WO2023109576A1 - 一种铜导电油墨、柔性基底及柔性基底的制备方法 - Google Patents

一种铜导电油墨、柔性基底及柔性基底的制备方法 Download PDF

Info

Publication number
WO2023109576A1
WO2023109576A1 PCT/CN2022/136880 CN2022136880W WO2023109576A1 WO 2023109576 A1 WO2023109576 A1 WO 2023109576A1 CN 2022136880 W CN2022136880 W CN 2022136880W WO 2023109576 A1 WO2023109576 A1 WO 2023109576A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
conductive ink
flexible substrate
copper conductive
metal
Prior art date
Application number
PCT/CN2022/136880
Other languages
English (en)
French (fr)
Inventor
朱朋莉
王春成
孙蓉
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2023109576A1 publication Critical patent/WO2023109576A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder

Definitions

  • the present application relates to the technical field of functional materials, in particular to a copper conductive ink, a flexible substrate and a method for preparing the flexible substrate.
  • Conductive ink is a new type of functional composite material. A large number of conductive particles in the ink system are evenly dispersed to form a slurry (including solvent) in an insulating state. After the conductive ink is sintered and solidified, it realizes the conductive function under the action of an external electric field.
  • Conductive ink is mainly composed of linking material, conductive filler and various additives. The classification of conductive ink is diverse according to different standards. Based on the properties of conductive fillers, conductive inks can be divided into two categories: inorganic and organic. Inorganic conductive ink has the advantages of high reliability, high storage performance, and good stability. It has been widely used in electronic products such as integrated circuits, RFID, circuit boards, and membrane switches. It has become a research and development hotspot in recent years. Among them, the Cu-based conductive ink in the inorganic-based conductive ink has the advantages of low price and good conductivity.
  • Metal copper has a very high melting point of 1083.4°C. Once the nano-copper is sintered, the high melting point will give it very high stability. Due to the small size effect, it can achieve sintering diffusion at a relatively low temperature, thereby achieving high conductivity at low temperature.
  • problems to be solved in the process of applying nano-copper to conductive ink For example, when its size is less than a certain value, its surface energy becomes very high, and high surface energy will cause the copper atoms on its surface to be very active and oxidized during the sintering process. A dense oxide layer hinders the diffusion of atoms, which in turn hinders sintering. After oxidation, the sintered conductive pattern exhibits poor conductivity and adhesion to the substrate.
  • the application provides a copper conductive ink, comprising: copper nanoparticles and metal organic source compounds.
  • the copper nanoparticles are spherical particles with a thickness of 50nm-300nm.
  • the metal-organic source compound is derived from a complex reaction in which the mass ratio of the precursor to the amine ligand is 1:1-4.
  • the precursor is selected from any one of copper formate, copper acetate, copper lactate, copper hydroxide, and copper nitrate.
  • the amine ligands are derived from diisobutylamine, di-n-hexylamine cyclobutylamine, N-ethylpropylamine, (R)-(-)-1-amino-2-propanol, 2 -Any one of amino-2-methyl-1-propanol, (S)-(+)-1-amino-2-propanol, ethylenediamine, and propylenediamine.
  • a reducing agent is also included, and the reducing agent is selected from any one of ascorbic acid, hydrazine hydrate, citrate, polyvinylpyrrolidone, sodium sulfite and sodium borohydride.
  • an organic solvent carrier is also included, and the organic solvent carrier is selected from the group consisting of ethylene glycol, glycerin, diethylene glycol, triethylene glycol, ⁇ -terpineol, ⁇ -terpineol and ⁇ -terpineol A mixture of any two or more of them.
  • the mass ratio of the copper nanoparticles, the metal organic source compound, the reducing agent and the organic solvent carrier is 2-10:0.1-2:0.1-3:1-5 .
  • the present application also provides a flexible substrate, the surface of the flexible substrate includes the copper conductive ink.
  • the present application also provides a preparation method of the flexible substrate, in which the copper conductive ink is sintered to the Flexible substrate surface.
  • the copper conductive ink provided by this application includes: copper nanoparticles and metal-organic source compounds.
  • This application utilizes the low-temperature decomposition performance of metal-organic sources to decompose nano-copper particles at low temperatures, and the newly produced nano-copper particles are directly deposited on the original nano-copper particles. between the copper particles, so as to play the role of bridges to increase the connection between each other, thereby increasing the conductivity after curing; in addition, the copper conductive ink provided by the application also includes a reducing agent. Activation also prevents oxidation of the copper nanoparticles.
  • the present application also provides a flexible substrate, the flexible substrate includes copper conductive ink, the present application utilizes the low-temperature decomposition performance of metal-organic sources, and can decompose nano-copper particles at low temperatures, and these newly produced nano-copper particles will also directly Deposits on the substrate, thereby increasing the adhesion to the substrate.
  • FIG. 1 is a schematic diagram of the principle of preparing a flexible substrate provided in Example 1 of the present application.
  • FIG. 2 is an SEM image of the copper conductive film prepared in Example 1.
  • FIG. 3 is an SEM image of the copper conductive film prepared in Example 2.
  • FIG. 4 is an SEM image of the copper conductive film prepared in Example 3.
  • FIG. 5 is an SEM image of the copper conductive film prepared in Example 4.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means two or more, unless otherwise specifically defined.
  • the application provides a copper conductive ink, comprising: copper nanoparticles and metal organic source compounds.
  • the copper nanoparticles are spherical particles with a thickness of 50nm-300nm.
  • the metal-organic source compound is derived from a complex reaction in which the mass ratio of the precursor to the amine ligand is 1:1-4.
  • the precursor is selected from any one of copper formate, copper acetate, copper lactate, copper hydroxide, and copper nitrate. More preferred are copper formate and copper hydroxide.
  • the amine ligands are derived from diisobutylamine, di-n-hexylamine cyclobutylamine, N-ethylpropylamine, (R)-(-)-1-amino-2-propanol, 2 -Any one of amino-2-methyl-1-propanol, (S)-(+)-1-amino-2-propanol, ethylenediamine, and propylenediamine. More preferred are selected from ethylenediamine, diisobutylamine, 2-amino-2-methyl-1-propanol.
  • a reducing agent is also included, and the reducing agent is selected from any one of ascorbic acid, hydrazine hydrate, citrate, polyvinylpyrrolidone, sodium sulfite and sodium borohydride.
  • an organic solvent carrier is also included, and the organic solvent carrier is selected from the group consisting of ethylene glycol, glycerin, diethylene glycol, triethylene glycol, ⁇ -terpineol, ⁇ -terpineol and ⁇ -terpineol A mixture of any two or more of them.
  • the mass ratio of the copper nanoparticles, the metal organic source compound, the reducing agent and the organic solvent carrier is 2-10:0.1-2:0.1-3:1-5 .
  • the copper conductive ink provided by this application includes: copper nanoparticles and metal-organic source compounds.
  • This application utilizes the low-temperature decomposition performance of metal-organic sources to decompose nano-copper particles at low temperatures, and the newly produced nano-copper particles are directly deposited on the original nano-copper particles. Between the copper particles, it acts as a bridge to increase the connection between each other, thereby increasing the conductivity after curing.
  • the present application also provides a flexible substrate, which includes the above-mentioned copper conductive ink.
  • the present application also provides a preparation method of the flexible substrate, in which the copper conductive ink is sintered to the flexible substrate at a temperature of 150°C to 300°C under the condition of air, nitrogen, hydrogen or vacuum surface.
  • This application uses the low-temperature decomposition performance of metal-organic sources to decompose nano-copper particles at low temperature, and these newly produced nano-copper particles will also be directly deposited on the substrate, thereby increasing the adhesion between the substrate and the substrate.
  • FIG. 1 is a schematic diagram of the principle of preparing a flexible substrate provided in Example 1 of the present application.
  • the precursor copper formate and the amine ligand diisobutylamine are subjected to a complexation reaction according to a mass ratio of 1:1 to obtain a metal-organic source compound; the nanoparticles are 50nm copper nanoparticles, metal-organic source compounds, ascorbic acid and ethylene glycol and
  • the organic solvent carrier composed of glycerin is mixed according to the mass ratio of 2:0.1:0.1:1 to obtain copper conductive ink; under the condition of air, the copper conductive ink is sintered to the surface of the flexible substrate at a temperature of 150 ° C to obtain flexible substrate. Its resistivity is 6.32*10 -5 ⁇ m measured by four probes.
  • the SEM image of the conductive film is shown in FIG. 2 .
  • the precursor copper acetate and the amine ligand di-n-hexylaminecyclobutylamine are complexed according to the mass ratio of 1:2 to obtain metal organic source compounds; the nanoparticles are 100nm copper nanoparticles, metal organic source compounds, hydrazine hydrate
  • the organic solvent carrier composed of diethylene glycol and triethylene glycol is mixed according to the mass ratio of 3:0.5:1:2 to obtain a copper conductive ink; under the condition of air, the copper conductive ink is sintered at a temperature of 200 ° C to the surface of the flexible substrate to obtain a flexible substrate.
  • the resistivity obtained by four-probe measurement is 6.48*10 -6 ⁇ m.
  • the SEM image of the conductive film is shown in FIG. 3 .
  • the precursor copper lactate and the amine ligand N-ethylpropylamine are complexed according to the mass ratio of 1:3 to obtain metal organic source compounds; the nanoparticles are 200nm copper nanoparticles, metal organic source compounds, citrate and Diethylene glycol is mixed according to a mass ratio of 5:1.5:2:3 to obtain a copper conductive ink; under the condition of air, the copper conductive ink is sintered to the surface of the flexible substrate at a temperature of 250° C. to obtain a flexible substrate.
  • the resistivity was obtained by four-probe measurement to be 1.51*10 -6 ⁇ m.
  • the SEM image of the conductive film is shown in FIG. 4 .
  • the precursor copper hydroxide and copper nitrate and the amine ligand (R)-(-)-1-amino-2-propanol and 2-amino-2-methyl-1-propanol are in a mass ratio of 1:2 Carry out complexation reaction to obtain metal-organic source compound;
  • the resistivity obtained by four-probe measurement is 6.32*10 -7 ⁇ m.
  • the SEM image of the conductive film is shown in FIG. 5 .
  • the above-mentioned embodiments of the present application utilize the low-temperature decomposition performance of metal-organic sources to decompose nano-copper particles at low temperatures, and the newly produced nano-copper particles are directly deposited between the original nano-copper particles, thus acting as a bridge to increase the distance between each other. The connection between them, and then increase the conductivity after curing; this application uses the low-temperature decomposition performance of metal-organic sources to decompose nano-copper particles at low temperatures, and these newly produced nano-copper particles will also be directly deposited on the substrate, thereby increasing Adhesion to the substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本申请提供的铜导电油墨,包括:铜纳米颗粒及金属有机源化合物,本申请利用金属有机源的低温分解性能,在低温下可分解出纳米铜颗粒,新产生的纳米铜颗粒直接沉积在原纳米铜颗粒之间,从而起到桥梁的作用,以增加彼此之间的联系,进而增加固化后的导电性;此外,本申请还提供了柔性基底及柔性基底的制备方法。

Description

一种铜导电油墨、柔性基底及柔性基底的制备方法 技术领域
本申请涉及功能材料技术领域,特别涉及一种铜导电油墨、柔性基底及柔性基底的制备方法。
背景技术
导电油墨是一种新型的功能复合材料,油墨体系中大量的导电粒子均匀分散,形成了一种处于绝缘状态的浆状物(包含溶剂)。导电油墨在烧结固化后,在外电场作用下实现导电功能。导电油墨主要由连结料、导电填料和各种助剂组成。导电油墨的分类按不同的标准,具有多样性。以导电填料的性质为标准,可以将导电油墨分为无机系和有机系两大类。无机系导电油墨具有可靠性高、储存性能高、稳定性好等优点,已被广泛应用于集成电路、RFID、线路板、薄膜开关等电子产品,是最近几年研发的热点。其中无机系导电油墨中的Cu系导电油墨具有价格低廉,导电性好等优点。
金属铜具有很高的熔点1083.4℃,纳米铜一旦烧结完成高熔点会赋予其非常高的稳定性。而由于小尺寸效应,其在相当低的温度下就能实现烧结扩散,从而实现在低温下的高导电性。但是在纳米铜应用到导电油墨的过程中仍会有大量有待解决的问题。比如在其尺寸少于一定的值的时候其表面能变的非常的高,高表面能会导致其表面的铜原子非常活泼进而在烧结过程中发生氧化的现象。致密的氧化层会阻碍原子的扩散,进而阻碍烧结的进行。发生氧化后,烧结得到的导电图案会表现出较差的导电性和与基底之间的粘附力。
降低纳米铜颗粒的尺寸是现在主流的增加其烧结性能的方法,但是在铜颗粒的尺寸降低到一定程度的时候,其高表面能会使得处于表面的铜原子被氧化。氧化生成的铜氧化物会阻碍烧结过程中原子之间的扩散。因此纳米铜在烧结过程中发生氧化是一个急需解决的问题。
技术问题
鉴于此,有必要针对现有技术中纳米铜焊膏在烧结过程中粘附力弱的问题的缺陷,提供一种粘附力强的铜导电油墨。
技术解决方案
为解决上述问题,本申请采用下述技术方案:
本申请提供了一种铜导电油墨,包括:铜纳米颗粒及金属有机源化合物。
在其中一些实施例中,所述铜纳米颗粒为50nm~300nm的球状颗粒。
在其中一些实施例中,所述金属有机源化合物来源于前驱体与胺配体质量比为1:1-4的络合反应。
在其中一些实施例中,所述前驱体选自甲酸铜、醋酸铜、乳酸铜、氢氧化铜、硝酸铜中的任意一种。
在其中一些实施例中,所述胺配体来自二异丁胺、二正己胺环丁基胺、N-乙基丙胺、(R)-(-)-1-氨基-2-丙醇、2-氨基-2-甲基-1-丙醇、(S)-(+)-1-氨基-2-丙醇、乙二胺、丙二胺中的任意一种。
在其中一些实施例中,还包括还原剂,所述还原剂选自抗坏血酸、水合肼、柠檬酸盐、聚乙烯吡咯烷酮、亚硫酸钠和硼氢化钠中的任意一种。
在其中一些实施例中,还包括有机溶剂载体,所述有机溶剂载体选自乙二醇、甘油、二甘醇、三甘醇、β-萜品醇、γ-萜品醇和δ-萜品醇中的任意两种及以上的混合物。
在其中一些实施例中,所述纳米铜颗粒、所述金属有机源化合物、所述还原剂和所述有机溶剂载体的质量之比为2-10:0.1-2:0.1-3:1-5。
另外,本申请还提供了一种柔性基底,所述柔性基底表面包括所述的铜导电油墨。
此外,本申请还提供了一种所述的柔性基底的制备方法,在空气或氮气或氢气或者真空的条件下,将所述铜导电油墨在150℃~300℃的温度条件下烧结至所述柔性基底表面。
有益效果
采用上述技术方案,本申请实现的技术效果如下:
本申请提供的铜导电油墨,包括:铜纳米颗粒及金属有机源化合物,本申请利用金属有机源的低温分解性能,在低温下可分解出纳米铜颗粒,新产生的纳米铜颗粒直接沉积在原纳米铜颗粒之间,从而起到桥梁的作用,以增加彼此之间的联系,进而增加固化后的导电性;此外,本申请提供的铜导电油墨,还包括还原剂,上述还原剂在高温下被激活还能防止铜纳米粒子的氧化。
本申请还提供了一种柔性基底,所述柔性基底包括铜导电油墨,本申请利用金属有机源的低温分解性能,在低温下可分解出纳米铜颗粒,这些新产生的纳米铜颗粒也会直接沉积在基底上,进而增加与基底之间的粘附力。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例1提供的制备柔性基底的原理示意图。
图2 为实施例1制备得到的铜导电膜的SEM图。
图3 为实施例2制备得到的铜导电膜的SEM图。
图4 为实施例3制备得到的铜导电膜的SEM图。
图5 为实施例4制备得到的铜导电膜的SEM图。
本发明的实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“上”、“下”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。
本申请提供了一种铜导电油墨,包括:铜纳米颗粒及金属有机源化合物。
在其中一些实施例中,所述铜纳米颗粒为50nm~300nm的球状颗粒。
在其中一些实施例中,所述金属有机源化合物来源于前驱体与胺配体质量比为1:1-4的络合反应。
在其中一些实施例中,所述前驱体选自甲酸铜、醋酸铜、乳酸铜、氢氧化铜、硝酸铜中的任意一种。更优选的是甲酸铜和氢氧化铜。
在其中一些实施例中,所述胺配体来自二异丁胺、二正己胺环丁基胺、N-乙基丙胺、(R)-(-)-1-氨基-2-丙醇、2-氨基-2-甲基-1-丙醇、(S)-(+)-1-氨基-2-丙醇、乙二胺、丙二胺中的任意一种。更优选的选自乙二胺,二异丁胺,2-氨基-2-甲基-1-丙醇。
在其中一些实施例中,还包括还原剂,所述还原剂选自抗坏血酸、水合肼、柠檬酸盐、聚乙烯吡咯烷酮、亚硫酸钠和硼氢化钠中的任意一种。
可以理解,上述还原剂在高温下被激活还能防止铜纳米粒子的氧化。
在其中一些实施例中,还包括有机溶剂载体,所述有机溶剂载体选自乙二醇、甘油、二甘醇、三甘醇、β-萜品醇、γ-萜品醇和δ-萜品醇中的任意两种及以上的混合物。
在其中一些实施例中,所述纳米铜颗粒、所述金属有机源化合物、所述还原剂和所述有机溶剂载体的质量之比为2-10:0.1-2:0.1-3:1-5。
本申请提供的铜导电油墨,包括:铜纳米颗粒及金属有机源化合物,本申请利用金属有机源的低温分解性能,在低温下可分解出纳米铜颗粒,新产生的纳米铜颗粒直接沉积在原纳米铜颗粒之间,从而起到桥梁的作用,以增加彼此之间的联系,进而增加固化后的导电性。
本申请还提供了一种柔性基底,所述柔性基底包括上述的铜导电油墨。
本申请还提供了一种所述的柔性基底的制备方法,在空气或氮气或氢气或者真空的条件下,将所述铜导电油墨在150℃~300℃的温度条件下烧结至所述柔性基底表面。
本申请利用金属有机源的低温分解性能,在低温下可分解出纳米铜颗粒,这些新产生的纳米铜颗粒也会直接沉积在基底上,进而增加与基底之间的粘附力。
以下结合具体实施例对本申请上述技术方案进行详细描述。
实施例1
请参阅图1,为本申请实施例1提供的制备柔性基底的原理示意图。
将前驱体甲酸铜与胺配体二异丁胺按照质量比为1:1进行络合反应得到金属有机源化合物;将纳米颗粒为50nm的铜纳米颗粒、金属有机源化合物、抗坏血酸及乙二醇和甘油组成的有机溶剂载体按照质量比为2:0.1:0.1:1混合,得到铜导电油墨;在空气的条件下,将所述铜导电油墨在150℃的温度条件下烧结至柔性基底表面,得到柔性基底。通过四探针测量得到其电阻率为6.32*10 -5 Ω·m.导电薄膜的SEM图如图2所示。
实施例2
将前驱体醋酸铜与胺配体二正己胺环丁基胺按照质量比为1:2进行络合反应得到金属有机源化合物;将纳米颗粒为100nm的铜纳米颗粒、金属有机源化合物、水合肼及二甘醇和三甘醇组成的有机溶剂载体按照质量比为3:0.5:1:2混合,得到铜导电油墨;在空气的条件下,将所述铜导电油墨在200℃的温度条件下烧结至柔性基底表面,得到柔性基底。通过四探针测量得到其电阻率为6.48*10 -6 Ω·m.导电薄膜的SEM图如图3所示。
实施例3
将前驱体乳酸铜与胺配体N-乙基丙胺按照质量比为1:3进行络合反应得到金属有机源化合物;将纳米颗粒为200nm的铜纳米颗粒、金属有机源化合物、柠檬酸盐及二甘醇按照质量比为5:1.5:2:3混合,得到铜导电油墨;在空气的条件下,将所述铜导电油墨在250℃的温度条件下烧结至柔性基底表面,得到柔性基底。通过四探针测量得到其电阻率为1.51*10 -6 Ω·m.导电薄膜的SEM图如图4所示。
实施例4
将前驱体氢氧化铜及硝酸铜与胺配体(R)-(-)-1-氨基-2-丙醇及2-氨基-2-甲基-1-丙醇按照质量比为1:2进行络合反应得到金属有机源化合物;将纳米颗粒为300nm的铜纳米颗粒、金属有机源化合物、聚乙烯吡咯烷酮及三甘醇和β-萜品醇组成的有机溶剂载体按照质量比为3:1.5:2:5混合,得到铜导电油墨;在空气的条件下,将所述铜导电油墨在300℃的温度条件下烧结至柔性基底表面,得到柔性基底。通过四探针测量得到其电阻率为6.32*10 -7 Ω·m.导电薄膜的SEM图如图5所示。
本申请上述实施例利用金属有机源的低温分解性能,在低温下可分解出纳米铜颗粒,新产生的纳米铜颗粒直接沉积在原纳米铜颗粒之间,从而起到桥梁的作用,以增加彼此之间的联系,进而增加固化后的导电性;本申请利用金属有机源的低温分解性能,在低温下可分解出纳米铜颗粒,这些新产生的纳米铜颗粒也会直接沉积在基底上,进而增加与基底之间的粘附力。
以上仅为本申请的较佳实施例而已,仅具体描述了本申请的技术原理,这些描述只是为了解释本申请的原理,不能以任何方式解释为对本申请保护范围的限制。基于此处解释,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进,及本领域的技术人员不需要付出创造性的劳动即可联想到本申请的其他具体实施方式,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种铜导电油墨,其特征在于,包括:铜纳米颗粒及金属有机源化合物。
  2. 如权利要求1所述的铜导电油墨,其特征在于,所述铜纳米颗粒为50nm~300nm的球状颗粒。
  3. 如权利要求1所述的铜导电油墨,其特征在于,所述金属有机源化合物来源于前驱体与胺配体质量比为1:1-4的络合反应。
  4. 如权利要求3所述的铜导电油墨,其特征在于,所述前驱体选自甲酸铜、醋酸铜、乳酸铜、氢氧化铜、硝酸铜中的任意一种。
  5. 如权利要求4所述的铜导电油墨,其特征在于,所述胺配体来自二异丁胺、二正己胺环丁基胺、N-乙基丙胺、(R)-(-)-1-氨基-2-丙醇、2-氨基-2-甲基-1-丙醇、(S)-(+)-1-氨基-2-丙醇、乙二胺、丙二胺中的任意一种。
  6. 如权利要求1所述的铜导电油墨,其特征在于,还包括还原剂,所述还原剂选自抗坏血酸、水合肼、柠檬酸盐、聚乙烯吡咯烷酮、亚硫酸钠和硼氢化钠中的任意一种。
  7. 如权利要求6所述的铜导电油墨,其特征在于,还包括有机溶剂载体,所述有机溶剂载体选自乙二醇、甘油、二甘醇、三甘醇、β-萜品醇、γ-萜品醇和δ-萜品醇中的任意两种及以上的混合物。
  8. 如权利要求7所述的铜导电油墨,其特征在于,所述纳米铜颗粒、所述金属有机源化合物、所述还原剂和所述有机溶剂载体的质量之比为2-10:0.1-2:0.1-3:1-5。
  9. 一种柔性基底,其特征在于,所述柔性基底的表面包括权利要求1至8任一项所述的铜导电油墨。
  10. 一种如权利要求9所述的柔性基底的制备方法,其特征在于,在空气或氮气或氢气或者真空的条件下,将所述铜导电油墨在150℃~300℃的温度条件下烧结至所述柔性基底表面。
PCT/CN2022/136880 2021-12-15 2022-12-06 一种铜导电油墨、柔性基底及柔性基底的制备方法 WO2023109576A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111532783.4A CN114231092A (zh) 2021-12-15 2021-12-15 一种铜导电油墨、柔性基底及柔性基底的制备方法
CN202111532783.4 2021-12-15

Publications (1)

Publication Number Publication Date
WO2023109576A1 true WO2023109576A1 (zh) 2023-06-22

Family

ID=80756144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136880 WO2023109576A1 (zh) 2021-12-15 2022-12-06 一种铜导电油墨、柔性基底及柔性基底的制备方法

Country Status (2)

Country Link
CN (1) CN114231092A (zh)
WO (1) WO2023109576A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114231092A (zh) * 2021-12-15 2022-03-25 深圳先进技术研究院 一种铜导电油墨、柔性基底及柔性基底的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087582A (zh) * 2013-01-25 2013-05-08 天津理工大学 一种低温烧结纳米铜导电油墨的制备方法
KR20140111070A (ko) * 2013-03-05 2014-09-18 (주) 파루 구리 착화합물을 이용한 전도성 구리 나노잉크 및 그 제조방법
CN106147405A (zh) * 2016-07-06 2016-11-23 复旦大学 铜导电油墨及铜导电油墨、铜导电薄膜的制备方法
CN109111791A (zh) * 2017-06-22 2019-01-01 复旦大学 铜导电油墨、铜导电薄膜的制备方法及铜导电油墨、铜导电薄膜
CN109790409A (zh) * 2016-07-28 2019-05-21 加拿大国家研究委员会 铜油墨和由其制成的导电可焊接铜迹线
JP2020164649A (ja) * 2019-03-29 2020-10-08 学校法人 関西大学 導電性インキ組成物及び導電性積層体
CN112111197A (zh) * 2020-10-30 2020-12-22 南昌航空大学 一种包含铜颗粒和有机铜盐复合导电墨水的制备方法
CN114231092A (zh) * 2021-12-15 2022-03-25 深圳先进技术研究院 一种铜导电油墨、柔性基底及柔性基底的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104341860B (zh) * 2013-08-01 2019-04-09 索尼公司 纳米导电墨水及其制备方法
CN113327721B (zh) * 2021-08-04 2021-11-30 宁波维柔电子科技有限公司 一种低温固化导电铜浆的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087582A (zh) * 2013-01-25 2013-05-08 天津理工大学 一种低温烧结纳米铜导电油墨的制备方法
KR20140111070A (ko) * 2013-03-05 2014-09-18 (주) 파루 구리 착화합물을 이용한 전도성 구리 나노잉크 및 그 제조방법
CN106147405A (zh) * 2016-07-06 2016-11-23 复旦大学 铜导电油墨及铜导电油墨、铜导电薄膜的制备方法
CN109790409A (zh) * 2016-07-28 2019-05-21 加拿大国家研究委员会 铜油墨和由其制成的导电可焊接铜迹线
CN109111791A (zh) * 2017-06-22 2019-01-01 复旦大学 铜导电油墨、铜导电薄膜的制备方法及铜导电油墨、铜导电薄膜
JP2020164649A (ja) * 2019-03-29 2020-10-08 学校法人 関西大学 導電性インキ組成物及び導電性積層体
CN112111197A (zh) * 2020-10-30 2020-12-22 南昌航空大学 一种包含铜颗粒和有机铜盐复合导电墨水的制备方法
CN114231092A (zh) * 2021-12-15 2022-03-25 深圳先进技术研究院 一种铜导电油墨、柔性基底及柔性基底的制备方法

Also Published As

Publication number Publication date
CN114231092A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
US8070986B2 (en) Silver paste for forming conductive layers
CN108098191B (zh) 一种铜纳米颗粒焊膏的制备方法及其产品
JP3764349B2 (ja) 金属微粒子分散液を用いたメッキ代替導電性金属皮膜の形成方法
KR102007306B1 (ko) 소결형 도전성 페이스트용 은분
JP4089311B2 (ja) 導電性ペースト、導電性膜、及び導電性膜の製造方法
CN101805574A (zh) 采用表面活化处理的银填料的烧结型导电胶及其制备方法
JP6165063B2 (ja) 導電性粒子およびその製造方法
JP6211245B2 (ja) 導電性材料およびその製造方法
KR20090117827A (ko) 금속성 나노입자 조성물에 기초한 차폐 및 그의 장치 및 방법
CN110814575B (zh) 焊膏和焊膏的制备方法
CN109332939B (zh) 一种单相纳米银铜合金固溶体焊膏及其制备方法
WO2023109576A1 (zh) 一种铜导电油墨、柔性基底及柔性基底的制备方法
JP7424686B2 (ja) 高精密ライトスルー3d印刷に適したナノ粒子銅ペースト、製造及び用途
TWI383950B (zh) 奈米點狀材料的形成方法
WO2023109597A1 (zh) 纳米铜焊膏及其在芯片封装互连结构中的应用
JP2019036628A (ja) キャパシタ及びその製造方法
JP2016094665A (ja) 銀コート銅粉及びそれを用いた導電性ペースト、導電性塗料、導電性シート
Shi et al. Fabrication of PS-DVB@ Cu core-shell microsphere for anisotropic conductive adhesives by electroless plating with copper nanoparticles as seeds
JP2008235035A (ja) 金属ナノ粒子ペースト及び当該金属ナノ粒子ペーストの製造方法
CN114473103A (zh) 一种液态金属锡辅助纳米银烧结工艺
CN113234360A (zh) 一种纳米银导电油墨的制备方法
KR101388604B1 (ko) 금속입자, 이를 이용하는 도전입자 및 그 제조방법
JP7143685B2 (ja) 導電性積層体の製造方法、導電性積層体及び2剤型導電膜形成剤
TW200952570A (en) Advanced print circuit board and the method of the same
JP2008021513A (ja) 導電性磁性粉体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE