WO2023112976A1 - バルーンカテーテル - Google Patents

バルーンカテーテル Download PDF

Info

Publication number
WO2023112976A1
WO2023112976A1 PCT/JP2022/046136 JP2022046136W WO2023112976A1 WO 2023112976 A1 WO2023112976 A1 WO 2023112976A1 JP 2022046136 W JP2022046136 W JP 2022046136W WO 2023112976 A1 WO2023112976 A1 WO 2023112976A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
cylinder shaft
shaft
tube
inner cylinder
Prior art date
Application number
PCT/JP2022/046136
Other languages
English (en)
French (fr)
Inventor
佐藤亮太
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to AU2022408530A priority Critical patent/AU2022408530A1/en
Priority to CA3236296A priority patent/CA3236296A1/en
Publication of WO2023112976A1 publication Critical patent/WO2023112976A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0108Steering means as part of the catheter or advancing means; Markers for positioning using radio-opaque or ultrasound markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters

Definitions

  • the present invention relates to a balloon catheter equipped with an X-ray contrast marker.
  • balloon catheters are used for minimally invasive treatment, and are used for a wide variety of treatments such as vascular stenosis, heart valve stenosis, arrhythmia, and embolic material removal.
  • the structure of a typical balloon catheter includes an outer cylinder shaft and an inner cylinder shaft that constitute shafts, a proximal end of the balloon, a distal end (tip) of the outer cylinder shaft, and a distal end of the balloon.
  • An end (tip) and a distal end (tip) of the inner cylinder shaft are connected to form a balloon.
  • the balloon of a balloon catheter can be expanded and contracted by flowing a fluid through the flow path between the outer and inner shafts.
  • the shaft may be provided with a marker portion made of an X-ray opaque material for enabling accurate and rapid positioning with respect to the treatment site when performing a procedure to dilate the stricture with a balloon.
  • a marker portion made of an X-ray opaque material for enabling accurate and rapid positioning with respect to the treatment site when performing a procedure to dilate the stricture with a balloon.
  • the proximal end of the balloon is attached to the distal end of the outer cylinder shaft
  • the distal end (tip) of the balloon is attached to the distal end (tip) of the inner cylinder shaft
  • the outer cylinder The shaft is a multilayer tube consisting of three layers: an outer layer, an intermediate layer and an inner layer.
  • Patent Document 1 reports a balloon catheter provided with a pipe made of cellulose.
  • a first contrast imaging portion positioned at the center of the effective expansion portion on the portion of the inner cylinder shaft onto which the effective expansion portion of the balloon is projected, a second contrast imaging portion indicating the distal end boundary portion of the effective expansion portion, and an effective expansion portion
  • U.S. Pat. No. 5,300,002 reports a balloon catheter having an X-ray contrast marker attached with a third contrast zone that marks the posterior boundary of the .
  • a flat wire made of stainless steel is provided in the intermediate layer of the outer cylindrical shaft, and a pipe made of stainless steel is provided at the distal end of the inner cylindrical shaft.
  • a balloon catheter comprising a directionally expandable balloon and a radiographic contrast marker located inside said balloon and fixed on said intermediate tube.
  • the strength of the inner cylinder shaft and the outer cylinder shaft when the strain in the longitudinal direction is 5% is 4.5 to 14.5 N and 5.0 to 15.0 N, respectively.
  • the balloon catheter according to (1), wherein the strength when the strain in the longitudinal direction of the outer tube shaft is 5% is 100% to 160% with respect to the strength when the strain in the longitudinal direction is 5%.
  • the center of the X-ray contrast marker is arranged at a position 30 to 60% from the proximal end of the balloon.
  • a balloon catheter according to any one of (1) to (4).
  • the balloon has an intermediate tube that is fixed to the inner cylinder shaft only at the proximal end portion, is inserted over the inner cylinder shaft, and has an X-ray contrast marker on the intermediate tube. Since the X-ray contrast marker remains in place without being affected by the longitudinal extension of the inner cylinder shaft due to the expansion of the balloon, the position of the X-ray contrast marker does not change between the balloon contracted state and the balloon expanded state, and the balloon contracted state However, it is possible to accurately position the balloon in the expanded state with respect to the target treatment site.
  • FIG. 1 is a schematic view of a balloon catheter in the longitudinal direction of the balloon catheter according to an embodiment of the invention
  • the balloon catheter of the present invention comprises a flexible outer cylindrical shaft, a flexible inner cylindrical shaft inserted into the outer cylindrical shaft, a flexible inner cylindrical shaft inserted into the outer cylindrical shaft, and an intermediate shaft inserted into the inner cylindrical shaft.
  • An intermediate tube fixed to the inner barrel shaft only at the proximal end of the tube, and an elastic material connected to the distal end of the outer barrel shaft and the distal end of the inner barrel shaft, respectively. and an X-ray contrast marker located inside the balloon and fixed on the intermediate tube.
  • distal side of the balloon catheter refers to the balloon side in the longitudinal direction of the balloon catheter.
  • proximal side refers to the grip member side in the longitudinal direction of the balloon catheter.
  • single-layer tube refers to a tube having a single-layer structure in cross-sectional shape
  • multi-layer tube refers to a tube having a cross-sectional shape of multiple layers, which is made by combining a plurality of materials. I'm talking about tubes.
  • the distal end of the outer cylinder shaft refers to the end on the balloon side in the longitudinal direction of the balloon catheter
  • the "proximal end” of the outer cylinder shaft refers to the balloon catheter. It means the end on the grip member side in the longitudinal direction.
  • the “distal end” of the inner cylinder shaft refers to the end on the balloon side in the longitudinal direction of the balloon catheter
  • the “proximal end” of the inner cylinder shaft refers to the balloon catheter. It means the end on the grip member side in the longitudinal direction.
  • the distal end of the intermediate tube refers to the end on the balloon side in the longitudinal direction of the balloon catheter, and the “proximal end” of the intermediate tube refers to the longitudinal direction of the balloon catheter. It means the end on the gripping member side.
  • the “deflated state” refers to a state in which no external force is applied to the balloon, and is the length from the distal end of the balloon to the proximal end of the balloon in the deflated state. Say “natural length”.
  • the “balloon expanded state” of the balloon refers to a state in which fluid is supplied to the balloon and the balloon is inflated to a desired size required for treatment.
  • FIG. 1 is a schematic side view in the longitudinal direction of a balloon catheter according to an embodiment of the present invention.
  • a balloon catheter 100 shown in FIG. the sealing member 8 .
  • the outer cylinder shaft assembly is composed of an outer cylinder shaft 1, an elongation prevention member 2 and a gripping member 3.
  • the inner cylinder shaft assembly is composed of an inner cylinder shaft 4, an intermediate tube 5, an X-ray contrast marker 10 and a push-in. It is composed of a member 6 , a retaining member 7 and a sealing member 8 .
  • the structure of the outer cylinder shaft 1 may be either a single-layer tube or a multi-layer tube.
  • a multi-layer tube a multi-layer tube consisting of three layers, an outer layer, an intermediate layer and an inner layer, can be considered.
  • the material of the outer cylinder shaft 1 when the outer cylinder shaft 1 is a multi-layer tube composed of three layers, the material of the outer layer is preferably a flexible polymer material with excellent antithrombogenicity, such as vinyl chloride. , polyurethane, polyamide, polyether block amide copolymer, polypropylene, polyolefin or polyethylene terephthalate. Polyurethane or polyether block suitable for the material of the balloon 9 to enable heat welding with the balloon 9 described later. Amide copolymers are preferred.
  • the intermediate layer may be any metal wire material, such as stainless steel generally used for medical equipment.
  • fluorine-based resin such as PTFE is used in order to improve the lubricity of the inner surface of the lumen of the outer cylindrical shaft 1 and the stretch resistance of the tube, but the material is not limited to this.
  • the outer cylinder shaft 1 is measured in the longitudinal direction of the central part that does not contain adhesives with other members.
  • the strength at a strain of 5% is preferably 5.0N to 15.0N, more preferably 5.5N to 10.5N.
  • the length of the outer cylinder shaft 1 may be appropriately set according to the treatment target, but when heart valve stenosis is the target, the length is preferably 200 mm to 1100 mm.
  • the inner cylindrical shaft 4 is a member that serves as a lumen for the guide wire of the balloon catheter 100 inside thereof, and forms an expansion lumen for the balloon 9 by being inserted into the lumen of the outer cylindrical shaft 1 .
  • the inner cylinder shaft 4 is measured in the longitudinal direction of the central part that does not contain adhesives with other members.
  • the strength at a strain of 5% is preferably 4.5N to 14.5N, more preferably 5.0N to 10.0N.
  • Specific materials include, but are not limited to, polyamides or polyether block amides.
  • the strength when the strain in the longitudinal direction of the outer cylinder shaft 1 is 5% with respect to the strength when the strain in the longitudinal direction of the inner cylinder shaft 4 is 5% is , 100% to 160%. If the strength of the outer tube shaft is 160% or less when the strength of the inner tube shaft is 100%, the X-ray contrast marker positioned in the balloon deflated state is prevented from shifting to the distal side in the balloon expanded state. It is preferable because Further, if the strength of the outer cylinder shaft is 100% or more when the strength of the inner cylinder shaft is 100%, the X-ray contrast marker positioned in the balloon contracted state is prevented from being displaced to the base end side in the balloon expanded state. This is preferable because it can be prevented.
  • the intermediate tube 5 prevents the inner tube shaft 4 from kinking or buckling due to the restoring force of the balloon 9 when the balloon 9 is extended for the purpose of reducing the bulkiness of the balloon 9 in order to insert the balloon catheter 100 into the blood vessel. It is a member that prevents The inner tube shaft 4 and the intermediate tube 5 are in a slidable state because the inner tube shaft 4 is externally fitted over the entire length of the inner tube shaft 4 except for a portion of the tip end of the inner tube shaft 4 . Therefore, it is a mechanism in which only the inner cylinder shaft 4 is stretched under the tensile tension applied to the inner cylinder shaft 4 when the balloon is inflated. Due to this relationship between the inner cylinder shaft 4 and the intermediate tube 5, both resistance to buckling during expansion of the balloon and flexibility during expansion of the balloon are achieved.
  • the intermediate tube 5 is fitted over the inner tube shaft 4 and fixed to the inner tube shaft 4 only at the proximal end of the intermediate tube 5 to form an inner tube shaft assembly.
  • the inner tube 5 can be fixed at a minimum fixed portion while preventing interference between members such as riding on other members. It is possible to maintain a mechanism in which only the cylinder shaft 4 is stretched.
  • the material of the intermediate tube 5 includes polyimide, polyetheretherketone, polyphenylene sulfide, polyetherimide, and polyamideimide, but is not limited to these.
  • Polyimide is more preferable from the viewpoint of abrasion resistance and chemical stability.
  • the intermediate tube 5 preferably has a tensile modulus of 1.3 GPa to 4 GPa when the test method is ISO527 (Plastics-Determination of tensile properties, JIS K7161: Plastics-Determination of tensile properties-).
  • the wall thickness is preferably 0.10 mm to 0.30 mm.
  • a tensile modulus of elasticity of 1.3 GPa or more is preferable because it reduces the possibility of wrinkles occurring when the catheter is flexed during manipulation.
  • a tensile modulus of elasticity of 4 GPa or less is preferable because it provides appropriate flexibility. .
  • the wall thickness is 0.10 mm or more, it is preferable because it reduces the possibility of wrinkles when bending during catheter operation, and if the wall thickness is 0.30 mm or less, it has appropriate flexibility. Therefore, it is preferable.
  • the clearance between the inner diameter of the intermediate tube 5 and the outer diameter of the inner cylindrical shaft 4 is preferably 0.01 mm to 0.2 mm.
  • a clearance of 0.01 mm or more is preferable because the slidability between the intermediate tube 5 and the inner cylinder shaft 4 is within an appropriate range. It is preferred because it stabilizes the line contrast marker.
  • the X-ray contrast marker 10 is a member for the operator to grasp the position of the balloon 9 when the balloon catheter 100 is inserted into the body.
  • An X-ray contrast marker 10 is fixed on the surface of the intermediate tube 5 .
  • a fixing method to the intermediate tube 5 includes crimping, adhesion, or embedding, but is not limited to these.
  • the X-ray contrast marker 10 is preferably fixed with a thickness of 40 ⁇ m or more over the entire circumference of the intermediate tube, but is not limited to this.
  • the center of the X-ray contrast marker 10 is preferably in the range of 5.0 mm to 8.5 mm from the distal side end of the outer cylinder shaft. If the position of the central portion of the X-ray contrast marker is 5.0 mm to 8.5 mm, it is possible to reduce the relative positional deviation between the balloon center and the X-ray contrast marker in the deflated state and the expanded state of the balloon. Become.
  • the center of the X-ray contrast marker should be arranged at a position 10% to 80% from the proximal end of the balloon when the length of the balloon in the longitudinal direction in the contracted state of the balloon is 100%. is preferred, and it is more preferred to be positioned between 30% and 60%.
  • the center of the X-ray contrast marker is placed at a position 10% to 80% from the proximal end of the balloon, the relative positions of the balloon center and the X-ray contrast marker in the balloon deflated state and the balloon expanded state It is possible to reduce the deviation, and when the positions are arranged at 30% to 60%, it is possible to reduce the deviation to such an extent that it becomes difficult to visually determine the deviation of the relative position.
  • the material of the X-ray contrast marker is not particularly limited as long as it is a material that exhibits X-ray opacity, but heavy metal compounds that are X-ray opaque and stable over a long period of time can be mentioned.
  • metal materials containing at least one of tungsten-based compounds, bismuth-based compounds, barium sulfate, palladium, platinum, gold, silver, and tantalum can be used.
  • a platinum-iridium alloy is preferable from the viewpoint of corrosion resistance and hardness.
  • the pushing member 6 is a member for the operator to extend the balloon 9 in order to insert the balloon catheter 100 into the blood vessel.
  • the pushing member 6 is provided with at least two pipe portions having different outer diameters at locations other than the gripped portion of the pushing member 6, and the outer diameters of the respective pipe portions are arranged in order from the distal end side to the proximal end side. larger, and the transition of each outer diameter is tapered.
  • the distal end of the pushing member 6 is connected to the proximal end of the inner cylindrical shaft 4 .
  • balloon 9 is made of an elastic material.
  • elastic materials for forming the balloon 9 include silicone, polyether block amide copolymer, polyurethane, natural rubber, and synthetic rubber.
  • the balloon 9 may have a multilayer structure. In the case of a multi-layered balloon, for example, a mesh formed by weaving false twist yarns made of polyurethane or polyester into a cylindrical shape and natural rubber may be adhered with a rubber cement to obtain a balloon.
  • the hardness of the balloon 9 may vary depending on the treatment target, but when the balloon 9 is made of a single material, the material preferably has a Shore A hardness of 100 or less.
  • the elastic material forming the balloon 9 is a difficult-to-weld material such as natural rubber or synthetic rubber, it is usually difficult to attach it to the outer cylinder shaft 1 .
  • a short pipe made of hard resin or metal may be inserted into the distal end portion of the outer cylindrical shaft 1 so as to protrude from the distal end portion of the outer cylindrical shaft 1.
  • the difficult-to-weld material may be wrapped around a thread such as a line and bonded.
  • the elastic material forming the balloon 9 is a difficult-to-weld material such as natural rubber or synthetic rubber, it is usually difficult to attach it to the inner cylinder shaft 4 .
  • a short pipe made of hard resin or metal for example, may be inserted into the inner cylinder shaft 4 at the tip of the inner cylinder shaft 4, and the outer circumference of the inner cylinder shaft 4 at the portion where the pipe exists.
  • a difficult-to-weld material may be wrapped around with a thread such as a line and adhered.
  • the natural length of the balloon 9 may be appropriately set according to the treatment target, but is preferably 20 mm to 30 mm in the case of heart valve stenosis.
  • the diameter of the balloon 9 perpendicular to the longitudinal direction when the balloon 9 is inflated may be appropriately set according to the treatment target, but is preferably 13 mm to 30 mm in the case of heart valve stenosis.
  • the stretch prevention member 2 causes the outer tube shaft 1 to stretch due to the restoring force that causes the balloon 9 to return to its natural length. It is a member that prevents this.
  • the anti-stretch member 2 is made of a material with a higher elastic stress than the restoring force of the balloon 9 .
  • the shape of the elongation prevention member 2 may be any shape as long as it is a shape that prevents the elongation of the outer cylindrical shaft 1. , which is stretched or attached to the inner side of the outer cylinder shaft 1 over the entire length in the longitudinal direction.
  • the longitudinal length of the monofilament-like elongation prevention member 2 is longer than the longitudinal length of the outer tube shaft 1.
  • the ends of the stretch prevention members 2 are folded back toward the outer surface of the outer cylindrical shaft 1 at both ends of the distal side opening and the proximal side opening of the lumen of the outer cylindrical shaft 1 .
  • a high-tensile material that does not hinder the balloon catheter from following the curvature of a blood vessel or the like is suitable, and aramid fiber or polyacrylate fiber is preferable.
  • the opening on the base end side of the outer cylinder shaft 1 has a seal member 8 that allows the inner cylinder shaft 4 and the outer cylinder shaft 1 to slide while keeping the inner cylinder shaft 4 liquid-tight.
  • a gripping member 3 is attached so as to surround the outer circumference of the outer cylinder shaft 1 .
  • the gripping member 3 is a member to be gripped by the operator, and may have an ergonomic shape that is easy to operate, such as a Y-shaped shape, but is limited thereto. isn't it. Moreover, the gripping member 3 is attached to the base end side of the outer cylinder shaft 1 so as to surround the outer circumference.
  • the material of the gripping member 3 is preferably a resin having a certain degree of hardness.
  • resin having a certain degree of hardness examples thereof include plastics such as styrene resin, acrylic resin, polypropylene, polyethylene, fluororesin, and polyacetal. .
  • ⁇ Pushing member> As for the material of the pipe portion of the pushing member 6, it is preferable to use a hard resin or metal material so that the operator can easily push it, and it is preferable to use a metal material. As the metal material, stainless steel is preferable from the viewpoint of corrosiveness. Moreover, it is preferable to provide a handle portion at the proximal end portion of the pushing member 6 so that the operator can easily hold it. As for the material of this handle portion, a hard resin or metal material is preferable. In addition, it is preferable that the surface of the handle portion is roughened by knurling or sandblasting from the viewpoint of anti-slipping.
  • the step of the pipe portion of the pushing member 6 depends on the tightening force of the seal member 8, the step is set to 0.3 mm to 0.4 mm and the taper transition length is set to 0.5 mm to 1 mm at the pipe portion on the base end side.
  • the retaining member 7 has a cylindrical shape with a wall thickness of 0.1 mm to 0.4 mm, and is connected to the pipe having the second largest outer diameter of the pipe portion of the pushing member 6, and the balloon 9 of the balloon catheter 100 It is a member for preventing shortening from the position of the natural length state to the base end side.
  • the material of the removal prevention member 7 is preferably hard resin or metal.
  • an attaching method such as bonding with an adhesive, welding, or welding may be selected according to the material of the retaining member 7.
  • the sealing member 8 seals the opening of the gripping member 3 to make the inside of the balloon catheter 100 liquid-tight, and allows the inner cylinder shaft assembly, which will be described later, to slide with respect to the outer cylinder shaft assembly.
  • the material of the seal member 8 is preferably a soft material from the viewpoint of allowing the inner cylinder shaft assembly to slide while maintaining liquid tightness.
  • silicone rubber, synthetic rubber, or styrene-based thermoplastic elastomer is preferable.
  • a slit valve formed by cutting a part of a soft material sheet may be incorporated in the gripping member 3 as the sealing member 8, and the gripping member 3 is provided with a cap fitting structure.
  • an O-ring or a cylindrical soft material may be used as the sealing member 8, and the sealing member 8 may be tightened by a cap fitting structure.
  • the balloon catheter 100 is formed by inserting the above-described inner cylinder shaft assembly into the outer cylinder shaft assembly and bonding the inner cylinder shaft assembly to the distal end of the outer cylinder shaft assembly with the balloon 9 .
  • the position of the seal member 8 of the outer tube shaft assembly is adjusted so that it is positioned at the proximal end of the small diameter portion of the pushing member 6 of the inner tube shaft assembly.
  • the inner barrel shaft assembly is inserted into the outer barrel shaft assembly.
  • the removal prevention member 7 is attached on the small diameter portion of the pushing member 6 avoiding the seal member 8, and the tip end of the outer cylinder shaft 1 and the tip end of the inner cylinder shaft 4 (intermediate tube 5 is placed on the outside).
  • the balloon 9 is attached to the portion that is not inserted), and the balloon catheter 100 is formed with the balloon 9 having its natural length.
  • the length of the balloon catheter may be appropriately set depending on the treatment target, but when approaching the heart valve from the femoral artery, the length is preferably 600 mm to 900 mm, and when approaching the left atrium from the femoral vein, 500 mm to 800 mm is preferred.
  • the lengths of the inner tube shaft 4 and the intermediate tube 5 are appropriately adjusted according to the length of the balloon catheter.
  • the length of the inner cylinder shaft 4 is preferably 200 mm to 400 mm when approaching the heart valve from the femoral artery, and preferably 100 mm to 300 mm when approaching the left atrium from the femoral vein.
  • test piece intermediate tube, outer cylinder shaft, inner cylinder shaft
  • test piece immersed in pure water controlled at 37 ° C. ⁇ 2 ° C. for 24 hours.
  • a Tensilon universal tester model: RTG-1250; A&D Co., Ltd.
  • room temperature 25 ° C. ⁇ 3 ° C., 55% RH to 65%
  • the original length was 20 mm
  • the tensile speed was 400 mm/min. Taking the original length as 100%, the strength (N) was read when the test piece reached 105%, and the strength was defined as the strength when the longitudinal strain was 5%.
  • Example 1 A tube having a three-layer structure was formed by using a polyether block amide copolymer as the material for the outer layer, a braided structure of stainless flat wire as the material for the intermediate layer, and PTFE as the material for the inner layer.
  • a single-layer tube (4 mm in length) of polyether block amide copolymer was attached to one end of this three-layer structure tube by heat welding to prepare a braided tube.
  • This braided tube had an outer diameter of 3.1 mm and an inner diameter of 2.6 mm.
  • a single-step pipe 11 having a small-diameter portion on the distal side and a large-diameter portion on the proximal side (the small-diameter portion has an outer diameter of 2 mm, an inner diameter of 1.84 mm, and a length of 7 mm.
  • the dimensions of the large diameter part are 2.4 mm in outer diameter, 2.24 mm in inner diameter, and 3 mm in length.Made of stainless steel.
  • a Y-shaped connector having a cap fitting structure in which an O-ring can be fitted is used, and as the elongation prevention member 2, aramid is used as the elongation prevention member 2 over the entire length of the lumen of the outer cylindrical shaft 1.
  • the fiber is arranged so that it is stretched, and the aramid fiber is folded back on the outer circumference of the end on the proximal side of the outer cylindrical shaft 1, and the end on the proximal side of the outer cylindrical shaft 1 and the tube connection port of the Y-shaped connector. was fixed with an adhesive.
  • the push-in member 6 a stainless steel pipe with an outer diameter of three stages and equipped with a handle was prepared.
  • the portions with different diameters are the large-diameter portion, the intermediate portion, and the small-diameter portion from the base end side in the longitudinal direction, the large-diameter portion has an outer diameter of 2.1 mm and a length of 60 mm.
  • the intermediate portion has an outer diameter of 1.8 mm and a length of 10 mm, and a stainless steel pipe having an outer diameter of 2.0 mm is inserted in the intermediate portion and fixed to the pushing member 6 by welding,
  • the taper length from the large diameter portion to the intermediate portion was 0.5 mm, and the small diameter portion had an outer diameter of 1.16 mm and a length of 805 mm.
  • the minimum inner diameter of the pushing member 6 was 1.0 mm.
  • the screw-type cap of the gripping member 3 and an O-ring having an inner diameter of 1.4 mm and a wire diameter of 1.5 mm are externally inserted onto the pushing member 6, and the cap is pushed into the large-diameter portion of the pushing member 6, and the O-ring is pushed. It was arranged to be on the base end side of the stainless steel pipe welded to the intermediate part of the member 6 and between the tapered part of the large diameter part.
  • the inner cylindrical shaft 4 is a polyamide tube (outer diameter: 1.3 mm, inner diameter: 0.94 mm) whose proximal end is enlarged in diameter and fixed to the distal end of the narrow diameter portion of the pushing member 6 with an adhesive. Furthermore, the distal end of this tube is expanded in diameter, and a catheter tip stainless steel pipe 12 (outer diameter 1.16 mm, inner diameter 1.0 mm, length 7 mm) is fitted into the lumen of the tube and fixed with an adhesive. Created. Five pieces of 100 mm length were cut from the central portion of the polyamide tube containing no adhesive of the inner cylinder shaft 4 and used as test pieces to evaluate the mechanical properties (test method: ISO527). % strength was 6.5N. The strength when the strain in the longitudinal direction of the outer cylinder shaft 1 was 5% was 130% with respect to the strength when the strain in the longitudinal direction of the inner cylinder shaft was 5%.
  • a polyimide tube (inner diameter 1.35 mm, outer diameter 1.47 mm) with a tensile modulus of elasticity of 3.4 GPa (test method: ASTM D790) was used.
  • the catheter distal end stainless steel pipe 12 attached to the distal end of the inner cylinder shaft 4 is adhered to the intermediate tube 5
  • the proximal end of the intermediate tube 5 and the narrow diameter portion of the pushing member 6 are separated from each other.
  • the intermediate tube 5 is fitted over the tube forming the inner cylinder shaft 4 so that the distal end is in contact with the inner cylinder shaft 4 , and only about 2 mm of the proximal end of the intermediate tube 5 is fixed to the inner cylinder shaft 4 with an adhesive.
  • One X-ray contrast marker 10 was extrapolated to the intermediate tube 5 and fixed with an adhesive so that the center of the X-ray contrast marker was positioned 11.5 mm from the proximal end of the balloon.
  • the platinum-iridium alloy X-ray contrast marker 10 had a cylindrical shape with an outer diameter of 1.60 mm, an inner diameter of 1.52 mm, and a length of 4 mm. Note that the X-ray contrast marker 10 is externally fitted on the intermediate tube 5 before adhering the catheter tip stainless steel pipe 12 attached to the tip of the inner tube shaft 4 .
  • An inner cylinder shaft assembly composed of an inner cylinder shaft 4, a tube 5, a pushing member 6, and an X-ray contrast marker 10 is inserted into the outer cylinder shaft assembly, and the cap of the gripping member 3 is fitted into the gripping member 3 to seal.
  • the O-ring which is the member 8, was tightened so that when the O-ring rides on the large-diameter portion from the intermediate portion of the pushing member 6 (synonymous with the sliding force between the inner cylinder shaft assembly and the outer cylinder shaft assembly), it is 15 N. . Then, the position of the O-ring is adjusted so that it is positioned at the proximal end of the intermediate portion of the pushing member 6, and the balloon of the balloon catheter 100 has its natural length.
  • the balloon 9 is formed with a three-layer structure.
  • the inner layer of the balloon is made of natural rubber, with an inner diameter of 4.0 mm and a film thickness of 0.3 mm on one side.
  • An assembly of an outer balloon constructed by gluing a mesh woven into a cylindrical shape with twisted yarns with a rubber paste is arranged, and the inner cylinder shaft 4 and the outer cylinder shaft 1 are arranged on the small diameter portion of the one-stage stepped pipe.
  • No. 0.6 nylon line was wrapped around the stainless steel pipe 12 at the tip of the catheter and fixed with an adhesive to form an outer balloon.
  • a balloon 9 having a three-layer structure of natural rubber as an inner layer, mesh as an intermediate layer, and natural rubber as an outer layer was obtained.
  • the natural length of the balloon in the longitudinal direction of the catheter was 25 mm, and the diameter of the balloon when expanded was 22 mm.
  • the distance between the center of the X-ray contrast marker and the proximal end of the balloon is 11.5 mm when the balloon length of 25 mm in the balloon deflated state in the longitudinal direction of the catheter is taken as 100%. was positioned 46% from the proximal end of the balloon.
  • Example 2 From Example 1, the braided tube having a strength of 8.5 N at a strain of 5% of the outer shaft was changed to a braided tube having a strength of 10.0 N at a strain of 5% of the outer shaft, and the strain of the inner shaft was 5%.
  • the polyamide tube having a strength of 6.5 N at strain was changed to a polyamide tube having a strength of 10.0 N at strain of the outer cylinder shaft of 5%.
  • the center of the X-ray contrast marker is arranged at a position 30% from the proximal end of the balloon. bottom.
  • Example 2 was prepared by using a polyvinyl chloride (PVC) tube with a tensile modulus of 1.3 GPa (test method: ASTM D790) as the intermediate tube and changing the clearance to 0.20 mm.
  • PVC polyvinyl chloride
  • Example 3 From Example 1, the braided tube having a strength of 8.5 N at a strain of 5% of the outer shaft was changed to a braided tube having a strength of 14.0 N at a strain of 5% of the outer shaft, and the strain of the inner shaft was 5%.
  • the polyamide tube having a strength of 6.5 N at strain was changed to a polyamide tube having a strength of 13.0 N at strain of the outer cylinder shaft of 5%.
  • the center of the X-ray contrast marker is arranged at a position 60% from the proximal end of the balloon. bottom.
  • Example 3 was prepared by using a tube made of polyetheretherketone (PEEK) with a tensile modulus of 4 GPa (test method: ASTM D790) as the intermediate tube and changing the clearance to 0.01 mm.
  • PEEK polyetheretherketone
  • Example 4 From Example 1, the braided tube having a strength of 8.5 N at a strain of 5% of the outer shaft was changed to a braided tube having a strength of 7.0 N at a strain of 5% of the outer shaft, and the strain of the inner shaft was 5%.
  • the polyamide tube having a strength of 6.5 N at strain was changed to a polyamide tube having a strength of 10.0 N at strain of the outer cylinder shaft of 5%.
  • the center part of the X-ray contrast marker is changed to be placed at a position 10% from the proximal end of the balloon. bottom.
  • Example 4 was prepared by using a polyethylene (PE) tube with a tensile modulus of elasticity of 0.5 GPa (test method: ASTM D790) as the intermediate tube and changing the clearance to 0.8 mm.
  • PE polyethylene
  • Example 5 From Example 1, the braided tube having a strength of 8.5 N at a strain of 5% of the outer shaft was changed to a braided tube having a strength of 15.0 N at a strain of 5% of the outer shaft, and the strain of the inner shaft was 5%.
  • the polyamide tube having a strength of 6.5 N at strain was changed to a polyamide tube having a strength of 9.5 N at strain of the outer cylinder shaft of 5%.
  • the center of the X-ray contrast marker is arranged at a position 80% from the proximal end of the balloon. bottom.
  • Example 4 was prepared by using a carbon fiber reinforced plastic (CFRP) tube with a tensile modulus of elasticity of 8 GPa (test method: ASTM D790) as the intermediate tube and changing the clearance to 0.005 mm.
  • CFRP carbon fiber reinforced plastic
  • Example 6 From Example 1, the braid tube having a strength of 8.5 N at a strain of 5% of the outer cylinder shaft was changed to a braid tube having a strength of 5.5 N at a strain of 5% of the outer cylinder shaft, and the strain of the inner cylinder shaft was 5%.
  • the polyamide tube having a strength of 6.5N at strain was changed to a polyamide tube having a strength of 4.5N at strain of the outer cylinder shaft of 5%.
  • the center of the X-ray contrast marker is arranged at a position 60% from the proximal end of the balloon. bottom.
  • Example 4 was prepared by using a polyacetal resin (POM) tube with a tensile modulus of elasticity of 2.5 GPa (test method: ASTM D790) as the intermediate tube and changing the clearance to 0.10 mm.
  • POM polyacetal resin
  • Comparative Example 1 Comparative Example 1 was prepared in the same manner as in Example 1, except that the joining position of the intermediate tube was fixed to the inner cylindrical shaft only at the distal end of the intermediate tube.
  • Comparative Example 2 In the same manner as in Example 1, except that the intermediate tube was not used and the X-ray contrast marker was directly fixed on the inner cylinder shaft at a position of 7.5 mm from the distal end of the outer cylinder shaft using an adhesive. , Comparative Example 2 was created.
  • the balloon is expanded with a contrast agent diluted 5 times with saline, and an X-ray fluoroscopic image is taken.
  • the length (L 2 ′) from the tip end of the stepped pipe 11 to the center of the X-ray contrast marker 10 was measured with a ruler.
  • Equation 1 If the rate of change obtained from Equation 1 is within ⁇ 20%, it is passed (especially within ⁇ 10% is best ( ⁇ ), otherwise it is classified as good ( ⁇ )), otherwise it is rejected ( ⁇ ).
  • the results are shown in Tables 1 and 2. If the rate of change is within ⁇ 20%, positioning of the balloon in surgery is easy, and if it is within ⁇ 10%, even beginners can easily use it.
  • the present invention can be suitably used for medical balloon catheters used inside the body, such as balloon catheters used for endovascular treatment such as valve stenosis treatment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Child & Adolescent Psychology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

本発明は、バルーン収縮状態においてバルーンを目的の治療部位に正確かつ迅速に位置決めすることができ、かつ、バルーン拡張状態において目的の治療部位に対するバルーンの位置関係を把握することが可能なバルーンカテーテルを提供する。本発明のバルーンカテーテルは、可撓性を有する外筒シャフトと、可撓性を有する内筒シャフトと、上記内筒シャフトに外挿され、かつ、上記中間チューブの基端側端部のみで上記内筒シャフトに固定されている中間チューブと、上記外筒シャフトの遠位側端部及び上記内筒シャフトの遠位側端部にそれぞれ接続された弾性材料からなる長軸方向に延伸可能なバルーンと、上記バルーンの内側に位置し、上記中間チューブ上に固定されたX線造影マーカーと、を備える。

Description

バルーンカテーテル
 本発明は、X線造影マーカーを備えたバルーンカテーテルに関するものである。
 医療分野において、バルーンカテーテルは低侵襲治療に用いられており、その用途は血管狭窄症、心臓弁狭窄症、不整脈及び塞栓物質除去等の非常に多岐に渡る治療法に使用されている。一般的なバルーンカテーテルの構造は、シャフトを構成する外筒シャフトと内筒シャフトを備え、バルーンの基端側端部と外筒シャフトの遠位側端部(先端部)、バルーンの遠位側端部(先端部)と内筒シャフトの遠位側端部(先端部)がそれぞれ接続されてバルーンが形成されている。バルーンカテーテルのバルーンは、外筒シャフトと内筒シャフトの間の流路に流体を流すことで、拡張、収縮させることができる。
 さらに、シャフトには、バルーンにより狭窄部を拡張する処置を行うに際して、治療部位に対する位置決めを正確かつ迅速に行うことを可能にするためのX線不透過材料からなるマーカー部が設けられることがある。例えば、外筒シャフトの先端部にバルーンの基端側が取り付けられ、内筒シャフトの遠位側端部(先端部)にバルーンの遠位側端部(先端部)が取り付けられており、外筒シャフトは、外層、中間層、内層の3層からなる多層チューブであり、中間層にはステンレス製の平角線が備えられており、内筒シャフトの遠位側端部(先端部)にはステンレス製のパイプが備えられているバルーンカテーテルが特許文献1には報告されている。
 また、内筒シャフトのバルーンの拡張有効部が投影される部分に拡張有効部の中央部に位置する第1造影部と、拡張有効部の先端境界部を示す第2造影部と、拡張有効部の後端境界部を示す第3造影部を有するX線造影マーカーが取り付けられているバルーンカテーテルが特許文献2に報告されている。
WO2019-156195 特開2016-174709号
 特許文献1に記載のバルーンカテーテルは、外筒シャフトの中間層にステンレス製の平角線が備えられており、内筒シャフトの先端部にはステンレス製のパイプが備えられていることから、バルーンの先端側端部及び基端側端部の位置を把握することができるが、目的の治療部位に対するバルーンの位置決めが煩雑であり、さらに、バルーンを拡張することによりバルーンが長軸方向に延伸するため、目的の治療部位に対するバルーンの位置によっては、治療部位をバルーンで拡張できず、バルーンの位置決めからやり直す必要が生じることがある。
 特許文献2に記載のバルーンカテーテルは、内筒シャフト上に設けられているX線造影マーカーにより、バルーンの拡張有効部の範囲及び中央部を確認することが可能である。
しかしながら、特許文献1に記載のようなバルーンが長軸方向に延伸するバルーンカテーテルにおいては、特許文献2に開示されている構造をそのまま適応した場合、つまり、内筒シャフト上にX線造影マーカーを取り付けた場合は、特許文献2に記載のバルーンと異なり、長さの異なるバルーン、内管シャフト、外筒シャフトが長軸方向に同時に変形することからバルーン有効拡張部位の中央部を示すX線造影部の位置が、拡張前のバルーンに対する相対的位置から大きく移動してしまうという問題があった。
 以上のとおり、バルーンを拡張する際にバルーンが長軸方向に延伸するバルーンカテーテルにおいて、バルーン拡張力によるX線造影マーカーの位置ズレが生じないバルーンカテーテルは開示されてこなかった。
 本発明者らは、上記課題を解消するために鋭意検討を重ねた結果、以下の(1)~(5)の発明を見出した。
(1) 可撓性を有する外筒シャフトと、上記外筒シャフトに挿入され、かつ、可撓性を有する内筒シャフトと、上記内筒シャフトに外挿され、かつ、上記中間チューブの基端側端部のみで上記内筒シャフトに固定されている中間チューブと、上記外筒シャフトの遠位側端部及び上記内筒シャフトの遠位側端部にそれぞれ接続された弾性材料からなる長軸方向に延伸可能なバルーンと、上記バルーンの内側に位置し、上記中間チューブ上に固定されたX線造影マーカーと、を備える、バルーンカテーテル。
(2) 上記内筒シャフト及び外筒シャフトの長軸方向のひずみが5%の時の強度は、それぞれ4.5~14.5N及び5.0~15.0Nであり、上記内筒シャフトの長軸方向のひずみが5%の時の強度に対する、上記外筒シャフトの長軸方向のひずみが5%の時の強度は、100%~160%である、(1)記載のバルーンカテーテル。
(3) 上記中間チューブの引張弾性率は、1.3~4GPaである、(1)又は(2)記載のバルーンカテーテル。
(4) 上記中間チューブの内径と上記内筒シャフトの外径とのクリアランスは、0.01~0.20mmである、(1)~(3)のいずれか記載のバルーンカテーテル。
(5) バルーン収縮状態における長軸方向のバルーンの長さを100%としたとき、上記X線造影マーカーの中心部が上記バルーンの基端側端部から30~60%の位置に配置される、(1)~(4)のいずれか記載のバルーンカテーテル。
 本発明によれば、基端側端部のみで内筒シャフトに固定され、内筒シャフト上に外挿された中間チューブを有し、該中間チューブ上にX線造影マーカーを有することで、バルーンの拡張による内筒シャフトの長手方向への延伸の影響を受けずにX線造影マーカーがその場に留まるため、バルーン収縮状態とバルーン拡張状態でX線造影マーカーの位置が変わらず、バルーン収縮状態であっても、目的の治療部位に対してバルーン拡張状態のバルーンの正確な位置決めが可能となる。
本発明の実施形態に係るバルーンカテーテルの長手方向におけるバルーンカテーテルの模式図である。
 本発明のバルーンカテーテルは、可撓性を有する外筒シャフトと、上記外筒シャフトに挿入され、かつ、可撓性を有する内筒シャフトと、上記内筒シャフトに外挿され、かつ、上記中間チューブの基端側端部のみで上記内筒シャフトに固定されている中間チューブと、上記外筒シャフトの遠位側端部及び上記内筒シャフトの遠位側端部にそれぞれ接続された弾性材料からなる長軸方向に延伸可能なバルーンと、上記バルーンの内側に位置し、上記中間チューブ上に固定されたX線造影マーカーと、を備える事を特徴とする。
 以下、図面を参照しながら、本発明の好適な実施形態について詳細に説明するが、本発明はこれらの態様に限定されるものではない。なお、同一の要素には同一符号を用いるものとし、重複する説明は省略する。また、図面の比率は説明のものとは必ずしも一致していない。
 ここで、バルーンカテーテルの「遠位側」とは、バルーンカテーテルの長手方向におけるバルーン側を言う。また、「基端側」とは、バルーンカテーテルの長手方向における把持部材側のことを言う。
 また、「単層チューブ」とはチューブ断面形状が1層構造のチューブのことを言い、「多層チューブ」とは、複数の材料を組み合わせて作られた、チューブ断面形状が複数の層構造を有するチューブのことを言う。
 外筒シャフトにおいて、外筒シャフトの「遠位側端部」とは、バルーンカテーテルの長手方向におけるバルーン側の端部を言い、外筒シャフトの「基端側端部」とは、バルーンカテーテルの長手方向における把持部材側の端部を言う。内筒シャフトにおいて、内筒シャフトの「遠位側端部」とは、バルーンカテーテルの長手方向におけるバルーン側の端部を言い、内筒シャフトの「基端側端部」とは、バルーンカテーテルの長手方向における把持部材側の端部を言う。中間チューブにおいて、中間チューブの「遠位側端部」とは、バルーンカテーテルの長手方向におけるバルーン側の端部を言い、中間チューブの「基端側端部」とは、バルーンカテーテルの長手方向における把持部材側の端部を言う。
 バルーンにおいて「バルーン収縮状態」とは、バルーンに一切の外力が負荷されていない状態のことを言い、バルーン収縮状態におけるバルーンの遠位側端部からバルーンの基端側端部までの長さを「自然長」と言う。また、バルーンにおいて「バルーン拡張状態」とは、バルーンに流体が供給され、バルーンが治療に必要な所望のサイズに膨らんだ状態のことを言う。
 図1は、本発明の実施形態に係るバルーンカテーテルの長手方向における側面の模式図である。図1に示されるバルーンカテーテル100は、外筒シャフト1、内筒シャフト4、中間チューブ5、X線造影マーカー10、バルーン9、伸び防止部材2、把持部材3、押込部材6、抜け防止部材7、シール部材8、から形成されている。また、外筒シャフト組立体とは、外筒シャフト1、伸び防止部材2、把持部材3からなり、内筒シャフト組立体とは、内筒シャフト4、中間チューブ5、X線造影マーカー10、押込部材6、抜け防止部材7及びシール部材8から形成されている。
 <外筒シャフト>
 外筒シャフト1の構造は、単層チューブ又は多層チューブのどちらでもよい。例えば、多層チューブの場合は外層、中間層及び内層の3層からなる多層チューブが考えられる。
 外筒シャフト1の材料としては、外筒シャフト1が3層からなる多層チューブの場合、外層の材料には、抗血栓性に優れた可撓性のある高分子材料が好ましく、例えば、塩化ビニル、ポリウレタン、ポリアミド、ポリエーテルブロックアミド共重合体、ポリプロピレン、ポリオレフィン又はポリエチレンテレフタレートが挙げられ、後述するバルーン9との熱による溶着を可能とするため、バルーン9の材料に合わせたポリウレタンやポリエーテルブロックアミド共重合体であることが好ましい。中間層は、金属製の線材であればよく、例えば、医療機器に一般的に使用されるステンレスが挙げられる。内層に関しては、外筒シャフト1のルーメンの内表面の易滑性やチューブとしての耐延伸性を向上させるため、PTFE等のフッ素系樹脂が挙げられるが、これに限定されるものではない。
 外筒シャフト1は、試験方法をISO527(Plastics-Determination of tensile properties,JIS K7161:プラスチック-引張特性の求め方-)とした場合、他部材との接着剤を含まない中央部の長軸方向のひずみが5%の時の強度は、5.0N~15.0Nであることが好ましく、さらに5.5N~10.5Nであることがより好ましい。外筒シャフト1の長さは治療対象に合わせて適宜設定すればよいが、心臓弁狭窄を対象とする場合は、長さは200mm~1100mmが好ましい。
 <内筒シャフト>
 内筒シャフト4は、その内側がバルーンカテーテル100のガイドワイヤー用のルーメンとなり、外筒シャフト1のルーメン内に挿入されることで、バルーン9の拡張ルーメンを形成する部材である。
 内筒シャフト4は、試験方法をISO527(Plastics-Determination of tensile properties,JIS K7161:プラスチック-引張特性の求め方-)とした場合、他部材との接着剤を含まない中央部の長軸方向のひずみが5%の時の強度は、4.5N~14.5Nであることが好ましく、さらに5.0N~10.0Nであることがより好ましい。具体的な材料としては、ポリアミド又はポリエーテルブロックアミドが挙げられるが、これらに限定されるものではない。
 外筒シャフト1と内筒シャフト4の関係について、内筒シャフト4の長軸方向のひずみが5%の時の強度に対する、外筒シャフト1の長軸方向のひずみが5%の時の強度は、100%~160%であることが好ましい。内筒シャフトの強度を100%とした時の外筒シャフトの強度が160%以下であれば、バルーン拡張状態において、バルーン収縮状態に位置決めしたX線造影マーカーが遠位側にずれるのを防ぐことができるため好ましい。また、内筒シャフトの強度を100%とした時の外筒シャフトの強度が100%以上であれば、バルーン拡張状態において、バルーン収縮状態に位置決めしたX線造影マーカーが基端側にずれるのを防ぐことができるため好ましい。
 <中間チューブ>
 中間チューブ5は、血管内にバルーンカテーテル100を挿入するためにバルーン9の嵩張りを低減する目的でバルーン9を伸長する際に、バルーン9の復元力による内筒シャフト4のキンクや座屈を防止する部材である。内筒シャフト4の先端部の一部を除き、内筒シャフト4のほぼ全長に渡って内筒シャフト4に外挿されていることから、内筒シャフト4と中間チューブ5は摺動可能な状態にあるため、バルーン拡張時に内筒シャフト4に掛かる引張張力において、内筒シャフト4のみに延伸作用が発生する機構となる。この内筒シャフト4と中間チューブ5の関係性により、バルーン伸長時の耐座屈性とバルーン拡張時の柔軟性を両立している。
 中間チューブ5は、内筒シャフト4に外挿され、かつ、中間チューブ5の基端側端部のみで内筒シャフト4に固定されることで内筒シャフト組立体が形成されている。このように、中間チューブ5の基端部と内筒シャフト4の基端部とでのみ固定されている場合、最低限の固定部位で他の部材に乗り上げる等の部材の干渉を防ぎつつ、内筒シャフト4のみに延伸作用が発生する機構を維持することができる。
 中間チューブ5の材料は、樹脂の場合、ポリイミドやポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリエーテルイミド又はポリアミドイミドが挙げられるが、これらに限定するものではない。耐摩耗性、化学的安定性の観点から、ポリイミドがより好ましい。
 中間チューブ5は、試験方法をISO527(Plastics - Determination of tensile properties,JIS K7161:プラスチック-引張特性の求め方-)とした場合、引張弾性率は、1.3GPa~4GPaであることが好ましく、また、肉厚は、0.10mm~0.30mmであることが好ましい。引張弾性率が1.3GPa以上であればカテーテル操作中に屈曲した際に皺が入る可能性を減らすことができ好ましく、引張弾性率が4GPa以下であれば、適切な可撓性を備えるため好ましい。また、肉厚が0.10mm以上であれば、カテーテル操作中に屈曲した際に皺が入る可能性を減らすことができ好ましく、肉厚が0.30mm以下であれば適切な可撓性を備えるため好ましい。
 また、中間チューブ5の内径と内筒シャフト4の外径とのクリアランスは、0.01mm~0.2mmであることが好ましい。クリアランスが0.01mm以上であれば、中間チューブ5と内筒シャフト4との間の摺動性が適切な範囲になるため好ましく、クリアランスが0.2mm以下であれば、中間チューブに固定したX線造影マーカーが安定するため好ましい。
 <X線造影マーカー>
 X線造影マーカー10は、体内にバルーンカテーテル100が挿入された際に、操作者がバルーン9の位置を把握するための部材である。X線造影マーカー10は、中間チューブ5の表面に固定されている。中間チューブ5への固定方法は、カシメ、接着又は埋没が挙げられるが、これらに限定するものではない。X線造影マーカー10は、中間チューブの全周に渡って40μm以上の厚みで固定されることが好ましいが、これに限定するものではない。
 また、バルーン収縮状態において、X線造影マーカー10の中心部が外筒シャフトの遠位側端部から5.0mm~8.5mmの範囲にあることが好ましい。X線造影マーカーの中央部の位置が、5.0mm~8.5mmであれば、バルーン収縮状態とバルーン拡張状態で、バルーン中心とX線造影マーカーとの相対位置のずれを減らすことが可能となる。
 また、X線造影マーカーの中心部は、バルーン収縮状態における長軸方向のバルーンの長さを100%としたとき、バルーンの基端側端部から10%~80%の位置に配置されることが好ましく、30%~60%の位置に配置されることがより好ましい。X線造影マーカーの中心部がバルーンの基端側端部から10%~80%の位置に配置された場合、バルーン収縮状態とバルーン拡張状態で、バルーン中心とX線造影マーカーとの相対位置のずれを減らすことが可能となり、30%~60%の位置に配置された場合は、相対位置のずれを目視で判別がすることが困難になる程度にずれを減らすことが可能となる。
 X線造影マーカーの材料としては、X線不透過性を示す材料であれば特に限定されないが、X線不透過性かつ長期に渡って安定な重金属化合物を挙げることができる。具体的には、タングステン系化合物、ビスマス系化合物、硫酸バリウム、パラジウム、プラチナ、金、銀及びタンタルの少なくとも1種を含む金属材料が挙げられる。耐腐食性、硬度の観点から、プラチナ・イリジウム合金が好ましい。
 <押込部材>
 押込部材6は、血管内にバルーンカテーテル100を挿入するために、操作者がバルーン9を伸長するための部材である。押込部材6には、押込部材6の把持部分以外の箇所で少なくとも2つ以上の異なる外径を持つパイプ部分を備えており、それぞれのパイプ部分における外径は、先端側から基端側にかけて順に大きくなり、それぞれの外径の遷移部はテーパー形状となっている。また、押込部材6の先端側の端部は、内筒シャフト4の基端側の端部と接続されている。
 <バルーン>
 バルーンカテーテル100において、バルーン9は弾性材料により形成される。具体的にバルーン9を形成する弾性材料としては、シリコーン、ポリエーテルブロックアミド共重合体、ポリウレタン、天然ゴム又は合成ゴムが挙げられる。また、バルーン9は、多層構造であってもよい。多層構造のバルーンの場合、例えば、ポリウレタン又はポリエステルからなる仮撚糸を筒状に編んで形成したメッシュと、天然ゴムとを、ゴム糊により接着してバルーンを得てもよい。治療対象に応じてバルーン9の硬度は異なっていてよいが、単一素材によりバルーン9を構成する場合、その材料のショアA硬度は100以下であることが好ましい。
 バルーン9を形成する弾性材料は、天然ゴム又は合成ゴムのような難溶着性の材料の場合、通常では外筒シャフト1への取り付けが困難となる。この場合、外筒シャフト1の先端部には、例えば硬質製の樹脂や金属製の短いパイプを外筒シャフト1の先端部から突出するように内挿してもよく、そのパイプの突出部上に難溶着材料をテグスのような糸で巻き付けて接着してもよい。
 同様に、バルーン9を形成する弾性材料は、天然ゴム又は合成ゴムのような難溶着材料の場合、通常では内筒シャフト4への取り付けも困難となる。この場合、内筒シャフト4の先端部には、例えば硬質製の樹脂や金属製の短いパイプを内筒シャフト4に内挿してもよく、そのパイプが存在する部分での内筒シャフト4の外周上に難溶着材料をテグスのような糸で巻き付けて接着してもよい。
 バルーン9の自然長は、治療対象に合わせて適宜設定すればよいが、心臓弁狭窄症の場合において20mm~30mmが好ましい。
 なお、バルーン9の拡張時の長手方向に直行するバルーン9の直径は、治療対象に合わせて適宜設定すればよいが、心臓弁狭窄症の場合には13mm~30mmが好ましい。
 <伸び防止部材>
 伸び防止部材2は、バルーン9を変形させた状態のまま血管内にバルーンカテーテル100を挿入する際、バルーン9が自然長の状態に戻ろうとする復元力によって、外筒シャフト1の延伸が発生することを防止する部材である。これを達成するため、伸び防止部材2はバルーン9の復元力よりも高い弾性応力を持つ材料で形成されている。また、伸び防止部材2の形状は、外筒シャフト1の延伸を防ぐ形状であれば、どのような形状でもよいが、例えば、モノフィラメント状、マルチフィラメント状又は短冊状に形成された伸び防止部材2が考えられ、これが長手方向における全長に渡って、外筒シャフト1の内側に張られている、又は貼りつけられている。
 また、バルーンカテーテル100において、モノフィラメント状の伸び防止部材2の長手方向の長さは外筒シャフト1の長手方向の長さよりも長くなっている。これにより、外筒シャフト1のルーメンの遠位側の開口部と基端側の開口部の両端でそれぞれ伸び防止部材2の末端を、外筒シャフト1の外表面に向けて折り返されている。
 伸び防止部材2の材料としては、バルーンカテーテルが血管等の湾曲に追従することを阻害しないかつ高張力な材料が好適であり、アラミド繊維又はポリアクリレート繊維が好ましい。
 <シール部材>
 外筒シャフト1の基端側の開口部には、液密にしながら内筒シャフト4と外筒シャフト1を摺動させることを可能にするシール部材8を有し、操作者が操作時に把持するための把持部材3が、外筒シャフト1の外周を囲うようにして取り付けられている。
 <把持部材>
 把持部材3は、操作者が把持するための部材であり、操作しやすい人間工学的な形状をしていればよく、例えばY型の形状であることが挙げられるが、これに限定されるものではない。また、把持部材3は、外筒シャフト1の基端側に、外周を囲うようにして、取り付けられている。
 把持部材3の材料としては、成型の容易性及び強度を確保する観点から、一定の硬度の樹脂が好ましく、例えば、スチロール樹脂、アクリル樹脂、ポリプロピレン、ポリエチレン、フッ素樹脂又はポリアセタール等のプラスチックが挙げられる。
 <押込部材>
 押込部材6のパイプ部の材料は、操作者が押し込みやすいように、硬質な樹脂又は金属材料を用いることが好ましく、金属材料を用いることが好ましい。また、金属材料としては、腐食性の観点からステンレスが好ましい。また、押込部材6の基端側の端部に操作者が持ちやすくするための持ち手部分を設けることが好ましく、この持ち手部分の材料に関しては、硬質な樹脂又は金属材料が好ましい。また、持ち手部分の表面は滑り止めの観点からローレット加工又はサンドブラスト加工を用いて表面形状が荒くされていることが好ましい。
 押込部材6のパイプ部分の段差は、シール部材8の締め付け力にも依るが、基端側のパイプ部分において、段差を0.3mm~0.4mmとし、テーパー移行長さを0.5mm~1mmとしておくことで、内筒シャフト組立体と外筒シャフト組立体を摺動させる際に、操作者が触感により段差部を感じることが可能となり、後述するシール部材8が、押込部材6のパイプ部分の段差を乗り越える際の荷重が10N~15Nとなるためストレスを感じることなく段差を移動可能な操作となる。
 <抜け防止部材>
 抜け防止部材7は、0.1mm~0.4mmの肉厚を持つ円筒形状であり、押込部材6のパイプ部の2番目に太い外径を持つパイプ上に接続され、バルーンカテーテル100のバルーン9の自然長の状態の位置から、基端側に短くならないようにするための部材である。
 抜け防止部材7の材料は、硬質な樹脂又は金属が好ましい。抜け防止部材7を押込部材6に取り付ける場合、接着剤による接着、溶接又は溶着等の取り付け方法を、抜け防止部材7の材料に合わせて選択をすればよい。
 <シール部材>
 シール部材8は、把持部材3が有する開口部を塞ぐことでバルーンカテーテル100の内部を液密にしつつ、外筒シャフト組立体に対して、後述する内筒シャフト組立体を摺動させることを可能にする。
 シール部材8の材料としては、液密性を保ちつつ内筒シャフト組立体を摺動可能とする観点で軟質な材料が好ましく、例えば、シリコーンゴム、合成ゴム又はスチレン系熱可塑性エラストマーが好ましい。
 また、シール部材8の構造は、例えば、軟質材料のシートの一部に切れ込みを入れたスリット弁をシール部材8として把持部材3に組み込んでもよく、把持部材3にキャップ嵌合構造を設けた上で、Oリングや円筒形状の軟質材料をシール部材8として、キャップ嵌合構造によりシール部材8を締め付ける形状であってもよい。
 <外筒シャフト組立体、内筒シャフト組立体及びバルーンの組立>
 上記の内筒シャフト組立体を外筒シャフト組立体に挿入し、内筒シャフト組立体を外筒シャフト組立体の先端側の端部をバルーン9で接着することでバルーンカテーテル100は形成される。
 バルーンカテーテル100の形成の際、外筒シャフト組立体のシール部材8の位置が、内筒シャフト組立体の押込部材6の細径部における基端側の端部の位置になるように調整して、内筒シャフト組立体が外筒シャフト組立体に挿入される。その状態でシール部材8を避けて押込部材6の細径部上に抜け防止部材7を取り付け、外筒シャフト1の先端側端部と内筒シャフト4の先端側端部(中間チューブ5が外挿されていない部分)とにバルーン9が取り付けられ、これをバルーン9の自然長の状態として、バルーンカテーテル100が形成される。
 バルーンカテーテル100の形成の際、内筒シャフト組立体のチューブ部分の剛性をさらに高めるためには、押込部材6のパイプ部分を外筒シャフト1のルーメンまで進入させることが好ましい。この場合、バルーンカテーテルの治療対象によってその長さを適宜設定すればよいが、大腿動脈から心臓弁にアプローチするような場合、600mm~900mmが好ましく、大腿静脈から左心房にアプローチするような場合、500mm~800mmが好ましい。
 また、押込部材6のパイプ部分を外筒シャフト1まで進入させる場合、これに伴いバルーンカテーテルの長さに合わせて、内筒シャフト4及び中間チューブ5の長さが適宜調整されることとなる。内筒シャフト4の長さについては、大腿動脈から心臓弁にアプローチするような場合、200mm~400mmが好ましく、大腿静脈から左心房にアプローチするような場合、100mm~300mmが好ましい。
 <長軸方向のひずみが5%の時の強度及び引張弾性率の測定方法>
 ISO10555-1(Intravascular catheters-Sterile and single-use catheters-)を参照し、1kNロードセルを装着したテンシロン万能試験機(株式会社エー・アンド・デイ、型式:RTG-1250)にて評価を実施した。
 具体的には、測定方向の長さが100mmとなるように試験片(中間チューブ、外筒シャフト、内筒シャフト)を切り出し、37℃±2℃に制御された純水に24時間浸漬し、純水から試験片を取り出してから5分以内に、テンシロン万能試験機(型式:RTG-1250;株式会社エー・アンド・デイ)を用いて、室温25℃±3℃、55%RH~65%RH環境下にて、原長(チャック間距離)20mm、引張り速度400mm/分で伸張して測定した。原長を100%とし、試験片が105%となった時の強度(N)を読み取り、長軸方向のひずみが5%の時の強度とした。
 以下、本発明のバルーンカテーテルの具体的な実施例について、図1を交えて説明する。
 (実施例1)
 外層の材料をポリエーテルブロックアミド共重合体、中間層の材料をステンレス平角線による編組構造とし、内層の材料をPTFEとして、3層構造のチューブを成型した。この3層構造のチューブの一方の先端部に対しポリエーテルブロックアミド共重合体の単層チューブ(長さ4mm)を熱溶着により取り付け、ブレードチューブを作製した。このブレードチューブは、外径が3.1mm、内径が2.6mmであった。
 次に、遠位側に細径部を有し、基端側に太径部を有する、1段の段差付のパイプ11(細径部の寸法は外径2mm、内径1.84mm、長さ7mm。太径部の寸法は、外径2.4mm、内径2.24mm、長さ3mm。ステンレス製)を用意し、アラミド繊維(長さが1200mm、直径が0.3mm)の端部を1段の段差付のパイプ11の段差に巻き付けて固定し、アラミド繊維をブレードチューブに貫通後、1段の段差付のパイプ11の太径部とブレードチューブ先端部とを接着剤により固定することで、外筒シャフト1を作製した。なお、外筒シャフト1の接着剤を含まないブレードチューブの中央部から100mm長のチューブを5本切り出し、試験片として用いて機械特性を評価したところ、長軸方向のひずみが5%の時の強度の平均値は8.5Nであった。
 次に、把持部材3として、Oリングを嵌め込み可能なキャップ嵌合構造を備えるY型コネクターを用い、伸び防止部材2として、外筒シャフト1のルーメンの全長に渡り伸び防止部材2とするためアラミド繊維が張られるように配置させ、外筒シャフト1の基端側の端部外周上にアラミド繊維を折り返した状態で、外筒シャフト1の基端側の端部とY型コネクターのチューブ接続口を接着剤により固定した。
 次に押込部材6として、持ち手部分を備えた、外径が3段のステンレス製のパイプを用意した。押込部材6において、径が異なる部分を、長手方向における基端側からそれぞれ太径部、中間部及び細径部とした時、太径部は、外径が2.1mm、長さが60mmであり、中間部は、外径が1.8mm、長さが10mmであり、中間部に外径が2.0mmのステンレス製のパイプを外挿し、押込部材6と溶接にて固定されており、太径部から中間部に移行するテーパー長さは0.5mm、細径部は、外径が1.16mm、長さが805mmであった。また、押込部材6としての最小内径は1.0mmであった。
 続いて、押込部材6上に、把持部材3のネジ式のキャップと内径1.4mm、線径1.5mmのOリングとを外挿し、キャップを押込部材6の太径部、Oリングを押込部材6の中間部に溶接されているステンレス製のパイプよりも基端側、かつ、太径部とのテーパー部との間となるように配置した
 内筒シャフト4は、ポリアミド製チューブ(外径1.3mm、内径0.94mm)の基端側の端部を拡径して、押込部材6の細径部の先端部に、接着剤により固定し、さらに、このチューブの遠位側の先端を拡径し、カテーテル先端ステンレスパイプ12(外径1.16mm、内径1.0mm、長さ7mm)をチューブのルーメンに嵌め込み、接着剤により固定し作成した。なお、内筒シャフト4の接着剤を含まないポリアミド製チューブ中央部より100mm長を5本切り出し、試験片として用いて機械特性(試験方法:ISO527)を評価したところ、長軸方向のひずみが5%の時の強度の平均値は、6.5Nであった。内筒シャフトの長軸方向のひずみが5%の時の強度に対する、外筒シャフト1の長軸方向のひずみが5%の時の強度は、130%であった。
 中間チューブ5は、引張弾性率3.4GPa(試験方法:ASTM D790)ポリイミド製チューブ(内径1.35mm、外径1.47mm)を用いた。なお、この中間チューブ5は、内筒シャフト4の先端に取り付けられているカテーテル先端ステンレスパイプ12を接着する前に、中間チューブ5の基端側端部と押込部材6のパイプの細径部の先端とが接するよう、内筒シャフト4を構成するチューブに外挿され、中間チューブ5の基端側の端部の約2mm部分のみが内筒シャフト4に接着剤により固定されている。なお、中間チューブ5の接着剤を含まない中央部より100mm長を5本切り出し、試験片として用いて機械特性を評価し、それらの平均値を用いた。中間チューブの内径と内筒シャフトの外径とのクリアランスは、0.06mmであった。
 X線造影マーカー10を中間チューブ5に1つ外挿し、X線造影マーカーの中心がバルーンの基端側端部から11.5mmの位置となるように接着剤で固定した。プラチナ・イリジウム合金製のX線造影マーカー10は、外径が1.60mm、内径が1.52mmの円筒形状とし、長さを4mmとした。なお、X線造影マーカー10は、内筒シャフト4の先端に取り付けられているカテーテル先端ステンレスパイプ12を接着する前に、中間チューブ5に外挿されている。
 内筒シャフト4とチューブ5、押込部材6、X線造影マーカー10より構成される内筒シャフト組立体を、外筒シャフト組立体に挿通させ、把持部材3のキャップを把持部材3にはめ込み、シール部材8となるOリングを、押込部材6の中間部から太径部にOリングが乗り上げる際(内筒シャフト組立体と外筒シャフト組立体の摺動力と同義)が15Nとなるように締め付けた。そして、Oリング位置が、押込部材6の中間部の基端側の端部となるように調整し、これをバルーンカテーテル100のバルーンの自然長の状態とすることとした。
 バルーンカテーテル100において、バルーン9は、3層構造で形成されている。内層のバルーンとして天然ゴムであり、内径4.0mm、片側膜厚0.3mmを、外筒シャフト1の段付きパイプの細径部上と内筒シャフト4のカテーテル先端ステンレスパイプ12上に各々0.2号のナイロンテグスを巻き付け後に接着剤で固定してこれを内側バルーンとし、さらにその上に、内径4.0mm、片側膜圧0.3mmの天然ゴムと、ポリウレタンとポリエステルより構成される仮撚糸で筒状に編まれたメッシュとをゴム糊により接着して構成された外側バルーンの組立体を配置させ、外筒シャフト1の1段の段付きパイプの細径部上と内筒シャフト4のカテーテル先端ステンレスパイプ12上に各々0.6号のナイロンテグスで巻き付けて接着剤で固定してこれを外側バルーンとした。
 これにより、内層が天然ゴム、中間層がメッシュ、外層が天然ゴムの3層構造のバルーン9が得られた。また、カテーテルの長軸方向のバルーンの自然長25mm、拡張時のバルーン径が22mmとなるようにした。カテーテル長軸方向のバルーン収縮状態におけるバルーンの長さ25mmを100%としたとき、X線造影マーカーの中心部とバルーンの基端側端部からの距離は11.5mmであり、X線造影マーカーの中心部がバルーンの基端側端部から46%の位置に配置されるようにした。
 (実施例2)
 実施例1から、外筒シャフトのひずみ5%時の強度が8.5Nのブレードチューブを外筒シャフトのひずみ5%時の強度が10.0Nのブレードチューブに変え、内筒シャフトのひずみ5%時の強度が6.5Nのポリアミド製チューブを外筒シャフトのひずみ5%時の強度が10.0Nのポリアミド製チューブに変更した。また、カテーテル長軸方向のバルーン収縮状態におけるバルーンの長さ25mmを100%としたとき、X線造影マーカーの中心部がバルーンの基端側端部から30%の位置に配置されるように変更した。さらに、中間チューブは、引張弾性率1.3GPa(試験方法:ASTM D790)ポリ塩化ビニル(PVC)製チューブを用い、クリアランスを0.20mmに変更し、実施例2を作成した。
 (実施例3)
 実施例1から、外筒シャフトのひずみ5%時の強度が8.5Nのブレードチューブを外筒シャフトのひずみ5%時の強度が14.0Nのブレードチューブに変え、内筒シャフトのひずみ5%時の強度が6.5Nのポリアミド製チューブを外筒シャフトのひずみ5%時の強度が13.0Nのポリアミド製チューブに変更した。また、カテーテル長軸方向のバルーン収縮状態におけるバルーンの長さ25mmを100%としたとき、X線造影マーカーの中心部がバルーンの基端側端部から60%の位置に配置されるように変更した。さらに、中間チューブは、引張弾性率4GPa(試験方法:ASTM D790)ポリエーテルエーテルケトン(PEEK)製チューブを用い、クリアランスを0.01mmに変更し、実施例3を作成した。
 (実施例4)
 実施例1から、外筒シャフトのひずみ5%時の強度が8.5Nのブレードチューブを外筒シャフトのひずみ5%時の強度が7.0Nのブレードチューブに変え、内筒シャフトのひずみ5%時の強度が6.5Nのポリアミド製チューブを外筒シャフトのひずみ5%時の強度が10.0Nのポリアミド製チューブに変更した。また、カテーテル長軸方向のバルーン収縮状態におけるバルーンの長さ25mmを100%としたとき、X線造影マーカーの中心部がバルーンの基端側端部から10%の位置に配置されるように変更した。さらに、中間チューブは、引張弾性率0.5GPa(試験方法:ASTM D790)ポリエチレン(PE)製チューブを用い、クリアランスを0.8mmに変更し、実施例4を作成した。
 (実施例5)
 実施例1から、外筒シャフトのひずみ5%時の強度が8.5Nのブレードチューブを外筒シャフトのひずみ5%時の強度が15.0Nのブレードチューブに変え、内筒シャフトのひずみ5%時の強度が6.5Nのポリアミド製チューブを外筒シャフトのひずみ5%時の強度が9.5Nのポリアミド製チューブに変更した。また、カテーテル長軸方向のバルーン収縮状態におけるバルーンの長さ25mmを100%としたとき、X線造影マーカーの中心部がバルーンの基端側端部から80%の位置に配置されるように変更した。さらに、中間チューブは、引張弾性率8GPa(試験方法:ASTM D790)炭素繊維強化プラスチック(CFRP)製チューブを用い、クリアランスを0.005mmに変更し、実施例4を作成した。
 (実施例6)
 実施例1から、外筒シャフトのひずみ5%時の強度が8.5Nのブレードチューブを外筒シャフトのひずみ5%時の強度が5.5Nのブレードチューブに変え、内筒シャフトのひずみ5%時の強度が6.5Nのポリアミド製チューブを外筒シャフトのひずみ5%時の強度が4.5Nのポリアミド製チューブに変更した。また、カテーテル長軸方向のバルーン収縮状態におけるバルーンの長さ25mmを100%としたとき、X線造影マーカーの中心部がバルーンの基端側端部から60%の位置に配置されるように変更した。さらに、中間チューブは、引張弾性率2.5GPa(試験方法:ASTM D790)ポリアセタール樹脂(POM)製チューブを用い、クリアランスを0.10mmに変更し、実施例4を作成した。
 (比較例1)
 中間チューブの接合位置を中間チューブの遠位端のみで内筒シャフトに固定した以外は実施例1と同様にして、比較例1を作成した。
 (比較例2)
 中間チューブを用いず、接着剤を用いて外筒シャフトの遠位側端部から7.5mmの位置の内筒シャフト上にX線造影マーカーを直接固定した以外は、実施例1と同様にして、比較例2を作成した。
 (X線造影マーカー位置の評価法)
 バルーン収縮状態のX線透視画像を撮影し、バルーン収縮時における外筒シャフトの先端に取り付けられている1段の段差付パイプ11の先端側端部から内筒シャフトの先端に取り付けられているカテーテル先端ステンレスパイプ12の基端側端部までの長さ(L)及びバルーン収縮状態の外筒シャフトの先端に取り付けられている1段の段差付パイプ11の先端側端部からX線造影マーカー10の中心までの長さ(L)を定規で測定した。
 次に、生食液で5倍に希釈した造影剤でバルーンを拡張し、X線透視画像を撮影し、バルーン拡張状態における外筒シャフトの先端に取り付けられている1段の段差付パイプ11の先端側端部から内筒シャフトの先端に取り付けられているカテーテル先端ステンレスパイプ12の基端側端部までの長さ(L’)及びバルーン拡張状態における外筒シャフトの先端に取り付けられている1段の段差付パイプ11の先端側端部からX線造影マーカー10の中心までの長さ(L’)を定規で測定した。
 (判定方法)
 バルーン収縮状態並びにバルーン拡張状態における外筒シャフトの先端に取り付けられている1段の段差付パイプ11の先端側端部から内筒シャフトの先端に取り付けられているカテーテル先端ステンレスパイプ12の基端側端部までの長さ(L、L’)及びバルーン収縮状態並びにバルーン拡張状態における外筒シャフトの先端に取り付けられている1段の段差付パイプ11の先端側端部からX線造影マーカー10の中心までの長さ(L、L’)に基づいて、バルーン収縮状態に対するバルーン拡張状態の変化率を以下の式1から算出した。
 ((L×L’/(L‘×L)-1)×100)(%) ・・・式1
 式1から得られた変化率が±20%以内であれば合格(特に±10%以内を最良(◎)、それ以外は良(〇)と区分)、それ以外は不合格(×)とし、その結果を表1及び表2に記載した。変化率が±20%以内であれば、手術においてバルーンの位置決めが容易であり、また、±10%以内であれば初心者でも容易に使える。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (評価結果)
 表1及び表2に示したとおり、実施例1~4は、比較例1~2と比べてバルーン収縮状態とバルーン拡張状態に対しバルーンとX線造影マーカーの相対位置の変化が少なく、カテーテル操作性に優れていたことが示された。
 本発明は、弁狭窄治療等の血管内治療に用いるバルーンカテーテル等の体内で使用する医療用バルーンカテーテルに好適に利用することができる。
 1・・・外筒シャフト、2・・・伸び防止部材、3・・・把持部材、4・・・内筒シャフト、5・・・中間チューブ、6・・・押込部材、7・・・抜け防止部材、8・・・シール部材、9・・・バルーン、10・・・X線造影マーカー、11・・・1段の段差付のパイプ、12・・・カテーテル先端ステンレスパイプ、100・・・バルーンカテーテル

Claims (5)

  1.  可撓性を有する外筒シャフトと、
     前記外筒シャフトに挿入され、かつ、可撓性を有する内筒シャフトと、
     前記内筒シャフトに外挿され、かつ、前記中間チューブの基端側端部のみで前記内筒シャフトに固定されている中間チューブと、
     前記外筒シャフトの遠位側端部及び前記内筒シャフトの遠位側端部にそれぞれ接続された弾性材料からなる長軸方向に延伸可能なバルーンと、
     前記バルーンの内側に位置し、前記中間チューブ上に固定されたX線造影マーカーと、を備える、バルーンカテーテル。
  2.  前記内筒シャフト及び外筒シャフトの長軸方向のひずみが5%の時の強度は、それぞれ4.5~14.5N及び5.0~15.0Nであり、
     前記内筒シャフトの長軸方向のひずみが5%の時の強度に対する、前記外筒シャフトの長軸方向のひずみが5%の時の強度は、100%~160%である、請求項1記載のバルーンカテーテル。
  3.  前記中間チューブの引張弾性率は、1.3~4GPaである、請求項1又は2記載のバルーンカテーテル。
  4.  前記中間チューブの内径と前記内筒シャフトの外径とのクリアランスは、0.01~0.20mmである、請求項1~3のいずれか一項記載のバルーンカテーテル。
  5.  バルーン収縮状態における長軸方向のバルーンの長さを100%としたとき、前記X線造影マーカーの中心部が前記バルーンの基端側端部から30~60%の位置に配置される、請求項1~4のいずれか一項記載のバルーンカテーテル。
PCT/JP2022/046136 2021-12-15 2022-12-15 バルーンカテーテル WO2023112976A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2022408530A AU2022408530A1 (en) 2021-12-15 2022-12-15 Balloon catheter
CA3236296A CA3236296A1 (en) 2021-12-15 2022-12-15 Balloon catheter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-203088 2021-12-15
JP2021203088A JP2023088410A (ja) 2021-12-15 2021-12-15 バルーンカテーテル

Publications (1)

Publication Number Publication Date
WO2023112976A1 true WO2023112976A1 (ja) 2023-06-22

Family

ID=86774339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/046136 WO2023112976A1 (ja) 2021-12-15 2022-12-15 バルーンカテーテル

Country Status (5)

Country Link
JP (1) JP2023088410A (ja)
AU (1) AU2022408530A1 (ja)
CA (1) CA3236296A1 (ja)
TW (1) TW202337511A (ja)
WO (1) WO2023112976A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264569A (ja) * 1997-10-08 2008-11-06 Kaneka Corp バルーンカテーテル及びその製造方法
WO2019156195A1 (ja) * 2018-02-09 2019-08-15 東レ株式会社 バルーンカテーテル

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008264569A (ja) * 1997-10-08 2008-11-06 Kaneka Corp バルーンカテーテル及びその製造方法
WO2019156195A1 (ja) * 2018-02-09 2019-08-15 東レ株式会社 バルーンカテーテル

Also Published As

Publication number Publication date
AU2022408530A1 (en) 2024-05-02
JP2023088410A (ja) 2023-06-27
TW202337511A (zh) 2023-10-01
CA3236296A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
JP2015526159A (ja) ガイド拡張カテーテル
JP2015525638A (ja) ガイド延長カテーテル
US20040236215A1 (en) Catheter
JP7207297B2 (ja) バルーンカテーテル
JP2015525636A (ja) 拡張型ガイドエクステンションカテーテル
JP2015501680A (ja) キーで固定されるロッキング構造体を備えた医療器具
NO301050B1 (no) Enkeltlumen, ventilutrustet ballongkateterenhet
JP2015524737A (ja) ガイドエクステンションカテーテル
EP1596898A2 (en) Balloon catheter
JP2010115375A (ja) 医療用バルーンカテーテル
WO2018213222A1 (en) Radially expandable introducer sheath
JP6861290B2 (ja) 止血弁および止血弁組立体
JP2009291476A (ja) 位置決め装置
WO2023112976A1 (ja) バルーンカテーテル
JP4929956B2 (ja) 医療デバイス通過用チューブ及びそれを備えたカテーテル
CN112057677A (zh) 一种复合材料的医用导管
CN117940185A (zh) 径向计时的可操纵导管
WO2023033045A1 (ja) バルーンカテーテル
JP2009082242A (ja) 医療用チューブ
JPH0919500A (ja) バルーンカテーテル及びその製法
EP4233974A1 (en) Balloon catheter
JP2024500776A (ja) 双方向に操縦可能なカテーテル
WO2020255737A1 (ja) カテーテル
JP2023143226A (ja) 医療用管状体搬送装置
CN116635101A (zh) 长条医疗器具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907499

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: AU2022408530

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 3236296

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022408530

Country of ref document: AU

Date of ref document: 20221215

Kind code of ref document: A