WO2023108449A1 - 寻址转移设备和寻址转移方法 - Google Patents
寻址转移设备和寻址转移方法 Download PDFInfo
- Publication number
- WO2023108449A1 WO2023108449A1 PCT/CN2021/138161 CN2021138161W WO2023108449A1 WO 2023108449 A1 WO2023108449 A1 WO 2023108449A1 CN 2021138161 W CN2021138161 W CN 2021138161W WO 2023108449 A1 WO2023108449 A1 WO 2023108449A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- debonding
- light
- substrate
- transfer
- photolytic
- Prior art date
Links
- 238000012546 transfer Methods 0.000 title claims abstract description 228
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000000758 substrate Substances 0.000 claims abstract description 168
- 238000004377 microelectronic Methods 0.000 claims abstract description 108
- 239000000853 adhesive Substances 0.000 claims abstract description 99
- 230000001070 adhesive effect Effects 0.000 claims abstract description 99
- 239000012790 adhesive layer Substances 0.000 claims abstract description 23
- 229920000297 Rayon Polymers 0.000 claims description 58
- 230000007547 defect Effects 0.000 claims description 17
- 239000003292 glue Substances 0.000 claims description 3
- 238000011056 performance test Methods 0.000 claims description 3
- 238000006303 photolysis reaction Methods 0.000 abstract 2
- 230000015843 photosynthesis, light reaction Effects 0.000 abstract 2
- 230000008439 repair process Effects 0.000 description 16
- 239000000463 material Substances 0.000 description 12
- 239000010410 layer Substances 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 239000011521 glass Substances 0.000 description 6
- 239000004205 dimethyl polysiloxane Substances 0.000 description 5
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 5
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 230000000295 complement effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 229920000307 polymer substrate Polymers 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- -1 Polydimethylsiloxane Polymers 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000003491 array Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
Definitions
- the present application relates to the field of semiconductor technology, and in particular to an address transfer device and an address transfer method.
- Micro-LED Micro light-emitting diode, micro-light-emitting diode
- display technology has the advantages of high brightness, high response speed, low power consumption, long life, etc., and has become a research hotspot for people to pursue a new generation of display technology.
- Micro-LEDs are difficult to grow directly on glass substrates. It is necessary to rely on transfer technology to transfer Micro-LEDs on the carrier substrate to the glass substrate.
- Commonly used transfer technologies in the prior art include seal transfer, laser transfer and other transfer technologies, but the seal transfer technology can only perform fixed position transfer, and cannot perform massive repair transfer for random defects. Laser transfer technology needs point-by-point transfer and cannot be selected sexual transfer, transfer efficiency and transfer yield are low.
- embodiments of the present application provide an address transfer device and an address transfer method.
- an address transfer device includes: a light-emitting component and an adhesive component; wherein, the light-emitting component includes: a transfer substrate; a driving substrate, which is arranged on one of the transfer substrates Side: a plurality of debonding light sources, arranged at intervals on the side of the driving substrate away from the transfer substrate, the plurality of debonding light sources are electrically connected to the driving substrate, and the driving substrate is used to turn on or off A target debonding light source among the plurality of debonding light sources; and an adhesive layer disposed on a side of the driving substrate away from the transfer substrate and covering the plurality of debonding light sources, and the light-emitting component passes through the
- the adhesive layer adheres to the adhesive assembly;
- the adhesive assembly includes: an adhesive substrate; and a photolytic adhesive transfer head, which is arranged on one side of the adhesive substrate, and the photolytic adhesive transfer head It is used for adhering the microelectronic components and releasing the corresponding
- the photolytic adhesive transfer head includes a plurality of first protrusions arranged at intervals from each other, and the plurality of first protrusions correspond to the plurality of debonding light sources one by one.
- the adhesive layer includes a plurality of second protrusions arranged at intervals from each other, and the plurality of second protrusions correspond to the plurality of debonding light sources one by one.
- the distance between two adjacent microelectronic elements on the target substrate is an integer multiple of the distance between two adjacent debonding light sources.
- the light emitting angle ⁇ of each of the debonding light sources is: ⁇ 90°-arcsin(1/n), where ⁇ is the light emitting angle, and n is the transfer of the light debonding adhesive The index of refraction of the head.
- the multiple debonding light sources are infrared light LED light sources
- the photolytic viscose transfer head is an infrared photolytic viscose transfer head.
- the plurality of debonding light sources are ultraviolet light LED light sources
- the photolytic viscose transfer head is an ultraviolet photolytic viscose transfer head.
- an address transfer method includes: adhering an adhesive component to a light-emitting component; providing a carrier substrate on which a microelectronic element is disposed; placing the microelectronic element from The photolytic adhesive transfer head adhered to the adhesive component on the carrier substrate; using the driving substrate of the light-emitting component to light up the target debonding light source among the multiple debonding light sources on the light-emitting component, after passing Release the corresponding microelectronic components on the photolytic adhesive transfer head to the target substrate after the target debonding light source is irradiated; separate the adhered component from the light emitting component.
- the distance between two adjacent microelectronic elements on the target substrate is an integer multiple of the distance between two adjacent debonding light sources.
- the address transfer method further includes: performing a performance test on the microelectronic element on the target substrate to obtain a defect position on the target substrate; determining the corresponding redundant position; adhering a new adhering assembly using the light emitting assembly; transferring the microelectronic element on the carrier substrate to the redundant adhering assembly using the light emitting assembly and the new adhering assembly remaining position.
- the light output angle ⁇ of each of the debonding light sources is: ⁇ 90°-arcsin(1/n), where ⁇ is the light output angle, and n is the angle of the photolytic viscose transfer head. refractive index.
- the multiple debonding light sources are infrared light LED light sources
- the photolytic viscose transfer head is an infrared photolytic viscose transfer head.
- the plurality of debonding light sources are ultraviolet light LED light sources
- the photolytic viscose transfer head is an ultraviolet photolytic viscose transfer head.
- a driving substrate, a plurality of debonding light sources and a photolytic adhesive transfer head are arranged on the addressing transfer device, and the target debonding light source among the multiple debonding light sources is controlled to be turned on or off by the driving substrate.
- the target debonding light source is turned on, irradiate the photolytic viscose transfer head to release the corresponding microelectronic components, realize selective transfer of microelectronic components, improve transfer efficiency and transfer yield, and realize selective defect repair , reduce the number of repairs and repair time, save chip usage, reduce process costs and materials.
- the adhesive component can be replaced quickly after the transfer of the microelectronic components is completed, which avoids re-making the addressing transfer device when the viscosity of the photolytic bonding transfer head is poor, and further improves the efficiency while saving resources. the transfer efficiency.
- FIG. 1 is a schematic structural diagram of an address transfer device provided by an embodiment of the present application.
- Fig. 2 is a schematic structural diagram of a light-emitting component provided in an embodiment of the present application
- Fig. 3 is a schematic structural diagram of the adhesive assembly provided in the embodiment of the present application.
- FIG. 4A-FIG. 4F are schematic diagrams of the process of address transfer
- FIG. 5 is a schematic flowchart of an address transfer method provided in an embodiment of the present application.
- FIG. 6 is a partial flowchart of an address transfer method provided by an embodiment of the present application.
- an address transfer device provided in the first embodiment of the present application may include, for example, a light emitting component 10 and an adhesive component 20 , and the light emitting component 10 is adhered to the adhesive component 20 to form an address transfer device.
- the light emitting assembly 10 includes a transfer substrate 100 , a driving substrate 200 , a plurality of debonding light sources 300 and an adhesive layer 400
- the adhesive assembly 20 includes an adhesive substrate 500 and a photolytic adhesive transfer head 600 .
- the light-emitting component 10 includes a transfer substrate 100, a driving substrate 200, a plurality of debonding light sources 300 and an adhesive layer 400, wherein the transfer substrate 100 can be, for example, a hard material substrate, such as a glass substrate, a polymer substrate, Sapphire substrate, ceramic substrate, etc.; the driving substrate 200 can be, for example, a TFT array substrate (that is, an active switch array substrate), and can also be, for example, a CMOS (Complementary Metal Oxide Semiconductor, Complementary Metal Oxide Semiconductor) array substrate, the driving substrate 200 is arranged on one side of the transfer substrate 100; a plurality of debonding light sources 300 can be, for example, LED light-emitting arrays, and the debonding light sources 300 can specifically be, for example, infrared light LED light sources, or ultraviolet light LED light sources, and multiple debonding light sources 300 are arranged at a distance from each other on the side of the driving substrate 200 away from the transfer substrate 100, a
- the adhesive assembly 20 includes an adhesive substrate 500 and a photolytic adhesive transfer head 600.
- the adhesive substrate 500 can be, for example, a light-transmitting substrate, specifically, a glass substrate, a polymer substrate, a sapphire substrate, etc.
- the photolytic viscose transfer head 600 can be, for example, an infrared photolytic viscose transfer head or an ultraviolet photolytic viscose transfer head, and the type of the photolytic viscose transfer head 600 corresponds to the type of the debonding light source 300 , for example, when the debonding light source 300 is an infrared light LED light source, the photolytic viscose transfer head 600 is an infrared photolytic viscose transfer head, and when the debonding light source 300 is an ultraviolet LED light source, the photolytic viscose transfer head 600 is an ultraviolet photolytic viscose transfer head, and the photolytic viscose transfer head 600 is arranged on one side of the adhesion substrate 500, and is used for adhering or releasing the microelectronic components to be transferred.
- the light-emitting component 10 sticks the adhesive substrate 500 through the adhesive layer 400 to adhere the adhesive component 20 to form an address transfer device.
- the debonding light source 300 of the light-emitting component 10 can, for example, emit near-infrared light or Ultraviolet light, the light emitted by the debonding light source 300 passes through the adhesive layer 400 and the adhesive substrate 500 to irradiate the photolytic viscose transfer head 600, and the photolytic viscose transfer head 600 is irradiated by the light source emitted by the debonding light source 300.
- the viscosity of the photolytic adhesive transfer head 600 is controlled, so that the release of the microelectronic components to be transferred can be realized.
- the viscosity of the photolytic adhesive transfer head 600 at the corresponding position is reduced, so that the corresponding microelectronic component is released, thereby realizing the microelectronic component.
- the selective transfer of microelectronic components improves the transfer efficiency of microelectronic components, and the microelectronic components with defects can be selected not to be released during release, so as to further improve the transfer yield of microelectronic components.
- Through the selective transfer of microelectronic components It can also achieve selective defect repair, thereby reducing the number of repairs, reducing the repair time, saving chip usage, and reducing process costs and materials.
- setting the light-emitting component 10 and the adhesive component 20 separately avoids the need to re-prepare the addressing transfer device when the viscosity of the photolytic adhesive transfer head 600 decreases or is not reusable, and can be replaced quickly after the transfer of the microelectronic components is completed.
- the new adhesive component 20 saves resources and further improves transfer efficiency.
- the adhesive layer 400 may be, for example, a planar structure as shown in FIG. 1 , or may include a plurality of second protrusions 410 spaced apart from each other, as shown in FIG. 2 ,
- the plurality of second protrusions 410 extend toward a side away from the driving substrate 200 , and the plurality of second protrusions 410 may be arranged at intervals from each other, and correspond to the plurality of debonding light sources 300 one by one.
- the adhesive layer 400 may include an adhesive planar layer 420 and a plurality of second protrusions 410, the adhesive planar layer 420 is disposed on the side of the driving substrate 200 away from the transfer substrate 100 and covers a plurality of solutions.
- Adhesive light source 300, a plurality of second protrusions 410 are arranged at intervals on the side of the adhesive planar layer 420 away from the driving substrate 200, and extend to the side away from the driving substrate 200;
- the adhesive layer 400 can also be, for example, A plurality of second protrusions 410, the plurality of second protrusions 410 correspondingly cover the plurality of debonding light sources 300, and extend to the side away from the driving substrate 200, of course, this is only for illustration, the implementation of the present application Examples are not limited to this.
- the adhesive layer 400 By setting the adhesive layer 400 as a structure including a plurality of second protrusions 410, the plurality of second protrusions 410 are spaced apart from each other, and due to the space between the plurality of second protrusions 410, the second protrusions 410 There is an air layer between the second protrusion 410 , in this way, the crosstalk of the light source irradiation when the debonding light source 300 is irradiated can be reduced, so as to improve the reliability of microelectronic component transfer.
- the photolytic viscose transfer head 600 can be, for example, a planar structure as shown in FIG.
- the photolytic viscose planar layer; the photolytic viscose transfer head 600 may also include, for example, a plurality of first protrusions 610 as shown in FIG.
- the plurality of first protrusions 610 may be arranged at intervals, for example, and correspond to the plurality of debonding light sources one by one.
- the photolytic adhesive transfer head 600 may include a photolytic adhesive planar layer 620 and a plurality of first protrusions 610, the photolytic adhesive planar layer 620 is arranged on one side of the adhesive substrate 500, and a plurality of The first protrusions 610 are arranged on the side of the photolytic adhesive planar layer 620 away from the adhesive substrate 500 at intervals from each other, and extend to the side away from the adhesive substrate 500;
- the photolytic adhesive transfer head 600 can also be, for example, It is a plurality of first protrusions 610, and the plurality of first protrusions 610 extend to the side away from the adhesive substrate 500, and correspond to the plurality of debonding light sources 300 one by one.
- this is only for illustration.
- the embodiments are not limited thereto.
- the photolytic adhesive transfer head 600 By setting the photolytic adhesive transfer head 600 as a structure including a plurality of first protrusions 610, the plurality of first protrusions 610 are spaced apart from each other, and due to the spacing between the plurality of first protrusions 610, the first There is an air layer between the protrusion 610 and the first protrusion 610. In this way, the heat transfer between the light debonding adhesive transfer head 600 adjacent to the first protrusion 610 or the light source irradiation crosstalk can be reduced. Adjacent to the first protrusion 610, so as to improve the reliability of transferring the microelectronic element.
- the optical debonding transfer head 600 is a structure comprising a plurality of first protrusions 610
- the adhesive layer 400 is a structure comprising a plurality of second protrusions 410
- the plurality of first protrusions 610 and the plurality of second protrusions are corresponding.
- the size and shape of the plurality of first protrusions 610 and the plurality of second protrusions 410 are the same, and the positions correspond to each other. In this way, the light source of the unbonding light source 300 can The range is more accurate, avoiding the crosstalk of light sources, and further ensuring the reliability of microelectronic component transfer.
- the light output angle ⁇ of each debonding light source 300 is: ⁇ 90°-arcsin(1/n), where ⁇ is the light output angle, and n is the refractive index of the photolytic adhesive transfer head.
- ⁇ is the light output angle
- n is the refractive index of the photolytic adhesive transfer head.
- FIG. 4A is a light-emitting component 10.
- the addressing transfer device as shown in FIG. 4B is formed by adhering the light-emitting component 10 shown in FIG.
- the distances between the adjacent microelectronic elements 710 are equal, of course, can be set according to the actual situation, and the embodiment of the present application is not limited thereto.
- the addressing transfer device adheres the microelectronic element 710 to be transferred through the photolytic adhesive transfer head 600 on the adhesive assembly 20, and the microelectronic element 710 can be attached to the photolytic adhesive transfer head 600, for example.
- the debonding light source 300 At the position corresponding to the debonding light source 300 .
- FIG. 4E it is necessary to transfer the microelectronic element 710 to the target position of the target substrate 800, and the corresponding target debonding light source 300 is controlled by the driving substrate 200 of the light emitting component 10 to light up, and the target debonding light source 300 is turned on.
- the viscosity of the position of the photolytic viscose transfer head 600 corresponding to the target debonding light source 300 decreases, and the microelectronic components 710 adhered to the corresponding position of the photolytic viscose transfer head 600 are removed. Released at the target position on the target substrate 800, the transfer of the microelectronic element 710 is completed.
- the distance between two adjacent microelectronic elements 710 on the target substrate 800 is an integer multiple of the distance between two adjacent debonding light sources 300 on the light emitting assembly 10. Taking FIG.
- the The distance between two adjacent microelectronic elements 710 can be, for example, three times the distance between two adjacent debonding light sources 300 on the light emitting assembly 10, that is, the position of the microelectronic element 710 on the target substrate 800 is also provided with Redundant position, two microelectronic components 710 can also be placed in the redundant position, so that when the microelectronic component 710 placed on the target substrate 800 has a defect, it can also be placed in the redundant position through the address transfer device. The new microelectronic element 710 is placed again in the remaining position, so as to ensure the quality of the microelectronic element on the target substrate 800 and further improve the transfer yield.
- the multiple debonding light sources 300 are controlled to be turned on or off by the driving substrate 200
- the target debonding light source in the target debonding light source when the target debonding light source is turned on, irradiates the photolytic viscose transfer head 600 to release the corresponding microelectronic components 710, so as to realize the selective transfer of microelectronic components, improve the transfer efficiency and transfer Yield rate, realize selective defect repair, reduce repair times and repair time, save chip usage, reduce process cost and materials.
- the adhesive component can be quickly replaced after the transfer of the microelectronic element is completed, avoiding re-making the addressing transfer device when the viscosity of the photodebonding transfer head is poor, and saving resources at the same time Further improve the transfer efficiency.
- the second embodiment of the present application provides an address transfer method, which may include the following steps, for example:
- the carrier substrate is provided with microelectronic elements
- the light-emitting assembly 10 shown in FIG. 4A is adhered to the adhesive assembly 20 to form an address transfer device as shown in FIG. 710 transfer.
- the light-emitting component 10 includes a transfer substrate 100, a driving substrate 200, a plurality of debonding light sources 300, and an adhesive layer 400, wherein the transfer substrate 100 can be, for example, a hard material substrate, such as a glass substrate, a polymer substrate, a sapphire substrate, etc.
- the driving substrate 200 can be, for example, a TFT array substrate (that is, an active switch array substrate), and can also be, for example, a CMOS (Complementary Metal Oxide Semiconductor, Complementary Metal Oxide Semiconductor) array substrate, and the driving substrate 200 It is arranged on one side of the transfer substrate 100; a plurality of debonding light sources 300 can be, for example, an LED light-emitting array, and the debonding light sources 300 can specifically be, for example, an infrared light LED light source, or can also be, for example, an ultraviolet light LED light source.
- the multiple debonding light sources 300 The drive substrate 200 is arranged at a distance from each other on the side away from the transfer substrate 100. A plurality of debonding light sources 300 are electrically connected to the drive substrate 200. The drive substrate 200 can selectively control any debonding light source 300 in the plurality of debonding light sources 300, For example, by driving the substrate 200 to turn on or turn off the target debonding light source in the plurality of debonding light sources 300, the target debonding light source can be one debonding light source or multiple debonding light sources, depending on the size of the microelectronic components to be transferred. The position is determined.
- the microelectronic element can be, for example, Micro-LED, and of course it can also be other microelectronic devices.
- the adhesive layer 400 can be, for example, PDMS (Polydimethylsiloxane, Silicone) viscose material, certainly also can be other viscose material, viscose layer 400 can for example be the planar structure as described in Fig. 1, also can be for example as shown in Fig. Two protrusions 410 , the adhesive layer 400 is disposed on the side of the driving substrate 200 away from the transfer substrate 100 , and covers the plurality of debonding light sources 300 .
- PDMS Polydimethylsiloxane, Silicone
- the adhesive assembly 20 includes an adhesive substrate 500 and a photolytic adhesive transfer head 600.
- the adhesive substrate 500 can be, for example, a light-transmitting substrate, specifically, a glass substrate, a polymer substrate, a sapphire substrate, etc.
- the photolytic viscose transfer head 600 can be, for example, an infrared photolytic viscose transfer head or an ultraviolet photolytic viscose transfer head, and the type of the photolytic viscose transfer head 600 corresponds to the type of the debonding light source 300, for example Said, when the debonding light source 300 is an infrared light LED light source, the photolytic viscose transfer head 600 is an infrared photolytic viscose transfer head, and when the debonding light source 300 is an ultraviolet LED light source, the photolytic viscose transfer head 600 is The UV photolytic viscose transfer head, the photolytic viscose transfer head 600 can be, for example, a planar structure, that is,
- the photolytic adhesive transfer head 600 is disposed on one side of the adhesion substrate 500 for adhesion or release of the microelectronic components to be transferred.
- the optical debonding transfer head 600 is a structure comprising a plurality of first protrusions 610
- the adhesive layer 400 is a structure comprising a plurality of second protrusions 410
- the plurality of first protrusions 610 and the plurality of second protrusions The positions of the protrusions 410 are corresponding.
- the size and shape of the plurality of first protrusions 610 and the plurality of second protrusions 410 are the same, and the positions correspond to each other.
- the light output angle ⁇ of each debonding light source 300 is: ⁇ 90°-arcsin(1/n), where ⁇ is the light output angle, and n is the refractive index of the photolytic adhesive transfer head.
- the adhesive component 20 is adhered by the light emitting component 10 shown in FIG. 4A to form the address transfer device as shown in FIG. 4B .
- Attach the adhesive substrate of the component 20 to adhere the adhesive component 20 to the light emitting component 10 to form an address transfer device.
- a carrier substrate 700 as shown in FIG. 4C is provided, and a plurality of microelectronic elements 710 to be transferred are arranged on the carrier substrate 700.
- the microelectronic elements 710 can be, for example, Micro-LEDs, or other microelectronic devices, of course.
- a plurality of microelectronic components 710 are arranged on the carrier substrate 700 at intervals, and the distance between two adjacent debonding light sources 300 on the light emitting assembly 10 can be, for example, the distance between adjacent microelectronic components 710 on the carrier substrate 700 .
- the distances are equal, of course, can be set according to the actual situation, and the embodiment of the present application is not limited thereto.
- the addressing transfer device adheres the microelectronic element 710 to be transferred through the photolytic viscose transfer head 600 on the adhesion assembly 20, the photolytic viscose transfer head 600 is a photolytic viscose material with a viscosity , microelectronic components 710 can be adhered, and a plurality of microelectronic components 710 can be adhered, for example, on the position corresponding to the photolytic adhesive transfer head 600 and the debonding light source 300, and the photolytic adhesive transfer head 600 includes a plurality of The first protrusion 610 is taken as an example, and a plurality of microelectronic elements 710 are adhered on the plurality of first protrusions 610 .
- the target debonding light source 300 corresponding to the microelectronic component 710 attached to the first protrusion 610 on the transfer head 600 is turned on. After the target debonding light source 300 is lit, it is debonded from the target under the illumination of the light source.
- the viscosity of the position of the photolytic viscose transfer head 600 corresponding to the light source 300 (for example, the first protrusion 610 corresponding to the target debonding light source) is reduced, and the microelectronic element 710 adhered to the corresponding position of the photolytic viscose transfer head 600 is removed. Released at the target position on the target substrate 800, the transfer of the microelectronic element 710 is completed. In this way, by driving the substrate 200 to selectively light up the debonding light source 300, the viscosity of the photolytic adhesive transfer head 600 at the corresponding position is reduced, so that the corresponding microelectronic component is released, thereby realizing the microelectronic component.
- microelectronic components improves the transfer efficiency of microelectronic components, and the microelectronic components with defects can be selected not to be released during release, so as to further improve the transfer yield of microelectronic components.
- the adhesion component 20 can be separated from the light emitting component 10.
- the force for separating the adhesion component 20 is greater than the adhesive force between the light emitting component 10 and the adhesion component 20, so that the adhesion component 20 Separate the light emitting component 10 .
- the adhesive component can be replaced quickly after the transfer of the microelectronic components is completed, which avoids re-making the addressing transfer device when the viscosity of the photodebonding transfer head is poor, and saves resources. Further improve the transfer efficiency.
- the distance between two adjacent microelectronic elements 710 on the target substrate 800 is an integer multiple of the distance between two adjacent debonding light sources 300 on the light emitting assembly 10.
- the The distance between two adjacent microelectronic elements 710 can be, for example, three times the distance between two adjacent debonding light sources 300 on the light emitting assembly 10, that is, the position of the microelectronic element 710 on the target substrate 800 is also provided with A redundant position, where two microelectronic components 710 can also be placed.
- performance testing can be performed on the microelectronic component 710 on the target substrate 800.
- the microelectronic component 710 as a Micro-LED as an example
- the Micro-LED on the target substrate 800 can be lighted up to detect the Micro-LED.
- the performance of the LED of course, this is only an example, and the embodiment of the present application is not limited thereto, and other detection methods can be selected according to actual conditions.
- the defect position on the target substrate 800 can be obtained, and then the corresponding redundant position can be determined according to the defect position, and then the above-mentioned light-emitting component 10 is used to adhere a new adhesive component 20 to form a new homing component.
- the address transfer device adheres the new microelectronic element 710 on the carrier substrate 700 according to the method described above, and transfers the microelectronic element 710 to the redundant position on the target substrate 800 .
- the microelectronic elements 710 can continue to be transferred to the redundant position through the light emitting assembly 10 and the adhesive assembly 20 adhered to the light emitting assembly 10 .
- a new microelectronic element 710 can be re-placed at the redundant position through the address transfer device, so as to ensure that the microelectronic element 710 on the target substrate 800 is defective.
- the quality of microelectronic components can further improve the transfer yield.
- selective defect repair can also be achieved, thereby reducing the number of repairs, reducing the repair time, saving chip usage, and reducing process costs. and materials.
- the addressing transfer method sets the drive substrate 200, a plurality of debonding light sources 300 and the photolytic adhesive transfer head 600 on the addressing transfer device, and controls the turning on or off by the drive substrate 200
- the target debonding light source among the plurality of debonding light sources 300 when the target debonding light source is turned on, irradiates the photolytic viscose transfer head 600 to release the corresponding microelectronic components 710, so as to realize the selective transfer of the microelectronic components , Improve transfer efficiency and transfer yield, realize selective defect repair, reduce repair times and repair time, save chip usage, and reduce process costs and materials.
- the adhesive component can be quickly replaced after the transfer of the microelectronic element is completed, avoiding re-making the addressing transfer device when the viscosity of the photodebonding transfer head is poor, and saving resources at the same time Further improve the transfer efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
本申请实施例提供了寻址转移设备和寻址转移方法。所述设备包括:发光组件和粘附组件;发光组件包括:转移基板;驱动基板,设置在所述转移基板的一侧;多个解粘光源,相互间隔地设置在所述驱动基板远离所述转移基板的一侧,所述多个解粘光源电连接所述驱动基板,所述驱动基板用于点亮或关闭所述多个解粘光源中的目标解粘光源;以及粘胶层,设置在所述驱动基板远离所述转移基板的一侧,且覆盖所述多个解粘光源,所述发光组件通过所述粘胶层粘附所述粘附组件;粘附组件包括:粘附基板;以及光解粘胶转移头,设置在所述粘附基板的一侧,所述光解粘胶转移头用于粘附微电子元件、并在所述目标解粘光源的照射下释放对应的所述微电子元件至目标基板。
Description
本申请涉及半导体技术领域,尤其涉及一种寻址转移设备和一种寻址转移方法。
Micro-LED(Micro light-emitting diode,微型发光二极管)显示技术具有高亮度、高响应速度、低功耗、长寿命等优点,成为人们追求新一代显示技术的研究热点。目前Micro-LED难以在玻璃基板上直接生长出来,需要依靠转移技术将载体基板上的Micro-LED转移到玻璃基板上。现有技术中常用的转移技术有印章转移、激光转移等转移技术,但是印章转移技术只能进行固定位置转移,无法针对随机缺陷进行巨量修复转移,激光转移技术需要逐点转移,无法进行选择性转移,转移效率和转移良率较低。
发明内容
因此,为克服现有技术中存在的至少部分缺陷和不足,本申请实施例提供一种寻址转移设备和一种寻址转移方法。
具体地,一方面,本申请实施例提供的一种寻址转移设备,包括:发光组件和粘附组件;其中,所述发光组件包括:转移基板;驱动基板,设置在所述转移基板的一侧;多个解粘光源,相互间隔地设置在所述驱动基板远离所述转移基板的一侧,所述多个解粘光源电连接所述驱动基板,所述驱动基板用于点亮或关闭所述多个解粘光源中的目标解粘光源;以及粘胶 层,设置在所述驱动基板远离所述转移基板的一侧,且覆盖所述多个解粘光源,所述发光组件通过所述粘胶层粘附所述粘附组件;所述粘附组件包括:粘附基板;以及光解粘胶转移头,设置在所述粘附基板的一侧,所述光解粘胶转移头用于粘附微电子元件、并在所述目标解粘光源的照射下释放对应的所述微电子元件至目标基板。
在本申请的一个具体实施例中,所述光解粘胶转移头包括相互间隔设置的多个第一凸起,所述多个第一凸起与所述多个解粘光源一一对应。
在本申请的一个具体实施例中,所述粘胶层包括相互间隔设置的多个第二凸起,所述多个第二凸起与所述多个解粘光源一一对应。
在本申请的一个具体实施例中,所述目标基板上两个相邻所述微电子元件间的距离是两个相邻所述解粘光源间的距离的整数倍。
在本申请的一个具体实施例中,每个所述解粘光源的出光角度α为:α<90°-arcsin(1/n),其中α为出光角度,n为所述光解粘胶转移头的折射率。
在本申请的一个具体实施例中,所述多个解粘光源为红外光LED光源,所述光解粘胶转移头为红外光解粘胶转移头。
在本申请的一个具体实施例中,所述多个解粘光源为紫外光LED光源,所述光解粘胶转移头为紫外光解粘胶转移头。
另一方面,本申请实施例提供的一种寻址转移方法,包括:粘附粘附组件至发光组件;提供载体基板,所述载体基板上设置有微电子元件;将所述微电子元件从所述载体基板上粘附至所述粘附组件的光解粘胶转移头; 利用所述发光组件的驱动基板点亮所述发光组件上多个解粘光源中的目标解粘光源,在经过所述目标解粘光源照射后释放所述光解粘胶转移头上对应的所述微电子元件至目标基板;从所述发光组件上分离所述粘附组件。
在本申请的一个具体实施例中,所述目标基板上两个相邻所述微电子元件间的距离是两个相邻所述解粘光源间的距离的整数倍。
在本申请的一个具体实施例中,所述寻址转移方法还包括:对所述目标基板上的所述微电子元件进行性能检测,以获取所述目标基板上的缺陷位置;根据所述缺陷位置确定对应的冗余位置;利用所述发光组件粘附新的所述粘附组件;利用所述发光组件和新的所述粘附组件转移所述载体基板上的微电子元件至所述冗余位置。
在本申请的一个具体实施例中,每个所述解粘光源的出光角度α为:α<90°-arcsin(1/n),其中α为出光角度,n为光解粘胶转移头的折射率。
在本申请的一个具体实施例中,所述多个解粘光源为红外光LED光源,所述光解粘胶转移头为红外光解粘胶转移头。
在本申请的一个具体实施例中,所述多个解粘光源为紫外光LED光源,所述光解粘胶转移头为紫外光解粘胶转移头。
由上可知,本申请实施例通过在寻址转移设备上设置驱动基板、多个解粘光源和光解粘胶转移头,通过驱动基板控制点亮或关闭多个解粘光源中的目标解粘光源,在所述目标解粘光源被点亮时照射光解粘胶转移头,来释放对应的微电子元件,实现微电子元件的选择性转移,提升转移效率和转移良率,实现选择性缺陷修补,减少修补次数和降低修补时间,节省芯 片使用,降低制程成本和材料。此外,通过发光组件和粘附组件单独设置,在微电子元件转移完成后可快速更换粘附组件,避免了光解粘转移头粘度较差时重新制作寻址转移设备,节省资源的同时进一步提升了转移效率。
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的寻址转移设备的结构示意图;
图2为本申请实施例提供的发光组件的结构示意图;
图3为本申请实施例提供的粘附组件的结构示意图;
图4A-图4F为寻址转移的过程示意图;
图5为本申请实施例提供的寻址转移方法的流程示意图;
图6为本申请实施例提供的寻址转移方法的部分流程示意图。
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本申请的部分实施例,而不是全部实施例。基于本申请描述的实施例,本领域普通技术人员在没有付出创造性劳动的前提下所获得的所有其他实施例,都属于本申请的保护范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、 后、顶、底)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,在申请实施例及权利要求书中所涉及的术语“垂直”是指两个元件之间的夹角为90°或者存在-5°~+5°的偏差,所涉及的术语“平行”是指两个元件之间的夹角为0°或者存在-5°~+5°的偏差。
在本申请实施例中如涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
【第一实施例】
参见图1,本申请第一实施例提供的一种寻址转移设备,可例如包括发光组件10和粘附组件20,发光组件10粘附粘附组件20组成寻址转移设备。其中,发光组件10包括转移基板100、驱动基板200、多个解粘光源300和粘胶层400,粘附组件20包括粘附基板500和光解粘胶转移头600。
具体地,发光组件10包括转移基板100、驱动基板200、多个解粘光源300和粘胶层400,其中,转移基板100可例如为硬性材料的基板,可例如为玻璃基板、聚合物基板、蓝宝石基板、陶瓷基板等;驱动基板200可例如为TFT阵列基板(也即一种主动式开关阵列基板),还可例如为CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)阵列基板,驱动基板200设置在转移基板100的一侧;多个解粘光 源300可例如为LED发光阵列,解粘光源300具体可例如为红外光LED光源,也可例如为紫外光LED光源,多个解粘光源300相互间隔地设置在驱动基板200远离转移基板100的一侧,多个解粘光源300电连接驱动基板200,驱动基板200可选择性的控制多个解粘光源300中的任意解粘光源300,例如通过驱动基板200点亮或者关闭多个解粘光源300中的目标解粘光源,所述目标解粘光源可为一个解粘光源或者多个解粘光源,具体根据需要转移的微电子元件的位置确定,所述微电子元件可例如为Micro-LED,当然也可以为其他微型电子器件,本申请实施例并不以此为限;粘胶层400可例如为PDMS(Polydimethylsiloxane,聚二甲基硅氧烷)粘胶材料,当然也可以为其他粘胶材料,粘胶层400设置在驱动基板200远离所述转移基板100的一侧,且覆盖多个解粘光源300。
承上述,粘附组件20包括粘附基板500和光解粘胶转移头600,粘附基板500可例如为透光基板,具体可例如为玻璃基板、聚合物基板、蓝宝石基板等,本申请实施例并不以此为限;光解粘胶转移头600可例如为红外光解粘胶转移头或紫外光解粘胶转移头,光解粘胶转移头600的类型与解粘光源300的类型对应,举例来说,当解粘光源300为红外光LED光源,光解粘胶转移头600即为红外光解粘胶转移头,当解粘光源300为紫外光LED光源,光解粘胶转移头600即为紫外光解粘胶转移头,光解粘胶转移头600设置在粘附基板500的一侧,用于粘附或释放待转移的所述微电子元件。
发光组件10通过粘胶层400粘贴粘附基板500来粘附粘附组件20,形 成寻址转移设备,发光组件10的解粘光源300在驱动基板200的控制下可例如发出近红外光或近紫外光,解粘光源300发出的光透过粘附层400和粘附基板500照射光解粘胶转移头600,光解粘胶转移头600在解粘光源300发出的光源的照射下,降低了光解粘胶转移头600的粘度,从而可以实现对待转移的所述微电子元件的释放。这样一来,通过驱动基板200对解粘光源300的选择性点亮,使得对应位置的光解粘胶转移头600的粘度降低,以使对应的微电子元件被释放,从而实现了微电子元件的选择性转移,提升了微电子元件的转移效率,并且在释放时针对存在缺陷的微电子元件可以选择不进行释放,以进一步提升微电子元件的转移良率,通过微电子元件的选择性转移,也可以实现选择性的缺陷修补,从而减少修补次数、降低修补时间,节省了芯片使用,也降低了工艺制程成本和材料。此外,将发光组件10和粘附组件20分开设置,避免了光解粘胶转移头600粘度降低或者不可重复使用时需要重新制备寻址转移设备,在完成微电子元件的转移后,可快速更换新的粘附组件20,节省了资源的同时进一步提升了转移效率。
在本申请实施例的一个具体实施方式中,粘胶层400可例如为如图1所述的平面结构,还可例如为如图2所示的包括相互间隔的多个第二凸起410,多个第二凸起410向远离驱动基板200的一侧延伸,多个第二凸起410可例如相互间隔设置,且与多个解粘光源300一一对应。举例来说,粘胶层400可例如包括粘胶平面层420和多个第二凸起410,所述粘胶平面层420设置在驱动基板200远离转移基板100的一侧、并覆盖多个解粘光源300, 多个第二凸起410相互间隔地设置在所述粘胶平面层420远离驱动基板200的一侧、并向远离驱动基板200的一侧延伸;粘胶层400还可例如为多个第二凸起410,多个第二凸起410对应的覆盖在多个解粘光源300上、并向远离驱动基板200的一侧延伸,当然,此处仅为举例说明,本申请实施例并不以此为限。通过将粘胶层400设置为包括多个第二凸起410的结构,多个第二凸起410相互间隔设置,由于多个第二凸起410之间的间隔设置,使得第二凸起410与第二凸起410之间具有空气层,这样一来,可以减少解粘光源300照射时光源照射的串扰,以提高微电子元件转移的可靠性。
在本申请实施例的一个具体实施方式中,光解粘胶转移头600可例如为如图1所示的平面结构,即光解粘胶转移头600为设置在粘附基板500的一侧的光解粘胶平面层;光解粘胶转移头600还可例如包括如图3所示的多个第一凸起610,多个第一凸起610向远离粘附基板500的一侧延伸,多个第一凸起610可例如相互间隔设置,且与多个解粘光源一一对应。举例来说,光解粘胶转移头600可包括光解粘胶平面层620和多个第一凸起610,所述光解粘胶平面层620设置在粘附基板500的一侧,多个第一凸起610相互间隔地设置在所述光解粘胶平面层620远离粘附基板500的一侧、并向远离粘附基板500的一侧延伸;光解粘胶转移头600还可例如为多个第一凸起610,多个第一凸起610向远离粘附基板500的一侧延伸,且与多个解粘光源300一一对应,当然,此处仅为举例说明,本申请实施例并不以此为限。通过将光解粘胶转移头600设置为包括多个第一凸起610的结构,多个第一凸起610相互间隔设置,由于多个第一凸起610之 间的间隔设置,使得第一凸起610与第一凸起610之间具有空气层,这样一来,可以减少解粘光源300照射时光解粘胶转移头600相邻第一凸起610之间的热传递或者光源照射串扰到相邻的第一凸起610,以提高微电子元件转移的可靠性。
当光解粘转移头600为包括多个第一凸起610的结构,且粘胶层400为包括多个第二凸起410的结构时,多个第一凸起610和多个第二凸起410的位置相对应,可优选的,多个第一凸起610和多个第二凸起410的大小、形状均相同,且位置一一对应,这样一来,解粘光源300的光源照射范围更加准确,避免了光源串扰的情况,进一步保证微电子元件转移的可靠性。
可优选的,每个解粘光源300的出光角度α为:α<90°-arcsin(1/n),其中α为出光角度,n为所述光解粘胶转移头的折射率。这样一来,解粘光源300发光时,避免了光源照射范围过大,影响光解粘胶转移头600除目标位置的其他位置的粘度,以进一步提高微电子元件转移的可靠性。
参见图4A至4F,图4A为发光组件10,通过图4A所示的发光组件10粘附粘附组件20,形成如图4B所示的寻址转移设备,参见图4C,载体基板700上设置有多个待转移的微电子元件710,多个微电子元件710相互间隔地设置在载体基板700上,发光组件10上相邻的两个解粘光源300之间的距离可例如与载体基板700上相邻的微电子元件710之间的距离相等,当然,具体可根据实际情况进行设置,本申请实施例并不以此为限。如图4D所示,寻址转移设备通过粘附组件20上的光解粘胶转移头600粘附待转移的微电子元件710,微电子元件710可例如粘附在光解粘胶转移头600与解 粘光源300对应的位置上。如图4E所示,可例如需要将微电子元件710转移到目标基板800的目标位置上,通过发光组件10的驱动基板200控制对应的目标解粘光源300点亮,目标解粘光源300被点亮后,在光源的照射下,与所述目标解粘光源300对应的光解粘胶转移头600的位置的粘度降低,粘附在光解粘胶转移头600对应位置的微电子元件710被释放在目标基板800的目标位置上,即完成了微电子元件710的转移。优选的,目标基板800上的两个相邻微电子元件710间的距离为发光组件10上两个相邻解粘光源300间的距离的整数倍,以图4E为例,目标基板800上的相邻的两个微电子元件710之间的距离可例如为发光组件10上两个相邻解粘光源300间的距离的三倍,即目标基板800上微电子元件710的位置上还设置有冗余位置,在冗余位置还可以放置两个微电子元件710,这样一来,当目标基板800上放置的微电子元件710存在缺陷时,还可以通过所述寻址转移设备在所述冗余位置重新放置新的微电子元件710,以保证目标基板800上的微电子元件的质量,进一步提升转移良率。
综上所述,本申请实施例通过在寻址转移设备上设置驱动基板200、多个解粘光源300和光解粘胶转移头600,通过驱动基板200控制点亮或关闭多个解粘光源300中的目标解粘光源,在所述目标解粘光源被点亮时照射光解粘胶转移头600,来释放对应的微电子元件710,实现微电子元件的选择性转移,提升转移效率和转移良率,实现选择性缺陷修补,减少修补次数和降低修补时间,节省芯片使用,降低制程成本和材料。此外,通过发光组件10和粘附组件20单独设置,在微电子元件转移完成后可快速更换粘附 组件,避免了光解粘转移头粘度较差时重新制作寻址转移设备,节省资源的同时进一步提升了转移效率。
【第二实施例】
参见图5,本申请第二实施例提供了一种寻址转移方法,可例如包括以下步骤:
S10,粘附粘附组件至发光组件;
S20,提供载体基板,所述载体基板上设置有微电子元件;
S30,将所述微电子元件从所述载体基板上粘附至所述粘附组件的光解粘胶转移头;
S40,利用所述发光组件的驱动基板点亮所述发光组件上多个解粘光源中的目标解粘光源,在经过所述目标解粘光源照射后释放所述光解粘胶转移头上对应的所述微电子元件至目标基板;
S50,从所述发光组件上分离所述粘附组件。
参见图6,在步骤S50之后还包括以下步骤:
S60,对所述目标基板上的所述微电子元件进行性能检测,以获取所述目标基板上的缺陷位置;
S70,根据所述缺陷位置确定对应的冗余位置;
S80,利用所述发光组件粘附新的所述粘附组件;
S90,利用所述发光组件和新的所述粘附组件转移所述载体基板上的微电子元件至所述冗余位置。
为了便于更清楚地说明本实施例提供的寻址转移方法,下面结合图4A 至4F对本实施例的寻址转移方法进行详细描述。
具体地,本实施例通过图4A所示的发光组件10粘附粘附组件20,形成如图4B所示的寻址转移设备,通过所述寻址转移设备对载体基板700上的微电子元件710进行转移。
其中,发光组件10包括转移基板100、驱动基板200、多个解粘光源300和粘胶层400,其中,转移基板100可例如为硬性材料的基板,可例如为玻璃基板、聚合物基板、蓝宝石基板、陶瓷基板等;驱动基板200可例如为TFT阵列基板(也即一种主动式开关阵列基板),还可例如为CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)阵列基板,驱动基板200设置在转移基板100的一侧;多个解粘光源300可例如为LED发光阵列,解粘光源300具体可例如为红外光LED光源,也可例如为紫外光LED光源,多个解粘光源300相互间隔地设置在驱动基板200远离转移基板100的一侧,多个解粘光源300电连接驱动基板200,驱动基板200可选择性的控制多个解粘光源300中的任意解粘光源300,例如通过驱动基板200点亮或者关闭多个解粘光源300中的目标解粘光源,所述目标解粘光源可为一个解粘光源或者多个解粘光源,具体根据需要转移的微电子元件的位置确定,所述微电子元件可例如为Micro-LED,当然也可以为其他微型电子器件,本申请实施例并不以此为限;粘胶层400可例如为PDMS(Polydimethylsiloxane,聚二甲基硅氧烷)粘胶材料,当然也可以为其他粘胶材料,粘胶层400可例如为如图1所述的平面结构,还可例如为如图2所示的包括相互间隔的多个第二凸起410,粘胶 层400设置在驱动基板200远离所述转移基板100的一侧,且覆盖多个解粘光源300。
粘附组件20包括粘附基板500和光解粘胶转移头600,粘附基板500可例如为透光基板,具体可例如为玻璃基板、聚合物基板、蓝宝石基板等,本申请实施例并不以此为限;光解粘胶转移头600可例如为红外光解粘胶转移头或紫外光解粘胶转移头,光解粘胶转移头600的类型与解粘光源300的类型对应,举例来说,当解粘光源300为红外光LED光源,光解粘胶转移头600即为红外光解粘胶转移头,当解粘光源300为紫外光LED光源,光解粘胶转移头600即为紫外光解粘胶转移头,光解粘胶转移头600可例如为平面结构,即光解粘胶转移头600为设置在粘附基板500的一侧的光解粘胶平面层;光解粘胶转移头600还可例如包括多个第一凸起610,多个第一凸起610向远离粘附基板500的一侧延伸,多个第一凸起610可例如相互间隔设置,且与多个解粘光源一一对应。光解粘胶转移头600设置在粘附基板500的一侧,用于粘附或释放待转移的所述微电子元件。当光解粘转移头600为包括多个第一凸起610的结构,且粘胶层400为包括多个第二凸起410的结构时,多个第一凸起610和多个第二凸起410的位置相对应,可优选的,多个第一凸起610和多个第二凸起410的大小、形状均相同,且位置一一对应。可优选的,每个解粘光源300的出光角度α为:α<90°-arcsin(1/n),其中α为出光角度,n为所述光解粘胶转移头的折射率。
在寻址转移过程中,首先通过图4A所示的发光组件10粘附粘附组件 20,形成如图4B所示的寻址转移设备,具体可例如通过发光组件10的粘附层400粘贴粘附组件20的粘附基板,来粘附粘附组件20至发光组件10上,组成寻址转移设备。
承上述,提供如图4C所示的载体基板700,载体基板700上设置有多个待转移的微电子元件710,微电子元件710可例如为Micro-LED,当然也可以为其他微型电子器件,多个微电子元件710相互间隔地设置在载体基板700上,发光组件10上相邻的两个解粘光源300之间的距离可例如与载体基板700上相邻的微电子元件710之间的距离相等,当然,具体可根据实际情况进行设置,本申请实施例并不以此为限。
如图4D所示,寻址转移设备通过粘附组件20上的光解粘胶转移头600粘附待转移的微电子元件710,光解粘胶转移头600为光解粘胶材料,具有粘度,可粘附微电子元件710,多个所述微电子元件710可例如粘附在光解粘胶转移头600与解粘光源300对应的位置上,以光解粘胶转移头600包括多个第一凸起610为例,多个微电子元件710粘附在多个第一凸起610上。
如图4E所示,可例如需要将微电子元件710转移到目标基板800的目标位置上,通过发光组件10的驱动基板200控制多个解粘光源300中与所述目标位置对应的光解粘转移头600上的第一凸起610上粘附的微电子元件710对应的目标解粘光源300点亮,目标解粘光源300被点亮后,在光源的照射下,与所述目标解粘光源300对应的光解粘胶转移头600的位置(例如与目标解粘光源对应的第一凸起610)的粘度降低,粘附在光解粘胶转移头600对应位置的微电子元件710被释放在目标基板800的目标位置上,即完 成了微电子元件710的转移。这样一来,通过驱动基板200对解粘光源300的选择性点亮,使得对应位置的光解粘胶转移头600的粘度降低,以使对应的微电子元件被释放,从而实现了微电子元件的选择性转移,提升了微电子元件的转移效率,并且在释放时针对存在缺陷的微电子元件可以选择不进行释放,以进一步提升微电子元件的转移良率。在光解粘胶转移头600上粘附的微电子元件710全部转移完成后,或者当粘附组件20上的光解粘胶转移头600在没有光源照射的情况下粘度较低不足以粘附微电子元件710时,可例如从发光组件10上分离粘附组件20,具体可例如分离粘附组件20的力大于发光组件10与粘附组件20之间的粘力,以使粘附组件20分离发光组件10。这样一来,通过发光组件和粘附组件单独设置,在微电子元件转移完成后可快速更换粘附组件,避免了光解粘转移头粘度较差时重新制作寻址转移设备,节省资源的同时进一步提升了转移效率。
优选的,目标基板800上的两个相邻微电子元件710间的距离为发光组件10上两个相邻解粘光源300间的距离的整数倍,以图4E为例,目标基板800上的相邻的两个微电子元件710之间的距离可例如为发光组件10上两个相邻解粘光源300间的距离的三倍,即目标基板800上微电子元件710的位置上还设置有冗余位置,在冗余位置还可以放置两个微电子元件710。
承上述,可例如对目标基板800上的微电子元件710进行性能检测,以微电子元件710为Micro-LED为例,具体可例如对目标基板800上的Micro-LED进行点亮,以检测Micro-LED的性能,当然,此处仅为举例说明,本申请实施例并不以此为限,可根据实际情况选择其他检测方式。进行性能 检测后,可例如得到目标基板800上的缺陷位置,然后可例如根据所述缺陷位置确定对应的冗余位置,再利用上述的发光组件10粘附新的粘附组件20组成新的寻址转移设备,按照上述方法粘附载体基板700上的新的微电子元件710,将微电子元件710转移至目标基板800上的所述冗余位置。当然,当粘附组件20上粘附的微电子元件710未全部转移时,可以继续通过发光组件10和粘附在发光组件10上的粘附组件20转移微电子元件710至所述冗余位置。这样一来,当目标基板800上放置的微电子元件710存在缺陷时,还可以通过所述寻址转移设备在所述冗余位置重新放置新的微电子元件710,以保证目标基板800上的微电子元件的质量,进一步提升转移良率,通过微电子元件的选择性转移,也可以实现选择性的缺陷修补,从而减少修补次数、降低修补时间,节省了芯片使用,也降低了工艺制程成本和材料。
综上所述,本申请实施例提供的寻址转移方法通过在寻址转移设备上设置驱动基板200、多个解粘光源300和光解粘胶转移头600,通过驱动基板200控制点亮或关闭多个解粘光源300中的目标解粘光源,在所述目标解粘光源被点亮时照射光解粘胶转移头600,来释放对应的微电子元件710,实现微电子元件的选择性转移,提升转移效率和转移良率,实现选择性缺陷修补,减少修补次数和降低修补时间,节省芯片使用,降低制程成本和材料。此外,通过发光组件10和粘附组件20单独设置,在微电子元件转移完成后可快速更换粘附组件,避免了光解粘转移头粘度较差时重新制作寻址转移设备,节省资源的同时进一步提升了转移效率。
此外,可以理解的是,前述各个实施例仅为本申请的示例性说明,在 技术特征不冲突、结构不矛盾、不违背本申请的发明目的前提下,各个实施例的技术方案可以任意组合、搭配使用。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。
Claims (13)
- 一种寻址转移设备,包括:发光组件和粘附组件;其中,所述发光组件包括:转移基板;驱动基板,设置在所述转移基板的一侧;多个解粘光源,相互间隔地设置在所述驱动基板远离所述转移基板的一侧,所述多个解粘光源电连接所述驱动基板,所述驱动基板用于点亮或关闭所述多个解粘光源中的目标解粘光源;以及粘胶层,设置在所述驱动基板远离所述转移基板的一侧,且覆盖所述多个解粘光源,所述发光组件通过所述粘胶层粘附所述粘附组件;所述粘附组件包括:粘附基板;以及光解粘胶转移头,设置在所述粘附基板的一侧,所述光解粘胶转移头用于粘附微电子元件、并在所述目标解粘光源的照射下释放对应的所述微电子元件至目标基板。
- 如权利要求1所述的寻址转移设备,其中,所述光解粘胶转移头包括相互间隔设置的多个第一凸起,所述多个第一凸起与所述多个解粘光源一一对应。
- 如权利要求1或2所述的寻址转移设备,其中,所述粘胶层包括相互间隔设置的多个第二凸起,所述多个第二凸起与所述多个解粘光源一一对应。
- 如权利要求1所述的寻址转移设备,其中,所述目标基板上两个相邻所述微电子元件间的距离是两个相邻所述解粘光源间的距离的整数倍。
- 如权利要求1所述的寻址转移设备,其中,每个所述解粘光源的出光角度α为:α<90°-arcsin(1/n),其中α为出光角度,n为所述光解粘胶转移头的折射率。
- 如权利要求1所述的寻址转移设备,其中,所述多个解粘光源为红外光LED光源,所述光解粘胶转移头为红外光解粘胶转移头。
- 如权利要求1所述的寻址转移设备,其中,所述多个解粘光源为紫外光LED光源,所述光解粘胶转移头为紫外光解粘胶转移头。
- 一种寻址转移方法,包括:粘附粘附组件至发光组件;提供载体基板,所述载体基板上设置有微电子元件;将所述微电子元件从所述载体基板上粘附至所述粘附组件的光解粘胶转移头;利用所述发光组件的驱动基板点亮所述发光组件上多个解粘光源中的目标解粘光源,在经过所述目标解粘光源照射后释放所述光解粘胶转移头上对应的所述微电子元件至目标基板;从所述发光组件上分离所述粘附组件。
- 如权利要求8所述的寻址转移方法,其中,所述目标基板上两个相邻所述微电子元件间的距离是两个相邻所述解粘光源间的距离的整数倍。
- 如权利要求9所述的寻址转移方法,其中,还包括:对所述目标基板上的所述微电子元件进行性能检测,以获取所述目标基板上的缺陷位置;根据所述缺陷位置确定对应的冗余位置;利用所述发光组件粘附新的所述粘附组件;利用所述发光组件和新的所述粘附组件转移所述载体基板上的微电子元件至所述冗余位置。
- 如权利要求8所述的寻址转移方法,其中,每个所述解粘光源的出光角度α为:α<90°-arcsin(1/n),其中α为出光角度,n为光解粘胶转移头的折射率。
- 如权利要求8所述的寻址转移方法,其中,所述多个解粘光源为红外光LED光源,所述光解粘胶转移头为红外光解粘胶转移头。
- 如权利要求8所述的寻址转移方法,其中,所述多个解粘光源为紫外光LED光源,所述光解粘胶转移头为紫外光解粘胶转移头。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/138161 WO2023108449A1 (zh) | 2021-12-15 | 2021-12-15 | 寻址转移设备和寻址转移方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/138161 WO2023108449A1 (zh) | 2021-12-15 | 2021-12-15 | 寻址转移设备和寻址转移方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023108449A1 true WO2023108449A1 (zh) | 2023-06-22 |
Family
ID=86775004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/138161 WO2023108449A1 (zh) | 2021-12-15 | 2021-12-15 | 寻址转移设备和寻址转移方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023108449A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008142975A1 (ja) * | 2007-05-18 | 2008-11-27 | Tokyo Seimitsu Co., Ltd. | ダイシング装置およびダイシング方法 |
CN107863316A (zh) * | 2017-11-06 | 2018-03-30 | 上海天马微电子有限公司 | Micro LED转运装置、转运方法及其制作方法 |
CN108630591A (zh) * | 2017-03-15 | 2018-10-09 | 启端光电股份有限公司 | 微元件转移系统 |
CN108962789A (zh) * | 2018-06-25 | 2018-12-07 | 开发晶照明(厦门)有限公司 | 微器件转移方法和微器件转移设备 |
WO2019207920A1 (ja) * | 2018-04-26 | 2019-10-31 | Jsr株式会社 | 半導体素子の実装方法および実装装置 |
CN112864076A (zh) * | 2021-01-11 | 2021-05-28 | 京东方科技集团股份有限公司 | 一种转移装置及转移方法 |
CN113437195A (zh) * | 2021-06-04 | 2021-09-24 | 季华实验室 | 一种微型器件转移装置及转移方法 |
CN113707597A (zh) * | 2021-08-30 | 2021-11-26 | 京东方科技集团股份有限公司 | 转移基板、转移方法及发光基板 |
-
2021
- 2021-12-15 WO PCT/CN2021/138161 patent/WO2023108449A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008142975A1 (ja) * | 2007-05-18 | 2008-11-27 | Tokyo Seimitsu Co., Ltd. | ダイシング装置およびダイシング方法 |
CN108630591A (zh) * | 2017-03-15 | 2018-10-09 | 启端光电股份有限公司 | 微元件转移系统 |
CN107863316A (zh) * | 2017-11-06 | 2018-03-30 | 上海天马微电子有限公司 | Micro LED转运装置、转运方法及其制作方法 |
WO2019207920A1 (ja) * | 2018-04-26 | 2019-10-31 | Jsr株式会社 | 半導体素子の実装方法および実装装置 |
CN108962789A (zh) * | 2018-06-25 | 2018-12-07 | 开发晶照明(厦门)有限公司 | 微器件转移方法和微器件转移设备 |
CN112864076A (zh) * | 2021-01-11 | 2021-05-28 | 京东方科技集团股份有限公司 | 一种转移装置及转移方法 |
CN113437195A (zh) * | 2021-06-04 | 2021-09-24 | 季华实验室 | 一种微型器件转移装置及转移方法 |
CN113707597A (zh) * | 2021-08-30 | 2021-11-26 | 京东方科技集团股份有限公司 | 转移基板、转移方法及发光基板 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI634371B (zh) | 微小元件的轉移方法 | |
US10607877B2 (en) | Chip mounting apparatus and method using the same | |
WO2020015485A1 (zh) | 面光源及其制作方法以及液晶显示装置 | |
TWI602322B (zh) | 發光二極體組件及製作方法 | |
CN106469776B (zh) | 电子装置与其制造方法 | |
CN109545938A (zh) | 发光模块的制作方法 | |
JP7223318B2 (ja) | 保持体、位置決めシート、位置決め済み発光ダイオードチップ付き転写部材、位置決め済み発光ダイオードチップ付き転写部材の製造方法、発光基板の製造方法、及び、発光基板 | |
KR102142388B1 (ko) | Led 광원 패키지 | |
WO2021168615A1 (zh) | 发光二极管的巨量转移方法、以及显示背板组件 | |
CN114823996B (zh) | Led芯片的转移方法、显示面板 | |
TW201724584A (zh) | 具有可變數目發射表面之覆晶表面黏著技術發光二極體 | |
CN108615805B (zh) | 一种芯片级封装白光芯片及其封装方法 | |
WO2023108449A1 (zh) | 寻址转移设备和寻址转移方法 | |
WO2022241626A1 (zh) | 一种载板以及转移装置 | |
WO2023108448A1 (zh) | 寻址转移设备和寻址转移方法 | |
CN115513244A (zh) | 临时基板、发光二极管芯片的转移方法及显示组件 | |
WO2023108450A1 (zh) | 寻址转移设备 | |
TWI723492B (zh) | 黏取元件、微型發光二極體光學檢修設備及光學檢修方法 | |
TW201925799A (zh) | 應用在微型化發光裝置之檢測系統及相關檢測方法 | |
TWI677903B (zh) | 巨量佈設晶片的方法 | |
KR20200111012A (ko) | 마이크로 엘이디 고속 전사 방법 | |
CN116264261A (zh) | 寻址转移设备和寻址转移方法 | |
CN213545797U (zh) | 微发光二极管接合评价装置 | |
CN104518055B (zh) | 发光二极管组件及制造方法 | |
CN116264259A (zh) | 寻址转移设备和寻址转移方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21967589 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |