WO2023109193A1 - 一种高镍钠离子正极材料及其制备方法和电池 - Google Patents

一种高镍钠离子正极材料及其制备方法和电池 Download PDF

Info

Publication number
WO2023109193A1
WO2023109193A1 PCT/CN2022/116255 CN2022116255W WO2023109193A1 WO 2023109193 A1 WO2023109193 A1 WO 2023109193A1 CN 2022116255 W CN2022116255 W CN 2022116255W WO 2023109193 A1 WO2023109193 A1 WO 2023109193A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
sodium
positive electrode
electrode material
ion
Prior art date
Application number
PCT/CN2022/116255
Other languages
English (en)
French (fr)
Inventor
钟应声
余海军
谢英豪
李爱霞
李斌
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
宜昌邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 宜昌邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Priority to GB2309773.6A priority Critical patent/GB2617013A/en
Priority to DE112022000798.2T priority patent/DE112022000798T5/de
Publication of WO2023109193A1 publication Critical patent/WO2023109193A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of positive electrode materials for batteries, and in particular relates to a high-nickel sodium ion positive electrode material, a preparation method thereof and a battery.
  • Lithium and sodium plasma batteries are popular in the current battery market for electric vehicles and energy storage due to their high energy density, excellent power characteristics and stability.
  • cathode materials with fast ion diffusivity, anode materials with less structural changes and lower voltage are several aspects that are crucial to achieve high-power, high-performance battery performance.
  • sodium has the basic advantage of being cheaper, its high specific capacity and reversible cycle life are still inferior to lithium-ion batteries due to the chemical composition of sodium-ion batteries and the crystal structure of cathode materials that are different from lithium-ion batteries.
  • One of the most promising approaches to address the above problems is to develop high-nickel sodium-ion batteries.
  • high-nickel sodium-ion batteries have obvious disadvantages.
  • the mixing effect of cations such as high-nickel and low-manganese-cobalt reduces the diffusion rate of sodium ions, resulting in poor performance during discharge;
  • the high-nickel sodium ion cathode material in the battery reacts quickly to the external environment in contact with it, and is easy to react with H 2 O and CO 2 in the environment to form Na 2 CO 3 and NaOH, and dehydrate NaOH to form Na 2 O.
  • Na 2 CO 3 , NaOH, and Na 2 O will form a passivation layer on the surface of the positive electrode, further hindering the diffusion of sodium ions at the interface between the material and the electrolyte, increasing the impedance between the interface between the material and the electrolyte, and easily causing the electrochemical degradation of the battery. Performance drops. Therefore, this greatly limits the potential applications of Na-ion cathode materials.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. Therefore, the present invention proposes a high-nickel-sodium-ion anode material, a preparation method thereof, and a battery.
  • the high-nickel-sodium-ion anode material has good electrochemical properties, which is beneficial to the application of the high-nickel-sodium-ion anode material in batteries.
  • the MVO x is at least one of vanadate, metavanadate and pyrovanadate.
  • the MVO x is sodium vanadate, sodium metavanadate, sodium pyrovanadate, copper vanadate, copper metavanadate, copper pyrovanadate, zinc vanadate, zinc metavanadate, zinc pyrovanadate , at least one of zirconium vanadate, zirconium metavanadate, zirconium pyrovanadate, ammonium vanadate, ammonium metavanadate and ammonium pyrovanadate.
  • the CNP-Al (carbon nano-aluminum) in the NaNia Co b Mnc O 2 ⁇ fCNP-Al/tMVO x is composed of carbon nano-powder, aluminum source and dispersant.
  • the mass ratio of aluminum source and carbon nanometer powder is (0.1-30): (40-150).
  • the CNP-Al is prepared by mixing carbon nanopowder with a dispersant, then mixing it with an aluminum source, and then treating it at 900-1300° C. for 3-12 hours under a protective atmosphere.
  • the CNP-Al contains Al 4 C 3 .
  • the aluminum source is at least one of aluminum hydroxide, aluminum acetate, aluminum chloride, aluminum sulfate, aluminum nitrate and aluminum fluoride.
  • the dispersant is at least one of polyethylene glycol, methylcellulose, acrylic acid, sodium silicate, methanol, ethanol and propanol.
  • the particle size D50 of the NaNia Co b Mnc O 2 ⁇ fCNP-Al/tMVO x is 1-10 ⁇ m.
  • the particle size D max of the NaNia Co b Mnc O 2 ⁇ fCNP-Al/tMVO x is 30-100 ⁇ m.
  • the hardness (HB) of the NaNia Co b Mnc O 2 ⁇ fCNP-Al/tMVO x is 100-500.
  • the specific surface area BET of the NaNia Co b Mnc O 2 ⁇ fCNP-Al/tMVO x is 0.2-3 m 2 /g.
  • the tap density of the NaNia Co b Mnc O 2 ⁇ fCNP-Al/tMVO x is 2.5-4.5 m 3 /g.
  • a method for preparing a high-nickel sodium ion positive electrode material as described above comprising the following steps: mixing sodium source, carbon nano-aluminum and nickel-cobalt-manganese material, drying and dehydrating, one-stage calcination, annealing, and then mixing MVO x , and two-stage calcination to obtain .
  • the step of removing residual sodium from the high-nickel-sodium-ion anode material to form a sodium-salt-coated high-nickel-sodium-ion anode material is also included.
  • the high-nickel-sodium-ion anode material after the second-stage calcination is placed in an alcohol solution, a sodium-removing agent is added, stirred, left standing, and hydrothermally dried to obtain a high-nickel-sodium-ion anode material coated with sodium salt.
  • the sodium removing agent is 0.001-0.2M ammonium sulfate or 0.001-0.2M ammonium bisulfate.
  • the added amount of the sodium removing agent accounts for 0.001-10w% of the high-nickel-sodium-ion positive electrode material.
  • the added amount of the sodium removing agent accounts for 0.1-2w% of the high-nickel-sodium-ion positive electrode material.
  • the sodium source is at least one of sodium hydroxide, sodium acetate, sodium oxalate, sodium phosphate and sodium carbonate.
  • the nickel-cobalt-manganese material is obtained by recycling waste ternary lithium batteries.
  • the method for recycling the waste ternary lithium battery is as follows: the ternary positive electrode material recovered from the waste ternary lithium battery is subjected to acid leaching, aluminum removal, copper removal, and extraction to obtain a nickel-cobalt-manganese mixture, and the nickel-cobalt-manganese mixture is determined.
  • the ratio of nickel-cobalt-manganese in the mixture is added to the nickel-cobalt-manganese mixed solution, and the dispersant as described above is added, fully stirred to obtain a homogeneous solution, kept at a constant temperature, added with a precipitant, stirred until complete precipitation, and left to stand to obtain Nickel cobalt manganese material.
  • the nickel-cobalt-manganese mixture is at least one of nickel-cobalt-manganese sulfate mixed salt solution, nickel-cobalt-manganese mixed salt solution and nickel-cobalt-manganese chlorate mixed salt solution.
  • the supplement is at least one of nickel sulfate, nickel nitrate, manganese sulfate and manganese nitrate.
  • the precipitation agent is at least one of carbonic acid, carbon dioxide, sodium carbonate, potassium carbonate, sodium bicarbonate, ammonium carbonate, ammonium bicarbonate and lithium carbonate.
  • the first-stage calcination temperature is 400-900°C, and the calcination time is 5-12h; the second-stage calcination temperature is 600-1000°C, and the calcination time is 5-16h.
  • a battery comprising the above-mentioned high-nickel-sodium-ion positive electrode material.
  • the electrochemical performance of the nickel-sodium ion positive electrode material is beneficial to the application of the high nickel sodium ion positive electrode material in the battery.
  • the high-nickel-sodium-ion positive electrode material of the present invention can create a multifunctional cladding layer on the surface of the high-nickel sodium ion positive electrode material by adding sodium-removing agent (ammonium sulfate/ammonium bisulfate) during the preparation process, thereby The performance of the high-nickel sodium ion cathode material can be further optimized.
  • sodium-removing agent ammonium sulfate/ammonium bisulfate
  • ammonium sulfate/ammonium bisulfate removes the residual Na 2 CO 3 , NaOH, and Na 2 O alkaline substances on the surface of the material, so that the removed Na 2 CO 3 , NaOH, and Na 2 O alkaline substances are converted into more stable Sodium salt cladding
  • this sodium salt cladding will be better directly transformed into a sodium salt cladding that facilitates Na + conduction, improves the stability of the material structure, and enhances Na + transfer at the interface , improve the diffusion of sodium ions at the interface between the material and the electrolyte, and increase the specific capacity, so that the high-nickel sodium ion positive electrode material has better cycle stability, surface structure stability and good electrochemical performance.
  • the nickel-cobalt-manganese material used in the production process of the high-nickel-sodium-ion positive electrode material of the present invention is obtained by recycling waste ternary lithium batteries, thereby turning waste into treasure and effectively reducing environmental pollution.
  • Fig. 1 is the SEM figure of embodiment 1 high-nickel-sodium-ion anode material
  • Fig. 2 is the TEM figure of embodiment 1 high nickel sodium ion positive electrode material
  • a high-nickel sodium ion cathode material the chemical formula of which is NaNi 0.8 C o0.1 Mn 0.1 O 2 ⁇ 0.059CNP-Al/0.03NH 4 VO 3 .
  • the preparation method of the above-mentioned high-nickel sodium ion positive electrode material comprises the following steps:
  • nickel-cobalt-manganese materials the ternary positive electrode material recovered from waste ternary lithium batteries is subjected to acid leaching, aluminum removal, copper removal, and extraction to obtain nickel-cobalt-manganese sulfate mixed salt solution, and nickel-cobalt-manganese sulfate mixed salt solution is determined
  • nickel-cobalt-manganese molar ratio (0.965:0.12:0.11), take 500mL in a beaker, add 0.011M nickel sulfate, 0.002M cobalt sulfate, 0.012M manganese sulfate to the nickel sulfate mixed salt solution, add 40ml Base cellulose, stir well, keep the temperature at 45°C, add sodium carbonate, stir until complete precipitation, and let it stand for 3 hours to obtain nickel-cobalt-manganese material.
  • CNP-Al Disperse 4g of carbon nanopowder in 30mL of polyethylene glycol, add 75mL of 0.47M aluminum chloride solution to mix, send it to an electric furnace, charge it with Ar, and treat it at 940°C for 6h to obtain 5.5g of CNP-Al of Al 4 C 3 .
  • Sodium removal, sodium salt coating take 20g of the high-nickel sodium ion positive electrode material prepared in step (3) and place it in a beaker with 55mL of polyethylene glycol, add 25mL of 0.019M ammonium bisulfate solution, stir vigorously, Stand still, remove the upper liquid, wash, and then place the lower solid in a microwave heating device to dry at 180°C for 42 minutes, dehydration, dealcoholization, and deamination to obtain the high-nickel sodium ion cathode material NaNi 0.8 C o0.1 coated with sodium salt Mn 0.1 O 2 ⁇ 0.059CNP-Al/0.03NH 4 VO 3 .
  • reaction formula 1-7 The principle of the formation of sodium salt coating is shown in the reaction formula 1-7: 1-2 is sodium hydroxide heated and dehydrated to obtain disodium oxide and sodium carbonate obtained by reacting with carbon dioxide, 3-4 is the decomposition reaction of ammonium sulfate, respectively , 5-7 is ammonium sulfate decomposition reaction and obtains ammonium bisulfate, sulfuric acid and sodium hydroxide, disodium oxide, sodium carbonate reaction formula, obtains sodium sulfate.
  • a high-nickel sodium ion cathode material the chemical formula of which is NaNi 0.74 Co 0.16 Mn 0.1 O 2 ⁇ 0.045CNP-Al/0.02NH 4 VO 3 .
  • the preparation method of the above-mentioned high-nickel sodium ion positive electrode material comprises the following steps:
  • nickel-cobalt-manganese materials the ternary positive electrode material recovered from waste ternary lithium batteries is subjected to acid leaching, aluminum removal, copper removal, and extraction to obtain nickel-cobalt-manganese sulfate mixed salt solution, and nickel-cobalt-manganese sulfate mixed salt solution is determined
  • nickel-cobalt-manganese molar ratio (0.965:0.12:0.11), take 500mL and put it in a beaker, add 0.09M cobalt sulfate and 0.02M manganese sulfate to the nickel-cobalt-manganese sulfate mixed salt solution, add 40ml into methylcellulose, and fully Stir, keep the temperature at 45°C, add sodium carbonate, stir until complete precipitation, and let it stand for 3 hours to obtain a nickel-cobalt-manganese material.
  • CNP-Al Disperse 4g of carbon nanopowder in 48mL of polyethylene glycol, add 80mL of 0.47M aluminum chloride solution to mix, send it to an electric furnace, charge it with Ar, and treat it at 940°C for 6h to obtain 5.4g of CNP-Al of Al 4 C 3 .
  • Sodium removal and sodium salt coating take 20 g of the high-nickel sodium ion positive electrode material prepared in step (3) and place it in a beaker with 55 mL of polyethylene glycol, add 25 mL of 0.019M ammonium sulfate solution, stir vigorously, and Place, remove the upper liquid, wash, and then place the lower solid in a microwave heating device to dry at 180°C for 42 minutes, dehydration, dealcoholization, and deamination to obtain the high-nickel sodium ion cathode material NaNi 0.74 Co 0.16 Mn 0.1 O coated with sodium salt 2 ⁇ 0.045CNP-Al/0.02NH 4 VO 3 .
  • a high-nickel sodium ion cathode material the chemical formula of which is NaNi 0.68 Co 0.23 Mn 0.09 O 2 ⁇ 0.037CNP-Al/0.015NaVO 3 .
  • the preparation method of the above-mentioned high-nickel sodium ion positive electrode material comprises the following steps:
  • nickel-cobalt-manganese materials the ternary positive electrode material recovered from waste ternary lithium batteries is subjected to acid leaching, aluminum removal, copper removal, and extraction to obtain nickel-cobalt-manganese sulfate mixed salt solution, and nickel-cobalt-manganese sulfate mixed salt solution is determined
  • nickel-cobalt-manganese molar ratio (0.965:0.12:0.11), take 500mL in a beaker, add 0.143M cobalt sulfate, 0.018M manganese sulfate to the nickel-cobalt-manganese sulfate mixed salt solution, add 50mL acrylic acid, stir well, 45°C Keep the temperature constant, add ammonium carbonate, stir until complete precipitation, and let stand for 3 hours to obtain nickel-cobalt-manganese material.
  • CNP-Al Disperse 6.5g of carbon nanopowder in 50mL of polyethylene glycol, add 70mL of 0.47M aluminum chloride solution to mix, send it to an electric furnace, charge it with Ar, and treat it at 1284°C for 6h to obtain 7.9g CNP-Al with Al 4 C 3 .
  • Sodium removal, sodium salt coating take 20g of the high-nickel sodium ion positive electrode material prepared in step (3) and place it in a beaker with 45mL of polyethylene glycol, add 25mL of 0.019M ammonium sulfate solution, stir vigorously, and Place, remove the upper liquid, wash, and then place the lower solid in a microwave heating device to dry at 180°C for 42 minutes, dehydration, dealcoholization, and deamination to obtain the high-nickel sodium ion cathode material NaNi 0.68 Co 0.23 Mn 0.09 O coated with sodium salt 2 ⁇ 0.037CNP-Al/0.015NaVO 3 .
  • a high-nickel sodium ion cathode material the chemical formula of which is NaNi 0.55 Co 0.18 Mn 0.27 O 2 ⁇ 0.034CNP-Al/0.02NaVO 3 .
  • the preparation method of the above-mentioned high-nickel sodium ion positive electrode material comprises the following steps:
  • nickel-cobalt-manganese materials the ternary positive electrode material recovered from waste ternary lithium batteries is subjected to acid leaching, aluminum removal, copper removal, and extraction to obtain nickel-cobalt-manganese sulfate mixed salt solution, and nickel-cobalt-manganese sulfate mixed salt solution is determined
  • nickel-cobalt-manganese molar ratio (0.965:0.12:0.11), take 500mL in a beaker, add 0.2M cobalt sulfate and 0.25M manganese sulfate to the nickel-cobalt-manganese sulfate mixed salt solution, add 50mL acrylic acid, stir well, 45°C Keep the temperature constant, add ammonium carbonate, stir until complete precipitation, and let stand for 3 hours to obtain nickel-cobalt-manganese material.
  • CNP-Al Disperse 5.3g of carbon nanopowder in 40mL of polyethylene glycol, add 60mL of 0.47M aluminum chloride solution to mix, send it to an electric furnace, charge it with Ar, and treat it at 1284°C for 6h to obtain 6.4g CNP-Al with Al 4 C 3 .
  • Sodium removal, sodium salt coating take 20g of the high-nickel sodium ion positive electrode material prepared in step (3) and place it in a beaker with 45mL of polyethylene glycol, add 25mL of 0.019M ammonium sulfate solution, stir vigorously, and Place, remove the upper liquid, wash, and then place the lower solid in a microwave heating device to dry at 180°C for 42 minutes, dehydration, dealcoholization, and deamination to obtain the high-nickel sodium ion cathode material NaNi 0.55 Co 0.18 Mn 0.27 O coated with sodium salt 2 ⁇ 0.034CNP-Al/ 0.02NaVO3 .
  • a high-nickel sodium ion cathode material the chemical formula of which is NaNi 0.8 C o0.1 Mn 0.1 O 2 ⁇ 0.059CNP-Al/0.03NH 4 VO 3 .
  • the preparation method of the above-mentioned high-nickel sodium ion positive electrode material comprises the following steps:
  • nickel-cobalt-manganese materials the ternary positive electrode material recovered from waste ternary lithium batteries is subjected to acid leaching, aluminum removal, copper removal, and extraction to obtain nickel-cobalt-manganese sulfate mixed salt solution, and nickel-cobalt-manganese sulfate mixed salt solution is determined
  • nickel-cobalt-manganese molar ratio (0.965:0.12:0.11), take 500mL in a beaker, add 0.011M nickel sulfate, 0.002M cobalt sulfate, 0.012M manganese sulfate to the nickel sulfate mixed salt solution, add 40ml Base cellulose, stir well, keep the temperature at 45°C, add sodium carbonate, stir until complete precipitation, and let it stand for 3 hours to obtain nickel-cobalt-manganese materials.
  • CNP-Al Disperse 4g of carbon nanopowder in 30mL of polyethylene glycol, add 75mL of 0.47M aluminum chloride solution to mix, send it to an electric furnace, charge it with Ar, and treat it at 940°C for 6h to obtain 5.5g of CNP-Al of Al 4 C 3 .
  • a high-nickel sodium ion cathode material the chemical formula of which is NaNi 0.68 Co 0.23 Mn 0.09 O 2 ⁇ 0.037CNP-Al.
  • the preparation method of the above-mentioned high-nickel sodium ion positive electrode material comprises the following steps:
  • nickel-cobalt-manganese materials the ternary positive electrode material recovered from waste ternary lithium batteries is subjected to acid leaching, aluminum removal, copper removal, and extraction to obtain nickel-cobalt-manganese sulfate mixed salt solution, and nickel-cobalt-manganese sulfate mixed salt solution is determined
  • nickel-cobalt-manganese molar ratio (0.965:0.12:0.11), take 500mL in a beaker, add 0.143M cobalt sulfate, 0.018M manganese sulfate to the nickel-cobalt-manganese sulfate mixed salt solution, add 50mL acrylic acid, stir well, 45°C Keep the temperature constant, add sodium carbonate, stir until complete precipitation, and let stand for 3 hours to obtain nickel-cobalt-manganese material.
  • CNP-Al Disperse 6.5g of carbon nanopowder in 50mL of polyethylene glycol, add 70mL of 0.47M aluminum chloride solution to mix, send it to an electric furnace, charge it with Ar, and treat it at 1284°C for 6h to obtain 7.9g CNP-Al with Al 4 C 3 .
  • Sodium removal, sodium salt coating take 20g of the high-nickel sodium ion positive electrode material prepared in step (3) and place it in a beaker with 45mL of polyethylene glycol, add 25mL of 0.019M ammonium sulfate solution, stir vigorously, and Place, remove the upper liquid, wash, and then place the lower solid in a microwave heating device to dry at 180°C for 42 minutes, dehydration, dealcoholization, and deamination to obtain the high-nickel sodium ion cathode material NaNi 0.68 Co 0.23 Mn 0.09 O coated with sodium salt 2.0.037 CNP-Al.
  • a high-nickel sodium ion cathode material the chemical formula of which is NaNi 0.68 Co 0.23 Mn 0.09 O 2 /0.015NaVO 3 .
  • the preparation method of the above-mentioned high-nickel sodium ion positive electrode material comprises the following steps:
  • nickel-cobalt-manganese materials the ternary positive electrode material recovered from waste ternary lithium batteries is subjected to acid leaching, aluminum removal, copper removal, and extraction to obtain nickel-cobalt-manganese sulfate mixed salt solution, and nickel-cobalt-manganese sulfate mixed salt solution is determined
  • nickel-cobalt-manganese molar ratio (0.965:0.12:0.11), take 500mL in a beaker, add 0.143M cobalt sulfate and 0.018M manganese sulfate to the nickel-cobalt-manganese sulfate mixed salt solution, add 50mL acrylic acid, stir well, 45°C Keep the temperature constant, add sodium carbonate, stir until complete precipitation, and let stand for 3 hours to obtain nickel-cobalt-manganese material.
  • the CR2025 button battery made of the high-nickel-sodium-ion positive electrode material of the present application can reach 161.9mAh ⁇ g -1 and above for the first time discharge specific capacity, and the discharge specific capacity is still 124.5mAh after 150 cycles g -1 and above, the CR2025 button battery made of the high-nickel sodium ion positive electrode material of this application can reach 73.2% and above in the first discharge/charge efficiency, and the discharge/charge efficiency can reach 99.7% after 150 cycles and above.
  • comparative example 1 and comparative example 1 know that, when other conditions are constant, do not remove residual sodium to high-nickel-sodium-ion anode material at last, the discharge specific capacity and discharge/discharge capacity of the high-nickel-sodium-ion anode material that finally make The charging efficiency is poor, which makes the cycle stability of the high-nickel-sodium-ion positive electrode material worse.
  • the size of the high-nickel-sodium-ion positive electrode material in Example 1 is mainly 5-10 ⁇ m, the particles are relatively compact, and the dispersed high-nickel sodium ion positive electrode material is less.
  • the high-nickel-sodium ion positive electrode material of Example 1 has a coating layer of 38nm on the surface, and the existence of the coating layer can avoid structural defects and improve electrochemical performance.
  • the high-nickel-sodium ion of Comparative Example 1 The surface of the ionic positive electrode material is smooth, and no cladding layer is seen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种高镍钠离子正极材料及其制备方法和电池,所述高镍钠离子正极材料的化学式为NaNi aCo bMn cO 2·fCNP-Al/tMVO x,其中a+b+c=1,0.5≤a<1,0<b≤0.25,a/b≥2.5,0<c≤0.3,0<t≤0.1,0<f≤0.1,所述M为钠、铜、锌、锆或铵中至少一种。该高镍钠离子正极材料具有良好的电化学性能,有利于高镍钠离子正极材料在电池中的应用。

Description

一种高镍钠离子正极材料及其制备方法和电池 技术领域
本发明属于电池正极材料领域,特别涉及一种高镍钠离子正极材料及其制备方法和电池。
背景技术
锂、钠等离子电池因其高能量密度、优异的功率特性和稳定性,备受当前电动汽车、储能用电池市场的欢迎。具体的,具有快速离子扩散率的正极材料、结构变化较小和电压较低的负极材料是实现高功率、高性能的电池性能至关重要的几个方面。尽管,钠具有价格更便宜基本的优点,但是由于钠离子电池的化学成分和正极材料的晶体结构不同于锂离子电池,其高比容量和可逆循环寿命依旧逊色于锂离子电池。而解决上述问题的最有希望的方法之一是开发高镍钠离子电池。
然而,目前可用的高镍钠离子电池存在明显的缺点,比如,高镍、低锰钴等阳离子的混排效应,降低了钠离子扩散的速率,导致放电时其性能不佳;材料烧结降温后,电池中的高镍钠离子正极材料对接触的外界环境产生的反应比较迅速,容易与环境中的H 2O、CO 2等反应生成Na 2CO 3和NaOH,以及NaOH脱水形成Na 2O,Na 2CO 3、NaOH、Na 2O会在正极表面形成钝化层,进一步阻碍钠离子在材料与电解液界面的扩散,增加材料与电解液的界面之间的阻抗,容易造成电池的电化学性能下降。因此,这极大地限制了钠离子正极材料潜在应用。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种高镍钠离子正极材料及其制备方法和电池,该高镍钠离子正极材料具有良好的电化学性能,有利于高镍钠离子正极材料在电池中的应用。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种高镍钠离子正极材料,所述高镍钠离子正极材料的化学式为NaNi aCo bMn cO 2·fCNP-Al/tMVO x,其中a+b+c=1,0.5≤a<1,0<b≤0.25,a/b≥2.5,0<c≤0.3,0<t≤0.1,0<f≤0.1,所述M为钠、铜、锌、锆或铵中至少一种。
优选的,所述MVO x为钒酸盐、偏钒酸盐及焦钒酸盐中的至少一种。
进一步优选的,所述MVO x为钒酸钠、偏钒酸钠、焦钒酸钠、钒酸铜、偏钒酸铜、焦钒酸铜、钒酸锌、偏钒酸锌、焦钒酸锌、钒酸锆、偏钒酸锆、焦钒酸锆、钒酸铵、 偏钒酸铵及焦钒酸铵中的至少一种。
优选的,所述NaNi aCo bMn cO 2·fCNP-Al/tMVO x中的CNP-Al(碳纳米铝)由碳纳米粉、铝源及分散剂混合组成。其中铝源、碳纳米粉质量比为(0.1-30):(40-150)。
优选的,所述CNP-Al由碳纳米粉与分散剂混合,再与铝源混合,然后在保护气氛下900-1300℃处理3-12h制得。
优选的,所述CNP-Al中含Al 4C 3
优选的,所述铝源为氢氧化铝、乙酸铝、氯化铝、硫酸铝、硝酸铝及氟化铝中的至少一种。
优选的,所述分散剂为聚乙二醇、甲基纤维素、丙烯酸、硅酸钠、甲醇、乙醇及丙醇中的至少一种。
优选的,所述NaNi aCo bMn cO 2·fCNP-Al/tMVO x的粒径D50为1-10μm。
优选的,所述NaNi aCo bMn cO 2·fCNP-Al/tMVO x的粒径D max为30-100μm。
优选的,所述NaNi aCo bMn cO 2·fCNP-Al/tMVO x的硬度(HB)为100-500。
优选的,所述NaNi aCo bMn cO 2·fCNP-Al/tMVO x的比表面积BET为0.2-3m 2/g。
优选的,所述NaNi aCo bMn cO 2·fCNP-Al/tMVO x的振实密度为2.5-4.5m 3/g。
一种如上所述高镍钠离子正极材料的制备方法,包括以下步骤:将钠源、碳纳米铝与镍钴锰材料混合,干燥脱水、一段煅烧、退火,再混入MVO x、二段煅烧得到。
优选的,在二段煅烧后,还包括对所述高镍钠离子正极材料进行除残钠,形成钠盐包覆的高镍钠离子正极材料的步骤。
优选的,将二段煅烧后的高镍钠离子正极材料置于醇溶液中,加入除钠剂,搅拌、静置、水热干燥后得到钠盐包覆的高镍钠离子正极材料。
优选的,所述除钠剂为0.001-0.2M的硫酸铵或0.001-0.2M的硫酸氢铵。
优选的,所述除钠剂加入量占所述高镍钠离子正极材料的0.001-10w%。
进一步优选的,所述除钠剂加入量占所述高镍钠离子正极材料的0.1-2w%。
优选的,所述钠源为氢氧化钠、醋酸钠、草酸钠、磷酸钠及碳酸钠中的至少一种。
优选的,所述镍钴锰材料为废弃三元锂电池回收处理得到。
优选的,所述废弃三元锂电池回收处理的方法为:将废弃三元锂电池回收得到的三元正极材料经过酸浸、除铝、除铜、萃取得到镍钴锰混合物,测定镍钴锰混合物中镍钴锰比,向镍 钴锰混合溶液中加补充剂、如前所述的分散剂,充分搅拌,制得均质溶液,恒温,加入沉淀剂、搅拌至完全沉淀、静置,得到镍钴锰材料。
优选的,所述镍钴锰混合物为硫酸镍钴锰混合盐溶液、硝酸镍钴锰混合盐溶液及氯酸镍钴锰混合盐溶液中的至少一种。
优选的,所述补充剂为硫酸镍、硝酸镍、硫酸锰及硝酸锰中的至少一种。
优选的,所述沉淀剂为碳酸、二氧化碳、碳酸钠、碳酸钾、碳酸氢钠、碳酸铵、碳酸氢铵及碳酸锂中的至少一种。
优选的,所述一段煅烧温度为400-900℃,煅烧时间为5-12h,所述二段煅烧温度为600-1000℃,煅烧时间为5-16h。
一种电池,包括如上所述的高镍钠离子正极材料。
本发明的有益效果是:
(1)本发明的高镍钠离子正极材料中由于含有MVO x,从而可以抑制Na +/Ni 2+混排,克服现有高镍钠离子正极材料的结构缺陷,从而提高镍-电解液界面的电导率,同时本发明的高镍钠离子正极材料中的CNP-Al由于含有Al 4C 3,可以增加本发明高镍钠离子正极材料的硬度和强度的同时,还能协同MVO x提高高镍钠离子正极材料的电化学性能,有利于高镍钠离子正极材料在电池中的应用。
(2)本发明的高镍钠离子正极材料在制备过程中通过除钠剂(硫酸铵/硫酸氢铵)的加入,能在高镍钠离子正极材料表面创建一个多功能的包覆层,从而能进一步优化高镍钠离子正极材料的性能。一方面硫酸铵/硫酸氢铵将材料表面上层残留的Na 2CO 3、NaOH、Na 2O碱性物质清除,使得清除的Na 2CO 3、NaOH、Na 2O碱性物质转化为更稳定的钠盐包覆层,另一方面,该钠盐包覆层将更好地直接转化为有助于Na +传导的一个钠盐包覆层,提高材料结构的稳定性,增强界面的Na +转移,提高钠离子在材料与电解液界面的扩散,提高比容量,从而使得高镍钠离子正极材料具有更好的循环稳定性、表面结构的稳定性和良好的电化学性能。
(3)本发明的高镍钠离子正极材料制作过程中用到的镍钴锰材料为废弃三元锂电池回收处理得到,从而能变废为宝,有效减少环境污染。
附图说明
图1为实施例1高镍钠离子正极材料的SEM图;
图2为实施例1高镍钠离子正极材料的TEM图;
图3为对比例1高镍钠离子正极材料的TEM图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
实施例1:
一种高镍钠离子正极材料,其化学式为NaNi 0.8C o0.1Mn 0.1O 2·0.059CNP-Al/0.03NH 4VO 3
上述高镍钠离子正极材料的制备方法,包括以下步骤:
(1)制备镍钴锰材料:将废弃三元锂电池回收得到的三元正极材料经过酸浸、除铝、除铜、萃取得到硫酸镍钴锰混合盐溶液,测定硫酸镍钴锰混合盐溶液中镍钴锰摩尔比(0.965:0.12:0.11),取500mL置于烧杯中,向硫酸镍钴锰混合盐溶液中加0.011M硫酸镍、0.002M硫酸钴、0.012M硫酸锰,加40ml入甲基纤维素,充分搅拌,45℃恒温,加入碳酸钠、搅拌至完全沉淀、静置3h,得到镍钴锰材料。
(2)制备CNP-Al:将4g碳纳米粉分散于30mL聚乙二醇中,加入75mL 0.47M氯化铝溶液混合,送至电炉中,充Ar下,940℃处理6h,得到5.5g含Al 4C 3的CNP-Al。
(3)合成NaNi 0.8C o0.1Mn 0.1O 2·0.059CNP-Al/0.03NH 4VO 3:将35g氢氧化钠、46.17g步骤(1)制备得到的镍钴锰材料及步骤(2)制备得到的4.7g CNP-Al混合、球磨,搅拌、干燥脱水、送至电炉中,一段煅烧540℃保温8h、退火,加入2.4g NH 4VO 3混合、球磨、二段煅烧740℃保温10h,得到高镍钠离子正极材料NaNi 0.8C o0.1Mn 0.1O 2·0.059CNP-Al/0.03NH 4VO 3
(4)除钠,钠盐包覆:取20g步骤(3)制备得到的高镍钠离子正极材料置于有55mL聚乙二醇的烧杯中,加入25mL 0.019M硫酸氢铵溶液,剧烈搅拌、静置、除去上层液体、清洗,然后将下层固体置于微波加热设备中180℃干燥42min,脱水、脱醇、脱氨,得到钠盐包覆的高镍钠离子正极材料NaNi 0.8C o0.1Mn 0.1O 2·0.059CNP-Al/0.03NH 4VO 3
其中形成钠盐包覆原理如反应式①-⑦所示:其中①-②为氢氧化钠加热脱水得到氧化二钠以及与二氧化碳反应得到的碳酸钠,③-④为硫酸铵分解反应,分别得到,⑤-⑦为硫酸铵分解反应得到硫酸氢铵、硫酸与氢氧化钠、氧化二钠、碳酸钠反应式,得到硫酸钠。
①2NaOH→Na 2O+H 2O
②2NaOH+CO 2→Na 2CO 3+H 2O
③(NH 4) 2SO 4→NH 4HSO 4+NH 3
④NH 4HSO 4→H 2SO 4+NH 3
⑤NH 4HSO 4+H 2SO 4+4NaOH→2Na 2SO 4+NH 3+4H 2O
⑥NH 4HSO 4+H 2SO 4+2Na 2CO 3→2Na 2SO 4+NH 3+2H 2O+2CO 2
⑦NH 4HSO 4+H 2SO 4+2Na 2O→2Na 2SO 4+NH 3+2H 2O
实施例2:
一种高镍钠离子正极材料,其化学式为NaNi 0.74Co 0.16Mn 0.1O 2·0.045CNP-Al/0.02NH 4VO 3
上述高镍钠离子正极材料的制备方法,包括以下步骤:
(1)制备镍钴锰材料:将废弃三元锂电池回收得到的三元正极材料经过酸浸、除铝、除铜、萃取得到硫酸镍钴锰混合盐溶液,测定硫酸镍钴锰混合盐溶液中镍钴锰摩尔比(0.965:0.12:0.11),取500mL置于烧杯中,向硫酸镍钴锰混合盐溶液中加0.09M硫酸钴、0.02M硫酸锰,加40ml入甲基纤维素,充分搅拌,45℃恒温,加入碳酸钠、搅拌至完全沉淀、静置3h,得到镍钴锰材料。
(2)制备CNP-Al:将4g碳纳米粉分散于48mL聚乙二醇中,加入80mL 0.47M氯化铝溶液混合,送至电炉中,充Ar下,940℃处理6h,得到5.4g含Al 4C 3的CNP-Al。
(3)合成NaNi 0.74Co 0.16Mn 0.1O 2·0.045CNP-Al/0.02NH 4VO 3:将51g氢氧化钠、55.4g步骤(1)制备得到的镍钴锰材料及步骤(2)制备得到的4.8g CNP-Al混合、球磨,搅拌、干燥脱水、送至电炉中,一段煅烧540℃保温8h、退火,加入2.1g NH 4VO 3混合、球磨、二段煅烧740℃保温10h,得到高镍钠离子正极材料NaNi 0.74Co 0.16Mn 0.1O 2·0.045CNP-Al/0.02NH 4VO 3
(4)除钠,钠盐包覆:取20g步骤(3)制备得到的高镍钠离子正极材料置于有55mL聚乙二醇的烧杯中,加入25mL 0.019M硫酸铵溶液,剧烈搅拌、静置、除去上层液体、清洗,然后将下层固体置于微波加热设备中180℃干燥42min,脱水、脱醇、脱氨,得到钠盐包覆的高镍钠离子正极材料NaNi 0.74Co 0.16Mn 0.1O 2·0.045CNP-Al/0.02NH 4VO 3
实施例3:
一种高镍钠离子正极材料,其化学式为NaNi 0.68Co 0.23Mn 0.09O 2·0.037CNP-Al/0.015NaVO 3
上述高镍钠离子正极材料的制备方法,包括以下步骤:
(1)制备镍钴锰材料:将废弃三元锂电池回收得到的三元正极材料经过酸浸、除铝、除铜、萃取得到硫酸镍钴锰混合盐溶液,测定硫酸镍钴锰混合盐溶液中镍钴锰摩尔比(0.965:0.12:0.11),取500mL置于烧杯中,向硫酸镍钴锰混合盐溶液中加0.143M硫酸钴、0.018M硫酸锰,加入50mL丙烯酸,充分搅拌,45℃恒温,加入碳酸铵、搅拌至完全沉淀、静置3h,得到镍钴锰材料。
(2)制备CNP-Al:将6.5g碳纳米粉分散于50mL聚乙二醇中,加入70mL 0.47M氯化铝溶液混合,送至电炉中,充Ar下,1284℃处理6h,得到7.9g含Al 4C 3的CNP-Al。
(3)合成NaNi 0.68Co 0.23Mn 0.09O 2·0.037CNP-Al/0.015NaVO 3:将122.0g醋酸钠、60.1g步骤(1)制备得到的镍钴锰材料及步骤(2)制备得到的6.8g CNP-Al混合、球磨,搅拌、干燥脱水、送至电炉中,一段煅烧590℃保温6h、退火,加入2.7g NaVO 3混合、球磨、二段煅烧680℃保温16h,得到高镍钠离子正极材料NaNi 0.68Co 0.23Mn 0.09O 2·0.037CNP-Al/0.015NaVO 3
(4)除钠,钠盐包覆:取20g步骤(3)制备得到的高镍钠离子正极材料置于有45mL聚乙二醇的烧杯中,加入25mL 0.019M硫酸铵溶液,剧烈搅拌、静置、除去上层液体、清洗,然后将下层固体置于微波加热设备中180℃干燥42min,脱水、脱醇、脱氨,得到钠盐包覆的高镍钠离子正极材料NaNi 0.68Co 0.23Mn 0.09O 2·0.037CNP-Al/0.015NaVO 3
实施例4:
一种高镍钠离子正极材料,其化学式为NaNi 0.55Co 0.18Mn 0.27O 2·0.034CNP-Al/0.02NaVO 3
上述高镍钠离子正极材料的制备方法,包括以下步骤:
(1)制备镍钴锰材料:将废弃三元锂电池回收得到的三元正极材料经过酸浸、除铝、除铜、萃取得到硫酸镍钴锰混合盐溶液,测定硫酸镍钴锰混合盐溶液中镍钴锰摩尔比(0.965:0.12:0.11),取500mL置于烧杯中,向硫酸镍钴锰混合盐溶液中加0.2M硫酸钴、0.25M硫酸锰,加入50mL丙烯酸,充分搅拌,45℃恒温,加入碳酸铵、搅拌至完全沉淀、静置3h,得到镍钴锰材料。
(2)制备CNP-Al:将5.3g碳纳米粉分散于40mL聚乙二醇中,加入60mL 0.47M氯化铝溶液混合,送至电炉中,充Ar下,1284℃处理6h,得到6.4g含Al 4C 3的CNP-Al。
(3)合成NaNi 0.55Co 0.18Mn 0.27O 2·0.034CNP-Al/0.02NaVO 3:将98.8g醋酸钠、55.1g步骤(1)制备得到的镍钴锰材料及步骤(2)制备得到的5.2g CNP-Al混合、球磨,搅拌、干燥脱水、送至电炉中,一段煅烧590℃保温6h、退火,加入3.1g NaVO 3混合、球磨、二段煅烧680℃保温16h,得到高镍钠离子正极材料NaNi 0.55Co 0.18Mn 0.27O 2·0.034CNP-Al/0.02NaVO 3
(4)除钠,钠盐包覆:取20g步骤(3)制备得到的高镍钠离子正极材料置于有45mL聚乙二醇的烧杯中,加入25mL 0.019M硫酸铵溶液,剧烈搅拌、静置、除去上层液体、清洗,然后将下层固体置于微波加热设备中180℃干燥42min,脱水、脱醇、脱氨,得到钠盐包覆的高镍钠离子正极材料NaNi 0.55Co 0.18Mn 0.27O 2·0.034CNP-Al/0.02NaVO 3
对比例1:
一种高镍钠离子正极材料,其化学式为NaNi 0.8C o0.1Mn 0.1O 2·0.059CNP-Al/0.03NH 4VO 3
上述高镍钠离子正极材料的制备方法,包括以下步骤:
(1)制备镍钴锰材料:将废弃三元锂电池回收得到的三元正极材料经过酸浸、除铝、除铜、萃取得到硫酸镍钴锰混合盐溶液,测定硫酸镍钴锰混合盐溶液中镍钴锰摩尔比(0.965:0.12:0.11),取500mL置于烧杯中,向硫酸镍钴锰混合盐溶液中加0.011M硫酸镍、0.002M硫酸钴、0.012M硫酸锰,加40ml入甲基纤维素,充分搅拌,45℃恒温,加入碳酸钠、搅拌至完全沉淀、静置3h,得到镍钴锰材料。
(2)制备CNP-Al:将4g碳纳米粉分散于30mL聚乙二醇中,加入75mL 0.47M氯化铝溶液混合,送至电炉中,充Ar下,940℃处理6h,得到5.5g含Al 4C 3的CNP-Al。
(3)合成NaNi 0.8C o0.1Mn 0.1O 2·0.059CNP-Al/0.03NH 4VO 3:将35g氢氧化钠、46.17g步骤(1)制备得到的镍钴锰材料及步骤(2)制备得到的4.7g CNP-Al混合、球磨,搅拌、干燥脱水、送至电炉中,一段煅烧540℃保温8h、退火,加入2.4g NH 4VO 3混合、球磨、二段煅烧740℃保温10h,得到高镍钠离子正极材料NaNi 0.8C o0.1Mn 0.1O 2·0.059CNP-Al/0.03NH 4VO 3
对比例2:
一种高镍钠离子正极材料,其化学式为NaNi 0.68Co 0.23Mn 0.09O 2·0.037CNP-Al。
上述高镍钠离子正极材料的制备方法,包括以下步骤:
(1)制备镍钴锰材料:将废弃三元锂电池回收得到的三元正极材料经过酸浸、除铝、除铜、萃取得到硫酸镍钴锰混合盐溶液,测定硫酸镍钴锰混合盐溶液中镍钴锰摩尔比(0.965:0.12:0.11),取500mL置于烧杯中,向硫酸镍钴锰混合盐溶液中加0.143M硫酸钴、0.018M硫酸锰,加入50mL丙烯酸,充分搅拌,45℃恒温,加入碳酸钠、搅拌至完全沉淀、静置3h,得到镍钴锰材料。
(2)制备CNP-Al:将6.5g碳纳米粉分散于50mL聚乙二醇中,加入70mL 0.47M氯化铝溶液混合,送至电炉中,充Ar下,1284℃处理6h,得到7.9g含Al 4C 3的CNP-Al。
(3)合成NaNi 0.68Co 0.23Mn 0.09O 2·0.037CNP-Al:将122.0g醋酸钠、60.1g步骤(1)制备得到的镍钴锰材料及步骤(2)制备得到的6.8g CNP-Al混合、球磨,搅拌、干燥脱水、送至电炉中,一段煅烧590℃保温6h、退火、二段煅烧680℃保温16h,得到高镍钠离子正极材料NaNi 0.68Co 0.23Mn 0.09O 2·0.037CNP-Al。
(4)除钠,钠盐包覆:取20g步骤(3)制备得到的高镍钠离子正极材料置于有45mL聚乙二醇的烧杯中,加入25mL 0.019M硫酸铵溶液,剧烈搅拌、静置、除去上层液体、清洗,然后将下层固体置于微波加热设备中180℃干燥42min,脱水、脱醇、脱氨,得到钠盐包覆的高镍钠离子正极材料NaNi 0.68Co 0.23Mn 0.09O 2·0.037CNP-Al。
对比例3:
一种高镍钠离子正极材料,其化学式为NaNi 0.68Co 0.23Mn 0.09O 2/0.015NaVO 3
上述高镍钠离子正极材料的制备方法,包括以下步骤:
(1)制备镍钴锰材料:将废弃三元锂电池回收得到的三元正极材料经过酸浸、除铝、除铜、萃取得到硫酸镍钴锰混合盐溶液,测定硫酸镍钴锰混合盐溶液中镍钴锰摩尔比(0.965:0.12:0.11),取500mL置于烧杯中,向硫酸镍钴锰混合盐溶液中加0.143M硫酸钴、0.018M硫酸锰,加入50mL丙烯酸,充分搅拌,45℃恒温,加入碳酸钠、搅拌至完全沉淀、静置3h,得到镍钴锰材料。
(2)合成NaNi 0.68Co 0.23Mn 0.09O 2/0.015NaVO 3:将122.0g醋酸钠、60.1g步骤(1)制备得到的镍钴锰材料混合、球磨,搅拌、干燥脱水、送至电炉中,一段煅烧590℃保温6h、退火,加入2.7g NaVO 3混合、球磨、二段煅烧680℃保温16h,得到高镍钠离子正极材料NaNi 0.68Co 0.23Mn 0.09O 2/0.015NaVO 3
(3)除钠,钠盐包覆:取20g步骤(3)制备得到的高镍钠离子正极材料置于有45mL聚乙二醇的烧杯中,加入25mL 0.019M硫酸铵溶液,剧烈搅拌、静置、除去上层液体、清洗,然后将下层固体置于微波加热设备中180℃干燥42min,脱水、脱醇、脱氨,得到钠盐包覆的高镍钠离子正极材料NaNi 0.68Co 0.23Mn 0.09O 2/0.015NaVO 3
试验例:
分别测量实施例1-4及对比例1-3的高镍钠离子正极材料的粒径、硬度、BET及振实密度,然后将实施例1-4及对比例1-3的高镍钠离子正极材料与乙炔黑和聚偏氟乙烯(PVDF)按照80:15:5的质量比混合于烧杯中,加入少量的NMP后研磨成浆料,随后用厚度为120μm的涂布器将浆料均匀涂敷到铝箔上,放入真空干燥箱中于100℃保温8h,将其冲成直径为16mm的正极片待用(其中活性物质的质量约15-20mg)。以1.2M的NaPF 6的碳酸乙烯酯的有机溶液为电解液,金属钠片为负极,在充满Ar的手套箱中将其组装成CR2025型扣式电池。采用BTS的电池测试仪对电池进行性能测试,测试电压为2.5-4.0V,电流密度为2C,扫描速率为0.1mV/s,测试结果见表1。
表1:测试结果
Figure PCTCN2022116255-appb-000001
Figure PCTCN2022116255-appb-000002
同时,对实施例1的高镍钠离子正极材料做SEM测试及TEM测试,SEM测试的结果如图1所示,TEM测试的结果如图2所示;对对比例1的高镍钠离子正极材料做TEM测试,测试结果如图3所示。
由表1可知,由本申请的高镍钠离子正极材料制成的CR2025型扣式电池,其首次放电比容量能达到161.9mAh·g -1及以上,循环150次后放电比容量仍然在124.5mAh·g -1及以上,由本申请的高镍钠离子正极材料制成的CR2025型扣式电池,其首次放/充电效率能达到73.2%及以上,循环150次后放/充电效率能达到99.7%及以上。
同时,对比实施例1及对比例1可知,当其他条件不变时,最后对高镍钠离子正极材料不进行除残钠,最终制得的高镍钠离子正极材料的放电比容量及放/充电效率较差,使得高镍钠离子正极材料循环稳定性变差。
对比实施例3及对比例2-3可知,当其他条件不变时,高镍钠离子正极材料中不含MVO x或CNP-Al时,高镍钠离子正极材料的硬度会下降,同时其放电比容量及放/充电效率均较差。
此外,由图1可知,实施例1高镍钠离子正极材料大小为5-10μm为主,颗粒之间比较紧凑,分散的高镍钠离子正极材料较少。
由图2可知,实施例1的高镍钠离子正极材料表面有一层38nm的包覆层,包覆层的存在能避免结构缺陷提高电化学性能,由图3可知,对比例1的高镍钠离子正极材料表面光滑,未见包覆层。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其 他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种高镍钠离子正极材料,其特征在于:所述高镍钠离子正极材料的化学式为NaNi aCo bMn cO 2·fCNP-Al/tMVO x,其中a+b+c=1,0.5≤a<1,0<b≤0.25,a/b≥2.5,0<c≤0.3,0<t≤0.1,0<f≤0.1,所述M为钠、铜、锌、锆或铵中至少一种。
  2. 根据权利要求1所述的一种高镍钠离子正极材料,其特征在于:所述NaNi aCo bMn cO 2·fCNP-Al/tMVO x中的MVO x为钒酸盐、偏钒酸盐及焦钒酸盐中的至少一种。
  3. 根据权利要求1所述的一种高镍钠离子正极材料,其特征在于:所述NaNi aCo bMn cO 2·fCNP-Al/tMVO x中的CNP-Al由碳纳米粉、铝源及分散剂混合组成。
  4. 根据权利要求3所述的一种高镍钠离子正极材料,其特征在于:所述CNP-Al由碳纳米粉与分散剂混合,再与铝源混合,然后在保护气氛下900-1300℃处理3-12h制得。
  5. 根据权利要求4所述的一种高镍钠离子正极材料,其特征在于:所述CNP-Al中含Al 4C 3
  6. 一种如权利要求1至5任一项所述高镍钠离子正极材料的制备方法,其特征在于:包括以下步骤:将钠源、碳纳米铝与镍钴锰材料混合,干燥脱水、一段煅烧、退火,再混入MVO x、二段煅烧得到。
  7. 根据权利要求6所述的一种高镍钠离子正极材料的制备方法,其特征在于:在二段煅烧后,还包括对所述高镍钠离子正极材料进行除残钠,形成钠盐包覆的高镍钠离子正极材料的步骤。
  8. 根据权利要求7所述的一种高镍钠离子正极材料的制备方法,其特征在于:所述除残钠的操作步骤为:将二段煅烧后的高镍钠离子正极材料置于醇溶液中,加入除钠剂,搅拌、静置、水热干燥后得到钠盐包覆的高镍钠离子正极材料。
  9. 根据权利要求6至8任一项所述的一种高镍钠离子正极材料的制备方法,其特征在于:所述镍钴锰材料为废弃三元锂电池回收处理得到。
  10. 一种电池,其特征在于:包括权利要求1至5任一项所述的高镍钠离子正极材料。
PCT/CN2022/116255 2021-12-16 2022-08-31 一种高镍钠离子正极材料及其制备方法和电池 WO2023109193A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2309773.6A GB2617013A (en) 2021-12-16 2022-08-31 High-nickel sodium ion positive electrode material and preparation method therefor and battery
DE112022000798.2T DE112022000798T5 (de) 2021-12-16 2022-08-31 Natriumionen-material für positive elektroden mit hohem nickelgehalt, verfahren zu dessen herstellung, sowie batterie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111540231.8A CN114400318A (zh) 2021-12-16 2021-12-16 一种高镍钠离子正极材料及其制备方法和电池
CN202111540231.8 2021-12-16

Publications (1)

Publication Number Publication Date
WO2023109193A1 true WO2023109193A1 (zh) 2023-06-22

Family

ID=81226614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116255 WO2023109193A1 (zh) 2021-12-16 2022-08-31 一种高镍钠离子正极材料及其制备方法和电池

Country Status (4)

Country Link
CN (1) CN114400318A (zh)
DE (1) DE112022000798T5 (zh)
GB (1) GB2617013A (zh)
WO (1) WO2023109193A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400318A (zh) * 2021-12-16 2022-04-26 广东邦普循环科技有限公司 一种高镍钠离子正极材料及其制备方法和电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160218363A1 (en) * 2013-09-09 2016-07-28 The Regents Of The University Of California Lithium and sodium containing layered oxide material, cathodes and sodium ion electrochemical cells
CN106684369A (zh) * 2017-02-16 2017-05-17 长沙理工大学 一种钠快离子导体镶嵌包覆的钠离子电池正极材料及其合成方法
CN110808362A (zh) * 2019-10-18 2020-02-18 王杰 一种异丙醇铝包覆Na2Mn8O16-碳纳米管的钠离子正极材料及其制法
WO2021038263A1 (en) * 2019-08-27 2021-03-04 Toyota Motor Europe Sodium layered oxides as cathode materials for sodium ion batteries and method of manufacturing the same
CN112456567A (zh) * 2020-11-18 2021-03-09 浙江钠创新能源有限公司 一种包覆结构钠离子电池正极材料的制备方法
CN112928252A (zh) * 2021-01-22 2021-06-08 中国科学院过程工程研究所 一种钠离子电池正极材料及其制备方法和应用
CN113258060A (zh) * 2020-02-11 2021-08-13 中国科学院物理研究所 一种钠离子电池高镍层状氧化物材料及其制备方法和应用
CN114400318A (zh) * 2021-12-16 2022-04-26 广东邦普循环科技有限公司 一种高镍钠离子正极材料及其制备方法和电池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160218363A1 (en) * 2013-09-09 2016-07-28 The Regents Of The University Of California Lithium and sodium containing layered oxide material, cathodes and sodium ion electrochemical cells
CN106684369A (zh) * 2017-02-16 2017-05-17 长沙理工大学 一种钠快离子导体镶嵌包覆的钠离子电池正极材料及其合成方法
WO2021038263A1 (en) * 2019-08-27 2021-03-04 Toyota Motor Europe Sodium layered oxides as cathode materials for sodium ion batteries and method of manufacturing the same
CN110808362A (zh) * 2019-10-18 2020-02-18 王杰 一种异丙醇铝包覆Na2Mn8O16-碳纳米管的钠离子正极材料及其制法
CN113258060A (zh) * 2020-02-11 2021-08-13 中国科学院物理研究所 一种钠离子电池高镍层状氧化物材料及其制备方法和应用
CN112456567A (zh) * 2020-11-18 2021-03-09 浙江钠创新能源有限公司 一种包覆结构钠离子电池正极材料的制备方法
CN112928252A (zh) * 2021-01-22 2021-06-08 中国科学院过程工程研究所 一种钠离子电池正极材料及其制备方法和应用
CN114400318A (zh) * 2021-12-16 2022-04-26 广东邦普循环科技有限公司 一种高镍钠离子正极材料及其制备方法和电池

Also Published As

Publication number Publication date
GB202309773D0 (en) 2023-08-09
DE112022000798T5 (de) 2023-11-23
CN114400318A (zh) 2022-04-26
GB2617013A (en) 2023-09-27

Similar Documents

Publication Publication Date Title
CN103972499B (zh) 一种改性的镍钴铝酸锂正极材料及其制备方法
CN108258223B (zh) 一种多级结构的球形n掺杂c包覆金属氧化物负极材料的制备方法
CN105870438B (zh) 一种锂二次电池富锂正极复合材料及其制备方法
CN107069001B (zh) 一种蜂窝状硫化锌/碳复合负极材料及其制备方法
WO2021088354A1 (zh) 核壳状铁酸镍及制备方法、铁酸镍@c材料及制备方法与应用
JP7369298B2 (ja) 高密度なアルミニウムドープ酸化コバルトの調製方法
CN111180700B (zh) 一种用于高性能钾硫电池正极N掺杂Co纳米团簇/N掺杂多孔碳/S复合材料的制备方法
CN114361435A (zh) 钠离子电池的纳米级前驱体、复合正极材料及制备方法
WO2023071396A1 (zh) 钠离子电池正极材料及其制备方法和应用
CN111916701B (zh) 一种包覆型正极材料及其制备方法和用途
CN111584840A (zh) 碳布负载的碳包覆二硫化镍纳米片复合材料及其制备方法和应用
CN108598405B (zh) 一种三维石墨烯氧化锡碳复合负极材料的制备方法
WO2023109193A1 (zh) 一种高镍钠离子正极材料及其制备方法和电池
WO2023097937A1 (zh) 一种用于固态电池的高压实高镍层状正极材料的复合包覆方法
CN108123105B (zh) 一种离子导体层修饰的锰基氧化物正极材料及制备和应用
CN111933904A (zh) 双金属硫化物及其制备方法、复合物及其制备方法、锂硫正极材料及锂硫电池
CN113772718B (zh) 一种SnS-SnS2@GO异质结构复合材料及其制备方法和应用
WO2019104948A1 (zh) 一种钼掺杂改性的锰酸锂复合材料、其制备方法及锂离子电池
CN106450186A (zh) 一种锂离子电池正极材料硅酸锰锂/碳复合材料的制备方法、正极浆料及应用
CN111533186B (zh) 一种球形扩层二硫化钼的制备方法及其应用
CN113745504A (zh) 一种铌钨钛氧化物负极材料及其制备方法与应用
WO2023207247A1 (zh) 一种多孔隙球形钴氧化物颗粒及其制备方法
WO2024082544A1 (zh) 废旧磷酸铁锂电池定向循环制取磷酸铁锂正极材料的方法
WO2023060992A1 (zh) 正极边角料回收合成高安全性正极材料的方法和应用
CN111952566A (zh) 一种铷掺杂的高倍率锂电池正极材料及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202309773

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220831

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905949

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022000798

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: P202390166

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 18564772

Country of ref document: US