WO2023109798A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2023109798A1
WO2023109798A1 PCT/CN2022/138582 CN2022138582W WO2023109798A1 WO 2023109798 A1 WO2023109798 A1 WO 2023109798A1 CN 2022138582 W CN2022138582 W CN 2022138582W WO 2023109798 A1 WO2023109798 A1 WO 2023109798A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
evaporator
hot gas
refrigerant
condenser
Prior art date
Application number
PCT/CN2022/138582
Other languages
English (en)
French (fr)
Inventor
大木达也
和田芳彦
馆野恭也
增田英夫
Original Assignee
海尔智家股份有限公司
青岛海尔电冰箱有限公司
Aqua 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海尔智家股份有限公司, 青岛海尔电冰箱有限公司, Aqua 株式会社 filed Critical 海尔智家股份有限公司
Publication of WO2023109798A1 publication Critical patent/WO2023109798A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost

Definitions

  • the present invention relates to a refrigerator, in particular to a refrigerator that removes frost attached to an evaporator with hot gas refrigerant.
  • the evaporator constitutes a part of the cooling circuit of the refrigerator, and since water vapor around the evaporator is cooled, frost may adhere to the evaporator, thereby reducing the cooling performance of the evaporator.
  • a hot gas defrosting process in which a hot gas bypass pipe connected to the upstream side of the evaporator is installed downstream of the compressor constituting a part of the cooling circuit, and the high-temperature gas is temporarily discharged through the hot gas bypass pipe.
  • the evaporator is heated and defrosted (for example, refer to Patent Document 1).
  • Patent Document 1 the hot gaseous refrigerant discharged from the compressor is directly supplied to the inlet of the heat exchange tube of the evaporator, whereby the evaporator is heated to perform defrosting treatment.
  • Patent Document 1 Japanese Patent Laid-Open No. 2018-54287.
  • an object of the present invention is to provide a refrigerator capable of reliably performing a hot gas defrosting process while suppressing energy consumption at a low manufacturing cost.
  • Refrigerator of the present invention comprises:
  • a cooling circuit implementing a cooling cycle in which the refrigerant flows through the compressor, the condenser, the evaporator and returns to the compressor again;
  • a hot gas bypass pipe directly connecting the discharge side of the compressor or the condenser with the inflow side of the evaporator
  • a switching valve for switching between a state of performing the cooling cycle and a state of performing hot gas defrosting treatment in which the refrigerant discharged from the compressor flows to the evaporator through the hot gas bypass pipe;
  • control section that controls the compressor and the switching valve
  • an external air temperature sensor for detecting the external air temperature and sending the detected data to the control unit
  • the speed of the compressor is variable
  • the control unit When performing the hot gas defrosting process, the control unit operates the compressor at a rotation speed corresponding to the outside air temperature detected by the outside air temperature sensor, when the outside air temperature has a relationship of T1 ⁇ T2 When , the rotation speed of the compressor under T1 is higher than the rotation speed of the compressor under T2.
  • the heat source of the refrigerant in the hot gas defrosting process is mainly external air and heat generated by the motor. Therefore, when the temperature of the outside air is low, since the temperature of the refrigerant is low, the compressor operates at a higher rotational speed, increasing the inflow of the refrigerant. On the other hand, when the outside air temperature is high, the compressor is operated at a lower rotational speed, and excessive heat flow into the evaporator is suppressed. Thereby, even when the outside air temperature is different, it is possible to suppress variation in defrosting time.
  • control unit performs control to increase the number of rotations of the compressor as time elapses from the start of the hot gas defrosting process.
  • control unit since the control unit performs control to increase the rotational speed of the compressor as time elapses from the start of the hot gas defrosting process, even when the amount of frost adhering to the evaporator is different, it is possible to suppress the defrosting. time deviation to achieve efficient defrosting.
  • a condensing fan is further included, the condensing fan cools the compressor and the condenser, and the control unit stops the cooling of the condensing fan before performing the hot gas defrosting process. control.
  • the control unit stops the control of the condensing fan, whereby the temperature of the refrigerant discharged from the compressor can be raised in advance.
  • the refrigerant whose temperature has been raised in advance can be supplied to the evaporator, and defrosting can be performed more efficiently.
  • a capillary tube is arranged between the condenser and the evaporator, and an on-off valve is arranged between the condenser and the capillary tube.
  • the control unit performs control to close the on-off valve so that the refrigerant flowing out of the condenser does not flow into the capillary tube.
  • the control unit closes the on-off valve so that the refrigerant flowing out of the condenser does not flow into the capillary tube, thereby suppressing the temperature drop of the refrigerant and realizing Efficient defrosting.
  • a defrosting sensor is further included, and the defrosting sensor detects the temperature of the evaporator and sends the detected data to the control unit, and when the hot gas defrosting process is performed, the The control unit controls to change the rotation speed of the compressor based on the temperature of the evaporator detected by the defrosting sensor, and ends the hot gas defrosting process when the temperature of the evaporator exceeds a predetermined value.
  • the controller when the hot gas defrosting process is performed, the controller operates the compressor at a rotation speed corresponding to the outside air temperature, but also changes the rotation speed based on the temperature of the evaporator.
  • the controller operates the compressor at a rotation speed corresponding to the outside air temperature, but also changes the rotation speed based on the temperature of the evaporator.
  • control is performed to end the hot gas defrosting process, so that efficient defrosting with reduced energy consumption can be realized. deal with.
  • the present invention it is possible to provide a refrigerator capable of reliably performing hot gas defrosting while suppressing energy consumption at low manufacturing costs.
  • Fig. 1 shows a side sectional view of a refrigerator according to one embodiment of the present invention.
  • Fig. 2 is a diagram showing a configuration of a cooling circuit of a refrigerator according to an embodiment of the present invention.
  • Fig. 3 is a diagram showing a control system related to defrosting of the refrigerator according to the embodiment of the present invention.
  • FIG. 4 is a time chart showing an example of control to perform hot gas defrosting processing.
  • FIG. 5 is a flowchart showing an example of control for performing hot gas defrosting processing.
  • FIG. 6A shows a graph of detected data such as the temperature of the refrigerant discharged from the compressor when the condensing fan is normally operated.
  • FIG. 6B is a graph showing detection data such as the temperature of the refrigerant discharged from the compressor when the condensing fan is stopped.
  • FIG. 1 shows a side sectional view of a refrigerator 1 according to one embodiment of the present invention.
  • Fig. 1 shows a side sectional view of a refrigerator 1 according to one embodiment of the present invention.
  • the outline of refrigerator 1 according to one embodiment of the present invention will be described with reference to FIG. 1 .
  • Refrigerator 1 has cabinet 2 and has upper door 3 and lower door 4 rotatably attached to the front portion of cabinet 2 in a state placed on a horizontal floor.
  • Freezing compartment 6 and refrigerating compartment 7 are disposed inside housing 2 (hereinafter referred to as "refrigerator interior").
  • a heat insulating material is disposed between the inner surface of the box body 2 and the outer surfaces of the freezing compartment 6 and the refrigerating compartment 7 .
  • cooling flow path 10 constituted by lower cooling flow path 10A and upper cooling flow path 10B partitioned by partition plates 11A, 11B, respectively, is provided.
  • An evaporator (evaporator) 24 is arranged on the cooling channel 10 (specifically, the lower cooling channel 10A). As will be described later, the evaporator 24 constitutes a part of the cooling circuit 20 of the refrigerator 1 .
  • a fan 12 is disposed above the evaporator 24 in the cooling flow path 10 . The fan 12 can flow the air in the refrigerator 1 to supply the air cooled by the evaporator 24 to the freezer compartment 6 or the refrigerator compartment 7 from the cooling flow path 10 .
  • Freezer compartment damper 13 is arranged at the upper opening of lower partition plate 11A. With the freezer compartment damper 13 open, the gas passing through the evaporator 24 flows from the cooling flow path 10 (lower side cooling flow path 10A) to the freezer compartment 6 . On the other hand, in a state where freezer compartment damper 13 is closed, the gas passing through evaporator 24 does not flow from cooling flow path 10 (lower side cooling flow path 10A) to freezer compartment 6 . In FIG. 1 , the freezer compartment damper 13 is shown in a closed state.
  • switching whether to let air flow into freezer compartment 6 is not limited to the case of using freezer compartment damper 13 .
  • a movable fan cover that covers the outside of the fan 12 can also be used. When the fan cover is open, the air discharged from the fan 12 flows into the freezer compartment 6 , and when the fan cover is closed, the air discharged from the fan 12 can be prevented from flowing into the freezer compartment 6 .
  • refrigerator compartment damper 14 is disposed between lower cooling flow path 10A and upper cooling flow path 10B. With the refrigerator compartment damper 14 open, the gas passing through the evaporator 24 flows from the lower cooling flow path 10A to the upper cooling flow path 10B. In addition, the gas flowing into upper cooling flow path 10B flows into refrigerator compartment 7 from cooling flow path 10 (upper cooling flow path 10B) through openings provided at a plurality of height positions. On the other hand, in a state where refrigerator compartment damper 14 is closed, the gas passing through evaporator 24 does not flow from lower cooling flow path 10A to upper cooling flow path 10B. In FIG. 1 , the refrigerating compartment damper 14 is shown in an open state, and the gas flow at this time is schematically shown by dotted arrows.
  • the gas flowing into the refrigerating compartment 7 from the cooling flow path 10 (upper cooling flow path 10B) circulates in the refrigerating compartment 7 and flows into the lower side of the refrigerating compartment 7.
  • the inlet 15A of the return flow path 15 is opened. While the gas passing through the evaporator 24 circulates in the refrigerator compartment 7, the goods in the refrigerator compartment 7 can be cooled.
  • Return flow path 15 is a flow path through which the gas circulating in refrigerator compartment 7 flows into the lower side of cooling flow path 10 (lower side cooling flow path 10A) without flowing in freezer compartment 6 .
  • the return flow path 15 is arranged separately from the cooling flow path 10 .
  • the gas flows into the return flow path 15 from the inlet 15A, flows into the refrigerator compartment 7 from the cooling flow path 10 (upper side cooling flow path 10B), and circulates in the refrigerator compartment 7 .
  • the inflowing gas flows in the return flow path 15 and flows into the lower side of the cooling flow path 10 (lower cooling flow path 10A) from the lower outlet 15B. That is, the gas flows into the lower side of the evaporator 24 arranged in the cooling channel 10 (the lower cooling channel 10A).
  • the gas is cooled again by passing through the evaporator 24, repeating the same flow cycle. Therefore, the goods in refrigerator compartment 7 can be cooled.
  • a mechanical room 40 is arranged, and a compressor 21, a condenser 22, and an evaporating dish 42 are arranged.
  • a condensation fan 41 for cooling the compressor 21 or the condenser 22 is arranged.
  • a frost-receiving pan 33 is disposed, and when the defrosting process is performed, the frost adhering to the evaporator 24 falls and is accommodated in the frost-receiving pan 33 .
  • a heater 34 is disposed near the frost container 33 . The frost in the frost-receiving pan 33 can be dissolved by the heater 34 and discharged to the evaporating pan 42 in the machine room 40 through the drain pipe 35 .
  • an outside air temperature sensor 50 for detecting the outside air temperature is attached.
  • a defrost sensor 51 for detecting the temperature of the evaporator 24 is attached to the evaporator 24 .
  • FIG. 2 is a diagram showing a configuration of cooling circuit 20 of refrigerator 1 according to one embodiment of the present invention. Next, the cooling circuit 20 will be described with reference to FIG. 2 .
  • the cooling circuit 20 has a compressor (compressor) 21 , a condenser (condensor) 22 , capillary tubes 23 and an evaporator 24 .
  • the respective components of the cooling circuit 20 are fluidly connected through pipes in the order described above, and a first refrigerant flow path through which the refrigerant circulates in the cooling circuit 20 is formed. A normal cooling cycle is performed through the first refrigerant flow path.
  • the compressor 21 compresses the refrigerant in a gaseous state to a state of high temperature and high pressure.
  • the compressed refrigerant is sent to the condenser 22 through piping.
  • the compressor 21 has an inverter, the rotation speed is variable, and the cooling capacity of the cooling circuit 20 can be controlled.
  • the condenser 22 discharges the heat of the refrigerant compressed by the compressor 21 to condense the refrigerant.
  • the condensed refrigerant is sent to the capillary tube 23 through the pipe.
  • the capillary tube 23 reduces and expands the pressure of the refrigerant condensed in the condenser 22, and with this, reduces the temperature.
  • the expanded refrigerant is sent to the heat exchange tubes of the evaporator 24 through piping.
  • the refrigerant decompressed by the capillary tube 23 is evaporated and absorbs heat.
  • the evaporated refrigerant in a gaseous state is sent to the compressor 21 through the suction pipe 28, and is compressed again. In this way, the cooling circuit 20 works.
  • At least part of the suction tube 28 is arranged adjacent to the capillary tube 23 so as to allow the refrigerant to flow from the evaporator 24 to the compressor 21 when the suction tube 28 exchanges heat with the capillary tube 23 .
  • a region 29 which is surrounded by a dotted line in FIG. 2 , represents part of the heat exchange unit.
  • control is basically performed such that when the outside air temperature is high, the rotation speed of the compressor 21 is increased to increase the cooling capacity, and when the outside air temperature is low, the rotation speed of the compressor 21 is decreased to suppress the cooling capacity.
  • the hot gas refrigerant compressed by the compressor 21 is directly supplied to the evaporator 24 for defrosting, which is referred to as a hot gas defrosting process.
  • the cooling circuit 20 has a hot gas bypass 30 which directly connects the output side of the compressor 21 with the input side of the condenser 22 .
  • a switching valve (three-way valve) 31 On the output side of the compressor 21, a switching valve (three-way valve) 31 is arranged.
  • the switching valve (three-way valve) 31 can switch between a state in which the refrigerant discharged from the compressor 21 flows to the condenser 22 side, and a state in which the refrigerant discharged from the compressor 21 flows to the hot gas bypass pipe 30 side.
  • the hot gas bypass pipe 30 constitutes a second refrigerant flow path in which the refrigerant flows in the path of the compressor 21-the hot gas bypass pipe 30-the evaporator 24, and the second refrigerant flow path is different from the above cooling circuit,
  • the first refrigerant flow path in which the refrigerant flows in the path of compressor 21 - condenser 22 - capillary tube 23 - evaporator 24 .
  • the switching valve (three-way valve) 31 is opened and closed by a control unit 100 (see FIG. 3 ).
  • the control unit 100 controls the switching valve (three-way valve) 31 to switch to open the condenser 22 side, and can perform a normal cooling cycle in which the refrigerant flows through the first refrigerant flow path.
  • the control unit 100 controls the switching valve (three-way valve) 31 to switch the side of the hot gas bypass pipe 30 to open to perform a hot gas defrosting process in which the refrigerant flows through the second refrigerant flow path.
  • the hot gas refrigerant flowing out from the compressor 21 can be directly supplied to the heat exchange pipe of the evaporator 24 via the hot gas bypass pipe 30 .
  • the heat exchange tube is heated by flowing the hot gaseous refrigerant in the heat exchange tube, and the fins are also heated by heat conduction. Thereby, hot gas defrosting processing for dissolving frost adhering to the evaporator 24 can be performed. The melted frost falls on the contact area with the heat sink.
  • the falling liquid is accommodated in a frost-receiving pan 33 disposed below the evaporator 24 . If there is only the frost-receiving container 33 , there is a possibility that the half-dissolved frost will freeze again.
  • the heater 34 is arranged near the frost-receiving container 33 . Frost is dissolved by the heater 34 , and the resulting liquid flows into the evaporation pan 42 in the machine room 40 through the drain pipe 35 . The liquid that has flowed into the evaporating dish 42 is evaporated in the atmosphere.
  • an on-off valve 32 is arranged between the condenser 22 and the capillary tube 23 .
  • the on-off valve 32 When the on-off valve 32 is in an open state, the refrigerant is in a state of flowing from the condenser 23 to the capillary tube 23 , and when the on-off valve 32 is in a closed state, the refrigerant is in a state of not flowing from the condenser 23 to the capillary tube 23 .
  • the on-off valve 32 is opened. As will be described later, the on-off valve 32 is closed during the hot gas defrosting process.
  • the following can be considered. Since the refrigerant flowing out of the condenser 22 is also sufficiently hot, it is also possible to have a hot gas bypass 30 directly connecting the output side of the condenser 22 with the input side of the evaporator 24 .
  • a switching valve (three-way valve) 31 is disposed on the output side of the condenser 22 .
  • the hot gas bypass pipe 30 constitutes a second refrigerant flow path in which the refrigerant flows in the path of the compressor 21 -the condenser 22 -the hot gas bypass pipe 30 -the evaporator 24 .
  • the switching valve (three-way valve) 31 functions as the on-off valve 32 described above.
  • Fig. 3 is a line diagram showing a control system related to defrosting of refrigerator 1 according to one embodiment of the present invention. Next, a control system for performing the hot gas defrosting process will be described with reference to Fig. 3 .
  • the control system for the hot gas defrosting process constitutes a part of the control system of the refrigerator 1 .
  • the control unit 100 is electrically connected to the outside air temperature sensor 50 mounted on the top of the upper door 3, and receives detection data (signal) of the outside air temperature. Furthermore, the control unit 100 is electrically connected to the defrost sensor 51 attached to the evaporator 24 and receives detection data (signal) of the temperature of the evaporator 24 .
  • the control unit 100 can transmit control signals to control the operation of the compressor 21 and the condensation fan 41 .
  • the control unit 100 can control opening and closing by sending a control signal to the switching valve (three-way valve) 31 and the on-off valve 32 .
  • the control unit 100 can transmit a control signal to control the operation of the heater 34 .
  • the refrigerator 1 of this embodiment has a cooling circuit 20, a hot gas bypass pipe 30, and a switching valve 31 as shown in FIG. 24 to return to the cooling cycle of the compressor 21 again, the hot gas bypass pipe 30 directly connects the output side of the compressor 21 with the input side of the evaporator 24, and the switching valve 31 switches the state of the cooling cycle and the A state in which the refrigerant discharged from the compressor 21 flows to the evaporator 24 via the hot gas bypass pipe 30 in the hot gas defrosting process.
  • the hot gas bypass 30 directly connects the output side of the condenser 22 with the input side of the evaporator 24 .
  • control system As shown in FIG. 3 , it has a control unit 100 that controls the compressor 21 and a switching valve (three-way valve) 31 and an outside air temperature sensor 50 that detects The outside air temperature is detected and the detection data is sent to the control unit 100 . At this time, the rotation speed of the compressor 21 is variable, and the rotation speed of the compressor 21 can be changed by the control unit 100 .
  • control unit 100 can control the hot gas bypass pipe 30 side of the switching valve (three-way valve) 31 to be opened, so that the refrigerant discharged from the compressor 21 flows to the evaporator 24 through the hot gas bypass pipe 30 . Hot gas defrosting treatment. At this time, the control unit 100 operates the compressor 21 at a rotation speed corresponding to the outside air temperature detected by the outside air temperature sensor 50 .
  • the compressor 21 In the hot gas defrosting process, when the outside air temperature is low, since the temperature of the refrigerant is low, the compressor 21 is operated at a higher rotational speed to increase the inflow amount of the refrigerant. On the other hand, when the outside air temperature is high, the compressor 21 is operated at a lower rotational speed to suppress excessive heat flow into the evaporator 24 . Thereby, even when the outside air temperature is different, it is possible to suppress variation in defrosting time.
  • the compressor 21 may be operated at a constant rotation speed corresponding to the outside air temperature during the hot gas defrosting process, or the rotation speed may be changed according to elapsed time as described later.
  • the controller 100 controls the rotational speed of the compressor 21 according to the above-mentioned outside air temperature, thereby suppressing variation in defrosting time without adding a special device.
  • the heater 34 that dissolves the frost that falls on the frost-receiving container 33 have an excessively large capacity, and even if the outside air temperature changes, the heater 34 can be operated with a load within a certain range. run. Thereby, manufacturing cost can also be reduced, and energy consumption can also be reduced. Therefore, it is possible to provide a refrigerator capable of reliably performing the hot gas defrosting process while suppressing energy consumption at low manufacturing cost.
  • the rotation speed of the compressor 21 can be changed based on the temperature of the evaporator 24 detected by the defrosting sensor 51 .
  • the compressor 21 is operated at a relatively high rotational speed corresponding to a relatively low outside air temperature, and the detected temperature of the evaporator 24 shows a tendency to be higher than a pre-expected temperature, the It is conceivable to perform control to reduce the rotational speed of the compressor 21 .
  • the control unit 100 can also perform control to end the hot gas defrosting process.
  • the predetermined value it is preferable to set a temperature at which the evaporator 24 is presumed to be significantly free of frost. Assuming that the hot gas defrosting process is continued for a predetermined fixed time, the hot gas defrosting process is terminated when the temperature of the evaporator 24 exceeds a predetermined value, thereby enabling efficient defrosting processing that suppresses energy consumption.
  • control unit 100 performs control to stop the condensing fan 41 that cools the compressor 21 before performing the hot gas defrosting process.
  • control of the condensing fan 41 can be stopped when a flag for defrosting processing is established.
  • FIG. 6A shows a graph of detected data such as the temperature of the refrigerant discharged from the compressor 21 when the condensing fan 41 is normally operated.
  • FIG. 6B shows a graph of detection data such as the temperature of the refrigerant discharged from the compressor 21 when the condensing fan 41 is stopped.
  • the horizontal axis of the graph represents time, and the vertical axis represents temperature.
  • the upper graph shows the temperature of the refrigerant discharged from the compressor 21
  • the lower graph shows the temperature of the evaporator 24 detected by the defrosting sensor 51 .
  • the temperature of the refrigerant discharged from the compressor 21 can be further increased by controlling the control unit 100 to stop the condensing fan 41 before performing the hot gas defrosting process. Accordingly, in the hot gas defrosting process, the refrigerant whose temperature has been raised in advance can be supplied to the evaporator 24, thereby enabling more efficient defrosting.
  • the capillary 23 is arranged between the condenser 22 and the evaporator 24
  • the on-off valve 32 is arranged between the condenser 22 and the capillary 23 .
  • the control unit 100 performs control to close the on-off valve 32 when performing the hot gas defrosting process. This control prevents the refrigerant flowing out of the condenser 22 from flowing into the capillary tube 23 .
  • the control unit 100 performs control to close the on-off valve 32 when performing the hot gas defrosting process.
  • the refrigerant flowing out of the condenser 22 does not flow into the capillary tube 23, so that the temperature drop of the refrigerant can be suppressed, and efficient defrosting can be realized.
  • the defrosting time can be extended by opening the on-off valve 32 , it is also conceivable to adjust the defrosting time by opening and closing the on-off valve 32 .
  • FIG. 4 is a time chart showing an example of control to perform hot gas defrosting processing. Next, an example of control for performing the hot gas defrosting process will be described with reference to the time chart of FIG. 4 .
  • This time chart shows a case where the defrosting flag is set during the normal cooling cycle, and after the cooling period in which the compressor 21 is operated is completed, the pre-defrosting cycle is performed, and then the hot gas defrosting process is performed. , after the end of the hot gas defrosting process, the usual cooling cycle starts again.
  • the compressor 21 is operated, and the condensing fan 41 is also operated.
  • the switching valve (three-way valve) 31 the side of the condenser 22 is opened, and the side of the hot gas bypass pipe 30 is closed.
  • the on-off valve 32 between the condenser 22 and the capillary tube 23 is opened.
  • the refrigerant flows in the first refrigerant flow path constituted by the compressor 21 -the condenser 22 -the capillary tube 23 -the evaporator 24 .
  • the defrosting flag When the defrosting flag is established during such a cooling period, the pre-defrosting cycle starts after the cooling period ends.
  • the defrosting flag may be established when a predetermined time has elapsed since the previous defrosting process, or may be established based on the temperature detected by the defrosting sensor 51 . In addition, it can also be established at other arbitrary timings.
  • the compressor 21 is stopped, and the condensing fan 41 is also stopped, in the same manner as the cooling stop period of the normal cooling cycle.
  • the switching valve (three-way valve) 31 maintains the open state of the condenser 22 side as it is, and closes the on-off valve 32 which was previously open.
  • the second half is a cooling period of a normal cooling cycle, but since the compressor 21 is operated with the condensing fan 41 stopped, the temperature of the compressor 21 and the discharge temperature can be increased. However, when the ambient temperature of the machine room 40 is high, the operation of the condensation fan 41 may be performed. At this time, the refrigerant flows in the first refrigerant flow path constituted by the compressor 21 -the condenser 22 -the capillary tube 23 -the evaporator 24 .
  • the hot gas defrosting process starts. Therefore, the switching valve (three-way valve) 31 is switched so that the side of the hot gas bypass pipe 30 is opened and the side of the condenser 22 is closed, so that the on-off valve 32 is changed from open to closed.
  • the refrigerant flows in the second refrigerant flow path constituted by the compressor 21 -the hot gas bypass pipe 30 -the evaporator 24 .
  • the compressor 21 is operated for a certain period of time at a defrosting medium-low rotation.
  • the low rotation speed in defrosting is basically the lowest rotation speed.
  • the compressor 21 After operating the compressor 21 at the defrosting medium-low rotation for a certain period of time, the compressor 21 is operated at a rotation speed determined in accordance with the outside air temperature detected by the outside air temperature sensor 50 .
  • the compressor 21 is not operated at a constant rotational speed, but the rotational speed is increased in steps according to the elapsed time. Step up control.
  • control to increase the rotational speed in steps of three steps with the passage of time is shown. In this case, there may be a case of transitioning to the next step when the same time elapses in each step, or a case of transitioning to the next step when a different time elapses in each step.
  • the rotation speed of the compressor 21 can also be increased in other arbitrary steps.
  • the cooling cycle after defrosting is started. Specifically, the rotation speed of the compressor 21 is changed to a rotation speed lower than the rotation speed of the last step.
  • the switching valve (three-way valve) 31 is switched so that the side of the condenser 22 is opened and the side of the hot gas bypass pipe 30 is closed, so that the on-off valve 32 is opened.
  • the refrigerant flows through the first refrigerant flow path constituted by the compressor 21 -the condenser 22 -the capillary 23 -the evaporator 24 .
  • the condensing fan 41 starts to operate with a delay after a lapse of a predetermined time in order to prepare for a normal cooling cycle and increase the temperature of the compressor 21 .
  • control to increase the rotational speed stepwise in accordance with the elapsed time it is conceivable to increase the rotational speed of the compressor 21 in a stepwise manner based on the temperature of the evaporator 24 detected by the defrosting sensor 51 .
  • control For example, a control in which the rotational speed is increased stepwise in accordance with a temperature gradient that captures the temperature change of the evaporator 24 over time is conceivable.
  • control is performed such that the compressor 21 is operated at a rotational speed determined corresponding to the outside air temperature detected by the outside air temperature sensor 50 , and based on the temperature of the evaporator 24 detected by the defrosting sensor 51 temperature to increase the speed.
  • control to increase the rotation speed of the compressor 21 in a stepwise manner is shown, but the present invention is not limited thereto.
  • control to increase the rotational speed of the compressor 21 in proportion to time can be considered.
  • control unit 100 performs control to increase the rotational speed of the compressor 21 as time elapses from the start of the hot gas defrosting process, whereby even when the amount of frost adhering to the evaporator 24 is different, Variation in defrosting time can be suppressed, thereby achieving efficient defrosting.
  • FIG. 5 is a flowchart showing an example of control for performing hot gas defrosting processing. Next, a specific control flow of the control shown in the timing chart of FIG. 4 will be described with reference to FIG. 5 .
  • step S2 it is judged whether or not a cooling cycle is being performed (step S2). In this judgment, if it is judged that the cooling cycle is not being executed (No), this control process is terminated as it is. In the judgment of step S2, if it is judged that the cooling cycle is being executed (Yes), it is next judged whether or not the defrosting flag is established (step S4). In this judgment, if it is judged that the defrost flag is not established (No), it becomes a standby state in which this judgment process is repeated. In the judgment of step S4, if it is judged that the defrost flag is established (Yes), it is next judged whether or not the cooling period has ended (step S6).
  • step S6 if it is judged that the cooling period has ended (No), it becomes a standby state in which this judgment process is repeated.
  • step S8 if it is judged that the cooling period has ended (Yes), the condensation fan 41 is stopped, and a pre-defrosting cycle is executed (step S8).
  • the detailed description of the pre-defrosting cycle is the same as above, so it will be omitted.
  • step S10 the hot gas defrosting process starts next (step S10). Then, as described above, the switching valve (three-way valve) 31 is switched so that the hot gas bypass pipe 30 side is opened and the condenser 22 side is closed, and the on-off valve 32 is closed (step S12 ).
  • the condensation fan 41 is in a state of continuing to stop.
  • step S14 1 is input to the value of the counter j (step S14), and the compressor 21 is operated at the rotational speed r(j) (step S16).
  • the value of the rotational speed r(j) increases.
  • step S18 it is judged whether the temperature of the evaporator 24 detected by the defrosting sensor 51 exceeds a predetermined value (step S18). In this judgment, if it is judged that the temperature of the evaporator 24 has exceeded the predetermined value (YES), it is presumed that the defrosting of the evaporator 24 has been completed, and this control process ends.
  • step S20 it is next determined whether or not a predetermined time T(j) has elapsed (step S20).
  • the predetermined time T(j) may be a constant time, or may vary depending on the value of j.
  • step 20 if it is judged that the predetermined time T(j) has not elapsed (No), it becomes a standby state in which this judgment process is repeated. During this time, the compressor 21 continues to run at speed r(j).
  • step S22 if it is judged that the predetermined time T(j) has elapsed (Yes), the control process of adding 1 to the value of the counter j is carried out (step S22), and it is judged whether the incremented value of j has reached N value (step S24).
  • step S24 if it is judged that the value of j has not reached the value of N (No), the process returns to step S16, and the control process from step S16 to step S24 is repeated. In this way, it is possible to achieve control to operate the compressor 21 by increasing the rotational speed r(j) stepwise with the passage of time.
  • step S24 if it is judged that the value of j has reached the value of N (Yes), the hot gas defrosting process (step S26) is ended, and as described above, the rotating speed of the compressor 21 is changed, and the switching valve (three-way valve) 31 is switched so that the condenser 22 side is opened, the hot gas bypass pipe 30 side is closed, and the on-off valve 32 is opened. Then, after a predetermined time elapses, the condensation fan 41 is operated (step S28). Thereby, the control processing shown in the timing chart of FIG. 4 ends.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

本发明的提供一种冰箱,包括:冷却回路,实施制冷剂依次流过压缩机、冷凝器、蒸发器而再次返回到压缩机的冷却循环;热气旁通管,将压缩机或冷凝器的排出侧和蒸发器的流入侧直接相连;切换阀,切换进行冷却循环的状态、和进行从压缩机排出的制冷剂经由热气旁通管流向蒸发器的热气除霜处理的状态;控制部,控制压缩机和切换阀;以及外部空气温度传感器,检测外部空气温度并将检测数据发送到控制部,压缩机的转速是可变的,在进行热气除霜处理时,控制部使压缩机以与外部空气温度传感器检测到的外部空气温度对应的转速来运转,当该外部空气温度具有T1<T2的关系时,T1下的压缩机21的转速高于T2下的压缩机的转速。

Description

冰箱 技术领域
本发明涉及一种冰箱,尤其涉及一种通过热气状的制冷剂来去除附着在蒸发器上的霜的冰箱。
背景技术
蒸发器构成冰箱的冷却回路的一部分,由于蒸发器周围的水蒸气被冷却,有可能在蒸发器上附着霜而使得蒸发器冷却性能降低。为了应对此问题,已知如下的热气除霜处理:在构成冷却回路的一部分的压缩机的下游,设置与蒸发器的上游侧相连的热气旁通管,经由热气旁通管使高温的气体暂时流向蒸发器,由此,对蒸发器加热来进行除霜(例如,参照专利文献1)。在专利文献1中,将从压缩机排出的热气状的制冷剂直接供应到蒸发器的热交换管的入口,由此,对蒸发器加热来进行除霜处理。
现有技术文献
专利文献
专利文献1:日本特开2018-54287号公报。
发明内容
发明要解决的问题
但是,在专利文献1所记载的热气除霜处理中,根据外部空气温度的变化、压缩机的运转状况,产生如下的问题:由热气状的制冷剂施加到蒸发器的热量发生变化、除霜时间具有偏差。在专利文献1所记载的冰箱中,具有加热器,该加热器溶解从蒸发器落在接霜皿上的霜,但如果配合除霜时间变长的情况而增大加热器的容量,则存在能量消耗过大的担忧。另一方面,如果配合除霜时间短的情况而减小加热器的容量,则存在溶解霜的能力不足的担忧。此外,也能考虑在接霜皿上设置温度传感器以利用温度传感器对加热器进行控制,但在该情况下,产生制造成本增大的问题。
因此,本发明的目的在于以低制造成本提供一种能够在抑制能量消耗的同时可靠地进行热气除霜处理的冰箱。
用于解决问题的方案
本发明的冰箱包括:
冷却回路,实施制冷剂依次流过压缩机、冷凝器、蒸发器而再次返回到所述压缩机的冷却循环;
热气旁通管,将所述压缩机或所述冷凝器的排出侧和所述蒸发器的流入侧直接相连;
切换阀,切换进行所述冷却循环的状态、和进行从所述压缩机排出的制冷剂经由所述热气旁通管流向所述蒸发器的热气除霜处理的状态;
控制部,控制所述压缩机和所述切换阀;以及
外部空气温度传感器,检测外部空气温度并将检测数据发送到所述控制部;
所述压缩机的转速是可变的;
在进行所述热气除霜处理时,所述控制部使所述压缩机以与所述外部空气温度传感器检测到的外部空气温度对应的转速来运转,当该外部空气温度具有T1<T2的关系时,T1下的所述压缩机的转速高于T2下的所述压缩机的转速。
热气除霜处理中的制冷剂的热源以外部空气和电机的发热为主。因此,在外部空气温度较低的情况下,由于制冷剂的温度较低,压缩机以更高的转速来运转,增加制冷剂的流入量。另一方面,在外部空气温度较高的情况下,压缩机以更低的转速来运转,抑制向蒸发器流入过度的热。由此,即使在外部空气温度不同的情况下,也能够抑制除霜时间的偏差。
在热气除霜处理中,通过进行这样的与外部空气温度对应的压缩机的转速的控制,能够在不附加特别的装置的情况下,高效地进行除霜,抑制除霜时间的偏差。由此,能够以低制造成本提供一种能够在抑制能量消耗的同时可靠地进行热气除霜处理的冰箱。
此外,在本发明的冰箱中,所述控制部进行随着从所述热气除霜处理的开始经过时间而提高所述压缩机的转速的控制。
根据本发明,由于控制部进行随着从热气除霜处理的开始经过时间而提高压缩机的转速的控制,所以即使在附着在蒸发器上的霜的量不同的情况下,也能够抑制除霜时间的偏差,实现高效的除霜。
此外,在本发明的冰箱中,还包括冷凝风扇,所述冷凝风扇冷却所述压缩机和所述冷凝器,在进行所述热气除霜处理之前,所述控制部停止对所述冷凝风扇的控制。
根据本发明,在进行热气除霜处理之前,控制部停止对冷凝风扇的控制,由此, 能够预先提高从压缩机排出的制冷剂的温度。由此,在热气除霜处理中,能够将预先提高了温度的制冷剂供应给蒸发器,更高效地进行除霜。
此外,在本发明的冰箱中,在所述冷却回路中,在所述冷凝器和所述蒸发器之间配置有毛细管,在所述冷凝器和所述毛细管之间配置有开闭阀,在进行所述热气除霜处理时,所述控制部进行关闭所述开闭阀的控制,以使得从所述冷凝器流出的制冷剂不会流入到所述毛细管。
在热气除霜处理时,假设开闭阀为打开的状态下,从冷凝器流出的制冷剂流入到毛细管,因此制冷剂的温度下降。因此,存在流入到蒸发器的制冷剂的温度降低、除霜的效率降低的担忧。因此,在本发明中,在进行热气除霜处理时,控制部关闭开闭阀,以使得从冷凝器流出的制冷剂不会流入到毛细管,由此,能够抑制制冷剂的温度降低,进而实现高效的除霜。
此外,在本发明的冰箱中,还包括除霜传感器,所述除霜传感器检测所述蒸发器的温度并将检测数据发送到所述控制部,在进行所述热气除霜处理时,所述控制部进行如下的控制:基于所述除霜传感器检测到的所述蒸发器的温度来变更所述压缩机的转速,当该蒸发器的温度超过了预定值时,结束所述热气除霜处理。
在本发明中,在进行热气除霜处理时,控制部使压缩机以与外部空气温度对应的转速来运转,但此外,基于蒸发器的温度来变更转速。由此,能够实现与蒸发器的实际温度对应的更高效的除霜反馈控制。
此外,在蒸发器的温度超过了预定值时,即,达到了估计蒸发器的除霜结束的温度时,进行结束热气除霜处理的控制,因此,能够实现抑制了能量消耗的高效的除霜处理。
发明效果
根据本发明,能够以低制造成本提供一种能够在抑制能量消耗的同时可靠地进行热气除霜处理的冰箱。
附图说明
图1示出本发明的一个实施方式的冰箱的侧面剖视图。
图2示出本发明的一个实施方式的冰箱的冷却回路的结构的线图。
图3示出本发明的一个实施方式的冰箱的除霜相关的控制系统的线图。
图4示出进行热气除霜处理的控制的一示例的时序图。
图5示出进行热气除霜处理的控制的一示例的流程图。
图6A示出使冷凝风扇通常运转时的从压缩机排出的制冷剂的温度等检测数据的图形。
图6B示出停止冷凝风扇时的从压缩机排出的制冷剂的温度等检测数据的图形。
具体实施方式
以下,参照附图来说明用于实施本发明的实施方式。以下说明的冰箱是用于将本发明的技术思想具体化的冰箱,只要没有特定的记载,本发明并不限定于以下的冰箱。在各附图中,有时对具有相同功能的构件标注相同的符号。为了明确说明,各附图所示的构件的大小、位置关系等有时也夸张地示出。
图1示出本发明的一个实施方式的冰箱1的侧面剖视图。首先,参照图1来说明本发明的一个实施方式的冰箱1的概要。
冰箱1具有箱体2,并且具有在载置在水平的地面上的状态下、可旋转地安装在箱体2的前方部分上的上门3和下门4。在箱体2的内部(以下称为“冰箱内”)配置有冷冻室6和冷藏室7。箱体2的内表面与冷冻室6、冷藏室7的外表面之间配置有隔热材料。
<冷却流路>
如图1所示,在冷冻室6和冷藏室7的后方,设置有分别由分隔板11A、11B分隔的下侧冷却流路10A和上侧冷却流路10B所构成的冷却流路10。在冷却流路10(详细而言,下侧冷却流路10A)上,配置有蒸发器(evaporator)24。如后所述,蒸发器24构成冰箱1的冷却回路20的一部分。在冷却流路10内的蒸发器24的上方,配置有风扇12。风扇12能够使冰箱1内的气体流动,从而能够将通过蒸发器24而被冷却的气体从冷却流路10供应到冷冻室6或冷藏室7。
在下侧分隔板11A的上侧的开口,配置有冷冻室风门13。在冷冻室风门13打开的状态下,通过蒸发器24的气体从冷却流路10(下侧冷却流路10A)流向冷冻室6。另一方面,在冷冻室风门13关闭的状态下,通过蒸发器24的气体不会从冷却流路10(下侧冷却流路10A)流向冷冻室6。在图1中,示出的冷冻室风门13处于关闭状态。
在风扇12运转、冷冻室风门13打开的情况下,从冷却流路10(下侧冷却流路10A)流向冷冻室6的气体在冷冻室6内循环,从下侧分隔板11A下侧的开口返回到冷却流路10(下侧冷却流路10A)。由此,气体再次通过蒸发器24而被冷却,重复同样的流动循环。由此,能够冷却冷冻室6的储藏物。
但是,是否使气体流入冷冻室6的切换并不限于使用冷冻室风门13的情况。例如,也能够使用覆盖于风扇12外侧的可动式风扇罩。在风扇罩打开的情况下,从风扇12排出的气体流入到冷冻室6,在风扇罩关闭的情况下,能够使从风扇12排出的气体不流入到冷冻室6。
此外,在下侧冷却流路10A和上侧冷却流路10B之间配置有冷藏室风门14。在冷藏室风门14打开的状态下,通过蒸发器24的气体从下侧冷却流路10A流向上侧冷却流路10B。此外,流入到上侧冷却流路10B的气体经由设置在多个高度位置的各开口,从冷却流路10(上侧冷却流路10B)流入到冷藏室7。另一方面,在冷藏室风门14关闭的状态下,通过蒸发器24的气体不会从下侧冷却流路10A流向上侧冷却流路10B。在图1中,示出的冷藏室风门14处于打开的状态,用虚线的箭头示意性地示出此时的气体的流动。
在风扇12运转、冷藏室风门14打开的情况下,从冷却流路10(上侧冷却流路10B)流入到冷藏室7的气体在冷藏室7内循环,并流入到在冷藏室7下侧开口的返回流路15的入口15A。通过蒸发器24的气体在冷藏室7内循环的期间,能够冷却冷藏室7的储藏物。
<返回流路>
返回流路15是使得在冷藏室7中循环的气体不在冷冻室6内流动而流入到冷却流路10(下侧冷却流路10A)下侧的流路。返回流路15与冷却流路10分隔配置。气体从入口15A流入到返回流路15,所述气体从冷却流路10(上侧冷却流路10B)流入到冷藏室7而在冷藏室7内循环。然后,流入的气体在返回流路15内流动,从下侧的出口15B流入到冷却流路10(下侧冷却流路10A)的下侧。即,气体流入到配置在冷却流路10(下侧冷却流路10A)内的蒸发器24的下侧。由此,气体再次通过蒸发器24而被冷却,重复同样的流动循环。因此,能够冷却冷藏室7的储藏物。
在箱体2的后方下部区域,配置有机械室40,配置有压缩机21、冷凝器22、蒸发皿42。此外,在机械室40中,配置有对压缩机21或冷凝器22进行冷却的冷凝风扇41。
<其他结构>
此外,配置有接霜皿33,在进行了除霜处理的情况下,附着在蒸发器24上的霜落下并收容于该接霜皿33。此外,在接霜皿33的附近,配置有加热器34。通过加热器34,能够溶解接霜皿33内的霜,经由排水管35向机械室40内的蒸发皿42排出。此外,在上门3的上部,安装有检测外部空气温度的外部空气温度传感器50。 此外,在蒸发器24上安装有检测蒸发器24温度的除霜传感器51。
<冷却回路>
图2示出本发明的一个实施方式的冰箱1的冷却回路20的结构的线图。接着,参照图2来说明冷却回路20。
冷却回路20具有压缩机(compressor)21、冷凝器(condensor)22、毛细管23和蒸发器24。冷却回路20的各构成要素间通过配管按上述顺序流体地连接,形成了制冷剂在冷却回路20内循环的第一制冷剂流路。通过第一制冷剂流路,进行通常的冷却循环。
压缩机21压缩气体状态的制冷剂,使其成为高温高压的状态。被压缩的制冷剂通过配管被送到冷凝器22。压缩机21具有逆变器,旋转速度是可变的,能够控制冷却回路20的冷却能力。冷凝器22排出由压缩机21压缩的制冷剂的热,使制冷剂冷凝。冷凝后的制冷剂通过配管被送到毛细管23。
毛细管23降低并膨胀在冷凝器22中冷凝的制冷剂的压力,伴随此,降低温度。膨胀后的制冷剂通过配管被送到蒸发器24的热交换管。在通过散热片促进热交换的热交换管中,使由毛细管23减压的制冷剂蒸发并吸热。蒸发后成为气体状态的制冷剂通过吸入管28被送到压缩机21,再次被压缩。这样,冷却回路20进行工作。
至少部分吸入管28邻近毛细管23配置,以便能够在吸入管28与毛细管23进行热交换时,所述吸入管28使制冷剂从蒸发器24向压缩机21流动。区域29表示该热交换部的部分,所述区域29在图2中用虚线包围。
在通常的冷却循环中,提高压缩机21的转速,则冷却能力提高,所述通常的冷却循环利用了制冷剂在压缩机21、冷凝器22、毛细管23、蒸发器24中循环的第一制冷剂流路。因此,基本上进行如下的控制:在外部空气温度较高时,提高压缩机21的转速来提高冷却能力,在外部空气温度较低时,降低压缩机21的转速来抑制冷却能力。
蒸发器24在与冰箱1内流动的气体进行热交换时,气体中含有的水蒸气有可能结霜,因此需要进行蒸发器24的除霜。在本实施方式的冰箱1中,如后所述,将由压缩机21压缩后的热气状的制冷剂直接供应给蒸发器24来进行除霜,将其称为热气除霜处理。为了进行热气除霜处理,冷却回路20具有热气旁通管30,该热气旁通管30将压缩机21的输出侧和冷凝器22的输入侧直接相连。
在压缩机21的输出侧,配置有切换阀(三通阀)31。切换阀(三通阀)31能够切换从压缩机21排出的制冷剂流向冷凝器22侧的状态、和从压缩机21排出的制冷 剂流向热气旁通管30侧的状态。
热气旁通管30构成制冷剂在压缩机21-热气旁通管30-蒸发器24的路径中流动的第二制冷剂流路,所述第二制冷剂流路不同于上述冷却回路中的、制冷剂在压缩机21-冷凝器22-毛细管23-蒸发器24的路径中流动的第一制冷剂流路。
切换阀(三通阀)31由控制部100(参照图3)控制开闭。控制部100通过控制切换阀(三通阀)31,切换成冷凝器22侧变为打开,能够进行制冷剂在第一制冷剂流路中流动的通常的冷却循环。另一方面,控制部100通过控制切换阀(三通阀)31,切换成热气旁通管30侧变为打开,能够进行制冷剂在第二制冷剂流路中流动的热气除霜处理。
在制冷剂流过第二制冷剂流路的情况下,能够经由热气旁通管30将从压缩机21流出的热气状制冷剂直接供应给蒸发器24的热交换管。通过使热气状的制冷剂在热交换管内流动,从而对热交换管进行加热,散热片也由于热传导而被加热。由此,能够进行热气除霜处理,该热气除霜处理溶解附着在蒸发器24上的霜。与散热片的接触区域溶解后的霜落下。
落下的液体被收容在配置在蒸发器24下侧的接霜皿33中。在假设仅存在接霜皿33的情况下,存在半溶解的霜重新冻结的担忧,但在本实施方式中,在接霜皿33的附近,配置有加热器34。用加热器34溶解霜,溶解而产生的液体经由排水管35流入到机械室40内的蒸发皿42。流入到蒸发皿42的液体在大气中蒸发。
此外,在冷凝器22和毛细管23之间,配置有开闭阀32。当开闭阀32处于打开状态时,制冷剂处于从冷凝器23流向毛细管23的状态,当开闭阀32关闭状态时,制冷剂处于不从冷凝器23流向毛细管23的状态。在进行通常的冷却循环时,开闭阀32处于打开状态。如后所述,在进行热气除霜处理时,开闭阀32处于关闭状态。
<变形例>
作为本实施方式的变形例,能考虑下述。由于从冷凝器22流出的制冷剂也是足够高温的,所以也可能存在具有将冷凝器22的输出侧和蒸发器24的输入侧直接相连的热气旁通管30的情况。在该情况下,在冷凝器22的输出侧,配置切换阀(三通阀)31。由此,热气旁通管30构成制冷剂在压缩机21-冷凝器22-热气旁通管30-蒸发器24的路径中流动的第二制冷剂流路。在该情况下,切换阀(三通阀)31起到上述开闭阀32的功能。
(用于热气除霜处理的控制系统)
图3是示出本发明的一个实施方式的冰箱1的除霜相关的控制系统的线图。接 着,参照图3来说明用于进行热气除霜处理的控制系统。
用于热气除霜处理的控制系统构成了冰箱1的控制系统的一部分。控制部100与安装在上门3上部的外部空气温度传感器50电连接,接收外部空气温度的检测数据(信号)。此外,控制部100与安装在蒸发器24上的除霜传感器51电连接,接收蒸发器24的温度的检测数据(信号)。
控制部100能够发送控制信号来控制压缩机21和冷凝风扇41的运转。此外,控制部100能够向切换阀(三通阀)31和开闭阀32发送控制信号来控制开闭。此外,控制部100能够发送控制信号来控制加热器34的运转。
(热气除霜处理)
如上所述,本实施方式的冰箱1如图2所示具有冷却回路20、热气旁通管30和切换阀31,所述冷却回路20实施制冷剂依次流过压缩机21、冷凝器22、蒸发器24而再次返回到压缩机21的冷却循环,所述热气旁通管30将压缩机21的输出侧和蒸发器24的输入侧直接相连,所述切换阀31切换进行冷却循环的状态和进行从压缩机21排出的制冷剂经由热气旁通管30流向蒸发器24的热气除霜处理的状态。但是,也可能存在热气旁通管30将冷凝器22的输出侧和蒸发器24的输入侧直接相连的情况。
此外,作为控制系统,如图3所示,具有控制部100和外部空气温度传感器50,所述控制部100控制压缩机21和切换阀(三通阀)31,所述外部空气温度传感器50检测外部空气温度并将检测数据发送到控制部100。此时,压缩机21的转速是可变的,通过控制部100,能够变更压缩机21的转速。
通过这样的结构,控制部100能够控制切换阀(三通阀)31的热气旁通管30侧变为打开,从而进行从压缩机21排出的制冷剂经由热气旁通管30流向蒸发器24的热气除霜处理。此时,控制部100使压缩机21以与外部空气温度传感器50检测到的外部空气温度对应的转速来工作。
在从压缩机21排出的制冷剂经由冷凝器22和毛细管23流向蒸发器24的通常的冷却循环中,提高压缩机21的转速,则在冷却回路20内流动的制冷剂的流量增加,冷却能力增加。另一方面,若降低压缩机21的转速,则在冷却回路20内流动的制冷剂的流量减少,冷却能力降低。即,一般,以如下的方式进行控制:在外部温度较高的情况下,提高压缩机21的转速来提高冷却能力,在外部温度较低的情况下,降低压缩机21的转速来降低冷却能力。
在提高了压缩机21的转速的情况下,不仅制冷剂的流量增加,排出的制冷剂的 温度也上升。但是,在通常的冷却循环中,从压缩机21排出的制冷剂,在冷凝器22中对制冷剂进行冷凝,在毛细管23中温度降低而流入到蒸发器24。另一方面,在热气除霜处理中,从压缩机21排出的高温的制冷剂经由热气旁通管30直接流入到蒸发器24。
在热气除霜处理中,在外部空气温度较低的情况下,由于制冷剂的温度较低,使压缩机21以更高的转速来运转来增加制冷剂的流入量。另一方面,在外部空气温度较高的情况下,使压缩机21以更低的转速来运转来抑制向蒸发器24流入过度的热。由此,即使在外部空气温度不同的情况下,也能够抑制除霜时间的偏差。
即,在外部空气温度传感器50检测到的外部空气温度具有T1<T2的关系时,优选控制成使得T1下的压缩机21的转速高于T2下的压缩机21的转速。此时,也可能存在在热气除霜处理的期间使压缩机21以与外部空气温度对应的一定转速来运转的情况,还可能存在如后所述根据经过的时间来变更转速的情况。
这样,在热气除霜处理中,控制部100进行上述的与外部空气温度对应的压缩机21的转速的控制,由此,能够在不附加特别的装置的情况下,抑制除霜时间的偏差。由此,不需要使对溶解后落下在接霜皿33上的霜进行溶解的加热器34具有过大的容量,即使外部空气温度发生变化,也能够使加热器34以一定范围内的负载来运转。由此,也能够降低制造成本,还能够降低能量消耗。因此,能够以低制造成本提供一种能够在抑制能量消耗的同时可靠地进行热气除霜处理的冰箱。
<与蒸发器的温度对应的控制>
如上所述,在使压缩机21以与外部空气温度对应的转速来运转的情况下,也能够基于由除霜传感器51检测到的蒸发器24的温度,来变更压缩机21的转速。例如,当与比较低的外部空气温度对应地使压缩机21以比较高的转速来运转时,在检测到的蒸发器24的温度示出了比预先设想的温度高的倾向的情况下,能考虑进行降低压缩机21的转速的控制。相反,当与比较高的外部空气温度对应地使压缩机21以比较低的转速来运转时,在检测到的蒸发器24的温度示出了比预先设想的温度低的倾向的情况下,能考虑进行提高压缩机21的转速的控制。
如上所述,以如下的控制为基础,所述控制在进行热气除霜处理时使压缩机21以与外部空气温度对应的转速来运转,能够实现与蒸发器24的实际温度对应的、更高效的除霜的反馈控制。
此外,当由除霜传感器51检测到的蒸发器24的温度超过预定值时,控制部100也能够进行结束热气除霜处理的控制。作为预定值,优选设定被推测为蒸发器24明 显没有附着霜的温度。假设,在预定的一定时间内持续热气除霜处理的情况下,在蒸发器24的温度超过预定值时,也结束热气除霜处理,由此,能够实现抑制能量消耗的高效的除霜处理。
<冷凝风扇的停止>
此外,还能考虑在进行热气除霜处理之前,控制部100进行使冷凝风扇41停止的控制,所述冷凝风扇41冷却压缩机21。例如,能够在进行除霜处理的标志(flag)成立的时间点停止冷凝风扇41的控制。
在此,图6A示出使冷凝风扇41通常运转时的从压缩机21排出的制冷剂的温度等检测数据的图形。图6B示出停止冷凝风扇41时的从压缩机21排出的制冷剂的温度等检测数据的图形。图形的横轴表示时间,纵轴表示温度。在图6A、图6B中,上侧的图形示出从压缩机21排出的制冷剂的温度,下侧的图形示出由除霜传感器51检测到的蒸发器24的温度。
从图6A和图6B的比较可知,在压缩机21从停止的状态开始运转时,冷凝风扇41停止时,从压缩机21排出的制冷剂的温度随时间的上升程度,即温度梯度大于冷凝风扇41通常运转的情况下的温度梯度。由此,开始热气除霜处理时的制冷剂的温度高于冷凝风扇41通常运转的情况下的温度。伴随此,在冷凝风扇41停止的状态下使压缩机21运转的情况下,蒸发器24的温度的温度梯度大于冷凝风扇41通常运转的情况下的温度梯度。由此,热气除霜处理所需的时间缩短了40分钟左右。
这样,通过在进行热气除霜处理之前,控制部100进行停止冷凝风扇41的控制,从而能够进一步提高从压缩机21排出的制冷剂的温度。由此,在热气除霜处理中,能够将预先提高了温度的制冷剂供应给蒸发器24,从而更高效地进行除霜。
<开闭阀的控制>
如上所述,在冷却回路20中,在冷凝器22和蒸发器24之间配置有毛细管23,在冷凝器22和毛细管23之间配置有开闭阀32。在本实施方式中,优选在进行热气除霜处理时,控制部100进行关闭开闭阀32的控制。通过该控制,从冷凝器22流出的制冷剂不会流入到毛细管23。
在开闭阀32打开的状态下,从冷凝器22流出的制冷剂流入到毛细管23,因此,制冷剂的温度有可能下降。即,在热气除霜处理时,开闭阀32为打开状态的情况下,存在流入到蒸发器24的制冷剂的温度降低、除霜的效率降低的担忧。因此,在本实施方式中,在进行热气除霜处理时,控制部100进行关闭开闭阀32的控制。通过该控制,从冷凝器22流出的制冷剂不会流入到毛细管23,因此,能够抑制制冷剂的温 度降低,从而实现高效的除霜。
但是,通过打开开闭阀32,能够延长除霜时间,因此,也能考虑通过开闭阀32的开闭来进行除霜时间的调整。
(进行热气除霜处理时的控制的一例)
<时序图>
图4示出进行热气除霜处理的控制的一示例的时序图。接着,参照图4的时序图来说明进行热气除霜处理的控制的一示例。在该时序图中示出了如下那样的情况:在进行通常的冷却循环时,除霜标志成立,在压缩机21运转的冷却期间结束后,进行除霜前循环,之后,进行热气除霜处理,在热气除霜处理结束后,再次开始通常的冷却循环。
在时序图左侧的通常的冷却循环的冷却期间,压缩机21运转,冷凝风扇41也运转。此外,在切换阀(三通阀)31中,冷凝器22侧变为打开,热气旁通管30侧变为关闭的状态。冷凝器22和毛细管23之间的开闭阀32变为打开的状态。由此,制冷剂在由压缩机21-冷凝器22-毛细管23-蒸发器24构成的第一制冷剂流路中流动。
在这样的冷却期间,除霜标志成立的情况下,在冷却期间结束后,开始除霜前循环。除霜标志既能够在从上次的除霜处理经过了预定时间时成立,也能够基于除霜传感器51检测到的温度而成立。此外,还能够在其他任意的定时成立。
除霜前循环的前半部分与通常的冷却循环的冷却休止期间相同,压缩机21停止,冷凝风扇41也停止。此外,切换阀(三通阀)31原样地维持冷凝器22侧打开的状态,关闭先前为打开状态的开闭阀32。后半部分是通常的冷却循环的冷却期间,但由于在冷凝风扇41停止的状态下使压缩机21运转,能够使压缩机21的温度和排出温度上升。但是,在机械室40的环境温度较高的情况下,也存在进行冷凝风扇41的运转的情况。此时,制冷剂在由压缩机21-冷凝器22-毛细管23-蒸发器24构成的第一制冷剂流路中流动。
在预定条件下达到冷却结束后,开始热气除霜处理。因此,切换阀(三通阀)31切换成热气旁通管30侧打开、冷凝器22侧关闭,使开闭阀32从打开变为关闭。由此,制冷剂在由压缩机21-热气旁通管30-蒸发器24构成的第二制冷剂流路中流动。此时,为了防止制冷剂的液体返回等,以除霜中低旋转使压缩机21运转一定时间。除霜中低旋转基本上为最低转速。
在一定时间内以除霜中低旋转使压缩机21运转后,以与由外部空气温度传感器 50检测到的外部空气温度对应地确定的转速,来使压缩机21运转。在图4所示的示例中,在进行热气除霜处理的期间,不是以一定的转速来使压缩机21运转,而是进行与经过的时间对应地使转速呈阶梯(step)状上升的转速阶梯上升控制。在图4中,示出了随着时间的经过以3个阶段的阶梯来提高转速的控制。在该情况下,可能存在在各阶梯中经过了相同的时间时转变到下一阶梯的情况,也可能存在在各个阶梯中经过了不同的时间时转变到下一阶梯的情况。此外,也能够以其他任意阶梯数来提高压缩机21的转速。
通过呈阶梯状地提高压缩机21的转速,无论附着在蒸发器24上的霜的量如何,都能够抑制除霜时间的偏差。在能够推测除霜是否在由除霜传感器51检测到的蒸发器24的温度下结束的情况下,在假设附着在蒸发器24上的霜的量较少的情况下,能够以低的转速的阶梯来完成除霜处理。另一方面,在假设附着在蒸发器24上的霜的量较多的情况下,能够使用高的转速的阶梯,向蒸发器24供应更多的制冷剂,在预定时间内可靠地完成除霜处理。
在进行了呈阶梯状地提高压缩机21的转速的热气除霜处理后,开始除霜后的冷却循环。具体而言,将压缩机21的转速变更为比最后阶梯的转速低的转速。此外,切换阀(三通阀)31切换成冷凝器22侧打开、热气旁通管30侧关闭,使开闭阀32打开。由此,在由压缩机21-冷凝器22-毛细管23-蒸发器24构成的第一制冷剂流路中流动。此外,冷凝风扇41在经过预定时间后延迟开始运转,以便准备通常的冷却循环并提高压缩机21的温度。
不仅能考虑进行上述那样的与经过时间对应地呈阶梯状地提高转速的控制,还能考虑进行基于由除霜传感器51检测到的蒸发器24的温度来呈阶梯状地提高压缩机21的转速的控制。例如,能考虑与温度梯度对应地呈阶梯状地提高转速的控制,所述温度梯度捕捉了蒸发器24的随时间的温度变化。此外,还能考虑以蒸发器24的温度达到预定值为触发而呈阶梯状地提高压缩机21的转速的控制。在任何情况下,都进行如下的控制:使压缩机21以与由外部空气温度传感器50检测到的外部空气温度对应地确定的转速来运转,并基于由除霜传感器51检测到的蒸发器24的温度来提高转速。
在图4所示的示例中,示出了呈阶梯状地提高压缩机21的转速的控制,但不限于此。例如,也能够进行随着时间的经过而连续地提高压缩机21的转速的控制。在该情况下,能考虑与时间成比例地提高压缩机21的转速的控制。此外,还能考虑使用以时间为变量的其他任意函数来连续地提高压缩机21的转速的控制。对于上述任 一种情况,可以说成控制部100进行随着从热气除霜处理的开始经过时间而提高压缩机21的转速的控制。
如上所述,控制部100进行随着从热气除霜处理的开始经过时间而提高压缩机21的转速的控制,由此,即使在附着在蒸发器24上的霜的量不同的情况下,也能够抑制除霜时间的偏差,进而实现高效的除霜。
<流程图>
图5是示出进行热气除霜处理的控制的一示例的流程图。接着,参照图5,对图4的时序图所示的控制的具体控制流程进行说明。
首先,判断是否正在实施冷却循环(步骤S2)。在该判断中,如果判别为不是正在实施冷却循环(否),则直接结束本控制处理。在步骤S2的判断中,如果判别为正在实施冷却循环(是),则接着判断除霜标志是否成立(步骤S4)。在该判断中,如果判别为除霜标志不成立(否),则成为重复该判断处理的待机状态。在步骤S4的判断中,如果判别为除霜标志成立(是),则接着判断冷却期间是否结束(步骤S6)。
在该判断中,如果判别为冷却期间未结束(否),则成为重复该判断处理的待机状态。在步骤S6的判断中,如果判别为冷却期间结束了(是),则停止冷凝风扇41,实施除霜前循环(步骤S8)。除霜前循环的详细说明与上述相同,因此省略。在实施除霜前循环后,接着开始热气除霜处理(步骤S10)。然后,如上所述,将切换阀(三通阀)31切换成热气旁通管30侧打开、冷凝器22侧关闭,并关闭开闭阀32(步骤S12)。冷凝风扇41处于继续停止的状态。
然后,对计数器j的值输入1(步骤S14),以转速r(j)使压缩机21运转(步骤S16)。j=1的转速r(1)成为除霜中的低旋转。随着j的值增大,转速r(j)的值增大。
接着,判断除霜传感器51检测到的蒸发器24的温度是否超过了预定值(步骤S18)。在该判断中,如果判别为蒸发器24的温度超过了预定值(是),则推测蒸发器24的除霜已完成,结束本控制处理。
在步骤18的判断中,如果判别为蒸发器24的温度为预定值以下(否),则接着判断是否经过了预定时间T(j)(步骤S20)。在此,预定时间T(j)既可以是一定时间,也可以根据j的值而不同。
在步骤20的判断中,如果判别为没有经过预定时间T(j)(否),则成为重复该判断处理的待机状态。在此期间,压缩机21以转速r(j)继续运转。在步骤20的判断中,如果判别为经过了预定时间T(j)(是),则进行对计数器j的值加1的控 制处理(步骤S22),判断递增后的j的值是否达到了N的值(步骤S24)。N是确定步骤次数的参数,在图4所示的示例中,N=3。
在步骤S24的判断中,如果判别为j的值未达到N的值(否),则返回步骤S16,重复从步骤S16到步骤S24的控制处理。由此,能够实现随着时间的经过而呈阶梯状地提高转速r(j)来使压缩机21运转的控制。
在步骤S24的判断中,如果判别为j的值达到了N的值(是),则结束热气除霜处理(步骤S26),如上所述,变更压缩机21的转速,将切换阀(三通阀)31切换成冷凝器22侧打开、热气旁通管30侧关闭,并打开开闭阀32。然后,在经过预定时间后,使冷凝风扇41运转(步骤S28)。由此,图4的时序图所示的控制处理结束。
虽然已经说明了本发明的实施方式和实施形式,但是公开内容可以在结构细节上变化,并且能在不脱离所要求保护的本发明的范围和思想的情况下,实现实施方式、实施形式中的元件的组合、顺序变化等。
附图标记的说明
1冰箱
2箱体
3上门
4下门
6冷冻室
7冷藏室
10冷却流路
10A下侧冷却流路
10B上侧冷却流路
11A下侧分隔板
11B上侧分隔板
12风扇
13冷冻室风门
14冷藏室风门
15返回流路
15A入口
15B出口
20冷却回路
21压缩机
22冷凝器
23毛细管
24蒸发器
28吸入管
30热气旁通管
31切换阀(三通阀)
32开闭阀
33接霜皿
34加热器
35排水管
40机械室
41冷凝风扇
42蒸发皿
50外部空气温度传感器
51除霜传感器
100控制部。

Claims (10)

  1. 一种冰箱,其特征在于,包括:
    冷却回路,实施制冷剂依次流过压缩机、冷凝器、蒸发器而再次返回到所述压缩机的冷却循环;
    热气旁通管,将所述压缩机或所述冷凝器的排出侧和所述蒸发器的流入侧直接相连;
    切换阀,切换进行所述冷却循环的状态、和进行从所述压缩机排出的制冷剂经由所述热气旁通管流向所述蒸发器的热气除霜处理的状态;
    控制部,控制所述压缩机和所述切换阀;以及
    外部空气温度传感器,检测外部空气温度并将检测数据发送到所述控制部;
    所述压缩机的转速是可变的;
    在进行所述热气除霜处理时,所述控制部使所述压缩机以与所述外部空气温度传感器检测到的外部空气温度对应的转速来运转,当该外部空气温度具有T1<T2的关系时,T1下的所述压缩机的转速高于T2下的所述压缩机的转速。
  2. 根据权利要求1所述的冰箱,其特征在于,所述控制部进行随着从所述热气除霜处理的开始经过时间而提高所述压缩机的转速的控制。
  3. 根据权利要求1所述的冰箱,其特征在于,所述冰箱还包括冷凝风扇,所述冷凝风扇冷却所述压缩机和所述冷凝器,在进行所述热气除霜处理之前,所述控制部进行停止对所述冷凝风扇的控制。
  4. 根据权利要求1所述的冰箱,其特征在于,在所述冷却回路中,在所述冷凝器和所述蒸发器之间配置有毛细管,在所述冷凝器和所述毛细管之间配置有开闭阀;在进行所述热气除霜处理时,所述控制部进行关闭所述开闭阀的控制,以使得从所述冷凝器流出的制冷剂不会流入到所述毛细管。
  5. 根据权利要求4所述的冰箱,其特征在于,所述压缩机、所述冷凝器、所述毛细管及所述蒸发器依次连接形成第一制冷剂回路,所述压缩机、所述热气旁通管及所述蒸发器依次连接形成第二制冷剂回路,所述切换阀为三通阀,当所述控制部控制所述切换阀打开所述冷凝器的一侧时,制冷剂在第一制冷剂流路中流动,当所述控制部控制所述切换阀打开所述热气旁通管的一侧时,制冷剂在第二制冷剂流路中流动。
  6. 根据权利要求4所述的冰箱,其特征在于,所述压缩机、所述冷凝器、所述毛细管及所述蒸发器依次连接形成第一制冷剂回路,所述压缩机、所述冷凝器、所述热气旁通管及所述蒸发器依次连接形成第二制冷剂回路,所述切换阀为三通阀,当所述控制部控制所述切换阀打开所述冷凝器的一侧时,制冷剂在第一制冷剂流路中流动,当所述控制部控制所述切换阀打开所述热气旁通管的一侧时,制冷剂在第二制冷剂流路中流动。
  7. 根据权利要求4所述的冰箱,其特征在于,所述冰箱还包括吸入管,所述吸入管连接所述压缩机及所述蒸发器,且至少部分所述吸入管邻近所述毛细管配置。
  8. 根据权利要求1所述的冰箱,其特征在于,所述冰箱还包括除霜传感器,所述除霜传感器检测所述蒸发器的温度并将检测数据发送到所述控制部;在进行所述热气除霜处理时,所述控制部进行如下的控制:基于所述除霜传感器检测到的所述蒸发器的温度来变更所述压缩机的转速,当该蒸发器的温度超过了预定值时,结束所述热气除霜处理。
  9. 根据权利要求1所述的冰箱,其特征在于,所述冰箱还包括接霜皿及加热器,所述接霜皿用于收容蒸发器落下的霜,所述加热器用于溶解所述接霜皿内的霜。
  10. 根据权利要求9所述的冰箱,其特征在于,所述控制部用于控制所述加热器的运转。
PCT/CN2022/138582 2021-12-13 2022-12-13 冰箱 WO2023109798A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021201665A JP2023087342A (ja) 2021-12-13 2021-12-13 冷蔵庫
JP2021-201665 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023109798A1 true WO2023109798A1 (zh) 2023-06-22

Family

ID=86774807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138582 WO2023109798A1 (zh) 2021-12-13 2022-12-13 冰箱

Country Status (2)

Country Link
JP (1) JP2023087342A (zh)
WO (1) WO2023109798A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241623A (ja) * 1993-02-22 1994-09-02 Mitsubishi Electric Corp 冷却装置
JPH109726A (ja) * 1996-06-21 1998-01-16 Mitsubishi Heavy Ind Ltd 冷凍装置の除霜方法及び除霜装置
JP2005249254A (ja) * 2004-03-03 2005-09-15 Hitachi Home & Life Solutions Inc 冷凍冷蔵庫
JP2008070013A (ja) * 2006-09-13 2008-03-27 Mitsubishi Electric Corp ヒートポンプ装置及びヒートポンプ給湯機
US20080092569A1 (en) * 2006-10-20 2008-04-24 Doberstein Andrew J Cooling unit with multi-parameter defrost control
JP2010133590A (ja) * 2008-12-03 2010-06-17 Mitsubishi Electric Corp 冷凍冷蔵庫
CN102317724A (zh) * 2009-02-11 2012-01-11 Lg电子株式会社 冰箱的控制方法
WO2021129654A1 (zh) * 2019-12-26 2021-07-01 青岛海尔电冰箱有限公司 冰箱

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241623A (ja) * 1993-02-22 1994-09-02 Mitsubishi Electric Corp 冷却装置
JPH109726A (ja) * 1996-06-21 1998-01-16 Mitsubishi Heavy Ind Ltd 冷凍装置の除霜方法及び除霜装置
JP2005249254A (ja) * 2004-03-03 2005-09-15 Hitachi Home & Life Solutions Inc 冷凍冷蔵庫
JP2008070013A (ja) * 2006-09-13 2008-03-27 Mitsubishi Electric Corp ヒートポンプ装置及びヒートポンプ給湯機
US20080092569A1 (en) * 2006-10-20 2008-04-24 Doberstein Andrew J Cooling unit with multi-parameter defrost control
JP2010133590A (ja) * 2008-12-03 2010-06-17 Mitsubishi Electric Corp 冷凍冷蔵庫
CN102317724A (zh) * 2009-02-11 2012-01-11 Lg电子株式会社 冰箱的控制方法
WO2021129654A1 (zh) * 2019-12-26 2021-07-01 青岛海尔电冰箱有限公司 冰箱

Also Published As

Publication number Publication date
JP2023087342A (ja) 2023-06-23

Similar Documents

Publication Publication Date Title
JP6687384B2 (ja) 冷蔵庫
WO2017179500A1 (ja) 冷蔵庫および冷却システム
JP5641875B2 (ja) 冷凍装置
JP2005249254A (ja) 冷凍冷蔵庫
KR20110072441A (ko) 냉장고 및 그 운전 제어 방법
JP5110192B1 (ja) 冷凍装置
CN102313424A (zh) 电冰箱
JP4253957B2 (ja) 冷蔵庫
JP6872689B2 (ja) 冷蔵庫
JP4178646B2 (ja) 冷蔵庫
JP2008267700A (ja) 冷却加熱装置
JP3576040B2 (ja) 冷却システムおよび冷蔵庫
WO2023109798A1 (zh) 冰箱
JP2006017338A (ja) 冷蔵庫
KR101723284B1 (ko) 냉장고 및 그 제어방법
JP4702101B2 (ja) 冷却装置および自動販売機
JP4984770B2 (ja) 冷蔵庫
JP4103384B2 (ja) 冷蔵庫
JP6846599B2 (ja) 冷蔵庫
JP2005257164A (ja) 冷却装置
WO2018147113A1 (ja) 冷蔵庫
WO2023284589A1 (zh) 冰箱
JP2016050753A (ja) 冷凍サイクル装置及び冷蔵庫
JP2020091045A (ja) 冷蔵庫
JP2005337677A (ja) 冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906543

Country of ref document: EP

Kind code of ref document: A1