CN114400318A - 一种高镍钠离子正极材料及其制备方法和电池 - Google Patents

一种高镍钠离子正极材料及其制备方法和电池 Download PDF

Info

Publication number
CN114400318A
CN114400318A CN202111540231.8A CN202111540231A CN114400318A CN 114400318 A CN114400318 A CN 114400318A CN 202111540231 A CN202111540231 A CN 202111540231A CN 114400318 A CN114400318 A CN 114400318A
Authority
CN
China
Prior art keywords
nickel
positive electrode
sodium ion
electrode material
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111540231.8A
Other languages
English (en)
Other versions
CN114400318B (zh
Inventor
钟应声
余海军
谢英豪
李爱霞
李斌
李长东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Brunp Recycling Technology Co Ltd
Guangdong Brunp Recycling Technology Co Ltd
Yichang Brunp Recycling Technology Co Ltd
Original Assignee
Hunan Brunp Recycling Technology Co Ltd
Guangdong Brunp Recycling Technology Co Ltd
Yichang Brunp Recycling Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Brunp Recycling Technology Co Ltd, Guangdong Brunp Recycling Technology Co Ltd, Yichang Brunp Recycling Technology Co Ltd filed Critical Hunan Brunp Recycling Technology Co Ltd
Priority to CN202111540231.8A priority Critical patent/CN114400318B/zh
Publication of CN114400318A publication Critical patent/CN114400318A/zh
Priority to PCT/CN2022/116255 priority patent/WO2023109193A1/zh
Priority to US18/564,772 priority patent/US12091328B2/en
Priority to DE112022000798.2T priority patent/DE112022000798T5/de
Priority to HU2400065A priority patent/HUP2400065A1/hu
Priority to GB2309773.6A priority patent/GB2617013A/en
Application granted granted Critical
Publication of CN114400318B publication Critical patent/CN114400318B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种高镍钠离子正极材料及其制备方法和电池,所述高镍钠离子正极材料的化学式为NaNiaCobMncO2·fCNP‑Al/tMVOx,其中a+b+c=1,0.5≤a<1,0<b≤0.25,a/b≥2.5,0<c≤0.3,0<t≤0.1,0<f≤0.1,所述M为钠、铜、锌、锆或铵中至少一种。该高镍钠离子正极材料具有良好的电化学性能,有利于高镍钠离子正极材料在电池中的应用。

Description

一种高镍钠离子正极材料及其制备方法和电池
技术领域
本发明属于电池正极材料领域,特别涉及一种高镍钠离子正极材料及其制备方法和电池。
背景技术
锂、钠等离子电池因其高能量密度、优异的功率特性和稳定性,备受当前电动汽车、储能用电池市场的欢迎。具体的,具有快速离子扩散率的正极材料、结构变化较小和电压较低的负极材料是实现高功率、高性能的电池性能至关重要的几个方面。尽管,钠具有价格更便宜基本的优点,但是由于钠离子电池的化学成分和正极材料的晶体结构不同于锂离子电池,其高比容量和可逆循环寿命依旧逊色于锂离子电池。而解决上述问题的最有希望的方法之一是开发高镍钠离子电池。
然而,目前可用的高镍钠离子电池存在明显的缺点,比如,高镍、低锰钴等阳离子的混排效应,降低了钠离子扩散的速率,导致放电时其性能不佳;材料烧结降温后,电池中的高镍钠离子正极材料对接触的外界环境产生的反应比较迅速,容易与环境中的H2O、CO2等反应生成Na2CO3和NaOH,以及NaOH脱水形成Na2O,Na2CO3、NaOH、Na2O会在正极表面形成钝化层,进一步阻碍钠离子在材料与电解液界面的扩散,增加材料与电解液的界面之间的阻抗,容易造成电池的电化学性能下降。因此,这极大地限制了钠离子正极材料潜在应用。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种高镍钠离子正极材料及其制备方法和电池,该高镍钠离子正极材料具有良好的电化学性能,有利于高镍钠离子正极材料在电池中的应用。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种高镍钠离子正极材料,所述高镍钠离子正极材料的化学式为NaNiaCobMncO2·fCNP-Al/tMVOx,其中a+b+c=1,0.5≤a<1,0<b≤0.25,a/b≥2.5,0<c≤0.3,0<t≤0.1,0<f≤0.1,所述M为钠、铜、锌、锆或铵中至少一种。
优选的,所述MVOx为钒酸盐、偏钒酸盐及焦钒酸盐中的至少一种。
进一步优选的,所述MVOx为钒酸钠、偏钒酸钠、焦钒酸钠、钒酸铜、偏钒酸铜、焦钒酸铜、钒酸锌、偏钒酸锌、焦钒酸锌、钒酸锆、偏钒酸锆、焦钒酸锆、钒酸铵、偏钒酸铵及焦钒酸铵中的至少一种。
优选的,所述NaNiaCobMncO2·fCNP-Al/tMVOx中的CNP-Al(碳纳米铝)由碳纳米粉、铝源及分散剂混合组成。其中铝源、碳纳米粉质量比为(0.1-30):(40-150)。
优选的,所述CNP-Al由碳纳米粉与分散剂混合,再与铝源混合,然后在保护气氛下900-1300℃处理3-12h制得。
优选的,所述CNP-Al中含Al4C3
优选的,所述铝源为氢氧化铝、乙酸铝、氯化铝、硫酸铝、硝酸铝及氟化铝中的至少一种。
优选的,所述分散剂为聚乙二醇、甲基纤维素、丙烯酸、硅酸钠、甲醇、乙醇及丙醇中的至少一种。
优选的,所述NaNiaCobMncO2·fCNP-Al/tMVOx的粒径D50为1-10μm。
优选的,所述NaNiaCobMncO2·fCNP-Al/tMVOx的粒径Dmax为30-100μm。
优选的,所述NaNiaCobMncO2·fCNP-Al/tMVOx的硬度(HB)为100-500。
优选的,所述NaNiaCobMncO2·fCNP-Al/tMVOx的比表面积BET为0.2-3m2/g。
优选的,所述NaNiaCobMncO2·fCNP-Al/tMVOx的振实密度为2.5-4.5m3/g。
一种如上所述高镍钠离子正极材料的制备方法,包括以下步骤:将钠源、碳纳米铝与镍钴锰材料混合,干燥脱水、一段煅烧、退火,再混入MVOx、二段煅烧得到。
优选的,在二段煅烧后,还包括对所述高镍钠离子正极材料进行除残钠,形成钠盐包覆的高镍钠离子正极材料的步骤。
优选的,将二段煅烧后的高镍钠离子正极材料置于醇溶液中,加入除钠剂,搅拌、静置、水热干燥后得到钠盐包覆的高镍钠离子正极材料。
优选的,所述除钠剂为0.001-0.2M的硫酸铵或0.001-0.2M的硫酸氢铵。
优选的,所述除钠剂加入量占所述高镍钠离子正极材料的0.001-10w%。
进一步优选的,所述除钠剂加入量占所述高镍钠离子正极材料的0.1-2w%。
优选的,所述钠源为氢氧化钠、醋酸钠、草酸钠、磷酸钠及碳酸钠中的至少一种。
优选的,所述镍钴锰材料为废弃三元锂电池回收处理得到。
优选的,所述废弃三元锂电池回收处理的方法为:将废弃三元锂电池回收得到的三元正极材料经过酸浸、除铝、除铜、萃取得到镍钴锰混合物,测定镍钴锰混合物中镍钴锰比,向镍钴锰混合溶液中加补充剂、如前所述的分散剂,充分搅拌,制得均质溶液,恒温,加入沉淀剂、搅拌至完全沉淀、静置,得到镍钴锰材料。
优选的,所述镍钴锰混合物为硫酸镍钴锰混合盐溶液、硝酸镍钴锰混合盐溶液及氯酸镍钴锰混合盐溶液中的至少一种。
优选的,所述补充剂为硫酸镍、硝酸镍、硫酸锰及硝酸锰中的至少一种。
优选的,所述沉淀剂为碳酸、二氧化碳、碳酸钠、碳酸钾、碳酸氢钠、碳酸铵、碳酸氢铵及碳酸锂中的至少一种。
优选的,所述一段煅烧温度为400-900℃,煅烧时间为5-12h,所述二段煅烧温度为600-1000℃,煅烧时间为5-16h。
一种电池,包括如上所述的高镍钠离子正极材料。
本发明的有益效果是:
(1)本发明的高镍钠离子正极材料中由于含有MVOx,从而可以抑制Na+/Ni2+混排,克服现有高镍钠离子正极材料的结构缺陷,从而提高镍-电解液界面的电导率,同时本发明的高镍钠离子正极材料中的CNP-Al由于含有Al4C3,可以增加本发明高镍钠离子正极材料的硬度和强度的同时,还能协同MVOx提高高镍钠离子正极材料的电化学性能,有利于高镍钠离子正极材料在电池中的应用。
(2)本发明的高镍钠离子正极材料在制备过程中通过除钠剂(硫酸铵/硫酸氢铵)的加入,能在高镍钠离子正极材料表面创建一个多功能的包覆层,从而能进一步优化高镍钠离子正极材料的性能。一方面硫酸铵/硫酸氢铵将材料表面上层残留的Na2CO3、NaOH、Na2O碱性物质清除,使得清除的Na2CO3、NaOH、Na2O碱性物质转化为更稳定的钠盐包覆层,另一方面,该钠盐包覆层将更好地直接转化为有助于Na+传导的一个钠盐包覆层,提高材料结构的稳定性,增强界面的Na+转移,提高钠离子在材料与电解液界面的扩散,提高比容量,从而使得高镍钠离子正极材料具有更好的循环稳定性、表面结构的稳定性和良好的电化学性能。
(3)本发明的高镍钠离子正极材料制作过程中用到的镍钴锰材料为废弃三元锂电池回收处理得到,从而能变废为宝,有效减少环境污染。
附图说明
图1为实施例1高镍钠离子正极材料的SEM图;
图2为实施例1高镍钠离子正极材料的TEM图;
图3为对比例1高镍钠离子正极材料的TEM图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
实施例1:
一种高镍钠离子正极材料,其化学式为NaNi0.8Co0.1Mn0.1O2·0.059CNP-Al/0.03NH4VO3
上述高镍钠离子正极材料的制备方法,包括以下步骤:
(1)制备镍钴锰材料:将废弃三元锂电池回收得到的三元正极材料经过酸浸、除铝、除铜、萃取得到硫酸镍钴锰混合盐溶液,测定硫酸镍钴锰混合盐溶液中镍钴锰摩尔比(0.965:0.12:0.11),取500mL置于烧杯中,向硫酸镍钴锰混合盐溶液中加0.011M硫酸镍、0.002M硫酸钴、0.012M硫酸锰,加40ml入甲基纤维素,充分搅拌,45℃恒温,加入碳酸钠、搅拌至完全沉淀、静置3h,得到镍钴锰材料。
(2)制备CNP-Al:将4g碳纳米粉分散于30mL聚乙二醇中,加入75mL0.47M氯化铝溶液混合,送至电炉中,充Ar下,940℃处理6h,得到5.5g含Al4C3的CNP-Al。
(3)合成NaNi0.8Co0.1Mn0.1O2·0.059CNP-Al/0.03NH4VO3:将35g氢氧化钠、46.17g步骤(1)制备得到的镍钴锰材料及步骤(2)制备得到的4.7gCNP-Al混合、球磨,搅拌、干燥脱水、送至电炉中,一段煅烧540℃保温8h、退火,加入2.4gNH4VO3混合、球磨、二段煅烧740℃保温10h,得到高镍钠离子正极材料NaNi0.8Co0.1Mn0.1O2·0.059CNP-Al/0.03NH4VO3
(4)除钠,钠盐包覆:取20g步骤(3)制备得到的高镍钠离子正极材料置于有55mL聚乙二醇的烧杯中,加入25mL0.019M硫酸氢铵溶液,剧烈搅拌、静置、除去上层液体、清洗,然后将下层固体置于微波加热设备中180℃干燥42min,脱水、脱醇、脱氨,得到钠盐包覆的高镍钠离子正极材料NaNi0.8Co0.1Mn0.1O2·0.059CNP-Al/0.03NH4VO3
其中形成钠盐包覆原理如反应式①-⑦所示:其中①-②为氢氧化钠加热脱水得到氧化二钠以及与二氧化碳反应得到的碳酸钠,③-④为硫酸铵分解反应,分别得到,⑤-⑦为硫酸铵分解反应得到硫酸氢铵、硫酸与氢氧化钠、氧化二钠、碳酸钠反应式,得到硫酸钠。
①2NaOH→Na2O+H2O
②2NaOH+CO2→Na2CO3+H2O
③(NH4)2SO4→NH4HSO4+NH3
④NH4HSO4→H2SO4+NH3
⑤NH4HSO4+H2SO4+4NaOH→2Na2SO4+NH3+4H2O
⑥NH4HSO4+H2SO4+2Na2CO3→2Na2SO4+NH3+2H2O+2CO2
⑦NH4HSO4+H2SO4+2Na2O→2Na2SO4+NH3+2H2O
实施例2:
一种高镍钠离子正极材料,其化学式为NaNi0.74Co0.16Mn0.1O2·0.045CNP-Al/0.02NH4VO3
上述高镍钠离子正极材料的制备方法,包括以下步骤:
(1)制备镍钴锰材料:将废弃三元锂电池回收得到的三元正极材料经过酸浸、除铝、除铜、萃取得到硫酸镍钴锰混合盐溶液,测定硫酸镍钴锰混合盐溶液中镍钴锰摩尔比(0.965:0.12:0.11),取500mL置于烧杯中,向硫酸镍钴锰混合盐溶液中加0.09M硫酸钴、0.02M硫酸锰,加40ml入甲基纤维素,充分搅拌,,45℃恒温,加入碳酸钠、搅拌至完全沉淀、静置3h,得到镍钴锰材料。
(2)制备CNP-Al:将4g碳纳米粉分散于48mL聚乙二醇中,加入80mL0.47M氯化铝溶液混合,送至电炉中,充Ar下,940℃处理6h,得到5.4g含Al4C3的CNP-Al。
(3)合成NaNi0.74Co0.16Mn0.1O2·0.045CNP-Al/0.02NH4VO3:将51g氢氧化钠、55.4g步骤(1)制备得到的镍钴锰材料及步骤(2)制备得到的4.8gCNP-Al混合、球磨,搅拌、干燥脱水、送至电炉中,一段煅烧540℃保温8h、退火,加入2.1gNH4VO3混合、球磨、二段煅烧740℃保温10h,得到高镍钠离子正极材料NaNi0.74Co0.16Mn0.1O2·0.045CNP-Al/0.02NH4VO3
(4)除钠,钠盐包覆:取20g步骤(3)制备得到的高镍钠离子正极材料置于有55mL聚乙二醇的烧杯中,加入25mL0.019M硫酸铵溶液,剧烈搅拌、静置、、除去上层液体、清洗,然后将下层固体置于微波加热设备中180℃干燥42min,脱水、脱醇、脱氨,得到钠盐包覆的高镍钠离子正极材料NaNi0.74Co0.16Mn0.1O2·0.045CNP-Al/0.02NH4VO3
实施例3:
一种高镍钠离子正极材料,其化学式为NaNi0.68Co0.23Mn0.09O2·0.037CNP-Al/0.015NaVO3
上述高镍钠离子正极材料的制备方法,包括以下步骤:
(1)制备镍钴锰材料:将废弃三元锂电池回收得到的三元正极材料经过酸浸、除铝、除铜、萃取得到硫酸镍钴锰混合盐溶液,测定硫酸镍钴锰混合盐溶液中镍钴锰摩尔比(0.965:0.12:0.11),取500mL置于烧杯中,向硫酸镍钴锰混合盐溶液中加0.143M硫酸钴、0.018M硫酸锰,加入50mL丙烯酸,充分搅拌,45℃恒温,加入碳酸铵、搅拌至完全沉淀、静置3h,得到镍钴锰材料。
(2)制备CNP-Al:将6.5g碳纳米粉分散于50mL聚乙二醇中,加入70mL0.47M氯化铝溶液混合,送至电炉中,充Ar下,1284℃处理6h,得到7.9g含Al4C3的CNP-Al。
(3)合成NaNi0.68Co0.23Mn0.09O2·0.037CNP-Al/0.015NaVO3:将122.0g醋酸钠、60.1g步骤(1)制备得到的镍钴锰材料及步骤(2)制备得到的6.8CNP-Al混合、球磨,搅拌、干燥脱水、送至电炉中,一段煅烧590℃保温6h、退火,加入2.7gNaVO3混合、球磨、二段煅烧680℃保温16h,得到高镍钠离子正极材料NaNi0.68Co0.23Mn0.09O2·0.037CNP-Al/0.015NaVO3
(4)除钠,钠盐包覆:取20g步骤(3)制备得到的高镍钠离子正极材料置于有45mL聚乙二醇的烧杯中,加入25mL0.019M硫酸铵溶液,剧烈搅拌、静置、除去上层液体、清洗,然后将下层固体置于微波加热设备中180℃干燥42min,脱水、脱醇、脱氨,得到钠盐包覆的高镍钠离子正极材料NaNi0.68Co0.23Mn0.09O2·0.037CNP-Al/0.015NaVO3
实施例4:
一种高镍钠离子正极材料,其化学式为NaNi0.55Co0.18Mn0.27O2·0.034CNP-Al/0.02NaVO3
上述高镍钠离子正极材料的制备方法,包括以下步骤:
(1)制备镍钴锰材料:将废弃三元锂电池回收得到的三元正极材料经过酸浸、除铝、除铜、萃取得到硫酸镍钴锰混合盐溶液,测定硫酸镍钴锰混合盐溶液中镍钴锰摩尔比(0.965:0.12:0.11),取500mL置于烧杯中,向硫酸镍钴锰混合盐溶液中加0.2M硫酸钴、0.25M硫酸锰,加入50mL丙烯酸,充分搅拌,45℃恒温,加入碳酸铵、搅拌至完全沉淀、静置3h,得到镍钴锰材料。
(2)制备CNP-Al:将5.3g碳纳米粉分散于40mL聚乙二醇中,加入60mL0.47M氯化铝溶液混合,送至电炉中,充Ar下,1284℃处理6h,得到6.4g含Al4C3的CNP-Al。
(3)合成NaNi0.55Co0.18Mn0.27O2·0.034CNP-Al/0.02NaVO3:将98.8g醋酸钠、55.1g步骤(1)制备得到的镍钴锰材料及步骤(2)制备得到的5.2CNP-Al混合、球磨,搅拌、干燥脱水、送至电炉中,一段煅烧590℃保温6h、退火,加入3.1gNaVO3混合、球磨、二段煅烧680℃保温16h,得到高镍钠离子正极材料NaNi0.55Co0.18Mn0.27O2·0.034CNP-Al/0.02NaVO3
(4)除钠,钠盐包覆:取20g步骤(3)制备得到的高镍钠离子正极材料置于有45mL聚乙二醇的烧杯中,加入25mL0.019M硫酸铵溶液,剧烈搅拌、静置、除去上层液体、清洗,然后将下层固体置于微波加热设备中180℃干燥42min,脱水、脱醇、脱氨,得到钠盐包覆的高镍钠离子正极材料NaNi0.55Co0.18Mn0.27O2·0.034CNP-Al/0.02NaVO3
对比例1:
一种高镍钠离子正极材料,其化学式为NaNi0.8Co0.1Mn0.1O2·0.059CNP-Al/0.03NH4VO3
上述高镍钠离子正极材料的制备方法,包括以下步骤:
(1)制备镍钴锰材料:将废弃三元锂电池回收得到的三元正极材料经过酸浸、除铝、除铜、萃取得到硫酸镍钴锰混合盐溶液,测定硫酸镍钴锰混合盐溶液中镍钴锰摩尔比(0.965:0.12:0.11),取500mL置于烧杯中,向硫酸镍钴锰混合盐溶液中加0.011M硫酸镍、0.002M硫酸钴、0.012M硫酸锰,加40ml入甲基纤维素,充分搅拌,45℃恒温,加入碳酸钠、搅拌至完全沉淀、静置3h,得到镍钴锰材料。
(2)制备CNP-Al:将4g碳纳米粉分散于30mL聚乙二醇中,加入75mL0.47M氯化铝溶液混合,送至电炉中,充Ar下,940℃处理6h,得到5.5g含Al4C3的CNP-Al。
(3)合成NaNi0.8Co0.1Mn0.1O2·0.059CNP-Al/0.03NH4VO3:将35g氢氧化钠、46.17g步骤(1)制备得到的镍钴锰材料及步骤(2)制备得到的4.7gCNP-Al混合、球磨,搅拌、干燥脱水、送至电炉中,一段煅烧540℃保温8h、退火,加入2.4gNH4VO3混合、球磨、二段煅烧740℃保温10h,得到高镍钠离子正极材料NaNi0.8Co0.1Mn0.1O2·0.059CNP-Al/0.03NH4VO3
对比例2:
一种高镍钠离子正极材料,其化学式为NaNi0.68Co0.23Mn0.09O2·0.037CNP-Al。
上述高镍钠离子正极材料的制备方法,包括以下步骤:
(1)制备镍钴锰材料:将废弃三元锂电池回收得到的三元正极材料经过酸浸、除铝、除铜、萃取得到硫酸镍钴锰混合盐溶液,测定硫酸镍钴锰混合盐溶液中镍钴锰摩尔比(0.965:0.12:0.11),取500mL置于烧杯中,向硫酸镍钴锰混合盐溶液中加0.143M硫酸钴、0.018M硫酸锰,加入50mL丙烯酸,充分搅拌,45℃恒温,加入碳酸钠、搅拌至完全沉淀、静置3h,得到镍钴锰材料。
(2)制备CNP-Al:将6.5g碳纳米粉分散于50mL聚乙二醇中,加入70mL0.47M氯化铝溶液混合,送至电炉中,充Ar下,1284℃处理6h,得到7.9g含Al4C3的CNP-Al。
(3)合成NaNi0.68Co0.23Mn0.09O2·0.037CNP-Al:将122.0g醋酸钠、60.1g步骤(1)制备得到的镍钴锰材料及步骤(2)制备得到的6.8CNP-Al混合、球磨,搅拌、干燥脱水、送至电炉中,一段煅烧590℃保温6h、退火、二段煅烧680℃保温16h,得到高镍钠离子正极材料NaNi0.68Co0.23Mn0.09O2·0.037CNP-Al。
(4)除钠,钠盐包覆:取20g步骤(3)制备得到的高镍钠离子正极材料置于有45mL聚乙二醇的烧杯中,加入25mL0.019M硫酸铵溶液,剧烈搅拌、静置、除去上层液体、清洗,然后将下层固体置于微波加热设备中180℃干燥42min,脱水、脱醇、脱氨,得到钠盐包覆的高镍钠离子正极材料NaNi0.68Co0.23Mn0.09O2·0.037CNP-Al。
对比例3:
一种高镍钠离子正极材料,其化学式为NaNi0.68Co0.23Mn0.09O2/0.015NaVO3
上述高镍钠离子正极材料的制备方法,包括以下步骤:
(1)制备镍钴锰材料:将废弃三元锂电池回收得到的三元正极材料经过酸浸、除铝、除铜、萃取得到硫酸镍钴锰混合盐溶液,测定硫酸镍钴锰混合盐溶液中镍钴锰摩尔比(0.965:0.12:0.11),取500mL置于烧杯中,向硫酸镍钴锰混合盐溶液中加0.143M硫酸钴、0.018M硫酸锰,加入50mL丙烯酸,充分搅拌,45℃恒温,加入碳酸钠、搅拌至完全沉淀、静置3h,得到镍钴锰材料。
(2)合成NaNi0.68Co0.23Mn0.09O2/0.015NaVO3:将122.0g醋酸钠、60.1g步骤(1)制备得到的镍钴锰材料混合、球磨,搅拌、干燥脱水、送至电炉中,一段煅烧590℃保温6h、退火,加入2.7gNaVO3混合、球磨、二段煅烧680℃保温16h,得到高镍钠离子正极材料NaNi0.68Co0.23Mn0.09O2/0.015NaVO3
(3)除钠,钠盐包覆:取20g步骤(3)制备得到的高镍钠离子正极材料置于有45mL聚乙二醇的烧杯中,加入25mL0.019M硫酸铵溶液,剧烈搅拌、静置、除去上层液体、清洗,然后将下层固体置于微波加热设备中180℃干燥42min,脱水、脱醇、脱氨,得到钠盐包覆的高镍钠离子正极材料NaNi0.68Co0.23Mn0.09O2/0.015NaVO3
试验例:
分别测量实施例1-4及对比例1-3的高镍钠离子正极材料的粒径、硬度、BET及振实密度,然后将实施例1-4及对比例1-3的高镍钠离子正极材料与乙炔黑和聚偏氟乙烯(PVDF)按照80:15:5的质量比混合于烧杯中,加入少量的NMP后研磨成浆料,随后用厚度为120μm的涂布器将浆料均匀涂敷到铝箔上,放入真空干燥箱中于100℃保温8h,将其冲成直径为16mm的正极片待用(其中活性物质的质量约15-20mg)。以1.2M的NaPF6的碳酸乙烯酯的有机溶液为电解液,金属钠片为负极,在充满Ar的手套箱中将其组装成CR2025型扣式电池。采用BTS的电池测试仪对电池进行性能测试,测试电压为2.5-4.0V,电流密度为2C,扫描速率为0.1mV/s,测试结果见表1。
表1:测试结果
Figure BDA0003413992210000101
同时,对实施例1的高镍钠离子正极材料做SEM测试及TEM测试,SEM测试的结果如图1所示,TEM测试的结果如图2所示;对对比例1的高镍钠离子正极材料做TEM测试,测试结果如图3所示。
由表1可知,由本申请的高镍钠离子正极材料制成的CR2025型扣式电池,其首次放电比容量能达到161.9mAh·g-1及以上,循环150次后放电比容量仍然在124.5mAh·g-1及以上,由本申请的高镍钠离子正极材料制成的CR2025型扣式电池,其首次放/充电效率能达到73.2%及以上,循环150次后放/充电效率能达到99.7%及以上。
同时,对比实施例1及对比例1可知,当其他条件不变时,最后对高镍钠离子正极材料不进行除残钠,最终制得的高镍钠离子正极材料的放电比容量及放/充电效率较差,使得高镍钠离子正极材料循环稳定性变差。
对比实施例3及对比例2-3可知,当其他条件不变时,高镍钠离子正极材料中不含MVOx或CNP-Al时,高镍钠离子正极材料的硬度会下降,同时其放电比容量及放/充电效率均较差。
此外,由图1可知,实施例1高镍钠离子正极材料大小为5-10μm为主,颗粒之间比较紧凑,分散的高镍钠离子正极材料较少。
由图2可知,实施例1的高镍钠离子正极材料表面有一层38nm的包覆层,包覆层的存在能避免结构缺陷提高电化学性能,由图3可知,对比例1的高镍钠离子正极材料表面光滑,未见包覆层。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种高镍钠离子正极材料,其特征在于:所述高镍钠离子正极材料的化学式为NaNiaCobMncO2·fCNP-Al/tMVOx,其中a+b+c=1,0.5≤a<1,0<b≤0.25,a/b≥2.5,0<c≤0.3,0<t≤0.1,0<f≤0.1,所述M为钠、铜、锌、锆或铵中至少一种。
2.根据权利要求1所述的一种高镍钠离子正极材料,其特征在于:所述NaNiaCobMncO2·fCNP-Al/tMVOx中的MVOx为钒酸盐、偏钒酸盐及焦钒酸盐中的至少一种。
3.根据权利要求1所述的一种高镍钠离子正极材料,其特征在于:所述NaNiaCobMncO2·fCNP-Al/tMVOx中的CNP-Al由碳纳米粉、铝源及分散剂混合组成。
4.根据权利要求3所述的一种高镍钠离子正极材料,其特征在于:所述CNP-Al由碳纳米粉与分散剂混合,再与铝源混合,然后在保护气氛下900-1300℃处理3-12h制得。
5.根据权利要求4所述的一种高镍钠离子正极材料,其特征在于:所述CNP-Al中含Al4C3
6.一种如权利要求1至5任一项所述高镍钠离子正极材料的制备方法,其特征在于:包括以下步骤:将钠源、碳纳米铝与镍钴锰材料混合,干燥脱水、一段煅烧、退火,再混入MVOx、二段煅烧得到。
7.根据权利要求6所述的一种高镍钠离子正极材料的制备方法,其特征在于:在二段煅烧后,还包括对所述高镍钠离子正极材料进行除残钠,形成钠盐包覆的高镍钠离子正极材料的步骤。
8.根据权利要求7所述的一种高镍钠离子正极材料的制备方法,其特征在于:所述除残钠的操作步骤为:将二段煅烧后的高镍钠离子正极材料置于醇溶液中,加入除钠剂,搅拌、静置、水热干燥后得到钠盐包覆的高镍钠离子正极材料。
9.根据权利要求6至8任一项所述的一种高镍钠离子正极材料的制备方法,其特征在于:所述镍钴锰材料为废弃三元锂电池回收处理得到。
10.一种电池,其特征在于:包括权利要求1至5任一项所述的高镍钠离子正极材料。
CN202111540231.8A 2021-12-16 2021-12-16 一种高镍钠离子正极材料及其制备方法和电池 Active CN114400318B (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202111540231.8A CN114400318B (zh) 2021-12-16 2021-12-16 一种高镍钠离子正极材料及其制备方法和电池
PCT/CN2022/116255 WO2023109193A1 (zh) 2021-12-16 2022-08-31 一种高镍钠离子正极材料及其制备方法和电池
US18/564,772 US12091328B2 (en) 2021-12-16 2022-08-31 High-nickel sodium ion positive electrode material and preparation method therefor and battery
DE112022000798.2T DE112022000798T5 (de) 2021-12-16 2022-08-31 Natriumionen-material für positive elektroden mit hohem nickelgehalt, verfahren zu dessen herstellung, sowie batterie
HU2400065A HUP2400065A1 (hu) 2021-12-16 2022-08-31 Magas nikkeltartalmú nátriumion pozitívelektród-anyag és elõállítására szolgáló eljárás és akkumulátor
GB2309773.6A GB2617013A (en) 2021-12-16 2022-08-31 High-nickel sodium ion positive electrode material and preparation method therefor and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111540231.8A CN114400318B (zh) 2021-12-16 2021-12-16 一种高镍钠离子正极材料及其制备方法和电池

Publications (2)

Publication Number Publication Date
CN114400318A true CN114400318A (zh) 2022-04-26
CN114400318B CN114400318B (zh) 2024-10-15

Family

ID=81226614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111540231.8A Active CN114400318B (zh) 2021-12-16 2021-12-16 一种高镍钠离子正极材料及其制备方法和电池

Country Status (6)

Country Link
US (1) US12091328B2 (zh)
CN (1) CN114400318B (zh)
DE (1) DE112022000798T5 (zh)
GB (1) GB2617013A (zh)
HU (1) HUP2400065A1 (zh)
WO (1) WO2023109193A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023109193A1 (zh) * 2021-12-16 2023-06-22 广东邦普循环科技有限公司 一种高镍钠离子正极材料及其制备方法和电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018743A (ja) * 2005-07-05 2007-01-25 Sony Corp 正極活物質およびその製造方法、並びに電池
CN104953172A (zh) * 2015-07-24 2015-09-30 上海中聚佳华电池科技有限公司 一类钠离子电池正极材料及其制备方法、钠离子电池
CN108963242A (zh) * 2018-07-11 2018-12-07 合肥师范学院 一种无定型钠离子电池正极材料及其制备方法和钠离子电池
CN109119610A (zh) * 2018-08-20 2019-01-01 武汉大学 一种碱性水溶液钠离子电池
KR20190117049A (ko) * 2018-04-06 2019-10-16 주식회사 엘지화학 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
CN113258060A (zh) * 2020-02-11 2021-08-13 中国科学院物理研究所 一种钠离子电池高镍层状氧化物材料及其制备方法和应用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160218363A1 (en) 2013-09-09 2016-07-28 The Regents Of The University Of California Lithium and sodium containing layered oxide material, cathodes and sodium ion electrochemical cells
CN106684369B (zh) * 2017-02-16 2019-10-15 长沙理工大学 一种钠快离子导体镶嵌包覆的钠离子电池正极材料及其合成方法
EP4021852A1 (en) * 2019-08-27 2022-07-06 Toyota Motor Europe Sodium layered oxides as cathode materials for sodium ion batteries and method of manufacturing the same
CN110808362A (zh) * 2019-10-18 2020-02-18 王杰 一种异丙醇铝包覆Na2Mn8O16-碳纳米管的钠离子正极材料及其制法
CN112456567A (zh) 2020-11-18 2021-03-09 浙江钠创新能源有限公司 一种包覆结构钠离子电池正极材料的制备方法
CN112928252A (zh) 2021-01-22 2021-06-08 中国科学院过程工程研究所 一种钠离子电池正极材料及其制备方法和应用
CN114400318B (zh) * 2021-12-16 2024-10-15 广东邦普循环科技有限公司 一种高镍钠离子正极材料及其制备方法和电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018743A (ja) * 2005-07-05 2007-01-25 Sony Corp 正極活物質およびその製造方法、並びに電池
CN104953172A (zh) * 2015-07-24 2015-09-30 上海中聚佳华电池科技有限公司 一类钠离子电池正极材料及其制备方法、钠离子电池
KR20190117049A (ko) * 2018-04-06 2019-10-16 주식회사 엘지화학 이차전지용 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
CN108963242A (zh) * 2018-07-11 2018-12-07 合肥师范学院 一种无定型钠离子电池正极材料及其制备方法和钠离子电池
CN109119610A (zh) * 2018-08-20 2019-01-01 武汉大学 一种碱性水溶液钠离子电池
CN113258060A (zh) * 2020-02-11 2021-08-13 中国科学院物理研究所 一种钠离子电池高镍层状氧化物材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANG HONGHUI ET AL.: "Comprehensive recovery of mixed spent of LiNixCoyMn(1-x-y)O2 and LiFePO4", JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT, vol. 22, no. 6, 8 June 2020 (2020-06-08), pages 1734 - 1743, XP037278230, DOI: 10.1007/s10163-020-01059-6 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023109193A1 (zh) * 2021-12-16 2023-06-22 广东邦普循环科技有限公司 一种高镍钠离子正极材料及其制备方法和电池
GB2617013A (en) * 2021-12-16 2023-09-27 Guangdong Brunp Recycling Technology Co Ltd High-nickel sodium ion positive electrode material and preparation method therefor and battery
US12091328B2 (en) 2021-12-16 2024-09-17 Guangdong Brunp Recycling Technology Co., Ltd. High-nickel sodium ion positive electrode material and preparation method therefor and battery

Also Published As

Publication number Publication date
DE112022000798T5 (de) 2023-11-23
US12091328B2 (en) 2024-09-17
CN114400318B (zh) 2024-10-15
HUP2400065A1 (hu) 2024-07-28
US20240270602A1 (en) 2024-08-15
GB2617013A (en) 2023-09-27
WO2023109193A1 (zh) 2023-06-22
GB202309773D0 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
CN103904311B (zh) 一种表面包覆复合的富锂锰基正极材料及其制备方法
CN103972499B (zh) 一种改性的镍钴铝酸锂正极材料及其制备方法
CN112850690B (zh) 石墨烯负载的双过渡金属硫化物复合材料的制备方法及储钠应用
EP2910528A1 (en) Li-Ni COMPLEX OXIDE PARTICLE POWDER AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
WO2008068905A1 (ja) 非水電解質二次電池用Li-Ni複合酸化物粒子粉末及びその製造方法、並びに非水電解質二次電池
CN108258223B (zh) 一种多级结构的球形n掺杂c包覆金属氧化物负极材料的制备方法
CN108134064B (zh) 一种正极材料前驱体及其制备方法和正极材料
CN110247045A (zh) 一种镍钴锰三元正极材料及其制备方法与应用
CN114361435A (zh) 钠离子电池的纳米级前驱体、复合正极材料及制备方法
CN111293288B (zh) 一种NaF/金属复合补钠正极活性材料、正极材料、正极及其制备和在钠电中的应用
CN111106337B (zh) 一种碳纳米管改性富锂锰基正极材料及其制备方法
WO2023071396A1 (zh) 钠离子电池正极材料及其制备方法和应用
CN110817972A (zh) 一种氟改性高电压钴酸锂、其制备方法及电池
CN109301221B (zh) 一种氧化锌/镍复合微米棒电极材料及其制备方法
CN112467139A (zh) 一种锂离子电池正极预锂化剂及其制备方法和应用
CN102259933A (zh) 一种米粒状α-三氧化二铁的制备方法和应用
CN115148987A (zh) 一种超高镍三元正极材料及其制备方法和应用
CN114436344B (zh) 具有大通道的正极材料前驱体的制备方法及其应用
WO2023109193A1 (zh) 一种高镍钠离子正极材料及其制备方法和电池
CN108832106A (zh) 一种还原氧化石墨烯-氧化镍钴铝锂复合正极材料、其制备方法及其应用
CN113346055A (zh) 复合磷酸盐包覆的锂离子电池高镍正极材料及其制备方法
CN113247966A (zh) 富锂锰基前驱体、正极材料及其制备方法
CN110190277B (zh) 一种锂离子电池正极材料LiMnO2@C及其制备方法
CN116741984A (zh) 一种钠离子电池正极材料及制备方法、正极及钠离子电池
CN113471421B (zh) 锂硫电池复合正极材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant