WO2023112616A1 - 熱拡散デバイス及び電子機器 - Google Patents

熱拡散デバイス及び電子機器 Download PDF

Info

Publication number
WO2023112616A1
WO2023112616A1 PCT/JP2022/043151 JP2022043151W WO2023112616A1 WO 2023112616 A1 WO2023112616 A1 WO 2023112616A1 JP 2022043151 W JP2022043151 W JP 2022043151W WO 2023112616 A1 WO2023112616 A1 WO 2023112616A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
wick
diffusion device
wall surface
housing
Prior art date
Application number
PCT/JP2022/043151
Other languages
English (en)
French (fr)
Inventor
誠士 森上
浩士 福田
竜宏 沼本
浩之 上田
剛 向井
秀幸 白木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023112616A1 publication Critical patent/WO2023112616A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to heat diffusion devices and electronic equipment.
  • a vapor chamber has a structure in which a working medium (also called a working fluid) and a wick that transports the working medium by capillary force are sealed inside a housing.
  • the working medium absorbs heat from the heat-generating elements such as electronic parts in the evaporating part that absorbs heat from the heat-generating elements, evaporates in the vapor chamber, moves in the vapor chamber, is cooled, and returns to the liquid phase. .
  • the working medium that has returned to the liquid phase moves again to the evaporating portion on the heating element side by the capillary force of the wick, and cools the heating element.
  • the vapor chamber can operate independently without external power, and heat can be two-dimensionally diffused at high speed by utilizing the latent heat of vaporization and latent heat of condensation of the working medium.
  • a heating portion to which heat is transferred from the outside is provided in a part of a thin plate-shaped body portion, and the heat transferred to the heating portion is transferred from the heating portion to the other portion of the body portion.
  • a plurality of hollow passages are formed inside the main body portion so as to pass through the heating portion, and the hollow passages communicate with each other at the heating portion.
  • a working fluid that evaporates by heating and condenses by heat dissipation is enclosed in the inside, and a wick that generates capillary force by penetrating the liquid-phase working fluid into the inside of each of the hollow passages is provided in each of the above-mentioned hollow passages.
  • the vapor flow path through which the vapor of the working fluid flows is opened inside the air passage, and a part of each of the wicks is located in the heating portion and is formed inside the hollow passage.
  • a heat spreader plate is disclosed, characterized in that each steam channel communicates with one another at the heating section.
  • the hollow passages communicate with each other at the heating portion, and part of each wick is arranged in the heating portion, so that liquid-phase working fluid flows through each hollow passage. It is said that by refluxing all the working fluid to the heating unit, the entire amount of the working fluid can be vaporized and condensed without waste, and heat can be transported.
  • the liquid-phase working medium located on the surface of the wick evaporates and changes to the gas phase in the evaporation section (the heating section referred to in Patent Document 1).
  • the vapor phase working medium moves through the vapor flow path to a location remote from the evaporator where it condenses and changes to the liquid phase.
  • the liquid-phase working medium is recovered by the wick, moved to the evaporator, and then evaporated again from the surface of the wick in the evaporator. In this way, the working medium circulates while repeating the gas-liquid phase change.
  • the present invention has been made to solve the above-described problems, and is to facilitate recovery of a working medium condensed at a location away from an evaporator into a liquid flow path, or to evaporate a working medium in an evaporator. It is an object of the present invention to provide a heat diffusion device capable of facilitating diffusion of heat into a vapor flow path. A further object of the present invention is to provide an electronic device comprising the above heat diffusion device.
  • a heat diffusion device of the present invention includes a housing having a first inner wall surface and a second inner wall surface facing each other in a thickness direction, an evaporating section being provided in an internal space, and a heat diffusion device enclosed in the internal space of the housing.
  • a rail-shaped partition arranged in the internal space of the housing so as to protrude from the first inner wall surface in the thickness direction; and a wick disposed between the partition wall and the second inner wall surface.
  • a liquid flow path for the working medium is formed in a space surrounded by the wick, the partition wall, and the first inner wall surface.
  • a capillary structure is provided in at least a portion of the portion where the wick and the partition wall contact, at least a portion of the portion where the wick and the second inner wall surface contact, or both.
  • the electronic device of the present invention includes the heat diffusion device of the present invention.
  • a heat spreading device can be provided. Furthermore, according to the present invention, it is possible to provide an electronic device comprising the above heat diffusion device.
  • FIG. 1 is a perspective view schematically showing an example of the heat diffusion device of the present invention.
  • FIG. 2 is an exploded perspective view schematically showing an example of the heat diffusion device of the present invention.
  • FIG. 3 is a plan view schematically showing an example of the internal structure of the heat diffusion device of the present invention.
  • FIG. 4 is a partial perspective view schematically showing an example of the heat diffusion device according to the first embodiment of the invention.
  • FIG. 5 is a perspective view schematically showing an example of grooves provided on the surface of the partition.
  • FIG. 6 is a plan view schematically showing an example of the area indicated by P1 in FIG. 7 is a cross-sectional view taken along line A1-A1 in FIG. 6.
  • FIG. 8 is a cross-sectional view taken along line B1-B1 in FIG.
  • FIG. 9 is a perspective view schematically showing another example of grooves provided on the surface of the partition.
  • FIG. 10 is a plan view schematically showing another example of the area indicated by P1 in FIG.
  • FIG. 11 is a perspective view schematically showing still another example of grooves provided on the surface of the partition.
  • FIG. 12 is a plan view schematically showing still another example of the area indicated by P1 in FIG.
  • FIG. 13 is a partial perspective view schematically showing an example of the heat diffusion device according to the second embodiment of the invention.
  • FIG. 14 is a perspective view schematically showing an example of protrusions provided on the second inner wall surface.
  • FIG. 15 is a plan view schematically showing an example of the area indicated by P2 in FIG. 16 is a cross-sectional view taken along line A2-A2 of FIG. 15.
  • FIG. 17 is a cross-sectional view taken along line B2-B2 of FIG. 15.
  • FIG. 16 is a plan view schematically showing an example of the area indicated by P2 in FIG. 16 is a cross-sectional view taken along line A2-A2 of FIG. 15.
  • FIG. 17 is a cross-sectional view taken along line B2-B2 of FIG. 15.
  • the heat diffusion device of the present invention will be described below.
  • the present invention is not limited to the following embodiments, and can be appropriately modified and applied without changing the gist of the present invention.
  • a combination of two or more of the individual preferred configurations of the present invention described below is also the present invention.
  • a vapor chamber will be described below as an example of an embodiment of the heat diffusion device of the present invention.
  • the heat diffusion device of the present invention can also be applied to heat diffusion devices such as heat pipes.
  • terms indicating the relationship between elements e.g., “perpendicular”, “parallel”, “orthogonal”, etc.
  • terms indicating the shape of elements are not expressions that express only strict meanings, but substantially It is an expression that means to include a difference in an equivalent range, for example, a few percent difference.
  • FIG. 1 is a perspective view schematically showing an example of the heat diffusion device of the present invention.
  • FIG. 2 is an exploded perspective view schematically showing an example of the heat diffusion device of the present invention.
  • FIG. 3 is a plan view schematically showing an example of the internal structure of the heat diffusion device of the present invention.
  • a vapor chamber (heat diffusion device) 1 shown in FIG. 1 includes a hollow housing 10 that is hermetically sealed. As shown in FIGS. 2 and 3, the vapor chamber 1 further includes a working medium 20 (see FIG. 3) enclosed in the internal space of the housing 10 and a rail-shaped fuel cell disposed in the internal space of the housing 10. A partition wall 30 and a wick 40 arranged in the internal space of the housing 10 are provided. A liquid channel 50 for the working medium 20 and a vapor channel 60 for the working medium 20 are formed in the internal space of the housing 10 . A plurality of struts 70 are preferably arranged within the steam flow path 60 .
  • the housing 10 is preferably composed of a first sheet 11 and a second sheet 12 that face each other and whose outer edges are joined.
  • an evaporation portion EP for evaporating the enclosed working medium 20 is set in the internal space of the housing 10 .
  • a heat source HS which is a heating element, is arranged on the outer wall surface of the housing 10 .
  • the heat source HS include electronic components of electronic equipment, such as a central processing unit (CPU).
  • CPU central processing unit
  • a portion of the internal space of the housing 10 that is in the vicinity of the heat source HS and is heated by the heat source HS corresponds to the evaporating section EP.
  • FIG. 4 is a partial perspective view schematically showing an example of the heat diffusion device according to the first embodiment of the invention.
  • the housing 10 has a first inner wall surface 11a and a second inner wall surface 12a facing each other in the thickness direction Z.
  • the rail-shaped partition 30 (hereinafter simply referred to as the partition 30) is arranged to protrude in the thickness direction Z from the first inner wall surface 11a. More specifically, the partition wall 30 is arranged in the internal space of the housing 10 so as to protrude from the first inner wall surface 11a toward the second inner wall surface 12a. The direction in which the partition wall 30 protrudes from the first inner wall surface 11a does not need to be strictly parallel to the thickness direction Z.
  • the partition wall 30 is arranged along the edge of the internal space of the housing 10 with a gap therebetween.
  • the wick 40 is arranged between the partition wall 30 and the second inner wall surface 12a so as to be in contact with the partition wall 30 and the second inner wall surface 12a.
  • a liquid flow path 50 for the working medium 20 is formed in the space surrounded by the wick 40, the partition wall 30, and the first inner wall surface 11a.
  • the wick 40 around the liquid channel 50 exert a capillary force, but also the working medium 20 can smoothly move through the liquid channel 50 because the resistance of the liquid passing through the liquid channel 50 is reduced. can.
  • a vapor channel 60 for the working medium 20 is formed in a gap other than the liquid channel 50 inside the housing 10 .
  • grooves 80 are provided in at least part of the surface of the partition wall 30 with which the wick 40 is in contact.
  • the groove 80 is an example of a capillary structure capable of moving the working medium 20 by capillary force.
  • the groove 80 contacts both the liquid channel 50 and the vapor channel 60 .
  • the vapor-phase working medium 20 evaporated in the evaporator EP passes through the vapor passage 60 to a location away from the evaporator EP (for example, the vapor passage 60 located in the region indicated by P1 in FIG. 3). ) where it condenses and changes to a liquid phase.
  • the liquid-phase working medium 20 is collected by the wick 40 and moved to the evaporator EP.
  • the absorption capacity of the working medium 20 by the wick 40 exceeds the limit, the liquid-phase working medium 20 is not collected in the liquid flow path 50 and a liquid pool is generated in the vapor flow path 60 .
  • the heat uniformity may be deteriorated by putting it away.
  • the liquid-phase working medium 20 after condensing flows through the grooves 80 into the liquid state. It becomes easier to collect in the flow path 50 .
  • the flow of the working medium 20 is indicated by arrows. The same applies to FIGS. 6, 10 and 12 which will be described later.
  • the liquid channel 50 is arranged only in the outer peripheral portion of the internal space of the housing 10 . That is, it is preferable that the wick 40 is arranged only in the outer peripheral portion of the internal space of the housing 10 . In this case, since the wick 40 is not arranged over the entire internal space of the housing 10 , a wide steam flow path 60 can be ensured in the internal space of the housing 10 . On the other hand, although the amount of the wick 40 that can recover the liquid-phase working medium 20 is reduced, the provision of the grooves 80 facilitates the recovery of the liquid-phase working medium 20 .
  • FIG. 5 is a perspective view schematically showing an example of grooves provided on the surface of the partition.
  • FIG. 6 is a plan view schematically showing an example of the area indicated by P1 in FIG.
  • the groove 80 includes, for example, a first groove 81.
  • the first groove 81 is preferably provided at least in the partition wall 30 (the partition wall 30 extending in the left-right direction in FIG. 6) facing the evaporator EP when viewed in the thickness direction Z. As shown in FIG. As shown in FIGS. 5 and 6, it is more preferable that a plurality of first grooves 81 are provided in the partition wall 30 facing the evaporating section EP when viewed from the thickness direction Z, and a plurality of first grooves 81 are provided along the entire circumference of the partition wall 30. More preferably, a first groove 81 is provided.
  • FIG. 7 is a cross-sectional view along line A1-A1 in FIG.
  • FIG. 8 is a cross-sectional view taken along line B1-B1 in FIG.
  • the depth of the first groove 81 (the length indicated by T81 in FIGS. 5, 7 and 8) is 1/1 of the height of the partition wall 30 (the length indicated by T30 in FIGS. 7 and 8). It is preferably two times or more and equal to or less than two times. That is, the depth T 81 of the first groove 81 may be the same as the height T 30 of the partition wall 30 . When a plurality of first grooves 81 are provided, the depths T81 of the first grooves 81 may be the same or different.
  • the width of the first groove 81 (the length indicated by W81 in FIGS. 6 and 8) is preferably at least half the depth T81 of the first groove 81 and equal to or less than the same. That is, the width W 81 of the first groove 81 may be the same as the depth T 81 of the first groove 81 . When a plurality of first grooves 81 are provided, the widths W81 of the first grooves 81 may be the same or different.
  • a depth T81 of the first groove 81 is not particularly limited, but is, for example, 30 ⁇ m or more and 60 ⁇ m or less.
  • the depth T81 of the first groove 81 is defined as the length of the deepest portion.
  • a width W 81 of the first groove 81 is not particularly limited, but is, for example, 30 ⁇ m or more and 60 ⁇ m or less.
  • the width W81 of the first groove 81 is defined as the length of the widest portion.
  • the cross-sectional shape of the first groove 81 viewed from the direction in which the first groove 81 extends is not particularly limited, and examples thereof include polygonal shapes such as rectangles, semicircular shapes, semielliptical shapes, and shapes combining these.
  • the cross-sectional shapes of the first grooves 81 may be the same or different.
  • the height T30 of the partition wall 30 is not particularly limited, but is, for example, 2 ⁇ m or more and 200 ⁇ m or less, preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the height T30 of the partition wall 30 is defined as the length of the highest portion of the portions where the grooves 80 such as the first grooves 81 are not provided.
  • the thickness of the wick 40 (the length indicated by T40 in FIGS. 7 and 8) is not particularly limited, but is, for example, 2 ⁇ m or more and 200 ⁇ m or less, preferably 5 ⁇ m or more and 100 ⁇ m or less. Note that the thickness T40 of the wick 40 is defined as the length of the thickest portion.
  • the height of the internal space of the housing 10 (the length indicated by T60 in FIGS. 7 and 8) is not particularly limited, but is, for example, 100 ⁇ m or more and 140 ⁇ m or less.
  • the height T60 of the internal space of the housing 10 is defined as the length of the highest portion between the first inner wall surface 11a and the second inner wall surface 12a.
  • FIG. 9 is a perspective view schematically showing another example of grooves provided on the surface of the partition.
  • FIG. 10 is a plan view schematically showing another example of the area indicated by P1 in FIG.
  • the groove 80 may further include a second groove 82 in addition to the first groove 81.
  • the second groove 82 is provided at a portion other than the corner portion of the partition wall 30 (the partition wall 30 extending in the left-right direction in FIG. 10) facing the evaporator EP when viewed in the thickness direction Z.
  • a single second groove 82 may be provided, or a plurality of second grooves 82 may be provided in a portion other than the corner portion of the partition wall 30 facing the evaporating portion EP when viewed in the thickness direction Z. .
  • the partition walls 30 other than the partition walls 30 facing the evaporator EP when viewed from the thickness direction Z are provided with second grooves 82. preferably not. That is, it is preferable that the second groove 82 is provided in the partition wall 30 facing the evaporator EP when viewed from the thickness direction Z. As shown in FIG.
  • the depth of the second groove 82 (the length indicated by T 82 in FIG. 9) is equal to or greater than the depth T 81 of the first groove 81 .
  • the depth T82 of the second groove 82 may be the same as the depth T81 of the first groove 81, but is preferably greater than the depth T81 of the first groove 81. More preferably, the depth T 82 of the second groove 82 is the same as the height T 30 of the partition 30 . When a plurality of second grooves 82 are provided, the depths T82 of the second grooves 82 may be the same or different.
  • the width of the second groove 82 (the length indicated by W 82 in FIG. 10) is larger than the width W 81 of the first groove 81 .
  • the width W 82 of the second groove 82 is preferably 10 times or more and 35 times or less the width W 81 of the first groove 81 .
  • the widths W 82 of the second grooves 82 may be the same or different.
  • a depth T82 of the second groove 82 is not particularly limited, but is, for example, 2 ⁇ m or more and 200 ⁇ m or less, preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the depth T82 of the second groove 82 is defined as the length of the deepest portion.
  • a width W 82 of the second groove 82 is not particularly limited, but is, for example, 600 ⁇ m or more and 1000 ⁇ m or less.
  • the width W82 of the second groove 82 is defined as the length of the widest portion.
  • the cross-sectional shape of the second groove 82 when viewed from the direction in which the second groove 82 extends is not particularly limited, and may be, for example, a polygon such as a rectangle, a semicircle, a semiellipse, or a combination of these.
  • the cross-sectional shapes of the second grooves 82 may be the same or different.
  • the cross-sectional shape of the second groove 82 may be the same as or different from the cross-sectional shape of the first groove 81 .
  • FIG. 11 is a perspective view schematically showing still another example of grooves provided on the surface of the partition.
  • FIG. 12 is a plan view schematically showing still another example of the area indicated by P1 in FIG.
  • the grooves 80 may further include third grooves 83 in addition to the first grooves 81 .
  • the grooves 80 may include a first groove 81, a second groove 82 and a third groove 83.
  • the third groove 83 is provided at a corner of the partition 30 (the partition 30 extending in the left-right direction in FIG. 12) facing the evaporator EP when viewed in the thickness direction Z.
  • the third grooves 83 may be provided at all the corners, or the third grooves 83 may be provided at some corners.
  • a groove 83 may be provided.
  • third grooves 83 are provided in the partitions 30 other than the partition 30 facing the evaporator EP when viewed from the thickness direction Z. preferably not.
  • the depth of the third groove 83 (the length indicated by T 83 in FIG. 11) is equal to or greater than the depth T 81 of the first groove 81 .
  • the depth T 83 of the third groove 83 may be the same as the depth T 81 of the first groove 81 , but is preferably greater than the depth T 81 of the first groove 81 . More preferably, the depth T 83 of the third groove 83 is the same as the height T 30 of the partition wall 30 .
  • the depths T83 of the third grooves 83 may be the same or different.
  • the depth T 83 of the third groove 83 may be the same as or different from the depth T 82 of the second groove 82 .
  • the width of the third groove 83 (the length indicated by W83 in FIG. 12) is larger than the width W81 of the first groove 81. As shown in FIG.
  • the width W 83 of the third groove 83 is preferably 10 times or more and 35 times or less the width W 81 of the first groove 81 .
  • the widths W 83 of the third grooves 83 may be the same or different.
  • the width W 83 of the third groove 83 may be the same as or different from the width W 82 of the second groove 82 .
  • a depth T83 of the third groove 83 is not particularly limited, but is, for example, 2 ⁇ m or more and 200 ⁇ m or less, preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the depth T83 of the third groove 83 is defined as the length of the deepest portion.
  • a width W 83 of the third groove 83 is not particularly limited, but is, for example, 600 ⁇ m or more and 1000 ⁇ m or less.
  • the width W83 of the third groove 83 is defined as the length of the widest portion.
  • the cross-sectional shape of the third groove 83 when viewed from the direction in which the third groove 83 extends is not particularly limited, and may be, for example, a polygon such as a rectangle, a semicircle, a semiellipse, or a combination of these.
  • the cross-sectional shapes of the third grooves 83 may be the same or different.
  • the cross-sectional shape of the third groove 83 may be the same as or different from the cross-sectional shape of the first groove 81 .
  • the cross-sectional shape of the third groove 83 may be the same as or different from the cross-sectional shape of the second groove 82 .
  • FIG. 13 is a partial perspective view schematically showing an example of the heat diffusion device according to the second embodiment of the invention.
  • projections 90 are provided on at least part of the surface of the second inner wall surface 12a with which the wick 40 contacts.
  • a liquid reservoir space 91 for the working medium 20 is formed in a space surrounded by the wick 40, the projection 90, and the second inner wall surface 12a.
  • the protrusion 90 is an example of a capillary structure capable of moving the working medium 20 by capillary force.
  • the liquid pool space 91 contacts both the wick 40 and the vapor flow path 60 .
  • the liquid-phase working medium 20 moves to the surface through the gaps inside the wick 40, where it evaporates and changes to the gas phase. After that, the vapor-phase working medium 20 moves to the vapor flow path 60 .
  • the liquid resistance of the liquid-phase working medium 20 passing through the inside of the wick 40 increases, so that the liquid-phase working medium 20 contacts the vapor flow path 60.
  • the liquid-phase working medium 20 may become difficult to move to the surface of the wick 40 .
  • the diameter of the openings on the surface of the wick 40 is very small, there is a possibility that the working medium 20 in the liquid phase changes to the gas phase and becomes difficult to diffuse into the vapor flow path 60 .
  • a projection 90 is provided on at least a part of the surface of the second inner wall surface 12a with which the wick 40 is in contact, and the space surrounded by the wick 40, the projection 90, and the second inner wall surface 12a.
  • the liquid-phase working medium 20 passes through the inside of the wick 40 and moves to the liquid pool space 91, and then flows from the opening surface 92 of the liquid pool space 91. It can evaporate and diffuse into the vapor flow path 60 . Since the opening surface 92 of the liquid pool space 91 in contact with the vapor flow path 60 is larger than the opening diameter of the surface of the wick 40 , the vaporized working medium 20 in the vapor phase is easily diffused into the vapor flow path 60 .
  • the flow of the working medium 20 is indicated by arrows. The same applies to FIG. 16 described later.
  • FIG. 14 is a perspective view schematically showing an example of protrusions provided on the second inner wall surface.
  • FIG. 15 is a plan view schematically showing an example of the area indicated by P2 in FIG.
  • the projection 90 is preferably provided at a position overlapping at least the evaporating part EP (a position overlapping the heat source HS in FIG. 14) when viewed from the thickness direction Z. As shown in FIG. 14, it is more preferable that a plurality of projections 90 are provided at least at a position overlapping with the evaporator EP when viewed from the thickness direction Z, and a plurality of projections 90 are provided along the entire circumference of the outer peripheral portion of the internal space of the housing 10. It is further preferable that a projection 90 is provided.
  • FIG. 16 is a cross-sectional view along line A2-A2 in FIG. 17 is a cross-sectional view taken along line B2-B2 of FIG. 15.
  • FIG. 16 is a cross-sectional view along line A2-A2 in FIG. 17 is a cross-sectional view taken along line B2-B2 of FIG. 15.
  • the height of the opening surface 92 of the liquid pool space 91 (the length indicated by T92 in FIGS. 16 and 17) is 1/10 times or more and 7/10 times the height T60 of the internal space of the housing 10. The following are preferred.
  • the height T92 of the opening surface 92 of the liquid pool space 91 may be the same or different.
  • the width of the opening surface 92 of the liquid pooling space 91 (the length indicated by W 92 in FIG. 17) is 1/10 times or more the height T 92 of the opening surface 92 of the liquid pooling space 91, and is equal to or less than the same. preferable. That is, the width W 92 of the opening surface 92 of the liquid pool space 91 may be the same as the height T 92 of the opening surface 92 of the liquid pool space 91 . When a plurality of protrusions 90 are provided, the width W 92 of the opening surface 92 of the liquid pool space 91 may be the same or different.
  • a height T92 of the opening surface 92 of the liquid pool space 91 is not particularly limited, but is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the height T92 of the opening surface 92 of the liquid pool space 91 is defined as the length of the highest portion.
  • a width W 92 of the opening surface 92 of the liquid pool space 91 is not particularly limited, but is, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the width W92 of the opening surface 92 of the liquid pool space 91 is defined as the length of the widest portion.
  • the protrusion 90 is provided so as to protrude in the thickness direction Z from the second inner wall surface 12a. More specifically, the protrusion 90 is provided in the internal space of the housing 10 so as to protrude from the second inner wall surface 12a toward the first inner wall surface 11a.
  • the direction in which the projection 90 protrudes from the second inner wall surface 12a need not be strictly parallel to the thickness direction Z.
  • the shape of the projection 90 is rail-shaped, but the shape of the projection 90 is not particularly limited, and may be, for example, rail-shaped, column-shaped, or a combination thereof.
  • the shapes of the protrusions 90 may be the same or different.
  • the material forming the protrusions 90 is not particularly limited, but examples thereof include resins, metals, ceramics, or mixtures and laminates thereof.
  • the projection 90 may be integrated with the housing 10, or may be formed by etching the second inner wall surface 12a of the housing 10, for example.
  • the vapor chamber 1 is preferably planar as a whole. That is, the housing 10 as a whole is preferably planar.
  • the “planar shape” includes a plate shape and a sheet shape, and the dimension in the width direction X (hereinafter referred to as width) and the dimension in the length direction Y (hereinafter referred to as length) are the thickness direction Z Shapes that are considerably large relative to their dimensions (hereinafter referred to as thickness or height), such as shapes whose width and length are 10 times or more, preferably 100 times or more, their thickness.
  • the size of the vapor chamber 1, that is, the size of the housing 10 is not particularly limited.
  • the width and length of the vapor chamber 1 can be appropriately set according to the application.
  • the width and length of the vapor chamber 1 are, for example, 5 mm or more and 500 mm or less, 20 mm or more and 300 mm or less, or 50 mm or more and 200 mm or less.
  • the width and length of the vapor chamber 1 may be the same or different.
  • the material of which the first sheet 11 and the second sheet 12 are composed should have properties suitable for use as a vapor chamber, such as thermal conductivity, strength, and the like. , flexibility, flexibility, etc., and is not particularly limited.
  • the material that constitutes the first sheet 11 and the second sheet 12 is preferably a metal, such as copper, nickel, aluminum, magnesium, titanium, iron, or an alloy containing them as a main component, and copper is particularly preferable. is.
  • the materials forming the first sheet 11 and the second sheet 12 may be the same or different, but are preferably the same.
  • the housing 10 is composed of the first sheet 11 and the second sheet 12
  • the first sheet 11 and the second sheet 12 are joined together at their outer edge portions.
  • the method of such bonding is not particularly limited, but for example, laser welding, resistance welding, diffusion bonding, brazing, TIG welding (tungsten-inert gas welding), ultrasonic bonding or resin sealing can be used, which is preferable. can use laser welding, resistance welding or brazing.
  • the thicknesses of the first sheet 11 and the second sheet 12 are not particularly limited, but each is preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 30 ⁇ m or more and 100 ⁇ m or less, still more preferably 40 ⁇ m or more and 60 ⁇ m or less.
  • the thicknesses of the first sheet 11 and the second sheet 12 may be the same or different. Also, the thickness of each sheet of the first sheet 11 and the second sheet 12 may be the same over the entire area, or may be thin in part.
  • first sheet 11 and the second sheet 12 are not particularly limited.
  • first sheet 11 and the second sheet 12 may each have a shape in which the outer edges are thicker than the portions other than the outer edges.
  • the first sheet 11 and the second sheet 12 may be overlapped so that the ends match, or may be overlapped with the ends shifted.
  • the material forming the first sheet 11 and the material forming the second sheet 12 may be different.
  • the stress applied to the housing 10 can be dispersed.
  • one sheet can have one function and the other sheet can have another function.
  • the above functions are not particularly limited, but include, for example, a heat conduction function, an electromagnetic wave shielding function, and the like.
  • the thickness of the entire vapor chamber 1 is not particularly limited, it is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the planar shape of the housing 10 when viewed from the thickness direction Z is not particularly limited, and examples thereof include polygonal shapes such as triangles and rectangles, circular shapes, elliptical shapes, and shapes combining these shapes. Further, the planar shape of the housing 10 may be L-shaped, C-shaped (U-shaped), step-shaped, or the like. Moreover, the housing 10 may have a through hole. The planar shape of the housing 10 may be a shape according to the use of the vapor chamber, the shape of the location where the vapor chamber is installed, and other parts existing nearby.
  • the working medium 20 is not particularly limited as long as it can cause a gas-liquid phase change in the environment inside the housing 10.
  • water, alcohols, CFC alternatives, etc. can be used.
  • the working medium is an aqueous compound, preferably water.
  • the material forming the partition 30 is not particularly limited, but examples include resins, metals, ceramics, or mixtures and laminates thereof. 2 and 3, the partition 30 may be integrated with the housing 10, or may be formed by etching the inner wall surface of the housing 10, for example.
  • the partition walls 30 may be arranged in only one row, or may be arranged in two or more rows so as to be parallel to each other. When two or more rows of partitions 30 are arranged, a liquid channel 50 surrounded by the partitions 30 may be further formed.
  • the wick 40 has a capillary structure that can move the working medium 20 by capillary force.
  • the capillary structure of wick 40 may be any known structure used in conventional heat spreading devices. Examples of the capillary structure include microstructures having unevenness such as pores, grooves, and projections, such as porous structures, fiber structures, groove structures, network structures, and the like.
  • the material of the wick 40 is not particularly limited, and for example, metal porous films, meshes, non-woven fabrics, sintered bodies, porous bodies, etc. formed by etching or metal processing are used.
  • the mesh that is the material of the wick 40 may be composed of, for example, a metal mesh, a resin mesh, or a surface-coated mesh thereof, preferably a copper mesh, a stainless steel (SUS) mesh, or a polyester mesh.
  • the sintered body, which is the material of the wick 40 may be composed of, for example, a metal porous sintered body, a ceramic porous sintered body, or the like, and preferably composed of a copper or nickel porous sintered body.
  • the porous body that is the material of the wick 40 may be composed of, for example, a metal porous body, a ceramic porous body, a resin porous body, or the like.
  • the wick 40 may be fixed to the partition wall 30.
  • the wick 40 and the partition 30 are made of metal, the wick 40 may be joined to the partition 30 .
  • the bonding method is not particularly limited, diffusion bonding or the like can be used, for example.
  • the wick 40 may be fixed to the housing 10.
  • the wick 40 may be joined to the housing 10 .
  • the bonding method is not particularly limited, diffusion bonding or the like can be used, for example.
  • the ends of the wick 40 may be fixed to the outer edge of the second sheet 12 of the housing 10 .
  • the ends of the wick 40 may be joined to the outer edges of the second sheet 12 of the housing 10 .
  • the edge of the wick 40 may be supported by the outer edge of the first sheet 11 of the housing 10 .
  • the end of the wick 40 may be fixed to the outer edge of the first sheet 11 of the housing 10 .
  • the ends of the wick 40 may be joined to the outer edges of the first sheet 11 of the housing 10 .
  • the wick 40 does not protrude from the partition wall 30 to the steam flow path 60 side, but part of the wick 40 may protrude from the partition wall 30 to the steam flow path 60 side. In that case, the gas-liquid exchange surface can be increased.
  • the steam flow path 60 is divided between the pillars 70.
  • the enclosure 10 may be supported by placing struts 70 within the steam flow path 60 .
  • the struts 70 are arranged in the entire steam passage 60, but the struts 70 may not be arranged in a part of the steam passage 60. .
  • the strut 70 may be in contact with at least one of the first inner wall surface 11a and the second inner wall surface 12a, and may not be in contact with the first inner wall surface 11a and the second inner wall surface 12a.
  • the material forming the support 70 is not particularly limited, but examples thereof include resins, metals, ceramics, or mixtures and laminates thereof. Further, the support 70 may be integrated with the housing 10, or may be formed by etching the inner wall surface of the housing 10, for example.
  • the shape of the support 70 is not particularly limited as long as it can support the housing 10, but the shape of the cross section perpendicular to the height direction of the support 70 may be, for example, a polygon such as a rectangle, a circle, or an oval. mentioned.
  • the height of the struts 70 may be the same or different in one vapor chamber.
  • the width of the support 70 is not particularly limited as long as it provides strength capable of suppressing deformation of the housing 10 of the vapor chamber 1.
  • the equivalent circle diameter of the perpendicular cross section is, for example, 100 ⁇ m or more and 2000 ⁇ m or less, preferably 300 ⁇ m or more and 1000 ⁇ m or less.
  • the arrangement of the struts 70 is not particularly limited, they are preferably arranged evenly in a predetermined area, more preferably evenly over the entire area, for example, so that the distance between the struts 70 is constant. By arranging the struts 70 evenly, it is possible to ensure uniform strength throughout the vapor chamber 1 .
  • the heat diffusion device of the present invention is not limited to the above-described embodiments, and various applications and modifications can be made within the scope of the present invention regarding the structure of the heat diffusion device, manufacturing conditions, and the like.
  • At least a portion of the portion where the wick and the partition wall are in contact, at least a portion of the portion where the wick and the second inner wall surface are in contact, or both may be provided with a capillary structure.
  • a capillary structure may be provided on at least part of the surface of the partition with which the wick is in contact, as in the first embodiment, and at least part of the surface of the second inner wall surface with which the wick is in contact, as in the second embodiment. may be provided with a capillary structure, and both at least a portion of the surface of the partition with which the wick is in contact and at least a portion of the surface of the second inner wall surface with which the wick is in contact may be provided with a capillary structure.
  • the surface of the partition with which the wick is in contact has the capillary structure.
  • a groove may be provided in at least a part of the second inner wall surface, and a protrusion may be provided in at least a part of the surface of the second inner wall surface with which the wick is in contact. In that case, the position where the groove is provided and the position where the protrusion is provided may be the same or different.
  • a capillary structure may be provided on at least part of the surface of the wick with which the partition wall contacts, at least part of the surface of the wick with which the second inner wall surface contacts, or both.
  • At least part of the surface of the partition with which the wick is in contact, at least part of the surface of the wick with which the partition is in contact, at least part of the surface of the second inner wall surface with which the wick is in contact, and the second At least one of at least a portion of the surface of the wick with which the inner wall surface is in contact should be provided with a capillary structure.
  • the capillary structure provided in at least a portion of the portion where the wick and the partition are in contact, at least a portion of the portion where the wick and the second inner wall surface are in contact, or both may be the grooves described in the first embodiment, or the second embodiment. It is not limited to the protrusions described in the form. At least a portion of the portion where the wick and the partition wall are in contact, at least a portion of the portion where the wick and the second inner wall surface are in contact, or both may be provided with two or more types of capillary structures.
  • the liquid channel may be arranged only in the outer peripheral portion of the internal space of the housing, or may be arranged only in the central portion of the internal space of the housing. It may be arranged over the entire interior space.
  • the housing may have one evaporator or may have a plurality of evaporators. That is, one heat source may be arranged on the outer wall surface of the housing, or a plurality of heat sources may be arranged.
  • the heat diffusion device of the present invention can be mounted on electronic equipment for the purpose of heat dissipation. Therefore, an electronic device including the heat diffusion device of the present invention is also one aspect of the present invention.
  • Examples of the electronic device of the present invention include smart phones, tablet terminals, notebook computers, game machines, wearable devices, and the like.
  • the heat diffusion device of the present invention operates independently without the need for external power, and utilizes the latent heat of vaporization and latent heat of condensation of the working medium to diffuse heat two-dimensionally and at high speed. Therefore, an electronic device equipped with the heat diffusion device of the present invention can effectively dissipate heat in a limited space inside the electronic device.
  • the heat diffusion device of the present invention can be used for a wide range of applications in fields such as personal digital assistants. For example, it can be used to lower the temperature of a heat source such as a CPU and extend the operating time of electronic equipment, and can be used in smartphones, tablet terminals, laptop computers, and the like.
  • vapor chamber heat diffusion device 10 housing 11 first sheet 11a first inner wall surface 12 second sheet 12a second inner wall surface 20 working medium 30 rail-shaped partition wall 40 wick 50 liquid channel 60 steam channel 70 support 80 groove (capillary structure) 81 first groove 82 second groove 83 third groove 90 projection (capillary structure) 91 Liquid pooling space 92 Opening surface of liquid pooling space EP Evaporator HS Heat source T 30 Height of partition T 40 Thickness of wick T 60 Height of internal space of housing T 81 Depth of first groove T 82 Second Groove depth T 83 Third groove depth T 92 Liquid pooling space opening surface height W 81 First groove width W 82 Second groove width W 83 Third groove width W 92 Liquid pooling space width of opening

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

熱拡散デバイスの一実施形態であるベーパーチャンバー1は、筐体10と、作動媒体20と、レール状の隔壁30と、ウィック40と、を備える。ウィック40と隔壁30と第1内壁面11aとによって囲まれた空間には、作動媒体20の液体流路50が形成される。ウィック40と隔壁30とが接する部分の少なくとも一部、ウィック40と第2内壁面12aとが接する部分の少なくとも一部、又はその両方に毛細管構造(例えば、溝80)が設けられている。

Description

熱拡散デバイス及び電子機器
 本発明は、熱拡散デバイス及び電子機器に関する。
 近年、素子の高集積化及び高性能化による発熱量が増加している。また、製品の小型化が進むことで、発熱密度が増加するため、放熱対策が重要となっている。この状況はスマートフォン及びタブレット等のモバイル端末の分野において特に顕著である。熱対策部材としては、グラファイトシート等が用いられることが多いが、その熱輸送量は充分ではないため、様々な熱対策部材の使用が検討されている。中でも、非常に効果的に熱を拡散させることが可能である熱拡散デバイスとして、面状のヒートパイプであるベーパーチャンバーの使用の検討が進んでいる。
 ベーパーチャンバーは、筐体の内部に、作動媒体(作動流体ともいう)と、毛細管力によって作動媒体を輸送するウィックとが封入された構造を有する。作動媒体は、電子部品等の発熱素子からの熱を吸収する蒸発部において発熱素子からの熱を吸収してベーパーチャンバー内で蒸発した後、ベーパーチャンバー内を移動し、冷却されて液相に戻る。液相に戻った作動媒体は、ウィックの毛細管力によって再び発熱素子側の蒸発部に移動し、発熱素子を冷却する。これを繰り返すことにより、ベーパーチャンバーは外部動力を有することなく自立的に作動し、作動媒体の蒸発潜熱及び凝縮潜熱を利用して、二次元的に高速で熱を拡散することができる。
 特許文献1には、薄い板状の本体部の一部に外部から熱が伝達される加熱部が設けられ、上記加熱部に伝達された熱を上記加熱部から上記本体部の他の部分に拡散させる熱拡散板において、複数本の中空路が上記本体部の内部に上記加熱部を通るように形成されるとともに、上記各中空路が上記加熱部で互いに連通しており、上記中空路の内部に、加熱されて蒸発しかつ放熱して凝縮する作動流体が封入され、上記各中空路の内部に、液相の上記作動流体が浸透することにより毛管力を発生するウィックが、上記各中空路の内部に上記作動流体の蒸気が流動する蒸気流路をあけた状態に配置され、上記各ウィックの一部が上記加熱部に位置するとともに、上記各中空路の内部に形成されている上記各蒸気流路が上記加熱部で互いに連通していることを特徴とする熱拡散板が開示されている。
特開2016-223673号公報
 特許文献1に記載の熱拡散板によれば、各中空路が加熱部で互いに連通し、また各ウィックの一部が加熱部に配置されているので、各中空路では液相の作動流体が全て加熱部に還流することで、作動流体の全量が無駄なく蒸発と凝縮とを行って熱輸送を行うことができるとされている。
 一般に、ベーパーチャンバーでは、蒸発部(特許文献1でいう加熱部)においてウィックの表面に位置する液相の作動媒体が蒸発して気相に変化する。気相の作動媒体は蒸気流路を通って蒸発部から離れた場所に移動し、そこで凝縮して液相に変化する。液相の作動媒体はウィックに回収されて蒸発部に移動した後、再び蒸発部においてウィックの表面から蒸発する。このように、作動媒体は、気-液の相変化を繰り返しながら循環する。
 しかしながら、蒸発部から離れた場所において凝縮する作動媒体を液体流路に回収しやすくする点、又は、蒸発部において作動媒体を蒸発させて蒸気流路に拡散させやすくする点では改善の余地がある。
 なお、上記の問題は、ベーパーチャンバーに限らず、ベーパーチャンバーと同様の構成によって熱を拡散させることが可能な熱拡散デバイスに共通する問題である。
 本発明は、上記の問題を解決するためになされたものであり、蒸発部から離れた場所において凝縮する作動媒体を液体流路に回収しやすくすること、又は、蒸発部において作動媒体を蒸発させて蒸気流路に拡散させやすくすることが可能な熱拡散デバイスを提供することを目的とする。さらに、本発明は、上記熱拡散デバイスを備える電子機器を提供することを目的とする。
 本発明の熱拡散デバイスは、厚さ方向に対向する第1内壁面及び第2内壁面を有し、内部空間に蒸発部が設けられている筐体と、上記筐体の上記内部空間に封入される作動媒体と、上記第1内壁面から上記厚さ方向に突出するように上記筐体の上記内部空間に配置されるレール状の隔壁と、上記隔壁及び上記第2内壁面に接するように、上記隔壁と上記第2内壁面との間に配置されるウィックと、を備える。上記ウィックと上記隔壁と上記第1内壁面とによって囲まれた空間には、上記作動媒体の液体流路が形成される。上記ウィックと上記隔壁とが接する部分の少なくとも一部、上記ウィックと上記第2内壁面とが接する部分の少なくとも一部、又はその両方に毛細管構造が設けられている。
 本発明の電子機器は、本発明の熱拡散デバイスを備える。
 本発明によれば、蒸発部から離れた場所において凝縮する作動媒体を液体流路に回収しやすくすること、又は、蒸発部において作動媒体を蒸発させて蒸気流路に拡散させやすくすることが可能な熱拡散デバイスを提供することができる。さらに、本発明によれば、上記熱拡散デバイスを備える電子機器を提供することができる。
図1は、本発明の熱拡散デバイスの一例を模式的に示す斜視図である。 図2は、本発明の熱拡散デバイスの一例を模式的に示す分解斜視図である。 図3は、本発明の熱拡散デバイスの内部構造の一例を模式的に示す平面図である。 図4は、本発明の第1実施形態に係る熱拡散デバイスの一例を模式的に示す部分斜視図である。 図5は、隔壁の表面に設けられる溝の一例を模式的に示す斜視図である。 図6は、図3中にP1で示す領域の一例を模式的に示す平面図である。 図7は、図6のA1-A1線に沿った断面図である。 図8は、図6のB1-B1線に沿った断面図である。 図9は、隔壁の表面に設けられる溝の別の一例を模式的に示す斜視図である。 図10は、図3中にP1で示す領域の別の一例を模式的に示す平面図である。 図11は、隔壁の表面に設けられる溝のさらに別の一例を模式的に示す斜視図である。 図12は、図3中にP1で示す領域のさらに別の一例を模式的に示す平面図である。 図13は、本発明の第2実施形態に係る熱拡散デバイスの一例を模式的に示す部分斜視図である。 図14は、第2内壁面に設けられる突起の一例を模式的に示す斜視図である。 図15は、図3中にP2で示す領域の一例を模式的に示す平面図である。 図16は、図15のA2-A2線に沿った断面図である。 図17は、図15のB2-B2線に沿った断面図である。
 以下、本発明の熱拡散デバイスについて説明する。
 しかしながら、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において適宜変更して適用することができる。なお、以下において記載する本発明の個々の好ましい構成を2つ以上組み合わせたものもまた本発明である。
 以下では、本発明の熱拡散デバイスの一実施形態として、ベーパーチャンバーを例にとって説明する。本発明の熱拡散デバイスは、ヒートパイプ等の熱拡散デバイスにも適用可能である。
 以下に示す図面は模式的なものであり、その寸法又は縦横比の縮尺等は実際の製品とは異なる場合がある。
 本明細書において、要素間の関係性を示す用語(例えば「垂直」、「平行」、「直交」など)および要素の形状を示す用語は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
 図1は、本発明の熱拡散デバイスの一例を模式的に示す斜視図である。図2は、本発明の熱拡散デバイスの一例を模式的に示す分解斜視図である。図3は、本発明の熱拡散デバイスの内部構造の一例を模式的に示す平面図である。
 図1に示すベーパーチャンバー(熱拡散デバイス)1は、気密状態に密閉された中空の筐体10を備える。図2及び図3に示すように、ベーパーチャンバー1は、さらに、筐体10の内部空間に封入される作動媒体20(図3参照)と、筐体10の内部空間に配置されるレール状の隔壁30と、筐体10の内部空間に配置されるウィック40と、を備える。筐体10の内部空間には、作動媒体20の液体流路50と、作動媒体20の蒸気流路60とが形成されている。蒸気流路60内には、複数の支柱70が配置されていることが好ましい。
 筐体10は、外縁部が接合された対向する第1シート11及び第2シート12から構成されることが好ましい。
 筐体10の内部空間には、図3に示すように、封入した作動媒体20を蒸発させる蒸発部(evaporation portion)EPが設定されている。図1及び図2に示すように、筐体10の外壁面には、発熱素子である熱源(heat source)HSが配置される。熱源HSとしては、電子機器の電子部品、例えば中央処理装置(CPU)等が挙げられる。筐体10の内部空間のうち、熱源HSの近傍であって熱源HSによって加熱される部分が、蒸発部EPに相当する。
 以下に示す各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。第2実施形態以降では、第1実施形態と共通の事項についての記述は省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、実施形態毎には逐次言及しない。
 以下の説明において、各実施形態を特に区別しない場合、単に「本発明の熱拡散デバイス」という。
[第1実施形態]
 図4は、本発明の第1実施形態に係る熱拡散デバイスの一例を模式的に示す部分斜視図である。
 図4に示すように、筐体10は、厚さ方向Zに対向する第1内壁面11a及び第2内壁面12aを有する。
 レール状の隔壁30(以下、単に隔壁30と記載する)は、第1内壁面11aから厚さ方向Zに突出するように配置されている。より具体的には、隔壁30は、筐体10の内部空間で、第1内壁面11aから第2内壁面12aに向かって突出するように配置されている。隔壁30が第1内壁面11aから突出する方向は、厚さ方向Zに厳密に平行である必要はない。
 図2、図3及び図4に示す例では、隔壁30は、筐体10の内部空間の縁端から間隔を空けて縁端に沿って配置されている。
 ウィック40は、隔壁30及び第2内壁面12aに接するように、隔壁30と第2内壁面12aとの間に配置されている。
 その結果、ウィック40と隔壁30と第1内壁面11aとによって囲まれた空間には、作動媒体20の液体流路50が形成される。これにより、液体流路50の周囲のウィック40によって毛細管力を発現させることができるだけでなく、液体流路50を通過する液体抵抗が小さくなることで作動媒体20が液体流路50をスムーズに移動できる。一方、筐体10内の液体流路50以外の隙間には、作動媒体20の蒸気流路60が形成される。
 本発明の第1実施形態では、図4に示すように、ウィック40が接する隔壁30の表面の少なくとも一部に溝80が設けられている。溝80は、毛細管力により作動媒体20を移動させることができる毛細管構造の一例である。溝80は、液体流路50及び蒸気流路60の両方に接している。
 ベーパーチャンバー1では、蒸発部EPにおいて蒸発した気相の作動媒体20が蒸気流路60を通って蒸発部EPから離れた場所(例えば、図3中にP1で示す領域に位置する蒸気流路60)に移動し、そこで凝縮して液相に変化する。液相の作動媒体20はウィック40に回収されて蒸発部EPに移動することになる。この際、ウィック40による作動媒体20の吸収能力の限界を超える場合には、液相の作動媒体20が液体流路50に回収されずに蒸気流路60内に滞留した液溜まりが発生してしまうことで、均熱性が低下するおそれがある。
 これに対し、図4に示すように、ウィック40が接する隔壁30の表面の少なくとも一部に溝80が設けられていると、凝縮した後の液相の作動媒体20が溝80を通って液体流路50に回収されやすくなる。図4では、作動媒体20の流れを矢印で示している。後述の図6、図10及び図12においても同様である。
 図2及び図3に示すように、筐体10の内部空間の外周部のみに液体流路50が配置されていることが好ましい。すなわち、筐体10の内部空間の外周部のみにウィック40が配置されていることが好ましい。この場合、ウィック40が筐体10の内部空間の全体にわたって配置されないため、筐体10の内部空間において蒸気流路60を広く確保することができる。一方で、液相の作動媒体20を回収できるウィック40の量は少なくなるが、溝80が設けられていることによって液相の作動媒体20が回収されやすくなる。
 図5は、隔壁の表面に設けられる溝の一例を模式的に示す斜視図である。図6は、図3中にP1で示す領域の一例を模式的に示す平面図である。
 溝80は、例えば、第1溝81を含む。第1溝81は、厚さ方向Zから見て蒸発部EPに対向する隔壁30(図6では左右方向に延びる隔壁30)に少なくとも設けられていることが好ましい。図5及び図6に示すように、厚さ方向Zから見て蒸発部EPに対向する隔壁30に複数の第1溝81が設けられていることがより好ましく、隔壁30の全周にわたって複数の第1溝81が設けられていることがさらに好ましい。
 図7は、図6のA1-A1線に沿った断面図である。図8は、図6のB1-B1線に沿った断面図である。
 第1溝81の深さ(図5、図7及び図8中、T81で示す長さ)は、隔壁30の高さ(図7及び図8中、T30で示す長さ)の1/2倍以上、同等以下であることが好ましい。すなわち、第1溝81の深さT81は、隔壁30の高さT30と同じでもよい。複数の第1溝81が設けられている場合、第1溝81の深さT81は、それぞれ同じであってもよく、異なっていてもよい。
 第1溝81の幅(図6及び図8中、W81で示す長さ)は、第1溝81の深さT81の1/2倍以上、同等以下であることが好ましい。すなわち、第1溝81の幅W81は、第1溝81の深さT81と同じでもよい。複数の第1溝81が設けられている場合、第1溝81の幅W81は、それぞれ同じであってもよく、異なっていてもよい。
 第1溝81の深さT81は、特に限定されないが、例えば30μm以上、60μm以下である。なお、第1溝81の深さT81は、最も深い部分の長さとして定義される。
 第1溝81の幅W81は、特に限定されないが、例えば30μm以上、60μm以下である。なお、第1溝81の幅W81は、最も広い部分の長さとして定義される。
 第1溝81が延びる方向から見た第1溝81の断面形状は特に限定されず、例えば、矩形等の多角形、半円形、半楕円形、これらを組み合わせた形状等が挙げられる。複数の第1溝81が設けられている場合、第1溝81の断面形状は、それぞれ同じであってもよく、異なっていてもよい。
 隔壁30の高さT30は、特に限定されないが、例えば2μm以上、200μm以下であり、好ましくは5μm以上、100μm以下である。なお、隔壁30の高さT30は、第1溝81等の溝80が設けられていない部分で最も高い部分の長さとして定義される。
 ウィック40の厚さ(図7及び図8中、T40で示す長さ)は、特に限定されないが、例えば2μm以上、200μm以下であり、好ましくは5μm以上、100μm以下である。なお、ウィック40の厚さT40は、最も厚い部分の長さとして定義される。
 筐体10の内部空間の高さ(図7及び図8中、T60で示す長さ)は、特に限定されないが、例えば、100μm以上、140μm以下である。なお、筐体10の内部空間の高さT60は、第1内壁面11aと第2内壁面12aとの間で最も高い部分の長さとして定義される。
 図9は、隔壁の表面に設けられる溝の別の一例を模式的に示す斜視図である。図10は、図3中にP1で示す領域の別の一例を模式的に示す平面図である。
 図9及び図10に示すように、溝80は、第1溝81に加えて、第2溝82をさらに含んでもよい。第2溝82は、厚さ方向Zから見て蒸発部EPに対向する隔壁30(図10では左右方向に延びる隔壁30)の角部以外に設けられている。厚さ方向Zから見て蒸発部EPに対向する隔壁30の角部以外には、1個の第2溝82が設けられていてもよく、複数の第2溝82が設けられていてもよい。
 図3中にP1で示す領域は蒸発部EPから離れているため、液相の作動媒体20が回収される頻度が高い。そのため、第1溝81に加えて、第1溝81よりも大きな第2溝82が上記の箇所に設けられていると、液相の作動媒体20が液体流路50にさらに回収されやすくなる。なお、液相の作動媒体20が蒸気流路60に逆流することを防ぐ観点から、厚さ方向Zから見て蒸発部EPに対向する隔壁30以外の隔壁30には第2溝82が設けられていないことが好ましい。すなわち、厚さ方向Zから見て蒸発部EPに対向する隔壁30に第2溝82が設けられていることが好ましい。
 第2溝82の深さ(図9中、T82で示す長さ)は、第1溝81の深さT81と同等以上である。第2溝82の深さT82は、第1溝81の深さT81と同じでもよいが、第1溝81の深さT81より大きいことが好ましい。第2溝82の深さT82は、隔壁30の高さT30と同じであることがより好ましい。複数の第2溝82が設けられている場合、第2溝82の深さT82は、それぞれ同じであってもよく、異なっていてもよい。
 第2溝82の幅(図10中、W82で示す長さ)は、第1溝81の幅W81より大きい。第2溝82の幅W82は、第1溝81の幅W81の10倍以上、35倍以下であることが好ましい。複数の第2溝82が設けられている場合、第2溝82の幅W82は、それぞれ同じであってもよく、異なっていてもよい。
 第2溝82の深さT82は、特に限定されないが、例えば2μm以上、200μm以下であり、好ましくは5μm以上、100μm以下である。なお、第2溝82の深さT82は、最も深い部分の長さとして定義される。
 第2溝82の幅W82は、特に限定されないが、例えば600μm以上、1000μm以下である。なお、第2溝82の幅W82は、最も広い部分の長さとして定義される。
 第2溝82が延びる方向から見た第2溝82の断面形状は特に限定されず、例えば、矩形等の多角形、半円形、半楕円形、これらを組み合わせた形状等が挙げられる。複数の第2溝82が設けられている場合、第2溝82の断面形状は、それぞれ同じであってもよく、異なっていてもよい。第2溝82の断面形状は、第1溝81の断面形状と同じであってもよく、異なっていてもよい。
 図11は、隔壁の表面に設けられる溝のさらに別の一例を模式的に示す斜視図である。図12は、図3中にP1で示す領域のさらに別の一例を模式的に示す平面図である。
 図11及び図12に示すように、溝80は、第1溝81に加えて、第3溝83をさらに含んでもよい。図11及び図12には示されていないが、溝80は、第1溝81と第2溝82と第3溝83とを含んでもよい。第3溝83は、厚さ方向Zから見て蒸発部EPに対向する隔壁30(図12では左右方向に延びる隔壁30)の角部に設けられている。厚さ方向Zから見て蒸発部EPに対向する隔壁30に複数の角部が存在する場合、全ての角部に第3溝83が設けられていてもよく、一部の角部に第3溝83が設けられていてもよい。
 図3中にP1で示す領域は蒸発部EPから離れているため、液相の作動媒体20が回収される頻度が高い。そのため、第1溝81に加えて、第1溝81よりも大きな第3溝83が上記の箇所に設けられていると、液相の作動媒体20が液体流路50にさらに回収されやすくなる。なお、液相の作動媒体20が蒸気流路60に逆流することを防ぐ観点から、厚さ方向Zから見て蒸発部EPに対向する隔壁30以外の隔壁30には第3溝83が設けられていないことが好ましい。
 第3溝83の深さ(図11中、T83で示す長さ)は、第1溝81の深さT81と同等以上である。第3溝83の深さT83は、第1溝81の深さT81と同じでもよいが、第1溝81の深さT81より大きいことが好ましい。第3溝83の深さT83は、隔壁30の高さT30と同じであることがより好ましい。複数の第3溝83が設けられている場合、第3溝83の深さT83は、それぞれ同じであってもよく、異なっていてもよい。第3溝83の深さT83は、第2溝82の深さT82と同じであってもよく、異なっていてもよい。
 第3溝83の幅(図12中、W83で示す長さ)は、第1溝81の幅W81より大きい。第3溝83の幅W83は、第1溝81の幅W81の10倍以上、35倍以下であることが好ましい。複数の第3溝83が設けられている場合、第3溝83の幅W83は、それぞれ同じであってもよく、異なっていてもよい。第3溝83の幅W83は、第2溝82の幅W82と同じであってもよく、異なっていてもよい。
 第3溝83の深さT83は、特に限定されないが、例えば2μm以上、200μm以下であり、好ましくは5μm以上、100μm以下である。なお、第3溝83の深さT83は、最も深い部分の長さとして定義される。
 第3溝83の幅W83は、特に限定されないが、例えば600μm以上、1000μm以下である。なお、第3溝83の幅W83は、最も広い部分の長さとして定義される。
 第3溝83が延びる方向から見た第3溝83の断面形状は特に限定されず、例えば、矩形等の多角形、半円形、半楕円形、これらを組み合わせた形状等が挙げられる。複数の第3溝83が設けられている場合、第3溝83の断面形状は、それぞれ同じであってもよく、異なっていてもよい。第3溝83の断面形状は、第1溝81の断面形状と同じであってもよく、異なっていてもよい。また、第3溝83の断面形状は、第2溝82の断面形状と同じであってもよく、異なっていてもよい。
[第2実施形態]
 図13は、本発明の第2実施形態に係る熱拡散デバイスの一例を模式的に示す部分斜視図である。
 本発明の第2実施形態では、図13に示すように、ウィック40が接する第2内壁面12aの表面の少なくとも一部に突起90が設けられている。これにより、ウィック40と突起90と第2内壁面12aとによって囲まれた空間には、作動媒体20の液溜まり空間91が形成されている。突起90は、毛細管力により作動媒体20を移動させることができる毛細管構造の一例である。液溜まり空間91は、ウィック40及び蒸気流路60の両方に接している。
 ベーパーチャンバー1では、蒸発部EPにおいて、液相の作動媒体20がウィック40の内部の空隙を通って表面まで移動し、そこで蒸発して気相に変化する。その後、気相の作動媒体20は蒸気流路60に移動することになる。この際、ウィック40の表面の開口径に対するウィック40の内部の空隙サイズの割合によっては、液相の作動媒体20がウィック40の内部を通過する液体抵抗が大きくなるため、蒸気流路60に接するウィック40の表面まで液相の作動媒体20が移動しにくくなるおそれがある。また、ウィック40の表面の開口径は微細であるため、液相の作動媒体20が気相に変化して蒸気流路60に拡散しにくくなるおそれがある。
 これに対し、図13に示すように、ウィック40が接する第2内壁面12aの表面の少なくとも一部に突起90が設けられ、ウィック40と突起90と第2内壁面12aとによって囲まれた空間に作動媒体20の液溜まり空間91が形成されていると、液相の作動媒体20は、ウィック40の内部を通過して液溜まり空間91に移動した後、液溜まり空間91の開口面92から蒸発して蒸気流路60に拡散することができる。蒸気流路60に接する液溜まり空間91の開口面92はウィック40の表面の開口径より大きいため、蒸発した後の気相の作動媒体20は蒸気流路60に拡散されやすくなる。図13では、作動媒体20の流れを矢印で示している。後述の図16においても同様である。
 図14は、第2内壁面に設けられる突起の一例を模式的に示す斜視図である。図15は、図3中にP2で示す領域の一例を模式的に示す平面図である。
 突起90は、厚さ方向Zから見て少なくとも蒸発部EPと重なる位置(図14では熱源HSと重なる位置)に設けられていることが好ましい。図14に示すように、厚さ方向Zから見て少なくとも蒸発部EPと重なる位置に複数の突起90が設けられていることがより好ましく、筐体10の内部空間の外周部の全周にわたって複数の突起90が設けられていることがさらに好ましい。
 図16は、図15のA2-A2線に沿った断面図である。図17は、図15のB2-B2線に沿った断面図である。
 液溜まり空間91の開口面92の高さ(図16及び図17中、T92で示す長さ)は、筐体10の内部空間の高さT60の1/10倍以上、7/10倍以下であることが好ましい。複数の突起90が設けられている場合、液溜まり空間91の開口面92の高さT92は、それぞれ同じであってもよく、異なっていてもよい。
 液溜まり空間91の開口面92の幅(図17中、W92で示す長さ)は、液溜まり空間91の開口面92の高さT92の1/10倍以上、同等以下であることが好ましい。すなわち、液溜まり空間91の開口面92の幅W92は、液溜まり空間91の開口面92の高さT92と同じでもよい。複数の突起90が設けられている場合、液溜まり空間91の開口面92の幅W92は、それぞれ同じであってもよく、異なっていてもよい。
 液溜まり空間91の開口面92の高さT92は、特に限定されないが、例えば10μm以上、100μm以下である。なお、液溜まり空間91の開口面92の高さT92は、最も高い部分の長さとして定義される。
 液溜まり空間91の開口面92の幅W92は、特に限定されないが、例えば10μm以上、100μm以下である。なお、液溜まり空間91の開口面92の幅W92は、最も広い部分の長さとして定義される。
 突起90は、第2内壁面12aから厚さ方向Zに突出するように設けられている。より具体的には、突起90は、筐体10の内部空間で、第2内壁面12aから第1内壁面11aに向かって突出するように設けられている。突起90が第2内壁面12aから突出する方向は、厚さ方向Zに厳密に平行である必要はない。
 図13及び図14に示す例では、突起90の形状はレール状であるが、突起90の形状は特に限定されず、例えば、レール状、柱状、これらを組み合わせた形状等が挙げられる。複数の突起90が設けられている場合、突起90の形状は、それぞれ同じであってもよく、異なっていてもよい。
 突起90を形成する材料は、特に限定されないが、例えば、樹脂、金属、セラミックス、又はそれらの混合物、積層物等が挙げられる。また、突起90は、筐体10と一体であってもよく、例えば、筐体10の第2内壁面12aをエッチング加工すること等により形成されていてもよい。
 ベーパーチャンバー1は、全体として面状であることが好ましい。すなわち、筐体10は、全体として面状であることが好ましい。ここで、「面状」とは、板状及びシート状を包含し、幅方向Xの寸法(以下、幅という)及び長さ方向Yの寸法(以下、長さという)が厚さ方向Zの寸法(以下、厚さ又は高さという)に対して相当に大きい形状、例えば幅及び長さが、厚さの10倍以上、好ましくは100倍以上である形状を意味する。
 ベーパーチャンバー1の大きさ、すなわち、筐体10の大きさは、特に限定されない。ベーパーチャンバー1の幅及び長さは、用途に応じて適宜設定することができる。ベーパーチャンバー1の幅及び長さは、各々、例えば、5mm以上500mm以下、20mm以上300mm以下又は50mm以上200mm以下である。ベーパーチャンバー1の幅及び長さは、同じであってもよく、異なっていてもよい。
 筐体10が第1シート11及び第2シート12から構成される場合、第1シート11及び第2シート12を構成する材料は、ベーパーチャンバーとして用いるのに適した特性、例えば熱伝導性、強度、柔軟性、可撓性等を有するものであれば、特に限定されない。第1シート11及び第2シート12を構成する材料は、好ましくは金属であり、例えば銅、ニッケル、アルミニウム、マグネシウム、チタン、鉄、又はそれらを主成分とする合金等であり、特に好ましくは銅である。第1シート11及び第2シート12を構成する材料は、同じであってもよく、異なっていてもよいが、好ましくは同じである。
 筐体10が第1シート11及び第2シート12から構成される場合、第1シート11及び第2シート12は、これらの外縁部において互いに接合される。かかる接合の方法は、特に限定されないが、例えば、レーザー溶接、抵抗溶接、拡散接合、ロウ接、TIG溶接(タングステン-不活性ガス溶接)、超音波接合又は樹脂封止を用いることができ、好ましくはレーザー溶接、抵抗溶接又はロウ接を用いることができる。
 第1シート11及び第2シート12の厚さは、特に限定されないが、各々、好ましくは10μm以上200μm以下、より好ましくは30μm以上100μm以下、さらに好ましくは40μm以上60μm以下である。第1シート11及び第2シート12の厚さは、同じであってもよく、異なっていてもよい。また、第1シート11及び第2シート12の各シートの厚さは、全体にわたって同じであってもよく、一部が薄くてもよい。
 第1シート11及び第2シート12の形状は、特に限定されない。例えば、第1シート11及び第2シート12は、各々、外縁部が外縁部以外の部分よりも厚い形状であってもよい。
 第1シート11と第2シート12とは、端部が一致するように重なっていてもよいし、端部がずれて重なっていてもよい。
 第1シート11を構成する材料と、第2シート12を構成する材料とは異なっていてもよい。例えば、強度の高い材料を第1シート11に用いることにより、筐体10にかかる応力を分散させることができる。また、両者の材料を異なるものとすることにより、一方のシートで一の機能を得、他方のシートで他の機能を得ることができる。上記の機能としては、特に限定されないが、例えば、熱伝導機能、電磁波シールド機能等が挙げられる。
 ベーパーチャンバー1全体の厚さは、特に限定されないが、好ましくは50μm以上500μm以下である。
 厚さ方向Zから見た筐体10の平面形状は特に限定されず、例えば、三角形又は矩形等の多角形、円形、楕円形、これらを組み合わせた形状等が挙げられる。また、筐体10の平面形状は、L字型、C字型(コの字型)、階段型等であってもよい。また、筐体10は貫通口を有してもよい。筐体10の平面形状は、ベーパーチャンバーの用途、ベーパーチャンバーの組み入れ箇所の形状、近傍に存在する他の部品に応じた形状であってもよい。
 作動媒体20は、筐体10内の環境下において気-液の相変化を生じ得るものであれば特に限定されず、例えば、水、アルコール類、代替フロン等を用いることができる。例えば、作動媒体は水性化合物であり、好ましくは水である。
 隔壁30を形成する材料は、特に限定されないが、例えば、樹脂、金属、セラミックス、又はそれらの混合物、積層物等が挙げられる。また、図2及び図3に示すように、隔壁30は、筐体10と一体であってもよく、例えば、筐体10の内壁面をエッチング加工すること等により形成されていてもよい。
 隔壁30は、1列のみ配置されていてもよく、互いに並列するように2列以上配置されていてもよい。2列以上の隔壁30が配置される場合、隔壁30同士で囲まれた液体流路50がさらに形成されていてもよい。
 ウィック40は、毛細管力により作動媒体20を移動させることができる毛細管構造を有する。ウィック40の毛細管構造は、従来の熱拡散デバイスにおいて用いられている公知の構造であってもよい。毛細管構造としては、細孔、溝、突起等の凹凸を有する微細構造、例えば、多孔構造、繊維構造、溝構造、網目構造等が挙げられる。
 ウィック40の材料は特に限定されず、例えば、エッチング加工又は金属加工により形成される金属多孔膜、メッシュ、不織布、焼結体、多孔体等が用いられる。ウィック40の材料となるメッシュは、例えば、金属メッシュ、樹脂メッシュ、もしくは表面コートしたそれらのメッシュから構成されるものであってよく、好ましくは銅メッシュ、ステンレス(SUS)メッシュ又はポリエステルメッシュから構成される。ウィック40の材料となる焼結体は、例えば、金属多孔質焼結体、セラミックス多孔質焼結体等から構成されてもよく、好ましくは銅又はニッケルの多孔質焼結体から構成される。ウィック40の材料となる多孔体は、例えば、金属多孔体、セラミックス多孔体、樹脂多孔体等から構成されてもよい。
 ウィック40は、隔壁30に固定されていてもよい。例えば、ウィック40及び隔壁30が金属から構成される場合、ウィック40が隔壁30に接合されていてもよい。接合の方法は特に限定されないが、例えば、拡散接合等を用いることができる。
 ウィック40は、筐体10に固定されていてもよい。例えば、筐体10及びウィック40が金属から構成される場合、ウィック40が筐体10に接合されていてもよい。接合の方法は特に限定されないが、例えば、拡散接合等を用いることができる。
 図4等に示すように、筐体10の第2シート12の外縁部とウィック40の端部との間には空間が存在しないことが好ましい。その場合、ウィック40の端部は、筐体10の第2シート12の外縁部に固定されていてもよい。例えば、ウィック40の端部は、筐体10の第2シート12の外縁部に接合されていてもよい。
 図4等に示すように、筐体10の第1シート11の外縁部によってウィック40の端部が支えられていてもよい。その場合、ウィック40の端部は、筐体10の第1シート11の外縁部に固定されていてもよい。例えば、ウィック40の端部は、筐体10の第1シート11の外縁部に接合されていてもよい。
 図4等に示す例では、ウィック40は隔壁30から蒸気流路60側にはみ出していないが、ウィック40の一部が隔壁30から蒸気流路60側にはみ出していてもよい。その場合、気液交換面を増大させることができる。
 蒸気流路60内に複数の支柱70が配置されている場合、支柱70間では、蒸気流路60が分断される。蒸気流路60内に支柱70を配置することによって筐体10を支持することが可能である。
 図2及び図3等に示すように、蒸気流路60内の全体に支柱70が配置されていることが好ましいが、蒸気流路60内の一部に支柱70が配置されていなくてもよい。
 支柱70は、第1内壁面11a及び第2内壁面12aの少なくとも一方に接していてもよく、第1内壁面11a及び第2内壁面12aに接していなくてもよい。
 支柱70を形成する材料は、特に限定されないが、例えば、樹脂、金属、セラミックス、又はそれらの混合物、積層物等が挙げられる。また、支柱70は、筐体10と一体であってもよく、例えば、筐体10の内壁面をエッチング加工すること等により形成されていてもよい。
 支柱70の形状は、筐体10を支持できる形状であれば特に限定されないが、支柱70の高さ方向に垂直な断面の形状としては、例えば、矩形等の多角形、円形、楕円形等が挙げられる。
 支柱70の高さは、一のベーパーチャンバーにおいて、同じであってもよく、異なっていてもよい。
 図7又は図16に示す断面において、支柱70の幅は、ベーパーチャンバー1の筐体10の変形を抑制できる強度を与えるものであれば特に限定されないが、支柱70の端部の高さ方向に垂直な断面の円相当径は、例えば100μm以上2000μm以下であり、好ましくは300μm以上1000μm以下である。支柱70の円相当径を大きくすることにより、ベーパーチャンバー1の筐体10の変形をより抑制することができる。一方、支柱70の円相当径を小さくすることにより、作動媒体20の蒸気が移動するための空間をより広く確保することができる。
 支柱70の配置は、特に限定されないが、好ましくは所定の領域において均等に、より好ましくは全体にわたって均等に、例えば支柱70間の距離が一定となるように配置される。支柱70を均等に配置することにより、ベーパーチャンバー1の全体にわたって均一な強度を確保することができる。
[その他の実施形態]
 本発明の熱拡散デバイスは、上記実施形態に限定されるものではなく、熱拡散デバイスの構成、製造条件等に関し、本発明の範囲内において、種々の応用、変形を加えることが可能である。
 本発明の熱拡散デバイスでは、ウィックと隔壁とが接する部分の少なくとも一部、ウィックと第2内壁面とが接する部分の少なくとも一部、又はその両方に毛細管構造が設けられていればよい。
 第1実施形態のように、ウィックが接する隔壁の表面の少なくとも一部に毛細管構造が設けられていてもよく、第2実施形態のように、ウィックが接する第2内壁面の表面の少なくとも一部に毛細管構造が設けられていてもよく、ウィックが接する隔壁の表面の少なくとも一部、及び、ウィックが接する第2内壁面の表面の少なくとも一部の両方に毛細管構造が設けられていてもよい。ウィックが接する隔壁の表面の少なくとも一部、及び、ウィックが接する第2内壁面の表面の少なくとも一部の両方に毛細管構造が設けられている場合、例えば、毛細管構造として、ウィックが接する隔壁の表面の少なくとも一部に溝が設けられ、かつ、ウィックが接する第2内壁面の表面の少なくとも一部に突起が設けられていてもよい。その場合、溝が設けられる位置と突起が設けられる位置とは、同じであってもよく、異なっていてもよい。
 あるいは、隔壁が接するウィックの表面の少なくとも一部、第2内壁面が接するウィックの表面の少なくとも一部、又はその両方に毛細管構造が設けられていてもよい。
 すなわち、本発明の熱拡散デバイスでは、ウィックが接する隔壁の表面の少なくとも一部、隔壁が接するウィックの表面の少なくとも一部、ウィックが接する第2内壁面の表面の少なくとも一部、及び、第2内壁面が接するウィックの表面の少なくとも一部のうちの少なくとも1つに毛細管構造が設けられていればよい。
 ウィックと隔壁とが接する部分の少なくとも一部、ウィックと第2内壁面とが接する部分の少なくとも一部、又はその両方に設けられる毛細管構造としては、第1実施形態で説明した溝、第2実施形態で説明した突起に限定されるものではない。ウィックと隔壁とが接する部分の少なくとも一部、ウィックと第2内壁面とが接する部分の少なくとも一部、又はその両方には、それぞれ2種以上の毛細管構造が設けられていてもよい。
 本発明の熱拡散デバイスにおいて、液体流路は、筐体の内部空間の外周部のみに配置されていてもよく、筐体の内部空間の中央部のみに配置されていてもよく、筐体の内部空間の全体にわたって配置されていてもよい。
 本発明の熱拡散デバイスにおいて、筐体は、1個の蒸発部を有してもよく、複数の蒸発部を有してもよい。すなわち、筐体の外壁面には、1個の熱源が配置されてもよく、複数の熱源が配置されてもよい。
 本発明の熱拡散デバイスは、放熱を目的として電子機器に搭載され得る。したがって、本発明の熱拡散デバイスを備える電子機器も本発明の1つである。本発明の電子機器としては、例えばスマートフォン、タブレット端末、ノートパソコン、ゲーム機器、ウェアラブルデバイス等が挙げられる。本発明の熱拡散デバイスは上記のとおり、外部動力を必要とせず自立的に作動し、作動媒体の蒸発潜熱及び凝縮潜熱を利用して、二次元的に高速で熱を拡散することができる。そのため、本発明の熱拡散デバイスを備える電子機器により、電子機器内部の限られたスペースにおいて、放熱を効果的に実現することができる。
 本発明の熱拡散デバイスは、携帯情報端末等の分野において、広範な用途に使用できる。例えば、CPU等の熱源の温度を下げ、電子機器の使用時間を延ばすために使用することができ、スマートフォン、タブレット端末、ノートパソコン等に使用することができる。
 1 ベーパーチャンバー(熱拡散デバイス)
 10 筐体
 11 第1シート
 11a 第1内壁面
 12 第2シート
 12a 第2内壁面
 20 作動媒体
 30 レール状の隔壁
 40 ウィック
 50 液体流路
 60 蒸気流路
 70 支柱
 80 溝(毛細管構造)
 81 第1溝
 82 第2溝
 83 第3溝
 90 突起(毛細管構造)
 91 液溜まり空間
 92 液溜まり空間の開口面
 EP 蒸発部
 HS 熱源
 T30 隔壁の高さ
 T40 ウィックの厚さ
 T60 筐体の内部空間の高さ
 T81 第1溝の深さ
 T82 第2溝の深さ
 T83 第3溝の深さ
 T92 液溜まり空間の開口面の高さ
 W81 第1溝の幅
 W82 第2溝の幅
 W83 第3溝の幅
 W92 液溜まり空間の開口面の幅

Claims (15)

  1.  厚さ方向に対向する第1内壁面及び第2内壁面を有し、内部空間に蒸発部が設けられている筐体と、
     前記筐体の前記内部空間に封入される作動媒体と、
     前記第1内壁面から前記厚さ方向に突出するように前記筐体の前記内部空間に配置されるレール状の隔壁と、
     前記隔壁及び前記第2内壁面に接するように、前記隔壁と前記第2内壁面との間に配置されるウィックと、を備え、
     前記ウィックと前記隔壁と前記第1内壁面とによって囲まれた空間には、前記作動媒体の液体流路が形成され、
     前記ウィックと前記隔壁とが接する部分の少なくとも一部、前記ウィックと前記第2内壁面とが接する部分の少なくとも一部、又はその両方に毛細管構造が設けられている、熱拡散デバイス。
  2.  前記毛細管構造として、前記ウィックが接する前記隔壁の表面の少なくとも一部に溝が設けられている、請求項1に記載の熱拡散デバイス。
  3.  前記溝は、深さが前記隔壁の高さの1/2倍以上、同等以下である第1溝を含む、請求項2に記載の熱拡散デバイス。
  4.  前記第1溝の幅が前記第1溝の深さの1/2倍以上、同等以下である、請求項3に記載の熱拡散デバイス。
  5.  前記溝は、前記厚さ方向から見て前記蒸発部に対向する前記隔壁の角部以外に、深さが前記第1溝と同等以上で、幅が前記第1溝より大きい第2溝をさらに含む、請求項3又は4に記載の熱拡散デバイス。
  6.  前記第2溝の深さが前記隔壁の高さと同じである、請求項5に記載の熱拡散デバイス。
  7.  前記第2溝の幅が前記第1溝の幅の10倍以上、35倍以下である、請求項5又は6に記載の熱拡散デバイス。
  8.  前記溝は、前記厚さ方向から見て前記蒸発部に対向する前記隔壁の角部に、深さが前記第1溝と同等以上で、幅が前記第1溝より大きい第3溝をさらに含む、請求項3~7のいずれか1項に記載の熱拡散デバイス。
  9.  前記第3溝の深さが前記隔壁の高さと同じである、請求項8に記載の熱拡散デバイス。
  10.  前記第3溝の幅が前記第1溝の幅の10倍以上、35倍以下である、請求項8又は9に記載の熱拡散デバイス。
  11.  前記毛細管構造として、前記ウィックが接する前記第2内壁面の表面の少なくとも一部に突起が設けられ、
     前記ウィックと前記突起と前記第2内壁面とによって囲まれた空間には、前記作動媒体の液溜まり空間が形成されている、請求項1~10のいずれか1項に記載の熱拡散デバイス。
  12.  前記突起は、前記厚さ方向から見て少なくとも前記蒸発部と重なる位置に設けられている、請求項11に記載の熱拡散デバイス。
  13.  前記液溜まり空間の開口面の高さが前記筐体の前記内部空間の高さの1/10倍以上、7/10倍以下である、請求項11又は12に記載の熱拡散デバイス。
  14.  前記液溜まり空間の開口面の幅が前記液溜まり空間の開口面の高さの1/10倍以上、同等以下である、請求項11~13のいずれか1項に記載の熱拡散デバイス。
  15.  請求項1~14のいずれか1項に記載の熱拡散デバイスを備える、電子機器。
PCT/JP2022/043151 2021-12-15 2022-11-22 熱拡散デバイス及び電子機器 WO2023112616A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-203481 2021-12-15
JP2021203481 2021-12-15

Publications (1)

Publication Number Publication Date
WO2023112616A1 true WO2023112616A1 (ja) 2023-06-22

Family

ID=86774138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043151 WO2023112616A1 (ja) 2021-12-15 2022-11-22 熱拡散デバイス及び電子機器

Country Status (1)

Country Link
WO (1) WO2023112616A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219639A (ja) * 2014-05-15 2015-12-07 レノボ・シンガポール・プライベート・リミテッド 携帯用情報機器
JP2016205693A (ja) * 2015-04-21 2016-12-08 東芝ホームテクノ株式会社 シート状ヒートパイプ
US20170023308A1 (en) * 2015-07-20 2017-01-26 Delta Electronics, Inc. Slim vapor chamber
WO2017104819A1 (ja) * 2015-12-18 2017-06-22 株式会社フジクラ ベーパーチャンバー
JP2017531154A (ja) * 2014-10-15 2017-10-19 ユーロ ヒート パイプス 貯留機能を備えた平面型ヒートパイプ
KR20210118688A (ko) * 2020-03-23 2021-10-01 화인시스 주식회사 베이퍼 체임버
KR20210118689A (ko) * 2020-03-23 2021-10-01 화인시스 주식회사 베이퍼 체임버

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015219639A (ja) * 2014-05-15 2015-12-07 レノボ・シンガポール・プライベート・リミテッド 携帯用情報機器
JP2017531154A (ja) * 2014-10-15 2017-10-19 ユーロ ヒート パイプス 貯留機能を備えた平面型ヒートパイプ
JP2016205693A (ja) * 2015-04-21 2016-12-08 東芝ホームテクノ株式会社 シート状ヒートパイプ
US20170023308A1 (en) * 2015-07-20 2017-01-26 Delta Electronics, Inc. Slim vapor chamber
WO2017104819A1 (ja) * 2015-12-18 2017-06-22 株式会社フジクラ ベーパーチャンバー
KR20210118688A (ko) * 2020-03-23 2021-10-01 화인시스 주식회사 베이퍼 체임버
KR20210118689A (ko) * 2020-03-23 2021-10-01 화인시스 주식회사 베이퍼 체임버

Similar Documents

Publication Publication Date Title
JP6696631B2 (ja) ベーパーチャンバー
JP6747625B2 (ja) ベーパーチャンバー
US11445636B2 (en) Vapor chamber, heatsink device, and electronic device
TWI827944B (zh) 蒸氣腔及電子機器
JP2020193715A (ja) ベーパーチャンバー
JP7111266B2 (ja) ベーパーチャンバー
WO2023238626A1 (ja) 熱拡散デバイス及び電子機器
WO2023145397A1 (ja) 熱拡散デバイス及び電子機器
WO2023112616A1 (ja) 熱拡散デバイス及び電子機器
JP7260062B2 (ja) 熱拡散デバイス
WO2023058595A1 (ja) 熱拡散デバイス
JP7120494B1 (ja) 熱拡散デバイス
JP7222448B2 (ja) 熱拡散デバイス
WO2022201918A1 (ja) 熱拡散デバイスおよび電子機器
WO2023182033A1 (ja) 熱拡散デバイス及び電子機器
WO2023085350A1 (ja) 熱拡散デバイス
WO2023182029A1 (ja) 熱拡散デバイス及び電子機器
WO2023090265A1 (ja) 熱拡散デバイス
WO2023026896A1 (ja) 熱拡散デバイス
JP7283641B2 (ja) 熱拡散デバイス
WO2023145396A1 (ja) 熱拡散デバイス及び電子機器
JP7311057B2 (ja) 熱拡散デバイスおよび電子機器
TWI796798B (zh) 放熱裝置、蒸氣腔及電子機器
WO2022259716A1 (ja) 熱拡散デバイス
WO2023286577A1 (ja) 熱拡散デバイス及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22907147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE