WO2023109174A1 - 一种纤维增强硅质模块及制备方法 - Google Patents

一种纤维增强硅质模块及制备方法 Download PDF

Info

Publication number
WO2023109174A1
WO2023109174A1 PCT/CN2022/114519 CN2022114519W WO2023109174A1 WO 2023109174 A1 WO2023109174 A1 WO 2023109174A1 CN 2022114519 W CN2022114519 W CN 2022114519W WO 2023109174 A1 WO2023109174 A1 WO 2023109174A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
main raw
parts
raw materials
total weight
Prior art date
Application number
PCT/CN2022/114519
Other languages
English (en)
French (fr)
Inventor
王鸿妹
Original Assignee
洛阳迈乐耐火材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洛阳迈乐耐火材料有限公司 filed Critical 洛阳迈乐耐火材料有限公司
Priority to JP2022558325A priority Critical patent/JP7450869B2/ja
Publication of WO2023109174A1 publication Critical patent/WO2023109174A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9692Acid, alkali or halogen resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention belongs to the field of preparation of refractory silica brick materials for coke ovens, and in particular relates to a fiber-reinforced silica module and a preparation method thereof.
  • the average temperature of the walls of the combustion chamber is about 1300°C
  • the average temperature of the carbonization chamber is about 1100°C, and even higher in some areas.
  • the wall bears the gravity of the furnace top machinery and the upper masonry, and the wall is subjected to the erosion of retort gas and ash, as well as the expansion pressure of the furnace charge and the side pressure of coke pushing. Therefore, refractory materials are required to have good wall tightness, good thermal conductivity, high load softening temperature, strong high temperature corrosion resistance, and high overall structural strength.
  • the object of the present invention is to solve the above problems and provide a fiber-reinforced silicon module with small mortar joint area, strong high temperature corrosion resistance, high overall structural strength, good fire resistance, fast masonry and fast oven.
  • a fiber reinforced siliceous module the components include SiO 2 94-98.9wt%, Na 2 O and K 2 O total 0.1-3.0wt%, Al 2 O 3 0-2wt%, Fe 2 O 3 0-1.0wt% %.
  • a fiber-reinforced siliceous module made of raw materials including the following main raw materials: 82-92 parts of quartz aggregate, 1-2 parts of refractory cement, and 7-15 parts of zirconium-containing silicon dioxide micropowder .
  • the quartz aggregate is fused silica with a particle size of ⁇ 90um;
  • the refractory cement is aluminate cement or Portland cement with a particle size of ⁇ 5um;
  • the purity of zirconium-containing silica powder is ⁇ 97%, and the particle size is ⁇ 1um.
  • the SiO 2 +ZrO 2 mass fraction content in the zirconium-containing silica micropowder is >99%, wherein the ZrO 2 mass fraction content is 2%-3%.
  • the finished raw materials also include auxiliary materials
  • the auxiliary materials include: dispersants with a total weight of 0.1%-0.3% of main raw materials, explosion-proof fibers with a total weight of 0.06%-0.1% of main raw materials, and 0-1% of a total weight of main raw materials. Reinforcing fibers, 2%-4% of water by weight of main raw materials and silica sol of 7%-12% by weight of main raw materials.
  • the dispersant is one or two composites of sodium tripolyphosphate and sodium hexametaphosphate.
  • the reinforcing fibers are quartz fibers.
  • the invention also provides a preparation method of the fiber-reinforced siliceous module, and the module is formed by pouring.
  • the invention also provides a preparation method of the fiber-reinforced siliceous module, including a curing step.
  • the temperature in the curing step is 22-26°C.
  • the present invention has the following beneficial effects:
  • the coke oven part Adopting the modular pouring integrated molding process, the coke oven part is designed into refractory pouring modules of a certain shape and size, and the mold design, processing, pouring and roasting of the modules are carried out, and finally the masonry is completed.
  • the advantages are as follows:
  • the module can be suitable for making products of various sizes and shapes, and is suitable for making large and special-shaped components that are difficult to realize by machine pressing, and the cost of mold production is greatly reduced;
  • the modules can be prefabricated in advance according to the size and shape, and assembled directly according to the drawings or masonry or hanging on site, which greatly shortens the maintenance time and does not require a large number of professional masonry workers, saving labor costs. It is estimated that the masonry period can be shortened by more than half , to create better economic benefits for customers;
  • One module can replace at least 100 ordinary silica bricks, reducing the design of mortar joints and grooves in the masonry process. It greatly reduces the ash joints of coke oven silica brick masonry, improves volume stability, thermal shock and impact resistance, and improves the service life of coke ovens. Fast oven, improve maintenance efficiency.
  • the present invention adds anti-explosion fiber and reinforcing fiber compound through optimal proportioning. It can be seen from the strength test results that the product can improve the strength of the module while preventing cracking. By optimizing the temperature and humidity curing system, a product that is easy to release and has a smooth surface is obtained.
  • Fig. 1 is the microstructural diagram of embodiment 1 product after anti-corrosion test.
  • Fig. 2 is the microstructural figure of embodiment 2 product after anti-corrosion test.
  • Fig. 3 is the microstructural diagram of the product of embodiment 3 after the anti-corrosion test.
  • Fig. 4 is the microstructural diagram of the product of embodiment 4 after the anti-corrosion test.
  • Fig. 5 and Fig. 6 are microstructural diagrams of different magnifications of the product of embodiment 7.
  • Fig. 7 and Fig. 8 are microstructural diagrams of different magnifications of the product of embodiment 8.
  • Embodiment A fiber-reinforced siliceous module adopts a modular pouring integrated molding process. According to the shape of the coke oven, the mold is designed and processed, and then the module is poured and roasted to finally complete the masonry.
  • the height of the fiber-reinforced siliceous modular product of the present invention can reach the height of 6-10 layers of traditional silica bricks, ⁇ 1.3m; the length is the length of 2-5 fire channels, ⁇ 2.2m; the width is 1 fire channel The width, ⁇ 1m.
  • the present invention makes the coke oven as a whole module, but it does not mean that the components of the present invention cannot be made into silica bricks alone, and then the silica bricks are built into coke ovens. Only the present invention is directly made into a whole by coke oven module pouring, and the effect is better.
  • Slurry preparation Mix the weighed main raw materials by a three-dimensional mixer for 20 minutes, and then add auxiliary materials.
  • the auxiliary materials are added in the following proportion, which is the percentage relative to the total weight of the main raw materials: 0.1% sodium tripolyphosphate, 0.02% low melting point Explosion-proof fiber, 0.04% high-melting-point explosion-proof fiber, 4% water, 7% silica sol, mixed with a high-speed mixing mill for 10 minutes to obtain a slurry.
  • the curing method is temperature-controlled and high-humidity curing.
  • the curing environment temperature is 25°C, humidity is 35%, and the curing time is 100 hours.
  • the quartz aggregate is fused silica with a particle size of ⁇ 90um; the aluminate cement has a particle size of ⁇ 5um; the zirconium-containing silica powder has a purity of ⁇ 97% and a particle size of ⁇ 1um.
  • the SiO 2 +ZrO 2 content (mass fraction, the same below) in the zirconium-containing silica micropowder in the above step S1 is >99%, wherein the ZrO 2 content is 2%.
  • the melting point of the low melting point explosion-proof fiber in the above step S2 is 110-120°C, and the melting point of the high melting point explosion-proof fiber is 140-160°C.
  • Embodiment 2 experimental procedure is consistent with embodiment 1, difference is:
  • Slurry preparation Mix the weighed main raw materials through a three-dimensional mixer for 20 minutes, and then add auxiliary materials.
  • the auxiliary materials are added in the following proportion, which is the percentage relative to the total weight of the main raw materials: 0.2% sodium hexametaphosphate, 0.02% low melting point Explosion-proof fiber, 0.04% high-melting-point explosion-proof fiber, 3% water, 8% silica sol, mixed with a high-speed mixing mill for 10 minutes to obtain a slurry.
  • Embodiment 3 experimental procedure is consistent with embodiment 1, difference is:
  • Slurry preparation Mix the weighed main raw materials by a three-dimensional mixer for 20 minutes, and then add auxiliary materials.
  • the auxiliary materials are added in the following proportion, which is the percentage relative to the total weight of the main raw materials: 0.1% sodium tripolyphosphate and 0.2% hexameta Sodium phosphate, 0.02% low-melting-point explosion-proof fiber, 0.04% high-melting-point explosion-proof fiber, 2% water, 10% silica sol, mixed with a high-speed mixing mill for 10 minutes to obtain a slurry.
  • Embodiment 4 experimental procedure is consistent with embodiment 1, difference is:
  • Slurry preparation Mix the weighed main raw materials by a three-dimensional mixer for 20 minutes, and then add auxiliary materials.
  • the auxiliary materials are added in the following proportion, which is the percentage relative to the total weight of the main raw materials: 0.2% sodium tripolyphosphate and 0.1% hexameta Sodium phosphate, 0.02% low-melting-point explosion-proof fiber, 0.04% high-melting-point explosion-proof fiber, 2% water, 12% silica sol, mixed with a high-speed mixing mill for 10 minutes to obtain a slurry.
  • Embodiment 5 experimental procedure is consistent with embodiment 4, difference is:
  • Slurry preparation Mix the weighed main raw materials by a three-dimensional mixer for 20 minutes, and then add auxiliary materials.
  • the auxiliary materials are added in the following proportion, which is the percentage relative to the total weight of the main raw materials: 0.2% sodium tripolyphosphate and 0.1% hexameta Sodium phosphate, 0.02% low-melting-point explosion-proof fiber, 0.04% high-melting-point explosion-proof fiber, 0.1% quartz fiber, 2% water, 12% silica sol, mixed with a high-speed mixing mill for 10 minutes to obtain a slurry.
  • the diameter of the quartz fiber in the step S2 is 0.5-8um.
  • other inorganic fibers can also be selected according to actual needs, such as high silica fiber, ceramic fiber or zirconium-containing fiber cotton.
  • Embodiment 6 experimental procedure is consistent with embodiment 5, difference is:
  • Embodiment 7 experimental procedure is consistent with embodiment 5, difference is:
  • Slurry preparation Mix the weighed main raw materials by a three-dimensional mixer for 20 minutes, and then add auxiliary materials.
  • the auxiliary materials are added in the following proportion, which is the percentage relative to the total weight of the main raw materials: 0.2% sodium tripolyphosphate and 0.1% hexameta Sodium phosphate, 0.02% low-melting-point explosion-proof fiber, 0.04% high-melting-point explosion-proof fiber, 0.5% quartz fiber, 2% water, 12% silica sol, mixed with a high-speed mixing mill for 10 minutes to obtain a slurry.
  • Embodiment 8 experimental procedure is consistent with embodiment 5, difference is:
  • Slurry preparation Mix the weighed main raw materials by a three-dimensional mixer for 20 minutes, and then add auxiliary materials.
  • the auxiliary materials are added in the following proportion, which is the percentage relative to the total weight of the main raw materials: 0.2% sodium tripolyphosphate and 0.1% hexameta Sodium phosphate, 0.02% low-melting-point explosion-proof fiber, 0.04% high-melting-point explosion-proof fiber, 1% quartz fiber, 2% water, 12% silica sol, mixed with a high-speed mixing mill for 10 minutes to obtain a slurry.
  • Embodiment 9 experimental procedure is consistent with embodiment 1, difference is:
  • Slurry preparation Mix the weighed main raw materials by a three-dimensional mixer for 20 minutes, and then add auxiliary materials.
  • the auxiliary materials are added in the following proportion, which is the percentage relative to the total weight of the main raw materials: 0.1% sodium tripolyphosphate, 0.1% high melting point Explosion-proof fibers, 4% water, and 7% silica sol were mixed with a high-speed mixing mill for 10 minutes to obtain a slurry.
  • the curing method is temperature-controlled high-humidity curing, and the curing environment temperature is 8°C.
  • Embodiment 10 experimental procedure is consistent with embodiment 1, difference is:
  • Slurry preparation Mix the weighed main raw materials by a three-dimensional mixer for 20 minutes, and then add auxiliary materials.
  • the auxiliary materials are added in the following proportion, which is the percentage relative to the total weight of the main raw materials: 0.1% sodium tripolyphosphate, 0.03% high melting point Explosion-proof fibers, 0.03% low-melting-point explosion-proof fibers, 4% water, 7% silica sol, mixed for 10 minutes with a high-speed mixing mill to obtain a slurry.
  • the curing method is temperature-controlled high-humidity curing, and the curing environment temperature is 22°C.
  • Embodiment 11 experimental procedure is consistent with embodiment 1, difference is:
  • the curing method is temperature-controlled high-humidity curing, and the curing environment temperature is 38°C.
  • Embodiment 12 experimental procedure is consistent with embodiment 1, difference is:
  • Slurry preparation Mix the weighed main raw materials by a three-dimensional mixer for 20 minutes, and then add auxiliary materials.
  • the auxiliary materials are added in the following proportion, which is the percentage relative to the total weight of the main raw materials: 0.1% sodium tripolyphosphate, 0.02% high melting point Explosion-proof fibers, 0.04% low-melting-point explosion-proof fibers, 4% water, 7% silica sol, mixed for 10 minutes with a high-speed mixing mill to obtain a slurry.
  • the curing method is temperature-controlled high-humidity curing, and the curing environment temperature is 26°C.
  • the corrosion resistance test is carried out by the molten alkali crucible method according to the requirements of "Test Method for Alkali Resistance of Refractory Materials (GB/T 14983-2008)".
  • the corrosion medium is Na 2 CO 3
  • a certain amount of alkali salt potassium carbonate is put into the sample, and Na 2 CO 3 reacts with the experimental material at high temperature to produce volume expansion.
  • the degree of erosion damage of the sample is observed with the naked eye , so as to determine the quality of the refractory material's alkali corrosion resistance. Raise to 1500°C at a rate of (4-6)°C/min, and keep at this temperature for 5 hours.
  • FIG. 1 is the microstructural figure of embodiment 1 product after anti-erosion test
  • Fig. 2 is the microstructural figure of embodiment 2 product after anti-erosion test
  • Fig. 3 is the microstructural figure of embodiment 3 product after anti-erosion test Microstructural diagram
  • Fig. 4 is the microstructural diagram of the product of embodiment 4 after the anti-corrosion test.
  • Example 1 The chemical composition characterization results of the samples of Example 1, Example 2, Example 3 and Example 4 are shown in Table 2.
  • Table 3 shows the performance comparison data of the relevant test performance of Example 4 and the performance of common coke oven silica bricks.
  • Performance Products of the invention Ordinary coke oven silica brick Compressive strength (MPa) 55 45 Apparent porosity(%) 12 20 Bulk density (g/cm 3 ) 1.95 1.85 Thermal shock stability (1100°C, water cooling, number of times) 25 0
  • Example 5 Compared with the flexural strength of the sample of Example 4, the percentage increase of the flexural strength of Example 5, Example 6, Example 7 and Example 8 is shown in Table 4. It can be seen from Table 4 that when the mass fraction of the added quartz fiber reaches 0.5wt%, the fiber-reinforced siliceous large-scale module sample exhibits the best flexural strength.
  • Example 5 8.0
  • Example 6 3.1
  • Example 7 26.7
  • Example 8 17.4
  • Fig. 5 and Fig. 6 are microstructural diagrams of different magnifications of the product of embodiment 7, and Fig. 7 and Fig. 8 are microstructural diagrams of different magnifications of the product of embodiment 8. All can see quartz fiber in Fig. 5 and Fig. 7, and the quartz fiber in embodiment 7 and embodiment 8 is distributed in the different positions of siliceous large-scale module, and the quartz fiber diameter and length in embodiment 7 and embodiment 8 are There are also differences. It can be seen from Figure 6 and Figure 8 that there is a certain difference in the structural density of the fiber-reinforced silicon large-scale module in Example 7 and Example 8. From the test results, it can be seen that the local structural density of Figure 8 is better than that of Figure 6.
  • Embodiment 9, embodiment 10, embodiment 11, the moisture content (wt %) of the center of embodiment 9, embodiment 10, embodiment 11, embodiment 12 are as shown in table 5

Abstract

一种纤维增强硅质模块,其制成原料包括以下组分的主原料:按质量份数计,石英骨料82-92份,耐火水泥1-2份,含锆二氧化硅微粉7-15份。该模块大大减少了焦炉硅砖砌筑的灰缝,提高了体积稳定性、热震性和抗冲击性能,提高了焦炉的使用寿命,改变了筑炉方式,快速烘炉,提高了维修效率,在防裂的同时还能提高模块的强度和高温耐腐蚀性。

Description

一种纤维增强硅质模块及制备方法 技术领域
本发明属于焦炉用耐火硅砖材料制备的领域,尤其涉及一种纤维增强硅质模块及制备方法。
背景技术
目前,在焦炉生产时,燃烧室墙面平均温度约为1300℃,炭化室平均温度约为1100℃,局部区域还要高些。在此温度下,墙体承受炉顶机械和上部砌体的重力,墙面要经受干馏煤气和灰渣的侵蚀,以及炉料的膨胀压力和推焦侧压力。因此要求耐火材料墙体严密性好、导热性好、荷重软化温度高、高温抗蚀性强、整体结构强度高。
然而,以5.5m高的焦炉为例,通常使用120mm厚的普通硅砖砌筑烟道通常需要46层,砖与砖之间,层与层之间都存在灰缝,这些灰缝都是焦炉使用过程中最先受到侵蚀损坏的部位。普通产品采用压制成型工艺,硅砖的高度和宽度的尺寸受限,增加了焦炉硅砖砌筑的灰缝面积。硅质制品尺寸大型化会减小焦炉硅砖砌筑的灰缝面积,但是会遇到4个问题:1.烧制过程中的开裂;2.控制硅砖的尺寸公差;3.耐压强度的减弱;4.可制造形状受限。此外,焦炉砌筑繁琐,施工工期长,而且砌筑完成后需要长时间烘炉。
因此,急需一种灰缝面积小、高温抗蚀性强、整体结构强度高、耐火性能好、快速砌筑、快速烘炉的制品来取代目前传统的焦炉用硅砖。
发明内容
本发明的目的就是针对上述问题,提供一种灰缝面积小、高温抗蚀性强、整体结构强度高、耐火性能好、快速砌筑、快速烘炉的纤维增强硅质模块。
为实现上述目的,本发明所采用的技术方案如下:
一种纤维增强硅质模块,组分包括SiO 2 94-98.9wt%,Na 2O和K 2O合计0.1-3.0wt%,Al 2O 3 0-2wt%,Fe 2O 3 0-1.0wt%。
一种纤维增强硅质模块,制成原料包括以下组分的主原料:按质量份数计,石英骨料82-92份,耐火水泥1-2份,含锆二氧化硅微粉7-15份。
进一步的,所述石英骨料为熔融石英,粒径≤90um;所述耐火水泥为铝酸盐水泥或硅酸盐水泥,粒径≤5um;含锆二氧化硅微粉纯度≥97%,粒径≤1um。
进一步的,所述含锆二氧化硅微粉中SiO 2+ZrO 2质量分数含量>99%,其中ZrO 2质量分数含量为2%-3%。
进一步的,制成原料还包括辅料,所述辅料包括:主原料总重量0.1%-0.3%的分散剂、主原料总重量0.06%-0.1%的防爆纤维、主原料总重量0-1%的增强纤维、主原料总重量2%-4%的水和主原料总重量7%-12%的硅溶胶。
进一步的,所述分散剂为三聚磷酸钠和六偏磷酸钠的一种或两种复合。所述增强纤维为石英纤维。
本发明还提供一种纤维增强硅质模块的制备方法,模块通过浇筑成型。
本发明还提供一种纤维增强硅质模块的制备方法,包括养护步骤。
进一步的,所述养护步骤的温度为22-26℃。
采用以上技术方案,本发明具有以下有益效果:
1、采用模块化浇筑一体成型工艺,将焦炉部位设计成一定形状、大小的耐火材料浇注模块,并进行模具设计、加工和模块的浇注、焙烧,最终完成砌筑。与传统的硅砖砌筑相比优点如下:
(1)模块可以适合制成各种大小不同形状各异的制品,适合制作机压成型难以实现的大型、异形构件,模具制作成本大大降低;
(2)模块可以按照大小形状提前预制,现场直接按照图纸或砌筑或吊挂拼装,大大缩短维修时间,也不需要大量专业的砌筑工,节省人工成本,预计砌筑工期可以缩短一半以上,为客户创造较好的经济效益;
(3)一个模块至少可以取代100块普通硅砖,减少了在砌筑过程中的灰缝和沟槽设计。大大减少了焦炉硅砖砌筑的灰缝,提高了体积稳定性、热震性和抗冲击性能,提高了焦炉的使用寿命。快速烘炉,提高了维修效率。
2、本发明通过优选配比添加防爆纤维和增强纤维复合,从强度测试结果可知,产品在防裂的同时还能提高模块的强度。通过优化温湿度养护制度,获得易脱膜、表面光滑的产品。
3、本发明通过优化原料配比,从扫描电镜图结果可以看出,优选条件下获得了高温抗腐蚀性好的硅质大型模块。
附图说明
图1为实施例1产品经过抗侵蚀试验后的显微结构图。
图2为实施例2产品经过抗侵蚀试验后的显微结构图。
图3为实施例3产品经过抗侵蚀试验后的显微结构图。
图4为实施例4产品经过抗侵蚀试验后的显微结构图。
图5、图6为实施例7产品不同倍率的显微结构图。
图7、图8为实施例8产品不同倍率的显微结构图。
具体实施方式
应当理解,此处所描述的具体实施例仅用以解释本发明,并非是对本发明的限定。
实施例:一种纤维增强硅质模块,采用模块化浇筑一体成型工艺,根据焦炉的形状,进行模具设计、加工,然后进行模块的浇注、焙烧,最终完成砌筑。本发明的纤维增强硅质模块制品的高度可以达到6-10层传统硅砖的高度,≤1.3m;长度是2-5个立火道的长度,≤2.2m;宽度是1个立火道的宽度,≤1m。
需要说明的是,本发明是将焦炉作为模块整体制成,但并非代表,本发明的组分不可以单独制成硅砖,然后再将硅砖筑砌成焦炉。只是本发明直接通过焦炉 模块浇筑制成整体,效果更好。
本发明纤维增强硅质模块的制备方法,具体的步骤如下:
S1.称量主原料(主原料按质量份数计)。称取石英骨料82份,铝酸盐水泥2份,含锆二氧化硅微粉15份。
S2.浆料制备。将称量好的主原料通过三维混合机混合20min,然后加入辅料,所述辅料按以下比例加入,此比例为相对于主原料总重量的百分比:其中0.1%三聚磷酸钠、0.02%低熔点防爆纤维、0.04%高熔点防爆纤维、4%水、7%硅溶胶,使用高速混合碾混合10min即得到浆料。
S3.浇筑成型。将浆料倒入振动平台振动2-3分钟,消除气泡后,把上述制备好的浆料浇筑到设计好的模块化模具中,采用分层浇注,同时使用振动棒振动成型4分钟,即完成浇筑成型。
S4.养护。养护方式为控温高湿度养护,养护环境温度为25℃,湿度为35%,养护时间100h。
S5.拆模。养护完成后拆模,干燥温度为120℃,干燥时间100h。
S6.烧结。将上述浇筑成型的大型硅质模块放到1400℃的马弗炉中烧结,随炉升温,升温速率为10℃/min,保温10h,即可得到纤维增强硅质大型模块。
上述步骤S1中石英骨料为熔融石英,粒径≤90um;所述铝酸盐水泥,粒径≤5um;含锆二氧化硅微粉纯度≥97%,粒径≤1um。
上述步骤S1的含锆二氧化硅微粉中SiO 2+ZrO 2含量(指质量分数,下同)>99%,其中ZrO 2含量为2%。
上述步骤S2中的低熔点防爆纤维的熔点为110-120℃,高熔点防爆纤维的熔点为140-160℃。
实施例2:实验步骤和实施例1一致,区别在于:
S1.称量主原料(主原料按质量份数计)。称取石英骨料87份,硅酸盐水泥2份,含锆二氧化硅微粉10份。
S2.浆料制备。将称量好的主原料通过三维混合机混合20min,然后加入辅料,所述辅料按以下比例加入,此比例为相对于主原料总重量的百分比:其中0.2%六偏磷酸钠、0.02%低熔点防爆纤维、0.04%高熔点防爆纤维、3%水、8%硅溶胶,使用高速混合碾混合10min即得到浆料。
实施例3:实验步骤和实施例1一致,区别在于:
S1.称量主原料(主原料按质量份数计)。称取石英骨料92份,铝酸盐水泥1份,含锆二氧化硅微粉7份。
S2.浆料制备。将称量好的主原料通过三维混合机混合20min,然后加入辅料,所述辅料按以下比例加入,此比例为相对于主原料总重量的百分比:其中0.1%三聚磷酸钠和0.2%六偏磷酸钠、0.02%低熔点防爆纤维、0.04%高熔点防爆纤维、2%水、10%硅溶胶,使用高速混合碾混合10min即得到浆料。
实施例4:实验步骤和实施例1一致,区别在于:
S1.称量主原料(主原料按质量份数计)。称取石英骨料84份,铝酸盐水泥2份,含锆二氧化硅微粉14份。
S2.浆料制备。将称量好的主原料通过三维混合机混合20min,然后加入辅料,所述辅料按以下比例加入,此比例为相对于主原料总重量的百分比:其中0.2%三聚磷酸钠和0.1%六偏磷酸钠、0.02%低熔点防爆纤维、0.04%高熔点防爆纤维、2%水、12%硅溶胶,使用高速混合碾混合10min即得到浆料。
实施例5:实验步骤和实施例4一致,区别在于:
S2.浆料制备。将称量好的主原料通过三维混合机混合20min,然后加入辅料,所述辅料按以下比例加入,此比例为相对于主原料总重量的百分比:其中0.2% 三聚磷酸钠和0.1%六偏磷酸钠、0.02%低熔点防爆纤维、0.04%高熔点防爆纤维、0.1%的石英纤维、2%水、12%硅溶胶,使用高速混合碾混合10min即得到浆料。
S6.烧结。将上述浇筑成型的大型硅质模块放到1300℃的马弗炉中烧结,随炉升温,升温速率为10℃/min,保温10h,即可得到纤维增强硅质大型模块。
所述步骤S2中的石英纤维直径为0.5-8um。当然也可以根据实际需要,选择其他的无机纤维,如高硅氧纤维、陶瓷纤维或含锆纤维棉。
实施例6:实验步骤和实施例5一致,区别在于:
S2.浆料制备。将称量好的原料通过三维混合机混合20min,然后加入辅料,所述辅料按以下比例加入,此比例为相对于主原料总重量的百分比:其中0.2%三聚磷酸钠和0.1%六偏磷酸钠、0.02%低熔点防爆纤维、0.04%高熔点防爆纤维、0.2%的石英纤维、2%水、12%硅溶胶,使用高速混合碾混合10min即得到浆料。
实施例7:实验步骤和实施例5一致,区别在于:
S2.浆料制备。将称量好的主原料通过三维混合机混合20min,然后加入辅料,所述辅料按以下比例加入,此比例为相对于主原料总重量的百分比:其中0.2%三聚磷酸钠和0.1%六偏磷酸钠、0.02%低熔点防爆纤维、0.04%高熔点防爆纤维、0.5%的石英纤维、2%水、12%硅溶胶,使用高速混合碾混合10min即得到浆料。
实施例8:实验步骤和实施例5一致,区别在于:
S2.浆料制备。将称量好的主原料通过三维混合机混合20min,然后加入辅料,所述辅料按以下比例加入,此比例为相对于主原料总重量的百分比:其中0.2%三聚磷酸钠和0.1%六偏磷酸钠、0.02%低熔点防爆纤维、0.04%高熔点防爆纤维、1%的石英纤维、2%水、12%硅溶胶,使用高速混合碾混合10min即得到浆料。
实施例9:实验步骤和实施例1一致,区别在于:
S2.浆料制备。将称量好的主原料通过三维混合机混合20min,然后加入辅 料,所述辅料按以下比例加入,此比例为相对于主原料总重量的百分比:其中0.1%三聚磷酸钠、0.1%高熔点防爆纤维、4%水、7%硅溶胶,使用高速混合碾混合10min即得到浆料。
S4.养护。养护方式为控温高湿度养护,养护环境温度为8℃。
实施例10:实验步骤和实施例1一致,区别在于:
S2.浆料制备。将称量好的主原料通过三维混合机混合20min,然后加入辅料,所述辅料按以下比例加入,此比例为相对于主原料总重量的百分比:其中0.1%三聚磷酸钠、0.03%高熔点防爆纤维、0.03%低熔点防爆纤维、4%水、7%硅溶胶,使用高速混合碾混合10min即得到浆料。
S4.养护。养护方式为控温高湿度养护,养护环境温度为22℃。
实施例11:实验步骤和实施例1一致,区别在于:
S4.养护。养护方式为控温高湿度养护,养护环境温度为38℃。
实施例12:实验步骤和实施例1一致,区别在于:
S2.浆料制备。将称量好的主原料通过三维混合机混合20min,然后加入辅料,所述辅料按以下比例加入,此比例为相对于主原料总重量的百分比:其中0.1%三聚磷酸钠、0.02%高熔点防爆纤维、0.04%低熔点防爆纤维、4%水、7%硅溶胶,使用高速混合碾混合10min即得到浆料。
S4.养护。养护方式为控温高湿度养护,养护环境温度为26℃。
各实施例原料及步骤条件对比如表1所示。
表1
Figure PCTCN2022114519-appb-000001
Figure PCTCN2022114519-appb-000002
抗侵蚀试验及其界面形貌分析。抗侵蚀试验参照《耐火材料抗碱性试验方法(GB/T 14983-2008)》的要求采用熔碱坩埚法进行。侵蚀介质为Na 2CO 3,将一定量的碱盐碳酸钾放进试样内部,高温下Na 2CO 3与实验材料发生反应产生体积膨胀,抗碱实验后用肉眼观察试样的侵蚀破坏程度,从而判定耐火材料抗碱侵蚀性能的好坏。按(4-6)℃/min的升温速度升到1500℃,在此温度下保温5h。冷却后取出查看试样的裂纹情况。图1为实施例1产品经过抗侵蚀试验后的显微结构图;图2为实施例2产品经过抗侵蚀试验后的显微结构图;图3为实施例3产品经过抗侵蚀试验后的显微结构图;图4为实施例4产品经过抗侵蚀试验后的显微结构图。
从图1中可以看出,该试样较为疏松,结构不致密,在碱环境侵蚀下部分物质已经转变成玻璃态。从图3也可看出,该试样也受到了严重侵蚀,玻璃化程度一般。从图2、图4可以看出,虽然图2的试样结构较为致密,但是相对图4的试样还有一定差距,因此图4的显微结构表明,该试样具有较强的抗侵蚀性能。
实施例1、实施例2、实施例3和实施例4试样的化学组分表征结果如表2所示。
表2
化学组分 SiO 2 Na 2O+K 2O Al 2O 3 Fe 2O 3
实施例1 94.0wt% 3.0wt% 0wt% 1.0wt%
实施例2 96.0wt% 0.5wt% 0.5wt% 0.6wt%
实施例3 98.9wt% 0.1wt% 0.2wt% 0.1wt%
实施例4 96.6wt% 1.0wt% 2.0wt% 0wt%
实施例4的相关测试性能与普通焦炉硅砖的性能对比数据如表3所示。
表3
性能指标 本发明制品 普通焦炉硅砖
耐压强度(MPa) 55 45
显气孔率(%) 12 20
体积密度(g/cm 3) 1.95 1.85
热震稳定性(1100℃,水冷,次数) 25 0
相对实施例4试样的抗弯强度,实施例5、实施例6、实施例7和实施例8的抗弯强度增加百分比如表4。由表4可知,当加入的石英纤维的质量分数达到0.5wt%时,纤维增强硅质大型模块样品表现出的抗弯强度最佳。
表4
样品的种类     抗弯强度增加百分比(%)
实施例5 8.0
实施例6 3.1
实施例7 26.7
实施例8 17.4
图5、图6为实施例7产品不同倍率的显微结构图,图7、图8为实施例8产品不同倍率的显微结构图。在图5和图7中均可以看到石英纤维,实施例7和实施例8中的石英纤维分布在硅质大型模块的不同部位,同时实施例7和实施例8中的石英纤维直径和长度也有差异。从图6和图8可以看出,实施例7和实施例8的纤维增强硅质大型模块结构致密度有一定差异,从测试结果可知图8的局部结构致密度要比图6好。
实施例9、实施例10、实施例11、实施例12的脱膜难易程度、产品表面光滑程度和样品(尺寸:500*500*500mm)中心的含水量(wt%)如表5所示
表5
Figure PCTCN2022114519-appb-000003
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而 且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (5)

  1. 一种纤维增强硅质模块,其特征在于,制成原料包括以下组分的主原料:按质量份数计,石英骨料84份,耐火水泥2份,含锆二氧化硅微粉14份;
    制成原料还包括以下辅料:主原料总重量0.3%的分散剂、主原料总重量0.02%的低熔点防爆纤维、主原料总重量0.04%的高熔点防爆纤维、主原料总重量0-1%的增强纤维、主原料总重量2%的水和主原料总重量12%的硅溶胶;
    所述石英骨料为熔融石英,粒径≤90um;所述耐火水泥为铝酸盐水泥,粒径≤5um;含锆二氧化硅微粉纯度≥97%,粒径≤1um;
    所述含锆二氧化硅微粉中SiO 2+ZrO 2质量分数含量>99%,其中ZrO 2质量分数含量为2%-3%。
  2. 根据权利要求1所述的一种纤维增强硅质模块,其特征在于,所述分散剂为三聚磷酸钠和六偏磷酸钠的一种或两种复合。
  3. 根据权利要求1所述的一种纤维增强硅质模块,其特征在于,所述增强纤维为石英纤维。
  4. 一种如权利要求1所述纤维增强硅质模块的制备方法,其特征在于,所述模块将焦炉作为整体,通过浇注成型。
  5. 根据权利要求4所述的一种纤维增强硅质模块的制备方法,其特征在于,包括养护步骤,所述养护步骤的温度为22-26℃。
PCT/CN2022/114519 2021-12-15 2022-08-24 一种纤维增强硅质模块及制备方法 WO2023109174A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022558325A JP7450869B2 (ja) 2021-12-15 2022-08-24 セラミック繊維補強ケイ質ダイブロック及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111534891.5 2021-12-15
CN202111534891.5A CN114163224B (zh) 2021-12-15 2021-12-15 一种纤维增强硅质模块及制备方法

Publications (1)

Publication Number Publication Date
WO2023109174A1 true WO2023109174A1 (zh) 2023-06-22

Family

ID=80486719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114519 WO2023109174A1 (zh) 2021-12-15 2022-08-24 一种纤维增强硅质模块及制备方法

Country Status (3)

Country Link
JP (1) JP7450869B2 (zh)
CN (1) CN114163224B (zh)
WO (1) WO2023109174A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114163224B (zh) * 2021-12-15 2022-08-30 洛阳迈乐耐火材料有限公司 一种纤维增强硅质模块及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203952A (ja) * 1998-12-28 2000-07-25 Nichias Corp 緻密質流し込み耐火性組成物及び施工方法
US6313055B1 (en) * 1998-08-20 2001-11-06 Harbison-Walker Refractories Company Refractory castables containing thermal black
CN101186517A (zh) * 2007-12-03 2008-05-28 中钢集团耐火材料有限公司 刚玉-氮化硅-碳化硅复合浇注料
CN101550018A (zh) * 2009-05-05 2009-10-07 武汉科技大学 一种硅质耐火浇注料及其制备方法
CN101955363A (zh) * 2010-09-29 2011-01-26 王明 乙烯裂解炉废热锅炉封头插件浇注料
CN105732060A (zh) * 2016-02-15 2016-07-06 长兴吉成工业炉有限公司 一种用于急冷塔的浇注材料及其制造方法
CN109796214A (zh) * 2019-04-03 2019-05-24 洛阳迈乐耐火材料有限公司 一种高纯方石英高抗碱低热膨胀硅砖及其制备方法
CN113149675A (zh) * 2021-06-01 2021-07-23 河南玉和新型节能建材有限公司 一种用于泵送施工的低水泥耐火浇注料
CN114163224A (zh) * 2021-12-15 2022-03-11 洛阳迈乐耐火材料有限公司 一种纤维增强硅质模块及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4506025A (en) * 1984-03-22 1985-03-19 Dresser Industries, Inc. Silica castables
CN113372134A (zh) * 2015-12-11 2021-09-10 河南工业大学 一种微孔轻质硅砖及其制备方法
CN109400133A (zh) * 2018-11-01 2019-03-01 洛阳迈乐耐火材料有限公司 一种纳米结合低气孔高纯电熔石英制品及制备方法
CN112739511A (zh) * 2019-08-14 2021-04-30 皮罗泰克高温工业产品有限公司 制作耐火制品的方法
CN112661524B (zh) * 2020-12-21 2023-03-17 山东工业陶瓷研究设计院有限公司 一种莫来石纤维增强石英陶瓷复合材料以及制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313055B1 (en) * 1998-08-20 2001-11-06 Harbison-Walker Refractories Company Refractory castables containing thermal black
JP2000203952A (ja) * 1998-12-28 2000-07-25 Nichias Corp 緻密質流し込み耐火性組成物及び施工方法
CN101186517A (zh) * 2007-12-03 2008-05-28 中钢集团耐火材料有限公司 刚玉-氮化硅-碳化硅复合浇注料
CN101550018A (zh) * 2009-05-05 2009-10-07 武汉科技大学 一种硅质耐火浇注料及其制备方法
CN101955363A (zh) * 2010-09-29 2011-01-26 王明 乙烯裂解炉废热锅炉封头插件浇注料
CN105732060A (zh) * 2016-02-15 2016-07-06 长兴吉成工业炉有限公司 一种用于急冷塔的浇注材料及其制造方法
CN109796214A (zh) * 2019-04-03 2019-05-24 洛阳迈乐耐火材料有限公司 一种高纯方石英高抗碱低热膨胀硅砖及其制备方法
CN113149675A (zh) * 2021-06-01 2021-07-23 河南玉和新型节能建材有限公司 一种用于泵送施工的低水泥耐火浇注料
CN114163224A (zh) * 2021-12-15 2022-03-11 洛阳迈乐耐火材料有限公司 一种纤维增强硅质模块及制备方法

Also Published As

Publication number Publication date
CN114163224B (zh) 2022-08-30
JP7450869B2 (ja) 2024-03-18
CN114163224A (zh) 2022-03-11
JP2023553226A (ja) 2023-12-21

Similar Documents

Publication Publication Date Title
US7943541B2 (en) Sintered refractory product exhibiting enhanced thermal shock resistance
US8505335B2 (en) Refractoy composition for glass melting furnaces
TWI542557B (zh) A method for manufacturing a molten glass conveying apparatus, and a method for manufacturing a molten glass conveying apparatus, and a glass manufacturing apparatus
CN104446564B (zh) 一种含氧化铬的锆刚玉砖的制备方法
TWI564260B (zh) A method of manufacturing a molten glass conveying apparatus, a glass manufacturing apparatus including a glass member for a molten glass conveyance apparatus, and a method for manufacturing a glass article
CN113716969B (zh) 一种莫来卡特抗结皮浇注料及预制件的制备方法
CN101323531A (zh) 一种玻璃窑热修补用熔融石英砖及其制造方法
JP5774135B2 (ja) ドープされた酸化クロムに基づく焼結物質
WO2023109174A1 (zh) 一种纤维增强硅质模块及制备方法
CN104355630A (zh) 用于炼铁高炉送风支管的耐磨抗热震内衬及其制备方法
CN110451998A (zh) 一种钢包包底浇注料
JP5683739B1 (ja) 断熱材及びその製造方法
CN102225867A (zh) 矿热电炉碳化硅质炉门砖及其制备方法
CN105060798B (zh) 自流平混凝土
US11904386B2 (en) Casting ladle for casting aluminum alloy
CN106631171A (zh) 氮化硅结合碳化硅陶瓷升液管的涂层及其制备方法
CN109293379B (zh) 氧化铬砖及其制备方法
CN107344858B (zh) 一种硅酸锆-莫来石复合耐磨浇注料及其制备方法
CN113999024A (zh) 一种轻量红外辐射节能焦炉炉门预制件的制备方法
JP2013234092A (ja) 流し込み耐火物
CN109095902B (zh) 一种玻璃窑炉用铺面砖及其生产工艺
JP5990583B2 (ja) 溶融ガラス用の供給通路
CN106747517B (zh) 一种预制砖及其制备方法、环冷机台车栏板
CN113061044B (zh) 功能陶瓷件及其制备方法和应用
CN112341222B (zh) 一种铁水罐浇注料及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022558325

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22905933

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022905933

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022905933

Country of ref document: EP

Effective date: 20240329