WO2023103550A1 - 一种具有大斯托克斯位移的磷化铟量子点的制备方法 - Google Patents

一种具有大斯托克斯位移的磷化铟量子点的制备方法 Download PDF

Info

Publication number
WO2023103550A1
WO2023103550A1 PCT/CN2022/122460 CN2022122460W WO2023103550A1 WO 2023103550 A1 WO2023103550 A1 WO 2023103550A1 CN 2022122460 W CN2022122460 W CN 2022122460W WO 2023103550 A1 WO2023103550 A1 WO 2023103550A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
temperature
indium phosphide
quantum dots
shell
Prior art date
Application number
PCT/CN2022/122460
Other languages
English (en)
French (fr)
Inventor
李万万
李乐辰
杨志文
方剑秋
Original Assignee
上海交通大学
浙江东方基因生物制品股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学, 浙江东方基因生物制品股份有限公司 filed Critical 上海交通大学
Publication of WO2023103550A1 publication Critical patent/WO2023103550A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • C09K11/701Chalcogenides
    • C09K11/703Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium

Definitions

  • the invention belongs to the field of quantum dot materials, in particular to a method for preparing indium phosphide quantum dots with large Stokes shift.
  • Quantum dots as a new type of semiconductor nanomaterial, have the characteristics of high quantum yield, narrow half-width, excellent photochemical stability and wavelength tunability due to the quantum size effect and quantum confinement effect, and are widely used in Quantum dot display, white light devices, solar concentrators, bioluminescent markers and liquid phase chips and other technical fields.
  • the currently used quantum dots contain heavy metal elements such as cadmium or lead, and the toxicity of the elements limits their wide application.
  • indium phosphide (InP) has similar optical properties, does not contain heavy metal elements, and has less impact on the ecological environment and human health. It can be used as an ideal substitute for cadmium-based quantum dots.
  • the preparation process of InP core-shell quantum dots is relatively mature, and the performance of the obtained quantum dots can be comparable to that of cadmium quantum dots.
  • the highest reported quantum yield of InP quantum dots is close to 100%, due to spectral overlap between quantum dots with different emission wavelengths, fluorescence resonance energy transfer (FRET) and reabsorption will occur in practical applications, resulting in poor performance. decline.
  • FRET fluorescence resonance energy transfer
  • white LED devices red, green, and blue light are often mixed to achieve white light, but the FRET and reabsorption caused by the spectral overlap between quantum dots of different colors will make it difficult to obtain color coordinates close to positive white light. , white light devices with high color rendering index and low color temperature.
  • the object of the present invention is to provide a method for preparing indium phosphide quantum dots with a large Stokes shift in view of the above technical problems.
  • the object of the present invention is to optimize the synthesis method of the InP core-shell structure, prepare an InP quantum dot with a large Stokes shift, effectively suppress FRET, and realize adjustable luminescence in the visible light range.
  • Embodiments of the present invention provide a method for preparing indium phosphide quantum dots with a large Stokes shift, the method comprising the following steps:
  • step S2 Control the temperature of the solution obtained in step S1 to the first temperature, add the phosphorus precursor, raise the temperature to the second temperature and keep it warm to obtain the indium phosphide core solution; the first temperature is 50-80° C., and the second temperature is 150° C. ⁇ 180°C;
  • step S3 adding a shell precursor to the solution obtained in step S2, raising the temperature to a third temperature and keeping it warm to obtain an indium phosphide quantum dot solution with an intermediate shell; the third temperature is 290-320°C;
  • step S4 Add anion precursor and cation precursor sequentially to the solution obtained in step S3, keep warm at a third temperature, and obtain indium phosphide quantum dots with a middle shell, an outer shell, and a large Stokes shift.
  • step S1 the indium precursor, the zinc precursor and the coordination solvent are mixed, and then the protective gas is introduced, and after the initial temperature rise, the vacuum is carried out, and then the second step of temperature rise and heat preservation is performed, and the protective gas is introduced and Continue to the third step of temperature rise to obtain indium and zinc precursor solutions;
  • the protective gas is one or more of rare gases and nitrogen;
  • the temperature of the initial temperature rise is 100°C, and the temperature of the second step is 120°C- 140°C, the holding time is 1-2h;
  • the temperature of the third step is 200°C.
  • Mixing indium precursor, zinc precursor and coordination solvent, introducing protective gas and vacuuming can remove water and oxygen.
  • indium phosphide has strong covalency, and the surface oxide layer is easy to form in an oxygen environment, which is not conducive to Further shell coating reduces the luminous efficiency. If you start vacuuming at 120°C, bumping will occur, and the solution may be sucked into the gas path of the device. Keeping warm can ensure that the precursor is fully dissolved.
  • the purpose of raising the temperature to 200°C under a protective atmosphere is to ensure complete dissolution and obtain a clear and stable cation precursor. Subsequent operations are all carried out under a protective atmosphere.
  • the holding time in step S2 is 10-150 min; the holding time in step S3 is 0-60 min; and the holding time in step S4 is 0-60 min.
  • the heat preservation time in step S3 is preferably 5-60 minutes; the heat preservation time in step S4 is preferably 5-60 minutes.
  • the shell will grow on the InP core, and the length of time affects the integrity of the shell growth. For example, the quantum dot efficiency and FWHM obtained by the middle shell ZnS at 20 minutes are the optimal values. Due to the high activity of the phosphorus precursor, the reaction nucleation starts at about 140°C.
  • the temperature for the nucleation of InP by the thermal heating method is the second temperature, which is controlled between 150-180°C, corresponding to different zinc halides to form different luminous wavelength quantum point of optimum temperature.
  • the thermal heating method mainly uses the magical size clusters formed during the heating process to form the core of InP quantum dots. If the temperature is too high, such as the conventional thermal injection method, the reaction is generally carried out at 230-280 ° C, and the particle size of the obtained quantum dots is uniform. worse.
  • the growth temperature of ZnS is 300°C to obtain InP/ZnS quantum dots with the best quantum efficiency and full width at half maximum, while the optimum reaction temperature of ZnSe is higher, and the quantum efficiency and full width at half maximum obtained by the ZnSeS shell at 320°C are the best. .
  • the molar ratio of the zinc precursor to the indium precursor in step S1 is 4.89-6.47:1; the molar ratio of the phosphorus precursor to the indium precursor in step S2 is 5.6-7.4:1.
  • the indium precursor described in step S1 is indium trichloride, and the zinc precursor is one or more of zinc halides; the phosphorus precursor described in step S2 is tris(dimethylamino )phosphorus.
  • the coordinating solvent in step S1 is oleylamine.
  • the shell anion precursor described in step S3 includes octyl mercaptan, dodecyl mercaptan, sulfur/trioctylphosphine (S/TOP), sulfur/oleylamine (S/OAm) , one or more of selenium/trioctylphosphine (Se/TOP).
  • the molar ratio of the shell anion precursor to the zinc precursor is 1 ⁇ 2:1. Since the emission wavelength of the quantum dots obtained by using zinc chloride as the precursor reaches 580nm, the spectrum of the quantum dots obtained by further heating is severely broadened. In order to prepare quantum dots with good comprehensive performance in the red light range, the structure of the middle layer is adjusted.
  • the growth of the ZnSeS shell promotes the red-shift of the emission wavelength of quantum dots.
  • a high Se content contributes to a uniform particle size and reduces the FWHM of the emission spectrum, and an increase in the S content helps to improve the quantum efficiency.
  • the anion precursor in step S4 is sulfur/trioctylphosphine (S/TOP); the cation precursor is zinc/oleylamine.
  • the molar ratio of the anion precursor to the cation precursor is 1:1-2.
  • the indium phosphide quantum dots include an indium phosphide core, an intermediate shell, and an outer shell; the intermediate shell is a ZnS x S 1 ⁇ x shell, and X takes a value of 0-1 ;
  • the outer shell is a ZnS shell, and the outer shell is coated on the middle shell.
  • the value of X is preferably 0-0.8, more preferably 0-0.5.
  • the indium phosphide quantum dot prepared by the invention has high quantum efficiency and large Stokes shift.
  • the main purpose of the middle shell is to eliminate the surface defects of InP and improve the quantum efficiency.
  • In-situ passivation is performed on the surface of InP by octylthiol with low activity to eliminate surface defects and improve quantum yield; then use S/TOP with moderate activity to uniformly grow ZnS on the outer layer to form a thick outer layer.
  • the thick outer shell is mainly to generate large Stokes displacement.
  • the average size of the indium phosphide quantum dots is 9-14 nm.
  • the emission peak of the indium phosphide quantum dot is 460-650 nm, and the half maximum width is less than 70 nm.
  • the indium phosphide quantum dot prepared by the invention has high quantum efficiency and large Stokes shift.
  • the present invention adopts the method of heat-rising nucleation to obtain core quantum dots with uniform particle size, which is beneficial to the uniform growth of the subsequent shell layer;
  • the shell layer precursor adopts oleylamine zinc and S/TOP (Se+S/TOP), which has the advantages of Moderate reactivity, by adding a sufficient amount of anion and cation precursors, a thicker passivation layer can be grown uniformly around the InP core, and energy transfer can be suppressed while improving quantum efficiency.
  • the present invention mainly focuses on the realization of the large Stokes shift.
  • the quantum dots with high quantum efficiency and uniform and thick shell coating are obtained.
  • the average size of the quantum dots is between 9-14nm, which can The effective suppression of energy transfer has been verified in absorption-emission spectroscopy and energy transfer experiments, but there is no such performance in the prior art.
  • Fig. 1 is the fluorescence emission spectrum and the ultraviolet-visible absorption spectrum figure of the InP core-shell quantum dot of embodiment 1-5 of the present invention
  • Fig. 2 is the TEM topography figure of the InP quantum dot of embodiment 1-5 of the present invention
  • a is the TEM topography figure of the quantum dot of emission wavelength 465nm in embodiment 1
  • b is the quantum dot of emission wavelength 512nm in embodiment 2 TEM topography
  • c is the TEM topography of the emission wavelength 580nm quantum dot in embodiment 3
  • d is the TEM topography of the 635nm quantum dot in the embodiment 4
  • e is the TEM topography of the 650nm quantum dot in the embodiment 5 picture
  • a is the TEM topography figure of the quantum dot of emission wavelength 465nm in embodiment 1
  • b is the quantum dot of emission wavelength 512nm in embodiment 2 TEM topography
  • c is the TEM topography of the emission wavelength 580nm quantum dot in embodiment 3
  • d is the TEM topography of the 635nm quantum dot in the embodiment 4
  • e is the TEM topography of the
  • Fig. 3 is the change graph of fluorescence spectrum before and after mixing in the solution of embodiment 2 and embodiment 4 of the present invention, wherein, a-c is the fluorescence spectrum graph before and after mixing the quantum dot solutions of different concentrations; d is three groups of experimental fluorescence intensity change graphs;
  • Fig. 4 is the spectrogram and the morphology diagram of the indium phosphide quantum dot prepared in comparative example 1 of the present invention, wherein a is the fluorescence emission spectrum, the ultraviolet-visible absorption spectrum diagram, and b is the TEM morphology diagram;
  • Figure 5 is the spectrum and topography of indium phosphide quantum dots prepared in Comparative Example 2 of the present invention, where a is the fluorescence emission spectrum and UV-Vis absorption spectrum, and b is the TEM topography.
  • nitrogen is used as the protective gas
  • indium trichloride and tris(dimethylamino)phosphorus are used as core precursors
  • oleylamine is used as a coordination solvent to synthesize the InP core
  • zinc iodide and octyl thiol are used as shell precursors , coated to form an InP/ZnS core-shell structure to improve luminous efficiency
  • zinc iodide and S/TOP as precursors to further form a coated shell layer to prepare InP/ZnS/ZnS quantum dots, as shown in Figure 1, the fluorescence emission The peak is 465nm, the half maximum width is 39nm, the quantum efficiency is 92% and has a large Stokes shift, which can effectively suppress energy transfer and reabsorption.
  • the specific steps are as follows:
  • Precursor preparation put 0.34mmol indium trichloride, 2.2mmol zinc iodide, and 5mL oleylamine in a 25mL flask, first raise the temperature to 100°C under a protective gas atmosphere, then vacuumize and heat up to 120°C, and keep 90min, then nitrogen gas was introduced, and the temperature was raised to 200°C to obtain a uniform and stable cation precursor;
  • Second shell coating add pre-prepared S/TOP (4mmol S powder and 2mLTOP ultrasonically dispersed for about 10min to completely clear) to the above solution, and then slowly add oleylamine zinc precursor (4.4mol zinc iodide dissolved in 5mL oleylamine), and reacted at 300°C for 40min to form a thick ZnS shell.
  • nitrogen is used as the protective gas
  • indium trichloride and tris(dimethylamino)phosphorus are used as the core precursors
  • oleylamine is used as the coordination solvent to synthesize the InP core
  • zinc bromide and octyl thiol are used as the shell precursors , coated to form an InP/ZnS core-shell structure to improve luminous efficiency
  • zinc bromide and S/TOP were used as precursors to further form a coated shell layer to prepare InP/ZnS/ZnS quantum dots, as shown in Figure 1, the fluorescence emission The peak is 512nm, the half maximum width is 48nm, the quantum efficiency is greater than 90% and has a large Stokes shift, which can effectively suppress energy transfer and reabsorption.
  • the specific steps are as follows:
  • Precursor preparation put 0.34mmol indium trichloride, 2.2mmol zinc bromide, and 5mL oleylamine in a 25mL flask, first raise the temperature to 100°C in a protective gas atmosphere, then vacuumize and raise the temperature to 120°C, keep 90min, then nitrogen gas was introduced, and the temperature was raised to 200°C to obtain a uniform and stable cation precursor;
  • Second shell coating add pre-prepared S/TOP (4mmol S powder and 2mLTOP ultrasonically disperse for about 10min until completely clear) to the above solution, then slowly add oleylamine zinc precursor (4.4mmol zinc bromide dissolved in 5mL oleylamine), and reacted at 300°C for 40min to form a thick ZnS shell.
  • nitrogen is used as the protective gas
  • indium trichloride and tris(dimethylamino)phosphorus are used as the core precursors
  • oleylamine is used as the coordination solvent to synthesize the InP core
  • zinc chloride and octyl thiol are used as the shell precursors , coated to form an InP/ZnS core-shell structure to improve luminous efficiency
  • zinc chloride and S/TOP as precursors to further form a coated shell layer to prepare InP/ZnS/ZnS quantum dots, as shown in Figure 1, the fluorescence emission The peak is 580nm, the half maximum width is 70nm, the quantum efficiency is greater than 90% and has a large Stokes shift, which can effectively suppress energy transfer and reabsorption.
  • the specific steps are as follows:
  • Precursor preparation put 0.45mmol indium trichloride, 2.2mmol zinc chloride, and 5mL oleylamine in a 25mL flask, first raise the temperature to 100°C in a protective gas atmosphere, then vacuumize and raise the temperature to 120°C, keep 90min, then nitrogen gas was introduced, and the temperature was raised to 200°C to obtain a uniform and stable cation precursor;
  • Second shell coating add pre-prepared S/TOP (4mmol S powder and 2mLTOP ultrasonic dispersion for about 10min to complete clarification) to the above solution, then slowly add oleylamine zinc precursor (4.4mmol zinc chloride dissolved in 5mL oleylamine), and reacted at 300°C for 40min to form a thick ZnS shell.
  • nitrogen is used as the protective gas
  • indium trichloride and tris(dimethylamino)phosphorus are used as the core precursors
  • oleylamine is used as the coordination solvent to synthesize the InP core
  • zinc chloride and S-Se/TOP are used as the shell layer Precursor, coated to form InP/ZnSex S 1 ⁇ x core-shell structure to improve luminous efficiency
  • zinc chloride and S/TOP are used as precursors to further form a coated shell layer to prepare InP/ ZnSex S 1 ⁇ x / ZnS quantum dots, as shown in Figure 1, have a fluorescence emission peak of 635nm, a full width at half maximum of 60nm, a quantum efficiency greater than 60% and a large Stokes shift, which can effectively suppress energy transfer and reabsorption.
  • the specific steps are as follows:
  • Precursor preparation put 0.45mmol indium trichloride, 2.2mmol zinc chloride, and 5mL oleylamine in a 25mL flask, first raise the temperature to 100°C in a protective gas atmosphere, then vacuumize and raise the temperature to 120°C, keep 90min, then nitrogen gas was introduced, and the temperature was raised to 200°C to obtain a uniform and stable cation precursor;
  • Second shell coating add pre-prepared S/TOP (4mmol S powder and 2mLTOP ultrasonic dispersion for about 10min to complete clarification) to the above solution, then slowly add oleylamine zinc precursor (4.4mmol zinc chloride dissolved in 5mL oleylamine), and reacted at 300°C for 40min to form a thick ZnS shell;
  • nitrogen is used as the protective gas
  • indium trichloride and tris(dimethylamino)phosphorus are used as the core precursors
  • oleylamine is used as the coordination solvent to synthesize the InP core
  • zinc chloride and Se/TOP are used as the shell precursors , coated to form an InP/ZnSe core-shell structure to improve luminous efficiency
  • zinc chloride and S/TOP as precursors to further form a coated shell layer to prepare InP/ZnSe/ZnS quantum dots, as shown in Figure 1, the fluorescence emission The peak is 650nm, the half maximum width is 54nm, the quantum efficiency is 21% and has a large Stokes shift, which can effectively suppress energy transfer and reabsorption.
  • the specific steps are as follows:
  • Precursor preparation put 0.45mmol indium trichloride, 2.2mmol zinc chloride, and 5mL oleylamine in a 25mL flask, first raise the temperature to 100°C in a protective gas atmosphere, then vacuumize and raise the temperature to 120°C, keep 90min, then nitrogen gas was introduced, and the temperature was raised to 200°C to obtain a uniform and stable cation precursor;
  • Second shell coating add pre-prepared S/TOP (4mmol S powder and 2mLTOP ultrasonic dispersion for about 10min to completely clear) to the above solution, and then slowly add oleylamine zinc precursor (4.4mmol zinc chloride dissolved in 5mL oleylamine), and reacted at 300°C for 40min to form a thick ZnS shell;
  • the emission wavelength of InP quantum dots can be adjusted from 465nm to 580nm by using zinc precursors of different halogen elements.
  • the emission wavelength can be further adjusted to 650nm by adding the middle shell layer ZnSexS1 ⁇ x .
  • the prepared quantum dots all have relatively large particle diameters, about 10 nm.
  • the quantum dots obtained in Example 2 and Example 4 are mixed, and the fluorescence spectrum is basically unchanged before and after mixing, indicating that the developed in this example Quantum dots can solve reabsorption and energy transfer between quantum dots.
  • Fig. 4 is the fluorescence emission spectrum, the ultraviolet-visible absorption spectrum diagram and the TEM topography diagram of the indium phosphide quantum dots prepared in this comparative example.
  • the quantum dots have a luminescence peak of 512nm and an average particle size of 6.81nm. In the case of no second shell coating, the obtained quantum dots do not have large Stokes shift characteristics.
  • Fig. 5 is a fluorescence emission spectrum, an ultraviolet-visible absorption spectrum diagram and a TEM morphology diagram of the indium phosphide quantum dots prepared in this comparative example.
  • the InP quantum dots prepared by the method of this comparative example were tested and analyzed, the luminescence peak of the quantum dots was 512nm, and the average particle diameter was 8.08nm. Obviously, in the case of reducing the shell precursor to 1/2 of Example 2, the prepared quantum dots do not have large Stokes shift characteristics.
  • Example 2 successfully coated the indium phosphide core with a thicker ZnS shell layer by the step-by-step cladding method, and obtained a large Stokes shift, which is Solving the energy transfer and reabsorption problem provides a new avenue.
  • the present invention has the following beneficial effects:
  • the growth of the InP quantum dot luminescent core and the coating thickness of the shell can be realized, and a uniform particle size and an adjustable luminescent wavelength between 465-650nm can be obtained.
  • the present invention adopts the technical route of heating up nucleation, heating up cladding, and thermal injection cladding to prepare InP quantum dot crystal nuclei at a lower first temperature, and then coat the intermediate passivation layer on the surface by heating up to eliminate Surface defects improve the luminous efficiency of quantum dots, and finally add precursors at the third temperature to thicken the shell, improve the stability of quantum dots, increase the Stokes shift, and reduce the occurrence of energy transfer.
  • the thermal heating method controls the nucleation and growth process of InP quantum dots, which can make the particle size distribution of quantum dots more uniform and the half-width of the spectrum narrower.
  • High-temperature cladding can form a thicker passivation layer, which further improves the optical performance of InP quantum dots.
  • the invention has simple preparation process, low cost and high repeatability, and provides a new method and idea for solving the problem of energy transfer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种具有大斯托克斯位移的磷化铟量子点及其制备方法,涉及量子点材料技术领域。制备方法包括,在第一温度将铟前驱体隔绝氧气和水,充分溶解,加入磷前驱体后升至第二温度反应,得到磷化铟核心,再加入壳层前驱体,升至第三温度,得到核壳结构的量子点,再在第三温度下依次加入阴离子和阳离子前驱体,得到发射峰在465~650nm之间可调,量子效率高且具有大斯托克斯位移的量子点。该量子点主要具有较大的斯托克斯位移来抑制自吸收和非辐射共振能量转移,宽带隙的壳层能有效钝化表面缺陷,实现较高的荧光量子效率,荧光发射峰的位置可通过改变前驱体的活性,在可见光范围内进行调节,不含镉、铅等重金属元素,对环境相对友好。

Description

一种具有大斯托克斯位移的磷化铟量子点的制备方法 技术领域
本发明属于量子点材料领域,具体涉及一种具有大斯托克斯位移的磷化铟量子点的制备方法。
背景技术
量子点(QDs)作为一种新型半导体纳米材料,由于量子尺寸效应和量子限域效应而具备了高量子产率、半高宽窄、优异的光化学稳定性和波长可调等特点,被广泛应用于量子点显示、白光器件、太阳能聚光器、生物荧光标记以及液相芯片等技术领域。然而目前使用的量子点含有镉或铅等重金属元素,元素的毒性限制了其广泛应用。相对于镉或铅类量子点,磷化铟(InP)具有与其接近的光学性能,且不含重金属元素,对生态环境和人体健康的影响较小,可以作为镉类量子点的理想替代材料。
在现有技术中,关于InP核壳量子点的制备工艺已经较为成熟,得到的量子点性能可以与镉类量子点相媲美。虽然目前报道的InP量子点量子产率最高已接近100%,但是由于不同发光波长的量子点之间存在光谱重叠,实际应用中会产生荧光共振能量转移(FRET)、重吸收等现象,导致性能下降。具体来说,在白光LED器件中,常利用红、绿、蓝三色光混合来实现白光,而不同颜色量子点之间的光谱重叠带来的FRET和重吸收会导致难以得到色坐标接近正白光、高显色指数及低色温值的白光器件。另外,在利用荧光编码微球进行多元检测时,会造成微球和发光材料的荧光信号之间表现出非正交的关系,增大了编码库构建的复杂性和难度,同时编码数量也受到了限制。
目前,解决能量转移和重新收的方法有两种:一是控制不同发光材料的距离,有研究人员通过表面包覆聚合物的方法来消除能量转移,这样会使得制备过程更加复杂;二是使用无光谱重叠的发光材料,有研究人员通过掺杂过渡族金属离子、改变量子点的结构形态来实现大斯托克斯位移,以消除能量转移,但是这些方法制备的量子点发光效率均较低。
因此,本领域的技术人员致力于开发具有大斯托克斯位移的磷化铟量子点及其制备方法,获得发射波长可调、发光效率高、半高宽窄且无能量转移的磷化铟量子点。
发明内容
本发明的目的是针对上述技术问题,提供一种具有大斯托克斯位移的磷化铟量子点的制备方法。为了解决现有技术问题,本发明的目的在于优化InP核壳结构的合成方法,制备一种具有大斯托克斯位移,有效抑制FRET的InP量子点,并实现可见光范围内的发光可调。
本发明的目的可以通过以下方案来实现:
本发明的实施例提供了一种具有大斯托克斯位移的磷化铟量子点的制备方法,所述方法包括如下步骤:
S1、将铟前驱体、锌前驱体与配位溶剂混合得到铟、锌前驱体溶液;
S2、将步骤S1所得溶液控温至第一温度,加入磷前驱体,升温至第二温度并保温,得到磷化铟核心溶液;所述第一温度为50~80℃,第二温度为150~180℃;
S3、向步骤S2所得溶液中加入壳层前驱体,升温至第三温度并保温,得到具有中间壳层的磷化铟量子点溶液;所述第三温度为290~320℃;
S4、向步骤S3所得溶液中依次加入阴离子前驱体和阳离子前驱体,在第三温度保温,得到具有中间壳层、外壳层和大斯托克斯位移的磷化铟量子点。
作为本发明的一个实施方案,步骤S1中铟前驱体、锌前驱体和配位溶剂混合后通入保护气体,初步升温后进行抽真空,再进行第二步升温并保温,通入保护气体并继续第三步升温得到铟、锌前驱体溶液;所述保护气体为稀有气体、氮气中的一种或几种;所述初步升温的温度为100℃,第二步升温的温度为120℃-140℃,保温的时间为1-2h;第三步升温的温度为200℃。将铟前驱体、锌前驱体和配位溶剂混合,通入保护气体并抽真空处理可以除水除氧,磷化铟核心共价性较强,有氧环境很容易形成表面氧化层,不利于进一步的壳层包覆,使得发光效率降低。如在120℃开始抽真空会发生暴沸,可能将溶液吸入装置气路中,保温可以保证前驱体充分溶解。在保护气氛下升温至200℃目的是保证完全溶解,得到澄清稳定的阳离子前驱体,后续操作均在保护气氛下进行。
作为本发明的一个实施方案,步骤S2中所述保温时间为10~150min;步骤S3中所述保温时间为0~60min;步骤S4中保温时间为0~60min。步骤S3中保温时间优选为为5~60min;步骤S4中保温时间优选为5~60min。在保温过程中,壳层会在InP核心上生长,时间长短影响了壳层生长的完整性,如中间壳层ZnS在20min时得到的量子点效率和半高宽为最优值。由于磷前驱体的活性较高,在140℃左右开始反应形核,因此热升温法形核InP的温度即第二温度,控制在150-180℃之间,对应不同卤化锌形成不同发光波长量子点的最佳温度。热升温法主要利用升温过程中形成的魔幻尺寸团簇转化 形成InP量子点核心,如温度过高,如常规的热注入法,一般在230-280℃进行反应,得到的量子点粒径均一性变差。ZnS的生长温度在300℃可以得到量子效率和半高宽最佳的InP/ZnS量子点,而ZnSe的最佳反应温度更高,ZnSeS壳层在320℃得到的量子效率和半高宽最佳。
作为本发明的一个实施方案,步骤S1中所述锌前驱体和铟前驱体的摩尔比为4.89~6.47:1;步骤S2中磷前驱体和铟前驱体的摩尔比为5.6~7.4:1。
作为本发明的一个实施方案,步骤S1中所述铟前驱体为三氯化铟,锌前驱体为卤化锌中的一种或几种;步骤S2中所述磷前驱体为三(二甲氨基)磷。
作为本发明的一个实施方案,步骤S1中所述配溶剂为油胺。
作为本发明的一个实施方案,步骤S3中所述壳层阴离子前驱体包括辛硫醇、十二烷硫醇、硫/三辛基膦(S/TOP)、硫/油胺(S/OAm)、硒/三辛基膦(Se/TOP)中的一种或几种。所述壳层阴离子前驱体与锌前驱体的摩尔比为1~2:1。由于采用氯化锌作为前驱体得到的量子点发射波长达到了580nm,进一步升温得到的量子点光谱宽化严重,为了制备综合性能好的红光范围的量子点,调整了中间层结构。ZnSeS壳层的生长促进了量子点发光波长的红移。Se含量高有助于均匀粒径,减小发射光谱的半高宽,S含量提高有助于提高量子效率。Se:(Se+S)=0.5时得到的量子点可以缓解InP和ZnS壳层之间的界面应力,得到半高宽和量子效率合适的量子点。
作为本发明的一个实施方案,步骤S4中的阴离子前驱体为硫/三辛基膦(S/TOP);阳离子前驱体为锌/油胺。所述阴离子前驱体、阳离子前驱体的摩尔比为1:1~2。
作为本发明的一个实施方案,所述磷化铟量子点包括磷化铟核心、中间壳层、外壳层;所述中间壳层为ZnSe xS 1~x壳层,X取值为0-1;外壳层为ZnS壳层,外壳层包覆在中间壳层上。X=1时为InP/ZnSe/ZnS结构,效率偏低,x=0.5时兼有大Stokes位移和效率,因此将X的取值为0~1。X的取值优选为0~0.8,更优选为0~0.5。本发明制得的磷化铟量子点的量子效率高,且具有大的斯托克斯位移。中间壳层主要目的是消除InP的表面缺陷,提高量子效率。通过活性较低的辛硫醇在InP表面进行原位钝化,消除表面缺陷,提高量子产率;再利用活性适中的S/TOP在外层均匀生长ZnS,形成厚的外壳层。厚的外壳层主要是为了产生大的Stokes位移。
作为本发明的一个实施方案,所述磷化铟量子点的平均尺寸为9-14nm。
作为本发明的一个实施方案,所述磷化铟量子点的发射峰为460~650nm,半高宽小于70nm。本发明制得的磷化铟量子点的量子效率高,且具有大的斯托克斯位移。
本发明采用热升温成核的方法得到了粒径均一的核心量子点,有利于后续壳层的均匀生长;壳层前驱体采用的油胺锌和S/TOP(Se+S/TOP),具有适中的反应活性,通过添加足量的阴阳离子前驱体,在可以在InP核心外围均匀生长较厚的钝化层,在提高量子效率的同时抑制能量转移。
本发明主要侧重于大斯托克斯位移的实现,通过优化包壳方法,得到量子效率较高,包覆均匀完善厚壳层的量子点,量子点的平均尺寸在9-14nm之间,能有效抑制能量转移,在吸收-发射光谱及能量转移实验中得到了验证,而现有技术中并未有此方面的表现。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
下面将结合附图对本发明的构思、结构及技术效果作进一步说明:
图1为本发明实施例1-5的InP核壳量子点的荧光发射光谱和紫外-可见吸收光谱图;
图2为本发明实施例1-5的InP量子点的TEM形貌图;其中a为实施例1中发光波长465nm量子点的TEM形貌图;b为实施例2中发光波长512nm量子点的TEM形貌图;c为实施例3中发光波长580nm量子点的TEM形貌图;d为实施例4中635nm量子点的TEM形貌图;e为实施例5中650nm量子点的TEM形貌图;
图3为本发明实施例2和实施例4溶液中混合前后荧光光谱变化图,其中,a-c为不同浓度的量子点溶液混合前后的荧光光谱图;d为三组实验荧光强度变化图;
图4为本发明对比例1制备的磷化铟量子点的光谱图和形貌图,其中a为荧光发射光谱、紫外-可见吸收光谱图,b为TEM形貌图;
图5为本发明对比例2制备的磷化铟量子点的光谱图和形貌图,其中a为荧光发射光谱、紫外-可见吸收光谱图,b为TEM形貌图。
具体实施方式
为让本专利的特征和优点更明显易懂,下面将结合本发明具体实施实例,对技术方案进行详细地描述。所描述的实施方式仅作为本发明的一部分实施方式,本发明的保护范围包括但不仅限于文中提到的实施案例。
实施例1
本实例以氮气为保护气体,采用三氯化铟、三(二甲氨基)磷为核心前驱体,油胺作为配位溶剂合成InP核心,再以碘化锌、辛硫醇作为壳层前驱体,包覆形成InP/ZnS核 壳结构提高发光效率,最后以碘化锌、S/TOP作为前驱体进一步形成包覆壳层,制备InP/ZnS/ZnS量子点,如图1所示,荧光发射峰为465nm,半高宽39nm,量子效率为92%且具有大的斯托克斯位移,能有效抑制能量转移和重吸收,具体步骤如下:
(1)前驱体制备:将0.34mmol三氯化铟和2.2mmol碘化锌、5mL油胺置于25mL烧瓶中,先在保护气体氛围下升温至100℃,然后抽真空升温至120℃,保持90min,然后通入氮气,升温至200℃,获得均一稳定的阳离子前驱体;
(2)形核:将所述前驱体溶液降温至60-70℃后加入磷前驱体(0.45mL三(二甲氨基)磷与1mL油胺超声混合),升温至150℃,并保温150min,反应得到InP量子点核心;
(3)第一壳层包覆:向上述溶液中缓慢加入辛硫醇0.44mL,再升温至300℃,并保温20min,单体在InP核心表面逐渐形成均匀的ZnS壳层,得到InP/ZnS核壳结构;
(4)第二壳层包覆:向上述溶液中加入预先准备好的S/TOP(4mmolS粉与2mLTOP超声分散约10min至完全澄清),再缓慢加入油胺锌前驱体(4.4mol碘化锌溶解在5mL油胺中),在300℃反应40min,形成厚的ZnS壳层。
(5)提纯:将反应结束的溶液降至室温,按比例加入氯仿和乙醇,离心沉淀后用氯仿再次分散,同比例加入乙醇离心沉淀,最后将沉淀溶解在甲苯中,得到纯化的具有大斯托克斯位移的InP/ZnS/ZnS量子点。
实施例2
本实例以氮气为保护气体,采用三氯化铟、三(二甲氨基)磷为核心前驱体,油胺作为配位溶剂合成InP核心,再以溴化锌、辛硫醇作为壳层前驱体,包覆形成InP/ZnS核壳结构提高发光效率,最后以溴化锌、S/TOP作为前驱体进一步形成包覆壳层,制备InP/ZnS/ZnS量子点,如图1所示,荧光发射峰为512nm,半高宽48nm,量子效率大于90%且具有大的斯托克斯位移,能有效抑制能量转移和重吸收,具体步骤如下:
(1)前驱体制备:将0.34mmol三氯化铟和2.2mmol溴化锌、5mL油胺置于25mL烧瓶中,先在保护气体氛围下升温至100℃,然后抽真空升温至120℃,保持90min,然后通入氮气,升温至200℃,获得均一稳定的阳离子前驱体;
(2)形核:将所述前驱体溶液降温至60-70℃后加入磷前驱体(0.45mL三(二甲氨基)磷与1mL油胺超声混合),升温至160℃,并保温15min,反应得到InP量子点核心;
(3)第一壳层包覆:向上述溶液中缓慢加入辛硫醇0.44mL,再升温至300℃,并保温20min,单体在InP核心表面逐渐形成均匀的ZnS壳层,得到InP/ZnS核壳结构;
(4)第二壳层包覆:向上述溶液中加入预先准备好的S/TOP(4mmolS粉与2mLTOP 超声分散约10min至完全澄清),再缓慢加入油胺锌前驱体(4.4mmol溴化锌溶解在5mL油胺中),在300℃反应40min,形成厚的ZnS壳层。
(5)提纯:将反应结束的溶液降至室温,按比例沉淀加入氯仿和乙醇,离心沉淀后用氯仿再次分散,同比例加入乙醇离心沉淀,最后将溶解在甲苯中,得到纯化的具有大斯托克斯位移的InP/ZnS/ZnS量子点。
实施例3
本实例以氮气为保护气体,采用三氯化铟、三(二甲氨基)磷为核心前驱体,油胺作为配位溶剂合成InP核心,再以氯化锌、辛硫醇作为壳层前驱体,包覆形成InP/ZnS核壳结构提高发光效率,最后以氯化锌、S/TOP作为前驱体进一步形成包覆壳层,制备InP/ZnS/ZnS量子点,如图1所示,荧光发射峰为580nm,半高宽70nm,量子效率大于90%且具有大的斯托克斯位移,能有效抑制能量转移和重吸收,具体步骤如下:
(1)前驱体制备:将0.45mmol三氯化铟和2.2mmol氯化锌、5mL油胺置于25mL烧瓶中,先在保护气体氛围下升温至100℃,然后抽真空升温至120℃,保持90min,然后通入氮气,升温至200℃,获得均一稳定的阳离子前驱体;
(2)形核:将所述前驱体溶液降温至60-70℃后加入磷前驱体(0.45mL三(二甲氨基)磷与1mL油胺超声混合),升温至180℃,并保温20min,反应得到InP量子点核心;
(3)第一壳层包覆:向上述溶液中缓慢加入辛硫醇0.44mL,再升温至300℃,并保温20min,单体在InP核心表面逐渐形成均匀的ZnS壳层,得到InP/ZnS核壳结构;
(4)第二壳层包覆:向上述溶液中加入预先准备好的S/TOP(4mmolS粉与2mLTOP超声分散约10min至完全澄清),再缓慢加入油胺锌前驱体(4.4mmol氯化锌溶解在5mL油胺中),在300℃反应40min,形成厚的ZnS壳层。
(5)提纯:将反应结束的溶液降至室温,按比例加入氯仿和乙醇,离心沉淀后用氯仿再次分散,同比例加入乙醇离心沉淀,最后将沉淀溶解在甲苯中,得到纯化的具有大斯托克斯位移的InP/ZnS/ZnS量子点。
实施例4
本实例以氮气为保护气体,采用三氯化铟、三(二甲氨基)磷为核心前驱体,油胺作为配位溶剂合成InP核心,再以氯化锌、S-Se/TOP作为壳层前驱体,包覆形成InP/ZnSe xS 1~x核壳结构提高发光效率,最后以氯化锌、S/TOP作为前驱体进一步形成包覆壳层,制备InP/ZnSe xS 1~x/ZnS量子点,如图1所示,荧光发射峰为635nm,半高宽60nm,量子效率大于60%且具有大的斯托克斯位移,能有效抑制能量转移和重吸收, 具体步骤如下:
(1)前驱体制备:将0.45mmol三氯化铟和2.2mmol氯化锌、5mL油胺置于25mL烧瓶中,先在保护气体氛围下升温至100℃,然后抽真空升温至120℃,保持90min,然后通入氮气,升温至200℃,获得均一稳定的阳离子前驱体;
(2)形核:将所述前驱体溶液降温至60-70℃后加入磷前驱体(0.45mL三(二甲氨基)磷与1mL油胺超声混合),升温至180℃,并保温20min,反应得到InP量子点核心;
(3)第一壳层包覆:向上述溶液中缓慢加入S-Se/TOP(1.1mmolS粉、1.1mmolSe粉与1.1mLTOP超声分散约10min至完全澄清),再升温至320℃,并保温20min,单体在InP核心表面逐渐形成均匀的ZnSexS1-x壳层,得到InP/ZnSexS1~x核壳结构。
(4)第二壳层包覆:向上述溶液中加入预先准备好的S/TOP(4mmolS粉与2mLTOP超声分散约10min至完全澄清),再缓慢加入油胺锌前驱体(4.4mmol氯化锌溶解在5mL油胺中),在300℃反应40min,形成厚的ZnS壳层;
(5)提纯:将反应结束的溶液降至室温,按比例加入氯仿和乙醇,离心沉淀后用氯仿再次分散,同比例加入乙醇离心沉淀,最后将沉淀溶解在甲苯中,得到纯化的具有大斯托克斯位移的InP/ZnSe xS 1~x/ZnS量子点。
实施例5
本实例以氮气为保护气体,采用三氯化铟、三(二甲氨基)磷为核心前驱体,油胺作为配位溶剂合成InP核心,再以氯化锌、Se/TOP作为壳层前驱体,包覆形成InP/ZnSe核壳结构提高发光效率,最后以氯化锌、S/TOP作为前驱体进一步形成包覆壳层,制备InP/ZnSe/ZnS量子点,如图1所示,荧光发射峰为650nm,半高宽54nm,量子效率21%且具有大的斯托克斯位移,能有效抑制能量转移和重吸收,具体步骤如下:
(1)前驱体制备:将0.45mmol三氯化铟和2.2mmol氯化锌、5mL油胺置于25mL烧瓶中,先在保护气体氛围下升温至100℃,然后抽真空升温至120℃,保持90min,然后通入氮气,升温至200℃,获得均一稳定的阳离子前驱体;
(2)形核:将所述前驱体溶液降温至60-70℃后加入磷前驱体(0.45mL三(二甲氨基)磷与1mL油胺超声混合),升温至180℃,并保温20min,反应得到InP量子点核心;
(3)第一壳层包覆:向上述溶液中缓慢加入Se/TOP(2.2mmolSe粉与1.1mLTOP超声分散约10min至完全澄清),再升温至320℃,并保温20min,单体在InP核心表面逐渐形成均匀的ZnSe壳层,得到InP/ZnSe核壳结构。
(4)第二壳层包覆:向上述溶液中加入预先准备好的S/TOP(4mmolS粉与2mLTOP 超声分散约10min至完全澄清),再缓慢加入油胺锌前驱体(4.4mmol氯化锌溶解在5mL油胺中),在300℃反应40min,形成厚的ZnS壳层;
(5)提纯:将反应结束的溶液降至室温,按比例加入氯仿和乙醇,离心沉淀后用氯仿再次分散,同比例加入乙醇离心沉淀,最后将沉淀溶解在甲苯中,得到纯化的具有大斯托克斯位移的InP/ZnSe/ZnS量子点。
从图1可以看出,通过采用不同卤族元素的锌前驱体,可将InP量子点的发射波长从465nm调至580nm。通过加入中间壳层ZnSe xS 1~x,可将发射波长进一步调控至650nm。从图2可以看出,制备的量子点均具有较大的粒径,约为10nm左右。从图3可以看出,因为制备的量子点具有大斯托克斯位移特性,将实施例2和实施例4所获得的量子点进行混合,混合前后荧光光谱基本无变化,说明本实例开发的量子点可解决量子点之间的重吸收和能量转移。
对比例1
本对比例制备方法与实施例2类似,区别之处为不进行第二壳层包覆。图4为本对比例制备的磷化铟量子点的荧光发射光谱、紫外-可见吸收光谱图及TEM形貌图。
试验测试分析:
从图4可以看出,该量子点的发光峰值为512nm,平均粒径为6.81nm。在不进行第二壳层包覆的情况下,得到的量子点不具有大斯托克斯位移特性。
对比例2
本对比例制备方法与实施例2类似,区别之处为采用的第二壳层前驱体均为实施例2中的1/2。图5为本对比例制备的磷化铟量子点的荧光发射光谱、紫外-可见吸收光谱图及TEM形貌图。
试验测试分析:
对本对比例方法制备的InP量子点进行测试和分析,该量子点的发光峰值为512nm,平均粒径为8.08nm。显然,在减少壳层前驱体为实施例2的1/2的情况下,制备的量子点不具有大斯托克斯位移特性。
通过对比例2、3与实施例2的数据可以发现,实施例2通过分步包壳的方法成功在磷化铟核心上包覆了较厚的ZnS壳层,获得了大的Stokes位移,为解决能量转移和重吸收问题提供了一种新的途径。
与现有技术相比,本发明具有如下有益效果:
1、通过控制反应温度、反应时间和前驱体的种类及比例,能够实现InP量子点发光 核心的生长和壳层的包覆厚度,获得具有均一粒径、发光波长在465-650nm之间可调、量子效率大于90%且具有大斯托克斯位移的量子点。
2、本发明采用升温成核,升温包壳、热注射包壳的技术路线,在较低的第一温度制备InP量子点晶核,再通过升温的方式在表面包覆中间钝化层,消除表面缺陷,提高量子点的发光效率,最后在第三温度下添加前驱体使壳层增厚,提高量子点的稳定性,增大斯托克斯位移,减少能量转移的发生。
3、本发明中,热升温法控制InP量子点的形核和生长过程,可以使得量子点粒径分布更均一,光谱半峰宽更窄。高温包壳可以形成较厚的钝化层,进一步提升InP量子点的光学性能。本发明制备过程简单,成本低,重复性高,为解决能量转移问题提供了一种新的方法和思路。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (10)

  1. 一种具有大斯托克斯位移的磷化铟量子点的制备方法,其特征在于,所述方法包括如下步骤:
    S1、将铟前驱体、锌前驱体与配位溶剂混合得到铟、锌前驱体溶液;
    S2、将步骤S1所得溶液控温至第一温度,加入磷前驱体,升温至第二温度并保温,得到磷化铟核心溶液;所述第一温度为50~80℃,第二温度为150~180℃;
    S3、向步骤S2所得溶液中加入壳层前驱体,升温至第三温度并保温,得到具有中间壳层的磷化铟量子点溶液;所述第三温度为290~320℃;
    S4、向步骤S3所得溶液中依次加入阴离子前驱体和阳离子前驱体,在第三温度保温,得到具有中间壳层、外壳层和大斯托克斯位移的磷化铟量子点。
  2. 根据权利要求1所述磷化铟量子点的制备方法,其特征在于,步骤S1中铟前驱体、锌前驱体和配位溶剂混合后通入保护气体,进行抽真空并升温、保温,得到铟、锌前驱体溶液;所述保护气体为稀有气体、氮气中的一种或几种;所述升温的温度为120℃-140℃,保温的时间为1-2h。
  3. 根据权利要求1所述磷化铟量子点的制备方法,其特征在于,步骤S2中所述保温时间为10~150min;步骤S3中所述保温时间为0~60min;步骤S4中保温时间为0~60min。
  4. 根据权利要求1所述磷化铟量子点的制备方法,其特征在于,步骤S1中所述铟前驱体为三氯化铟,锌前驱体为卤化锌中的一种或几种;步骤S2中所述磷前驱体为三(二甲氨基)磷。
  5. 根据权利要求1所述磷化铟量子点的制备方法,其特征在于,步骤S1中所述配位溶剂为油胺。
  6. 根据权利要求1所述磷化铟量子点的制备方法,其特征在于,步骤S3中所述壳层阴离子前驱体包括辛硫醇、十二烷硫醇、硫/三辛基膦、硫/油胺、硒/三辛基膦中的一种或几种。
  7. 根据权利要求1所述磷化铟量子点的制备方法,其特征在于,步骤S4中的阴离子前驱体为硫/三辛基膦;阳离子前驱体为锌/油胺。
  8. 根据权利要求1所述磷化铟量子点的制备方法,其特征在于,所述中间壳层为ZnSe xS 1~x壳层,X取值为0-1;外壳层为ZnS壳层,外壳层为包覆在中间壳层上。
  9. 根据权利要求1所述磷化铟量子点的制备方法,其特征在于,所述磷化铟量子点的平均尺寸为9-14nm。
  10. 根据权利要求1所述磷化铟量子点的制备方法,其特征在于,所述磷化铟量子点的发射峰为460~650nm,半高宽小于70nm。
PCT/CN2022/122460 2021-12-06 2022-09-29 一种具有大斯托克斯位移的磷化铟量子点的制备方法 WO2023103550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111481449.0 2021-12-06
CN202111481449.0A CN116218510A (zh) 2021-12-06 2021-12-06 一种具有大斯托克斯位移的磷化铟量子点的制备方法

Publications (1)

Publication Number Publication Date
WO2023103550A1 true WO2023103550A1 (zh) 2023-06-15

Family

ID=86589798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122460 WO2023103550A1 (zh) 2021-12-06 2022-09-29 一种具有大斯托克斯位移的磷化铟量子点的制备方法

Country Status (2)

Country Link
CN (1) CN116218510A (zh)
WO (1) WO2023103550A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118165730A (zh) * 2024-05-13 2024-06-11 北京北达聚邦科技有限公司 一种磷化铟量子点及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109694712A (zh) * 2017-10-24 2019-04-30 奇美实业股份有限公司 量子点、发光材料及量子点的制造方法
CN110157407A (zh) * 2019-05-14 2019-08-23 上海交通大学 一种InP量子点及其制备方法
US20190273178A1 (en) * 2018-03-05 2019-09-05 Nanosys, Inc. Decreased Photon Reabsorption in Emissive Quantum Dots
CN111592877A (zh) * 2020-03-02 2020-08-28 河南大学 一种核壳结构量子点及其制备方法
CN112143486A (zh) * 2020-10-27 2020-12-29 吉林化工学院 基于三(二甲氨基)膦的不同中间壳层的磷化铟核壳量子点及其制备方法
US20210071076A1 (en) * 2018-04-04 2021-03-11 National University Of Singapore Luminescent nanoparticles and luminescent solar concentrators containing same
CN112608752A (zh) * 2020-12-21 2021-04-06 深圳扑浪创新科技有限公司 一种核壳InP/ZnSe/ZnS量子点及其制备方法
CN114836217A (zh) * 2022-03-03 2022-08-02 上海大学 一种黄光磷化铟量子点的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109694712A (zh) * 2017-10-24 2019-04-30 奇美实业股份有限公司 量子点、发光材料及量子点的制造方法
US20190273178A1 (en) * 2018-03-05 2019-09-05 Nanosys, Inc. Decreased Photon Reabsorption in Emissive Quantum Dots
US20210071076A1 (en) * 2018-04-04 2021-03-11 National University Of Singapore Luminescent nanoparticles and luminescent solar concentrators containing same
CN110157407A (zh) * 2019-05-14 2019-08-23 上海交通大学 一种InP量子点及其制备方法
CN111592877A (zh) * 2020-03-02 2020-08-28 河南大学 一种核壳结构量子点及其制备方法
CN112143486A (zh) * 2020-10-27 2020-12-29 吉林化工学院 基于三(二甲氨基)膦的不同中间壳层的磷化铟核壳量子点及其制备方法
CN112608752A (zh) * 2020-12-21 2021-04-06 深圳扑浪创新科技有限公司 一种核壳InP/ZnSe/ZnS量子点及其制备方法
CN114836217A (zh) * 2022-03-03 2022-08-02 上海大学 一种黄光磷化铟量子点的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUNG CHIA WANG, HENG ZHANG, HAO YUE CHEN, HAN CHENG YEH, MEI RURNG TSENG, REN JEI CHUNG, SHUMING CHEN, RU SHI LIU: "Cadmium-Free InP/ZnSeS/ZnS Heterostructure-Based Quantum Dot Light-Emitting Diodes with a ZnMgO Electron Transport Layer and a Brightness of Over 10 000 cd m −2", SMALL, WILEY, HOBOKEN, USA, vol. 13, no. 13, 1 April 2017 (2017-04-01), Hoboken, USA, pages 1603962, XP055389175, ISSN: 1613-6810, DOI: 10.1002/smll.201603962 *
TOUFANIAN REYHANEH, CHERN MARGARET, KONG VICTORIA H., DENNIS ALLISON M.: "Engineering Brightness-Matched Indium Phosphide Quantum Dots", CHEMISTRY OF MATERIALS, AMERICAN CHEMICAL SOCIETY, US, vol. 33, no. 6, 23 March 2021 (2021-03-23), US , pages 1964 - 1975, XP093072214, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.0c03181 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118165730A (zh) * 2024-05-13 2024-06-11 北京北达聚邦科技有限公司 一种磷化铟量子点及其制备方法

Also Published As

Publication number Publication date
CN116218510A (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
Yan et al. Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr 3 quantum dots
CN103265949B (zh) 一种单核AgInS2量子点的制备方法
WO2016086511A1 (zh) 一种自钝化量子点的制备方法
CN112175613B (zh) 双层配体制备高效稳定性无机钙钛矿量子点的方法
Duan et al. High quantum-yield CdSexS1− x/ZnS core/shell quantum dots for warm white light-emitting diodes with good color rendering
WO2023103550A1 (zh) 一种具有大斯托克斯位移的磷化铟量子点的制备方法
Feng et al. Synthesis and luminescence properties of Al2O3@ YAG: Ce core–shell yellow phosphor for white LED application
CN110982523B (zh) 铜掺杂准二维全无机钙钛矿材料及其制备方法
Chen et al. Room-temperature ionic-liquid-assisted hydrothermal synthesis of Ag-In-Zn-S quantum dots for WLEDs
JP3755033B2 (ja) 半導体超微粒子含有シリカ系ガラス粒子材料およびデバイス
CN112961669A (zh) 固相碳量子点的制备方法、由其制备的固相碳量子点及发光器件
CN109401754A (zh) 一种具有高蓝光吸收率的量子点及其制备方法
Huang et al. White light-emitting diodes based on quaternary Ag–In-Ga-S quantum dots and their influences on melatonin suppression index
CN114106827A (zh) 一种Mn4+掺杂红色荧光材料及其制备方法和应用
Xu et al. Stability of CsPbX3 (X= Br, Cl, I) perovskite nanocrystalline
Zhang et al. Research progress on surface modifications for phosphors used in light-emitting diodes (LEDs)
Mun et al. Light-extraction enhancement of white LEDs with different phases of TiO2: 0.01 Eu3+ spheres
US8110123B2 (en) High-brightness yellow-orange yellow phosphor for warm white LED
CN111218017A (zh) 一种双重图像防伪功能的复合薄膜及其制备方法
WO2023197435A1 (zh) 一种钠和铜共掺杂铯铅溴钙钛矿量子点的制备方法及其产品和应用
Zhang et al. Synergetic effects of the co-doping transition metal ions and the silica-shell coating for enhancing the photoluminescence and stability of Mn: CsPbCl3 nanocrystals and their application
CN110041931B (zh) 一种近红外荧光薄膜及其制备方法、近红外led
Shi et al. Growth of CsPbX3 nanocrystals using sol–gel SiO2 solid powders as reactors without capping agents towards anomalous stable emission membranes
Tang et al. Effect of perovskite composition regulation on its crystallization in SiO2–Al2O3–Li2CO3–AlF3–LiF glass system
KR20200107401A (ko) 가시광-근적외선 방출 Cu-In-S 기반 양자점 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902975

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE