 필름:
    상기 입자 체적 농도(PVC)는 하기 식 2로 산출된다.
    <식 2>
    PVC(%) = [V1 / (V1 + V2)]*100
    상기 식 2에서 V1은 상기 필러의 부피이며, V2는 상기 매트릭스의 부피이다.
  3. 제1항에 있어서,
    상기 필러는 실리카(SiO2)를 포함하는, 폴리이미드계 필름.
  4. 제3항에 있어서,
    상기 실리카(SiO2)의 적어도 일부는 알콕시기를 갖는 유기 화합물에 의하여 표면 처리 된, 폴리이미드계 필름.
  5. 제1항에 있어서,
    상기 필러의 평균 입경은 5 내지 50nm인, 폴리이미드계 필름.
  6. 제1항에 있어서,
    상기 필러의 함량은, 상기 폴리이미드계 필름의 전체 중량에 대하여 5 내지 50중량%인, 폴리이미드계 필름.
  7. 제1항에 있어서,
    5.0 GPa 이상의 영률(Young's Modulus)을 갖는, 폴리이미드계 필름.
  8. 제1항에 있어서,
    15% 이상의 신율를 갖는, 폴리이미드계 필름.
  9. 제1항에 있어서,
    45 이상의 압입 경도를 갖는, 폴리이미드계 필름.
  10. 제1항에 있어서,
    3 이하의 황색도를 갖는, 폴리이미드계 필름.
  11. 제1항에 있어서,
    1% 이하의 헤이즈(haze)를 갖는, 폴리이미드계 필름.
  12. 제1항에 있어서,
    85% 이상의 광투과도를 갖는, 폴리이미드계 필름.
  13. 표시패널; 및
    상기 표시패널 상에 배치된, 제1항 내지 제12항 중 어느 한 항의 폴리이미드계 필름;
    을 포함하는, 표시장치.
PCT/KR2021/008763 2020-07-10 2021-07-09 우수한 필러 분산성을 갖는 폴리이미드계 필름 및 이를 포함하는 표시장치 WO2022010298A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023500353A JP2023533275A (ja) 2020-07-10 2021-07-09 優れたフィラー分散性を有するポリイミド系フィルム及びそれを含む表示装置
US18/002,318 US20230257532A1 (en) 2020-07-10 2021-07-09 Polyimide-based film having excellent filler dispersibility and display device comprising same
CN202180048975.XA CN115803385A (zh) 2020-07-10 2021-07-09 具有优异的填料分散性的聚酰亚胺类薄膜和包括该聚酰亚胺类薄膜的显示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0085591 2020-07-10
KR20200085591 2020-07-10
KR1020210090033A KR20220007548A (ko) 2020-07-10 2021-07-09 우수한 필러 분산성을 갖는 폴리이미드계 필름 및 이를 포함하는 표시장치
KR10-2021-0090033 2021-07-09

Publications (1)

Publication Number Publication Date
WO2022010298A1 true WO2022010298A1 (ko) 2022-01-13

Family

ID=79553476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/008763 WO2022010298A1 (ko) 2020-07-10 2021-07-09 우수한 필러 분산성을 갖는 폴리이미드계 필름 및 이를 포함하는 표시장치

Country Status (5)

Country Link
US (1) US20230257532A1 (ko)
JP (1) JP2023533275A (ko)
CN (1) CN115803385A (ko)
TW (1) TWI795837B (ko)
WO (1) WO2022010298A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160047499A (ko) * 2013-08-27 2016-05-02 린텍 가부시키가이샤 하드코트 적층체 및 그 제조 방법
KR20160090153A (ko) * 2015-01-21 2016-07-29 에스케이씨코오롱피아이 주식회사 기공을 갖는 입자를 이용한 폴리이미드 필름의 제조방법 및 저유전율의 폴리이미드 필름
KR20170113288A (ko) * 2016-03-29 2017-10-12 아지노모토 가부시키가이샤 수지 시트
JP6530125B1 (ja) * 2018-04-27 2019-06-12 住友化学株式会社 光学フィルム
KR20200038186A (ko) * 2018-10-02 2020-04-10 스미또모 가가꾸 가부시키가이샤 광학 필름, 플렉시블 표시 장치 및 광학 필름의 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102339037B1 (ko) * 2015-06-26 2021-12-14 코오롱인더스트리 주식회사 폴리아마이드-이미드 전구체, 폴리아마이드-이미드 필름 및 이를 포함하는 표시소자
JP2020076067A (ja) * 2018-11-08 2020-05-21 住友化学株式会社 光学フィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160047499A (ko) * 2013-08-27 2016-05-02 린텍 가부시키가이샤 하드코트 적층체 및 그 제조 방법
KR20160090153A (ko) * 2015-01-21 2016-07-29 에스케이씨코오롱피아이 주식회사 기공을 갖는 입자를 이용한 폴리이미드 필름의 제조방법 및 저유전율의 폴리이미드 필름
KR20170113288A (ko) * 2016-03-29 2017-10-12 아지노모토 가부시키가이샤 수지 시트
JP6530125B1 (ja) * 2018-04-27 2019-06-12 住友化学株式会社 光学フィルム
KR20200038186A (ko) * 2018-10-02 2020-04-10 스미또모 가가꾸 가부시키가이샤 광학 필름, 플렉시블 표시 장치 및 광학 필름의 제조 방법

Also Published As

Publication number Publication date
TW202204504A (zh) 2022-02-01
CN115803385A (zh) 2023-03-14
US20230257532A1 (en) 2023-08-17
TWI795837B (zh) 2023-03-11
JP2023533275A (ja) 2023-08-02

Similar Documents

Publication Publication Date Title
WO2017179877A1 (ko) 무색 투명한 폴리아마이드-이미드 필름 및 이의 제조방법
WO2010002182A9 (en) Plastic substrate and device including the same
WO2018147602A1 (ko) 폴리아마이드-이미드 필름
WO2017111289A1 (ko) 지환족 모노머가 적용된 폴리아믹산 조성물 및 이를 이용한 투명 폴리이미드 필름
WO2018147605A1 (ko) 폴리이미드 필름 및 이의 제조방법
WO2020159085A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2022010298A1 (ko) 우수한 필러 분산성을 갖는 폴리이미드계 필름 및 이를 포함하는 표시장치
WO2020141713A1 (ko) 신규한 디카르보닐 화합물을 포함하는 폴리아믹산 조성물의 제조방법, 폴리아믹산 조성물, 이를 이용한 폴리아미드-이미드 필름의 제조방법 및 그 제조방법을 통해 제조된 폴리아미드-이미드 필름.
WO2020159184A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2023054866A1 (ko) 다층구조를 가지는 광학 필름 및 이를 포함하는 표시장치
WO2022145891A1 (ko) 우수한 중합도를 갖는 고분자 수지를 포함하는 광학 필름 및 이를 포함하는 표시장치
WO2021194312A1 (ko) 폴딩 후 복원력이 우수한 광학 필름 및 이를 포함하는 표시장치
WO2022055235A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2020071588A1 (ko) 폴리아미드이미드 필름의 제조방법 및 이로부터 제조되는 폴리아미드이미드 필름
WO2022010253A1 (ko) 광투과성 필름, 그 제조방법 및 이를 포함하는 표시장치
WO2022145890A1 (ko) 광학 특성이 개선된 광학 필름, 이를 포함하는 표시장치 및 이의 제조방법
WO2023286955A1 (ko) 선명도가 우수한 광학 필름 및 이를 포함하는 표시장치
WO2024019472A1 (ko) 광학 필름 및 이를 포함하는 표시장치
WO2022010299A1 (ko) 광투과성 필름 및 이를 포함하는 표시장치
WO2023106571A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2024019468A1 (ko) 광학 필름 및 이를 포함하는 표시장치
WO2023286954A1 (ko) 폴딩 성능이 우수한 광학 필름 및 이를 포함하는 표시장치
WO2015152674A1 (ko) 시아네이트계 수지에 대한 분산성이 우수한 실리카졸 조성물 및 이의 제조 방법
WO2024071896A1 (ko) 강성이 개선된 광학 필름 및 이를 포함하는 표시장치
WO2022145826A1 (ko) 낮은 색변환 지수를 갖는 광학 필름 및 이를 포함하는 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21836875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21836875

Country of ref document: EP

Kind code of ref document: A1